STM32 ST-LINK target initial release
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   This program is free software; you can redistribute it and/or modify  *
24  *   it under the terms of the GNU General Public License as published by  *
25  *   the Free Software Foundation; either version 2 of the License, or     *
26  *   (at your option) any later version.                                   *
27  *                                                                         *
28  *   This program is distributed in the hope that it will be useful,       *
29  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
30  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
31  *   GNU General Public License for more details.                          *
32  *                                                                         *
33  *   You should have received a copy of the GNU General Public License     *
34  *   along with this program; if not, write to the                         *
35  *   Free Software Foundation, Inc.,                                       *
36  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
37  ***************************************************************************/
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41
42 #include <helper/time_support.h>
43 #include <jtag/jtag.h>
44 #include <flash/nor/core.h>
45
46 #include "target.h"
47 #include "target_type.h"
48 #include "target_request.h"
49 #include "breakpoints.h"
50 #include "register.h"
51 #include "trace.h"
52 #include "image.h"
53 #include "rtos/rtos.h"
54
55
56 static int target_read_buffer_default(struct target *target, uint32_t address,
57                 uint32_t size, uint8_t *buffer);
58 static int target_write_buffer_default(struct target *target, uint32_t address,
59                 uint32_t size, const uint8_t *buffer);
60 static int target_array2mem(Jim_Interp *interp, struct target *target,
61                 int argc, Jim_Obj *const *argv);
62 static int target_mem2array(Jim_Interp *interp, struct target *target,
63                 int argc, Jim_Obj *const *argv);
64 static int target_register_user_commands(struct command_context *cmd_ctx);
65
66 /* targets */
67 extern struct target_type arm7tdmi_target;
68 extern struct target_type arm720t_target;
69 extern struct target_type arm9tdmi_target;
70 extern struct target_type arm920t_target;
71 extern struct target_type arm966e_target;
72 extern struct target_type arm946e_target;
73 extern struct target_type arm926ejs_target;
74 extern struct target_type fa526_target;
75 extern struct target_type feroceon_target;
76 extern struct target_type dragonite_target;
77 extern struct target_type xscale_target;
78 extern struct target_type cortexm3_target;
79 extern struct target_type cortexa8_target;
80 extern struct target_type arm11_target;
81 extern struct target_type mips_m4k_target;
82 extern struct target_type avr_target;
83 extern struct target_type dsp563xx_target;
84 extern struct target_type dsp5680xx_target;
85 extern struct target_type testee_target;
86 extern struct target_type avr32_ap7k_target;
87 extern struct target_type stm32_stlink_target;
88
89 static struct target_type *target_types[] =
90 {
91         &arm7tdmi_target,
92         &arm9tdmi_target,
93         &arm920t_target,
94         &arm720t_target,
95         &arm966e_target,
96         &arm946e_target,
97         &arm926ejs_target,
98         &fa526_target,
99         &feroceon_target,
100         &dragonite_target,
101         &xscale_target,
102         &cortexm3_target,
103         &cortexa8_target,
104         &arm11_target,
105         &mips_m4k_target,
106         &avr_target,
107         &dsp563xx_target,
108         &dsp5680xx_target,
109         &testee_target,
110         &avr32_ap7k_target,
111         &stm32_stlink_target,
112         NULL,
113 };
114
115 struct target *all_targets = NULL;
116 static struct target_event_callback *target_event_callbacks = NULL;
117 static struct target_timer_callback *target_timer_callbacks = NULL;
118 static const int polling_interval = 100;
119
120 static const Jim_Nvp nvp_assert[] = {
121         { .name = "assert", NVP_ASSERT },
122         { .name = "deassert", NVP_DEASSERT },
123         { .name = "T", NVP_ASSERT },
124         { .name = "F", NVP_DEASSERT },
125         { .name = "t", NVP_ASSERT },
126         { .name = "f", NVP_DEASSERT },
127         { .name = NULL, .value = -1 }
128 };
129
130 static const Jim_Nvp nvp_error_target[] = {
131         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
132         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
133         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
134         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
135         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
136         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
137         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
138         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
139         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
140         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
141         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
142         { .value = -1, .name = NULL }
143 };
144
145 static const char *target_strerror_safe(int err)
146 {
147         const Jim_Nvp *n;
148
149         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
150         if (n->name == NULL) {
151                 return "unknown";
152         } else {
153                 return n->name;
154         }
155 }
156
157 static const Jim_Nvp nvp_target_event[] = {
158         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
159         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
160
161         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
162         { .value = TARGET_EVENT_HALTED, .name = "halted" },
163         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
164         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
165         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
166
167         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
168         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
169
170         /* historical name */
171
172         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
173
174         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
175         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
176         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
177         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
178         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
179         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
180         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
181         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
182         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
183         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
184         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
185
186         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
187         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
188
189         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
190         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
191
192         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
193         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
194
195         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
196         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
197
198         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
199         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
200
201         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
202         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
203         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
204
205         { .name = NULL, .value = -1 }
206 };
207
208 static const Jim_Nvp nvp_target_state[] = {
209         { .name = "unknown", .value = TARGET_UNKNOWN },
210         { .name = "running", .value = TARGET_RUNNING },
211         { .name = "halted",  .value = TARGET_HALTED },
212         { .name = "reset",   .value = TARGET_RESET },
213         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
214         { .name = NULL, .value = -1 },
215 };
216
217 static const Jim_Nvp nvp_target_debug_reason [] = {
218         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
219         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
220         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
221         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
222         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
223         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
224         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
225         { .name = NULL, .value = -1 },
226 };
227
228 static const Jim_Nvp nvp_target_endian[] = {
229         { .name = "big",    .value = TARGET_BIG_ENDIAN },
230         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
231         { .name = "be",     .value = TARGET_BIG_ENDIAN },
232         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
233         { .name = NULL,     .value = -1 },
234 };
235
236 static const Jim_Nvp nvp_reset_modes[] = {
237         { .name = "unknown", .value = RESET_UNKNOWN },
238         { .name = "run"    , .value = RESET_RUN },
239         { .name = "halt"   , .value = RESET_HALT },
240         { .name = "init"   , .value = RESET_INIT },
241         { .name = NULL     , .value = -1 },
242 };
243
244 const char *debug_reason_name(struct target *t)
245 {
246         const char *cp;
247
248         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
249                         t->debug_reason)->name;
250         if (!cp) {
251                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
252                 cp = "(*BUG*unknown*BUG*)";
253         }
254         return cp;
255 }
256
257 const char *
258 target_state_name( struct target *t )
259 {
260         const char *cp;
261         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
262         if( !cp ){
263                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
264                 cp = "(*BUG*unknown*BUG*)";
265         }
266         return cp;
267 }
268
269 /* determine the number of the new target */
270 static int new_target_number(void)
271 {
272         struct target *t;
273         int x;
274
275         /* number is 0 based */
276         x = -1;
277         t = all_targets;
278         while (t) {
279                 if (x < t->target_number) {
280                         x = t->target_number;
281                 }
282                 t = t->next;
283         }
284         return x + 1;
285 }
286
287 /* read a uint32_t from a buffer in target memory endianness */
288 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
289 {
290         if (target->endianness == TARGET_LITTLE_ENDIAN)
291                 return le_to_h_u32(buffer);
292         else
293                 return be_to_h_u32(buffer);
294 }
295
296 /* read a uint24_t from a buffer in target memory endianness */
297 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
298 {
299         if (target->endianness == TARGET_LITTLE_ENDIAN)
300                 return le_to_h_u24(buffer);
301         else
302                 return be_to_h_u24(buffer);
303 }
304
305 /* read a uint16_t from a buffer in target memory endianness */
306 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
307 {
308         if (target->endianness == TARGET_LITTLE_ENDIAN)
309                 return le_to_h_u16(buffer);
310         else
311                 return be_to_h_u16(buffer);
312 }
313
314 /* read a uint8_t from a buffer in target memory endianness */
315 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
316 {
317         return *buffer & 0x0ff;
318 }
319
320 /* write a uint32_t to a buffer in target memory endianness */
321 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
322 {
323         if (target->endianness == TARGET_LITTLE_ENDIAN)
324                 h_u32_to_le(buffer, value);
325         else
326                 h_u32_to_be(buffer, value);
327 }
328
329 /* write a uint24_t to a buffer in target memory endianness */
330 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
331 {
332         if (target->endianness == TARGET_LITTLE_ENDIAN)
333                 h_u24_to_le(buffer, value);
334         else
335                 h_u24_to_be(buffer, value);
336 }
337
338 /* write a uint16_t to a buffer in target memory endianness */
339 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
340 {
341         if (target->endianness == TARGET_LITTLE_ENDIAN)
342                 h_u16_to_le(buffer, value);
343         else
344                 h_u16_to_be(buffer, value);
345 }
346
347 /* write a uint8_t to a buffer in target memory endianness */
348 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
349 {
350         *buffer = value;
351 }
352
353 /* write a uint32_t array to a buffer in target memory endianness */
354 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
355 {
356         uint32_t i;
357         for(i = 0; i < count; i ++)
358                 dstbuf[i] = target_buffer_get_u32(target,&buffer[i*4]);
359 }
360
361 /* write a uint16_t array to a buffer in target memory endianness */
362 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
363 {
364         uint32_t i;
365         for(i = 0; i < count; i ++)
366                 dstbuf[i] = target_buffer_get_u16(target,&buffer[i*2]);
367 }
368
369 /* write a uint32_t array to a buffer in target memory endianness */
370 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
371 {
372         uint32_t i;
373         for(i = 0; i < count; i ++)
374                 target_buffer_set_u32(target,&buffer[i*4],srcbuf[i]);
375 }
376
377 /* write a uint16_t array to a buffer in target memory endianness */
378 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
379 {
380         uint32_t i;
381         for(i = 0; i < count; i ++)
382                 target_buffer_set_u16(target,&buffer[i*2],srcbuf[i]);
383 }
384
385 /* return a pointer to a configured target; id is name or number */
386 struct target *get_target(const char *id)
387 {
388         struct target *target;
389
390         /* try as tcltarget name */
391         for (target = all_targets; target; target = target->next) {
392                 if (target->cmd_name == NULL)
393                         continue;
394                 if (strcmp(id, target->cmd_name) == 0)
395                         return target;
396         }
397
398         /* It's OK to remove this fallback sometime after August 2010 or so */
399
400         /* no match, try as number */
401         unsigned num;
402         if (parse_uint(id, &num) != ERROR_OK)
403                 return NULL;
404
405         for (target = all_targets; target; target = target->next) {
406                 if (target->target_number == (int)num) {
407                         LOG_WARNING("use '%s' as target identifier, not '%u'",
408                                         target->cmd_name, num);
409                         return target;
410                 }
411         }
412
413         return NULL;
414 }
415
416 /* returns a pointer to the n-th configured target */
417 static struct target *get_target_by_num(int num)
418 {
419         struct target *target = all_targets;
420
421         while (target) {
422                 if (target->target_number == num) {
423                         return target;
424                 }
425                 target = target->next;
426         }
427
428         return NULL;
429 }
430
431 struct target* get_current_target(struct command_context *cmd_ctx)
432 {
433         struct target *target = get_target_by_num(cmd_ctx->current_target);
434
435         if (target == NULL)
436         {
437                 LOG_ERROR("BUG: current_target out of bounds");
438                 exit(-1);
439         }
440
441         return target;
442 }
443
444 int target_poll(struct target *target)
445 {
446         int retval;
447
448         /* We can't poll until after examine */
449         if (!target_was_examined(target))
450         {
451                 /* Fail silently lest we pollute the log */
452                 return ERROR_FAIL;
453         }
454
455         retval = target->type->poll(target);
456         if (retval != ERROR_OK)
457                 return retval;
458
459         if (target->halt_issued)
460         {
461                 if (target->state == TARGET_HALTED)
462                 {
463                         target->halt_issued = false;
464                 } else
465                 {
466                         long long t = timeval_ms() - target->halt_issued_time;
467                         if (t>1000)
468                         {
469                                 target->halt_issued = false;
470                                 LOG_INFO("Halt timed out, wake up GDB.");
471                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
472                         }
473                 }
474         }
475
476         return ERROR_OK;
477 }
478
479 int target_halt(struct target *target)
480 {
481         int retval;
482         /* We can't poll until after examine */
483         if (!target_was_examined(target))
484         {
485                 LOG_ERROR("Target not examined yet");
486                 return ERROR_FAIL;
487         }
488
489         retval = target->type->halt(target);
490         if (retval != ERROR_OK)
491                 return retval;
492
493         target->halt_issued = true;
494         target->halt_issued_time = timeval_ms();
495
496         return ERROR_OK;
497 }
498
499 /**
500  * Make the target (re)start executing using its saved execution
501  * context (possibly with some modifications).
502  *
503  * @param target Which target should start executing.
504  * @param current True to use the target's saved program counter instead
505  *      of the address parameter
506  * @param address Optionally used as the program counter.
507  * @param handle_breakpoints True iff breakpoints at the resumption PC
508  *      should be skipped.  (For example, maybe execution was stopped by
509  *      such a breakpoint, in which case it would be counterprodutive to
510  *      let it re-trigger.
511  * @param debug_execution False if all working areas allocated by OpenOCD
512  *      should be released and/or restored to their original contents.
513  *      (This would for example be true to run some downloaded "helper"
514  *      algorithm code, which resides in one such working buffer and uses
515  *      another for data storage.)
516  *
517  * @todo Resolve the ambiguity about what the "debug_execution" flag
518  * signifies.  For example, Target implementations don't agree on how
519  * it relates to invalidation of the register cache, or to whether
520  * breakpoints and watchpoints should be enabled.  (It would seem wrong
521  * to enable breakpoints when running downloaded "helper" algorithms
522  * (debug_execution true), since the breakpoints would be set to match
523  * target firmware being debugged, not the helper algorithm.... and
524  * enabling them could cause such helpers to malfunction (for example,
525  * by overwriting data with a breakpoint instruction.  On the other
526  * hand the infrastructure for running such helpers might use this
527  * procedure but rely on hardware breakpoint to detect termination.)
528  */
529 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
530 {
531         int retval;
532
533         /* We can't poll until after examine */
534         if (!target_was_examined(target))
535         {
536                 LOG_ERROR("Target not examined yet");
537                 return ERROR_FAIL;
538         }
539
540         /* note that resume *must* be asynchronous. The CPU can halt before
541          * we poll. The CPU can even halt at the current PC as a result of
542          * a software breakpoint being inserted by (a bug?) the application.
543          */
544         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
545                 return retval;
546
547         return retval;
548 }
549
550 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
551 {
552         char buf[100];
553         int retval;
554         Jim_Nvp *n;
555         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
556         if (n->name == NULL) {
557                 LOG_ERROR("invalid reset mode");
558                 return ERROR_FAIL;
559         }
560
561         /* disable polling during reset to make reset event scripts
562          * more predictable, i.e. dr/irscan & pathmove in events will
563          * not have JTAG operations injected into the middle of a sequence.
564          */
565         bool save_poll = jtag_poll_get_enabled();
566
567         jtag_poll_set_enabled(false);
568
569         sprintf(buf, "ocd_process_reset %s", n->name);
570         retval = Jim_Eval(cmd_ctx->interp, buf);
571
572         jtag_poll_set_enabled(save_poll);
573
574         if (retval != JIM_OK) {
575                 Jim_MakeErrorMessage(cmd_ctx->interp);
576                 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
577                 return ERROR_FAIL;
578         }
579
580         /* We want any events to be processed before the prompt */
581         retval = target_call_timer_callbacks_now();
582
583         struct target *target;
584         for (target = all_targets; target; target = target->next) {
585                 target->type->check_reset(target);
586         }
587
588         return retval;
589 }
590
591 static int identity_virt2phys(struct target *target,
592                 uint32_t virtual, uint32_t *physical)
593 {
594         *physical = virtual;
595         return ERROR_OK;
596 }
597
598 static int no_mmu(struct target *target, int *enabled)
599 {
600         *enabled = 0;
601         return ERROR_OK;
602 }
603
604 static int default_examine(struct target *target)
605 {
606         target_set_examined(target);
607         return ERROR_OK;
608 }
609
610 /* no check by default */
611 static int default_check_reset(struct target *target)
612 {
613         return ERROR_OK;
614 }
615
616 int target_examine_one(struct target *target)
617 {
618         return target->type->examine(target);
619 }
620
621 static int jtag_enable_callback(enum jtag_event event, void *priv)
622 {
623         struct target *target = priv;
624
625         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
626                 return ERROR_OK;
627
628         jtag_unregister_event_callback(jtag_enable_callback, target);
629         return target_examine_one(target);
630 }
631
632
633 /* Targets that correctly implement init + examine, i.e.
634  * no communication with target during init:
635  *
636  * XScale
637  */
638 int target_examine(void)
639 {
640         int retval = ERROR_OK;
641         struct target *target;
642
643         for (target = all_targets; target; target = target->next)
644         {
645                 /* defer examination, but don't skip it */
646                 if (!target->tap->enabled) {
647                         jtag_register_event_callback(jtag_enable_callback,
648                                         target);
649                         continue;
650                 }
651                 if ((retval = target_examine_one(target)) != ERROR_OK)
652                         return retval;
653         }
654         return retval;
655 }
656 const char *target_type_name(struct target *target)
657 {
658         return target->type->name;
659 }
660
661 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
662 {
663         if (!target_was_examined(target))
664         {
665                 LOG_ERROR("Target not examined yet");
666                 return ERROR_FAIL;
667         }
668         return target->type->write_memory_imp(target, address, size, count, buffer);
669 }
670
671 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
672 {
673         if (!target_was_examined(target))
674         {
675                 LOG_ERROR("Target not examined yet");
676                 return ERROR_FAIL;
677         }
678         return target->type->read_memory_imp(target, address, size, count, buffer);
679 }
680
681 static int target_soft_reset_halt_imp(struct target *target)
682 {
683         if (!target_was_examined(target))
684         {
685                 LOG_ERROR("Target not examined yet");
686                 return ERROR_FAIL;
687         }
688         if (!target->type->soft_reset_halt_imp) {
689                 LOG_ERROR("Target %s does not support soft_reset_halt",
690                                 target_name(target));
691                 return ERROR_FAIL;
692         }
693         return target->type->soft_reset_halt_imp(target);
694 }
695
696 /**
697  * Downloads a target-specific native code algorithm to the target,
698  * and executes it.  * Note that some targets may need to set up, enable,
699  * and tear down a breakpoint (hard or * soft) to detect algorithm
700  * termination, while others may support  lower overhead schemes where
701  * soft breakpoints embedded in the algorithm automatically terminate the
702  * algorithm.
703  *
704  * @param target used to run the algorithm
705  * @param arch_info target-specific description of the algorithm.
706  */
707 int target_run_algorithm(struct target *target,
708                 int num_mem_params, struct mem_param *mem_params,
709                 int num_reg_params, struct reg_param *reg_param,
710                 uint32_t entry_point, uint32_t exit_point,
711                 int timeout_ms, void *arch_info)
712 {
713         int retval = ERROR_FAIL;
714
715         if (!target_was_examined(target))
716         {
717                 LOG_ERROR("Target not examined yet");
718                 goto done;
719         }
720         if (!target->type->run_algorithm) {
721                 LOG_ERROR("Target type '%s' does not support %s",
722                                 target_type_name(target), __func__);
723                 goto done;
724         }
725
726         target->running_alg = true;
727         retval = target->type->run_algorithm(target,
728                         num_mem_params, mem_params,
729                         num_reg_params, reg_param,
730                         entry_point, exit_point, timeout_ms, arch_info);
731         target->running_alg = false;
732
733 done:
734         return retval;
735 }
736
737 /**
738  * Downloads a target-specific native code algorithm to the target,
739  * executes and leaves it running.
740  *
741  * @param target used to run the algorithm
742  * @param arch_info target-specific description of the algorithm.
743  */
744 int target_start_algorithm(struct target *target,
745                 int num_mem_params, struct mem_param *mem_params,
746                 int num_reg_params, struct reg_param *reg_params,
747                 uint32_t entry_point, uint32_t exit_point,
748                 void *arch_info)
749 {
750         int retval = ERROR_FAIL;
751
752         if (!target_was_examined(target))
753         {
754                 LOG_ERROR("Target not examined yet");
755                 goto done;
756         }
757         if (!target->type->start_algorithm) {
758                 LOG_ERROR("Target type '%s' does not support %s",
759                                 target_type_name(target), __func__);
760                 goto done;
761         }
762         if (target->running_alg) {
763                 LOG_ERROR("Target is already running an algorithm");
764                 goto done;
765         }
766
767         target->running_alg = true;
768         retval = target->type->start_algorithm(target,
769                         num_mem_params, mem_params,
770                         num_reg_params, reg_params,
771                         entry_point, exit_point, arch_info);
772
773 done:
774         return retval;
775 }
776
777 /**
778  * Waits for an algorithm started with target_start_algorithm() to complete.
779  *
780  * @param target used to run the algorithm
781  * @param arch_info target-specific description of the algorithm.
782  */
783 int target_wait_algorithm(struct target *target,
784                 int num_mem_params, struct mem_param *mem_params,
785                 int num_reg_params, struct reg_param *reg_params,
786                 uint32_t exit_point, int timeout_ms,
787                 void *arch_info)
788 {
789         int retval = ERROR_FAIL;
790
791         if (!target->type->wait_algorithm) {
792                 LOG_ERROR("Target type '%s' does not support %s",
793                                 target_type_name(target), __func__);
794                 goto done;
795         }
796         if (!target->running_alg) {
797                 LOG_ERROR("Target is not running an algorithm");
798                 goto done;
799         }
800
801         retval = target->type->wait_algorithm(target,
802                         num_mem_params, mem_params,
803                         num_reg_params, reg_params,
804                         exit_point, timeout_ms, arch_info);
805         if (retval != ERROR_TARGET_TIMEOUT)
806                 target->running_alg = false;
807
808 done:
809         return retval;
810 }
811
812
813 int target_read_memory(struct target *target,
814                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
815 {
816         return target->type->read_memory(target, address, size, count, buffer);
817 }
818
819 static int target_read_phys_memory(struct target *target,
820                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
821 {
822         return target->type->read_phys_memory(target, address, size, count, buffer);
823 }
824
825 int target_write_memory(struct target *target,
826                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
827 {
828         return target->type->write_memory(target, address, size, count, buffer);
829 }
830
831 static int target_write_phys_memory(struct target *target,
832                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
833 {
834         return target->type->write_phys_memory(target, address, size, count, buffer);
835 }
836
837 int target_bulk_write_memory(struct target *target,
838                 uint32_t address, uint32_t count, const uint8_t *buffer)
839 {
840         return target->type->bulk_write_memory(target, address, count, buffer);
841 }
842
843 int target_add_breakpoint(struct target *target,
844                 struct breakpoint *breakpoint)
845 {
846         if ((target->state != TARGET_HALTED)&&(breakpoint->type!=BKPT_HARD)) {
847                 LOG_WARNING("target %s is not halted", target->cmd_name);
848                 return ERROR_TARGET_NOT_HALTED;
849         }
850         return target->type->add_breakpoint(target, breakpoint);
851 }
852
853 int target_add_context_breakpoint(struct target *target,
854                 struct breakpoint *breakpoint)
855 {
856         if (target->state != TARGET_HALTED) {
857                 LOG_WARNING("target %s is not halted", target->cmd_name);
858                 return ERROR_TARGET_NOT_HALTED;
859         }
860         return target->type->add_context_breakpoint(target, breakpoint);
861 }
862
863 int target_add_hybrid_breakpoint(struct target *target,
864                 struct breakpoint *breakpoint)
865 {
866         if (target->state != TARGET_HALTED) {
867                 LOG_WARNING("target %s is not halted", target->cmd_name);
868                 return ERROR_TARGET_NOT_HALTED;
869         }
870         return target->type->add_hybrid_breakpoint(target, breakpoint);
871 }
872
873 int target_remove_breakpoint(struct target *target,
874                 struct breakpoint *breakpoint)
875 {
876         return target->type->remove_breakpoint(target, breakpoint);
877 }
878
879 int target_add_watchpoint(struct target *target,
880                 struct watchpoint *watchpoint)
881 {
882         if (target->state != TARGET_HALTED) {
883                 LOG_WARNING("target %s is not halted", target->cmd_name);
884                 return ERROR_TARGET_NOT_HALTED;
885         }
886         return target->type->add_watchpoint(target, watchpoint);
887 }
888 int target_remove_watchpoint(struct target *target,
889                 struct watchpoint *watchpoint)
890 {
891         return target->type->remove_watchpoint(target, watchpoint);
892 }
893
894 int target_get_gdb_reg_list(struct target *target,
895                 struct reg **reg_list[], int *reg_list_size)
896 {
897         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
898 }
899 int target_step(struct target *target,
900                 int current, uint32_t address, int handle_breakpoints)
901 {
902         return target->type->step(target, current, address, handle_breakpoints);
903 }
904
905
906 /**
907  * Reset the @c examined flag for the given target.
908  * Pure paranoia -- targets are zeroed on allocation.
909  */
910 static void target_reset_examined(struct target *target)
911 {
912         target->examined = false;
913 }
914
915 static int
916 err_read_phys_memory(struct target *target, uint32_t address,
917                 uint32_t size, uint32_t count, uint8_t *buffer)
918 {
919         LOG_ERROR("Not implemented: %s", __func__);
920         return ERROR_FAIL;
921 }
922
923 static int
924 err_write_phys_memory(struct target *target, uint32_t address,
925                 uint32_t size, uint32_t count, const uint8_t *buffer)
926 {
927         LOG_ERROR("Not implemented: %s", __func__);
928         return ERROR_FAIL;
929 }
930
931 static int handle_target(void *priv);
932
933 static int target_init_one(struct command_context *cmd_ctx,
934                 struct target *target)
935 {
936         target_reset_examined(target);
937
938         struct target_type *type = target->type;
939         if (type->examine == NULL)
940                 type->examine = default_examine;
941
942         if (type->check_reset== NULL)
943                 type->check_reset = default_check_reset;
944
945         assert(type->init_target != NULL);
946
947         int retval = type->init_target(cmd_ctx, target);
948         if (ERROR_OK != retval)
949         {
950                 LOG_ERROR("target '%s' init failed", target_name(target));
951                 return retval;
952         }
953
954         /**
955          * @todo get rid of those *memory_imp() methods, now that all
956          * callers are using target_*_memory() accessors ... and make
957          * sure the "physical" paths handle the same issues.
958          */
959         /* a non-invasive way(in terms of patches) to add some code that
960          * runs before the type->write/read_memory implementation
961          */
962         type->write_memory_imp = target->type->write_memory;
963         type->write_memory = target_write_memory_imp;
964
965         type->read_memory_imp = target->type->read_memory;
966         type->read_memory = target_read_memory_imp;
967
968         type->soft_reset_halt_imp = target->type->soft_reset_halt;
969         type->soft_reset_halt = target_soft_reset_halt_imp;
970
971         /* Sanity-check MMU support ... stub in what we must, to help
972          * implement it in stages, but warn if we need to do so.
973          */
974         if (type->mmu)
975         {
976                 if (type->write_phys_memory == NULL)
977                 {
978                         LOG_ERROR("type '%s' is missing write_phys_memory",
979                                         type->name);
980                         type->write_phys_memory = err_write_phys_memory;
981                 }
982                 if (type->read_phys_memory == NULL)
983                 {
984                         LOG_ERROR("type '%s' is missing read_phys_memory",
985                                         type->name);
986                         type->read_phys_memory = err_read_phys_memory;
987                 }
988                 if (type->virt2phys == NULL)
989                 {
990                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
991                         type->virt2phys = identity_virt2phys;
992                 }
993         }
994         else
995         {
996                 /* Make sure no-MMU targets all behave the same:  make no
997                  * distinction between physical and virtual addresses, and
998                  * ensure that virt2phys() is always an identity mapping.
999                  */
1000                 if (type->write_phys_memory || type->read_phys_memory
1001                                 || type->virt2phys)
1002                 {
1003                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1004                 }
1005
1006                 type->mmu = no_mmu;
1007                 type->write_phys_memory = type->write_memory;
1008                 type->read_phys_memory = type->read_memory;
1009                 type->virt2phys = identity_virt2phys;
1010         }
1011
1012         if (target->type->read_buffer == NULL)
1013                 target->type->read_buffer = target_read_buffer_default;
1014
1015         if (target->type->write_buffer == NULL)
1016                 target->type->write_buffer = target_write_buffer_default;
1017
1018         return ERROR_OK;
1019 }
1020
1021 static int target_init(struct command_context *cmd_ctx)
1022 {
1023         struct target *target;
1024         int retval;
1025
1026         for (target = all_targets; target; target = target->next)
1027         {
1028                 retval = target_init_one(cmd_ctx, target);
1029                 if (ERROR_OK != retval)
1030                         return retval;
1031         }
1032
1033         if (!all_targets)
1034                 return ERROR_OK;
1035
1036         retval = target_register_user_commands(cmd_ctx);
1037         if (ERROR_OK != retval)
1038                 return retval;
1039
1040         retval = target_register_timer_callback(&handle_target,
1041                         polling_interval, 1, cmd_ctx->interp);
1042         if (ERROR_OK != retval)
1043                 return retval;
1044
1045         return ERROR_OK;
1046 }
1047
1048 COMMAND_HANDLER(handle_target_init_command)
1049 {
1050         int retval;
1051
1052         if (CMD_ARGC != 0)
1053                 return ERROR_COMMAND_SYNTAX_ERROR;
1054
1055         static bool target_initialized = false;
1056         if (target_initialized)
1057         {
1058                 LOG_INFO("'target init' has already been called");
1059                 return ERROR_OK;
1060         }
1061         target_initialized = true;
1062
1063         retval = command_run_line(CMD_CTX, "init_targets");
1064         if (ERROR_OK != retval)
1065                 return retval;
1066
1067         LOG_DEBUG("Initializing targets...");
1068         return target_init(CMD_CTX);
1069 }
1070
1071 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1072 {
1073         struct target_event_callback **callbacks_p = &target_event_callbacks;
1074
1075         if (callback == NULL)
1076         {
1077                 return ERROR_INVALID_ARGUMENTS;
1078         }
1079
1080         if (*callbacks_p)
1081         {
1082                 while ((*callbacks_p)->next)
1083                         callbacks_p = &((*callbacks_p)->next);
1084                 callbacks_p = &((*callbacks_p)->next);
1085         }
1086
1087         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1088         (*callbacks_p)->callback = callback;
1089         (*callbacks_p)->priv = priv;
1090         (*callbacks_p)->next = NULL;
1091
1092         return ERROR_OK;
1093 }
1094
1095 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1096 {
1097         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1098         struct timeval now;
1099
1100         if (callback == NULL)
1101         {
1102                 return ERROR_INVALID_ARGUMENTS;
1103         }
1104
1105         if (*callbacks_p)
1106         {
1107                 while ((*callbacks_p)->next)
1108                         callbacks_p = &((*callbacks_p)->next);
1109                 callbacks_p = &((*callbacks_p)->next);
1110         }
1111
1112         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1113         (*callbacks_p)->callback = callback;
1114         (*callbacks_p)->periodic = periodic;
1115         (*callbacks_p)->time_ms = time_ms;
1116
1117         gettimeofday(&now, NULL);
1118         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1119         time_ms -= (time_ms % 1000);
1120         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1121         if ((*callbacks_p)->when.tv_usec > 1000000)
1122         {
1123                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1124                 (*callbacks_p)->when.tv_sec += 1;
1125         }
1126
1127         (*callbacks_p)->priv = priv;
1128         (*callbacks_p)->next = NULL;
1129
1130         return ERROR_OK;
1131 }
1132
1133 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1134 {
1135         struct target_event_callback **p = &target_event_callbacks;
1136         struct target_event_callback *c = target_event_callbacks;
1137
1138         if (callback == NULL)
1139         {
1140                 return ERROR_INVALID_ARGUMENTS;
1141         }
1142
1143         while (c)
1144         {
1145                 struct target_event_callback *next = c->next;
1146                 if ((c->callback == callback) && (c->priv == priv))
1147                 {
1148                         *p = next;
1149                         free(c);
1150                         return ERROR_OK;
1151                 }
1152                 else
1153                         p = &(c->next);
1154                 c = next;
1155         }
1156
1157         return ERROR_OK;
1158 }
1159
1160 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1161 {
1162         struct target_timer_callback **p = &target_timer_callbacks;
1163         struct target_timer_callback *c = target_timer_callbacks;
1164
1165         if (callback == NULL)
1166         {
1167                 return ERROR_INVALID_ARGUMENTS;
1168         }
1169
1170         while (c)
1171         {
1172                 struct target_timer_callback *next = c->next;
1173                 if ((c->callback == callback) && (c->priv == priv))
1174                 {
1175                         *p = next;
1176                         free(c);
1177                         return ERROR_OK;
1178                 }
1179                 else
1180                         p = &(c->next);
1181                 c = next;
1182         }
1183
1184         return ERROR_OK;
1185 }
1186
1187 int target_call_event_callbacks(struct target *target, enum target_event event)
1188 {
1189         struct target_event_callback *callback = target_event_callbacks;
1190         struct target_event_callback *next_callback;
1191
1192         if (event == TARGET_EVENT_HALTED)
1193         {
1194                 /* execute early halted first */
1195                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1196         }
1197
1198         LOG_DEBUG("target event %i (%s)",
1199                           event,
1200                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1201
1202         target_handle_event(target, event);
1203
1204         while (callback)
1205         {
1206                 next_callback = callback->next;
1207                 callback->callback(target, event, callback->priv);
1208                 callback = next_callback;
1209         }
1210
1211         return ERROR_OK;
1212 }
1213
1214 static int target_timer_callback_periodic_restart(
1215                 struct target_timer_callback *cb, struct timeval *now)
1216 {
1217         int time_ms = cb->time_ms;
1218         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1219         time_ms -= (time_ms % 1000);
1220         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1221         if (cb->when.tv_usec > 1000000)
1222         {
1223                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1224                 cb->when.tv_sec += 1;
1225         }
1226         return ERROR_OK;
1227 }
1228
1229 static int target_call_timer_callback(struct target_timer_callback *cb,
1230                 struct timeval *now)
1231 {
1232         cb->callback(cb->priv);
1233
1234         if (cb->periodic)
1235                 return target_timer_callback_periodic_restart(cb, now);
1236
1237         return target_unregister_timer_callback(cb->callback, cb->priv);
1238 }
1239
1240 static int target_call_timer_callbacks_check_time(int checktime)
1241 {
1242         keep_alive();
1243
1244         struct timeval now;
1245         gettimeofday(&now, NULL);
1246
1247         struct target_timer_callback *callback = target_timer_callbacks;
1248         while (callback)
1249         {
1250                 // cleaning up may unregister and free this callback
1251                 struct target_timer_callback *next_callback = callback->next;
1252
1253                 bool call_it = callback->callback &&
1254                         ((!checktime && callback->periodic) ||
1255                           now.tv_sec > callback->when.tv_sec ||
1256                          (now.tv_sec == callback->when.tv_sec &&
1257                           now.tv_usec >= callback->when.tv_usec));
1258
1259                 if (call_it)
1260                 {
1261                         int retval = target_call_timer_callback(callback, &now);
1262                         if (retval != ERROR_OK)
1263                                 return retval;
1264                 }
1265
1266                 callback = next_callback;
1267         }
1268
1269         return ERROR_OK;
1270 }
1271
1272 int target_call_timer_callbacks(void)
1273 {
1274         return target_call_timer_callbacks_check_time(1);
1275 }
1276
1277 /* invoke periodic callbacks immediately */
1278 int target_call_timer_callbacks_now(void)
1279 {
1280         return target_call_timer_callbacks_check_time(0);
1281 }
1282
1283 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1284 {
1285         struct working_area *c = target->working_areas;
1286         struct working_area *new_wa = NULL;
1287
1288         /* Reevaluate working area address based on MMU state*/
1289         if (target->working_areas == NULL)
1290         {
1291                 int retval;
1292                 int enabled;
1293
1294                 retval = target->type->mmu(target, &enabled);
1295                 if (retval != ERROR_OK)
1296                 {
1297                         return retval;
1298                 }
1299
1300                 if (!enabled) {
1301                         if (target->working_area_phys_spec) {
1302                                 LOG_DEBUG("MMU disabled, using physical "
1303                                         "address for working memory 0x%08x",
1304                                         (unsigned)target->working_area_phys);
1305                                 target->working_area = target->working_area_phys;
1306                         } else {
1307                                 LOG_ERROR("No working memory available. "
1308                                         "Specify -work-area-phys to target.");
1309                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1310                         }
1311                 } else {
1312                         if (target->working_area_virt_spec) {
1313                                 LOG_DEBUG("MMU enabled, using virtual "
1314                                         "address for working memory 0x%08x",
1315                                         (unsigned)target->working_area_virt);
1316                                 target->working_area = target->working_area_virt;
1317                         } else {
1318                                 LOG_ERROR("No working memory available. "
1319                                         "Specify -work-area-virt to target.");
1320                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1321                         }
1322                 }
1323         }
1324
1325         /* only allocate multiples of 4 byte */
1326         if (size % 4)
1327         {
1328                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1329                 size = (size + 3) & (~3);
1330         }
1331
1332         /* see if there's already a matching working area */
1333         while (c)
1334         {
1335                 if ((c->free) && (c->size == size))
1336                 {
1337                         new_wa = c;
1338                         break;
1339                 }
1340                 c = c->next;
1341         }
1342
1343         /* if not, allocate a new one */
1344         if (!new_wa)
1345         {
1346                 struct working_area **p = &target->working_areas;
1347                 uint32_t first_free = target->working_area;
1348                 uint32_t free_size = target->working_area_size;
1349
1350                 c = target->working_areas;
1351                 while (c)
1352                 {
1353                         first_free += c->size;
1354                         free_size -= c->size;
1355                         p = &c->next;
1356                         c = c->next;
1357                 }
1358
1359                 if (free_size < size)
1360                 {
1361                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1362                 }
1363
1364                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1365
1366                 new_wa = malloc(sizeof(struct working_area));
1367                 new_wa->next = NULL;
1368                 new_wa->size = size;
1369                 new_wa->address = first_free;
1370
1371                 if (target->backup_working_area)
1372                 {
1373                         int retval;
1374                         new_wa->backup = malloc(new_wa->size);
1375                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1376                         {
1377                                 free(new_wa->backup);
1378                                 free(new_wa);
1379                                 return retval;
1380                         }
1381                 }
1382                 else
1383                 {
1384                         new_wa->backup = NULL;
1385                 }
1386
1387                 /* put new entry in list */
1388                 *p = new_wa;
1389         }
1390
1391         /* mark as used, and return the new (reused) area */
1392         new_wa->free = false;
1393         *area = new_wa;
1394
1395         /* user pointer */
1396         new_wa->user = area;
1397
1398         return ERROR_OK;
1399 }
1400
1401 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1402 {
1403         int retval;
1404
1405         retval = target_alloc_working_area_try(target, size, area);
1406         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1407         {
1408                 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1409         }
1410         return retval;
1411
1412 }
1413
1414 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1415 {
1416         if (area->free)
1417                 return ERROR_OK;
1418
1419         if (restore && target->backup_working_area)
1420         {
1421                 int retval;
1422                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1423                         return retval;
1424         }
1425
1426         area->free = true;
1427
1428         /* mark user pointer invalid */
1429         *area->user = NULL;
1430         area->user = NULL;
1431
1432         return ERROR_OK;
1433 }
1434
1435 int target_free_working_area(struct target *target, struct working_area *area)
1436 {
1437         return target_free_working_area_restore(target, area, 1);
1438 }
1439
1440 /* free resources and restore memory, if restoring memory fails,
1441  * free up resources anyway
1442  */
1443 static void target_free_all_working_areas_restore(struct target *target, int restore)
1444 {
1445         struct working_area *c = target->working_areas;
1446
1447         while (c)
1448         {
1449                 struct working_area *next = c->next;
1450                 target_free_working_area_restore(target, c, restore);
1451
1452                 if (c->backup)
1453                         free(c->backup);
1454
1455                 free(c);
1456
1457                 c = next;
1458         }
1459
1460         target->working_areas = NULL;
1461 }
1462
1463 void target_free_all_working_areas(struct target *target)
1464 {
1465         target_free_all_working_areas_restore(target, 1);
1466 }
1467
1468 int target_arch_state(struct target *target)
1469 {
1470         int retval;
1471         if (target == NULL)
1472         {
1473                 LOG_USER("No target has been configured");
1474                 return ERROR_OK;
1475         }
1476
1477         LOG_USER("target state: %s", target_state_name( target ));
1478
1479         if (target->state != TARGET_HALTED)
1480                 return ERROR_OK;
1481
1482         retval = target->type->arch_state(target);
1483         return retval;
1484 }
1485
1486 /* Single aligned words are guaranteed to use 16 or 32 bit access
1487  * mode respectively, otherwise data is handled as quickly as
1488  * possible
1489  */
1490 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1491 {
1492         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1493                   (int)size, (unsigned)address);
1494
1495         if (!target_was_examined(target))
1496         {
1497                 LOG_ERROR("Target not examined yet");
1498                 return ERROR_FAIL;
1499         }
1500
1501         if (size == 0) {
1502                 return ERROR_OK;
1503         }
1504
1505         if ((address + size - 1) < address)
1506         {
1507                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1508                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1509                                   (unsigned)address,
1510                                   (unsigned)size);
1511                 return ERROR_FAIL;
1512         }
1513
1514         return target->type->write_buffer(target, address, size, buffer);
1515 }
1516
1517 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1518 {
1519         int retval = ERROR_OK;
1520
1521         if (((address % 2) == 0) && (size == 2))
1522         {
1523                 return target_write_memory(target, address, 2, 1, buffer);
1524         }
1525
1526         /* handle unaligned head bytes */
1527         if (address % 4)
1528         {
1529                 uint32_t unaligned = 4 - (address % 4);
1530
1531                 if (unaligned > size)
1532                         unaligned = size;
1533
1534                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1535                         return retval;
1536
1537                 buffer += unaligned;
1538                 address += unaligned;
1539                 size -= unaligned;
1540         }
1541
1542         /* handle aligned words */
1543         if (size >= 4)
1544         {
1545                 int aligned = size - (size % 4);
1546
1547                 /* use bulk writes above a certain limit. This may have to be changed */
1548                 if (aligned > 128)
1549                 {
1550                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1551                                 return retval;
1552                 }
1553                 else
1554                 {
1555                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1556                                 return retval;
1557                 }
1558
1559                 buffer += aligned;
1560                 address += aligned;
1561                 size -= aligned;
1562         }
1563
1564         /* handle tail writes of less than 4 bytes */
1565         if (size > 0)
1566         {
1567                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1568                         return retval;
1569         }
1570
1571         return retval;
1572 }
1573
1574 /* Single aligned words are guaranteed to use 16 or 32 bit access
1575  * mode respectively, otherwise data is handled as quickly as
1576  * possible
1577  */
1578 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1579 {
1580         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1581                           (int)size, (unsigned)address);
1582
1583         if (!target_was_examined(target))
1584         {
1585                 LOG_ERROR("Target not examined yet");
1586                 return ERROR_FAIL;
1587         }
1588
1589         if (size == 0) {
1590                 return ERROR_OK;
1591         }
1592
1593         if ((address + size - 1) < address)
1594         {
1595                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1596                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1597                                   address,
1598                                   size);
1599                 return ERROR_FAIL;
1600         }
1601
1602         return target->type->read_buffer(target, address, size, buffer);
1603 }
1604
1605 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1606 {
1607         int retval = ERROR_OK;
1608
1609         if (((address % 2) == 0) && (size == 2))
1610         {
1611                 return target_read_memory(target, address, 2, 1, buffer);
1612         }
1613
1614         /* handle unaligned head bytes */
1615         if (address % 4)
1616         {
1617                 uint32_t unaligned = 4 - (address % 4);
1618
1619                 if (unaligned > size)
1620                         unaligned = size;
1621
1622                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1623                         return retval;
1624
1625                 buffer += unaligned;
1626                 address += unaligned;
1627                 size -= unaligned;
1628         }
1629
1630         /* handle aligned words */
1631         if (size >= 4)
1632         {
1633                 int aligned = size - (size % 4);
1634
1635                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1636                         return retval;
1637
1638                 buffer += aligned;
1639                 address += aligned;
1640                 size -= aligned;
1641         }
1642
1643         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1644         if(size >=2)
1645         {
1646                 int aligned = size - (size%2);
1647                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1648                 if (retval != ERROR_OK)
1649                         return retval;
1650
1651                 buffer += aligned;
1652                 address += aligned;
1653                 size -= aligned;
1654         }
1655         /* handle tail writes of less than 4 bytes */
1656         if (size > 0)
1657         {
1658                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1659                         return retval;
1660         }
1661
1662         return ERROR_OK;
1663 }
1664
1665 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1666 {
1667         uint8_t *buffer;
1668         int retval;
1669         uint32_t i;
1670         uint32_t checksum = 0;
1671         if (!target_was_examined(target))
1672         {
1673                 LOG_ERROR("Target not examined yet");
1674                 return ERROR_FAIL;
1675         }
1676
1677         if ((retval = target->type->checksum_memory(target, address,
1678                 size, &checksum)) != ERROR_OK)
1679         {
1680                 buffer = malloc(size);
1681                 if (buffer == NULL)
1682                 {
1683                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1684                         return ERROR_INVALID_ARGUMENTS;
1685                 }
1686                 retval = target_read_buffer(target, address, size, buffer);
1687                 if (retval != ERROR_OK)
1688                 {
1689                         free(buffer);
1690                         return retval;
1691                 }
1692
1693                 /* convert to target endianness */
1694                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1695                 {
1696                         uint32_t target_data;
1697                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1698                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1699                 }
1700
1701                 retval = image_calculate_checksum(buffer, size, &checksum);
1702                 free(buffer);
1703         }
1704
1705         *crc = checksum;
1706
1707         return retval;
1708 }
1709
1710 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1711 {
1712         int retval;
1713         if (!target_was_examined(target))
1714         {
1715                 LOG_ERROR("Target not examined yet");
1716                 return ERROR_FAIL;
1717         }
1718
1719         if (target->type->blank_check_memory == 0)
1720                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1721
1722         retval = target->type->blank_check_memory(target, address, size, blank);
1723
1724         return retval;
1725 }
1726
1727 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1728 {
1729         uint8_t value_buf[4];
1730         if (!target_was_examined(target))
1731         {
1732                 LOG_ERROR("Target not examined yet");
1733                 return ERROR_FAIL;
1734         }
1735
1736         int retval = target_read_memory(target, address, 4, 1, value_buf);
1737
1738         if (retval == ERROR_OK)
1739         {
1740                 *value = target_buffer_get_u32(target, value_buf);
1741                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1742                                   address,
1743                                   *value);
1744         }
1745         else
1746         {
1747                 *value = 0x0;
1748                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1749                                   address);
1750         }
1751
1752         return retval;
1753 }
1754
1755 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1756 {
1757         uint8_t value_buf[2];
1758         if (!target_was_examined(target))
1759         {
1760                 LOG_ERROR("Target not examined yet");
1761                 return ERROR_FAIL;
1762         }
1763
1764         int retval = target_read_memory(target, address, 2, 1, value_buf);
1765
1766         if (retval == ERROR_OK)
1767         {
1768                 *value = target_buffer_get_u16(target, value_buf);
1769                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1770                                   address,
1771                                   *value);
1772         }
1773         else
1774         {
1775                 *value = 0x0;
1776                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1777                                   address);
1778         }
1779
1780         return retval;
1781 }
1782
1783 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1784 {
1785         int retval = target_read_memory(target, address, 1, 1, value);
1786         if (!target_was_examined(target))
1787         {
1788                 LOG_ERROR("Target not examined yet");
1789                 return ERROR_FAIL;
1790         }
1791
1792         if (retval == ERROR_OK)
1793         {
1794                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1795                                   address,
1796                                   *value);
1797         }
1798         else
1799         {
1800                 *value = 0x0;
1801                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1802                                   address);
1803         }
1804
1805         return retval;
1806 }
1807
1808 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1809 {
1810         int retval;
1811         uint8_t value_buf[4];
1812         if (!target_was_examined(target))
1813         {
1814                 LOG_ERROR("Target not examined yet");
1815                 return ERROR_FAIL;
1816         }
1817
1818         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1819                           address,
1820                           value);
1821
1822         target_buffer_set_u32(target, value_buf, value);
1823         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1824         {
1825                 LOG_DEBUG("failed: %i", retval);
1826         }
1827
1828         return retval;
1829 }
1830
1831 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1832 {
1833         int retval;
1834         uint8_t value_buf[2];
1835         if (!target_was_examined(target))
1836         {
1837                 LOG_ERROR("Target not examined yet");
1838                 return ERROR_FAIL;
1839         }
1840
1841         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1842                           address,
1843                           value);
1844
1845         target_buffer_set_u16(target, value_buf, value);
1846         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1847         {
1848                 LOG_DEBUG("failed: %i", retval);
1849         }
1850
1851         return retval;
1852 }
1853
1854 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1855 {
1856         int retval;
1857         if (!target_was_examined(target))
1858         {
1859                 LOG_ERROR("Target not examined yet");
1860                 return ERROR_FAIL;
1861         }
1862
1863         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1864                           address, value);
1865
1866         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1867         {
1868                 LOG_DEBUG("failed: %i", retval);
1869         }
1870
1871         return retval;
1872 }
1873
1874 static int find_target(struct command_context *cmd_ctx, const char *name)
1875 {
1876         struct target *target = get_target(name);
1877         if (target == NULL) {
1878                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
1879                 return ERROR_FAIL;
1880         }
1881         if (!target->tap->enabled) {
1882                 LOG_USER("Target: TAP %s is disabled, "
1883                          "can't be the current target\n",
1884                          target->tap->dotted_name);
1885                 return ERROR_FAIL;
1886         }
1887
1888         cmd_ctx->current_target = target->target_number;
1889         return ERROR_OK;
1890 }
1891
1892
1893 COMMAND_HANDLER(handle_targets_command)
1894 {
1895         int retval = ERROR_OK;
1896         if (CMD_ARGC == 1)
1897         {
1898                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
1899                 if (retval == ERROR_OK) {
1900                         /* we're done! */
1901                         return retval;
1902                 }
1903         }
1904
1905         struct target *target = all_targets;
1906         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1907         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1908         while (target)
1909         {
1910                 const char *state;
1911                 char marker = ' ';
1912
1913                 if (target->tap->enabled)
1914                         state = target_state_name( target );
1915                 else
1916                         state = "tap-disabled";
1917
1918                 if (CMD_CTX->current_target == target->target_number)
1919                         marker = '*';
1920
1921                 /* keep columns lined up to match the headers above */
1922                 command_print(CMD_CTX,
1923                                 "%2d%c %-18s %-10s %-6s %-18s %s",
1924                                 target->target_number,
1925                                 marker,
1926                                 target_name(target),
1927                                 target_type_name(target),
1928                                 Jim_Nvp_value2name_simple(nvp_target_endian,
1929                                         target->endianness)->name,
1930                                 target->tap->dotted_name,
1931                                 state);
1932                 target = target->next;
1933         }
1934
1935         return retval;
1936 }
1937
1938 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1939
1940 static int powerDropout;
1941 static int srstAsserted;
1942
1943 static int runPowerRestore;
1944 static int runPowerDropout;
1945 static int runSrstAsserted;
1946 static int runSrstDeasserted;
1947
1948 static int sense_handler(void)
1949 {
1950         static int prevSrstAsserted = 0;
1951         static int prevPowerdropout = 0;
1952
1953         int retval;
1954         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1955                 return retval;
1956
1957         int powerRestored;
1958         powerRestored = prevPowerdropout && !powerDropout;
1959         if (powerRestored)
1960         {
1961                 runPowerRestore = 1;
1962         }
1963
1964         long long current = timeval_ms();
1965         static long long lastPower = 0;
1966         int waitMore = lastPower + 2000 > current;
1967         if (powerDropout && !waitMore)
1968         {
1969                 runPowerDropout = 1;
1970                 lastPower = current;
1971         }
1972
1973         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1974                 return retval;
1975
1976         int srstDeasserted;
1977         srstDeasserted = prevSrstAsserted && !srstAsserted;
1978
1979         static long long lastSrst = 0;
1980         waitMore = lastSrst + 2000 > current;
1981         if (srstDeasserted && !waitMore)
1982         {
1983                 runSrstDeasserted = 1;
1984                 lastSrst = current;
1985         }
1986
1987         if (!prevSrstAsserted && srstAsserted)
1988         {
1989                 runSrstAsserted = 1;
1990         }
1991
1992         prevSrstAsserted = srstAsserted;
1993         prevPowerdropout = powerDropout;
1994
1995         if (srstDeasserted || powerRestored)
1996         {
1997                 /* Other than logging the event we can't do anything here.
1998                  * Issuing a reset is a particularly bad idea as we might
1999                  * be inside a reset already.
2000                  */
2001         }
2002
2003         return ERROR_OK;
2004 }
2005
2006 static int backoff_times = 0;
2007 static int backoff_count = 0;
2008
2009 /* process target state changes */
2010 static int handle_target(void *priv)
2011 {
2012         Jim_Interp *interp = (Jim_Interp *)priv;
2013         int retval = ERROR_OK;
2014
2015         if (!is_jtag_poll_safe())
2016         {
2017                 /* polling is disabled currently */
2018                 return ERROR_OK;
2019         }
2020
2021         /* we do not want to recurse here... */
2022         static int recursive = 0;
2023         if (! recursive)
2024         {
2025                 recursive = 1;
2026                 sense_handler();
2027                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2028                  * We need to avoid an infinite loop/recursion here and we do that by
2029                  * clearing the flags after running these events.
2030                  */
2031                 int did_something = 0;
2032                 if (runSrstAsserted)
2033                 {
2034                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2035                         Jim_Eval(interp, "srst_asserted");
2036                         did_something = 1;
2037                 }
2038                 if (runSrstDeasserted)
2039                 {
2040                         Jim_Eval(interp, "srst_deasserted");
2041                         did_something = 1;
2042                 }
2043                 if (runPowerDropout)
2044                 {
2045                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2046                         Jim_Eval(interp, "power_dropout");
2047                         did_something = 1;
2048                 }
2049                 if (runPowerRestore)
2050                 {
2051                         Jim_Eval(interp, "power_restore");
2052                         did_something = 1;
2053                 }
2054
2055                 if (did_something)
2056                 {
2057                         /* clear detect flags */
2058                         sense_handler();
2059                 }
2060
2061                 /* clear action flags */
2062
2063                 runSrstAsserted = 0;
2064                 runSrstDeasserted = 0;
2065                 runPowerRestore = 0;
2066                 runPowerDropout = 0;
2067
2068                 recursive = 0;
2069         }
2070
2071         if (backoff_times > backoff_count)
2072         {
2073                 /* do not poll this time as we failed previously */
2074                 backoff_count++;
2075                 return ERROR_OK;
2076         }
2077         backoff_count = 0;
2078
2079         /* Poll targets for state changes unless that's globally disabled.
2080          * Skip targets that are currently disabled.
2081          */
2082         for (struct target *target = all_targets;
2083                         is_jtag_poll_safe() && target;
2084                         target = target->next)
2085         {
2086                 if (!target->tap->enabled)
2087                         continue;
2088
2089                 /* only poll target if we've got power and srst isn't asserted */
2090                 if (!powerDropout && !srstAsserted)
2091                 {
2092                         /* polling may fail silently until the target has been examined */
2093                         if ((retval = target_poll(target)) != ERROR_OK)
2094                         {
2095                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2096                                 if (backoff_times * polling_interval < 5000)
2097                                 {
2098                                         backoff_times *= 2;
2099                                         backoff_times++;
2100                                 }
2101                                 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);
2102
2103                                 /* Tell GDB to halt the debugger. This allows the user to
2104                                  * run monitor commands to handle the situation.
2105                                  */
2106                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2107                                 return retval;
2108                         }
2109                         /* Since we succeeded, we reset backoff count */
2110                         if (backoff_times > 0)
2111                         {
2112                                 LOG_USER("Polling succeeded again");
2113                         }
2114                         backoff_times = 0;
2115                 }
2116         }
2117
2118         return retval;
2119 }
2120
2121 COMMAND_HANDLER(handle_reg_command)
2122 {
2123         struct target *target;
2124         struct reg *reg = NULL;
2125         unsigned count = 0;
2126         char *value;
2127
2128         LOG_DEBUG("-");
2129
2130         target = get_current_target(CMD_CTX);
2131
2132         /* list all available registers for the current target */
2133         if (CMD_ARGC == 0)
2134         {
2135                 struct reg_cache *cache = target->reg_cache;
2136
2137                 count = 0;
2138                 while (cache)
2139                 {
2140                         unsigned i;
2141
2142                         command_print(CMD_CTX, "===== %s", cache->name);
2143
2144                         for (i = 0, reg = cache->reg_list;
2145                                         i < cache->num_regs;
2146                                         i++, reg++, count++)
2147                         {
2148                                 /* only print cached values if they are valid */
2149                                 if (reg->valid) {
2150                                         value = buf_to_str(reg->value,
2151                                                         reg->size, 16);
2152                                         command_print(CMD_CTX,
2153                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2154                                                         count, reg->name,
2155                                                         reg->size, value,
2156                                                         reg->dirty
2157                                                                 ? " (dirty)"
2158                                                                 : "");
2159                                         free(value);
2160                                 } else {
2161                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2162                                                           count, reg->name,
2163                                                           reg->size) ;
2164                                 }
2165                         }
2166                         cache = cache->next;
2167                 }
2168
2169                 return ERROR_OK;
2170         }
2171
2172         /* access a single register by its ordinal number */
2173         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
2174         {
2175                 unsigned num;
2176                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2177
2178                 struct reg_cache *cache = target->reg_cache;
2179                 count = 0;
2180                 while (cache)
2181                 {
2182                         unsigned i;
2183                         for (i = 0; i < cache->num_regs; i++)
2184                         {
2185                                 if (count++ == num)
2186                                 {
2187                                         reg = &cache->reg_list[i];
2188                                         break;
2189                                 }
2190                         }
2191                         if (reg)
2192                                 break;
2193                         cache = cache->next;
2194                 }
2195
2196                 if (!reg)
2197                 {
2198                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
2199                         return ERROR_OK;
2200                 }
2201         } else /* access a single register by its name */
2202         {
2203                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2204
2205                 if (!reg)
2206                 {
2207                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2208                         return ERROR_OK;
2209                 }
2210         }
2211
2212         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2213
2214         /* display a register */
2215         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2216         {
2217                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2218                         reg->valid = 0;
2219
2220                 if (reg->valid == 0)
2221                 {
2222                         reg->type->get(reg);
2223                 }
2224                 value = buf_to_str(reg->value, reg->size, 16);
2225                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2226                 free(value);
2227                 return ERROR_OK;
2228         }
2229
2230         /* set register value */
2231         if (CMD_ARGC == 2)
2232         {
2233                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2234                 if (buf == NULL)
2235                         return ERROR_FAIL;
2236                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2237
2238                 reg->type->set(reg, buf);
2239
2240                 value = buf_to_str(reg->value, reg->size, 16);
2241                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2242                 free(value);
2243
2244                 free(buf);
2245
2246                 return ERROR_OK;
2247         }
2248
2249         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2250
2251         return ERROR_OK;
2252 }
2253
2254 COMMAND_HANDLER(handle_poll_command)
2255 {
2256         int retval = ERROR_OK;
2257         struct target *target = get_current_target(CMD_CTX);
2258
2259         if (CMD_ARGC == 0)
2260         {
2261                 command_print(CMD_CTX, "background polling: %s",
2262                                 jtag_poll_get_enabled() ? "on" : "off");
2263                 command_print(CMD_CTX, "TAP: %s (%s)",
2264                                 target->tap->dotted_name,
2265                                 target->tap->enabled ? "enabled" : "disabled");
2266                 if (!target->tap->enabled)
2267                         return ERROR_OK;
2268                 if ((retval = target_poll(target)) != ERROR_OK)
2269                         return retval;
2270                 if ((retval = target_arch_state(target)) != ERROR_OK)
2271                         return retval;
2272         }
2273         else if (CMD_ARGC == 1)
2274         {
2275                 bool enable;
2276                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2277                 jtag_poll_set_enabled(enable);
2278         }
2279         else
2280         {
2281                 return ERROR_COMMAND_SYNTAX_ERROR;
2282         }
2283
2284         return retval;
2285 }
2286
2287 COMMAND_HANDLER(handle_wait_halt_command)
2288 {
2289         if (CMD_ARGC > 1)
2290                 return ERROR_COMMAND_SYNTAX_ERROR;
2291
2292         unsigned ms = 5000;
2293         if (1 == CMD_ARGC)
2294         {
2295                 int retval = parse_uint(CMD_ARGV[0], &ms);
2296                 if (ERROR_OK != retval)
2297                 {
2298                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2299                         return ERROR_COMMAND_SYNTAX_ERROR;
2300                 }
2301                 // convert seconds (given) to milliseconds (needed)
2302                 ms *= 1000;
2303         }
2304
2305         struct target *target = get_current_target(CMD_CTX);
2306         return target_wait_state(target, TARGET_HALTED, ms);
2307 }
2308
2309 /* wait for target state to change. The trick here is to have a low
2310  * latency for short waits and not to suck up all the CPU time
2311  * on longer waits.
2312  *
2313  * After 500ms, keep_alive() is invoked
2314  */
2315 int target_wait_state(struct target *target, enum target_state state, int ms)
2316 {
2317         int retval;
2318         long long then = 0, cur;
2319         int once = 1;
2320
2321         for (;;)
2322         {
2323                 if ((retval = target_poll(target)) != ERROR_OK)
2324                         return retval;
2325                 if (target->state == state)
2326                 {
2327                         break;
2328                 }
2329                 cur = timeval_ms();
2330                 if (once)
2331                 {
2332                         once = 0;
2333                         then = timeval_ms();
2334                         LOG_DEBUG("waiting for target %s...",
2335                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2336                 }
2337
2338                 if (cur-then > 500)
2339                 {
2340                         keep_alive();
2341                 }
2342
2343                 if ((cur-then) > ms)
2344                 {
2345                         LOG_ERROR("timed out while waiting for target %s",
2346                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2347                         return ERROR_FAIL;
2348                 }
2349         }
2350
2351         return ERROR_OK;
2352 }
2353
2354 COMMAND_HANDLER(handle_halt_command)
2355 {
2356         LOG_DEBUG("-");
2357
2358         struct target *target = get_current_target(CMD_CTX);
2359         int retval = target_halt(target);
2360         if (ERROR_OK != retval)
2361                 return retval;
2362
2363         if (CMD_ARGC == 1)
2364         {
2365                 unsigned wait_local;
2366                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2367                 if (ERROR_OK != retval)
2368                         return ERROR_COMMAND_SYNTAX_ERROR;
2369                 if (!wait_local)
2370                         return ERROR_OK;
2371         }
2372
2373         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2374 }
2375
2376 COMMAND_HANDLER(handle_soft_reset_halt_command)
2377 {
2378         struct target *target = get_current_target(CMD_CTX);
2379
2380         LOG_USER("requesting target halt and executing a soft reset");
2381
2382         target->type->soft_reset_halt(target);
2383
2384         return ERROR_OK;
2385 }
2386
2387 COMMAND_HANDLER(handle_reset_command)
2388 {
2389         if (CMD_ARGC > 1)
2390                 return ERROR_COMMAND_SYNTAX_ERROR;
2391
2392         enum target_reset_mode reset_mode = RESET_RUN;
2393         if (CMD_ARGC == 1)
2394         {
2395                 const Jim_Nvp *n;
2396                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2397                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2398                         return ERROR_COMMAND_SYNTAX_ERROR;
2399                 }
2400                 reset_mode = n->value;
2401         }
2402
2403         /* reset *all* targets */
2404         return target_process_reset(CMD_CTX, reset_mode);
2405 }
2406
2407
2408 COMMAND_HANDLER(handle_resume_command)
2409 {
2410         int current = 1;
2411         if (CMD_ARGC > 1)
2412                 return ERROR_COMMAND_SYNTAX_ERROR;
2413
2414         struct target *target = get_current_target(CMD_CTX);
2415         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2416
2417         /* with no CMD_ARGV, resume from current pc, addr = 0,
2418          * with one arguments, addr = CMD_ARGV[0],
2419          * handle breakpoints, not debugging */
2420         uint32_t addr = 0;
2421         if (CMD_ARGC == 1)
2422         {
2423                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2424                 current = 0;
2425         }
2426
2427         return target_resume(target, current, addr, 1, 0);
2428 }
2429
2430 COMMAND_HANDLER(handle_step_command)
2431 {
2432         if (CMD_ARGC > 1)
2433                 return ERROR_COMMAND_SYNTAX_ERROR;
2434
2435         LOG_DEBUG("-");
2436
2437         /* with no CMD_ARGV, step from current pc, addr = 0,
2438          * with one argument addr = CMD_ARGV[0],
2439          * handle breakpoints, debugging */
2440         uint32_t addr = 0;
2441         int current_pc = 1;
2442         if (CMD_ARGC == 1)
2443         {
2444                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2445                 current_pc = 0;
2446         }
2447
2448         struct target *target = get_current_target(CMD_CTX);
2449
2450         return target->type->step(target, current_pc, addr, 1);
2451 }
2452
2453 static void handle_md_output(struct command_context *cmd_ctx,
2454                 struct target *target, uint32_t address, unsigned size,
2455                 unsigned count, const uint8_t *buffer)
2456 {
2457         const unsigned line_bytecnt = 32;
2458         unsigned line_modulo = line_bytecnt / size;
2459
2460         char output[line_bytecnt * 4 + 1];
2461         unsigned output_len = 0;
2462
2463         const char *value_fmt;
2464         switch (size) {
2465         case 4: value_fmt = "%8.8x "; break;
2466         case 2: value_fmt = "%4.4x "; break;
2467         case 1: value_fmt = "%2.2x "; break;
2468         default:
2469                 /* "can't happen", caller checked */
2470                 LOG_ERROR("invalid memory read size: %u", size);
2471                 return;
2472         }
2473
2474         for (unsigned i = 0; i < count; i++)
2475         {
2476                 if (i % line_modulo == 0)
2477                 {
2478                         output_len += snprintf(output + output_len,
2479                                         sizeof(output) - output_len,
2480                                         "0x%8.8x: ",
2481                                         (unsigned)(address + (i*size)));
2482                 }
2483
2484                 uint32_t value = 0;
2485                 const uint8_t *value_ptr = buffer + i * size;
2486                 switch (size) {
2487                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2488                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2489                 case 1: value = *value_ptr;
2490                 }
2491                 output_len += snprintf(output + output_len,
2492                                 sizeof(output) - output_len,
2493                                 value_fmt, value);
2494
2495                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2496                 {
2497                         command_print(cmd_ctx, "%s", output);
2498                         output_len = 0;
2499                 }
2500         }
2501 }
2502
2503 COMMAND_HANDLER(handle_md_command)
2504 {
2505         if (CMD_ARGC < 1)
2506                 return ERROR_COMMAND_SYNTAX_ERROR;
2507
2508         unsigned size = 0;
2509         switch (CMD_NAME[2]) {
2510         case 'w': size = 4; break;
2511         case 'h': size = 2; break;
2512         case 'b': size = 1; break;
2513         default: return ERROR_COMMAND_SYNTAX_ERROR;
2514         }
2515
2516         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2517         int (*fn)(struct target *target,
2518                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2519         if (physical)
2520         {
2521                 CMD_ARGC--;
2522                 CMD_ARGV++;
2523                 fn=target_read_phys_memory;
2524         } else
2525         {
2526                 fn=target_read_memory;
2527         }
2528         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2529         {
2530                 return ERROR_COMMAND_SYNTAX_ERROR;
2531         }
2532
2533         uint32_t address;
2534         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2535
2536         unsigned count = 1;
2537         if (CMD_ARGC == 2)
2538                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2539
2540         uint8_t *buffer = calloc(count, size);
2541
2542         struct target *target = get_current_target(CMD_CTX);
2543         int retval = fn(target, address, size, count, buffer);
2544         if (ERROR_OK == retval)
2545                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2546
2547         free(buffer);
2548
2549         return retval;
2550 }
2551
2552 typedef int (*target_write_fn)(struct target *target,
2553                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2554
2555 static int target_write_memory_fast(struct target *target,
2556                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2557 {
2558         return target_write_buffer(target, address, size * count, buffer);
2559 }
2560
2561 static int target_fill_mem(struct target *target,
2562                 uint32_t address,
2563                 target_write_fn fn,
2564                 unsigned data_size,
2565                 /* value */
2566                 uint32_t b,
2567                 /* count */
2568                 unsigned c)
2569 {
2570         /* We have to write in reasonably large chunks to be able
2571          * to fill large memory areas with any sane speed */
2572         const unsigned chunk_size = 16384;
2573         uint8_t *target_buf = malloc(chunk_size * data_size);
2574         if (target_buf == NULL)
2575         {
2576                 LOG_ERROR("Out of memory");
2577                 return ERROR_FAIL;
2578         }
2579
2580         for (unsigned i = 0; i < chunk_size; i ++)
2581         {
2582                 switch (data_size)
2583                 {
2584                 case 4:
2585                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2586                         break;
2587                 case 2:
2588                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2589                         break;
2590                 case 1:
2591                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2592                         break;
2593                 default:
2594                         exit(-1);
2595                 }
2596         }
2597
2598         int retval = ERROR_OK;
2599
2600         for (unsigned x = 0; x < c; x += chunk_size)
2601         {
2602                 unsigned current;
2603                 current = c - x;
2604                 if (current > chunk_size)
2605                 {
2606                         current = chunk_size;
2607                 }
2608                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2609                 if (retval != ERROR_OK)
2610                 {
2611                         break;
2612                 }
2613                 /* avoid GDB timeouts */
2614                 keep_alive();
2615         }
2616         free(target_buf);
2617
2618         return retval;
2619 }
2620
2621
2622 COMMAND_HANDLER(handle_mw_command)
2623 {
2624         if (CMD_ARGC < 2)
2625         {
2626                 return ERROR_COMMAND_SYNTAX_ERROR;
2627         }
2628         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2629         target_write_fn fn;
2630         if (physical)
2631         {
2632                 CMD_ARGC--;
2633                 CMD_ARGV++;
2634                 fn=target_write_phys_memory;
2635         } else
2636         {
2637                 fn = target_write_memory_fast;
2638         }
2639         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2640                 return ERROR_COMMAND_SYNTAX_ERROR;
2641
2642         uint32_t address;
2643         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2644
2645         uint32_t value;
2646         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2647
2648         unsigned count = 1;
2649         if (CMD_ARGC == 3)
2650                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2651
2652         struct target *target = get_current_target(CMD_CTX);
2653         unsigned wordsize;
2654         switch (CMD_NAME[2])
2655         {
2656                 case 'w':
2657                         wordsize = 4;
2658                         break;
2659                 case 'h':
2660                         wordsize = 2;
2661                         break;
2662                 case 'b':
2663                         wordsize = 1;
2664                         break;
2665                 default:
2666                         return ERROR_COMMAND_SYNTAX_ERROR;
2667         }
2668
2669         return target_fill_mem(target, address, fn, wordsize, value, count);
2670 }
2671
2672 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2673                 uint32_t *min_address, uint32_t *max_address)
2674 {
2675         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2676                 return ERROR_COMMAND_SYNTAX_ERROR;
2677
2678         /* a base address isn't always necessary,
2679          * default to 0x0 (i.e. don't relocate) */
2680         if (CMD_ARGC >= 2)
2681         {
2682                 uint32_t addr;
2683                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2684                 image->base_address = addr;
2685                 image->base_address_set = 1;
2686         }
2687         else
2688                 image->base_address_set = 0;
2689
2690         image->start_address_set = 0;
2691
2692         if (CMD_ARGC >= 4)
2693         {
2694                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2695         }
2696         if (CMD_ARGC == 5)
2697         {
2698                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2699                 // use size (given) to find max (required)
2700                 *max_address += *min_address;
2701         }
2702
2703         if (*min_address > *max_address)
2704                 return ERROR_COMMAND_SYNTAX_ERROR;
2705
2706         return ERROR_OK;
2707 }
2708
2709 COMMAND_HANDLER(handle_load_image_command)
2710 {
2711         uint8_t *buffer;
2712         size_t buf_cnt;
2713         uint32_t image_size;
2714         uint32_t min_address = 0;
2715         uint32_t max_address = 0xffffffff;
2716         int i;
2717         struct image image;
2718
2719         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2720                         &image, &min_address, &max_address);
2721         if (ERROR_OK != retval)
2722                 return retval;
2723
2724         struct target *target = get_current_target(CMD_CTX);
2725
2726         struct duration bench;
2727         duration_start(&bench);
2728
2729         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2730         {
2731                 return ERROR_OK;
2732         }
2733
2734         image_size = 0x0;
2735         retval = ERROR_OK;
2736         for (i = 0; i < image.num_sections; i++)
2737         {
2738                 buffer = malloc(image.sections[i].size);
2739                 if (buffer == NULL)
2740                 {
2741                         command_print(CMD_CTX,
2742                                                   "error allocating buffer for section (%d bytes)",
2743                                                   (int)(image.sections[i].size));
2744                         break;
2745                 }
2746
2747                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2748                 {
2749                         free(buffer);
2750                         break;
2751                 }
2752
2753                 uint32_t offset = 0;
2754                 uint32_t length = buf_cnt;
2755
2756                 /* DANGER!!! beware of unsigned comparision here!!! */
2757
2758                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2759                                 (image.sections[i].base_address < max_address))
2760                 {
2761                         if (image.sections[i].base_address < min_address)
2762                         {
2763                                 /* clip addresses below */
2764                                 offset += min_address-image.sections[i].base_address;
2765                                 length -= offset;
2766                         }
2767
2768                         if (image.sections[i].base_address + buf_cnt > max_address)
2769                         {
2770                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2771                         }
2772
2773                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2774                         {
2775                                 free(buffer);
2776                                 break;
2777                         }
2778                         image_size += length;
2779                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2780                                                   (unsigned int)length,
2781                                                   image.sections[i].base_address + offset);
2782                 }
2783
2784                 free(buffer);
2785         }
2786
2787         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2788         {
2789                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2790                                 "in %fs (%0.3f KiB/s)", image_size,
2791                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2792         }
2793
2794         image_close(&image);
2795
2796         return retval;
2797
2798 }
2799
2800 COMMAND_HANDLER(handle_dump_image_command)
2801 {
2802         struct fileio fileio;
2803         uint8_t buffer[560];
2804         int retval, retvaltemp;
2805         uint32_t address, size;
2806         struct duration bench;
2807         struct target *target = get_current_target(CMD_CTX);
2808
2809         if (CMD_ARGC != 3)
2810                 return ERROR_COMMAND_SYNTAX_ERROR;
2811
2812         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2813         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2814
2815         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2816         if (retval != ERROR_OK)
2817                 return retval;
2818
2819         duration_start(&bench);
2820
2821         retval = ERROR_OK;
2822         while (size > 0)
2823         {
2824                 size_t size_written;
2825                 uint32_t this_run_size = (size > 560) ? 560 : size;
2826                 retval = target_read_buffer(target, address, this_run_size, buffer);
2827                 if (retval != ERROR_OK)
2828                 {
2829                         break;
2830                 }
2831
2832                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2833                 if (retval != ERROR_OK)
2834                 {
2835                         break;
2836                 }
2837
2838                 size -= this_run_size;
2839                 address += this_run_size;
2840         }
2841
2842         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2843         {
2844                 int filesize;
2845                 retval = fileio_size(&fileio, &filesize);
2846                 if (retval != ERROR_OK)
2847                         return retval;
2848                 command_print(CMD_CTX,
2849                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2850                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2851         }
2852
2853         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2854                 return retvaltemp;
2855
2856         return retval;
2857 }
2858
2859 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2860 {
2861         uint8_t *buffer;
2862         size_t buf_cnt;
2863         uint32_t image_size;
2864         int i;
2865         int retval;
2866         uint32_t checksum = 0;
2867         uint32_t mem_checksum = 0;
2868
2869         struct image image;
2870
2871         struct target *target = get_current_target(CMD_CTX);
2872
2873         if (CMD_ARGC < 1)
2874         {
2875                 return ERROR_COMMAND_SYNTAX_ERROR;
2876         }
2877
2878         if (!target)
2879         {
2880                 LOG_ERROR("no target selected");
2881                 return ERROR_FAIL;
2882         }
2883
2884         struct duration bench;
2885         duration_start(&bench);
2886
2887         if (CMD_ARGC >= 2)
2888         {
2889                 uint32_t addr;
2890                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2891                 image.base_address = addr;
2892                 image.base_address_set = 1;
2893         }
2894         else
2895         {
2896                 image.base_address_set = 0;
2897                 image.base_address = 0x0;
2898         }
2899
2900         image.start_address_set = 0;
2901
2902         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2903         {
2904                 return retval;
2905         }
2906
2907         image_size = 0x0;
2908         int diffs = 0;
2909         retval = ERROR_OK;
2910         for (i = 0; i < image.num_sections; i++)
2911         {
2912                 buffer = malloc(image.sections[i].size);
2913                 if (buffer == NULL)
2914                 {
2915                         command_print(CMD_CTX,
2916                                                   "error allocating buffer for section (%d bytes)",
2917                                                   (int)(image.sections[i].size));
2918                         break;
2919                 }
2920                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2921                 {
2922                         free(buffer);
2923                         break;
2924                 }
2925
2926                 if (verify)
2927                 {
2928                         /* calculate checksum of image */
2929                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2930                         if (retval != ERROR_OK)
2931                         {
2932                                 free(buffer);
2933                                 break;
2934                         }
2935
2936                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2937                         if (retval != ERROR_OK)
2938                         {
2939                                 free(buffer);
2940                                 break;
2941                         }
2942
2943                         if (checksum != mem_checksum)
2944                         {
2945                                 /* failed crc checksum, fall back to a binary compare */
2946                                 uint8_t *data;
2947
2948                                 if (diffs == 0)
2949                                 {
2950                                         LOG_ERROR("checksum mismatch - attempting binary compare");
2951                                 }
2952
2953                                 data = (uint8_t*)malloc(buf_cnt);
2954
2955                                 /* Can we use 32bit word accesses? */
2956                                 int size = 1;
2957                                 int count = buf_cnt;
2958                                 if ((count % 4) == 0)
2959                                 {
2960                                         size *= 4;
2961                                         count /= 4;
2962                                 }
2963                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2964                                 if (retval == ERROR_OK)
2965                                 {
2966                                         uint32_t t;
2967                                         for (t = 0; t < buf_cnt; t++)
2968                                         {
2969                                                 if (data[t] != buffer[t])
2970                                                 {
2971                                                         command_print(CMD_CTX,
2972                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2973                                                                                   diffs,
2974                                                                                   (unsigned)(t + image.sections[i].base_address),
2975                                                                                   data[t],
2976                                                                                   buffer[t]);
2977                                                         if (diffs++ >= 127)
2978                                                         {
2979                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2980                                                                 free(data);
2981                                                                 free(buffer);
2982                                                                 goto done;
2983                                                         }
2984                                                 }
2985                                                 keep_alive();
2986                                         }
2987                                 }
2988                                 free(data);
2989                         }
2990                 } else
2991                 {
2992                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2993                                                   image.sections[i].base_address,
2994                                                   buf_cnt);
2995                 }
2996
2997                 free(buffer);
2998                 image_size += buf_cnt;
2999         }
3000         if (diffs > 0)
3001         {
3002                 command_print(CMD_CTX, "No more differences found.");
3003         }
3004 done:
3005         if (diffs > 0)
3006         {
3007                 retval = ERROR_FAIL;
3008         }
3009         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
3010         {
3011                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3012                                 "in %fs (%0.3f KiB/s)", image_size,
3013                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3014         }
3015
3016         image_close(&image);
3017
3018         return retval;
3019 }
3020
3021 COMMAND_HANDLER(handle_verify_image_command)
3022 {
3023         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3024 }
3025
3026 COMMAND_HANDLER(handle_test_image_command)
3027 {
3028         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3029 }
3030
3031 static int handle_bp_command_list(struct command_context *cmd_ctx)
3032 {
3033         struct target *target = get_current_target(cmd_ctx);
3034         struct breakpoint *breakpoint = target->breakpoints;
3035         while (breakpoint)
3036         {
3037                 if (breakpoint->type == BKPT_SOFT)
3038                 {
3039                         char* buf = buf_to_str(breakpoint->orig_instr,
3040                                         breakpoint->length, 16);
3041                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3042                                         breakpoint->address,
3043                                         breakpoint->length,
3044                                         breakpoint->set, buf);
3045                         free(buf);
3046                 }
3047                 else
3048                 {
3049                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3050                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3051                                                         breakpoint->asid,
3052                                                         breakpoint->length, breakpoint->set);
3053                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0))
3054                         {
3055                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3056                                                         breakpoint->address,
3057                                                         breakpoint->length, breakpoint->set);
3058                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3059                                                         breakpoint->asid);
3060                         }
3061                         else
3062                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3063                                                         breakpoint->address,
3064                                                         breakpoint->length, breakpoint->set);
3065                 }
3066
3067                 breakpoint = breakpoint->next;
3068         }
3069         return ERROR_OK;
3070 }
3071
3072 static int handle_bp_command_set(struct command_context *cmd_ctx,
3073                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3074 {
3075         struct target *target = get_current_target(cmd_ctx);
3076
3077         if (asid == 0)
3078         {
3079                 int retval = breakpoint_add(target, addr, length, hw);
3080                 if (ERROR_OK == retval)
3081                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3082                 else
3083                 {
3084                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3085                         return retval;
3086                 }
3087         }
3088         else if (addr == 0)
3089         {
3090                 int retval = context_breakpoint_add(target, asid, length, hw);
3091                 if (ERROR_OK == retval)
3092                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3093                 else
3094                 {
3095                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3096                         return retval;
3097                 }
3098         }
3099         else
3100         {
3101                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3102                 if(ERROR_OK == retval)
3103                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3104                 else
3105                 {
3106                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3107                         return retval;
3108                 }
3109         }
3110         return ERROR_OK;
3111 }
3112
3113 COMMAND_HANDLER(handle_bp_command)
3114 {
3115         uint32_t addr;
3116         uint32_t asid;
3117         uint32_t length;
3118         int hw = BKPT_SOFT;
3119         switch(CMD_ARGC)
3120         {
3121                 case 0:
3122                         return handle_bp_command_list(CMD_CTX);
3123
3124                 case 2:
3125                         asid = 0;
3126                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3127                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3128                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3129
3130                 case 3:
3131                         if(strcmp(CMD_ARGV[2], "hw") == 0)
3132                         {
3133                                 hw = BKPT_HARD;
3134                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3135
3136                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3137
3138                                 asid = 0;
3139                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3140                         }
3141                         else if(strcmp(CMD_ARGV[2], "hw_ctx") == 0)
3142                         {
3143                                 hw = BKPT_HARD;
3144                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3145                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3146                                 addr = 0;
3147                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3148                         }
3149
3150                 case 4:
3151                         hw = BKPT_HARD;
3152                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3153                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3154                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3155                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3156
3157                 default:
3158                         command_print(CMD_CTX, "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']");
3159                         return ERROR_COMMAND_SYNTAX_ERROR;
3160         }
3161 }
3162
3163 COMMAND_HANDLER(handle_rbp_command)
3164 {
3165         if (CMD_ARGC != 1)
3166                 return ERROR_COMMAND_SYNTAX_ERROR;
3167
3168         uint32_t addr;
3169         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3170
3171         struct target *target = get_current_target(CMD_CTX);
3172         breakpoint_remove(target, addr);
3173
3174         return ERROR_OK;
3175 }
3176
3177 COMMAND_HANDLER(handle_wp_command)
3178 {
3179         struct target *target = get_current_target(CMD_CTX);
3180
3181         if (CMD_ARGC == 0)
3182         {
3183                 struct watchpoint *watchpoint = target->watchpoints;
3184
3185                 while (watchpoint)
3186                 {
3187                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3188                                         ", len: 0x%8.8" PRIx32
3189                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3190                                         ", mask: 0x%8.8" PRIx32,
3191                                         watchpoint->address,
3192                                         watchpoint->length,
3193                                         (int)watchpoint->rw,
3194                                         watchpoint->value,
3195                                         watchpoint->mask);
3196                         watchpoint = watchpoint->next;
3197                 }
3198                 return ERROR_OK;
3199         }
3200
3201         enum watchpoint_rw type = WPT_ACCESS;
3202         uint32_t addr = 0;
3203         uint32_t length = 0;
3204         uint32_t data_value = 0x0;
3205         uint32_t data_mask = 0xffffffff;
3206
3207         switch (CMD_ARGC)
3208         {
3209         case 5:
3210                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3211                 // fall through
3212         case 4:
3213                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3214                 // fall through
3215         case 3:
3216                 switch (CMD_ARGV[2][0])
3217                 {
3218                 case 'r':
3219                         type = WPT_READ;
3220                         break;
3221                 case 'w':
3222                         type = WPT_WRITE;
3223                         break;
3224                 case 'a':
3225                         type = WPT_ACCESS;
3226                         break;
3227                 default:
3228                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3229                         return ERROR_COMMAND_SYNTAX_ERROR;
3230                 }
3231                 // fall through
3232         case 2:
3233                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3234                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3235                 break;
3236
3237         default:
3238                 command_print(CMD_CTX, "usage: wp [address length "
3239                                 "[(r|w|a) [value [mask]]]]");
3240                 return ERROR_COMMAND_SYNTAX_ERROR;
3241         }
3242
3243         int retval = watchpoint_add(target, addr, length, type,
3244                         data_value, data_mask);
3245         if (ERROR_OK != retval)
3246                 LOG_ERROR("Failure setting watchpoints");
3247
3248         return retval;
3249 }
3250
3251 COMMAND_HANDLER(handle_rwp_command)
3252 {
3253         if (CMD_ARGC != 1)
3254                 return ERROR_COMMAND_SYNTAX_ERROR;
3255
3256         uint32_t addr;
3257         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3258
3259         struct target *target = get_current_target(CMD_CTX);
3260         watchpoint_remove(target, addr);
3261
3262         return ERROR_OK;
3263 }
3264
3265
3266 /**
3267  * Translate a virtual address to a physical address.
3268  *
3269  * The low-level target implementation must have logged a detailed error
3270  * which is forwarded to telnet/GDB session.
3271  */
3272 COMMAND_HANDLER(handle_virt2phys_command)
3273 {
3274         if (CMD_ARGC != 1)
3275                 return ERROR_COMMAND_SYNTAX_ERROR;
3276
3277         uint32_t va;
3278         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3279         uint32_t pa;
3280
3281         struct target *target = get_current_target(CMD_CTX);
3282         int retval = target->type->virt2phys(target, va, &pa);
3283         if (retval == ERROR_OK)
3284                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3285
3286         return retval;
3287 }
3288
3289 static void writeData(FILE *f, const void *data, size_t len)
3290 {
3291         size_t written = fwrite(data, 1, len, f);
3292         if (written != len)
3293                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3294 }
3295
3296 static void writeLong(FILE *f, int l)
3297 {
3298         int i;
3299         for (i = 0; i < 4; i++)
3300         {
3301                 char c = (l >> (i*8))&0xff;
3302                 writeData(f, &c, 1);
3303         }
3304
3305 }
3306
3307 static void writeString(FILE *f, char *s)
3308 {
3309         writeData(f, s, strlen(s));
3310 }
3311
3312 /* Dump a gmon.out histogram file. */
3313 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3314 {
3315         uint32_t i;
3316         FILE *f = fopen(filename, "w");
3317         if (f == NULL)
3318                 return;
3319         writeString(f, "gmon");
3320         writeLong(f, 0x00000001); /* Version */
3321         writeLong(f, 0); /* padding */
3322         writeLong(f, 0); /* padding */
3323         writeLong(f, 0); /* padding */
3324
3325         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3326         writeData(f, &zero, 1);
3327
3328         /* figure out bucket size */
3329         uint32_t min = samples[0];
3330         uint32_t max = samples[0];
3331         for (i = 0; i < sampleNum; i++)
3332         {
3333                 if (min > samples[i])
3334                 {
3335                         min = samples[i];
3336                 }
3337                 if (max < samples[i])
3338                 {
3339                         max = samples[i];
3340                 }
3341         }
3342
3343         int addressSpace = (max - min + 1);
3344         assert(addressSpace >= 2);
3345
3346         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3347         uint32_t length = addressSpace;
3348         if (length > maxBuckets)
3349         {
3350                 length = maxBuckets;
3351         }
3352         int *buckets = malloc(sizeof(int)*length);
3353         if (buckets == NULL)
3354         {
3355                 fclose(f);
3356                 return;
3357         }
3358         memset(buckets, 0, sizeof(int)*length);
3359         for (i = 0; i < sampleNum;i++)
3360         {
3361                 uint32_t address = samples[i];
3362                 long long a = address-min;
3363                 long long b = length-1;
3364                 long long c = addressSpace-1;
3365                 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3366                 buckets[index_t]++;
3367         }
3368
3369         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3370         writeLong(f, min);                      /* low_pc */
3371         writeLong(f, max);                      /* high_pc */
3372         writeLong(f, length);           /* # of samples */
3373         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3374         writeString(f, "seconds");
3375         for (i = 0; i < (15-strlen("seconds")); i++)
3376                 writeData(f, &zero, 1);
3377         writeString(f, "s");
3378
3379         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3380
3381         char *data = malloc(2*length);
3382         if (data != NULL)
3383         {
3384                 for (i = 0; i < length;i++)
3385                 {
3386                         int val;
3387                         val = buckets[i];
3388                         if (val > 65535)
3389                         {
3390                                 val = 65535;
3391                         }
3392                         data[i*2]=val&0xff;
3393                         data[i*2 + 1]=(val >> 8)&0xff;
3394                 }
3395                 free(buckets);
3396                 writeData(f, data, length * 2);
3397                 free(data);
3398         } else
3399         {
3400                 free(buckets);
3401         }
3402
3403         fclose(f);
3404 }
3405
3406 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3407  * which will be used as a random sampling of PC */
3408 COMMAND_HANDLER(handle_profile_command)
3409 {
3410         struct target *target = get_current_target(CMD_CTX);
3411         struct timeval timeout, now;
3412
3413         gettimeofday(&timeout, NULL);
3414         if (CMD_ARGC != 2)
3415         {
3416                 return ERROR_COMMAND_SYNTAX_ERROR;
3417         }
3418         unsigned offset;
3419         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3420
3421         timeval_add_time(&timeout, offset, 0);
3422
3423         /**
3424          * @todo: Some cores let us sample the PC without the
3425          * annoying halt/resume step; for example, ARMv7 PCSR.
3426          * Provide a way to use that more efficient mechanism.
3427          */
3428
3429         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3430
3431         static const int maxSample = 10000;
3432         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3433         if (samples == NULL)
3434                 return ERROR_OK;
3435
3436         int numSamples = 0;
3437         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3438         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3439
3440         int retval = ERROR_OK;
3441         for (;;)
3442         {
3443                 target_poll(target);
3444                 if (target->state == TARGET_HALTED)
3445                 {
3446                         uint32_t t=*((uint32_t *)reg->value);
3447                         samples[numSamples++]=t;
3448                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3449                         target_poll(target);
3450                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3451                 } else if (target->state == TARGET_RUNNING)
3452                 {
3453                         /* We want to quickly sample the PC. */
3454                         if ((retval = target_halt(target)) != ERROR_OK)
3455                         {
3456                                 free(samples);
3457                                 return retval;
3458                         }
3459                 } else
3460                 {
3461                         command_print(CMD_CTX, "Target not halted or running");
3462                         retval = ERROR_OK;
3463                         break;
3464                 }
3465                 if (retval != ERROR_OK)
3466                 {
3467                         break;
3468                 }
3469
3470                 gettimeofday(&now, NULL);
3471                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3472                 {
3473                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3474                         if ((retval = target_poll(target)) != ERROR_OK)
3475                         {
3476                                 free(samples);
3477                                 return retval;
3478                         }
3479                         if (target->state == TARGET_HALTED)
3480                         {
3481                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3482                         }
3483                         if ((retval = target_poll(target)) != ERROR_OK)
3484                         {
3485                                 free(samples);
3486                                 return retval;
3487                         }
3488                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3489                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3490                         break;
3491                 }
3492         }
3493         free(samples);
3494
3495         return retval;
3496 }
3497
3498 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3499 {
3500         char *namebuf;
3501         Jim_Obj *nameObjPtr, *valObjPtr;
3502         int result;
3503
3504         namebuf = alloc_printf("%s(%d)", varname, idx);
3505         if (!namebuf)
3506                 return JIM_ERR;
3507
3508         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3509         valObjPtr = Jim_NewIntObj(interp, val);
3510         if (!nameObjPtr || !valObjPtr)
3511         {
3512                 free(namebuf);
3513                 return JIM_ERR;
3514         }
3515
3516         Jim_IncrRefCount(nameObjPtr);
3517         Jim_IncrRefCount(valObjPtr);
3518         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3519         Jim_DecrRefCount(interp, nameObjPtr);
3520         Jim_DecrRefCount(interp, valObjPtr);
3521         free(namebuf);
3522         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3523         return result;
3524 }
3525
3526 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3527 {
3528         struct command_context *context;
3529         struct target *target;
3530
3531         context = current_command_context(interp);
3532         assert (context != NULL);
3533
3534         target = get_current_target(context);
3535         if (target == NULL)
3536         {
3537                 LOG_ERROR("mem2array: no current target");
3538                 return JIM_ERR;
3539         }
3540
3541         return  target_mem2array(interp, target, argc-1, argv + 1);
3542 }
3543
3544 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3545 {
3546         long l;
3547         uint32_t width;
3548         int len;
3549         uint32_t addr;
3550         uint32_t count;
3551         uint32_t v;
3552         const char *varname;
3553         int  n, e, retval;
3554         uint32_t i;
3555
3556         /* argv[1] = name of array to receive the data
3557          * argv[2] = desired width
3558          * argv[3] = memory address
3559          * argv[4] = count of times to read
3560          */
3561         if (argc != 4) {
3562                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3563                 return JIM_ERR;
3564         }
3565         varname = Jim_GetString(argv[0], &len);
3566         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3567
3568         e = Jim_GetLong(interp, argv[1], &l);
3569         width = l;
3570         if (e != JIM_OK) {
3571                 return e;
3572         }
3573
3574         e = Jim_GetLong(interp, argv[2], &l);
3575         addr = l;
3576         if (e != JIM_OK) {
3577                 return e;
3578         }
3579         e = Jim_GetLong(interp, argv[3], &l);
3580         len = l;
3581         if (e != JIM_OK) {
3582                 return e;
3583         }
3584         switch (width) {
3585                 case 8:
3586                         width = 1;
3587                         break;
3588                 case 16:
3589                         width = 2;
3590                         break;
3591                 case 32:
3592                         width = 4;
3593                         break;
3594                 default:
3595                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3596                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3597                         return JIM_ERR;
3598         }
3599         if (len == 0) {
3600                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3601                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3602                 return JIM_ERR;
3603         }
3604         if ((addr + (len * width)) < addr) {
3605                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3606                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3607                 return JIM_ERR;
3608         }
3609         /* absurd transfer size? */
3610         if (len > 65536) {
3611                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3612                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3613                 return JIM_ERR;
3614         }
3615
3616         if ((width == 1) ||
3617                 ((width == 2) && ((addr & 1) == 0)) ||
3618                 ((width == 4) && ((addr & 3) == 0))) {
3619                 /* all is well */
3620         } else {
3621                 char buf[100];
3622                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3623                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3624                                 addr,
3625                                 width);
3626                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3627                 return JIM_ERR;
3628         }
3629
3630         /* Transfer loop */
3631
3632         /* index counter */
3633         n = 0;
3634
3635         size_t buffersize = 4096;
3636         uint8_t *buffer = malloc(buffersize);
3637         if (buffer == NULL)
3638                 return JIM_ERR;
3639
3640         /* assume ok */
3641         e = JIM_OK;
3642         while (len) {
3643                 /* Slurp... in buffer size chunks */
3644
3645                 count = len; /* in objects.. */
3646                 if (count > (buffersize/width)) {
3647                         count = (buffersize/width);
3648                 }
3649
3650                 retval = target_read_memory(target, addr, width, count, buffer);
3651                 if (retval != ERROR_OK) {
3652                         /* BOO !*/
3653                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3654                                           (unsigned int)addr,
3655                                           (int)width,
3656                                           (int)count);
3657                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3658                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3659                         e = JIM_ERR;
3660                         break;
3661                 } else {
3662                         v = 0; /* shut up gcc */
3663                         for (i = 0 ;i < count ;i++, n++) {
3664                                 switch (width) {
3665                                         case 4:
3666                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3667                                                 break;
3668                                         case 2:
3669                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3670                                                 break;
3671                                         case 1:
3672                                                 v = buffer[i] & 0x0ff;
3673                                                 break;
3674                                 }
3675                                 new_int_array_element(interp, varname, n, v);
3676                         }
3677                         len -= count;
3678                 }
3679         }
3680
3681         free(buffer);
3682
3683         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3684
3685         return e;
3686 }
3687
3688 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3689 {
3690         char *namebuf;
3691         Jim_Obj *nameObjPtr, *valObjPtr;
3692         int result;
3693         long l;
3694
3695         namebuf = alloc_printf("%s(%d)", varname, idx);
3696         if (!namebuf)
3697                 return JIM_ERR;
3698
3699         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3700         if (!nameObjPtr)
3701         {
3702                 free(namebuf);
3703                 return JIM_ERR;
3704         }
3705
3706         Jim_IncrRefCount(nameObjPtr);
3707         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3708         Jim_DecrRefCount(interp, nameObjPtr);
3709         free(namebuf);
3710         if (valObjPtr == NULL)
3711                 return JIM_ERR;
3712
3713         result = Jim_GetLong(interp, valObjPtr, &l);
3714         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3715         *val = l;
3716         return result;
3717 }
3718
3719 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3720 {
3721         struct command_context *context;
3722         struct target *target;
3723
3724         context = current_command_context(interp);
3725         assert (context != NULL);
3726
3727         target = get_current_target(context);
3728         if (target == NULL) {
3729                 LOG_ERROR("array2mem: no current target");
3730                 return JIM_ERR;
3731         }
3732
3733         return target_array2mem(interp,target, argc-1, argv + 1);
3734 }
3735
3736 static int target_array2mem(Jim_Interp *interp, struct target *target,
3737                 int argc, Jim_Obj *const *argv)
3738 {
3739         long l;
3740         uint32_t width;
3741         int len;
3742         uint32_t addr;
3743         uint32_t count;
3744         uint32_t v;
3745         const char *varname;
3746         int  n, e, retval;
3747         uint32_t i;
3748
3749         /* argv[1] = name of array to get the data
3750          * argv[2] = desired width
3751          * argv[3] = memory address
3752          * argv[4] = count to write
3753          */
3754         if (argc != 4) {
3755                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3756                 return JIM_ERR;
3757         }
3758         varname = Jim_GetString(argv[0], &len);
3759         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3760
3761         e = Jim_GetLong(interp, argv[1], &l);
3762         width = l;
3763         if (e != JIM_OK) {
3764                 return e;
3765         }
3766
3767         e = Jim_GetLong(interp, argv[2], &l);
3768         addr = l;
3769         if (e != JIM_OK) {
3770                 return e;
3771         }
3772         e = Jim_GetLong(interp, argv[3], &l);
3773         len = l;
3774         if (e != JIM_OK) {
3775                 return e;
3776         }
3777         switch (width) {
3778                 case 8:
3779                         width = 1;
3780                         break;
3781                 case 16:
3782                         width = 2;
3783                         break;
3784                 case 32:
3785                         width = 4;
3786                         break;
3787                 default:
3788                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3789                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3790                         return JIM_ERR;
3791         }
3792         if (len == 0) {
3793                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3794                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3795                 return JIM_ERR;
3796         }
3797         if ((addr + (len * width)) < addr) {
3798                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3799                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3800                 return JIM_ERR;
3801         }
3802         /* absurd transfer size? */
3803         if (len > 65536) {
3804                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3805                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3806                 return JIM_ERR;
3807         }
3808
3809         if ((width == 1) ||
3810                 ((width == 2) && ((addr & 1) == 0)) ||
3811                 ((width == 4) && ((addr & 3) == 0))) {
3812                 /* all is well */
3813         } else {
3814                 char buf[100];
3815                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3816                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3817                                 (unsigned int)addr,
3818                                 (int)width);
3819                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3820                 return JIM_ERR;
3821         }
3822
3823         /* Transfer loop */
3824
3825         /* index counter */
3826         n = 0;
3827         /* assume ok */
3828         e = JIM_OK;
3829
3830         size_t buffersize = 4096;
3831         uint8_t *buffer = malloc(buffersize);
3832         if (buffer == NULL)
3833                 return JIM_ERR;
3834
3835         while (len) {
3836                 /* Slurp... in buffer size chunks */
3837
3838                 count = len; /* in objects.. */
3839                 if (count > (buffersize/width)) {
3840                         count = (buffersize/width);
3841                 }
3842
3843                 v = 0; /* shut up gcc */
3844                 for (i = 0 ;i < count ;i++, n++) {
3845                         get_int_array_element(interp, varname, n, &v);
3846                         switch (width) {
3847                         case 4:
3848                                 target_buffer_set_u32(target, &buffer[i*width], v);
3849                                 break;
3850                         case 2:
3851                                 target_buffer_set_u16(target, &buffer[i*width], v);
3852                                 break;
3853                         case 1:
3854                                 buffer[i] = v & 0x0ff;
3855                                 break;
3856                         }
3857                 }
3858                 len -= count;
3859
3860                 retval = target_write_memory(target, addr, width, count, buffer);
3861                 if (retval != ERROR_OK) {
3862                         /* BOO !*/
3863                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3864                                           (unsigned int)addr,
3865                                           (int)width,
3866                                           (int)count);
3867                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3868                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3869                         e = JIM_ERR;
3870                         break;
3871                 }
3872         }
3873
3874         free(buffer);
3875
3876         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3877
3878         return e;
3879 }
3880
3881 /* FIX? should we propagate errors here rather than printing them
3882  * and continuing?
3883  */
3884 void target_handle_event(struct target *target, enum target_event e)
3885 {
3886         struct target_event_action *teap;
3887
3888         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3889                 if (teap->event == e) {
3890                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3891                                            target->target_number,
3892                                            target_name(target),
3893                                            target_type_name(target),
3894                                            e,
3895                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3896                                            Jim_GetString(teap->body, NULL));
3897                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3898                         {
3899                                 Jim_MakeErrorMessage(teap->interp);
3900                                 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3901                         }
3902                 }
3903         }
3904 }
3905
3906 /**
3907  * Returns true only if the target has a handler for the specified event.
3908  */
3909 bool target_has_event_action(struct target *target, enum target_event event)
3910 {
3911         struct target_event_action *teap;
3912
3913         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3914                 if (teap->event == event)
3915                         return true;
3916         }
3917         return false;
3918 }
3919
3920 enum target_cfg_param {
3921         TCFG_TYPE,
3922         TCFG_EVENT,
3923         TCFG_WORK_AREA_VIRT,
3924         TCFG_WORK_AREA_PHYS,
3925         TCFG_WORK_AREA_SIZE,
3926         TCFG_WORK_AREA_BACKUP,
3927         TCFG_ENDIAN,
3928         TCFG_VARIANT,
3929         TCFG_COREID,
3930         TCFG_CHAIN_POSITION,
3931         TCFG_DBGBASE,
3932         TCFG_RTOS,
3933 };
3934
3935 static Jim_Nvp nvp_config_opts[] = {
3936         { .name = "-type",             .value = TCFG_TYPE },
3937         { .name = "-event",            .value = TCFG_EVENT },
3938         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3939         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3940         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3941         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3942         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3943         { .name = "-variant",          .value = TCFG_VARIANT },
3944         { .name = "-coreid",           .value = TCFG_COREID },
3945         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3946         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
3947         { .name = "-rtos",             .value = TCFG_RTOS },
3948         { .name = NULL, .value = -1 }
3949 };
3950
3951 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3952 {
3953         Jim_Nvp *n;
3954         Jim_Obj *o;
3955         jim_wide w;
3956         char *cp;
3957         int e;
3958
3959         /* parse config or cget options ... */
3960         while (goi->argc > 0) {
3961                 Jim_SetEmptyResult(goi->interp);
3962                 /* Jim_GetOpt_Debug(goi); */
3963
3964                 if (target->type->target_jim_configure) {
3965                         /* target defines a configure function */
3966                         /* target gets first dibs on parameters */
3967                         e = (*(target->type->target_jim_configure))(target, goi);
3968                         if (e == JIM_OK) {
3969                                 /* more? */
3970                                 continue;
3971                         }
3972                         if (e == JIM_ERR) {
3973                                 /* An error */
3974                                 return e;
3975                         }
3976                         /* otherwise we 'continue' below */
3977                 }
3978                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3979                 if (e != JIM_OK) {
3980                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3981                         return e;
3982                 }
3983                 switch (n->value) {
3984                 case TCFG_TYPE:
3985                         /* not setable */
3986                         if (goi->isconfigure) {
3987                                 Jim_SetResultFormatted(goi->interp,
3988                                                 "not settable: %s", n->name);
3989                                 return JIM_ERR;
3990                         } else {
3991                         no_params:
3992                                 if (goi->argc != 0) {
3993                                         Jim_WrongNumArgs(goi->interp,
3994                                                         goi->argc, goi->argv,
3995                                                         "NO PARAMS");
3996                                         return JIM_ERR;
3997                                 }
3998                         }
3999                         Jim_SetResultString(goi->interp,
4000                                         target_type_name(target), -1);
4001                         /* loop for more */
4002                         break;
4003                 case TCFG_EVENT:
4004                         if (goi->argc == 0) {
4005                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4006                                 return JIM_ERR;
4007                         }
4008
4009                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4010                         if (e != JIM_OK) {
4011                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4012                                 return e;
4013                         }
4014
4015                         if (goi->isconfigure) {
4016                                 if (goi->argc != 1) {
4017                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4018                                         return JIM_ERR;
4019                                 }
4020                         } else {
4021                                 if (goi->argc != 0) {
4022                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4023                                         return JIM_ERR;
4024                                 }
4025                         }
4026
4027                         {
4028                                 struct target_event_action *teap;
4029
4030                                 teap = target->event_action;
4031                                 /* replace existing? */
4032                                 while (teap) {
4033                                         if (teap->event == (enum target_event)n->value) {
4034                                                 break;
4035                                         }
4036                                         teap = teap->next;
4037                                 }
4038
4039                                 if (goi->isconfigure) {
4040                                         bool replace = true;
4041                                         if (teap == NULL) {
4042                                                 /* create new */
4043                                                 teap = calloc(1, sizeof(*teap));
4044                                                 replace = false;
4045                                         }
4046                                         teap->event = n->value;
4047                                         teap->interp = goi->interp;
4048                                         Jim_GetOpt_Obj(goi, &o);
4049                                         if (teap->body) {
4050                                                 Jim_DecrRefCount(teap->interp, teap->body);
4051                                         }
4052                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4053                                         /*
4054                                          * FIXME:
4055                                          *     Tcl/TK - "tk events" have a nice feature.
4056                                          *     See the "BIND" command.
4057                                          *    We should support that here.
4058                                          *     You can specify %X and %Y in the event code.
4059                                          *     The idea is: %T - target name.
4060                                          *     The idea is: %N - target number
4061                                          *     The idea is: %E - event name.
4062                                          */
4063                                         Jim_IncrRefCount(teap->body);
4064
4065                                         if (!replace)
4066                                         {
4067                                                 /* add to head of event list */
4068                                                 teap->next = target->event_action;
4069                                                 target->event_action = teap;
4070                                         }
4071                                         Jim_SetEmptyResult(goi->interp);
4072                                 } else {
4073                                         /* get */
4074                                         if (teap == NULL) {
4075                                                 Jim_SetEmptyResult(goi->interp);
4076                                         } else {
4077                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4078                                         }
4079                                 }
4080                         }
4081                         /* loop for more */
4082                         break;
4083
4084                 case TCFG_WORK_AREA_VIRT:
4085                         if (goi->isconfigure) {
4086                                 target_free_all_working_areas(target);
4087                                 e = Jim_GetOpt_Wide(goi, &w);
4088                                 if (e != JIM_OK) {
4089                                         return e;
4090                                 }
4091                                 target->working_area_virt = w;
4092                                 target->working_area_virt_spec = true;
4093                         } else {
4094                                 if (goi->argc != 0) {
4095                                         goto no_params;
4096                                 }
4097                         }
4098                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4099                         /* loop for more */
4100                         break;
4101
4102                 case TCFG_WORK_AREA_PHYS:
4103                         if (goi->isconfigure) {
4104                                 target_free_all_working_areas(target);
4105                                 e = Jim_GetOpt_Wide(goi, &w);
4106                                 if (e != JIM_OK) {
4107                                         return e;
4108                                 }
4109                                 target->working_area_phys = w;
4110                                 target->working_area_phys_spec = true;
4111                         } else {
4112                                 if (goi->argc != 0) {
4113                                         goto no_params;
4114                                 }
4115                         }
4116                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4117                         /* loop for more */
4118                         break;
4119
4120                 case TCFG_WORK_AREA_SIZE:
4121                         if (goi->isconfigure) {
4122                                 target_free_all_working_areas(target);
4123                                 e = Jim_GetOpt_Wide(goi, &w);
4124                                 if (e != JIM_OK) {
4125                                         return e;
4126                                 }
4127                                 target->working_area_size = w;
4128                         } else {
4129                                 if (goi->argc != 0) {
4130                                         goto no_params;
4131                                 }
4132                         }
4133                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4134                         /* loop for more */
4135                         break;
4136
4137                 case TCFG_WORK_AREA_BACKUP:
4138                         if (goi->isconfigure) {
4139                                 target_free_all_working_areas(target);
4140                                 e = Jim_GetOpt_Wide(goi, &w);
4141                                 if (e != JIM_OK) {
4142                                         return e;
4143                                 }
4144                                 /* make this exactly 1 or 0 */
4145                                 target->backup_working_area = (!!w);
4146                         } else {
4147                                 if (goi->argc != 0) {
4148                                         goto no_params;
4149                                 }
4150                         }
4151                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4152                         /* loop for more e*/
4153                         break;
4154
4155
4156                 case TCFG_ENDIAN:
4157                         if (goi->isconfigure) {
4158                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4159                                 if (e != JIM_OK) {
4160                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4161                                         return e;
4162                                 }
4163                                 target->endianness = n->value;
4164                         } else {
4165                                 if (goi->argc != 0) {
4166                                         goto no_params;
4167                                 }
4168                         }
4169                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4170                         if (n->name == NULL) {
4171                                 target->endianness = TARGET_LITTLE_ENDIAN;
4172                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4173                         }
4174                         Jim_SetResultString(goi->interp, n->name, -1);
4175                         /* loop for more */
4176                         break;
4177
4178                 case TCFG_VARIANT:
4179                         if (goi->isconfigure) {
4180                                 if (goi->argc < 1) {
4181                                         Jim_SetResultFormatted(goi->interp,
4182                                                                                    "%s ?STRING?",
4183                                                                                    n->name);
4184                                         return JIM_ERR;
4185                                 }
4186                                 if (target->variant) {
4187                                         free((void *)(target->variant));
4188                                 }
4189                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4190                                 if (e != JIM_OK)
4191                                         return e;
4192                                 target->variant = strdup(cp);
4193                         } else {
4194                                 if (goi->argc != 0) {
4195                                         goto no_params;
4196                                 }
4197                         }
4198                         Jim_SetResultString(goi->interp, target->variant,-1);
4199                         /* loop for more */
4200                         break;
4201
4202                 case TCFG_COREID:
4203                         if (goi->isconfigure) {
4204                                 e = Jim_GetOpt_Wide(goi, &w);
4205                                 if (e != JIM_OK) {
4206                                         return e;
4207                                 }
4208                                 target->coreid = (int32_t)w;
4209                         } else {
4210                                 if (goi->argc != 0) {
4211                                         goto no_params;
4212                                 }
4213                         }
4214                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4215                         /* loop for more */
4216                         break;
4217
4218                 case TCFG_CHAIN_POSITION:
4219                         if (goi->isconfigure) {
4220                                 Jim_Obj *o_t;
4221                                 struct jtag_tap *tap;
4222                                 target_free_all_working_areas(target);
4223                                 e = Jim_GetOpt_Obj(goi, &o_t);
4224                                 if (e != JIM_OK) {
4225                                         return e;
4226                                 }
4227                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4228                                 if (tap == NULL) {
4229                                         return JIM_ERR;
4230                                 }
4231                                 /* make this exactly 1 or 0 */
4232                                 target->tap = tap;
4233                         } else {
4234                                 if (goi->argc != 0) {
4235                                         goto no_params;
4236                                 }
4237                         }
4238                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4239                         /* loop for more e*/
4240                         break;
4241                 case TCFG_DBGBASE:
4242                         if (goi->isconfigure) {
4243                                 e = Jim_GetOpt_Wide(goi, &w);
4244                                 if (e != JIM_OK) {
4245                                         return e;
4246                                 }
4247                                 target->dbgbase = (uint32_t)w;
4248                                 target->dbgbase_set = true;
4249                         } else {
4250                                 if (goi->argc != 0) {
4251                                         goto no_params;
4252                                 }
4253                         }
4254                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4255                         /* loop for more */
4256                         break;
4257
4258                 case TCFG_RTOS:
4259                         /* RTOS */
4260                         {
4261                                 int result = rtos_create( goi, target );
4262                                 if ( result != JIM_OK )
4263                                 {
4264                                         return result;
4265                                 }
4266                         }
4267                         /* loop for more */
4268                         break;
4269                 }
4270         } /* while (goi->argc) */
4271
4272
4273                 /* done - we return */
4274         return JIM_OK;
4275 }
4276
4277 static int
4278 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4279 {
4280         Jim_GetOptInfo goi;
4281
4282         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4283         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4284         int need_args = 1 + goi.isconfigure;
4285         if (goi.argc < need_args)
4286         {
4287                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4288                         goi.isconfigure
4289                                 ? "missing: -option VALUE ..."
4290                                 : "missing: -option ...");
4291                 return JIM_ERR;
4292         }
4293         struct target *target = Jim_CmdPrivData(goi.interp);
4294         return target_configure(&goi, target);
4295 }
4296
4297 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4298 {
4299         const char *cmd_name = Jim_GetString(argv[0], NULL);
4300
4301         Jim_GetOptInfo goi;
4302         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4303
4304         if (goi.argc < 2 || goi.argc > 4)
4305         {
4306                 Jim_SetResultFormatted(goi.interp,
4307                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4308                 return JIM_ERR;
4309         }
4310
4311         target_write_fn fn;
4312         fn = target_write_memory_fast;
4313
4314         int e;
4315         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4316         {
4317                 /* consume it */
4318                 struct Jim_Obj *obj;
4319                 e = Jim_GetOpt_Obj(&goi, &obj);
4320                 if (e != JIM_OK)
4321                         return e;
4322
4323                 fn = target_write_phys_memory;
4324         }
4325
4326         jim_wide a;
4327         e = Jim_GetOpt_Wide(&goi, &a);
4328         if (e != JIM_OK)
4329                 return e;
4330
4331         jim_wide b;
4332         e = Jim_GetOpt_Wide(&goi, &b);
4333         if (e != JIM_OK)
4334                 return e;
4335
4336         jim_wide c = 1;
4337         if (goi.argc == 1)
4338         {
4339                 e = Jim_GetOpt_Wide(&goi, &c);
4340                 if (e != JIM_OK)
4341                         return e;
4342         }
4343
4344         /* all args must be consumed */
4345         if (goi.argc != 0)
4346         {
4347                 return JIM_ERR;
4348         }
4349
4350         struct target *target = Jim_CmdPrivData(goi.interp);
4351         unsigned data_size;
4352         if (strcasecmp(cmd_name, "mww") == 0) {
4353                 data_size = 4;
4354         }
4355         else if (strcasecmp(cmd_name, "mwh") == 0) {
4356                 data_size = 2;
4357         }
4358         else if (strcasecmp(cmd_name, "mwb") == 0) {
4359                 data_size = 1;
4360         } else {
4361                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4362                 return JIM_ERR;
4363         }
4364
4365         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4366 }
4367
4368 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4369 {
4370         const char *cmd_name = Jim_GetString(argv[0], NULL);
4371
4372         Jim_GetOptInfo goi;
4373         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4374
4375         if ((goi.argc < 1) || (goi.argc > 3))
4376         {
4377                 Jim_SetResultFormatted(goi.interp,
4378                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4379                 return JIM_ERR;
4380         }
4381
4382         int (*fn)(struct target *target,
4383                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4384         fn=target_read_memory;
4385
4386         int e;
4387         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4388         {
4389                 /* consume it */
4390                 struct Jim_Obj *obj;
4391                 e = Jim_GetOpt_Obj(&goi, &obj);
4392                 if (e != JIM_OK)
4393                         return e;
4394
4395                 fn=target_read_phys_memory;
4396         }
4397
4398         jim_wide a;
4399         e = Jim_GetOpt_Wide(&goi, &a);
4400         if (e != JIM_OK) {
4401                 return JIM_ERR;
4402         }
4403         jim_wide c;
4404         if (goi.argc == 1) {
4405                 e = Jim_GetOpt_Wide(&goi, &c);
4406                 if (e != JIM_OK) {
4407                         return JIM_ERR;
4408                 }
4409         } else {
4410                 c = 1;
4411         }
4412
4413         /* all args must be consumed */
4414         if (goi.argc != 0)
4415         {
4416                 return JIM_ERR;
4417         }
4418
4419         jim_wide b = 1; /* shut up gcc */
4420         if (strcasecmp(cmd_name, "mdw") == 0)
4421                 b = 4;
4422         else if (strcasecmp(cmd_name, "mdh") == 0)
4423                 b = 2;
4424         else if (strcasecmp(cmd_name, "mdb") == 0)
4425                 b = 1;
4426         else {
4427                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4428                 return JIM_ERR;
4429         }
4430
4431         /* convert count to "bytes" */
4432         c = c * b;
4433
4434         struct target *target = Jim_CmdPrivData(goi.interp);
4435         uint8_t  target_buf[32];
4436         jim_wide x, y, z;
4437         while (c > 0) {
4438                 y = c;
4439                 if (y > 16) {
4440                         y = 16;
4441                 }
4442                 e = fn(target, a, b, y / b, target_buf);
4443                 if (e != ERROR_OK) {
4444                         char tmp[10];
4445                         snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
4446                         Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
4447                         return JIM_ERR;
4448                 }
4449
4450                 command_print(NULL, "0x%08x ", (int)(a));
4451                 switch (b) {
4452                 case 4:
4453                         for (x = 0; x < 16 && x < y; x += 4)
4454                         {
4455                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4456                                 command_print(NULL, "%08x ", (int)(z));
4457                         }
4458                         for (; (x < 16) ; x += 4) {
4459                                 command_print(NULL, "         ");
4460                         }
4461                         break;
4462                 case 2:
4463                         for (x = 0; x < 16 && x < y; x += 2)
4464                         {
4465                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4466                                 command_print(NULL, "%04x ", (int)(z));
4467                         }
4468                         for (; (x < 16) ; x += 2) {
4469                                 command_print(NULL, "     ");
4470                         }
4471                         break;
4472                 case 1:
4473                 default:
4474                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4475                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4476                                 command_print(NULL, "%02x ", (int)(z));
4477                         }
4478                         for (; (x < 16) ; x += 1) {
4479                                 command_print(NULL, "   ");
4480                         }
4481                         break;
4482                 }
4483                 /* ascii-ify the bytes */
4484                 for (x = 0 ; x < y ; x++) {
4485                         if ((target_buf[x] >= 0x20) &&
4486                                 (target_buf[x] <= 0x7e)) {
4487                                 /* good */
4488                         } else {
4489                                 /* smack it */
4490                                 target_buf[x] = '.';
4491                         }
4492                 }
4493                 /* space pad  */
4494                 while (x < 16) {
4495                         target_buf[x] = ' ';
4496                         x++;
4497                 }
4498                 /* terminate */
4499                 target_buf[16] = 0;
4500                 /* print - with a newline */
4501                 command_print(NULL, "%s\n", target_buf);
4502                 /* NEXT... */
4503                 c -= 16;
4504                 a += 16;
4505         }
4506         return JIM_OK;
4507 }
4508
4509 static int jim_target_mem2array(Jim_Interp *interp,
4510                 int argc, Jim_Obj *const *argv)
4511 {
4512         struct target *target = Jim_CmdPrivData(interp);
4513         return target_mem2array(interp, target, argc - 1, argv + 1);
4514 }
4515
4516 static int jim_target_array2mem(Jim_Interp *interp,
4517                 int argc, Jim_Obj *const *argv)
4518 {
4519         struct target *target = Jim_CmdPrivData(interp);
4520         return target_array2mem(interp, target, argc - 1, argv + 1);
4521 }
4522
4523 static int jim_target_tap_disabled(Jim_Interp *interp)
4524 {
4525         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4526         return JIM_ERR;
4527 }
4528
4529 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4530 {
4531         if (argc != 1)
4532         {
4533                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4534                 return JIM_ERR;
4535         }
4536         struct target *target = Jim_CmdPrivData(interp);
4537         if (!target->tap->enabled)
4538                 return jim_target_tap_disabled(interp);
4539
4540         int e = target->type->examine(target);
4541         if (e != ERROR_OK)
4542         {
4543                 return JIM_ERR;
4544         }
4545         return JIM_OK;
4546 }
4547
4548 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4549 {
4550         if (argc != 1)
4551         {
4552                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4553                 return JIM_ERR;
4554         }
4555         struct target *target = Jim_CmdPrivData(interp);
4556
4557         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4558                 return JIM_ERR;
4559
4560         return JIM_OK;
4561 }
4562
4563 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4564 {
4565         if (argc != 1)
4566         {
4567                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4568                 return JIM_ERR;
4569         }
4570         struct target *target = Jim_CmdPrivData(interp);
4571         if (!target->tap->enabled)
4572                 return jim_target_tap_disabled(interp);
4573
4574         int e;
4575         if (!(target_was_examined(target))) {
4576                 e = ERROR_TARGET_NOT_EXAMINED;
4577         } else {
4578                 e = target->type->poll(target);
4579         }
4580         if (e != ERROR_OK)
4581         {
4582                 return JIM_ERR;
4583         }
4584         return JIM_OK;
4585 }
4586
4587 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4588 {
4589         Jim_GetOptInfo goi;
4590         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4591
4592         if (goi.argc != 2)
4593         {
4594                 Jim_WrongNumArgs(interp, 0, argv,
4595                                 "([tT]|[fF]|assert|deassert) BOOL");
4596                 return JIM_ERR;
4597         }
4598
4599         Jim_Nvp *n;
4600         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4601         if (e != JIM_OK)
4602         {
4603                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4604                 return e;
4605         }
4606         /* the halt or not param */
4607         jim_wide a;
4608         e = Jim_GetOpt_Wide(&goi, &a);
4609         if (e != JIM_OK)
4610                 return e;
4611
4612         struct target *target = Jim_CmdPrivData(goi.interp);
4613         if (!target->tap->enabled)
4614                 return jim_target_tap_disabled(interp);
4615         if (!(target_was_examined(target)))
4616         {
4617                 LOG_ERROR("Target not examined yet");
4618                 return ERROR_TARGET_NOT_EXAMINED;
4619         }
4620         if (!target->type->assert_reset || !target->type->deassert_reset)
4621         {
4622                 Jim_SetResultFormatted(interp,
4623                                 "No target-specific reset for %s",
4624                                 target_name(target));
4625                 return JIM_ERR;
4626         }
4627         /* determine if we should halt or not. */
4628         target->reset_halt = !!a;
4629         /* When this happens - all workareas are invalid. */
4630         target_free_all_working_areas_restore(target, 0);
4631
4632         /* do the assert */
4633         if (n->value == NVP_ASSERT) {
4634                 e = target->type->assert_reset(target);
4635         } else {
4636                 e = target->type->deassert_reset(target);
4637         }
4638         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4639 }
4640
4641 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4642 {
4643         if (argc != 1) {
4644                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4645                 return JIM_ERR;
4646         }
4647         struct target *target = Jim_CmdPrivData(interp);
4648         if (!target->tap->enabled)
4649                 return jim_target_tap_disabled(interp);
4650         int e = target->type->halt(target);
4651         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4652 }
4653
4654 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4655 {
4656         Jim_GetOptInfo goi;
4657         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4658
4659         /* params:  <name>  statename timeoutmsecs */
4660         if (goi.argc != 2)
4661         {
4662                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4663                 Jim_SetResultFormatted(goi.interp,
4664                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4665                 return JIM_ERR;
4666         }
4667
4668         Jim_Nvp *n;
4669         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4670         if (e != JIM_OK) {
4671                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4672                 return e;
4673         }
4674         jim_wide a;
4675         e = Jim_GetOpt_Wide(&goi, &a);
4676         if (e != JIM_OK) {
4677                 return e;
4678         }
4679         struct target *target = Jim_CmdPrivData(interp);
4680         if (!target->tap->enabled)
4681                 return jim_target_tap_disabled(interp);
4682
4683         e = target_wait_state(target, n->value, a);
4684         if (e != ERROR_OK)
4685         {
4686                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4687                 Jim_SetResultFormatted(goi.interp,
4688                                 "target: %s wait %s fails (%#s) %s",
4689                                 target_name(target), n->name,
4690                                 eObj, target_strerror_safe(e));
4691                 Jim_FreeNewObj(interp, eObj);
4692                 return JIM_ERR;
4693         }
4694         return JIM_OK;
4695 }
4696 /* List for human, Events defined for this target.
4697  * scripts/programs should use 'name cget -event NAME'
4698  */
4699 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4700 {
4701         struct command_context *cmd_ctx = current_command_context(interp);
4702         assert (cmd_ctx != NULL);
4703
4704         struct target *target = Jim_CmdPrivData(interp);
4705         struct target_event_action *teap = target->event_action;
4706         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4707                                    target->target_number,
4708                                    target_name(target));
4709         command_print(cmd_ctx, "%-25s | Body", "Event");
4710         command_print(cmd_ctx, "------------------------- | "
4711                         "----------------------------------------");
4712         while (teap)
4713         {
4714                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4715                 command_print(cmd_ctx, "%-25s | %s",
4716                                 opt->name, Jim_GetString(teap->body, NULL));
4717                 teap = teap->next;
4718         }
4719         command_print(cmd_ctx, "***END***");
4720         return JIM_OK;
4721 }
4722 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4723 {
4724         if (argc != 1)
4725         {
4726                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4727                 return JIM_ERR;
4728         }
4729         struct target *target = Jim_CmdPrivData(interp);
4730         Jim_SetResultString(interp, target_state_name(target), -1);
4731         return JIM_OK;
4732 }
4733 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4734 {
4735         Jim_GetOptInfo goi;
4736         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4737         if (goi.argc != 1)
4738         {
4739                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4740                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4741                 return JIM_ERR;
4742         }
4743         Jim_Nvp *n;
4744         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4745         if (e != JIM_OK)
4746         {
4747                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4748                 return e;
4749         }
4750         struct target *target = Jim_CmdPrivData(interp);
4751         target_handle_event(target, n->value);
4752         return JIM_OK;
4753 }
4754
4755 static const struct command_registration target_instance_command_handlers[] = {
4756         {
4757                 .name = "configure",
4758                 .mode = COMMAND_CONFIG,
4759                 .jim_handler = jim_target_configure,
4760                 .help  = "configure a new target for use",
4761                 .usage = "[target_attribute ...]",
4762         },
4763         {
4764                 .name = "cget",
4765                 .mode = COMMAND_ANY,
4766                 .jim_handler = jim_target_configure,
4767                 .help  = "returns the specified target attribute",
4768                 .usage = "target_attribute",
4769         },
4770         {
4771                 .name = "mww",
4772                 .mode = COMMAND_EXEC,
4773                 .jim_handler = jim_target_mw,
4774                 .help = "Write 32-bit word(s) to target memory",
4775                 .usage = "address data [count]",
4776         },
4777         {
4778                 .name = "mwh",
4779                 .mode = COMMAND_EXEC,
4780                 .jim_handler = jim_target_mw,
4781                 .help = "Write 16-bit half-word(s) to target memory",
4782                 .usage = "address data [count]",
4783         },
4784         {
4785                 .name = "mwb",
4786                 .mode = COMMAND_EXEC,
4787                 .jim_handler = jim_target_mw,
4788                 .help = "Write byte(s) to target memory",
4789                 .usage = "address data [count]",
4790         },
4791         {
4792                 .name = "mdw",
4793                 .mode = COMMAND_EXEC,
4794                 .jim_handler = jim_target_md,
4795                 .help = "Display target memory as 32-bit words",
4796                 .usage = "address [count]",
4797         },
4798         {
4799                 .name = "mdh",
4800                 .mode = COMMAND_EXEC,
4801                 .jim_handler = jim_target_md,
4802                 .help = "Display target memory as 16-bit half-words",
4803                 .usage = "address [count]",
4804         },
4805         {
4806                 .name = "mdb",
4807                 .mode = COMMAND_EXEC,
4808                 .jim_handler = jim_target_md,
4809                 .help = "Display target memory as 8-bit bytes",
4810                 .usage = "address [count]",
4811         },
4812         {
4813                 .name = "array2mem",
4814                 .mode = COMMAND_EXEC,
4815                 .jim_handler = jim_target_array2mem,
4816                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4817                         "to target memory",
4818                 .usage = "arrayname bitwidth address count",
4819         },
4820         {
4821                 .name = "mem2array",
4822                 .mode = COMMAND_EXEC,
4823                 .jim_handler = jim_target_mem2array,
4824                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4825                         "from target memory",
4826                 .usage = "arrayname bitwidth address count",
4827         },
4828         {
4829                 .name = "eventlist",
4830                 .mode = COMMAND_EXEC,
4831                 .jim_handler = jim_target_event_list,
4832                 .help = "displays a table of events defined for this target",
4833         },
4834         {
4835                 .name = "curstate",
4836                 .mode = COMMAND_EXEC,
4837                 .jim_handler = jim_target_current_state,
4838                 .help = "displays the current state of this target",
4839         },
4840         {
4841                 .name = "arp_examine",
4842                 .mode = COMMAND_EXEC,
4843                 .jim_handler = jim_target_examine,
4844                 .help = "used internally for reset processing",
4845         },
4846         {
4847                 .name = "arp_halt_gdb",
4848                 .mode = COMMAND_EXEC,
4849                 .jim_handler = jim_target_halt_gdb,
4850                 .help = "used internally for reset processing to halt GDB",
4851         },
4852         {
4853                 .name = "arp_poll",
4854                 .mode = COMMAND_EXEC,
4855                 .jim_handler = jim_target_poll,
4856                 .help = "used internally for reset processing",
4857         },
4858         {
4859                 .name = "arp_reset",
4860                 .mode = COMMAND_EXEC,
4861                 .jim_handler = jim_target_reset,
4862                 .help = "used internally for reset processing",
4863         },
4864         {
4865                 .name = "arp_halt",
4866                 .mode = COMMAND_EXEC,
4867                 .jim_handler = jim_target_halt,
4868                 .help = "used internally for reset processing",
4869         },
4870         {
4871                 .name = "arp_waitstate",
4872                 .mode = COMMAND_EXEC,
4873                 .jim_handler = jim_target_wait_state,
4874                 .help = "used internally for reset processing",
4875         },
4876         {
4877                 .name = "invoke-event",
4878                 .mode = COMMAND_EXEC,
4879                 .jim_handler = jim_target_invoke_event,
4880                 .help = "invoke handler for specified event",
4881                 .usage = "event_name",
4882         },
4883         COMMAND_REGISTRATION_DONE
4884 };
4885
4886 static int target_create(Jim_GetOptInfo *goi)
4887 {
4888         Jim_Obj *new_cmd;
4889         Jim_Cmd *cmd;
4890         const char *cp;
4891         char *cp2;
4892         int e;
4893         int x;
4894         struct target *target;
4895         struct command_context *cmd_ctx;
4896
4897         cmd_ctx = current_command_context(goi->interp);
4898         assert (cmd_ctx != NULL);
4899
4900         if (goi->argc < 3) {
4901                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4902                 return JIM_ERR;
4903         }
4904
4905         /* COMMAND */
4906         Jim_GetOpt_Obj(goi, &new_cmd);
4907         /* does this command exist? */
4908         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4909         if (cmd) {
4910                 cp = Jim_GetString(new_cmd, NULL);
4911                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4912                 return JIM_ERR;
4913         }
4914
4915         /* TYPE */
4916         e = Jim_GetOpt_String(goi, &cp2, NULL);
4917         if (e != JIM_OK)
4918                 return e;
4919         cp = cp2;
4920         /* now does target type exist */
4921         for (x = 0 ; target_types[x] ; x++) {
4922                 if (0 == strcmp(cp, target_types[x]->name)) {
4923                         /* found */
4924                         break;
4925                 }
4926         }
4927         if (target_types[x] == NULL) {
4928                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4929                 for (x = 0 ; target_types[x] ; x++) {
4930                         if (target_types[x + 1]) {
4931                                 Jim_AppendStrings(goi->interp,
4932                                                                    Jim_GetResult(goi->interp),
4933                                                                    target_types[x]->name,
4934                                                                    ", ", NULL);
4935                         } else {
4936                                 Jim_AppendStrings(goi->interp,
4937                                                                    Jim_GetResult(goi->interp),
4938                                                                    " or ",
4939                                                                    target_types[x]->name,NULL);
4940                         }
4941                 }
4942                 return JIM_ERR;
4943         }
4944
4945         /* Create it */
4946         target = calloc(1,sizeof(struct target));
4947         /* set target number */
4948         target->target_number = new_target_number();
4949
4950         /* allocate memory for each unique target type */
4951         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4952
4953         memcpy(target->type, target_types[x], sizeof(struct target_type));
4954
4955         /* will be set by "-endian" */
4956         target->endianness = TARGET_ENDIAN_UNKNOWN;
4957
4958         /* default to first core, override with -coreid */
4959         target->coreid = 0;
4960
4961         target->working_area        = 0x0;
4962         target->working_area_size   = 0x0;
4963         target->working_areas       = NULL;
4964         target->backup_working_area = 0;
4965
4966         target->state               = TARGET_UNKNOWN;
4967         target->debug_reason        = DBG_REASON_UNDEFINED;
4968         target->reg_cache           = NULL;
4969         target->breakpoints         = NULL;
4970         target->watchpoints         = NULL;
4971         target->next                = NULL;
4972         target->arch_info           = NULL;
4973
4974         target->display             = 1;
4975
4976         target->halt_issued                     = false;
4977
4978         /* initialize trace information */
4979         target->trace_info = malloc(sizeof(struct trace));
4980         target->trace_info->num_trace_points         = 0;
4981         target->trace_info->trace_points_size        = 0;
4982         target->trace_info->trace_points             = NULL;
4983         target->trace_info->trace_history_size       = 0;
4984         target->trace_info->trace_history            = NULL;
4985         target->trace_info->trace_history_pos        = 0;
4986         target->trace_info->trace_history_overflowed = 0;
4987
4988         target->dbgmsg          = NULL;
4989         target->dbg_msg_enabled = 0;
4990
4991         target->endianness = TARGET_ENDIAN_UNKNOWN;
4992
4993         target->rtos = NULL;
4994         target->rtos_auto_detect = false;
4995
4996         /* Do the rest as "configure" options */
4997         goi->isconfigure = 1;
4998         e = target_configure(goi, target);
4999
5000         if (target->tap == NULL)
5001         {
5002                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5003                 e = JIM_ERR;
5004         }
5005
5006         if (e != JIM_OK) {
5007                 free(target->type);
5008                 free(target);
5009                 return e;
5010         }
5011
5012         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5013                 /* default endian to little if not specified */
5014                 target->endianness = TARGET_LITTLE_ENDIAN;
5015         }
5016
5017         /* incase variant is not set */
5018         if (!target->variant)
5019                 target->variant = strdup("");
5020
5021         cp = Jim_GetString(new_cmd, NULL);
5022         target->cmd_name = strdup(cp);
5023
5024         /* create the target specific commands */
5025         if (target->type->commands) {
5026                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5027                 if (ERROR_OK != e)
5028                         LOG_ERROR("unable to register '%s' commands", cp);
5029         }
5030         if (target->type->target_create) {
5031                 (*(target->type->target_create))(target, goi->interp);
5032         }
5033
5034         /* append to end of list */
5035         {
5036                 struct target **tpp;
5037                 tpp = &(all_targets);
5038                 while (*tpp) {
5039                         tpp = &((*tpp)->next);
5040                 }
5041                 *tpp = target;
5042         }
5043
5044         /* now - create the new target name command */
5045         const const struct command_registration target_subcommands[] = {
5046                 {
5047                         .chain = target_instance_command_handlers,
5048                 },
5049                 {
5050                         .chain = target->type->commands,
5051                 },
5052                 COMMAND_REGISTRATION_DONE
5053         };
5054         const const struct command_registration target_commands[] = {
5055                 {
5056                         .name = cp,
5057                         .mode = COMMAND_ANY,
5058                         .help = "target command group",
5059                         .chain = target_subcommands,
5060                 },
5061                 COMMAND_REGISTRATION_DONE
5062         };
5063         e = register_commands(cmd_ctx, NULL, target_commands);
5064         if (ERROR_OK != e)
5065                 return JIM_ERR;
5066
5067         struct command *c = command_find_in_context(cmd_ctx, cp);
5068         assert(c);
5069         command_set_handler_data(c, target);
5070
5071         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5072 }
5073
5074 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5075 {
5076         if (argc != 1)
5077         {
5078                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5079                 return JIM_ERR;
5080         }
5081         struct command_context *cmd_ctx = current_command_context(interp);
5082         assert (cmd_ctx != NULL);
5083
5084         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
5085         return JIM_OK;
5086 }
5087
5088 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5089 {
5090         if (argc != 1)
5091         {
5092                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5093                 return JIM_ERR;
5094         }
5095         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5096         for (unsigned x = 0; NULL != target_types[x]; x++)
5097         {
5098                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5099                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5100         }
5101         return JIM_OK;
5102 }
5103
5104 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5105 {
5106         if (argc != 1)
5107         {
5108                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5109                 return JIM_ERR;
5110         }
5111         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5112         struct target *target = all_targets;
5113         while (target)
5114         {
5115                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5116                         Jim_NewStringObj(interp, target_name(target), -1));
5117                 target = target->next;
5118         }
5119         return JIM_OK;
5120 }
5121
5122 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5123 {
5124         int i;
5125         const char *targetname;
5126         int retval,len;
5127         struct target *target;
5128         struct target_list *head, *curr;
5129     curr = (struct target_list*) NULL;
5130         head = (struct target_list*) NULL;
5131         
5132         retval = 0;
5133         LOG_DEBUG("%d",argc);
5134         /* argv[1] = target to associate in smp
5135          * argv[2] = target to assoicate in smp
5136          * argv[3] ...
5137          */
5138
5139         for(i=1;i<argc;i++)
5140         {
5141
5142                 targetname = Jim_GetString(argv[i], &len);
5143                 target = get_target(targetname);
5144                 LOG_DEBUG("%s ",targetname);
5145                 if (target)
5146                 {
5147                         struct target_list *new;
5148                         new=malloc(sizeof(struct target_list));
5149                         new->target = target;
5150                         new->next = (struct target_list*)NULL;
5151                         if (head == (struct target_list*)NULL)
5152                         {
5153                                 head = new;
5154                                 curr = head;
5155                         }
5156                         else
5157                         {
5158                                 curr->next = new;
5159                                 curr = new;
5160                         }
5161                 }
5162         }
5163     /*  now parse the list of cpu and put the target in smp mode*/
5164         curr=head;
5165
5166     while(curr!=(struct target_list *)NULL)
5167         {
5168     target=curr->target;
5169         target->smp = 1;
5170         target->head = head;
5171         curr=curr->next;
5172         }
5173         return retval;
5174 }
5175
5176
5177 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5178 {
5179         Jim_GetOptInfo goi;
5180         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5181         if (goi.argc < 3)
5182         {
5183                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5184                         "<name> <target_type> [<target_options> ...]");
5185                 return JIM_ERR;
5186         }
5187         return target_create(&goi);
5188 }
5189
5190 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5191 {
5192         Jim_GetOptInfo goi;
5193         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5194
5195         /* It's OK to remove this mechanism sometime after August 2010 or so */
5196         LOG_WARNING("don't use numbers as target identifiers; use names");
5197         if (goi.argc != 1)
5198         {
5199                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5200                 return JIM_ERR;
5201         }
5202         jim_wide w;
5203         int e = Jim_GetOpt_Wide(&goi, &w);
5204         if (e != JIM_OK)
5205                 return JIM_ERR;
5206
5207         struct target *target;
5208         for (target = all_targets; NULL != target; target = target->next)
5209         {
5210                 if (target->target_number != w)
5211                         continue;
5212
5213                 Jim_SetResultString(goi.interp, target_name(target), -1);
5214                 return JIM_OK;
5215         }
5216         {
5217                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5218                 Jim_SetResultFormatted(goi.interp,
5219                         "Target: number %#s does not exist", wObj);
5220                 Jim_FreeNewObj(interp, wObj);
5221         }
5222         return JIM_ERR;
5223 }
5224
5225 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5226 {
5227         if (argc != 1)
5228         {
5229                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5230                 return JIM_ERR;
5231         }
5232         unsigned count = 0;
5233         struct target *target = all_targets;
5234         while (NULL != target)
5235         {
5236                 target = target->next;
5237                 count++;
5238         }
5239         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5240         return JIM_OK;
5241 }
5242
5243 static const struct command_registration target_subcommand_handlers[] = {
5244         {
5245                 .name = "init",
5246                 .mode = COMMAND_CONFIG,
5247                 .handler = handle_target_init_command,
5248                 .help = "initialize targets",
5249         },
5250         {
5251                 .name = "create",
5252                 /* REVISIT this should be COMMAND_CONFIG ... */
5253                 .mode = COMMAND_ANY,
5254                 .jim_handler = jim_target_create,
5255                 .usage = "name type '-chain-position' name [options ...]",
5256                 .help = "Creates and selects a new target",
5257         },
5258         {
5259                 .name = "current",
5260                 .mode = COMMAND_ANY,
5261                 .jim_handler = jim_target_current,
5262                 .help = "Returns the currently selected target",
5263         },
5264         {
5265                 .name = "types",
5266                 .mode = COMMAND_ANY,
5267                 .jim_handler = jim_target_types,
5268                 .help = "Returns the available target types as "
5269                                 "a list of strings",
5270         },
5271         {
5272                 .name = "names",
5273                 .mode = COMMAND_ANY,
5274                 .jim_handler = jim_target_names,
5275                 .help = "Returns the names of all targets as a list of strings",
5276         },
5277         {
5278                 .name = "number",
5279                 .mode = COMMAND_ANY,
5280                 .jim_handler = jim_target_number,
5281                 .usage = "number",
5282                 .help = "Returns the name of the numbered target "
5283                         "(DEPRECATED)",
5284         },
5285         {
5286                 .name = "count",
5287                 .mode = COMMAND_ANY,
5288                 .jim_handler = jim_target_count,
5289                 .help = "Returns the number of targets as an integer "
5290                         "(DEPRECATED)",
5291         },
5292         {
5293                 .name = "smp",
5294                 .mode = COMMAND_ANY,
5295                 .jim_handler = jim_target_smp,
5296                 .usage = "targetname1 targetname2 ...",
5297                 .help = "gather several target in a smp list"
5298         },
5299
5300         COMMAND_REGISTRATION_DONE
5301 };
5302
5303 struct FastLoad
5304 {
5305         uint32_t address;
5306         uint8_t *data;
5307         int length;
5308
5309 };
5310
5311 static int fastload_num;
5312 static struct FastLoad *fastload;
5313
5314 static void free_fastload(void)
5315 {
5316         if (fastload != NULL)
5317         {
5318                 int i;
5319                 for (i = 0; i < fastload_num; i++)
5320                 {
5321                         if (fastload[i].data)
5322                                 free(fastload[i].data);
5323                 }
5324                 free(fastload);
5325                 fastload = NULL;
5326         }
5327 }
5328
5329
5330
5331
5332 COMMAND_HANDLER(handle_fast_load_image_command)
5333 {
5334         uint8_t *buffer;
5335         size_t buf_cnt;
5336         uint32_t image_size;
5337         uint32_t min_address = 0;
5338         uint32_t max_address = 0xffffffff;
5339         int i;
5340
5341         struct image image;
5342
5343         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5344                         &image, &min_address, &max_address);
5345         if (ERROR_OK != retval)
5346                 return retval;
5347
5348         struct duration bench;
5349         duration_start(&bench);
5350
5351         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5352         if (retval != ERROR_OK)
5353         {
5354                 return retval;
5355         }
5356
5357         image_size = 0x0;
5358         retval = ERROR_OK;
5359         fastload_num = image.num_sections;
5360         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5361         if (fastload == NULL)
5362         {
5363                 command_print(CMD_CTX, "out of memory");
5364                 image_close(&image);
5365                 return ERROR_FAIL;
5366         }
5367         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5368         for (i = 0; i < image.num_sections; i++)
5369         {
5370                 buffer = malloc(image.sections[i].size);
5371                 if (buffer == NULL)
5372                 {
5373                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5374                                                   (int)(image.sections[i].size));
5375                         retval = ERROR_FAIL;
5376                         break;
5377                 }
5378
5379                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
5380                 {
5381                         free(buffer);
5382                         break;
5383                 }
5384
5385                 uint32_t offset = 0;
5386                 uint32_t length = buf_cnt;
5387
5388
5389                 /* DANGER!!! beware of unsigned comparision here!!! */
5390
5391                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
5392                                 (image.sections[i].base_address < max_address))
5393                 {
5394                         if (image.sections[i].base_address < min_address)
5395                         {
5396                                 /* clip addresses below */
5397                                 offset += min_address-image.sections[i].base_address;
5398                                 length -= offset;
5399                         }
5400
5401                         if (image.sections[i].base_address + buf_cnt > max_address)
5402                         {
5403                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5404                         }
5405
5406                         fastload[i].address = image.sections[i].base_address + offset;
5407                         fastload[i].data = malloc(length);
5408                         if (fastload[i].data == NULL)
5409                         {
5410                                 free(buffer);
5411                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5412                                                           length);
5413                                 retval = ERROR_FAIL;
5414                                 break;
5415                         }
5416                         memcpy(fastload[i].data, buffer + offset, length);
5417                         fastload[i].length = length;
5418
5419                         image_size += length;
5420                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5421                                                   (unsigned int)length,
5422                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5423                 }
5424
5425                 free(buffer);
5426         }
5427
5428         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
5429         {
5430                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5431                                 "in %fs (%0.3f KiB/s)", image_size,
5432                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5433
5434                 command_print(CMD_CTX,
5435                                 "WARNING: image has not been loaded to target!"
5436                                 "You can issue a 'fast_load' to finish loading.");
5437         }
5438
5439         image_close(&image);
5440
5441         if (retval != ERROR_OK)
5442         {
5443                 free_fastload();
5444         }
5445
5446         return retval;
5447 }
5448
5449 COMMAND_HANDLER(handle_fast_load_command)
5450 {
5451         if (CMD_ARGC > 0)
5452                 return ERROR_COMMAND_SYNTAX_ERROR;
5453         if (fastload == NULL)
5454         {
5455                 LOG_ERROR("No image in memory");
5456                 return ERROR_FAIL;
5457         }
5458         int i;
5459         int ms = timeval_ms();
5460         int size = 0;
5461         int retval = ERROR_OK;
5462         for (i = 0; i < fastload_num;i++)
5463         {
5464                 struct target *target = get_current_target(CMD_CTX);
5465                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5466                                           (unsigned int)(fastload[i].address),
5467                                           (unsigned int)(fastload[i].length));
5468                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5469                 if (retval != ERROR_OK)
5470                 {
5471                         break;
5472                 }
5473                 size += fastload[i].length;
5474         }
5475         if (retval == ERROR_OK)
5476         {
5477                 int after = timeval_ms();
5478                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5479         }
5480         return retval;
5481 }
5482
5483 static const struct command_registration target_command_handlers[] = {
5484         {
5485                 .name = "targets",
5486                 .handler = handle_targets_command,
5487                 .mode = COMMAND_ANY,
5488                 .help = "change current default target (one parameter) "
5489                         "or prints table of all targets (no parameters)",
5490                 .usage = "[target]",
5491         },
5492         {
5493                 .name = "target",
5494                 .mode = COMMAND_CONFIG,
5495                 .help = "configure target",
5496
5497                 .chain = target_subcommand_handlers,
5498         },
5499         COMMAND_REGISTRATION_DONE
5500 };
5501
5502 int target_register_commands(struct command_context *cmd_ctx)
5503 {
5504         return register_commands(cmd_ctx, NULL, target_command_handlers);
5505 }
5506
5507 static bool target_reset_nag = true;
5508
5509 bool get_target_reset_nag(void)
5510 {
5511         return target_reset_nag;
5512 }
5513
5514 COMMAND_HANDLER(handle_target_reset_nag)
5515 {
5516         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5517                         &target_reset_nag, "Nag after each reset about options to improve "
5518                         "performance");
5519 }
5520
5521 static const struct command_registration target_exec_command_handlers[] = {
5522         {
5523                 .name = "fast_load_image",
5524                 .handler = handle_fast_load_image_command,
5525                 .mode = COMMAND_ANY,
5526                 .help = "Load image into server memory for later use by "
5527                         "fast_load; primarily for profiling",
5528                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5529                         "[min_address [max_length]]",
5530         },
5531         {
5532                 .name = "fast_load",
5533                 .handler = handle_fast_load_command,
5534                 .mode = COMMAND_EXEC,
5535                 .help = "loads active fast load image to current target "
5536                         "- mainly for profiling purposes",
5537         },
5538         {
5539                 .name = "profile",
5540                 .handler = handle_profile_command,
5541                 .mode = COMMAND_EXEC,
5542                 .help = "profiling samples the CPU PC",
5543         },
5544         /** @todo don't register virt2phys() unless target supports it */
5545         {
5546                 .name = "virt2phys",
5547                 .handler = handle_virt2phys_command,
5548                 .mode = COMMAND_ANY,
5549                 .help = "translate a virtual address into a physical address",
5550                 .usage = "virtual_address",
5551         },
5552         {
5553                 .name = "reg",
5554                 .handler = handle_reg_command,
5555                 .mode = COMMAND_EXEC,
5556                 .help = "display or set a register; with no arguments, "
5557                         "displays all registers and their values",
5558                 .usage = "[(register_name|register_number) [value]]",
5559         },
5560         {
5561                 .name = "poll",
5562                 .handler = handle_poll_command,
5563                 .mode = COMMAND_EXEC,
5564                 .help = "poll target state; or reconfigure background polling",
5565                 .usage = "['on'|'off']",
5566         },
5567         {
5568                 .name = "wait_halt",
5569                 .handler = handle_wait_halt_command,
5570                 .mode = COMMAND_EXEC,
5571                 .help = "wait up to the specified number of milliseconds "
5572                         "(default 5) for a previously requested halt",
5573                 .usage = "[milliseconds]",
5574         },
5575         {
5576                 .name = "halt",
5577                 .handler = handle_halt_command,
5578                 .mode = COMMAND_EXEC,
5579                 .help = "request target to halt, then wait up to the specified"
5580                         "number of milliseconds (default 5) for it to complete",
5581                 .usage = "[milliseconds]",
5582         },
5583         {
5584                 .name = "resume",
5585                 .handler = handle_resume_command,
5586                 .mode = COMMAND_EXEC,
5587                 .help = "resume target execution from current PC or address",
5588                 .usage = "[address]",
5589         },
5590         {
5591                 .name = "reset",
5592                 .handler = handle_reset_command,
5593                 .mode = COMMAND_EXEC,
5594                 .usage = "[run|halt|init]",
5595                 .help = "Reset all targets into the specified mode."
5596                         "Default reset mode is run, if not given.",
5597         },
5598         {
5599                 .name = "soft_reset_halt",
5600                 .handler = handle_soft_reset_halt_command,
5601                 .mode = COMMAND_EXEC,
5602                 .help = "halt the target and do a soft reset",
5603         },
5604         {
5605                 .name = "step",
5606                 .handler = handle_step_command,
5607                 .mode = COMMAND_EXEC,
5608                 .help = "step one instruction from current PC or address",
5609                 .usage = "[address]",
5610         },
5611         {
5612                 .name = "mdw",
5613                 .handler = handle_md_command,
5614                 .mode = COMMAND_EXEC,
5615                 .help = "display memory words",
5616                 .usage = "['phys'] address [count]",
5617         },
5618         {
5619                 .name = "mdh",
5620                 .handler = handle_md_command,
5621                 .mode = COMMAND_EXEC,
5622                 .help = "display memory half-words",
5623                 .usage = "['phys'] address [count]",
5624         },
5625         {
5626                 .name = "mdb",
5627                 .handler = handle_md_command,
5628                 .mode = COMMAND_EXEC,
5629                 .help = "display memory bytes",
5630                 .usage = "['phys'] address [count]",
5631         },
5632         {
5633                 .name = "mww",
5634                 .handler = handle_mw_command,
5635                 .mode = COMMAND_EXEC,
5636                 .help = "write memory word",
5637                 .usage = "['phys'] address value [count]",
5638         },
5639         {
5640                 .name = "mwh",
5641                 .handler = handle_mw_command,
5642                 .mode = COMMAND_EXEC,
5643                 .help = "write memory half-word",
5644                 .usage = "['phys'] address value [count]",
5645         },
5646         {
5647                 .name = "mwb",
5648                 .handler = handle_mw_command,
5649                 .mode = COMMAND_EXEC,
5650                 .help = "write memory byte",
5651                 .usage = "['phys'] address value [count]",
5652         },
5653         {
5654                 .name = "bp",
5655                 .handler = handle_bp_command,
5656                 .mode = COMMAND_EXEC,
5657                 .help = "list or set hardware or software breakpoint",
5658                 .usage = "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']",
5659         },
5660         {
5661                 .name = "rbp",
5662                 .handler = handle_rbp_command,
5663                 .mode = COMMAND_EXEC,
5664                 .help = "remove breakpoint",
5665                 .usage = "address",
5666         },
5667         {
5668                 .name = "wp",
5669                 .handler = handle_wp_command,
5670                 .mode = COMMAND_EXEC,
5671                 .help = "list (no params) or create watchpoints",
5672                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5673         },
5674         {
5675                 .name = "rwp",
5676                 .handler = handle_rwp_command,
5677                 .mode = COMMAND_EXEC,
5678                 .help = "remove watchpoint",
5679                 .usage = "address",
5680         },
5681         {
5682                 .name = "load_image",
5683                 .handler = handle_load_image_command,
5684                 .mode = COMMAND_EXEC,
5685                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5686                         "[min_address] [max_length]",
5687         },
5688         {
5689                 .name = "dump_image",
5690                 .handler = handle_dump_image_command,
5691                 .mode = COMMAND_EXEC,
5692                 .usage = "filename address size",
5693         },
5694         {
5695                 .name = "verify_image",
5696                 .handler = handle_verify_image_command,
5697                 .mode = COMMAND_EXEC,
5698                 .usage = "filename [offset [type]]",
5699         },
5700         {
5701                 .name = "test_image",
5702                 .handler = handle_test_image_command,
5703                 .mode = COMMAND_EXEC,
5704                 .usage = "filename [offset [type]]",
5705         },
5706         {
5707                 .name = "mem2array",
5708                 .mode = COMMAND_EXEC,
5709                 .jim_handler = jim_mem2array,
5710                 .help = "read 8/16/32 bit memory and return as a TCL array "
5711                         "for script processing",
5712                 .usage = "arrayname bitwidth address count",
5713         },
5714         {
5715                 .name = "array2mem",
5716                 .mode = COMMAND_EXEC,
5717                 .jim_handler = jim_array2mem,
5718                 .help = "convert a TCL array to memory locations "
5719                         "and write the 8/16/32 bit values",
5720                 .usage = "arrayname bitwidth address count",
5721         },
5722         {
5723                 .name = "reset_nag",
5724                 .handler = handle_target_reset_nag,
5725                 .mode = COMMAND_ANY,
5726                 .help = "Nag after each reset about options that could have been "
5727                                 "enabled to improve performance. ",
5728                 .usage = "['enable'|'disable']",
5729         },
5730         COMMAND_REGISTRATION_DONE
5731 };
5732 static int target_register_user_commands(struct command_context *cmd_ctx)
5733 {
5734         int retval = ERROR_OK;
5735         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5736                 return retval;
5737
5738         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5739                 return retval;
5740
5741
5742         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5743 }