Merge branch 'master' of ssh://git.gag.com/scm/git/fw/altos
[fw/altos] / altoslib / AltosConvert.java
1 /*
2  * Copyright © 2010 Keith Packard <keithp@keithp.com>
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License along
15  * with this program; if not, write to the Free Software Foundation, Inc.,
16  * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
17  */
18
19 /*
20  * Sensor data conversion functions
21  */
22 package org.altusmetrum.altoslib_12;
23
24 import java.util.*;
25
26 public class AltosConvert {
27
28         public static final double gravity = 9.80665;
29
30         /*
31          * Pressure Sensor Model, version 1.1
32          *
33          * written by Holly Grimes
34          *
35          * Uses the International Standard Atmosphere as described in
36          *   "A Quick Derivation relating altitude to air pressure" (version 1.03)
37          *    from the Portland State Aerospace Society, except that the atmosphere
38          *    is divided into layers with each layer having a different lapse rate.
39          *
40          * Lapse rate data for each layer was obtained from Wikipedia on Sept. 1, 2007
41          *    at site <http://en.wikipedia.org/wiki/International_Standard_Atmosphere
42          *
43          * Height measurements use the local tangent plane.  The postive z-direction is up.
44          *
45          * All measurements are given in SI units (Kelvin, Pascal, meter, meters/second^2).
46          *   The lapse rate is given in Kelvin/meter, the gas constant for air is given
47          *   in Joules/(kilogram-Kelvin).
48          */
49
50         private static final double GRAVITATIONAL_ACCELERATION = -gravity;
51         private static final double AIR_GAS_CONSTANT            = 287.053;
52         private static final double NUMBER_OF_LAYERS            = 7;
53         private static final double MAXIMUM_ALTITUDE            = 84852.0;
54         private static final double MINIMUM_PRESSURE            = 0.3734;
55         private static final double LAYER0_BASE_TEMPERATURE     = 288.15;
56         private static final double LAYER0_BASE_PRESSURE        = 101325;
57
58         /* lapse rate and base altitude for each layer in the atmosphere */
59         private static final double[] lapse_rate = {
60                 -0.0065, 0.0, 0.001, 0.0028, 0.0, -0.0028, -0.002
61         };
62
63         private static final int[] base_altitude = {
64                 0, 11000, 20000, 32000, 47000, 51000, 71000
65         };
66
67         /* outputs atmospheric pressure associated with the given altitude.
68          * altitudes are measured with respect to the mean sea level
69          */
70         public static double
71         altitude_to_pressure(double altitude)
72         {
73                 double base_temperature = LAYER0_BASE_TEMPERATURE;
74                 double base_pressure = LAYER0_BASE_PRESSURE;
75
76                 double pressure;
77                 double base; /* base for function to determine pressure */
78                 double exponent; /* exponent for function to determine pressure */
79                 int layer_number; /* identifies layer in the atmosphere */
80                 double delta_z; /* difference between two altitudes */
81
82                 if (altitude > MAXIMUM_ALTITUDE) /* FIX ME: use sensor data to improve model */
83                         return 0;
84
85                 /* calculate the base temperature and pressure for the atmospheric layer
86                    associated with the inputted altitude */
87                 for(layer_number = 0; layer_number < NUMBER_OF_LAYERS - 1 && altitude > base_altitude[layer_number + 1]; layer_number++) {
88                         delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number];
89                         if (lapse_rate[layer_number] == 0.0) {
90                                 exponent = GRAVITATIONAL_ACCELERATION * delta_z
91                                         / AIR_GAS_CONSTANT / base_temperature;
92                                 base_pressure *= Math.exp(exponent);
93                         }
94                         else {
95                                 base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
96                                 exponent = GRAVITATIONAL_ACCELERATION /
97                                         (AIR_GAS_CONSTANT * lapse_rate[layer_number]);
98                                 base_pressure *= Math.pow(base, exponent);
99                         }
100                         base_temperature += delta_z * lapse_rate[layer_number];
101                 }
102
103                 /* calculate the pressure at the inputted altitude */
104                 delta_z = altitude - base_altitude[layer_number];
105                 if (lapse_rate[layer_number] == 0.0) {
106                         exponent = GRAVITATIONAL_ACCELERATION * delta_z
107                                 / AIR_GAS_CONSTANT / base_temperature;
108                         pressure = base_pressure * Math.exp(exponent);
109                 }
110                 else {
111                         base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
112                         exponent = GRAVITATIONAL_ACCELERATION /
113                                 (AIR_GAS_CONSTANT * lapse_rate[layer_number]);
114                         pressure = base_pressure * Math.pow(base, exponent);
115                 }
116
117                 return pressure;
118         }
119
120
121 /* outputs the altitude associated with the given pressure. the altitude
122    returned is measured with respect to the mean sea level */
123         public static double
124         pressure_to_altitude(double pressure)
125         {
126
127                 double next_base_temperature = LAYER0_BASE_TEMPERATURE;
128                 double next_base_pressure = LAYER0_BASE_PRESSURE;
129
130                 double altitude;
131                 double base_pressure;
132                 double base_temperature;
133                 double base; /* base for function to determine base pressure of next layer */
134                 double exponent; /* exponent for function to determine base pressure
135                                     of next layer */
136                 double coefficient;
137                 int layer_number; /* identifies layer in the atmosphere */
138                 int delta_z; /* difference between two altitudes */
139
140                 if (pressure < 0)  /* illegal pressure */
141                         return -1;
142                 if (pressure < MINIMUM_PRESSURE) /* FIX ME: use sensor data to improve model */
143                         return MAXIMUM_ALTITUDE;
144
145                 /* calculate the base temperature and pressure for the atmospheric layer
146                    associated with the inputted pressure. */
147                 layer_number = -1;
148                 do {
149                         layer_number++;
150                         base_pressure = next_base_pressure;
151                         base_temperature = next_base_temperature;
152                         delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number];
153                         if (lapse_rate[layer_number] == 0.0) {
154                                 exponent = GRAVITATIONAL_ACCELERATION * delta_z
155                                         / AIR_GAS_CONSTANT / base_temperature;
156                                 next_base_pressure *= Math.exp(exponent);
157                         }
158                         else {
159                                 base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
160                                 exponent = GRAVITATIONAL_ACCELERATION /
161                                         (AIR_GAS_CONSTANT * lapse_rate[layer_number]);
162                                 next_base_pressure *= Math.pow(base, exponent);
163                         }
164                         next_base_temperature += delta_z * lapse_rate[layer_number];
165                 }
166                 while(layer_number < NUMBER_OF_LAYERS - 1 && pressure < next_base_pressure);
167
168                 /* calculate the altitude associated with the inputted pressure */
169                 if (lapse_rate[layer_number] == 0.0) {
170                         coefficient = (AIR_GAS_CONSTANT / GRAVITATIONAL_ACCELERATION)
171                                 * base_temperature;
172                         altitude = base_altitude[layer_number]
173                                 + coefficient * Math.log(pressure / base_pressure);
174                 }
175                 else {
176                         base = pressure / base_pressure;
177                         exponent = AIR_GAS_CONSTANT * lapse_rate[layer_number]
178                                 / GRAVITATIONAL_ACCELERATION;
179                         coefficient = base_temperature / lapse_rate[layer_number];
180                         altitude = base_altitude[layer_number]
181                                 + coefficient * (Math.pow(base, exponent) - 1);
182                 }
183
184                 return altitude;
185         }
186
187         public static double degrees_to_radians(double degrees) {
188                 if (degrees == AltosLib.MISSING)
189                         return AltosLib.MISSING;
190                 return degrees * (Math.PI / 180.0);
191         }
192
193         public static double radians_to_degrees(double radians) {
194                 if (radians == AltosLib.MISSING)
195                         return AltosLib.MISSING;
196                 return radians * (180.0 / Math.PI);
197         }
198
199         public static double
200         cc_battery_to_voltage(double battery)
201         {
202                 return battery / 32767.0 * 5.0;
203         }
204
205         public static double
206         cc_igniter_to_voltage(double ignite)
207         {
208                 return ignite / 32767 * 15.0;
209         }
210
211         public static double
212         barometer_to_pressure(double count)
213         {
214                 return ((count / 16.0) / 2047.0 + 0.095) / 0.009 * 1000.0;
215         }
216
217         static double
218         thermometer_to_temperature(double thermo)
219         {
220                 return (thermo - 19791.268) / 32728.0 * 1.25 / 0.00247;
221         }
222
223         static double mega_adc(int raw) {
224                 return raw / 4095.0;
225         }
226
227         static public double mega_battery_voltage(int v_batt) {
228                 if (v_batt != AltosLib.MISSING)
229                         return 3.3 * mega_adc(v_batt) * (5.6 + 10.0) / 10.0;
230                 return AltosLib.MISSING;
231         }
232
233         static double mega_pyro_voltage(int raw) {
234                 if (raw != AltosLib.MISSING)
235                         return 3.3 * mega_adc(raw) * (100.0 + 27.0) / 27.0;
236                 return AltosLib.MISSING;
237         }
238
239         static double tele_mini_3_adc(int raw) {
240                 return raw / 4095.0;
241         }
242
243         static public double tele_mini_3_battery_voltage(int v_batt) {
244                 if (v_batt != AltosLib.MISSING)
245                         return 3.3 * tele_mini_3_adc(v_batt) * (5.6 + 10.0) / 10.0;
246                 return AltosLib.MISSING;
247         }
248
249         static double tele_mini_3_pyro_voltage(int raw) {
250                 if (raw != AltosLib.MISSING)
251                         return 3.3 * tele_mini_3_adc(raw) * (100.0 + 27.0) / 27.0;
252                 return AltosLib.MISSING;
253         }
254
255         static double tele_mini_2_voltage(int sensor) {
256                 double  supply = 3.3;
257
258                 return sensor / 32767.0 * supply * 127/27;
259         }
260
261         static double tele_gps_voltage(int sensor) {
262                 double  supply = 3.3;
263
264                 return sensor / 32767.0 * supply * (5.6 + 10.0) / 10.0;
265         }
266
267         static double tele_bt_3_battery(int raw) {
268                 if (raw == AltosLib.MISSING)
269                         return AltosLib.MISSING;
270                 return 3.3 * mega_adc(raw) * (5.1 + 10.0) / 10.0;
271         }
272
273         static double easy_mini_2_adc(int raw) {
274                 return raw / 4095.0;
275         }
276
277         static double easy_mini_1_adc(int raw) {
278                 return raw / 32767.0;
279         }
280
281         static double easy_mini_1_voltage(int sensor, int serial) {
282                 double  supply = 3.3;
283                 double  diode_offset = 0.0;
284
285                 /* early prototypes had a 3.0V regulator */
286                 if (serial < 1000)
287                         supply = 3.0;
288
289                 /* Purple v1.0 boards had the sensor after the
290                  * blocking diode, which drops about 150mV
291                  */
292                 if (serial < 1665)
293                         diode_offset = 0.150;
294
295                 return easy_mini_1_adc(sensor) * supply * 127/27 + diode_offset;
296         }
297
298         static double easy_mini_2_voltage(int sensor) {
299                 double  supply = 3.3;
300
301                 return easy_mini_2_adc(sensor) * supply * 127/27;
302         }
303
304         public static double radio_to_frequency(int freq, int setting, int cal, int channel) {
305                 double  f;
306
307                 if (freq > 0)
308                         f = freq / 1000.0;
309                 else {
310                         if (setting <= 0)
311                                 setting = cal;
312                         f = 434.550 * setting / cal;
313                         /* Round to nearest 50KHz */
314                         f = Math.floor (20.0 * f + 0.5) / 20.0;
315                 }
316                 return f + channel * 0.100;
317         }
318
319         public static int radio_frequency_to_setting(double frequency, int cal) {
320                 double  set = frequency / 434.550 * cal;
321
322                 return (int) Math.floor (set + 0.5);
323         }
324
325         public static int radio_frequency_to_channel(double frequency) {
326                 int     channel = (int) Math.floor ((frequency - 434.550) / 0.100 + 0.5);
327
328                 if (channel < 0)
329                         channel = 0;
330                 if (channel > 9)
331                         channel = 9;
332                 return channel;
333         }
334
335         public static double radio_channel_to_frequency(int channel) {
336                 return 434.550 + channel * 0.100;
337         }
338
339         public static int telem_to_rssi(int telem) {
340                 return telem / 2 - 74;
341         }
342
343         public static int[] ParseHex(String line) {
344                 String[] tokens = line.split("\\s+");
345                 int[] array = new int[tokens.length];
346
347                 for (int i = 0; i < tokens.length; i++)
348                         try {
349                                 array[i] = Integer.parseInt(tokens[i], 16);
350                         } catch (NumberFormatException ne) {
351                                 return null;
352                         }
353                 return array;
354         }
355
356         public static double meters_to_feet(double meters) {
357                 return meters * (100 / (2.54 * 12));
358         }
359
360         public static double feet_to_meters(double feet) {
361                 return feet * 12 * 2.54 / 100.0;
362         }
363
364         public static double meters_to_miles(double meters) {
365                 return meters_to_feet(meters) / 5280;
366         }
367
368         public static double miles_to_meters(double miles) {
369                 return feet_to_meters(miles * 5280);
370         }
371
372         public static double meters_to_mph(double mps) {
373                 return meters_to_miles(mps) * 3600;
374         }
375
376         public static double mph_to_meters(double mps) {
377                 return miles_to_meters(mps) / 3600;
378         }
379
380         public static double mps_to_fps(double mps) {
381                 return meters_to_miles(mps) * 5280;
382         }
383
384         public static double fps_to_mps(double mps) {
385                 return miles_to_meters(mps) / 5280;
386         }
387
388         public static double meters_to_mach(double meters) {
389                 return meters / 343;            /* something close to mach at usual rocket sites */
390         }
391
392         public static double meters_to_g(double meters) {
393                 return meters / 9.80665;
394         }
395
396         public static double c_to_f(double c) {
397                 return c * 9/5 + 32;
398         }
399
400         public static double f_to_c(double c) {
401                 return (c - 32) * 5/9;
402         }
403
404         public static double psi_to_pa(double psi) {
405                 return psi * 6894.76;
406         }
407
408         public static double pa_to_psi(double pa) {
409                 return pa / 6894.76;
410         }
411
412         public static double n_to_lb(double n) {
413                 return n * 0.22480894;
414         }
415
416         public static double lb_to_n(double lb) {
417                 return lb / 0.22480894;
418         }
419
420         public static double acceleration_from_sensor(double sensor, double plus_g, double minus_g, double ground) {
421
422                 if (sensor == AltosLib.MISSING)
423                         return AltosLib.MISSING;
424
425                 if (plus_g == AltosLib.MISSING || minus_g == AltosLib.MISSING)
426                         return AltosLib.MISSING;
427
428                 if (ground == AltosLib.MISSING)
429                         ground = plus_g;
430
431                 double counts_per_g = (plus_g - minus_g) / 2.0;
432                 double counts_per_mss = counts_per_g / gravity;
433
434                 if (counts_per_mss == 0)
435                         return AltosLib.MISSING;
436
437                 return (sensor - ground) / counts_per_mss;
438         }
439
440         public static boolean imperial_units = false;
441
442         public static AltosDistance distance = new AltosDistance();
443
444         public static AltosHeight height = new AltosHeight();
445
446         public static AltosPressure pressure = new AltosPressure();
447
448         public static AltosForce force = new AltosForce();
449
450         public static AltosSpeed speed = new AltosSpeed();
451
452         public static AltosAccel accel = new AltosAccel();
453
454         public static AltosTemperature temperature = new AltosTemperature();
455
456         public static AltosOrient orient = new AltosOrient();
457
458         public static AltosVoltage voltage = new AltosVoltage();
459
460         public static AltosLatitude latitude = new AltosLatitude();
461
462         public static AltosLongitude longitude = new AltosLongitude();
463
464         public static AltosRotationRate rotation_rate = new AltosRotationRate();
465
466         public static AltosStateName state_name = new AltosStateName();
467
468         public static AltosPyroName pyro_name = new AltosPyroName();
469
470         public static AltosUnits magnetic_field = null;
471
472         public static String show_gs(String format, double a) {
473                 a = meters_to_g(a);
474                 format = format.concat(" g");
475                 return String.format(format, a);
476         }
477
478         public static String say_gs(double a) {
479                 return String.format("%6.0 gees", meters_to_g(a));
480         }
481
482         public static int checksum(int[] data, int start, int length) {
483                 int     csum = 0x5a;
484                 for (int i = 0; i < length; i++)
485                         csum += data[i + start];
486                 return csum & 0xff;
487         }
488
489         public static int checksum(List<Byte> data, int start, int length) {
490                 int     csum = 0x5a;
491                 for (int i = 0; i < length; i++)
492                         csum += data.get(i+start);
493                 return csum & 0xff;
494         }
495
496         public static double beep_value_to_freq(int value) {
497                 if (value == 0)
498                         return 4000;
499                 return 1.0/2.0 * (24.0e6/32.0) / (double) value;
500         }
501
502         public static int beep_freq_to_value(double freq) {
503                 if (freq == 0)
504                         return 94;
505                 return (int) Math.floor (1.0/2.0 * (24.0e6/32.0) / freq + 0.5);
506         }
507
508         public static final int BEARING_LONG = 0;
509         public static final int BEARING_SHORT = 1;
510         public static final int BEARING_VOICE = 2;
511
512         public static String bearing_to_words(int length, double bearing) {
513                 String [][] bearing_string = {
514                         {
515                                 "North", "North North East", "North East", "East North East",
516                                 "East", "East South East", "South East", "South South East",
517                                 "South", "South South West", "South West", "West South West",
518                                 "West", "West North West", "North West", "North North West"
519                         }, {
520                                 "N", "NNE", "NE", "ENE",
521                                 "E", "ESE", "SE", "SSE",
522                                 "S", "SSW", "SW", "WSW",
523                                 "W", "WNW", "NW", "NNW"
524                         }, {
525                                 "north", "nor nor east", "north east", "east nor east",
526                                 "east", "east sow east", "south east", "sow sow east",
527                                 "south", "sow sow west", "south west", "west sow west",
528                                 "west", "west nor west", "north west", "nor nor west "
529                         }
530                 };
531                 return bearing_string[length][(int)((bearing / 90 * 8 + 1) / 2)%16];
532         }
533 }