private static final double GRAVITATIONAL_ACCELERATION = -gravity;
private static final double AIR_GAS_CONSTANT = 287.053;
- private static final double NUMBER_OF_LAYERS = 7;
- private static final double MAXIMUM_ALTITUDE = 84852.0;
- private static final double MINIMUM_PRESSURE = 0.3734;
+ private static final double MAXIMUM_ALTITUDE = 100000.0;
+ private static final double MINIMUM_PRESSURE = 0.023439;
private static final double LAYER0_BASE_TEMPERATURE = 288.15;
private static final double LAYER0_BASE_PRESSURE = 101325;
/* lapse rate and base altitude for each layer in the atmosphere */
private static final double[] lapse_rate = {
- -0.0065, 0.0, 0.001, 0.0028, 0.0, -0.0028, -0.002
+ -0.0065, 0.0, 0.001, 0.0028, 0.0, -0.0028, -0.002, 0,
};
- private static final int[] base_altitude = {
- 0, 11000, 20000, 32000, 47000, 51000, 71000
+ private static final double[] base_altitude = {
+ 0, 11000, 20000, 32000, 47000, 51000, 71000, 84852,
};
+ private static final int NUMBER_OF_LAYERS = base_altitude.length;
/* outputs atmospheric pressure associated with the given altitude.
* altitudes are measured with respect to the mean sea level
*/
double next_base_pressure = LAYER0_BASE_PRESSURE;
double altitude;
- double base_pressure;
- double base_temperature;
+ double base_pressure = 0;
+ double base_temperature = 0;
double base; /* base for function to determine base pressure of next layer */
double exponent; /* exponent for function to determine base pressure
of next layer */
double coefficient;
int layer_number; /* identifies layer in the atmosphere */
- int delta_z; /* difference between two altitudes */
+ double delta_z; /* difference between two altitudes */
- if (pressure < 0) /* illegal pressure */
- return -1;
if (pressure < MINIMUM_PRESSURE) /* FIX ME: use sensor data to improve model */
- return MAXIMUM_ALTITUDE;
+ pressure = MINIMUM_PRESSURE;
/* calculate the base temperature and pressure for the atmospheric layer
associated with the inputted pressure. */
- layer_number = -1;
- do {
- layer_number++;
+ for (layer_number = 0; layer_number < NUMBER_OF_LAYERS - 1; layer_number++) {
base_pressure = next_base_pressure;
base_temperature = next_base_temperature;
delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number];
next_base_pressure *= Math.pow(base, exponent);
}
next_base_temperature += delta_z * lapse_rate[layer_number];
+ if (pressure >= next_base_pressure)
+ break;
}
- while(layer_number < NUMBER_OF_LAYERS - 1 && pressure < next_base_pressure);
/* calculate the altitude associated with the inputted pressure */
if (lapse_rate[layer_number] == 0.0) {
+ coefficient * (Math.pow(base, exponent) - 1);
}
+ if (altitude > MAXIMUM_ALTITUDE)
+ altitude = MAXIMUM_ALTITUDE;
+
return altitude;
}
return raw / 4095.0;
}
+ static double stm_adc(int raw) {
+ return raw / 4095.0;
+ }
+
+ static public double easy_timer_battery_voltage(int v_batt) {
+ if (v_batt != AltosLib.MISSING)
+ return 3.3 * stm_adc(v_batt) * (5.6 + 10.0) / 10.0;
+ return AltosLib.MISSING;
+ }
+
+ static double easy_timer_pyro_voltage_15v(int raw) {
+ if (raw != AltosLib.MISSING)
+ return 3.3 * stm_adc(raw) * (100.0 + 27.0) / 27.0;
+ return AltosLib.MISSING;
+ }
+
+ static public double metrum_battery_voltage(int v_batt) {
+ if (v_batt != AltosLib.MISSING)
+ return 3.3 * stm_adc(v_batt) * (5.6 + 10.0) / 10.0;
+ return AltosLib.MISSING;
+ }
+
+ static double metrum_pyro_voltage(int raw) {
+ if (raw != AltosLib.MISSING)
+ return 3.3 * stm_adc(raw) * (100.0 + 27.0) / 27.0;
+ return AltosLib.MISSING;
+ }
+
static public double mega_battery_voltage(int v_batt) {
if (v_batt != AltosLib.MISSING)
- return 3.3 * mega_adc(v_batt) * (5.6 + 10.0) / 10.0;
+ return 3.3 * stm_adc(v_batt) * (5.6 + 10.0) / 10.0;
+ return AltosLib.MISSING;
+ }
+
+ static double mega_pyro_voltage_15v(int raw) {
+ if (raw != AltosLib.MISSING)
+ return 3.3 * stm_adc(raw) * (100.0 + 27.0) / 27.0;
return AltosLib.MISSING;
}
- static double mega_pyro_voltage(int raw) {
+ static double mega_pyro_voltage_30v(int raw) {
if (raw != AltosLib.MISSING)
- return 3.3 * mega_adc(raw) * (100.0 + 27.0) / 27.0;
+ return 3.3 * stm_adc(raw) * (100.0 + 12.0) / 12.0;
return AltosLib.MISSING;
}
return sensor / 4095.0 * supply * (5.6 + 10.0) / 10.0;
}
+ static double tele_gps_3_voltage(int sensor) {
+ double supply = 3.3;
+
+ return sensor / 32767.0 * supply * (5.6 + 10.0) / 10.0;
+ }
+
+ /* STM32F042 */
+ static double tele_gps_4_voltage(int sensor) {
+ double supply = 3.3;
+
+ return sensor / 4095.0 * supply * (5.6 + 10.0) / 10.0;
+ }
+
static double tele_bt_3_battery(int raw) {
if (raw == AltosLib.MISSING)
return AltosLib.MISSING;
return easy_mini_2_adc(sensor) * supply * 127/27;
}
+ static double easy_mini_3_voltage(int sensor) {
+ return easy_mini_1_voltage(sensor, 10000);
+ }
+
static double motor_pressure(double voltage) {
double base = 0.5;
double max = 4.5;
return (voltage - base) / (max - base) * full_scale_pressure;
}
+ static double easy_motor_3_adc(double raw) {
+ return raw / 32767.0;
+ }
+
+ static double easy_motor_3_voltage(int sensor) {
+ double supply = 3.3;
+
+ return easy_motor_3_adc(sensor) * supply * 15.6 / 10.0;
+ }
+
static double easy_motor_2_motor_pressure(int sensor, double ground_sensor) {
double supply = 3.3;
double ground_voltage = easy_mini_2_adc(ground_sensor) * supply * 15.6 / 10.0;
return motor_pressure(voltage) - motor_pressure(ground_voltage);
}
+ static double easy_motor_3_motor_pressure(int sensor, double ground_sensor) {
+ double supply = 3.3;
+ double ground_voltage = easy_motor_3_adc(ground_sensor) * supply * 15.6 / 10.0;
+ double voltage = easy_motor_3_adc(sensor) * supply * 15.6 / 10.0;
+
+ return motor_pressure(voltage) - motor_pressure(ground_voltage);
+ }
+
public static double radio_to_frequency(int freq, int setting, int cal, int channel) {
double f;
public static int beep_freq_to_value(double freq) {
if (freq == 0)
- return 94;
+ return 0;
return (int) Math.floor (1.0/2.0 * (24.0e6/32.0) / freq + 0.5);
}