target: add generic Xtensa LX support
[fw/openocd] / src / target / xtensa / xtensa.c
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2
3 /***************************************************************************
4  *   Generic Xtensa target API for OpenOCD                                 *
5  *   Copyright (C) 2020-2022 Cadence Design Systems, Inc.                  *
6  *   Copyright (C) 2016-2019 Espressif Systems Ltd.                        *
7  *   Derived from esp108.c                                                 *
8  *   Author: Angus Gratton gus@projectgus.com                              *
9  ***************************************************************************/
10
11 #ifdef HAVE_CONFIG_H
12 #include "config.h"
13 #endif
14
15 #include <stdlib.h>
16 #include <helper/time_support.h>
17 #include <helper/align.h>
18 #include <target/register.h>
19
20 #include "xtensa_chip.h"
21 #include "xtensa.h"
22
23 /* Swap 4-bit Xtensa opcodes and fields */
24 #define XT_NIBSWAP8(V)                                                                  \
25         ((((V) & 0x0F) << 4)                                                            \
26                 | (((V) & 0xF0) >> 4))
27
28 #define XT_NIBSWAP16(V)                                                                 \
29         ((((V) & 0x000F) << 12)                                                         \
30                 | (((V) & 0x00F0) << 4)                                                 \
31                 | (((V) & 0x0F00) >> 4)                                                 \
32                 | (((V) & 0xF000) >> 12))
33
34 #define XT_NIBSWAP24(V)                                                                 \
35         ((((V) & 0x00000F) << 20)                                                       \
36                 | (((V) & 0x0000F0) << 12)                                              \
37                 | (((V) & 0x000F00) << 4)                                               \
38                 | (((V) & 0x00F000) >> 4)                                               \
39                 | (((V) & 0x0F0000) >> 12)                                              \
40                 | (((V) & 0xF00000) >> 20))
41
42 /* _XT_INS_FORMAT_*()
43  * Instruction formatting converted from little-endian inputs
44  * and shifted to the MSB-side of DIR for BE systems.
45  */
46 #define _XT_INS_FORMAT_RSR(X, OPCODE, SR, T)                    \
47         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
48                         | (((T) & 0x0F) << 16)                                          \
49                         | (((SR) & 0xFF) << 8)) << 8                            \
50                 : (OPCODE)                                                                              \
51                 | (((SR) & 0xFF) << 8)                                                  \
52                 | (((T) & 0x0F) << 4))
53
54 #define _XT_INS_FORMAT_RRR(X, OPCODE, ST, R)                    \
55         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
56                         | ((XT_NIBSWAP8((ST) & 0xFF)) << 12)            \
57                         | (((R) & 0x0F) << 8)) << 8                                     \
58                 : (OPCODE)                                                                              \
59                 | (((ST) & 0xFF) << 4)                                                  \
60                 | (((R) & 0x0F) << 12))
61
62 #define _XT_INS_FORMAT_RRRN(X, OPCODE, S, T, IMM4)              \
63         (XT_ISBE(X) ? (XT_NIBSWAP16(OPCODE)                                     \
64                         | (((T) & 0x0F) << 8)                                           \
65                         | (((S) & 0x0F) << 4)                                           \
66                         | ((IMM4) & 0x0F)) << 16                                        \
67                 : (OPCODE)                                                                              \
68                 | (((T) & 0x0F) << 4)                                                   \
69                 | (((S) & 0x0F) << 8)                                                   \
70                 | (((IMM4) & 0x0F) << 12))
71
72 #define _XT_INS_FORMAT_RRI8(X, OPCODE, R, S, T, IMM8)   \
73         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
74                         | (((T) & 0x0F) << 16)                                          \
75                         | (((S) & 0x0F) << 12)                                          \
76                         | (((R) & 0x0F) << 8)                                           \
77                         | ((IMM8) & 0xFF)) << 8                                         \
78                 : (OPCODE)                                                                              \
79                 | (((IMM8) & 0xFF) << 16)                                               \
80                 | (((R) & 0x0F) << 12)                                                  \
81                 | (((S) & 0x0F) << 8)                                                   \
82                 | (((T) & 0x0F) << 4))
83
84 #define _XT_INS_FORMAT_RRI4(X, OPCODE, IMM4, R, S, T)   \
85         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
86                         | (((T) & 0x0F) << 16)                                          \
87                         | (((S) & 0x0F) << 12)                                          \
88                         | (((R) & 0x0F) << 8)) << 8                                     \
89                 | ((IMM4) & 0x0F)                                                               \
90                 : (OPCODE)                                                                              \
91                 | (((IMM4) & 0x0F) << 20)                                               \
92                 | (((R) & 0x0F) << 12)                                                  \
93                 | (((S) & 0x0F) << 8)                                                   \
94                 | (((T) & 0x0F) << 4))
95
96 /* Xtensa processor instruction opcodes
97 */
98 /* "Return From Debug Operation" to Normal */
99 #define XT_INS_RFDO(X) (XT_ISBE(X) ? 0x000e1f << 8 : 0xf1e000)
100 /* "Return From Debug and Dispatch" - allow sw debugging stuff to take over */
101 #define XT_INS_RFDD(X) (XT_ISBE(X) ? 0x010e1f << 8 : 0xf1e010)
102
103 /* Load to DDR register, increase addr register */
104 #define XT_INS_LDDR32P(X, S) (XT_ISBE(X) ? (0x0E0700 | ((S) << 12)) << 8 : (0x0070E0 | ((S) << 8)))
105 /* Store from DDR register, increase addr register */
106 #define XT_INS_SDDR32P(X, S) (XT_ISBE(X) ? (0x0F0700 | ((S) << 12)) << 8 : (0x0070F0 | ((S) << 8)))
107
108 /* Load 32-bit Indirect from A(S)+4*IMM8 to A(T) */
109 #define XT_INS_L32I(X, S, T, IMM8)  _XT_INS_FORMAT_RRI8(X, 0x002002, 0, S, T, IMM8)
110 /* Load 16-bit Unsigned from A(S)+2*IMM8 to A(T) */
111 #define XT_INS_L16UI(X, S, T, IMM8) _XT_INS_FORMAT_RRI8(X, 0x001002, 0, S, T, IMM8)
112 /* Load 8-bit Unsigned from A(S)+IMM8 to A(T) */
113 #define XT_INS_L8UI(X, S, T, IMM8)  _XT_INS_FORMAT_RRI8(X, 0x000002, 0, S, T, IMM8)
114
115 /* Store 32-bit Indirect to A(S)+4*IMM8 from A(T) */
116 #define XT_INS_S32I(X, S, T, IMM8) _XT_INS_FORMAT_RRI8(X, 0x006002, 0, S, T, IMM8)
117 /* Store 16-bit to A(S)+2*IMM8 from A(T) */
118 #define XT_INS_S16I(X, S, T, IMM8) _XT_INS_FORMAT_RRI8(X, 0x005002, 0, S, T, IMM8)
119 /* Store 8-bit to A(S)+IMM8 from A(T) */
120 #define XT_INS_S8I(X, S, T, IMM8)  _XT_INS_FORMAT_RRI8(X, 0x004002, 0, S, T, IMM8)
121
122 /* Cache Instructions */
123 #define XT_INS_IHI(X, S, IMM8) _XT_INS_FORMAT_RRI8(X, 0x0070E2, 0, S, 0, IMM8)
124 #define XT_INS_DHWBI(X, S, IMM8) _XT_INS_FORMAT_RRI8(X, 0x007052, 0, S, 0, IMM8)
125 #define XT_INS_DHWB(X, S, IMM8) _XT_INS_FORMAT_RRI8(X, 0x007042, 0, S, 0, IMM8)
126 #define XT_INS_ISYNC(X) (XT_ISBE(X) ? 0x000200 << 8 : 0x002000)
127
128 /* Control Instructions */
129 #define XT_INS_JX(X, S) (XT_ISBE(X) ? (0x050000 | ((S) << 12)) : (0x0000a0 | ((S) << 8)))
130 #define XT_INS_CALL0(X, IMM18) (XT_ISBE(X) ? (0x500000 | ((IMM18) & 0x3ffff)) : (0x000005 | (((IMM18) & 0x3ffff) << 6)))
131
132 /* Read Special Register */
133 #define XT_INS_RSR(X, SR, T) _XT_INS_FORMAT_RSR(X, 0x030000, SR, T)
134 /* Write Special Register */
135 #define XT_INS_WSR(X, SR, T) _XT_INS_FORMAT_RSR(X, 0x130000, SR, T)
136 /* Swap Special Register */
137 #define XT_INS_XSR(X, SR, T) _XT_INS_FORMAT_RSR(X, 0x610000, SR, T)
138
139 /* Rotate Window by (-8..7) */
140 #define XT_INS_ROTW(X, N) (XT_ISBE(X) ? ((0x000804) | (((N) & 15) << 16)) << 8 : ((0x408000) | (((N) & 15) << 4)))
141
142 /* Read User Register */
143 #define XT_INS_RUR(X, UR, T) _XT_INS_FORMAT_RRR(X, 0xE30000, UR, T)
144 /* Write User Register */
145 #define XT_INS_WUR(X, UR, T) _XT_INS_FORMAT_RSR(X, 0xF30000, UR, T)
146
147 /* Read Floating-Point Register */
148 #define XT_INS_RFR(X, FR, T) _XT_INS_FORMAT_RRR(X, 0xFA0000, ((FR << 4) | 0x4), T)
149 /* Write Floating-Point Register */
150 #define XT_INS_WFR(X, FR, T) _XT_INS_FORMAT_RRR(X, 0xFA0000, ((T << 4) | 0x5), FR)
151
152 #define XT_INS_L32E(X, R, S, T) _XT_INS_FORMAT_RRI4(X, 0x090000, 0, R, S, T)
153 #define XT_INS_S32E(X, R, S, T) _XT_INS_FORMAT_RRI4(X, 0x490000, 0, R, S, T)
154 #define XT_INS_L32E_S32E_MASK(X)   (XT_ISBE(X) ? 0xF000FF << 8 : 0xFF000F)
155
156 #define XT_INS_RFWO(X) (XT_ISBE(X) ? 0x004300 << 8 : 0x003400)
157 #define XT_INS_RFWU(X) (XT_ISBE(X) ? 0x005300 << 8 : 0x003500)
158 #define XT_INS_RFWO_RFWU_MASK(X)   (XT_ISBE(X) ? 0xFFFFFF << 8 : 0xFFFFFF)
159
160 #define XT_WATCHPOINTS_NUM_MAX  2
161
162 /* Special register number macro for DDR, PS, WB, A3, A4 registers.
163  * These get used a lot so making a shortcut is useful.
164  */
165 #define XT_SR_DDR         (xtensa_regs[XT_REG_IDX_DDR].reg_num)
166 #define XT_SR_PS          (xtensa_regs[XT_REG_IDX_PS].reg_num)
167 #define XT_SR_WB          (xtensa_regs[XT_REG_IDX_WINDOWBASE].reg_num)
168 #define XT_REG_A3         (xtensa_regs[XT_REG_IDX_AR3].reg_num)
169 #define XT_REG_A4         (xtensa_regs[XT_REG_IDX_AR4].reg_num)
170
171 #define XT_PS_REG_NUM_BASE          (0xc0U)     /* (EPS2 - 2), for adding DBGLEVEL */
172 #define XT_PC_REG_NUM_BASE          (0xb0U)     /* (EPC1 - 1), for adding DBGLEVEL */
173 #define XT_PC_REG_NUM_VIRTUAL       (0xffU)     /* Marker for computing PC (EPC[DBGLEVEL) */
174 #define XT_PC_DBREG_NUM_BASE        (0x20U)     /* External (i.e., GDB) access */
175
176 #define XT_SW_BREAKPOINTS_MAX_NUM       32
177 #define XT_HW_IBREAK_MAX_NUM            2
178 #define XT_HW_DBREAK_MAX_NUM            2
179
180 struct xtensa_reg_desc xtensa_regs[XT_NUM_REGS] = {
181         XT_MK_REG_DESC("pc", XT_PC_REG_NUM_VIRTUAL, XT_REG_SPECIAL, 0),
182         XT_MK_REG_DESC("ar0", 0x00, XT_REG_GENERAL, 0),
183         XT_MK_REG_DESC("ar1", 0x01, XT_REG_GENERAL, 0),
184         XT_MK_REG_DESC("ar2", 0x02, XT_REG_GENERAL, 0),
185         XT_MK_REG_DESC("ar3", 0x03, XT_REG_GENERAL, 0),
186         XT_MK_REG_DESC("ar4", 0x04, XT_REG_GENERAL, 0),
187         XT_MK_REG_DESC("ar5", 0x05, XT_REG_GENERAL, 0),
188         XT_MK_REG_DESC("ar6", 0x06, XT_REG_GENERAL, 0),
189         XT_MK_REG_DESC("ar7", 0x07, XT_REG_GENERAL, 0),
190         XT_MK_REG_DESC("ar8", 0x08, XT_REG_GENERAL, 0),
191         XT_MK_REG_DESC("ar9", 0x09, XT_REG_GENERAL, 0),
192         XT_MK_REG_DESC("ar10", 0x0A, XT_REG_GENERAL, 0),
193         XT_MK_REG_DESC("ar11", 0x0B, XT_REG_GENERAL, 0),
194         XT_MK_REG_DESC("ar12", 0x0C, XT_REG_GENERAL, 0),
195         XT_MK_REG_DESC("ar13", 0x0D, XT_REG_GENERAL, 0),
196         XT_MK_REG_DESC("ar14", 0x0E, XT_REG_GENERAL, 0),
197         XT_MK_REG_DESC("ar15", 0x0F, XT_REG_GENERAL, 0),
198         XT_MK_REG_DESC("ar16", 0x10, XT_REG_GENERAL, 0),
199         XT_MK_REG_DESC("ar17", 0x11, XT_REG_GENERAL, 0),
200         XT_MK_REG_DESC("ar18", 0x12, XT_REG_GENERAL, 0),
201         XT_MK_REG_DESC("ar19", 0x13, XT_REG_GENERAL, 0),
202         XT_MK_REG_DESC("ar20", 0x14, XT_REG_GENERAL, 0),
203         XT_MK_REG_DESC("ar21", 0x15, XT_REG_GENERAL, 0),
204         XT_MK_REG_DESC("ar22", 0x16, XT_REG_GENERAL, 0),
205         XT_MK_REG_DESC("ar23", 0x17, XT_REG_GENERAL, 0),
206         XT_MK_REG_DESC("ar24", 0x18, XT_REG_GENERAL, 0),
207         XT_MK_REG_DESC("ar25", 0x19, XT_REG_GENERAL, 0),
208         XT_MK_REG_DESC("ar26", 0x1A, XT_REG_GENERAL, 0),
209         XT_MK_REG_DESC("ar27", 0x1B, XT_REG_GENERAL, 0),
210         XT_MK_REG_DESC("ar28", 0x1C, XT_REG_GENERAL, 0),
211         XT_MK_REG_DESC("ar29", 0x1D, XT_REG_GENERAL, 0),
212         XT_MK_REG_DESC("ar30", 0x1E, XT_REG_GENERAL, 0),
213         XT_MK_REG_DESC("ar31", 0x1F, XT_REG_GENERAL, 0),
214         XT_MK_REG_DESC("ar32", 0x20, XT_REG_GENERAL, 0),
215         XT_MK_REG_DESC("ar33", 0x21, XT_REG_GENERAL, 0),
216         XT_MK_REG_DESC("ar34", 0x22, XT_REG_GENERAL, 0),
217         XT_MK_REG_DESC("ar35", 0x23, XT_REG_GENERAL, 0),
218         XT_MK_REG_DESC("ar36", 0x24, XT_REG_GENERAL, 0),
219         XT_MK_REG_DESC("ar37", 0x25, XT_REG_GENERAL, 0),
220         XT_MK_REG_DESC("ar38", 0x26, XT_REG_GENERAL, 0),
221         XT_MK_REG_DESC("ar39", 0x27, XT_REG_GENERAL, 0),
222         XT_MK_REG_DESC("ar40", 0x28, XT_REG_GENERAL, 0),
223         XT_MK_REG_DESC("ar41", 0x29, XT_REG_GENERAL, 0),
224         XT_MK_REG_DESC("ar42", 0x2A, XT_REG_GENERAL, 0),
225         XT_MK_REG_DESC("ar43", 0x2B, XT_REG_GENERAL, 0),
226         XT_MK_REG_DESC("ar44", 0x2C, XT_REG_GENERAL, 0),
227         XT_MK_REG_DESC("ar45", 0x2D, XT_REG_GENERAL, 0),
228         XT_MK_REG_DESC("ar46", 0x2E, XT_REG_GENERAL, 0),
229         XT_MK_REG_DESC("ar47", 0x2F, XT_REG_GENERAL, 0),
230         XT_MK_REG_DESC("ar48", 0x30, XT_REG_GENERAL, 0),
231         XT_MK_REG_DESC("ar49", 0x31, XT_REG_GENERAL, 0),
232         XT_MK_REG_DESC("ar50", 0x32, XT_REG_GENERAL, 0),
233         XT_MK_REG_DESC("ar51", 0x33, XT_REG_GENERAL, 0),
234         XT_MK_REG_DESC("ar52", 0x34, XT_REG_GENERAL, 0),
235         XT_MK_REG_DESC("ar53", 0x35, XT_REG_GENERAL, 0),
236         XT_MK_REG_DESC("ar54", 0x36, XT_REG_GENERAL, 0),
237         XT_MK_REG_DESC("ar55", 0x37, XT_REG_GENERAL, 0),
238         XT_MK_REG_DESC("ar56", 0x38, XT_REG_GENERAL, 0),
239         XT_MK_REG_DESC("ar57", 0x39, XT_REG_GENERAL, 0),
240         XT_MK_REG_DESC("ar58", 0x3A, XT_REG_GENERAL, 0),
241         XT_MK_REG_DESC("ar59", 0x3B, XT_REG_GENERAL, 0),
242         XT_MK_REG_DESC("ar60", 0x3C, XT_REG_GENERAL, 0),
243         XT_MK_REG_DESC("ar61", 0x3D, XT_REG_GENERAL, 0),
244         XT_MK_REG_DESC("ar62", 0x3E, XT_REG_GENERAL, 0),
245         XT_MK_REG_DESC("ar63", 0x3F, XT_REG_GENERAL, 0),
246         XT_MK_REG_DESC("windowbase", 0x48, XT_REG_SPECIAL, 0),
247         XT_MK_REG_DESC("windowstart", 0x49, XT_REG_SPECIAL, 0),
248         XT_MK_REG_DESC("ps", 0xE6, XT_REG_SPECIAL, 0),  /* PS (not mapped through EPS[]) */
249         XT_MK_REG_DESC("ibreakenable", 0x60, XT_REG_SPECIAL, 0),
250         XT_MK_REG_DESC("ddr", 0x68, XT_REG_DEBUG, XT_REGF_NOREAD),
251         XT_MK_REG_DESC("ibreaka0", 0x80, XT_REG_SPECIAL, 0),
252         XT_MK_REG_DESC("ibreaka1", 0x81, XT_REG_SPECIAL, 0),
253         XT_MK_REG_DESC("dbreaka0", 0x90, XT_REG_SPECIAL, 0),
254         XT_MK_REG_DESC("dbreaka1", 0x91, XT_REG_SPECIAL, 0),
255         XT_MK_REG_DESC("dbreakc0", 0xA0, XT_REG_SPECIAL, 0),
256         XT_MK_REG_DESC("dbreakc1", 0xA1, XT_REG_SPECIAL, 0),
257         XT_MK_REG_DESC("cpenable", 0xE0, XT_REG_SPECIAL, 0),
258         XT_MK_REG_DESC("exccause", 0xE8, XT_REG_SPECIAL, 0),
259         XT_MK_REG_DESC("debugcause", 0xE9, XT_REG_SPECIAL, 0),
260         XT_MK_REG_DESC("icount", 0xEC, XT_REG_SPECIAL, 0),
261         XT_MK_REG_DESC("icountlevel", 0xED, XT_REG_SPECIAL, 0),
262
263         /* WARNING: For these registers, regnum points to the
264          * index of the corresponding ARx registers, NOT to
265          * the processor register number! */
266         XT_MK_REG_DESC("a0", XT_REG_IDX_AR0, XT_REG_RELGEN, 0),
267         XT_MK_REG_DESC("a1", XT_REG_IDX_AR1, XT_REG_RELGEN, 0),
268         XT_MK_REG_DESC("a2", XT_REG_IDX_AR2, XT_REG_RELGEN, 0),
269         XT_MK_REG_DESC("a3", XT_REG_IDX_AR3, XT_REG_RELGEN, 0),
270         XT_MK_REG_DESC("a4", XT_REG_IDX_AR4, XT_REG_RELGEN, 0),
271         XT_MK_REG_DESC("a5", XT_REG_IDX_AR5, XT_REG_RELGEN, 0),
272         XT_MK_REG_DESC("a6", XT_REG_IDX_AR6, XT_REG_RELGEN, 0),
273         XT_MK_REG_DESC("a7", XT_REG_IDX_AR7, XT_REG_RELGEN, 0),
274         XT_MK_REG_DESC("a8", XT_REG_IDX_AR8, XT_REG_RELGEN, 0),
275         XT_MK_REG_DESC("a9", XT_REG_IDX_AR9, XT_REG_RELGEN, 0),
276         XT_MK_REG_DESC("a10", XT_REG_IDX_AR10, XT_REG_RELGEN, 0),
277         XT_MK_REG_DESC("a11", XT_REG_IDX_AR11, XT_REG_RELGEN, 0),
278         XT_MK_REG_DESC("a12", XT_REG_IDX_AR12, XT_REG_RELGEN, 0),
279         XT_MK_REG_DESC("a13", XT_REG_IDX_AR13, XT_REG_RELGEN, 0),
280         XT_MK_REG_DESC("a14", XT_REG_IDX_AR14, XT_REG_RELGEN, 0),
281         XT_MK_REG_DESC("a15", XT_REG_IDX_AR15, XT_REG_RELGEN, 0),
282 };
283
284 /**
285  * Types of memory used at xtensa target
286  */
287 enum xtensa_mem_region_type {
288         XTENSA_MEM_REG_IROM = 0x0,
289         XTENSA_MEM_REG_IRAM,
290         XTENSA_MEM_REG_DROM,
291         XTENSA_MEM_REG_DRAM,
292         XTENSA_MEM_REG_SRAM,
293         XTENSA_MEM_REG_SROM,
294         XTENSA_MEM_REGS_NUM
295 };
296
297 /* Register definition as union for list allocation */
298 union xtensa_reg_val_u {
299         xtensa_reg_val_t val;
300         uint8_t buf[4];
301 };
302
303 const struct xtensa_keyval_info_s xt_qerr[XT_QERR_NUM] = {
304         { .chrval = "E00", .intval = ERROR_FAIL },
305         { .chrval = "E01", .intval = ERROR_FAIL },
306         { .chrval = "E02", .intval = ERROR_COMMAND_ARGUMENT_INVALID },
307         { .chrval = "E03", .intval = ERROR_FAIL },
308 };
309
310 /* Set to true for extra debug logging */
311 static const bool xtensa_extra_debug_log;
312
313 /**
314  * Gets a config for the specific mem type
315  */
316 static inline const struct xtensa_local_mem_config *xtensa_get_mem_config(
317         struct xtensa *xtensa,
318         enum xtensa_mem_region_type type)
319 {
320         switch (type) {
321         case XTENSA_MEM_REG_IROM:
322                 return &xtensa->core_config->irom;
323         case XTENSA_MEM_REG_IRAM:
324                 return &xtensa->core_config->iram;
325         case XTENSA_MEM_REG_DROM:
326                 return &xtensa->core_config->drom;
327         case XTENSA_MEM_REG_DRAM:
328                 return &xtensa->core_config->dram;
329         case XTENSA_MEM_REG_SRAM:
330                 return &xtensa->core_config->sram;
331         case XTENSA_MEM_REG_SROM:
332                 return &xtensa->core_config->srom;
333         default:
334                 return NULL;
335         }
336 }
337
338 /**
339  * Extracts an exact xtensa_local_mem_region_config from xtensa_local_mem_config
340  * for a given address
341  * Returns NULL if nothing found
342  */
343 static inline const struct xtensa_local_mem_region_config *xtensa_memory_region_find(
344         const struct xtensa_local_mem_config *mem,
345         target_addr_t address)
346 {
347         for (unsigned int i = 0; i < mem->count; i++) {
348                 const struct xtensa_local_mem_region_config *region = &mem->regions[i];
349                 if (address >= region->base && address < (region->base + region->size))
350                         return region;
351         }
352         return NULL;
353 }
354
355 /**
356  * Returns a corresponding xtensa_local_mem_region_config from the xtensa target
357  * for a given address
358  * Returns NULL if nothing found
359  */
360 static inline const struct xtensa_local_mem_region_config *xtensa_target_memory_region_find(
361         struct xtensa *xtensa,
362         target_addr_t address)
363 {
364         const struct xtensa_local_mem_region_config *result;
365         const struct xtensa_local_mem_config *mcgf;
366         for (unsigned int mtype = 0; mtype < XTENSA_MEM_REGS_NUM; mtype++) {
367                 mcgf = xtensa_get_mem_config(xtensa, mtype);
368                 result = xtensa_memory_region_find(mcgf, address);
369                 if (result)
370                         return result;
371         }
372         return NULL;
373 }
374
375 static inline bool xtensa_is_cacheable(const struct xtensa_cache_config *cache,
376         const struct xtensa_local_mem_config *mem,
377         target_addr_t address)
378 {
379         if (!cache->size)
380                 return false;
381         return xtensa_memory_region_find(mem, address);
382 }
383
384 static inline bool xtensa_is_icacheable(struct xtensa *xtensa, target_addr_t address)
385 {
386         return xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->iram, address) ||
387                xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->irom, address) ||
388                xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->sram, address) ||
389                xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->srom, address);
390 }
391
392 static inline bool xtensa_is_dcacheable(struct xtensa *xtensa, target_addr_t address)
393 {
394         return xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->dram, address) ||
395                xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->drom, address) ||
396                xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->sram, address) ||
397                xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->srom, address);
398 }
399
400 static int xtensa_core_reg_get(struct reg *reg)
401 {
402         /* We don't need this because we read all registers on halt anyway. */
403         struct xtensa *xtensa = (struct xtensa *)reg->arch_info;
404         struct target *target = xtensa->target;
405
406         if (target->state != TARGET_HALTED)
407                 return ERROR_TARGET_NOT_HALTED;
408         if (!reg->exist) {
409                 if (strncmp(reg->name, "?0x", 3) == 0) {
410                         unsigned int regnum = strtoul(reg->name + 1, 0, 0);
411                         LOG_WARNING("Read unknown register 0x%04x ignored", regnum);
412                         return ERROR_OK;
413                 }
414                 return ERROR_COMMAND_ARGUMENT_INVALID;
415         }
416         return ERROR_OK;
417 }
418
419 static int xtensa_core_reg_set(struct reg *reg, uint8_t *buf)
420 {
421         struct xtensa *xtensa = (struct xtensa *)reg->arch_info;
422         struct target *target = xtensa->target;
423
424         assert(reg->size <= 64 && "up to 64-bit regs are supported only!");
425         if (target->state != TARGET_HALTED)
426                 return ERROR_TARGET_NOT_HALTED;
427
428         if (!reg->exist) {
429                 if (strncmp(reg->name, "?0x", 3) == 0) {
430                         unsigned int regnum = strtoul(reg->name + 1, 0, 0);
431                         LOG_WARNING("Write unknown register 0x%04x ignored", regnum);
432                         return ERROR_OK;
433                 }
434                 return ERROR_COMMAND_ARGUMENT_INVALID;
435         }
436
437         buf_cpy(buf, reg->value, reg->size);
438
439         if (xtensa->core_config->windowed) {
440                 /* If the user updates a potential scratch register, track for conflicts */
441                 for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++) {
442                         if (strcmp(reg->name, xtensa->scratch_ars[s].chrval) == 0) {
443                                 LOG_DEBUG("Scratch reg %s [0x%08" PRIx32 "] set from gdb", reg->name,
444                                         buf_get_u32(reg->value, 0, 32));
445                                 LOG_DEBUG("scratch_ars mapping: a3/%s, a4/%s",
446                                         xtensa->scratch_ars[XT_AR_SCRATCH_AR3].chrval,
447                                         xtensa->scratch_ars[XT_AR_SCRATCH_AR4].chrval);
448                                 xtensa->scratch_ars[s].intval = true;
449                                 break;
450                         }
451                 }
452         }
453         reg->dirty = true;
454         reg->valid = true;
455
456         return ERROR_OK;
457 }
458
459 static const struct reg_arch_type xtensa_reg_type = {
460         .get = xtensa_core_reg_get,
461         .set = xtensa_core_reg_set,
462 };
463
464 /* Convert a register index that's indexed relative to windowbase, to the real address. */
465 static enum xtensa_reg_id xtensa_windowbase_offset_to_canonical(struct xtensa *xtensa,
466         enum xtensa_reg_id reg_idx,
467         int windowbase)
468 {
469         unsigned int idx;
470         if (reg_idx >= XT_REG_IDX_AR0 && reg_idx <= XT_REG_IDX_ARLAST) {
471                 idx = reg_idx - XT_REG_IDX_AR0;
472         } else if (reg_idx >= XT_REG_IDX_A0 && reg_idx <= XT_REG_IDX_A15) {
473                 idx = reg_idx - XT_REG_IDX_A0;
474         } else {
475                 LOG_ERROR("Error: can't convert register %d to non-windowbased register!", reg_idx);
476                 return -1;
477         }
478         return ((idx + windowbase * 4) & (xtensa->core_config->aregs_num - 1)) + XT_REG_IDX_AR0;
479 }
480
481 static enum xtensa_reg_id xtensa_canonical_to_windowbase_offset(struct xtensa *xtensa,
482         enum xtensa_reg_id reg_idx,
483         int windowbase)
484 {
485         return xtensa_windowbase_offset_to_canonical(xtensa, reg_idx, -windowbase);
486 }
487
488 static void xtensa_mark_register_dirty(struct xtensa *xtensa, enum xtensa_reg_id reg_idx)
489 {
490         struct reg *reg_list = xtensa->core_cache->reg_list;
491         reg_list[reg_idx].dirty = true;
492 }
493
494 static void xtensa_queue_exec_ins(struct xtensa *xtensa, uint32_t ins)
495 {
496         xtensa_queue_dbg_reg_write(xtensa, NARADR_DIR0EXEC, ins);
497 }
498
499 static void xtensa_queue_exec_ins_wide(struct xtensa *xtensa, uint8_t *ops, uint8_t oplen)
500 {
501         if ((oplen > 0) && (oplen <= 64)) {
502                 uint32_t opsw[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };  /* 8 DIRx regs: max width 64B */
503                 uint8_t oplenw = (oplen + 3) / 4;
504                 if (xtensa->target->endianness == TARGET_BIG_ENDIAN)
505                         buf_bswap32((uint8_t *)opsw, ops, oplenw * 4);
506                 else
507                         memcpy(opsw, ops, oplen);
508                 for (int32_t i = oplenw - 1; i > 0; i--)
509                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DIR0 + i, opsw[i]);
510                 /* Write DIR0EXEC last */
511                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DIR0EXEC, opsw[0]);
512         }
513 }
514
515 static int xtensa_queue_pwr_reg_write(struct xtensa *xtensa, unsigned int reg, uint32_t data)
516 {
517         struct xtensa_debug_module *dm = &xtensa->dbg_mod;
518         return dm->pwr_ops->queue_reg_write(dm, reg, data);
519 }
520
521 /* NOTE: Assumes A3 has already been saved */
522 int xtensa_window_state_save(struct target *target, uint32_t *woe)
523 {
524         struct xtensa *xtensa = target_to_xtensa(target);
525         int woe_dis;
526         uint8_t woe_buf[4];
527
528         if (xtensa->core_config->windowed) {
529                 /* Save PS (LX) and disable window overflow exceptions prior to AR save */
530                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_PS, XT_REG_A3));
531                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
532                 xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR, woe_buf);
533                 int res = jtag_execute_queue();
534                 if (res != ERROR_OK) {
535                         LOG_ERROR("Failed to read PS (%d)!", res);
536                         return res;
537                 }
538                 xtensa_core_status_check(target);
539                 *woe = buf_get_u32(woe_buf, 0, 32);
540                 woe_dis = *woe & ~XT_PS_WOE_MSK;
541                 LOG_DEBUG("Clearing PS.WOE (0x%08" PRIx32 " -> 0x%08" PRIx32 ")", *woe, woe_dis);
542                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, woe_dis);
543                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
544                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_PS, XT_REG_A3));
545         }
546         return ERROR_OK;
547 }
548
549 /* NOTE: Assumes A3 has already been saved */
550 void xtensa_window_state_restore(struct target *target, uint32_t woe)
551 {
552         struct xtensa *xtensa = target_to_xtensa(target);
553         if (xtensa->core_config->windowed) {
554                 /* Restore window overflow exception state */
555                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, woe);
556                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
557                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_PS, XT_REG_A3));
558                 LOG_DEBUG("Restored PS.WOE (0x%08" PRIx32 ")", woe);
559         }
560 }
561
562 static bool xtensa_reg_is_readable(int flags, int cpenable)
563 {
564         if (flags & XT_REGF_NOREAD)
565                 return false;
566         if ((flags & XT_REGF_COPROC0) && (cpenable & BIT(0)) == 0)
567                 return false;
568         return true;
569 }
570
571 static bool xtensa_scratch_regs_fixup(struct xtensa *xtensa, struct reg *reg_list, int i, int j, int a_idx, int ar_idx)
572 {
573         int a_name = (a_idx == XT_AR_SCRATCH_A3) ? 3 : 4;
574         if (xtensa->scratch_ars[a_idx].intval && !xtensa->scratch_ars[ar_idx].intval) {
575                 LOG_DEBUG("AR conflict: a%d -> ar%d", a_name, j - XT_REG_IDX_AR0);
576                 memcpy(reg_list[j].value, reg_list[i].value, sizeof(xtensa_reg_val_t));
577         } else {
578                 LOG_DEBUG("AR conflict: ar%d -> a%d", j - XT_REG_IDX_AR0, a_name);
579                 memcpy(reg_list[i].value, reg_list[j].value, sizeof(xtensa_reg_val_t));
580         }
581         return xtensa->scratch_ars[a_idx].intval && xtensa->scratch_ars[ar_idx].intval;
582 }
583
584 static int xtensa_write_dirty_registers(struct target *target)
585 {
586         struct xtensa *xtensa = target_to_xtensa(target);
587         int res;
588         xtensa_reg_val_t regval, windowbase = 0;
589         bool scratch_reg_dirty = false, delay_cpenable = false;
590         struct reg *reg_list = xtensa->core_cache->reg_list;
591         unsigned int reg_list_size = xtensa->core_cache->num_regs;
592         bool preserve_a3 = false;
593         uint8_t a3_buf[4];
594         xtensa_reg_val_t a3, woe;
595
596         LOG_TARGET_DEBUG(target, "start");
597
598         /* We need to write the dirty registers in the cache list back to the processor.
599          * Start by writing the SFR/user registers. */
600         for (unsigned int i = 0; i < reg_list_size; i++) {
601                 struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
602                 unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
603                 if (reg_list[i].dirty) {
604                         if (rlist[ridx].type == XT_REG_SPECIAL ||
605                                 rlist[ridx].type == XT_REG_USER ||
606                                 rlist[ridx].type == XT_REG_FR) {
607                                 scratch_reg_dirty = true;
608                                 if (i == XT_REG_IDX_CPENABLE) {
609                                         delay_cpenable = true;
610                                         continue;
611                                 }
612                                 regval = xtensa_reg_get(target, i);
613                                 LOG_TARGET_DEBUG(target, "Writing back reg %s (%d) val %08" PRIX32,
614                                         reg_list[i].name,
615                                         rlist[ridx].reg_num,
616                                         regval);
617                                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, regval);
618                                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
619                                 if (reg_list[i].exist) {
620                                         unsigned int reg_num = rlist[ridx].reg_num;
621                                         if (rlist[ridx].type == XT_REG_USER) {
622                                                 xtensa_queue_exec_ins(xtensa, XT_INS_WUR(xtensa, reg_num, XT_REG_A3));
623                                         } else if (rlist[ridx].type == XT_REG_FR) {
624                                                 xtensa_queue_exec_ins(xtensa, XT_INS_WFR(xtensa, reg_num, XT_REG_A3));
625                                         } else {/*SFR */
626                                                 if (reg_num == XT_PC_REG_NUM_VIRTUAL)
627                                                         /* reg number of PC for debug interrupt depends on NDEBUGLEVEL
628                                                          **/
629                                                         reg_num =
630                                                                 (XT_PC_REG_NUM_BASE +
631                                                                 xtensa->core_config->debug.irq_level);
632                                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, reg_num, XT_REG_A3));
633                                         }
634                                 }
635                                 reg_list[i].dirty = false;
636                         }
637                 }
638         }
639         if (scratch_reg_dirty)
640                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
641         if (delay_cpenable) {
642                 regval = xtensa_reg_get(target, XT_REG_IDX_CPENABLE);
643                 LOG_TARGET_DEBUG(target, "Writing back reg cpenable (224) val %08" PRIX32, regval);
644                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, regval);
645                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
646                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa,
647                                 xtensa_regs[XT_REG_IDX_CPENABLE].reg_num,
648                                 XT_REG_A3));
649                 reg_list[XT_REG_IDX_CPENABLE].dirty = false;
650         }
651
652         preserve_a3 = (xtensa->core_config->windowed);
653         if (preserve_a3) {
654                 /* Save (windowed) A3 for scratch use */
655                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
656                 xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR, a3_buf);
657                 res = jtag_execute_queue();
658                 xtensa_core_status_check(target);
659                 a3 = buf_get_u32(a3_buf, 0, 32);
660         }
661
662         if (xtensa->core_config->windowed) {
663                 res = xtensa_window_state_save(target, &woe);
664                 if (res != ERROR_OK)
665                         return res;
666                 /* Grab the windowbase, we need it. */
667                 windowbase = xtensa_reg_get(target, XT_REG_IDX_WINDOWBASE);
668                 /* Check if there are mismatches between the ARx and corresponding Ax registers.
669                  * When the user sets a register on a windowed config, xt-gdb may set the ARx
670                  * register directly.  Thus we take ARx as priority over Ax if both are dirty
671                  * and it's unclear if the user set one over the other explicitly.
672                  */
673                 for (unsigned int i = XT_REG_IDX_A0; i <= XT_REG_IDX_A15; i++) {
674                         unsigned int j = xtensa_windowbase_offset_to_canonical(xtensa, i, windowbase);
675                         if (reg_list[i].dirty && reg_list[j].dirty) {
676                                 if (memcmp(reg_list[i].value, reg_list[j].value, sizeof(xtensa_reg_val_t)) != 0) {
677                                         bool show_warning = true;
678                                         if (i == XT_REG_IDX_A3)
679                                                 show_warning = xtensa_scratch_regs_fixup(xtensa,
680                                                         reg_list, i, j, XT_AR_SCRATCH_A3, XT_AR_SCRATCH_AR3);
681                                         else if (i == XT_REG_IDX_A4)
682                                                 show_warning = xtensa_scratch_regs_fixup(xtensa,
683                                                         reg_list, i, j, XT_AR_SCRATCH_A4, XT_AR_SCRATCH_AR4);
684                                         if (show_warning)
685                                                 LOG_WARNING(
686                                                         "Warning: Both A%d [0x%08" PRIx32
687                                                         "] as well as its underlying physical register "
688                                                         "(AR%d) [0x%08" PRIx32 "] are dirty and differ in value",
689                                                         i - XT_REG_IDX_A0,
690                                                         buf_get_u32(reg_list[i].value, 0, 32),
691                                                         j - XT_REG_IDX_AR0,
692                                                         buf_get_u32(reg_list[j].value, 0, 32));
693                                 }
694                         }
695                 }
696         }
697
698         /* Write A0-A16. */
699         for (unsigned int i = 0; i < 16; i++) {
700                 if (reg_list[XT_REG_IDX_A0 + i].dirty) {
701                         regval = xtensa_reg_get(target, XT_REG_IDX_A0 + i);
702                         LOG_TARGET_DEBUG(target, "Writing back reg %s value %08" PRIX32 ", num =%i",
703                                 xtensa_regs[XT_REG_IDX_A0 + i].name,
704                                 regval,
705                                 xtensa_regs[XT_REG_IDX_A0 + i].reg_num);
706                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, regval);
707                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, i));
708                         reg_list[XT_REG_IDX_A0 + i].dirty = false;
709                         if (i == 3) {
710                                 /* Avoid stomping A3 during restore at end of function */
711                                 a3 = regval;
712                         }
713                 }
714         }
715
716         if (xtensa->core_config->windowed) {
717                 /* Now write AR registers */
718                 for (unsigned int j = 0; j < XT_REG_IDX_ARLAST; j += 16) {
719                         /* Write the 16 registers we can see */
720                         for (unsigned int i = 0; i < 16; i++) {
721                                 if (i + j < xtensa->core_config->aregs_num) {
722                                         enum xtensa_reg_id realadr =
723                                                 xtensa_windowbase_offset_to_canonical(xtensa, XT_REG_IDX_AR0 + i + j,
724                                                 windowbase);
725                                         /* Write back any dirty un-windowed registers */
726                                         if (reg_list[realadr].dirty) {
727                                                 regval = xtensa_reg_get(target, realadr);
728                                                 LOG_TARGET_DEBUG(
729                                                         target,
730                                                         "Writing back reg %s value %08" PRIX32 ", num =%i",
731                                                         xtensa_regs[realadr].name,
732                                                         regval,
733                                                         xtensa_regs[realadr].reg_num);
734                                                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, regval);
735                                                 xtensa_queue_exec_ins(xtensa,
736                                                         XT_INS_RSR(xtensa, XT_SR_DDR,
737                                                                 xtensa_regs[XT_REG_IDX_AR0 + i].reg_num));
738                                                 reg_list[realadr].dirty = false;
739                                                 if ((i + j) == 3)
740                                                         /* Avoid stomping AR during A3 restore at end of function */
741                                                         a3 = regval;
742                                         }
743                                 }
744                         }
745                         /*Now rotate the window so we'll see the next 16 registers. The final rotate
746                          * will wraparound, */
747                         /*leaving us in the state we were. */
748                         xtensa_queue_exec_ins(xtensa, XT_INS_ROTW(xtensa, 4));
749                 }
750
751                 xtensa_window_state_restore(target, woe);
752
753                 for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++)
754                         xtensa->scratch_ars[s].intval = false;
755         }
756
757         if (preserve_a3) {
758                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, a3);
759                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
760         }
761
762         res = jtag_execute_queue();
763         xtensa_core_status_check(target);
764
765         return res;
766 }
767
768 static inline bool xtensa_is_stopped(struct target *target)
769 {
770         struct xtensa *xtensa = target_to_xtensa(target);
771         return xtensa->dbg_mod.core_status.dsr & OCDDSR_STOPPED;
772 }
773
774 int xtensa_examine(struct target *target)
775 {
776         struct xtensa *xtensa = target_to_xtensa(target);
777         unsigned int cmd = PWRCTL_DEBUGWAKEUP | PWRCTL_MEMWAKEUP | PWRCTL_COREWAKEUP;
778
779         LOG_DEBUG("coreid = %d", target->coreid);
780
781         if (xtensa->core_config->core_type == XT_UNDEF) {
782                 LOG_ERROR("XTensa core not configured; is xtensa-core-openocd.cfg missing?");
783                 return ERROR_FAIL;
784         }
785
786         xtensa_queue_pwr_reg_write(xtensa, DMREG_PWRCTL, cmd);
787         xtensa_queue_pwr_reg_write(xtensa, DMREG_PWRCTL, cmd | PWRCTL_JTAGDEBUGUSE);
788         xtensa_dm_queue_enable(&xtensa->dbg_mod);
789         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
790         int res = jtag_execute_queue();
791         if (res != ERROR_OK)
792                 return res;
793         if (!xtensa_dm_is_online(&xtensa->dbg_mod)) {
794                 LOG_ERROR("Unexpected OCD_ID = %08" PRIx32, xtensa->dbg_mod.device_id);
795                 return ERROR_TARGET_FAILURE;
796         }
797         LOG_DEBUG("OCD_ID = %08" PRIx32, xtensa->dbg_mod.device_id);
798         if (!target_was_examined(target))
799                 target_set_examined(target);
800         xtensa_smpbreak_write(xtensa, xtensa->smp_break);
801         return ERROR_OK;
802 }
803
804 int xtensa_wakeup(struct target *target)
805 {
806         struct xtensa *xtensa = target_to_xtensa(target);
807         unsigned int cmd = PWRCTL_DEBUGWAKEUP | PWRCTL_MEMWAKEUP | PWRCTL_COREWAKEUP;
808
809         if (xtensa->reset_asserted)
810                 cmd |= PWRCTL_CORERESET;
811         xtensa_queue_pwr_reg_write(xtensa, DMREG_PWRCTL, cmd);
812         /* TODO: can we join this with the write above? */
813         xtensa_queue_pwr_reg_write(xtensa, DMREG_PWRCTL, cmd | PWRCTL_JTAGDEBUGUSE);
814         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
815         return jtag_execute_queue();
816 }
817
818 int xtensa_smpbreak_write(struct xtensa *xtensa, uint32_t set)
819 {
820         uint32_t dsr_data = 0x00110000;
821         uint32_t clear = (set | OCDDCR_ENABLEOCD) ^
822                 (OCDDCR_BREAKINEN | OCDDCR_BREAKOUTEN | OCDDCR_RUNSTALLINEN |
823                 OCDDCR_DEBUGMODEOUTEN | OCDDCR_ENABLEOCD);
824
825         LOG_TARGET_DEBUG(xtensa->target, "write smpbreak set=0x%" PRIx32 " clear=0x%" PRIx32, set, clear);
826         xtensa_queue_dbg_reg_write(xtensa, NARADR_DCRSET, set | OCDDCR_ENABLEOCD);
827         xtensa_queue_dbg_reg_write(xtensa, NARADR_DCRCLR, clear);
828         xtensa_queue_dbg_reg_write(xtensa, NARADR_DSR, dsr_data);
829         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
830         return jtag_execute_queue();
831 }
832
833 int xtensa_smpbreak_set(struct target *target, uint32_t set)
834 {
835         struct xtensa *xtensa = target_to_xtensa(target);
836         int res = ERROR_OK;
837
838         xtensa->smp_break = set;
839         if (target_was_examined(target))
840                 res = xtensa_smpbreak_write(xtensa, xtensa->smp_break);
841         LOG_TARGET_DEBUG(target, "set smpbreak=%" PRIx32 ", state=%i", set, target->state);
842         return res;
843 }
844
845 int xtensa_smpbreak_read(struct xtensa *xtensa, uint32_t *val)
846 {
847         uint8_t dcr_buf[sizeof(uint32_t)];
848
849         xtensa_queue_dbg_reg_read(xtensa, NARADR_DCRSET, dcr_buf);
850         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
851         int res = jtag_execute_queue();
852         *val = buf_get_u32(dcr_buf, 0, 32);
853
854         return res;
855 }
856
857 int xtensa_smpbreak_get(struct target *target, uint32_t *val)
858 {
859         struct xtensa *xtensa = target_to_xtensa(target);
860         *val = xtensa->smp_break;
861         return ERROR_OK;
862 }
863
864 static inline xtensa_reg_val_t xtensa_reg_get_value(struct reg *reg)
865 {
866         return buf_get_u32(reg->value, 0, 32);
867 }
868
869 static inline void xtensa_reg_set_value(struct reg *reg, xtensa_reg_val_t value)
870 {
871         buf_set_u32(reg->value, 0, 32, value);
872         reg->dirty = true;
873 }
874
875 int xtensa_core_status_check(struct target *target)
876 {
877         struct xtensa *xtensa = target_to_xtensa(target);
878         int res, needclear = 0;
879
880         xtensa_dm_core_status_read(&xtensa->dbg_mod);
881         xtensa_dsr_t dsr = xtensa_dm_core_status_get(&xtensa->dbg_mod);
882         LOG_TARGET_DEBUG(target, "DSR (%08" PRIX32 ")", dsr);
883         if (dsr & OCDDSR_EXECBUSY) {
884                 if (!xtensa->suppress_dsr_errors)
885                         LOG_TARGET_ERROR(target, "DSR (%08" PRIX32 ") indicates target still busy!", dsr);
886                 needclear = 1;
887         }
888         if (dsr & OCDDSR_EXECEXCEPTION) {
889                 if (!xtensa->suppress_dsr_errors)
890                         LOG_TARGET_ERROR(target,
891                                 "DSR (%08" PRIX32 ") indicates DIR instruction generated an exception!",
892                                 dsr);
893                 needclear = 1;
894         }
895         if (dsr & OCDDSR_EXECOVERRUN) {
896                 if (!xtensa->suppress_dsr_errors)
897                         LOG_TARGET_ERROR(target,
898                                 "DSR (%08" PRIX32 ") indicates DIR instruction generated an overrun!",
899                                 dsr);
900                 needclear = 1;
901         }
902         if (needclear) {
903                 res = xtensa_dm_core_status_clear(&xtensa->dbg_mod,
904                         OCDDSR_EXECEXCEPTION | OCDDSR_EXECOVERRUN);
905                 if (res != ERROR_OK && !xtensa->suppress_dsr_errors)
906                         LOG_TARGET_ERROR(target, "clearing DSR failed!");
907                 return ERROR_FAIL;
908         }
909         return ERROR_OK;
910 }
911
912 xtensa_reg_val_t xtensa_reg_get(struct target *target, enum xtensa_reg_id reg_id)
913 {
914         struct xtensa *xtensa = target_to_xtensa(target);
915         struct reg *reg = &xtensa->core_cache->reg_list[reg_id];
916         return xtensa_reg_get_value(reg);
917 }
918
919 void xtensa_reg_set(struct target *target, enum xtensa_reg_id reg_id, xtensa_reg_val_t value)
920 {
921         struct xtensa *xtensa = target_to_xtensa(target);
922         struct reg *reg = &xtensa->core_cache->reg_list[reg_id];
923         if (xtensa_reg_get_value(reg) == value)
924                 return;
925         xtensa_reg_set_value(reg, value);
926 }
927
928 /* Set Ax (XT_REG_RELGEN) register along with its underlying ARx (XT_REG_GENERAL) */
929 void xtensa_reg_set_deep_relgen(struct target *target, enum xtensa_reg_id a_idx, xtensa_reg_val_t value)
930 {
931         struct xtensa *xtensa = target_to_xtensa(target);
932         uint32_t windowbase = (xtensa->core_config->windowed ?
933                 xtensa_reg_get(target, XT_REG_IDX_WINDOWBASE) : 0);
934         int ar_idx = xtensa_windowbase_offset_to_canonical(xtensa, a_idx, windowbase);
935         xtensa_reg_set(target, a_idx, value);
936         xtensa_reg_set(target, ar_idx, value);
937 }
938
939 /* Read cause for entering halted state; return bitmask in DEBUGCAUSE_* format */
940 uint32_t xtensa_cause_get(struct target *target)
941 {
942         return xtensa_reg_get(target, XT_REG_IDX_DEBUGCAUSE);
943 }
944
945 void xtensa_cause_clear(struct target *target)
946 {
947         struct xtensa *xtensa = target_to_xtensa(target);
948         xtensa_reg_set(target, XT_REG_IDX_DEBUGCAUSE, 0);
949         xtensa->core_cache->reg_list[XT_REG_IDX_DEBUGCAUSE].dirty = false;
950 }
951
952 int xtensa_assert_reset(struct target *target)
953 {
954         struct xtensa *xtensa = target_to_xtensa(target);
955
956         LOG_TARGET_DEBUG(target, "target_number=%i, begin", target->target_number);
957         target->state = TARGET_RESET;
958         xtensa_queue_pwr_reg_write(xtensa,
959                 DMREG_PWRCTL,
960                 PWRCTL_JTAGDEBUGUSE | PWRCTL_DEBUGWAKEUP | PWRCTL_MEMWAKEUP | PWRCTL_COREWAKEUP |
961                 PWRCTL_CORERESET);
962         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
963         int res = jtag_execute_queue();
964         if (res != ERROR_OK)
965                 return res;
966         xtensa->reset_asserted = true;
967         return res;
968 }
969
970 int xtensa_deassert_reset(struct target *target)
971 {
972         struct xtensa *xtensa = target_to_xtensa(target);
973
974         LOG_TARGET_DEBUG(target, "halt=%d", target->reset_halt);
975         if (target->reset_halt)
976                 xtensa_queue_dbg_reg_write(xtensa,
977                         NARADR_DCRSET,
978                         OCDDCR_ENABLEOCD | OCDDCR_DEBUGINTERRUPT);
979         xtensa_queue_pwr_reg_write(xtensa,
980                 DMREG_PWRCTL,
981                 PWRCTL_JTAGDEBUGUSE | PWRCTL_DEBUGWAKEUP | PWRCTL_MEMWAKEUP | PWRCTL_COREWAKEUP);
982         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
983         int res = jtag_execute_queue();
984         if (res != ERROR_OK)
985                 return res;
986         target->state = TARGET_RUNNING;
987         xtensa->reset_asserted = false;
988         return res;
989 }
990
991 int xtensa_soft_reset_halt(struct target *target)
992 {
993         LOG_TARGET_DEBUG(target, "begin");
994         return xtensa_assert_reset(target);
995 }
996
997 int xtensa_fetch_all_regs(struct target *target)
998 {
999         struct xtensa *xtensa = target_to_xtensa(target);
1000         struct reg *reg_list = xtensa->core_cache->reg_list;
1001         unsigned int reg_list_size = xtensa->core_cache->num_regs;
1002         xtensa_reg_val_t cpenable = 0, windowbase = 0, a3;
1003         uint32_t woe;
1004         uint8_t a3_buf[4];
1005         bool debug_dsrs = !xtensa->regs_fetched || LOG_LEVEL_IS(LOG_LVL_DEBUG);
1006
1007         union xtensa_reg_val_u *regvals = calloc(reg_list_size, sizeof(*regvals));
1008         if (!regvals) {
1009                 LOG_TARGET_ERROR(target, "unable to allocate memory for regvals!");
1010                 return ERROR_FAIL;
1011         }
1012         union xtensa_reg_val_u *dsrs = calloc(reg_list_size, sizeof(*dsrs));
1013         if (!dsrs) {
1014                 LOG_TARGET_ERROR(target, "unable to allocate memory for dsrs!");
1015                 free(regvals);
1016                 return ERROR_FAIL;
1017         }
1018
1019         LOG_TARGET_DEBUG(target, "start");
1020
1021         /* Save (windowed) A3 so cache matches physical AR3; A3 usable as scratch */
1022         xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1023         xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR, a3_buf);
1024         int res = xtensa_window_state_save(target, &woe);
1025         if (res != ERROR_OK)
1026                 goto xtensa_fetch_all_regs_done;
1027
1028         /* Assume the CPU has just halted. We now want to fill the register cache with all the
1029          * register contents GDB needs. For speed, we pipeline all the read operations, execute them
1030          * in one go, then sort everything out from the regvals variable. */
1031
1032         /* Start out with AREGS; we can reach those immediately. Grab them per 16 registers. */
1033         for (unsigned int j = 0; j < XT_AREGS_NUM_MAX; j += 16) {
1034                 /*Grab the 16 registers we can see */
1035                 for (unsigned int i = 0; i < 16; i++) {
1036                         if (i + j < xtensa->core_config->aregs_num) {
1037                                 xtensa_queue_exec_ins(xtensa,
1038                                         XT_INS_WSR(xtensa, XT_SR_DDR, xtensa_regs[XT_REG_IDX_AR0 + i].reg_num));
1039                                 xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR,
1040                                         regvals[XT_REG_IDX_AR0 + i + j].buf);
1041                                 if (debug_dsrs)
1042                                         xtensa_queue_dbg_reg_read(xtensa, NARADR_DSR,
1043                                                 dsrs[XT_REG_IDX_AR0 + i + j].buf);
1044                         }
1045                 }
1046                 if (xtensa->core_config->windowed)
1047                         /* Now rotate the window so we'll see the next 16 registers. The final rotate
1048                          * will wraparound, */
1049                         /* leaving us in the state we were. */
1050                         xtensa_queue_exec_ins(xtensa, XT_INS_ROTW(xtensa, 4));
1051         }
1052         xtensa_window_state_restore(target, woe);
1053
1054         if (xtensa->core_config->coproc) {
1055                 /* As the very first thing after AREGS, go grab CPENABLE */
1056                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, xtensa_regs[XT_REG_IDX_CPENABLE].reg_num, XT_REG_A3));
1057                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1058                 xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR, regvals[XT_REG_IDX_CPENABLE].buf);
1059         }
1060         res = jtag_execute_queue();
1061         if (res != ERROR_OK) {
1062                 LOG_ERROR("Failed to read ARs (%d)!", res);
1063                 goto xtensa_fetch_all_regs_done;
1064         }
1065         xtensa_core_status_check(target);
1066
1067         a3 = buf_get_u32(a3_buf, 0, 32);
1068
1069         if (xtensa->core_config->coproc) {
1070                 cpenable = buf_get_u32(regvals[XT_REG_IDX_CPENABLE].buf, 0, 32);
1071
1072                 /* Enable all coprocessors (by setting all bits in CPENABLE) so we can read FP and user registers. */
1073                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, 0xffffffff);
1074                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1075                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, xtensa_regs[XT_REG_IDX_CPENABLE].reg_num, XT_REG_A3));
1076
1077                 /* Save CPENABLE; flag dirty later (when regcache updated) so original value is always restored */
1078                 LOG_TARGET_DEBUG(target, "CPENABLE: was 0x%" PRIx32 ", all enabled", cpenable);
1079                 xtensa_reg_set(target, XT_REG_IDX_CPENABLE, cpenable);
1080         }
1081         /* We're now free to use any of A0-A15 as scratch registers
1082          * Grab the SFRs and user registers first. We use A3 as a scratch register. */
1083         for (unsigned int i = 0; i < reg_list_size; i++) {
1084                 struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1085                 unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1086                 if (xtensa_reg_is_readable(rlist[ridx].flags, cpenable) && rlist[ridx].exist) {
1087                         bool reg_fetched = true;
1088                         unsigned int reg_num = rlist[ridx].reg_num;
1089                         switch (rlist[ridx].type) {
1090                         case XT_REG_USER:
1091                                 xtensa_queue_exec_ins(xtensa, XT_INS_RUR(xtensa, reg_num, XT_REG_A3));
1092                                 break;
1093                         case XT_REG_FR:
1094                                 xtensa_queue_exec_ins(xtensa, XT_INS_RFR(xtensa, reg_num, XT_REG_A3));
1095                                 break;
1096                         case XT_REG_SPECIAL:
1097                                 if (reg_num == XT_PC_REG_NUM_VIRTUAL) {
1098                                         /* reg number of PC for debug interrupt depends on NDEBUGLEVEL */
1099                                         reg_num = (XT_PC_REG_NUM_BASE + xtensa->core_config->debug.irq_level);
1100                                 } else if (reg_num == xtensa_regs[XT_REG_IDX_CPENABLE].reg_num) {
1101                                         /* CPENABLE already read/updated; don't re-read */
1102                                         reg_fetched = false;
1103                                         break;
1104                                 }
1105                                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, reg_num, XT_REG_A3));
1106                                 break;
1107                         default:
1108                                 reg_fetched = false;
1109                         }
1110                         if (reg_fetched) {
1111                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1112                                 xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR, regvals[i].buf);
1113                                 if (debug_dsrs)
1114                                         xtensa_queue_dbg_reg_read(xtensa, NARADR_DSR, dsrs[i].buf);
1115                         }
1116                 }
1117         }
1118         /* Ok, send the whole mess to the CPU. */
1119         res = jtag_execute_queue();
1120         if (res != ERROR_OK) {
1121                 LOG_ERROR("Failed to fetch AR regs!");
1122                 goto xtensa_fetch_all_regs_done;
1123         }
1124         xtensa_core_status_check(target);
1125
1126         if (debug_dsrs) {
1127                 /* DSR checking: follows order in which registers are requested. */
1128                 for (unsigned int i = 0; i < reg_list_size; i++) {
1129                         struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1130                         unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1131                         if (xtensa_reg_is_readable(rlist[ridx].flags, cpenable) && rlist[ridx].exist &&
1132                                 (rlist[ridx].type != XT_REG_DEBUG) &&
1133                                 (rlist[ridx].type != XT_REG_RELGEN) &&
1134                                 (rlist[ridx].type != XT_REG_TIE) &&
1135                                 (rlist[ridx].type != XT_REG_OTHER)) {
1136                                 if (buf_get_u32(dsrs[i].buf, 0, 32) & OCDDSR_EXECEXCEPTION) {
1137                                         LOG_ERROR("Exception reading %s!", reg_list[i].name);
1138                                         res = ERROR_FAIL;
1139                                         goto xtensa_fetch_all_regs_done;
1140                                 }
1141                         }
1142                 }
1143         }
1144
1145         if (xtensa->core_config->windowed)
1146                 /* We need the windowbase to decode the general addresses. */
1147                 windowbase = buf_get_u32(regvals[XT_REG_IDX_WINDOWBASE].buf, 0, 32);
1148         /* Decode the result and update the cache. */
1149         for (unsigned int i = 0; i < reg_list_size; i++) {
1150                 struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1151                 unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1152                 if (xtensa_reg_is_readable(rlist[ridx].flags, cpenable) && rlist[ridx].exist) {
1153                         if ((xtensa->core_config->windowed) && (rlist[ridx].type == XT_REG_GENERAL)) {
1154                                 /* The 64-value general register set is read from (windowbase) on down.
1155                                  * We need to get the real register address by subtracting windowbase and
1156                                  * wrapping around. */
1157                                 enum xtensa_reg_id realadr = xtensa_canonical_to_windowbase_offset(xtensa, i,
1158                                         windowbase);
1159                                 buf_cpy(regvals[realadr].buf, reg_list[i].value, reg_list[i].size);
1160                         } else if (rlist[ridx].type == XT_REG_RELGEN) {
1161                                 buf_cpy(regvals[rlist[ridx].reg_num].buf, reg_list[i].value, reg_list[i].size);
1162                                 if (xtensa_extra_debug_log) {
1163                                         xtensa_reg_val_t regval = buf_get_u32(regvals[rlist[ridx].reg_num].buf, 0, 32);
1164                                         LOG_DEBUG("%s = 0x%x", rlist[ridx].name, regval);
1165                                 }
1166                         } else {
1167                                 xtensa_reg_val_t regval = buf_get_u32(regvals[i].buf, 0, 32);
1168                                 bool is_dirty = (i == XT_REG_IDX_CPENABLE);
1169                                 if (xtensa_extra_debug_log)
1170                                         LOG_INFO("Register %s: 0x%X", reg_list[i].name, regval);
1171                                 xtensa_reg_set(target, i, regval);
1172                                 reg_list[i].dirty = is_dirty;   /*always do this _after_ xtensa_reg_set! */
1173                         }
1174                         reg_list[i].valid = true;
1175                 } else {
1176                         if ((rlist[ridx].flags & XT_REGF_MASK) == XT_REGF_NOREAD) {
1177                                 /* Report read-only registers all-zero but valid */
1178                                 reg_list[i].valid = true;
1179                                 xtensa_reg_set(target, i, 0);
1180                         } else {
1181                                 reg_list[i].valid = false;
1182                         }
1183                 }
1184         }
1185
1186         if (xtensa->core_config->windowed) {
1187                 /* We have used A3 as a scratch register.
1188                  * Windowed configs: restore A3's AR (XT_REG_GENERAL) and and flag for write-back.
1189                  */
1190                 enum xtensa_reg_id ar3_idx = xtensa_windowbase_offset_to_canonical(xtensa, XT_REG_IDX_A3, windowbase);
1191                 xtensa_reg_set(target, ar3_idx, a3);
1192                 xtensa_mark_register_dirty(xtensa, ar3_idx);
1193
1194                 /* Reset scratch_ars[] on fetch.  .chrval tracks AR mapping and changes w/ window */
1195                 sprintf(xtensa->scratch_ars[XT_AR_SCRATCH_AR3].chrval, "ar%d", ar3_idx - XT_REG_IDX_AR0);
1196                 enum xtensa_reg_id ar4_idx = xtensa_windowbase_offset_to_canonical(xtensa, XT_REG_IDX_A4, windowbase);
1197                 sprintf(xtensa->scratch_ars[XT_AR_SCRATCH_AR4].chrval, "ar%d", ar4_idx - XT_REG_IDX_AR0);
1198                 for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++)
1199                         xtensa->scratch_ars[s].intval = false;
1200         }
1201
1202         /* We have used A3 (XT_REG_RELGEN) as a scratch register.  Restore and flag for write-back. */
1203         xtensa_reg_set(target, XT_REG_IDX_A3, a3);
1204         xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
1205         xtensa->regs_fetched = true;
1206 xtensa_fetch_all_regs_done:
1207         free(regvals);
1208         free(dsrs);
1209         return res;
1210 }
1211
1212 int xtensa_get_gdb_reg_list(struct target *target,
1213         struct reg **reg_list[],
1214         int *reg_list_size,
1215         enum target_register_class reg_class)
1216 {
1217         struct xtensa *xtensa = target_to_xtensa(target);
1218         unsigned int num_regs;
1219
1220         if (reg_class == REG_CLASS_GENERAL) {
1221                 if ((xtensa->genpkt_regs_num == 0) || !xtensa->contiguous_regs_list) {
1222                         LOG_ERROR("reg_class %d unhandled; 'xtgregs' not found", reg_class);
1223                         return ERROR_FAIL;
1224                 }
1225                 num_regs = xtensa->genpkt_regs_num;
1226         } else {
1227                 /* Determine whether to return a contiguous or sparse register map */
1228                 num_regs = xtensa->regmap_contiguous ? xtensa->total_regs_num : xtensa->dbregs_num;
1229         }
1230
1231         LOG_DEBUG("reg_class=%i, num_regs=%d", (int)reg_class, num_regs);
1232
1233         *reg_list = calloc(num_regs, sizeof(struct reg *));
1234         if (!*reg_list)
1235                 return ERROR_FAIL;
1236
1237         *reg_list_size = num_regs;
1238         if (xtensa->regmap_contiguous) {
1239                 assert((num_regs <= xtensa->total_regs_num) && "contiguous regmap size internal error!");
1240                 for (unsigned int i = 0; i < num_regs; i++)
1241                         (*reg_list)[i] = xtensa->contiguous_regs_list[i];
1242                 return ERROR_OK;
1243         }
1244
1245         for (unsigned int i = 0; i < num_regs; i++)
1246                 (*reg_list)[i] = (struct reg *)&xtensa->empty_regs[i];
1247         unsigned int k = 0;
1248         for (unsigned int i = 0; i < xtensa->core_cache->num_regs && k < num_regs; i++) {
1249                 if (xtensa->core_cache->reg_list[i].exist) {
1250                         struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1251                         unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1252                         int sparse_idx = rlist[ridx].dbreg_num;
1253                         if (i == XT_REG_IDX_PS) {
1254                                 if (xtensa->eps_dbglevel_idx == 0) {
1255                                         LOG_ERROR("eps_dbglevel_idx not set\n");
1256                                         return ERROR_FAIL;
1257                                 }
1258                                 (*reg_list)[sparse_idx] = &xtensa->core_cache->reg_list[xtensa->eps_dbglevel_idx];
1259                                 if (xtensa_extra_debug_log)
1260                                         LOG_DEBUG("SPARSE GDB reg 0x%x getting EPS%d 0x%x",
1261                                                 sparse_idx, xtensa->core_config->debug.irq_level,
1262                                                 xtensa_reg_get_value((*reg_list)[sparse_idx]));
1263                         } else if (rlist[ridx].type == XT_REG_RELGEN) {
1264                                 (*reg_list)[sparse_idx - XT_REG_IDX_ARFIRST] = &xtensa->core_cache->reg_list[i];
1265                         } else {
1266                                 (*reg_list)[sparse_idx] = &xtensa->core_cache->reg_list[i];
1267                         }
1268                         if (i == XT_REG_IDX_PC)
1269                                 /* Make a duplicate copy of PC for external access */
1270                                 (*reg_list)[XT_PC_DBREG_NUM_BASE] = &xtensa->core_cache->reg_list[i];
1271                         k++;
1272                 }
1273         }
1274
1275         if (k == num_regs)
1276                 LOG_ERROR("SPARSE GDB reg list full (size %d)", k);
1277
1278         return ERROR_OK;
1279 }
1280
1281 int xtensa_mmu_is_enabled(struct target *target, int *enabled)
1282 {
1283         struct xtensa *xtensa = target_to_xtensa(target);
1284         *enabled = xtensa->core_config->mmu.itlb_entries_count > 0 ||
1285                 xtensa->core_config->mmu.dtlb_entries_count > 0;
1286         return ERROR_OK;
1287 }
1288
1289 int xtensa_halt(struct target *target)
1290 {
1291         struct xtensa *xtensa = target_to_xtensa(target);
1292
1293         LOG_TARGET_DEBUG(target, "start");
1294         if (target->state == TARGET_HALTED) {
1295                 LOG_TARGET_DEBUG(target, "target was already halted");
1296                 return ERROR_OK;
1297         }
1298         /* First we have to read dsr and check if the target stopped */
1299         int res = xtensa_dm_core_status_read(&xtensa->dbg_mod);
1300         if (res != ERROR_OK) {
1301                 LOG_TARGET_ERROR(target, "Failed to read core status!");
1302                 return res;
1303         }
1304         LOG_TARGET_DEBUG(target, "Core status 0x%" PRIx32, xtensa_dm_core_status_get(&xtensa->dbg_mod));
1305         if (!xtensa_is_stopped(target)) {
1306                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DCRSET, OCDDCR_ENABLEOCD | OCDDCR_DEBUGINTERRUPT);
1307                 xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
1308                 res = jtag_execute_queue();
1309                 if (res != ERROR_OK)
1310                         LOG_TARGET_ERROR(target, "Failed to set OCDDCR_DEBUGINTERRUPT. Can't halt.");
1311         }
1312
1313         return res;
1314 }
1315
1316 int xtensa_prepare_resume(struct target *target,
1317         int current,
1318         target_addr_t address,
1319         int handle_breakpoints,
1320         int debug_execution)
1321 {
1322         struct xtensa *xtensa = target_to_xtensa(target);
1323         uint32_t bpena = 0;
1324
1325         LOG_TARGET_DEBUG(target,
1326                 "current=%d address=" TARGET_ADDR_FMT ", handle_breakpoints=%i, debug_execution=%i)",
1327                 current,
1328                 address,
1329                 handle_breakpoints,
1330                 debug_execution);
1331
1332         if (target->state != TARGET_HALTED) {
1333                 LOG_TARGET_WARNING(target, "target not halted");
1334                 return ERROR_TARGET_NOT_HALTED;
1335         }
1336
1337         if (address && !current) {
1338                 xtensa_reg_set(target, XT_REG_IDX_PC, address);
1339         } else {
1340                 uint32_t cause = xtensa_cause_get(target);
1341                 LOG_TARGET_DEBUG(target, "DEBUGCAUSE 0x%x (watchpoint %lu) (break %lu)",
1342                         cause, (cause & DEBUGCAUSE_DB), (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN)));
1343                 if (cause & DEBUGCAUSE_DB)
1344                         /* We stopped due to a watchpoint. We can't just resume executing the
1345                          * instruction again because */
1346                         /* that would trigger the watchpoint again. To fix this, we single-step,
1347                          * which ignores watchpoints. */
1348                         xtensa_do_step(target, current, address, handle_breakpoints);
1349                 if (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN))
1350                         /* We stopped due to a break instruction. We can't just resume executing the
1351                          * instruction again because */
1352                         /* that would trigger the break again. To fix this, we single-step, which
1353                          * ignores break. */
1354                         xtensa_do_step(target, current, address, handle_breakpoints);
1355         }
1356
1357         /* Write back hw breakpoints. Current FreeRTOS SMP code can set a hw breakpoint on an
1358          * exception; we need to clear that and return to the breakpoints gdb has set on resume. */
1359         for (unsigned int slot = 0; slot < xtensa->core_config->debug.ibreaks_num; slot++) {
1360                 if (xtensa->hw_brps[slot]) {
1361                         /* Write IBREAKA[slot] and set bit #slot in IBREAKENABLE */
1362                         xtensa_reg_set(target, XT_REG_IDX_IBREAKA0 + slot, xtensa->hw_brps[slot]->address);
1363                         bpena |= BIT(slot);
1364                 }
1365         }
1366         xtensa_reg_set(target, XT_REG_IDX_IBREAKENABLE, bpena);
1367
1368         /* Here we write all registers to the targets */
1369         int res = xtensa_write_dirty_registers(target);
1370         if (res != ERROR_OK)
1371                 LOG_TARGET_ERROR(target, "Failed to write back register cache.");
1372         return res;
1373 }
1374
1375 int xtensa_do_resume(struct target *target)
1376 {
1377         struct xtensa *xtensa = target_to_xtensa(target);
1378
1379         LOG_TARGET_DEBUG(target, "start");
1380
1381         xtensa_queue_exec_ins(xtensa, XT_INS_RFDO(xtensa));
1382         int res = jtag_execute_queue();
1383         if (res != ERROR_OK) {
1384                 LOG_TARGET_ERROR(target, "Failed to exec RFDO %d!", res);
1385                 return res;
1386         }
1387         xtensa_core_status_check(target);
1388         return ERROR_OK;
1389 }
1390
1391 int xtensa_resume(struct target *target,
1392         int current,
1393         target_addr_t address,
1394         int handle_breakpoints,
1395         int debug_execution)
1396 {
1397         LOG_TARGET_DEBUG(target, "start");
1398         int res = xtensa_prepare_resume(target, current, address, handle_breakpoints, debug_execution);
1399         if (res != ERROR_OK) {
1400                 LOG_TARGET_ERROR(target, "Failed to prepare for resume!");
1401                 return res;
1402         }
1403         res = xtensa_do_resume(target);
1404         if (res != ERROR_OK) {
1405                 LOG_TARGET_ERROR(target, "Failed to resume!");
1406                 return res;
1407         }
1408
1409         target->debug_reason = DBG_REASON_NOTHALTED;
1410         if (!debug_execution)
1411                 target->state = TARGET_RUNNING;
1412         else
1413                 target->state = TARGET_DEBUG_RUNNING;
1414
1415         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1416
1417         return ERROR_OK;
1418 }
1419
1420 static bool xtensa_pc_in_winexc(struct target *target, target_addr_t pc)
1421 {
1422         struct xtensa *xtensa = target_to_xtensa(target);
1423         uint8_t insn_buf[XT_ISNS_SZ_MAX];
1424         int err = xtensa_read_buffer(target, pc, sizeof(insn_buf), insn_buf);
1425         if (err != ERROR_OK)
1426                 return false;
1427
1428         xtensa_insn_t insn = buf_get_u32(insn_buf, 0, 24);
1429         xtensa_insn_t masked = insn & XT_INS_L32E_S32E_MASK(xtensa);
1430         if (masked == XT_INS_L32E(xtensa, 0, 0, 0) || masked == XT_INS_S32E(xtensa, 0, 0, 0))
1431                 return true;
1432
1433         masked = insn & XT_INS_RFWO_RFWU_MASK(xtensa);
1434         if (masked == XT_INS_RFWO(xtensa) || masked == XT_INS_RFWU(xtensa))
1435                 return true;
1436
1437         return false;
1438 }
1439
1440 int xtensa_do_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
1441 {
1442         struct xtensa *xtensa = target_to_xtensa(target);
1443         int res;
1444         const uint32_t icount_val = -2; /* ICOUNT value to load for 1 step */
1445         xtensa_reg_val_t dbreakc[XT_WATCHPOINTS_NUM_MAX];
1446         xtensa_reg_val_t icountlvl, cause;
1447         xtensa_reg_val_t oldps, oldpc, cur_pc;
1448         bool ps_lowered = false;
1449
1450         LOG_TARGET_DEBUG(target, "current=%d, address=" TARGET_ADDR_FMT ", handle_breakpoints=%i",
1451                 current, address, handle_breakpoints);
1452
1453         if (target->state != TARGET_HALTED) {
1454                 LOG_TARGET_WARNING(target, "target not halted");
1455                 return ERROR_TARGET_NOT_HALTED;
1456         }
1457
1458         if (xtensa->eps_dbglevel_idx == 0) {
1459                 LOG_ERROR("eps_dbglevel_idx not set\n");
1460                 return ERROR_FAIL;
1461         }
1462
1463         /* Save old ps (EPS[dbglvl] on LX), pc */
1464         oldps = xtensa_reg_get(target, xtensa->eps_dbglevel_idx);
1465         oldpc = xtensa_reg_get(target, XT_REG_IDX_PC);
1466
1467         cause = xtensa_cause_get(target);
1468         LOG_TARGET_DEBUG(target, "oldps=%" PRIx32 ", oldpc=%" PRIx32 " dbg_cause=%" PRIx32 " exc_cause=%" PRIx32,
1469                 oldps,
1470                 oldpc,
1471                 cause,
1472                 xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE));
1473         if (handle_breakpoints && (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN))) {
1474                 /* handle hard-coded SW breakpoints (e.g. syscalls) */
1475                 LOG_TARGET_DEBUG(target, "Increment PC to pass break instruction...");
1476                 xtensa_cause_clear(target);     /* so we don't recurse into the same routine */
1477                 /* pretend that we have stepped */
1478                 if (cause & DEBUGCAUSE_BI)
1479                         xtensa_reg_set(target, XT_REG_IDX_PC, oldpc + 3);       /* PC = PC+3 */
1480                 else
1481                         xtensa_reg_set(target, XT_REG_IDX_PC, oldpc + 2);       /* PC = PC+2 */
1482                 return ERROR_OK;
1483         }
1484
1485         /* Xtensa LX has an ICOUNTLEVEL register which sets the maximum interrupt level
1486          * at which the instructions are to be counted while stepping.
1487          *
1488          * For example, if we need to step by 2 instructions, and an interrupt occurs
1489          * in between, the processor will trigger the interrupt and halt after the 2nd
1490          * instruction within the interrupt vector and/or handler.
1491          *
1492          * However, sometimes we don't want the interrupt handlers to be executed at all
1493          * while stepping through the code. In this case (XT_STEPPING_ISR_OFF),
1494          * ICOUNTLEVEL can be lowered to the executing code's (level + 1) to prevent ISR
1495          * code from being counted during stepping.  Note that C exception handlers must
1496          * run at level 0 and hence will be counted and stepped into, should one occur.
1497          *
1498          * TODO: Certain instructions should never be single-stepped and should instead
1499          * be emulated (per DUG): RSIL >= DBGLEVEL, RSR/WSR [ICOUNT|ICOUNTLEVEL], and
1500          * RFI >= DBGLEVEL.
1501          */
1502         if (xtensa->stepping_isr_mode == XT_STEPPING_ISR_OFF) {
1503                 if (!xtensa->core_config->high_irq.enabled) {
1504                         LOG_TARGET_WARNING(
1505                                 target,
1506                                 "disabling IRQs while stepping is not implemented w/o high prio IRQs option!");
1507                         return ERROR_FAIL;
1508                 }
1509                 /* Update ICOUNTLEVEL accordingly */
1510                 icountlvl = MIN((oldps & 0xF) + 1, xtensa->core_config->debug.irq_level);
1511         } else {
1512                 icountlvl = xtensa->core_config->debug.irq_level;
1513         }
1514
1515         if (cause & DEBUGCAUSE_DB) {
1516                 /* We stopped due to a watchpoint. We can't just resume executing the instruction again because
1517                  * that would trigger the watchpoint again. To fix this, we remove watchpoints,single-step and
1518                  * re-enable the watchpoint. */
1519                 LOG_TARGET_DEBUG(
1520                         target,
1521                         "Single-stepping to get past instruction that triggered the watchpoint...");
1522                 xtensa_cause_clear(target);     /* so we don't recurse into the same routine */
1523                 /* Save all DBREAKCx registers and set to 0 to disable watchpoints */
1524                 for (unsigned int slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++) {
1525                         dbreakc[slot] = xtensa_reg_get(target, XT_REG_IDX_DBREAKC0 + slot);
1526                         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, 0);
1527                 }
1528         }
1529
1530         if (!handle_breakpoints && (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN)))
1531                 /* handle normal SW breakpoint */
1532                 xtensa_cause_clear(target);     /* so we don't recurse into the same routine */
1533         if ((oldps & 0xf) >= icountlvl) {
1534                 /* Lower interrupt level to allow stepping, but flag eps[dbglvl] to be restored */
1535                 ps_lowered = true;
1536                 uint32_t newps = (oldps & ~0xf) | (icountlvl - 1);
1537                 xtensa_reg_set(target, xtensa->eps_dbglevel_idx, newps);
1538                 LOG_TARGET_DEBUG(target,
1539                         "Lowering PS.INTLEVEL to allow stepping: %s <- 0x%08" PRIx32 " (was 0x%08" PRIx32 ")",
1540                         xtensa->core_cache->reg_list[xtensa->eps_dbglevel_idx].name,
1541                         newps,
1542                         oldps);
1543         }
1544         do {
1545                 xtensa_reg_set(target, XT_REG_IDX_ICOUNTLEVEL, icountlvl);
1546                 xtensa_reg_set(target, XT_REG_IDX_ICOUNT, icount_val);
1547
1548                 /* Now ICOUNT is set, we can resume as if we were going to run */
1549                 res = xtensa_prepare_resume(target, current, address, 0, 0);
1550                 if (res != ERROR_OK) {
1551                         LOG_TARGET_ERROR(target, "Failed to prepare resume for single step");
1552                         return res;
1553                 }
1554                 res = xtensa_do_resume(target);
1555                 if (res != ERROR_OK) {
1556                         LOG_TARGET_ERROR(target, "Failed to resume after setting up single step");
1557                         return res;
1558                 }
1559
1560                 /* Wait for stepping to complete */
1561                 long long start = timeval_ms();
1562                 while (timeval_ms() < start + 500) {
1563                         /* Do not use target_poll here, it also triggers other things... just manually read the DSR
1564                          *until stepping is complete. */
1565                         usleep(1000);
1566                         res = xtensa_dm_core_status_read(&xtensa->dbg_mod);
1567                         if (res != ERROR_OK) {
1568                                 LOG_TARGET_ERROR(target, "Failed to read core status!");
1569                                 return res;
1570                         }
1571                         if (xtensa_is_stopped(target))
1572                                 break;
1573                         usleep(1000);
1574                 }
1575                 LOG_TARGET_DEBUG(target, "Finish stepping. dsr=0x%08" PRIx32,
1576                         xtensa_dm_core_status_get(&xtensa->dbg_mod));
1577                 if (!xtensa_is_stopped(target)) {
1578                         LOG_TARGET_WARNING(
1579                                 target,
1580                                 "Timed out waiting for target to finish stepping. dsr=0x%08" PRIx32,
1581                                 xtensa_dm_core_status_get(&xtensa->dbg_mod));
1582                         target->debug_reason = DBG_REASON_NOTHALTED;
1583                         target->state = TARGET_RUNNING;
1584                         return ERROR_FAIL;
1585                 }
1586                 target->debug_reason = DBG_REASON_SINGLESTEP;
1587                 target->state = TARGET_HALTED;
1588
1589                 xtensa_fetch_all_regs(target);
1590
1591                 cur_pc = xtensa_reg_get(target, XT_REG_IDX_PC);
1592
1593                 LOG_TARGET_DEBUG(target,
1594                         "cur_ps=%" PRIx32 ", cur_pc=%" PRIx32 " dbg_cause=%" PRIx32 " exc_cause=%" PRIx32,
1595                         xtensa_reg_get(target, XT_REG_IDX_PS),
1596                         cur_pc,
1597                         xtensa_cause_get(target),
1598                         xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE));
1599
1600                 /* Do not step into WindowOverflow if ISRs are masked.
1601                    If we stop in WindowOverflow at breakpoint with masked ISRs and
1602                    try to do a step it will get us out of that handler */
1603                 if (xtensa->core_config->windowed &&
1604                         xtensa->stepping_isr_mode == XT_STEPPING_ISR_OFF &&
1605                         xtensa_pc_in_winexc(target, cur_pc)) {
1606                         /* isrmask = on, need to step out of the window exception handler */
1607                         LOG_DEBUG("Stepping out of window exception, PC=%" PRIX32, cur_pc);
1608                         oldpc = cur_pc;
1609                         address = oldpc + 3;
1610                         continue;
1611                 }
1612
1613                 if (oldpc == cur_pc)
1614                         LOG_TARGET_WARNING(target, "Stepping doesn't seem to change PC! dsr=0x%08" PRIx32,
1615                                 xtensa_dm_core_status_get(&xtensa->dbg_mod));
1616                 else
1617                         LOG_DEBUG("Stepped from %" PRIX32 " to %" PRIX32, oldpc, cur_pc);
1618                 break;
1619         } while (true);
1620         LOG_DEBUG("Done stepping, PC=%" PRIX32, cur_pc);
1621
1622         if (cause & DEBUGCAUSE_DB) {
1623                 LOG_TARGET_DEBUG(target, "...Done, re-installing watchpoints.");
1624                 /* Restore the DBREAKCx registers */
1625                 for (unsigned int slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++)
1626                         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, dbreakc[slot]);
1627         }
1628
1629         /* Restore int level */
1630         if (ps_lowered) {
1631                 LOG_DEBUG("Restoring %s after stepping: 0x%08" PRIx32,
1632                         xtensa->core_cache->reg_list[xtensa->eps_dbglevel_idx].name,
1633                         oldps);
1634                 xtensa_reg_set(target, xtensa->eps_dbglevel_idx, oldps);
1635         }
1636
1637         /* write ICOUNTLEVEL back to zero */
1638         xtensa_reg_set(target, XT_REG_IDX_ICOUNTLEVEL, 0);
1639         /* TODO: can we skip writing dirty registers and re-fetching them? */
1640         res = xtensa_write_dirty_registers(target);
1641         xtensa_fetch_all_regs(target);
1642         return res;
1643 }
1644
1645 int xtensa_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
1646 {
1647         return xtensa_do_step(target, current, address, handle_breakpoints);
1648 }
1649
1650 /**
1651  * Returns true if two ranges are overlapping
1652  */
1653 static inline bool xtensa_memory_regions_overlap(target_addr_t r1_start,
1654         target_addr_t r1_end,
1655         target_addr_t r2_start,
1656         target_addr_t r2_end)
1657 {
1658         if ((r2_start >= r1_start) && (r2_start < r1_end))
1659                 return true;    /* r2_start is in r1 region */
1660         if ((r2_end > r1_start) && (r2_end <= r1_end))
1661                 return true;    /* r2_end is in r1 region */
1662         return false;
1663 }
1664
1665 /**
1666  * Returns a size of overlapped region of two ranges.
1667  */
1668 static inline target_addr_t xtensa_get_overlap_size(target_addr_t r1_start,
1669         target_addr_t r1_end,
1670         target_addr_t r2_start,
1671         target_addr_t r2_end)
1672 {
1673         if (xtensa_memory_regions_overlap(r1_start, r1_end, r2_start, r2_end)) {
1674                 target_addr_t ov_start = r1_start < r2_start ? r2_start : r1_start;
1675                 target_addr_t ov_end = r1_end > r2_end ? r2_end : r1_end;
1676                 return ov_end - ov_start;
1677         }
1678         return 0;
1679 }
1680
1681 /**
1682  * Check if the address gets to memory regions, and its access mode
1683  */
1684 static bool xtensa_memory_op_validate_range(struct xtensa *xtensa, target_addr_t address, size_t size, int access)
1685 {
1686         target_addr_t adr_pos = address;        /* address cursor set to the beginning start */
1687         target_addr_t adr_end = address + size; /* region end */
1688         target_addr_t overlap_size;
1689         const struct xtensa_local_mem_region_config *cm;        /* current mem region */
1690
1691         while (adr_pos < adr_end) {
1692                 cm = xtensa_target_memory_region_find(xtensa, adr_pos);
1693                 if (!cm)        /* address is not belong to anything */
1694                         return false;
1695                 if ((cm->access & access) != access)    /* access check */
1696                         return false;
1697                 overlap_size = xtensa_get_overlap_size(cm->base, (cm->base + cm->size), adr_pos, adr_end);
1698                 assert(overlap_size != 0);
1699                 adr_pos += overlap_size;
1700         }
1701         return true;
1702 }
1703
1704 int xtensa_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1705 {
1706         struct xtensa *xtensa = target_to_xtensa(target);
1707         /* We are going to read memory in 32-bit increments. This may not be what the calling
1708          * function expects, so we may need to allocate a temp buffer and read into that first. */
1709         target_addr_t addrstart_al = ALIGN_DOWN(address, 4);
1710         target_addr_t addrend_al = ALIGN_UP(address + size * count, 4);
1711         target_addr_t adr = addrstart_al;
1712         uint8_t *albuff;
1713         bool bswap = xtensa->target->endianness == TARGET_BIG_ENDIAN;
1714
1715         if (target->state != TARGET_HALTED) {
1716                 LOG_TARGET_WARNING(target, "target not halted");
1717                 return ERROR_TARGET_NOT_HALTED;
1718         }
1719
1720         if (!xtensa->permissive_mode) {
1721                 if (!xtensa_memory_op_validate_range(xtensa, address, (size * count),
1722                                 XT_MEM_ACCESS_READ)) {
1723                         LOG_DEBUG("address " TARGET_ADDR_FMT " not readable", address);
1724                         return ERROR_FAIL;
1725                 }
1726         }
1727
1728         if (addrstart_al == address && addrend_al == address + (size * count)) {
1729                 albuff = buffer;
1730         } else {
1731                 albuff = malloc(addrend_al - addrstart_al);
1732                 if (!albuff) {
1733                         LOG_TARGET_ERROR(target, "Out of memory allocating %" TARGET_PRIdADDR " bytes!",
1734                                 addrend_al - addrstart_al);
1735                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1736                 }
1737         }
1738
1739         /* We're going to use A3 here */
1740         xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
1741         /* Write start address to A3 */
1742         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, addrstart_al);
1743         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1744         /* Now we can safely read data from addrstart_al up to addrend_al into albuff */
1745         if (xtensa->probe_lsddr32p != 0) {
1746                 xtensa_queue_exec_ins(xtensa, XT_INS_LDDR32P(xtensa, XT_REG_A3));
1747                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t))
1748                         xtensa_queue_dbg_reg_read(xtensa,
1749                                 (adr + sizeof(uint32_t) == addrend_al) ? NARADR_DDR : NARADR_DDREXEC,
1750                                 &albuff[i]);
1751         } else {
1752                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A4);
1753                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t)) {
1754                         xtensa_queue_exec_ins(xtensa, XT_INS_L32I(xtensa, XT_REG_A3, XT_REG_A4, 0));
1755                         xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A4));
1756                         xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR, &albuff[i]);
1757                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, adr + sizeof(uint32_t));
1758                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1759                 }
1760         }
1761         int res = jtag_execute_queue();
1762         if (res == ERROR_OK) {
1763                 bool prev_suppress = xtensa->suppress_dsr_errors;
1764                 xtensa->suppress_dsr_errors = true;
1765                 res = xtensa_core_status_check(target);
1766                 if (xtensa->probe_lsddr32p == -1)
1767                         xtensa->probe_lsddr32p = 1;
1768                 xtensa->suppress_dsr_errors = prev_suppress;
1769         }
1770         if (res != ERROR_OK) {
1771                 if (xtensa->probe_lsddr32p != 0) {
1772                         /* Disable fast memory access instructions and retry before reporting an error */
1773                         LOG_TARGET_INFO(target, "Disabling LDDR32.P/SDDR32.P");
1774                         xtensa->probe_lsddr32p = 0;
1775                         res = xtensa_read_memory(target, address, size, count, buffer);
1776                         bswap = false;
1777                 } else {
1778                         LOG_TARGET_WARNING(target, "Failed reading %d bytes at address "TARGET_ADDR_FMT,
1779                                 count * size, address);
1780                 }
1781         }
1782
1783         if (bswap)
1784                 buf_bswap32(albuff, albuff, addrend_al - addrstart_al);
1785         if (albuff != buffer) {
1786                 memcpy(buffer, albuff + (address & 3), (size * count));
1787                 free(albuff);
1788         }
1789
1790         return res;
1791 }
1792
1793 int xtensa_read_buffer(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
1794 {
1795         /* xtensa_read_memory can also read unaligned stuff. Just pass through to that routine. */
1796         return xtensa_read_memory(target, address, 1, count, buffer);
1797 }
1798
1799 int xtensa_write_memory(struct target *target,
1800         target_addr_t address,
1801         uint32_t size,
1802         uint32_t count,
1803         const uint8_t *buffer)
1804 {
1805         /* This memory write function can get thrown nigh everything into it, from
1806          * aligned uint32 writes to unaligned uint8ths. The Xtensa memory doesn't always
1807          * accept anything but aligned uint32 writes, though. That is why we convert
1808          * everything into that. */
1809         struct xtensa *xtensa = target_to_xtensa(target);
1810         target_addr_t addrstart_al = ALIGN_DOWN(address, 4);
1811         target_addr_t addrend_al = ALIGN_UP(address + size * count, 4);
1812         target_addr_t adr = addrstart_al;
1813         int res;
1814         uint8_t *albuff;
1815         bool fill_head_tail = false;
1816
1817         if (target->state != TARGET_HALTED) {
1818                 LOG_TARGET_WARNING(target, "target not halted");
1819                 return ERROR_TARGET_NOT_HALTED;
1820         }
1821
1822         if (!xtensa->permissive_mode) {
1823                 if (!xtensa_memory_op_validate_range(xtensa, address, (size * count), XT_MEM_ACCESS_WRITE)) {
1824                         LOG_WARNING("address " TARGET_ADDR_FMT " not writable", address);
1825                         return ERROR_FAIL;
1826                 }
1827         }
1828
1829         if (size == 0 || count == 0 || !buffer)
1830                 return ERROR_COMMAND_SYNTAX_ERROR;
1831
1832         /* Allocate a temporary buffer to put the aligned bytes in, if needed. */
1833         if (addrstart_al == address && addrend_al == address + (size * count)) {
1834                 if (xtensa->target->endianness == TARGET_BIG_ENDIAN)
1835                         /* Need a buffer for byte-swapping */
1836                         albuff = malloc(addrend_al - addrstart_al);
1837                 else
1838                         /* We discard the const here because albuff can also be non-const */
1839                         albuff = (uint8_t *)buffer;
1840         } else {
1841                 fill_head_tail = true;
1842                 albuff = malloc(addrend_al - addrstart_al);
1843         }
1844         if (!albuff) {
1845                 LOG_TARGET_ERROR(target, "Out of memory allocating %" TARGET_PRIdADDR " bytes!",
1846                         addrend_al - addrstart_al);
1847                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1848         }
1849
1850         /* We're going to use A3 here */
1851         xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
1852
1853         /* If we're using a temp aligned buffer, we need to fill the head and/or tail bit of it. */
1854         if (fill_head_tail) {
1855                 /* See if we need to read the first and/or last word. */
1856                 if (address & 3) {
1857                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, addrstart_al);
1858                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1859                         if (xtensa->probe_lsddr32p == 1) {
1860                                 xtensa_queue_exec_ins(xtensa, XT_INS_LDDR32P(xtensa, XT_REG_A3));
1861                         } else {
1862                                 xtensa_queue_exec_ins(xtensa, XT_INS_L32I(xtensa, XT_REG_A3, XT_REG_A3, 0));
1863                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1864                         }
1865                         xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR, &albuff[0]);
1866                 }
1867                 if ((address + (size * count)) & 3) {
1868                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, addrend_al - 4);
1869                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1870                         if (xtensa->probe_lsddr32p == 1) {
1871                                 xtensa_queue_exec_ins(xtensa, XT_INS_LDDR32P(xtensa, XT_REG_A3));
1872                         } else {
1873                                 xtensa_queue_exec_ins(xtensa, XT_INS_L32I(xtensa, XT_REG_A3, XT_REG_A3, 0));
1874                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1875                         }
1876                         xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR,
1877                                 &albuff[addrend_al - addrstart_al - 4]);
1878                 }
1879                 /* Grab bytes */
1880                 res = jtag_execute_queue();
1881                 if (res != ERROR_OK) {
1882                         LOG_ERROR("Error issuing unaligned memory write context instruction(s): %d", res);
1883                         if (albuff != buffer)
1884                                 free(albuff);
1885                         return res;
1886                 }
1887                 xtensa_core_status_check(target);
1888                 if (xtensa->target->endianness == TARGET_BIG_ENDIAN) {
1889                         bool swapped_w0 = false;
1890                         if (address & 3) {
1891                                 buf_bswap32(&albuff[0], &albuff[0], 4);
1892                                 swapped_w0 = true;
1893                         }
1894                         if ((address + (size * count)) & 3) {
1895                                 if ((addrend_al - addrstart_al - 4 == 0) && swapped_w0) {
1896                                         /* Don't double-swap if buffer start/end are within the same word */
1897                                 } else {
1898                                         buf_bswap32(&albuff[addrend_al - addrstart_al - 4],
1899                                                 &albuff[addrend_al - addrstart_al - 4], 4);
1900                                 }
1901                         }
1902                 }
1903                 /* Copy data to be written into the aligned buffer (in host-endianness) */
1904                 memcpy(&albuff[address & 3], buffer, size * count);
1905                 /* Now we can write albuff in aligned uint32s. */
1906         }
1907
1908         if (xtensa->target->endianness == TARGET_BIG_ENDIAN)
1909                 buf_bswap32(albuff, fill_head_tail ? albuff : buffer, addrend_al - addrstart_al);
1910
1911         /* Write start address to A3 */
1912         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, addrstart_al);
1913         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1914         /* Write the aligned buffer */
1915         if (xtensa->probe_lsddr32p != 0) {
1916                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t)) {
1917                         if (i == 0) {
1918                                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, buf_get_u32(&albuff[i], 0, 32));
1919                                 xtensa_queue_exec_ins(xtensa, XT_INS_SDDR32P(xtensa, XT_REG_A3));
1920                         } else {
1921                                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDREXEC, buf_get_u32(&albuff[i], 0, 32));
1922                         }
1923                 }
1924         } else {
1925                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A4);
1926                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t)) {
1927                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, buf_get_u32(&albuff[i], 0, 32));
1928                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A4));
1929                         xtensa_queue_exec_ins(xtensa, XT_INS_S32I(xtensa, XT_REG_A3, XT_REG_A4, 0));
1930                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, adr + sizeof(uint32_t));
1931                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1932                 }
1933         }
1934
1935         res = jtag_execute_queue();
1936         if (res == ERROR_OK) {
1937                 bool prev_suppress = xtensa->suppress_dsr_errors;
1938                 xtensa->suppress_dsr_errors = true;
1939                 res = xtensa_core_status_check(target);
1940                 if (xtensa->probe_lsddr32p == -1)
1941                         xtensa->probe_lsddr32p = 1;
1942                 xtensa->suppress_dsr_errors = prev_suppress;
1943         }
1944         if (res != ERROR_OK) {
1945                 if (xtensa->probe_lsddr32p != 0) {
1946                         /* Disable fast memory access instructions and retry before reporting an error */
1947                         LOG_TARGET_INFO(target, "Disabling LDDR32.P/SDDR32.P");
1948                         xtensa->probe_lsddr32p = 0;
1949                         res = xtensa_write_memory(target, address, size, count, buffer);
1950                 } else {
1951                         LOG_TARGET_WARNING(target, "Failed writing %d bytes at address "TARGET_ADDR_FMT,
1952                                 count * size, address);
1953                 }
1954         } else {
1955                 /* Invalidate ICACHE, writeback DCACHE if present */
1956                 uint32_t issue_ihi = xtensa_is_icacheable(xtensa, address);
1957                 uint32_t issue_dhwb = xtensa_is_dcacheable(xtensa, address);
1958                 if (issue_ihi || issue_dhwb) {
1959                         uint32_t ilinesize = issue_ihi ?  xtensa->core_config->icache.line_size : UINT32_MAX;
1960                         uint32_t dlinesize = issue_dhwb ? xtensa->core_config->dcache.line_size : UINT32_MAX;
1961                         uint32_t linesize = MIN(ilinesize, dlinesize);
1962                         uint32_t off = 0;
1963                         adr = addrstart_al;
1964
1965                         while ((adr + off) < addrend_al) {
1966                                 if (off == 0) {
1967                                         /* Write start address to A3 */
1968                                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, adr);
1969                                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1970                                 }
1971                                 if (issue_ihi)
1972                                         xtensa_queue_exec_ins(xtensa, XT_INS_IHI(xtensa, XT_REG_A3, off));
1973                                 if (issue_dhwb)
1974                                         xtensa_queue_exec_ins(xtensa, XT_INS_DHWBI(xtensa, XT_REG_A3, off));
1975                                 off += linesize;
1976                                 if (off > 1020) {
1977                                         /* IHI, DHWB have 8-bit immediate operands (0..1020) */
1978                                         adr += off;
1979                                         off = 0;
1980                                 }
1981                         }
1982
1983                         /* Execute cache WB/INV instructions */
1984                         res = jtag_execute_queue();
1985                         xtensa_core_status_check(target);
1986                         if (res != ERROR_OK)
1987                                 LOG_TARGET_ERROR(target,
1988                                         "Error issuing cache writeback/invaldate instruction(s): %d",
1989                                         res);
1990                 }
1991         }
1992         if (albuff != buffer)
1993                 free(albuff);
1994
1995         return res;
1996 }
1997
1998 int xtensa_write_buffer(struct target *target, target_addr_t address, uint32_t count, const uint8_t *buffer)
1999 {
2000         /* xtensa_write_memory can handle everything. Just pass on to that. */
2001         return xtensa_write_memory(target, address, 1, count, buffer);
2002 }
2003
2004 int xtensa_checksum_memory(struct target *target, target_addr_t address, uint32_t count, uint32_t *checksum)
2005 {
2006         LOG_WARNING("not implemented yet");
2007         return ERROR_FAIL;
2008 }
2009
2010 int xtensa_poll(struct target *target)
2011 {
2012         struct xtensa *xtensa = target_to_xtensa(target);
2013
2014         int res = xtensa_dm_power_status_read(&xtensa->dbg_mod, PWRSTAT_DEBUGWASRESET | PWRSTAT_COREWASRESET);
2015         if (xtensa->dbg_mod.power_status.stat != xtensa->dbg_mod.power_status.stath)
2016                 LOG_TARGET_DEBUG(target, "PWRSTAT: read 0x%08" PRIx32 ", clear 0x%08lx, reread 0x%08" PRIx32,
2017                         xtensa->dbg_mod.power_status.stat,
2018                         PWRSTAT_DEBUGWASRESET | PWRSTAT_COREWASRESET,
2019                         xtensa->dbg_mod.power_status.stath);
2020         if (res != ERROR_OK)
2021                 return res;
2022
2023         if (xtensa_dm_tap_was_reset(&xtensa->dbg_mod)) {
2024                 LOG_TARGET_INFO(target, "Debug controller was reset.");
2025                 res = xtensa_smpbreak_write(xtensa, xtensa->smp_break);
2026                 if (res != ERROR_OK)
2027                         return res;
2028         }
2029         if (xtensa_dm_core_was_reset(&xtensa->dbg_mod))
2030                 LOG_TARGET_INFO(target, "Core was reset.");
2031         xtensa_dm_power_status_cache(&xtensa->dbg_mod);
2032         /* Enable JTAG, set reset if needed */
2033         res = xtensa_wakeup(target);
2034         if (res != ERROR_OK)
2035                 return res;
2036
2037         uint32_t prev_dsr = xtensa->dbg_mod.core_status.dsr;
2038         res = xtensa_dm_core_status_read(&xtensa->dbg_mod);
2039         if (res != ERROR_OK)
2040                 return res;
2041         if (prev_dsr != xtensa->dbg_mod.core_status.dsr)
2042                 LOG_TARGET_DEBUG(target,
2043                         "DSR has changed: was 0x%08" PRIx32 " now 0x%08" PRIx32,
2044                         prev_dsr,
2045                         xtensa->dbg_mod.core_status.dsr);
2046         if (xtensa->dbg_mod.power_status.stath & PWRSTAT_COREWASRESET) {
2047                 /* if RESET state is persitent  */
2048                 target->state = TARGET_RESET;
2049         } else if (!xtensa_dm_is_powered(&xtensa->dbg_mod)) {
2050                 LOG_TARGET_DEBUG(target, "not powered 0x%" PRIX32 "%ld",
2051                         xtensa->dbg_mod.core_status.dsr,
2052                         xtensa->dbg_mod.core_status.dsr & OCDDSR_STOPPED);
2053                 target->state = TARGET_UNKNOWN;
2054                 if (xtensa->come_online_probes_num == 0)
2055                         target->examined = false;
2056                 else
2057                         xtensa->come_online_probes_num--;
2058         } else if (xtensa_is_stopped(target)) {
2059                 if (target->state != TARGET_HALTED) {
2060                         enum target_state oldstate = target->state;
2061                         target->state = TARGET_HALTED;
2062                         /* Examine why the target has been halted */
2063                         target->debug_reason = DBG_REASON_DBGRQ;
2064                         xtensa_fetch_all_regs(target);
2065                         /* When setting debug reason DEBUGCAUSE events have the following
2066                          * priorities: watchpoint == breakpoint > single step > debug interrupt. */
2067                         /* Watchpoint and breakpoint events at the same time results in special
2068                          * debug reason: DBG_REASON_WPTANDBKPT. */
2069                         uint32_t halt_cause = xtensa_cause_get(target);
2070                         /* TODO: Add handling of DBG_REASON_EXC_CATCH */
2071                         if (halt_cause & DEBUGCAUSE_IC)
2072                                 target->debug_reason = DBG_REASON_SINGLESTEP;
2073                         if (halt_cause & (DEBUGCAUSE_IB | DEBUGCAUSE_BN | DEBUGCAUSE_BI)) {
2074                                 if (halt_cause & DEBUGCAUSE_DB)
2075                                         target->debug_reason = DBG_REASON_WPTANDBKPT;
2076                                 else
2077                                         target->debug_reason = DBG_REASON_BREAKPOINT;
2078                         } else if (halt_cause & DEBUGCAUSE_DB) {
2079                                 target->debug_reason = DBG_REASON_WATCHPOINT;
2080                         }
2081                         LOG_TARGET_DEBUG(target, "Target halted, pc=0x%08" PRIx32
2082                                 ", debug_reason=%08" PRIx32 ", oldstate=%08" PRIx32,
2083                                 xtensa_reg_get(target, XT_REG_IDX_PC),
2084                                 target->debug_reason,
2085                                 oldstate);
2086                         LOG_TARGET_DEBUG(target, "Halt reason=0x%08" PRIX32 ", exc_cause=%" PRId32 ", dsr=0x%08" PRIx32,
2087                                 halt_cause,
2088                                 xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE),
2089                                 xtensa->dbg_mod.core_status.dsr);
2090                         xtensa_dm_core_status_clear(
2091                                 &xtensa->dbg_mod,
2092                                 OCDDSR_DEBUGPENDBREAK | OCDDSR_DEBUGINTBREAK | OCDDSR_DEBUGPENDTRAX |
2093                                 OCDDSR_DEBUGINTTRAX |
2094                                 OCDDSR_DEBUGPENDHOST | OCDDSR_DEBUGINTHOST);
2095                 }
2096         } else {
2097                 target->debug_reason = DBG_REASON_NOTHALTED;
2098                 if (target->state != TARGET_RUNNING && target->state != TARGET_DEBUG_RUNNING) {
2099                         target->state = TARGET_RUNNING;
2100                         target->debug_reason = DBG_REASON_NOTHALTED;
2101                 }
2102         }
2103         if (xtensa->trace_active) {
2104                 /* Detect if tracing was active but has stopped. */
2105                 struct xtensa_trace_status trace_status;
2106                 res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
2107                 if (res == ERROR_OK) {
2108                         if (!(trace_status.stat & TRAXSTAT_TRACT)) {
2109                                 LOG_INFO("Detected end of trace.");
2110                                 if (trace_status.stat & TRAXSTAT_PCMTG)
2111                                         LOG_TARGET_INFO(target, "Trace stop triggered by PC match");
2112                                 if (trace_status.stat & TRAXSTAT_PTITG)
2113                                         LOG_TARGET_INFO(target, "Trace stop triggered by Processor Trigger Input");
2114                                 if (trace_status.stat & TRAXSTAT_CTITG)
2115                                         LOG_TARGET_INFO(target, "Trace stop triggered by Cross-trigger Input");
2116                                 xtensa->trace_active = false;
2117                         }
2118                 }
2119         }
2120         return ERROR_OK;
2121 }
2122
2123 static int xtensa_update_instruction(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2124 {
2125         struct xtensa *xtensa = target_to_xtensa(target);
2126         unsigned int issue_ihi = xtensa_is_icacheable(xtensa, address);
2127         unsigned int issue_dhwbi = xtensa_is_dcacheable(xtensa, address);
2128         uint32_t icache_line_size = issue_ihi ? xtensa->core_config->icache.line_size : UINT32_MAX;
2129         uint32_t dcache_line_size = issue_dhwbi ? xtensa->core_config->dcache.line_size : UINT32_MAX;
2130         unsigned int same_ic_line = ((address & (icache_line_size - 1)) + size) <= icache_line_size;
2131         unsigned int same_dc_line = ((address & (dcache_line_size - 1)) + size) <= dcache_line_size;
2132         int ret;
2133
2134         if (size > icache_line_size)
2135                 return ERROR_FAIL;
2136
2137         if (issue_ihi || issue_dhwbi) {
2138                 /* We're going to use A3 here */
2139                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
2140
2141                 /* Write start address to A3 and invalidate */
2142                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, address);
2143                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
2144                 LOG_TARGET_DEBUG(target, "DHWBI, IHI for address "TARGET_ADDR_FMT, address);
2145                 if (issue_dhwbi) {
2146                         xtensa_queue_exec_ins(xtensa, XT_INS_DHWBI(xtensa, XT_REG_A3, 0));
2147                         if (!same_dc_line) {
2148                                 LOG_TARGET_DEBUG(target,
2149                                         "DHWBI second dcache line for address "TARGET_ADDR_FMT,
2150                                         address + 4);
2151                                 xtensa_queue_exec_ins(xtensa, XT_INS_DHWBI(xtensa, XT_REG_A3, 4));
2152                         }
2153                 }
2154                 if (issue_ihi) {
2155                         xtensa_queue_exec_ins(xtensa, XT_INS_IHI(xtensa, XT_REG_A3, 0));
2156                         if (!same_ic_line) {
2157                                 LOG_TARGET_DEBUG(target,
2158                                         "IHI second icache line for address "TARGET_ADDR_FMT,
2159                                         address + 4);
2160                                 xtensa_queue_exec_ins(xtensa, XT_INS_IHI(xtensa, XT_REG_A3, 4));
2161                         }
2162                 }
2163
2164                 /* Execute invalidate instructions */
2165                 ret = jtag_execute_queue();
2166                 xtensa_core_status_check(target);
2167                 if (ret != ERROR_OK) {
2168                         LOG_ERROR("Error issuing cache invaldate instruction(s): %d", ret);
2169                         return ret;
2170                 }
2171         }
2172
2173         /* Write new instructions to memory */
2174         ret = target_write_buffer(target, address, size, buffer);
2175         if (ret != ERROR_OK) {
2176                 LOG_TARGET_ERROR(target, "Error writing instruction to memory: %d", ret);
2177                 return ret;
2178         }
2179
2180         if (issue_dhwbi) {
2181                 /* Flush dcache so instruction propagates.  A3 may be corrupted during memory write */
2182                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, address);
2183                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
2184                 xtensa_queue_exec_ins(xtensa, XT_INS_DHWB(xtensa, XT_REG_A3, 0));
2185                 LOG_DEBUG("DHWB dcache line for address "TARGET_ADDR_FMT, address);
2186                 if (!same_dc_line) {
2187                         LOG_TARGET_DEBUG(target, "DHWB second dcache line for address "TARGET_ADDR_FMT, address + 4);
2188                         xtensa_queue_exec_ins(xtensa, XT_INS_DHWB(xtensa, XT_REG_A3, 4));
2189                 }
2190
2191                 /* Execute invalidate instructions */
2192                 ret = jtag_execute_queue();
2193                 xtensa_core_status_check(target);
2194         }
2195
2196         /* TODO: Handle L2 cache if present */
2197         return ret;
2198 }
2199
2200 static int xtensa_sw_breakpoint_add(struct target *target,
2201         struct breakpoint *breakpoint,
2202         struct xtensa_sw_breakpoint *sw_bp)
2203 {
2204         struct xtensa *xtensa = target_to_xtensa(target);
2205         int ret = target_read_buffer(target, breakpoint->address, XT_ISNS_SZ_MAX, sw_bp->insn);
2206         if (ret != ERROR_OK) {
2207                 LOG_TARGET_ERROR(target, "Failed to read original instruction (%d)!", ret);
2208                 return ret;
2209         }
2210
2211         sw_bp->insn_sz = MIN(XT_ISNS_SZ_MAX, breakpoint->length);
2212         sw_bp->oocd_bp = breakpoint;
2213
2214         uint32_t break_insn = sw_bp->insn_sz == XT_ISNS_SZ_MAX ? XT_INS_BREAK(xtensa, 0, 0) : XT_INS_BREAKN(xtensa, 0);
2215
2216         /* Underlying memory write will convert instruction endianness, don't do that here */
2217         ret = xtensa_update_instruction(target, breakpoint->address, sw_bp->insn_sz, (uint8_t *)&break_insn);
2218         if (ret != ERROR_OK) {
2219                 LOG_TARGET_ERROR(target, "Failed to write breakpoint instruction (%d)!", ret);
2220                 return ret;
2221         }
2222
2223         return ERROR_OK;
2224 }
2225
2226 static int xtensa_sw_breakpoint_remove(struct target *target, struct xtensa_sw_breakpoint *sw_bp)
2227 {
2228         int ret = xtensa_update_instruction(target, sw_bp->oocd_bp->address, sw_bp->insn_sz, sw_bp->insn);
2229         if (ret != ERROR_OK) {
2230                 LOG_TARGET_ERROR(target, "Failed to write insn (%d)!", ret);
2231                 return ret;
2232         }
2233         sw_bp->oocd_bp = NULL;
2234         return ERROR_OK;
2235 }
2236
2237 int xtensa_breakpoint_add(struct target *target, struct breakpoint *breakpoint)
2238 {
2239         struct xtensa *xtensa = target_to_xtensa(target);
2240         unsigned int slot;
2241
2242         if (breakpoint->type == BKPT_SOFT) {
2243                 for (slot = 0; slot < XT_SW_BREAKPOINTS_MAX_NUM; slot++) {
2244                         if (!xtensa->sw_brps[slot].oocd_bp ||
2245                                 xtensa->sw_brps[slot].oocd_bp == breakpoint)
2246                                 break;
2247                 }
2248                 if (slot == XT_SW_BREAKPOINTS_MAX_NUM) {
2249                         LOG_TARGET_WARNING(target, "No free slots to add SW breakpoint!");
2250                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2251                 }
2252                 int ret = xtensa_sw_breakpoint_add(target, breakpoint, &xtensa->sw_brps[slot]);
2253                 if (ret != ERROR_OK) {
2254                         LOG_TARGET_ERROR(target, "Failed to add SW breakpoint!");
2255                         return ret;
2256                 }
2257                 LOG_TARGET_DEBUG(target, "placed SW breakpoint %u @ " TARGET_ADDR_FMT,
2258                         slot,
2259                         breakpoint->address);
2260                 return ERROR_OK;
2261         }
2262
2263         for (slot = 0; slot < xtensa->core_config->debug.ibreaks_num; slot++) {
2264                 if (!xtensa->hw_brps[slot] || xtensa->hw_brps[slot] == breakpoint)
2265                         break;
2266         }
2267         if (slot == xtensa->core_config->debug.ibreaks_num) {
2268                 LOG_TARGET_ERROR(target, "No free slots to add HW breakpoint!");
2269                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2270         }
2271
2272         xtensa->hw_brps[slot] = breakpoint;
2273         /* We will actually write the breakpoints when we resume the target. */
2274         LOG_TARGET_DEBUG(target, "placed HW breakpoint %u @ " TARGET_ADDR_FMT,
2275                 slot,
2276                 breakpoint->address);
2277
2278         return ERROR_OK;
2279 }
2280
2281 int xtensa_breakpoint_remove(struct target *target, struct breakpoint *breakpoint)
2282 {
2283         struct xtensa *xtensa = target_to_xtensa(target);
2284         unsigned int slot;
2285
2286         if (breakpoint->type == BKPT_SOFT) {
2287                 for (slot = 0; slot < XT_SW_BREAKPOINTS_MAX_NUM; slot++) {
2288                         if (xtensa->sw_brps[slot].oocd_bp && xtensa->sw_brps[slot].oocd_bp == breakpoint)
2289                                 break;
2290                 }
2291                 if (slot == XT_SW_BREAKPOINTS_MAX_NUM) {
2292                         LOG_TARGET_WARNING(target, "Max SW breakpoints slot reached, slot=%u!", slot);
2293                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2294                 }
2295                 int ret = xtensa_sw_breakpoint_remove(target, &xtensa->sw_brps[slot]);
2296                 if (ret != ERROR_OK) {
2297                         LOG_TARGET_ERROR(target, "Failed to remove SW breakpoint (%d)!", ret);
2298                         return ret;
2299                 }
2300                 LOG_TARGET_DEBUG(target, "cleared SW breakpoint %u @ " TARGET_ADDR_FMT, slot, breakpoint->address);
2301                 return ERROR_OK;
2302         }
2303
2304         for (slot = 0; slot < xtensa->core_config->debug.ibreaks_num; slot++) {
2305                 if (xtensa->hw_brps[slot] == breakpoint)
2306                         break;
2307         }
2308         if (slot == xtensa->core_config->debug.ibreaks_num) {
2309                 LOG_TARGET_ERROR(target, "HW breakpoint not found!");
2310                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2311         }
2312         xtensa->hw_brps[slot] = NULL;
2313         LOG_TARGET_DEBUG(target, "cleared HW breakpoint %u @ " TARGET_ADDR_FMT, slot, breakpoint->address);
2314         return ERROR_OK;
2315 }
2316
2317 int xtensa_watchpoint_add(struct target *target, struct watchpoint *watchpoint)
2318 {
2319         struct xtensa *xtensa = target_to_xtensa(target);
2320         unsigned int slot;
2321         xtensa_reg_val_t dbreakcval;
2322
2323         if (target->state != TARGET_HALTED) {
2324                 LOG_TARGET_WARNING(target, "target not halted");
2325                 return ERROR_TARGET_NOT_HALTED;
2326         }
2327
2328         if (watchpoint->mask != ~(uint32_t)0) {
2329                 LOG_TARGET_ERROR(target, "watchpoint value masks not supported");
2330                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2331         }
2332
2333         for (slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++) {
2334                 if (!xtensa->hw_wps[slot] || xtensa->hw_wps[slot] == watchpoint)
2335                         break;
2336         }
2337         if (slot == xtensa->core_config->debug.dbreaks_num) {
2338                 LOG_TARGET_WARNING(target, "No free slots to add HW watchpoint!");
2339                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2340         }
2341
2342         /* Figure out value for dbreakc5..0
2343          * It's basically 0x3F with an incremental bit removed from the LSB for each extra length power of 2. */
2344         if (watchpoint->length < 1 || watchpoint->length > 64 ||
2345                 !IS_PWR_OF_2(watchpoint->length) ||
2346                 !IS_ALIGNED(watchpoint->address, watchpoint->length)) {
2347                 LOG_TARGET_WARNING(
2348                         target,
2349                         "Watchpoint with length %d on address " TARGET_ADDR_FMT
2350                         " not supported by hardware.",
2351                         watchpoint->length,
2352                         watchpoint->address);
2353                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2354         }
2355         dbreakcval = ALIGN_DOWN(0x3F, watchpoint->length);
2356
2357         if (watchpoint->rw == WPT_READ)
2358                 dbreakcval |= BIT(30);
2359         if (watchpoint->rw == WPT_WRITE)
2360                 dbreakcval |= BIT(31);
2361         if (watchpoint->rw == WPT_ACCESS)
2362                 dbreakcval |= BIT(30) | BIT(31);
2363
2364         /* Write DBREAKA[slot] and DBCREAKC[slot] */
2365         xtensa_reg_set(target, XT_REG_IDX_DBREAKA0 + slot, watchpoint->address);
2366         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, dbreakcval);
2367         xtensa->hw_wps[slot] = watchpoint;
2368         LOG_TARGET_DEBUG(target, "placed HW watchpoint @ " TARGET_ADDR_FMT,
2369                 watchpoint->address);
2370         return ERROR_OK;
2371 }
2372
2373 int xtensa_watchpoint_remove(struct target *target, struct watchpoint *watchpoint)
2374 {
2375         struct xtensa *xtensa = target_to_xtensa(target);
2376         unsigned int slot;
2377
2378         for (slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++) {
2379                 if (xtensa->hw_wps[slot] == watchpoint)
2380                         break;
2381         }
2382         if (slot == xtensa->core_config->debug.dbreaks_num) {
2383                 LOG_TARGET_WARNING(target, "HW watchpoint " TARGET_ADDR_FMT " not found!", watchpoint->address);
2384                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2385         }
2386         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, 0);
2387         xtensa->hw_wps[slot] = NULL;
2388         LOG_TARGET_DEBUG(target, "cleared HW watchpoint @ " TARGET_ADDR_FMT,
2389                 watchpoint->address);
2390         return ERROR_OK;
2391 }
2392
2393 static int xtensa_build_reg_cache(struct target *target)
2394 {
2395         struct xtensa *xtensa = target_to_xtensa(target);
2396         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
2397         unsigned int last_dbreg_num = 0;
2398
2399         if (xtensa->core_regs_num + xtensa->num_optregs != xtensa->total_regs_num)
2400                 LOG_TARGET_WARNING(target, "Register count MISMATCH: %d core regs, %d extended regs; %d expected",
2401                         xtensa->core_regs_num, xtensa->num_optregs, xtensa->total_regs_num);
2402
2403         struct reg_cache *reg_cache = calloc(1, sizeof(struct reg_cache));
2404
2405         if (!reg_cache) {
2406                 LOG_ERROR("Failed to alloc reg cache!");
2407                 return ERROR_FAIL;
2408         }
2409         reg_cache->name = "Xtensa registers";
2410         reg_cache->next = NULL;
2411         /* Init reglist */
2412         unsigned int reg_list_size = XT_NUM_REGS + xtensa->num_optregs;
2413         struct reg *reg_list = calloc(reg_list_size, sizeof(struct reg));
2414         if (!reg_list) {
2415                 LOG_ERROR("Failed to alloc reg list!");
2416                 goto fail;
2417         }
2418         xtensa->dbregs_num = 0;
2419         unsigned int didx = 0;
2420         for (unsigned int whichlist = 0; whichlist < 2; whichlist++) {
2421                 struct xtensa_reg_desc *rlist = (whichlist == 0) ? xtensa_regs : xtensa->optregs;
2422                 unsigned int listsize = (whichlist == 0) ? XT_NUM_REGS : xtensa->num_optregs;
2423                 for (unsigned int i = 0; i < listsize; i++, didx++) {
2424                         reg_list[didx].exist = rlist[i].exist;
2425                         reg_list[didx].name = rlist[i].name;
2426                         reg_list[didx].size = 32;
2427                         reg_list[didx].value = calloc(1, 4 /*XT_REG_LEN*/);     /* make Clang Static Analyzer happy */
2428                         if (!reg_list[didx].value) {
2429                                 LOG_ERROR("Failed to alloc reg list value!");
2430                                 goto fail;
2431                         }
2432                         reg_list[didx].dirty = false;
2433                         reg_list[didx].valid = false;
2434                         reg_list[didx].type = &xtensa_reg_type;
2435                         reg_list[didx].arch_info = xtensa;
2436                         if (rlist[i].exist && (rlist[i].dbreg_num > last_dbreg_num))
2437                                 last_dbreg_num = rlist[i].dbreg_num;
2438
2439                         if (xtensa_extra_debug_log) {
2440                                 LOG_TARGET_DEBUG(target,
2441                                         "POPULATE %-16s list %d exist %d, idx %d, type %d, dbreg_num 0x%04x",
2442                                         reg_list[didx].name,
2443                                         whichlist,
2444                                         reg_list[didx].exist,
2445                                         didx,
2446                                         rlist[i].type,
2447                                         rlist[i].dbreg_num);
2448                         }
2449                 }
2450         }
2451
2452         xtensa->dbregs_num = last_dbreg_num + 1;
2453         reg_cache->reg_list = reg_list;
2454         reg_cache->num_regs = reg_list_size;
2455
2456         LOG_TARGET_DEBUG(target, "xtensa->total_regs_num %d reg_list_size %d xtensa->dbregs_num %d",
2457                 xtensa->total_regs_num, reg_list_size, xtensa->dbregs_num);
2458
2459         /* Construct empty-register list for handling unknown register requests */
2460         xtensa->empty_regs = calloc(xtensa->dbregs_num, sizeof(struct reg));
2461         if (!xtensa->empty_regs) {
2462                 LOG_TARGET_ERROR(target, "ERROR: Out of memory");
2463                 goto fail;
2464         }
2465         for (unsigned int i = 0; i < xtensa->dbregs_num; i++) {
2466                 xtensa->empty_regs[i].name = calloc(8, sizeof(char));
2467                 if (!xtensa->empty_regs[i].name) {
2468                         LOG_TARGET_ERROR(target, "ERROR: Out of memory");
2469                         goto fail;
2470                 }
2471                 sprintf((char *)xtensa->empty_regs[i].name, "?0x%04x", i);
2472                 xtensa->empty_regs[i].size = 32;
2473                 xtensa->empty_regs[i].type = &xtensa_reg_type;
2474                 xtensa->empty_regs[i].value = calloc(1, 4 /*XT_REG_LEN*/);      /* make Clang Static Analyzer happy */
2475                 if (!xtensa->empty_regs[i].value) {
2476                         LOG_ERROR("Failed to alloc empty reg list value!");
2477                         goto fail;
2478                 }
2479                 xtensa->empty_regs[i].arch_info = xtensa;
2480         }
2481
2482         /* Construct contiguous register list from contiguous descriptor list */
2483         if (xtensa->regmap_contiguous && xtensa->contiguous_regs_desc) {
2484                 xtensa->contiguous_regs_list = calloc(xtensa->total_regs_num, sizeof(struct reg *));
2485                 if (!xtensa->contiguous_regs_list) {
2486                         LOG_TARGET_ERROR(target, "ERROR: Out of memory");
2487                         goto fail;
2488                 }
2489                 for (unsigned int i = 0; i < xtensa->total_regs_num; i++) {
2490                         unsigned int j;
2491                         for (j = 0; j < reg_cache->num_regs; j++) {
2492                                 if (!strcmp(reg_cache->reg_list[j].name, xtensa->contiguous_regs_desc[i]->name)) {
2493                                         xtensa->contiguous_regs_list[i] = &(reg_cache->reg_list[j]);
2494                                         LOG_TARGET_DEBUG(target,
2495                                                 "POPULATE contiguous regs list: %-16s, dbreg_num 0x%04x",
2496                                                 xtensa->contiguous_regs_list[i]->name,
2497                                                 xtensa->contiguous_regs_desc[i]->dbreg_num);
2498                                         break;
2499                                 }
2500                         }
2501                         if (j == reg_cache->num_regs)
2502                                 LOG_TARGET_WARNING(target, "contiguous register %s not found",
2503                                         xtensa->contiguous_regs_desc[i]->name);
2504                 }
2505         }
2506
2507         xtensa->algo_context_backup = calloc(reg_cache->num_regs, sizeof(void *));
2508         if (!xtensa->algo_context_backup) {
2509                 LOG_ERROR("Failed to alloc mem for algorithm context backup!");
2510                 goto fail;
2511         }
2512         for (unsigned int i = 0; i < reg_cache->num_regs; i++) {
2513                 struct reg *reg = &reg_cache->reg_list[i];
2514                 xtensa->algo_context_backup[i] = calloc(1, reg->size / 8);
2515                 if (!xtensa->algo_context_backup[i]) {
2516                         LOG_ERROR("Failed to alloc mem for algorithm context!");
2517                         goto fail;
2518                 }
2519         }
2520         xtensa->core_cache = reg_cache;
2521         if (cache_p)
2522                 *cache_p = reg_cache;
2523         return ERROR_OK;
2524
2525 fail:
2526         if (reg_list) {
2527                 for (unsigned int i = 0; i < reg_list_size; i++)
2528                         free(reg_list[i].value);
2529         }
2530         if (xtensa->empty_regs) {
2531                 for (unsigned int i = 0; i < xtensa->dbregs_num; i++) {
2532                         free((void *)xtensa->empty_regs[i].name);
2533                         free(xtensa->empty_regs[i].value);
2534                 }
2535                 free(xtensa->empty_regs);
2536         }
2537         if (xtensa->algo_context_backup) {
2538                 for (unsigned int i = 0; i < reg_cache->num_regs; i++)
2539                         free(xtensa->algo_context_backup[i]);
2540                 free(xtensa->algo_context_backup);
2541         }
2542         free(reg_cache);
2543
2544         return ERROR_FAIL;
2545 }
2546
2547 static int32_t xtensa_gdbqc_parse_exec_tie_ops(struct target *target, char *opstr)
2548 {
2549         struct xtensa *xtensa = target_to_xtensa(target);
2550         int32_t status = ERROR_COMMAND_ARGUMENT_INVALID;
2551         /* Process op[] list */
2552         while (opstr && (*opstr == ':')) {
2553                 uint8_t ops[32];
2554                 unsigned int oplen = strtoul(opstr + 1, &opstr, 16);
2555                 if (oplen > 32) {
2556                         LOG_TARGET_ERROR(target, "TIE access instruction too long (%d)\n", oplen);
2557                         break;
2558                 }
2559                 unsigned int i = 0;
2560                 while ((i < oplen) && opstr && (*opstr == ':'))
2561                         ops[i++] = strtoul(opstr + 1, &opstr, 16);
2562                 if (i != oplen) {
2563                         LOG_TARGET_ERROR(target, "TIE access instruction malformed (%d)\n", i);
2564                         break;
2565                 }
2566
2567                 char insn_buf[128];
2568                 sprintf(insn_buf, "Exec %d-byte TIE sequence: ", oplen);
2569                 for (i = 0; i < oplen; i++)
2570                         sprintf(insn_buf + strlen(insn_buf), "%02x:", ops[i]);
2571                 LOG_TARGET_DEBUG(target, "%s", insn_buf);
2572                 xtensa_queue_exec_ins_wide(xtensa, ops, oplen); /* Handles endian-swap */
2573                 status = ERROR_OK;
2574         }
2575         return status;
2576 }
2577
2578 static int xtensa_gdbqc_qxtreg(struct target *target, const char *packet, char **response_p)
2579 {
2580         struct xtensa *xtensa = target_to_xtensa(target);
2581         bool iswrite = (packet[0] == 'Q');
2582         enum xtensa_qerr_e error;
2583
2584         /* Read/write TIE register.  Requires spill location.
2585          * qxtreg<num>:<len>:<oplen>:<op[0]>:<...>[:<oplen>:<op[0]>:<...>]
2586          * Qxtreg<num>:<len>:<oplen>:<op[0]>:<...>[:<oplen>:<op[0]>:<...>]=<value>
2587          */
2588         if (!(xtensa->spill_buf)) {
2589                 LOG_ERROR("Spill location not specified. Try 'target remote <host>:3333 &spill_location0'");
2590                 error = XT_QERR_FAIL;
2591                 goto xtensa_gdbqc_qxtreg_fail;
2592         }
2593
2594         char *delim;
2595         uint32_t regnum = strtoul(packet + 6, &delim, 16);
2596         if (*delim != ':') {
2597                 LOG_ERROR("Malformed qxtreg packet");
2598                 error = XT_QERR_INVAL;
2599                 goto xtensa_gdbqc_qxtreg_fail;
2600         }
2601         uint32_t reglen = strtoul(delim + 1, &delim, 16);
2602         if (*delim != ':') {
2603                 LOG_ERROR("Malformed qxtreg packet");
2604                 error = XT_QERR_INVAL;
2605                 goto xtensa_gdbqc_qxtreg_fail;
2606         }
2607         uint8_t regbuf[XT_QUERYPKT_RESP_MAX];
2608         LOG_DEBUG("TIE reg 0x%08" PRIx32 " %s (%d bytes)", regnum, iswrite ? "write" : "read", reglen);
2609         if (reglen * 2 + 1 > XT_QUERYPKT_RESP_MAX) {
2610                 LOG_ERROR("TIE register too large");
2611                 error = XT_QERR_MEM;
2612                 goto xtensa_gdbqc_qxtreg_fail;
2613         }
2614
2615         /* (1) Save spill memory, (1.5) [if write then store value to spill location],
2616          * (2) read old a4, (3) write spill address to a4.
2617          * NOTE: ensure a4 is restored properly by all error handling logic
2618          */
2619         unsigned int memop_size = (xtensa->spill_loc & 3) ? 1 : 4;
2620         int status = xtensa_read_memory(target, xtensa->spill_loc, memop_size,
2621                 xtensa->spill_bytes / memop_size, xtensa->spill_buf);
2622         if (status != ERROR_OK) {
2623                 LOG_ERROR("Spill memory save");
2624                 error = XT_QERR_MEM;
2625                 goto xtensa_gdbqc_qxtreg_fail;
2626         }
2627         if (iswrite) {
2628                 /* Extract value and store in spill memory */
2629                 unsigned int b = 0;
2630                 char *valbuf = strchr(delim, '=');
2631                 if (!(valbuf && (*valbuf == '='))) {
2632                         LOG_ERROR("Malformed Qxtreg packet");
2633                         error = XT_QERR_INVAL;
2634                         goto xtensa_gdbqc_qxtreg_fail;
2635                 }
2636                 valbuf++;
2637                 while (*valbuf && *(valbuf + 1)) {
2638                         char bytestr[3] = { 0, 0, 0 };
2639                         strncpy(bytestr, valbuf, 2);
2640                         regbuf[b++] = strtoul(bytestr, NULL, 16);
2641                         valbuf += 2;
2642                 }
2643                 if (b != reglen) {
2644                         LOG_ERROR("Malformed Qxtreg packet");
2645                         error = XT_QERR_INVAL;
2646                         goto xtensa_gdbqc_qxtreg_fail;
2647                 }
2648                 status = xtensa_write_memory(target, xtensa->spill_loc, memop_size,
2649                         reglen / memop_size, regbuf);
2650                 if (status != ERROR_OK) {
2651                         LOG_ERROR("TIE value store");
2652                         error = XT_QERR_MEM;
2653                         goto xtensa_gdbqc_qxtreg_fail;
2654                 }
2655         }
2656         xtensa_reg_val_t orig_a4 = xtensa_reg_get(target, XT_REG_IDX_A4);
2657         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, xtensa->spill_loc);
2658         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A4));
2659
2660         int32_t tieop_status = xtensa_gdbqc_parse_exec_tie_ops(target, delim);
2661
2662         /* Restore a4 but not yet spill memory.  Execute it all... */
2663         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, orig_a4);
2664         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A4));
2665         status = jtag_execute_queue();
2666         if (status != ERROR_OK) {
2667                 LOG_TARGET_ERROR(target, "TIE queue execute: %d\n", status);
2668                 tieop_status = status;
2669         }
2670         status = xtensa_core_status_check(target);
2671         if (status != ERROR_OK) {
2672                 LOG_TARGET_ERROR(target, "TIE instr execute: %d\n", status);
2673                 tieop_status = status;
2674         }
2675
2676         if (tieop_status == ERROR_OK) {
2677                 if (iswrite) {
2678                         /* TIE write succeeded; send OK */
2679                         strcpy(*response_p, "OK");
2680                 } else {
2681                         /* TIE read succeeded; copy result from spill memory */
2682                         status = xtensa_read_memory(target, xtensa->spill_loc, memop_size, reglen, regbuf);
2683                         if (status != ERROR_OK) {
2684                                 LOG_TARGET_ERROR(target, "TIE result read");
2685                                 tieop_status = status;
2686                         }
2687                         unsigned int i;
2688                         for (i = 0; i < reglen; i++)
2689                                 sprintf(*response_p + 2 * i, "%02x", regbuf[i]);
2690                         *(*response_p + 2 * i) = '\0';
2691                         LOG_TARGET_DEBUG(target, "TIE response: %s", *response_p);
2692                 }
2693         }
2694
2695         /* Restore spill memory first, then report any previous errors */
2696         status = xtensa_write_memory(target, xtensa->spill_loc, memop_size,
2697                 xtensa->spill_bytes / memop_size, xtensa->spill_buf);
2698         if (status != ERROR_OK) {
2699                 LOG_ERROR("Spill memory restore");
2700                 error = XT_QERR_MEM;
2701                 goto xtensa_gdbqc_qxtreg_fail;
2702         }
2703         if (tieop_status != ERROR_OK) {
2704                 LOG_ERROR("TIE execution");
2705                 error = XT_QERR_FAIL;
2706                 goto xtensa_gdbqc_qxtreg_fail;
2707         }
2708         return ERROR_OK;
2709
2710 xtensa_gdbqc_qxtreg_fail:
2711         strcpy(*response_p, xt_qerr[error].chrval);
2712         return xt_qerr[error].intval;
2713 }
2714
2715 int xtensa_gdb_query_custom(struct target *target, const char *packet, char **response_p)
2716 {
2717         struct xtensa *xtensa = target_to_xtensa(target);
2718         enum xtensa_qerr_e error;
2719         if (!packet || !response_p) {
2720                 LOG_TARGET_ERROR(target, "invalid parameter: packet %p response_p %p", packet, response_p);
2721                 return ERROR_FAIL;
2722         }
2723
2724         *response_p = xtensa->qpkt_resp;
2725         if (strncmp(packet, "qxtn", 4) == 0) {
2726                 strcpy(*response_p, "OpenOCD");
2727                 return ERROR_OK;
2728         } else if (strncasecmp(packet, "qxtgdbversion=", 14) == 0) {
2729                 return ERROR_OK;
2730         } else if ((strncmp(packet, "Qxtsis=", 7) == 0) || (strncmp(packet, "Qxtsds=", 7) == 0)) {
2731                 /* Confirm host cache params match core .cfg file */
2732                 struct xtensa_cache_config *cachep = (packet[4] == 'i') ?
2733                         &xtensa->core_config->icache : &xtensa->core_config->dcache;
2734                 unsigned int line_size = 0, size = 0, way_count = 0;
2735                 sscanf(&packet[7], "%x,%x,%x", &line_size, &size, &way_count);
2736                 if ((cachep->line_size != line_size) ||
2737                         (cachep->size != size) ||
2738                         (cachep->way_count != way_count)) {
2739                         LOG_TARGET_WARNING(target, "%cCache mismatch; check xtensa-core-XXX.cfg file",
2740                                 cachep == &xtensa->core_config->icache ? 'I' : 'D');
2741                 }
2742                 strcpy(*response_p, "OK");
2743                 return ERROR_OK;
2744         } else if ((strncmp(packet, "Qxtiram=", 8) == 0) || (strncmp(packet, "Qxtirom=", 8) == 0)) {
2745                 /* Confirm host IRAM/IROM params match core .cfg file */
2746                 struct xtensa_local_mem_config *memp = (packet[5] == 'a') ?
2747                         &xtensa->core_config->iram : &xtensa->core_config->irom;
2748                 unsigned int base = 0, size = 0, i;
2749                 char *pkt = (char *)&packet[7];
2750                 do {
2751                         pkt++;
2752                         size = strtoul(pkt, &pkt, 16);
2753                         pkt++;
2754                         base = strtoul(pkt, &pkt, 16);
2755                         LOG_TARGET_DEBUG(target, "memcheck: %dB @ 0x%08x", size, base);
2756                         for (i = 0; i < memp->count; i++) {
2757                                 if ((memp->regions[i].base == base) && (memp->regions[i].size == size))
2758                                         break;
2759                         }
2760                         if (i == memp->count) {
2761                                 LOG_TARGET_WARNING(target, "%s mismatch; check xtensa-core-XXX.cfg file",
2762                                         memp == &xtensa->core_config->iram ? "IRAM" : "IROM");
2763                                 break;
2764                         }
2765                         for (i = 0; i < 11; i++) {
2766                                 pkt++;
2767                                 strtoul(pkt, &pkt, 16);
2768                         }
2769                 } while (pkt && (pkt[0] == ','));
2770                 strcpy(*response_p, "OK");
2771                 return ERROR_OK;
2772         } else if (strncmp(packet, "Qxtexcmlvl=", 11) == 0) {
2773                 /* Confirm host EXCM_LEVEL matches core .cfg file */
2774                 unsigned int excm_level = strtoul(&packet[11], NULL, 0);
2775                 if (!xtensa->core_config->high_irq.enabled ||
2776                         (excm_level != xtensa->core_config->high_irq.excm_level))
2777                         LOG_TARGET_WARNING(target, "EXCM_LEVEL mismatch; check xtensa-core-XXX.cfg file");
2778                 strcpy(*response_p, "OK");
2779                 return ERROR_OK;
2780         } else if ((strncmp(packet, "Qxtl2cs=", 8) == 0) ||
2781                 (strncmp(packet, "Qxtl2ca=", 8) == 0) ||
2782                 (strncmp(packet, "Qxtdensity=", 11) == 0)) {
2783                 strcpy(*response_p, "OK");
2784                 return ERROR_OK;
2785         } else if (strncmp(packet, "Qxtspill=", 9) == 0) {
2786                 char *delim;
2787                 uint32_t spill_loc = strtoul(packet + 9, &delim, 16);
2788                 if (*delim != ':') {
2789                         LOG_ERROR("Malformed Qxtspill packet");
2790                         error = XT_QERR_INVAL;
2791                         goto xtensa_gdb_query_custom_fail;
2792                 }
2793                 xtensa->spill_loc = spill_loc;
2794                 xtensa->spill_bytes = strtoul(delim + 1, NULL, 16);
2795                 if (xtensa->spill_buf)
2796                         free(xtensa->spill_buf);
2797                 xtensa->spill_buf = calloc(1, xtensa->spill_bytes);
2798                 if (!xtensa->spill_buf) {
2799                         LOG_ERROR("Spill buf alloc");
2800                         error = XT_QERR_MEM;
2801                         goto xtensa_gdb_query_custom_fail;
2802                 }
2803                 LOG_TARGET_DEBUG(target, "Set spill 0x%08" PRIx32 " (%d)", xtensa->spill_loc, xtensa->spill_bytes);
2804                 strcpy(*response_p, "OK");
2805                 return ERROR_OK;
2806         } else if (strncasecmp(packet, "qxtreg", 6) == 0) {
2807                 return xtensa_gdbqc_qxtreg(target, packet, response_p);
2808         } else if ((strncmp(packet, "qTStatus", 8) == 0) ||
2809                 (strncmp(packet, "qxtftie", 7) == 0) ||
2810                 (strncmp(packet, "qxtstie", 7) == 0)) {
2811                 /* Return empty string to indicate trace, TIE wire debug are unsupported */
2812                 strcpy(*response_p, "");
2813                 return ERROR_OK;
2814         }
2815
2816         /* Warn for all other queries, but do not return errors */
2817         LOG_TARGET_WARNING(target, "Unknown target-specific query packet: %s", packet);
2818         strcpy(*response_p, "");
2819         return ERROR_OK;
2820
2821 xtensa_gdb_query_custom_fail:
2822         strcpy(*response_p, xt_qerr[error].chrval);
2823         return xt_qerr[error].intval;
2824 }
2825
2826 int xtensa_init_arch_info(struct target *target, struct xtensa *xtensa,
2827         const struct xtensa_debug_module_config *dm_cfg)
2828 {
2829         target->arch_info = xtensa;
2830         xtensa->common_magic = XTENSA_COMMON_MAGIC;
2831         xtensa->target = target;
2832         xtensa->stepping_isr_mode = XT_STEPPING_ISR_ON;
2833
2834         xtensa->core_config = calloc(1, sizeof(struct xtensa_config));
2835         if (!xtensa->core_config) {
2836                 LOG_ERROR("Xtensa configuration alloc failed\n");
2837                 return ERROR_FAIL;
2838         }
2839
2840         /* Default cache settings are disabled with 1 way */
2841         xtensa->core_config->icache.way_count = 1;
2842         xtensa->core_config->dcache.way_count = 1;
2843
2844         /* chrval: AR3/AR4 register names will change with window mapping.
2845          * intval: tracks whether scratch register was set through gdb P packet.
2846          */
2847         for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++) {
2848                 xtensa->scratch_ars[s].chrval = calloc(8, sizeof(char));
2849                 if (!xtensa->scratch_ars[s].chrval) {
2850                         for (enum xtensa_ar_scratch_set_e f = s - 1; s >= 0; s--)
2851                                 free(xtensa->scratch_ars[f].chrval);
2852                         free(xtensa->core_config);
2853                         LOG_ERROR("Xtensa scratch AR alloc failed\n");
2854                         return ERROR_FAIL;
2855                 }
2856                 xtensa->scratch_ars[s].intval = false;
2857                 sprintf(xtensa->scratch_ars[s].chrval, "%s%d",
2858                         ((s == XT_AR_SCRATCH_A3) || (s == XT_AR_SCRATCH_A4)) ? "a" : "ar",
2859                         ((s == XT_AR_SCRATCH_A3) || (s == XT_AR_SCRATCH_AR3)) ? 3 : 4);
2860         }
2861
2862         return xtensa_dm_init(&xtensa->dbg_mod, dm_cfg);
2863 }
2864
2865 void xtensa_set_permissive_mode(struct target *target, bool state)
2866 {
2867         target_to_xtensa(target)->permissive_mode = state;
2868 }
2869
2870 int xtensa_target_init(struct command_context *cmd_ctx, struct target *target)
2871 {
2872         struct xtensa *xtensa = target_to_xtensa(target);
2873
2874         xtensa->come_online_probes_num = 3;
2875         xtensa->hw_brps = calloc(XT_HW_IBREAK_MAX_NUM, sizeof(struct breakpoint *));
2876         if (!xtensa->hw_brps) {
2877                 LOG_ERROR("Failed to alloc memory for HW breakpoints!");
2878                 return ERROR_FAIL;
2879         }
2880         xtensa->hw_wps = calloc(XT_HW_DBREAK_MAX_NUM, sizeof(struct watchpoint *));
2881         if (!xtensa->hw_wps) {
2882                 free(xtensa->hw_brps);
2883                 LOG_ERROR("Failed to alloc memory for HW watchpoints!");
2884                 return ERROR_FAIL;
2885         }
2886         xtensa->sw_brps = calloc(XT_SW_BREAKPOINTS_MAX_NUM, sizeof(struct xtensa_sw_breakpoint));
2887         if (!xtensa->sw_brps) {
2888                 free(xtensa->hw_brps);
2889                 free(xtensa->hw_wps);
2890                 LOG_ERROR("Failed to alloc memory for SW breakpoints!");
2891                 return ERROR_FAIL;
2892         }
2893
2894         xtensa->spill_loc = 0xffffffff;
2895         xtensa->spill_bytes = 0;
2896         xtensa->spill_buf = NULL;
2897         xtensa->probe_lsddr32p = -1;    /* Probe for fast load/store operations */
2898
2899         return xtensa_build_reg_cache(target);
2900 }
2901
2902 static void xtensa_free_reg_cache(struct target *target)
2903 {
2904         struct xtensa *xtensa = target_to_xtensa(target);
2905         struct reg_cache *cache = xtensa->core_cache;
2906
2907         if (cache) {
2908                 register_unlink_cache(&target->reg_cache, cache);
2909                 for (unsigned int i = 0; i < cache->num_regs; i++) {
2910                         free(xtensa->algo_context_backup[i]);
2911                         free(cache->reg_list[i].value);
2912                 }
2913                 free(xtensa->algo_context_backup);
2914                 free(cache->reg_list);
2915                 free(cache);
2916         }
2917         xtensa->core_cache = NULL;
2918         xtensa->algo_context_backup = NULL;
2919
2920         if (xtensa->empty_regs) {
2921                 for (unsigned int i = 0; i < xtensa->dbregs_num; i++) {
2922                         free((void *)xtensa->empty_regs[i].name);
2923                         free(xtensa->empty_regs[i].value);
2924                 }
2925                 free(xtensa->empty_regs);
2926         }
2927         xtensa->empty_regs = NULL;
2928         if (xtensa->optregs) {
2929                 for (unsigned int i = 0; i < xtensa->num_optregs; i++)
2930                         free((void *)xtensa->optregs[i].name);
2931                 free(xtensa->optregs);
2932         }
2933         xtensa->optregs = NULL;
2934 }
2935
2936 void xtensa_target_deinit(struct target *target)
2937 {
2938         struct xtensa *xtensa = target_to_xtensa(target);
2939
2940         LOG_DEBUG("start");
2941
2942         if (target_was_examined(target)) {
2943                 int ret = xtensa_queue_dbg_reg_write(xtensa, NARADR_DCRCLR, OCDDCR_ENABLEOCD);
2944                 if (ret != ERROR_OK) {
2945                         LOG_ERROR("Failed to queue OCDDCR_ENABLEOCD clear operation!");
2946                         return;
2947                 }
2948                 xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
2949                 ret = jtag_execute_queue();
2950                 if (ret != ERROR_OK) {
2951                         LOG_ERROR("Failed to clear OCDDCR_ENABLEOCD!");
2952                         return;
2953                 }
2954         }
2955         xtensa_free_reg_cache(target);
2956         free(xtensa->hw_brps);
2957         free(xtensa->hw_wps);
2958         free(xtensa->sw_brps);
2959         if (xtensa->spill_buf) {
2960                 free(xtensa->spill_buf);
2961                 xtensa->spill_buf = NULL;
2962         }
2963         for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++)
2964                 free(xtensa->scratch_ars[s].chrval);
2965         free(xtensa->core_config);
2966 }
2967
2968 const char *xtensa_get_gdb_arch(struct target *target)
2969 {
2970         return "xtensa";
2971 }
2972
2973 /* exe <ascii-encoded hexadecimal instruction bytes> */
2974 COMMAND_HELPER(xtensa_cmd_exe_do, struct target *target)
2975 {
2976         struct xtensa *xtensa = target_to_xtensa(target);
2977
2978         if (CMD_ARGC != 1)
2979                 return ERROR_COMMAND_SYNTAX_ERROR;
2980
2981         /* Process ascii-encoded hex byte string */
2982         const char *parm = CMD_ARGV[0];
2983         unsigned int parm_len = strlen(parm);
2984         if ((parm_len >= 64) || (parm_len & 1)) {
2985                 LOG_ERROR("Invalid parameter length (%d): must be even, < 64 characters", parm_len);
2986                 return ERROR_FAIL;
2987         }
2988
2989         uint8_t ops[32];
2990         unsigned int oplen = parm_len / 2;
2991         char encoded_byte[3] = { 0, 0, 0 };
2992         for (unsigned int i = 0; i < oplen; i++) {
2993                 encoded_byte[0] = *parm++;
2994                 encoded_byte[1] = *parm++;
2995                 ops[i] = strtoul(encoded_byte, NULL, 16);
2996         }
2997
2998         /* GDB must handle state save/restore.
2999          * Flush reg cache in case spill location is in an AR
3000          * Update CPENABLE only for this execution; later restore cached copy
3001          * Keep a copy of exccause in case executed code triggers an exception
3002          */
3003         int status = xtensa_write_dirty_registers(target);
3004         if (status != ERROR_OK) {
3005                 LOG_ERROR("%s: Failed to write back register cache.", target_name(target));
3006                 return ERROR_FAIL;
3007         }
3008         xtensa_reg_val_t exccause = xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE);
3009         xtensa_reg_val_t cpenable = xtensa_reg_get(target, XT_REG_IDX_CPENABLE);
3010         xtensa_reg_val_t a3 = xtensa_reg_get(target, XT_REG_IDX_A3);
3011         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, 0xffffffff);
3012         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
3013         xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa,
3014                         xtensa_regs[XT_REG_IDX_CPENABLE].reg_num, XT_REG_A3));
3015         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, a3);
3016         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
3017
3018         /* Queue instruction list and execute everything */
3019         LOG_TARGET_DEBUG(target, "execute stub: %s", CMD_ARGV[0]);
3020         xtensa_queue_exec_ins_wide(xtensa, ops, oplen); /* Handles endian-swap */
3021         status = jtag_execute_queue();
3022         if (status != ERROR_OK)
3023                 LOG_TARGET_ERROR(target, "TIE queue execute: %d\n", status);
3024         status = xtensa_core_status_check(target);
3025         if (status != ERROR_OK)
3026                 LOG_TARGET_ERROR(target, "TIE instr execute: %d\n", status);
3027
3028         /* Reread register cache and restore saved regs after instruction execution */
3029         if (xtensa_fetch_all_regs(target) != ERROR_OK)
3030                 LOG_TARGET_ERROR(target, "%s: Failed to fetch register cache (post-exec).", target_name(target));
3031         xtensa_reg_set(target, XT_REG_IDX_EXCCAUSE, exccause);
3032         xtensa_reg_set(target, XT_REG_IDX_CPENABLE, cpenable);
3033         return status;
3034 }
3035
3036 COMMAND_HANDLER(xtensa_cmd_exe)
3037 {
3038         return CALL_COMMAND_HANDLER(xtensa_cmd_exe_do, get_current_target(CMD_CTX));
3039 }
3040
3041 /* xtdef <name> */
3042 COMMAND_HELPER(xtensa_cmd_xtdef_do, struct xtensa *xtensa)
3043 {
3044         if (CMD_ARGC != 1)
3045                 return ERROR_COMMAND_SYNTAX_ERROR;
3046
3047         const char *core_name = CMD_ARGV[0];
3048         if (strcasecmp(core_name, "LX") == 0) {
3049                 xtensa->core_config->core_type = XT_LX;
3050         } else {
3051                 LOG_ERROR("xtdef [LX]\n");
3052                 return ERROR_COMMAND_SYNTAX_ERROR;
3053         }
3054         return ERROR_OK;
3055 }
3056
3057 COMMAND_HANDLER(xtensa_cmd_xtdef)
3058 {
3059         return CALL_COMMAND_HANDLER(xtensa_cmd_xtdef_do,
3060                 target_to_xtensa(get_current_target(CMD_CTX)));
3061 }
3062
3063 static inline bool xtensa_cmd_xtopt_legal_val(char *opt, int val, int min, int max)
3064 {
3065         if ((val < min) || (val > max)) {
3066                 LOG_ERROR("xtopt %s (%d) out of range [%d..%d]\n", opt, val, min, max);
3067                 return false;
3068         }
3069         return true;
3070 }
3071
3072 /* xtopt <name> <value> */
3073 COMMAND_HELPER(xtensa_cmd_xtopt_do, struct xtensa *xtensa)
3074 {
3075         if (CMD_ARGC != 2)
3076                 return ERROR_COMMAND_SYNTAX_ERROR;
3077
3078         const char *opt_name = CMD_ARGV[0];
3079         int opt_val = strtol(CMD_ARGV[1], NULL, 0);
3080         if (strcasecmp(opt_name, "arnum") == 0) {
3081                 if (!xtensa_cmd_xtopt_legal_val("arnum", opt_val, 0, 64))
3082                         return ERROR_COMMAND_ARGUMENT_INVALID;
3083                 xtensa->core_config->aregs_num = opt_val;
3084         } else if (strcasecmp(opt_name, "windowed") == 0) {
3085                 if (!xtensa_cmd_xtopt_legal_val("windowed", opt_val, 0, 1))
3086                         return ERROR_COMMAND_ARGUMENT_INVALID;
3087                 xtensa->core_config->windowed = opt_val;
3088         } else if (strcasecmp(opt_name, "cpenable") == 0) {
3089                 if (!xtensa_cmd_xtopt_legal_val("cpenable", opt_val, 0, 1))
3090                         return ERROR_COMMAND_ARGUMENT_INVALID;
3091                 xtensa->core_config->coproc = opt_val;
3092         } else if (strcasecmp(opt_name, "exceptions") == 0) {
3093                 if (!xtensa_cmd_xtopt_legal_val("exceptions", opt_val, 0, 1))
3094                         return ERROR_COMMAND_ARGUMENT_INVALID;
3095                 xtensa->core_config->exceptions = opt_val;
3096         } else if (strcasecmp(opt_name, "intnum") == 0) {
3097                 if (!xtensa_cmd_xtopt_legal_val("intnum", opt_val, 0, 32))
3098                         return ERROR_COMMAND_ARGUMENT_INVALID;
3099                 xtensa->core_config->irq.enabled = (opt_val > 0);
3100                 xtensa->core_config->irq.irq_num = opt_val;
3101         } else if (strcasecmp(opt_name, "hipriints") == 0) {
3102                 if (!xtensa_cmd_xtopt_legal_val("hipriints", opt_val, 0, 1))
3103                         return ERROR_COMMAND_ARGUMENT_INVALID;
3104                 xtensa->core_config->high_irq.enabled = opt_val;
3105         } else if (strcasecmp(opt_name, "excmlevel") == 0) {
3106                 if (!xtensa_cmd_xtopt_legal_val("excmlevel", opt_val, 1, 6))
3107                         return ERROR_COMMAND_ARGUMENT_INVALID;
3108                 if (!xtensa->core_config->high_irq.enabled) {
3109                         LOG_ERROR("xtopt excmlevel requires hipriints\n");
3110                         return ERROR_COMMAND_ARGUMENT_INVALID;
3111                 }
3112                 xtensa->core_config->high_irq.excm_level = opt_val;
3113         } else if (strcasecmp(opt_name, "intlevels") == 0) {
3114                 if (xtensa->core_config->core_type == XT_LX) {
3115                         if (!xtensa_cmd_xtopt_legal_val("intlevels", opt_val, 2, 6))
3116                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3117                 } else {
3118                         if (!xtensa_cmd_xtopt_legal_val("intlevels", opt_val, 1, 255))
3119                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3120                 }
3121                 if (!xtensa->core_config->high_irq.enabled) {
3122                         LOG_ERROR("xtopt intlevels requires hipriints\n");
3123                         return ERROR_COMMAND_ARGUMENT_INVALID;
3124                 }
3125                 xtensa->core_config->high_irq.level_num = opt_val;
3126         } else if (strcasecmp(opt_name, "debuglevel") == 0) {
3127                 if (xtensa->core_config->core_type == XT_LX) {
3128                         if (!xtensa_cmd_xtopt_legal_val("debuglevel", opt_val, 2, 6))
3129                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3130                 } else {
3131                         if (!xtensa_cmd_xtopt_legal_val("debuglevel", opt_val, 0, 0))
3132                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3133                 }
3134                 xtensa->core_config->debug.enabled = 1;
3135                 xtensa->core_config->debug.irq_level = opt_val;
3136         } else if (strcasecmp(opt_name, "ibreaknum") == 0) {
3137                 if (!xtensa_cmd_xtopt_legal_val("ibreaknum", opt_val, 0, 2))
3138                         return ERROR_COMMAND_ARGUMENT_INVALID;
3139                 xtensa->core_config->debug.ibreaks_num = opt_val;
3140         } else if (strcasecmp(opt_name, "dbreaknum") == 0) {
3141                 if (!xtensa_cmd_xtopt_legal_val("dbreaknum", opt_val, 0, 2))
3142                         return ERROR_COMMAND_ARGUMENT_INVALID;
3143                 xtensa->core_config->debug.dbreaks_num = opt_val;
3144         } else if (strcasecmp(opt_name, "tracemem") == 0) {
3145                 if (!xtensa_cmd_xtopt_legal_val("tracemem", opt_val, 0, 256 * 1024))
3146                         return ERROR_COMMAND_ARGUMENT_INVALID;
3147                 xtensa->core_config->trace.mem_sz = opt_val;
3148                 xtensa->core_config->trace.enabled = (opt_val > 0);
3149         } else if (strcasecmp(opt_name, "tracememrev") == 0) {
3150                 if (!xtensa_cmd_xtopt_legal_val("tracememrev", opt_val, 0, 1))
3151                         return ERROR_COMMAND_ARGUMENT_INVALID;
3152                 xtensa->core_config->trace.reversed_mem_access = opt_val;
3153         } else if (strcasecmp(opt_name, "perfcount") == 0) {
3154                 if (!xtensa_cmd_xtopt_legal_val("perfcount", opt_val, 0, 8))
3155                         return ERROR_COMMAND_ARGUMENT_INVALID;
3156                 xtensa->core_config->debug.perfcount_num = opt_val;
3157         } else {
3158                 LOG_WARNING("Unknown xtensa command ignored: \"xtopt %s %s\"", CMD_ARGV[0], CMD_ARGV[1]);
3159                 return ERROR_OK;
3160         }
3161
3162         return ERROR_OK;
3163 }
3164
3165 COMMAND_HANDLER(xtensa_cmd_xtopt)
3166 {
3167         return CALL_COMMAND_HANDLER(xtensa_cmd_xtopt_do,
3168                 target_to_xtensa(get_current_target(CMD_CTX)));
3169 }
3170
3171 /* xtmem <type> [parameters] */
3172 COMMAND_HELPER(xtensa_cmd_xtmem_do, struct xtensa *xtensa)
3173 {
3174         struct xtensa_cache_config *cachep = NULL;
3175         struct xtensa_local_mem_config *memp = NULL;
3176         int mem_access = 0;
3177         bool is_dcache = false;
3178
3179         if (CMD_ARGC == 0) {
3180                 LOG_ERROR("xtmem <type> [parameters]\n");
3181                 return ERROR_COMMAND_SYNTAX_ERROR;
3182         }
3183
3184         const char *mem_name = CMD_ARGV[0];
3185         if (strcasecmp(mem_name, "icache") == 0) {
3186                 cachep = &xtensa->core_config->icache;
3187         } else if (strcasecmp(mem_name, "dcache") == 0) {
3188                 cachep = &xtensa->core_config->dcache;
3189                 is_dcache = true;
3190         } else if (strcasecmp(mem_name, "l2cache") == 0) {
3191                 /* TODO: support L2 cache */
3192         } else if (strcasecmp(mem_name, "l2addr") == 0) {
3193                 /* TODO: support L2 cache */
3194         } else if (strcasecmp(mem_name, "iram") == 0) {
3195                 memp = &xtensa->core_config->iram;
3196                 mem_access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE;
3197         } else if (strcasecmp(mem_name, "dram") == 0) {
3198                 memp = &xtensa->core_config->dram;
3199                 mem_access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE;
3200         } else if (strcasecmp(mem_name, "sram") == 0) {
3201                 memp = &xtensa->core_config->sram;
3202                 mem_access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE;
3203         } else if (strcasecmp(mem_name, "irom") == 0) {
3204                 memp = &xtensa->core_config->irom;
3205                 mem_access = XT_MEM_ACCESS_READ;
3206         } else if (strcasecmp(mem_name, "drom") == 0) {
3207                 memp = &xtensa->core_config->drom;
3208                 mem_access = XT_MEM_ACCESS_READ;
3209         } else if (strcasecmp(mem_name, "srom") == 0) {
3210                 memp = &xtensa->core_config->srom;
3211                 mem_access = XT_MEM_ACCESS_READ;
3212         } else {
3213                 LOG_ERROR("xtmem types: <icache|dcache|l2cache|l2addr|iram|irom|dram|drom|sram|srom>\n");
3214                 return ERROR_COMMAND_ARGUMENT_INVALID;
3215         }
3216
3217         if (cachep) {
3218                 if ((CMD_ARGC != 4) && (CMD_ARGC != 5)) {
3219                         LOG_ERROR("xtmem <cachetype> <linebytes> <cachebytes> <ways> [writeback]\n");
3220                         return ERROR_COMMAND_SYNTAX_ERROR;
3221                 }
3222                 cachep->line_size = strtoul(CMD_ARGV[1], NULL, 0);
3223                 cachep->size = strtoul(CMD_ARGV[2], NULL, 0);
3224                 cachep->way_count = strtoul(CMD_ARGV[3], NULL, 0);
3225                 cachep->writeback = ((CMD_ARGC == 5) && is_dcache) ?
3226                         strtoul(CMD_ARGV[4], NULL, 0) : 0;
3227         } else if (memp) {
3228                 if (CMD_ARGC != 3) {
3229                         LOG_ERROR("xtmem <memtype> <baseaddr> <bytes>\n");
3230                         return ERROR_COMMAND_SYNTAX_ERROR;
3231                 }
3232                 struct xtensa_local_mem_region_config *memcfgp = &memp->regions[memp->count];
3233                 memcfgp->base = strtoul(CMD_ARGV[1], NULL, 0);
3234                 memcfgp->size = strtoul(CMD_ARGV[2], NULL, 0);
3235                 memcfgp->access = mem_access;
3236                 memp->count++;
3237         }
3238
3239         return ERROR_OK;
3240 }
3241
3242 COMMAND_HANDLER(xtensa_cmd_xtmem)
3243 {
3244         return CALL_COMMAND_HANDLER(xtensa_cmd_xtmem_do,
3245                 target_to_xtensa(get_current_target(CMD_CTX)));
3246 }
3247
3248 /* xtmpu <num FG seg> <min seg size> <lockable> <executeonly> */
3249 COMMAND_HELPER(xtensa_cmd_xtmpu_do, struct xtensa *xtensa)
3250 {
3251         if (CMD_ARGC != 4) {
3252                 LOG_ERROR("xtmpu <num FG seg> <min seg size> <lockable> <executeonly>\n");
3253                 return ERROR_COMMAND_SYNTAX_ERROR;
3254         }
3255
3256         unsigned int nfgseg = strtoul(CMD_ARGV[0], NULL, 0);
3257         unsigned int minsegsize = strtoul(CMD_ARGV[1], NULL, 0);
3258         unsigned int lockable = strtoul(CMD_ARGV[2], NULL, 0);
3259         unsigned int execonly = strtoul(CMD_ARGV[3], NULL, 0);
3260
3261         if ((nfgseg > 32)) {
3262                 LOG_ERROR("<nfgseg> must be within [0..32]\n");
3263                 return ERROR_COMMAND_ARGUMENT_INVALID;
3264         } else if (minsegsize & (minsegsize - 1)) {
3265                 LOG_ERROR("<minsegsize> must be a power of 2 >= 32\n");
3266                 return ERROR_COMMAND_ARGUMENT_INVALID;
3267         } else if (lockable > 1) {
3268                 LOG_ERROR("<lockable> must be 0 or 1\n");
3269                 return ERROR_COMMAND_ARGUMENT_INVALID;
3270         } else if (execonly > 1) {
3271                 LOG_ERROR("<execonly> must be 0 or 1\n");
3272                 return ERROR_COMMAND_ARGUMENT_INVALID;
3273         }
3274
3275         xtensa->core_config->mpu.enabled = true;
3276         xtensa->core_config->mpu.nfgseg = nfgseg;
3277         xtensa->core_config->mpu.minsegsize = minsegsize;
3278         xtensa->core_config->mpu.lockable = lockable;
3279         xtensa->core_config->mpu.execonly = execonly;
3280         return ERROR_OK;
3281 }
3282
3283 COMMAND_HANDLER(xtensa_cmd_xtmpu)
3284 {
3285         return CALL_COMMAND_HANDLER(xtensa_cmd_xtmpu_do,
3286                 target_to_xtensa(get_current_target(CMD_CTX)));
3287 }
3288
3289 /* xtmmu <NIREFILLENTRIES> <NDREFILLENTRIES> <IVARWAY56> <DVARWAY56> */
3290 COMMAND_HELPER(xtensa_cmd_xtmmu_do, struct xtensa *xtensa)
3291 {
3292         if (CMD_ARGC != 2) {
3293                 LOG_ERROR("xtmmu <NIREFILLENTRIES> <NDREFILLENTRIES>\n");
3294                 return ERROR_COMMAND_SYNTAX_ERROR;
3295         }
3296
3297         unsigned int nirefillentries = strtoul(CMD_ARGV[0], NULL, 0);
3298         unsigned int ndrefillentries = strtoul(CMD_ARGV[1], NULL, 0);
3299         if ((nirefillentries != 16) && (nirefillentries != 32)) {
3300                 LOG_ERROR("<nirefillentries> must be 16 or 32\n");
3301                 return ERROR_COMMAND_ARGUMENT_INVALID;
3302         } else if ((ndrefillentries != 16) && (ndrefillentries != 32)) {
3303                 LOG_ERROR("<ndrefillentries> must be 16 or 32\n");
3304                 return ERROR_COMMAND_ARGUMENT_INVALID;
3305         }
3306
3307         xtensa->core_config->mmu.enabled = true;
3308         xtensa->core_config->mmu.itlb_entries_count = nirefillentries;
3309         xtensa->core_config->mmu.dtlb_entries_count = ndrefillentries;
3310         return ERROR_OK;
3311 }
3312
3313 COMMAND_HANDLER(xtensa_cmd_xtmmu)
3314 {
3315         return CALL_COMMAND_HANDLER(xtensa_cmd_xtmmu_do,
3316                 target_to_xtensa(get_current_target(CMD_CTX)));
3317 }
3318
3319 /* xtregs <numregs>
3320  * xtreg <regname> <regnum> */
3321 COMMAND_HELPER(xtensa_cmd_xtreg_do, struct xtensa *xtensa)
3322 {
3323         if (CMD_ARGC == 1) {
3324                 int32_t numregs = strtoul(CMD_ARGV[0], NULL, 0);
3325                 if ((numregs <= 0) || (numregs > UINT16_MAX)) {
3326                         LOG_ERROR("xtreg <numregs>: Invalid 'numregs' (%d)", numregs);
3327                         return ERROR_COMMAND_SYNTAX_ERROR;
3328                 }
3329                 if ((xtensa->genpkt_regs_num > 0) && (numregs < (int32_t)xtensa->genpkt_regs_num)) {
3330                         LOG_ERROR("xtregs (%d) must be larger than numgenregs (%d) (if xtregfmt specified)",
3331                                 numregs, xtensa->genpkt_regs_num);
3332                         return ERROR_COMMAND_SYNTAX_ERROR;
3333                 }
3334                 xtensa->total_regs_num = numregs;
3335                 xtensa->core_regs_num = 0;
3336                 xtensa->num_optregs = 0;
3337                 /* A little more memory than required, but saves a second initialization pass */
3338                 xtensa->optregs = calloc(xtensa->total_regs_num, sizeof(struct xtensa_reg_desc));
3339                 if (!xtensa->optregs) {
3340                         LOG_ERROR("Failed to allocate xtensa->optregs!");
3341                         return ERROR_FAIL;
3342                 }
3343                 return ERROR_OK;
3344         } else if (CMD_ARGC != 2)
3345                 return ERROR_COMMAND_SYNTAX_ERROR;
3346
3347         /* "xtregfmt contiguous" must be specified prior to the first "xtreg" definition
3348          * if general register (g-packet) requests or contiguous register maps are supported */
3349         if (xtensa->regmap_contiguous && !xtensa->contiguous_regs_desc) {
3350                 xtensa->contiguous_regs_desc = calloc(xtensa->total_regs_num, sizeof(struct xtensa_reg_desc *));
3351                 if (!xtensa->contiguous_regs_desc) {
3352                         LOG_ERROR("Failed to allocate xtensa->contiguous_regs_desc!");
3353                         return ERROR_FAIL;
3354                 }
3355         }
3356
3357         const char *regname = CMD_ARGV[0];
3358         unsigned int regnum = strtoul(CMD_ARGV[1], NULL, 0);
3359         if (regnum > UINT16_MAX) {
3360                 LOG_ERROR("<regnum> must be a 16-bit number");
3361                 return ERROR_COMMAND_ARGUMENT_INVALID;
3362         }
3363
3364         if ((xtensa->num_optregs + xtensa->core_regs_num) >= xtensa->total_regs_num) {
3365                 if (xtensa->total_regs_num)
3366                         LOG_ERROR("'xtreg %s 0x%04x': Too many registers (%d expected, %d core %d extended)",
3367                                 regname, regnum,
3368                                 xtensa->total_regs_num, xtensa->core_regs_num, xtensa->num_optregs);
3369                 else
3370                         LOG_ERROR("'xtreg %s 0x%04x': Number of registers unspecified",
3371                                 regname, regnum);
3372                 return ERROR_FAIL;
3373         }
3374
3375         /* Determine whether register belongs in xtensa_regs[] or xtensa->xtensa_spec_regs[] */
3376         struct xtensa_reg_desc *rptr = &xtensa->optregs[xtensa->num_optregs];
3377         bool is_extended_reg = true;
3378         unsigned int ridx;
3379         for (ridx = 0; ridx < XT_NUM_REGS; ridx++) {
3380                 if (strcmp(CMD_ARGV[0], xtensa_regs[ridx].name) == 0) {
3381                         /* Flag core register as defined */
3382                         rptr = &xtensa_regs[ridx];
3383                         xtensa->core_regs_num++;
3384                         is_extended_reg = false;
3385                         break;
3386                 }
3387         }
3388
3389         rptr->exist = true;
3390         if (is_extended_reg) {
3391                 /* Register ID, debugger-visible register ID */
3392                 rptr->name = strdup(CMD_ARGV[0]);
3393                 rptr->dbreg_num = regnum;
3394                 rptr->reg_num = (regnum & XT_REG_INDEX_MASK);
3395                 xtensa->num_optregs++;
3396
3397                 /* Register type */
3398                 if ((regnum & XT_REG_GENERAL_MASK) == XT_REG_GENERAL_VAL) {
3399                         rptr->type = XT_REG_GENERAL;
3400                 } else if ((regnum & XT_REG_USER_MASK) == XT_REG_USER_VAL) {
3401                         rptr->type = XT_REG_USER;
3402                 } else if ((regnum & XT_REG_FR_MASK) == XT_REG_FR_VAL) {
3403                         rptr->type = XT_REG_FR;
3404                 } else if ((regnum & XT_REG_SPECIAL_MASK) == XT_REG_SPECIAL_VAL) {
3405                         rptr->type = XT_REG_SPECIAL;
3406                 } else if ((regnum & XT_REG_RELGEN_MASK) == XT_REG_RELGEN_VAL) {
3407                         /* WARNING: For these registers, regnum points to the
3408                          * index of the corresponding ARx registers, NOT to
3409                          * the processor register number! */
3410                         rptr->type = XT_REG_RELGEN;
3411                         rptr->reg_num += XT_REG_IDX_ARFIRST;
3412                         rptr->dbreg_num += XT_REG_IDX_ARFIRST;
3413                 } else if ((regnum & XT_REG_TIE_MASK) != 0) {
3414                         rptr->type = XT_REG_TIE;
3415                 } else {
3416                         rptr->type = XT_REG_OTHER;
3417                 }
3418
3419                 /* Register flags */
3420                 if ((strcmp(rptr->name, "mmid") == 0) || (strcmp(rptr->name, "eraccess") == 0) ||
3421                         (strcmp(rptr->name, "ddr") == 0) || (strcmp(rptr->name, "intset") == 0) ||
3422                         (strcmp(rptr->name, "intclear") == 0))
3423                         rptr->flags = XT_REGF_NOREAD;
3424                 else
3425                         rptr->flags = 0;
3426
3427                 if ((rptr->reg_num == (XT_PS_REG_NUM_BASE + xtensa->core_config->debug.irq_level)) &&
3428                         (xtensa->core_config->core_type == XT_LX) && (rptr->type == XT_REG_SPECIAL)) {
3429                         xtensa->eps_dbglevel_idx = XT_NUM_REGS + xtensa->num_optregs - 1;
3430                         LOG_DEBUG("Setting PS (%s) index to %d", rptr->name, xtensa->eps_dbglevel_idx);
3431                 }
3432         } else if (strcmp(rptr->name, "cpenable") == 0) {
3433                 xtensa->core_config->coproc = true;
3434         }
3435
3436         /* Build out list of contiguous registers in specified order */
3437         unsigned int running_reg_count = xtensa->num_optregs + xtensa->core_regs_num;
3438         if (xtensa->contiguous_regs_desc) {
3439                 assert((running_reg_count <= xtensa->total_regs_num) && "contiguous register address internal error!");
3440                 xtensa->contiguous_regs_desc[running_reg_count - 1] = rptr;
3441         }
3442         if (xtensa_extra_debug_log)
3443                 LOG_DEBUG("Added %s register %-16s: 0x%04x/0x%02x t%d (%d of %d)",
3444                         is_extended_reg ? "config-specific" : "core",
3445                         rptr->name, rptr->dbreg_num, rptr->reg_num, rptr->type,
3446                         is_extended_reg ? xtensa->num_optregs : ridx,
3447                         is_extended_reg ? xtensa->total_regs_num : XT_NUM_REGS);
3448         return ERROR_OK;
3449 }
3450
3451 COMMAND_HANDLER(xtensa_cmd_xtreg)
3452 {
3453         return CALL_COMMAND_HANDLER(xtensa_cmd_xtreg_do,
3454                 target_to_xtensa(get_current_target(CMD_CTX)));
3455 }
3456
3457 /* xtregfmt <contiguous|sparse> [numgregs] */
3458 COMMAND_HELPER(xtensa_cmd_xtregfmt_do, struct xtensa *xtensa)
3459 {
3460         if ((CMD_ARGC == 1) || (CMD_ARGC == 2)) {
3461                 if (!strcasecmp(CMD_ARGV[0], "sparse")) {
3462                         return ERROR_OK;
3463                 } else if (!strcasecmp(CMD_ARGV[0], "contiguous")) {
3464                         xtensa->regmap_contiguous = true;
3465                         if (CMD_ARGC == 2) {
3466                                 unsigned int numgregs = strtoul(CMD_ARGV[1], NULL, 0);
3467                                 if ((numgregs <= 0) ||
3468                                         ((numgregs > xtensa->total_regs_num) &&
3469                                                 (xtensa->total_regs_num > 0))) {
3470                                         LOG_ERROR("xtregfmt: if specified, numgregs (%d) must be <= numregs (%d)",
3471                                                 numgregs, xtensa->total_regs_num);
3472                                         return ERROR_COMMAND_SYNTAX_ERROR;
3473                                 }
3474                                 xtensa->genpkt_regs_num = numgregs;
3475                         }
3476                         return ERROR_OK;
3477                 }
3478         }
3479         return ERROR_COMMAND_SYNTAX_ERROR;
3480 }
3481
3482 COMMAND_HANDLER(xtensa_cmd_xtregfmt)
3483 {
3484         return CALL_COMMAND_HANDLER(xtensa_cmd_xtregfmt_do,
3485                 target_to_xtensa(get_current_target(CMD_CTX)));
3486 }
3487
3488 COMMAND_HELPER(xtensa_cmd_permissive_mode_do, struct xtensa *xtensa)
3489 {
3490         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
3491                 &xtensa->permissive_mode, "xtensa permissive mode");
3492 }
3493
3494 COMMAND_HANDLER(xtensa_cmd_permissive_mode)
3495 {
3496         return CALL_COMMAND_HANDLER(xtensa_cmd_permissive_mode_do,
3497                 target_to_xtensa(get_current_target(CMD_CTX)));
3498 }
3499
3500 /* perfmon_enable <counter_id> <select> [mask] [kernelcnt] [tracelevel] */
3501 COMMAND_HELPER(xtensa_cmd_perfmon_enable_do, struct xtensa *xtensa)
3502 {
3503         struct xtensa_perfmon_config config = {
3504                 .mask = 0xffff,
3505                 .kernelcnt = 0,
3506                 .tracelevel = -1        /* use DEBUGLEVEL by default */
3507         };
3508
3509         if (CMD_ARGC < 2 || CMD_ARGC > 6)
3510                 return ERROR_COMMAND_SYNTAX_ERROR;
3511
3512         unsigned int counter_id = strtoul(CMD_ARGV[0], NULL, 0);
3513         if (counter_id >= XTENSA_MAX_PERF_COUNTERS) {
3514                 command_print(CMD, "counter_id should be < %d", XTENSA_MAX_PERF_COUNTERS);
3515                 return ERROR_COMMAND_ARGUMENT_INVALID;
3516         }
3517
3518         config.select = strtoul(CMD_ARGV[1], NULL, 0);
3519         if (config.select > XTENSA_MAX_PERF_SELECT) {
3520                 command_print(CMD, "select should be < %d", XTENSA_MAX_PERF_SELECT);
3521                 return ERROR_COMMAND_ARGUMENT_INVALID;
3522         }
3523
3524         if (CMD_ARGC >= 3) {
3525                 config.mask = strtoul(CMD_ARGV[2], NULL, 0);
3526                 if (config.mask > XTENSA_MAX_PERF_MASK) {
3527                         command_print(CMD, "mask should be < %d", XTENSA_MAX_PERF_MASK);
3528                         return ERROR_COMMAND_ARGUMENT_INVALID;
3529                 }
3530         }
3531
3532         if (CMD_ARGC >= 4) {
3533                 config.kernelcnt = strtoul(CMD_ARGV[3], NULL, 0);
3534                 if (config.kernelcnt > 1) {
3535                         command_print(CMD, "kernelcnt should be 0 or 1");
3536                         return ERROR_COMMAND_ARGUMENT_INVALID;
3537                 }
3538         }
3539
3540         if (CMD_ARGC >= 5) {
3541                 config.tracelevel = strtoul(CMD_ARGV[4], NULL, 0);
3542                 if (config.tracelevel > 7) {
3543                         command_print(CMD, "tracelevel should be <=7");
3544                         return ERROR_COMMAND_ARGUMENT_INVALID;
3545                 }
3546         }
3547
3548         if (config.tracelevel == -1)
3549                 config.tracelevel = xtensa->core_config->debug.irq_level;
3550
3551         return xtensa_dm_perfmon_enable(&xtensa->dbg_mod, counter_id, &config);
3552 }
3553
3554 COMMAND_HANDLER(xtensa_cmd_perfmon_enable)
3555 {
3556         return CALL_COMMAND_HANDLER(xtensa_cmd_perfmon_enable_do,
3557                 target_to_xtensa(get_current_target(CMD_CTX)));
3558 }
3559
3560 /* perfmon_dump [counter_id] */
3561 COMMAND_HELPER(xtensa_cmd_perfmon_dump_do, struct xtensa *xtensa)
3562 {
3563         if (CMD_ARGC > 1)
3564                 return ERROR_COMMAND_SYNTAX_ERROR;
3565
3566         int counter_id = -1;
3567         if (CMD_ARGC == 1) {
3568                 counter_id = strtol(CMD_ARGV[0], NULL, 0);
3569                 if (counter_id > XTENSA_MAX_PERF_COUNTERS) {
3570                         command_print(CMD, "counter_id should be < %d", XTENSA_MAX_PERF_COUNTERS);
3571                         return ERROR_COMMAND_ARGUMENT_INVALID;
3572                 }
3573         }
3574
3575         unsigned int counter_start = (counter_id < 0) ? 0 : counter_id;
3576         unsigned int counter_end = (counter_id < 0) ? XTENSA_MAX_PERF_COUNTERS : counter_id + 1;
3577         for (unsigned int counter = counter_start; counter < counter_end; ++counter) {
3578                 char result_buf[128] = { 0 };
3579                 size_t result_pos = snprintf(result_buf, sizeof(result_buf), "Counter %d: ", counter);
3580                 struct xtensa_perfmon_result result;
3581                 int res = xtensa_dm_perfmon_dump(&xtensa->dbg_mod, counter, &result);
3582                 if (res != ERROR_OK)
3583                         return res;
3584                 snprintf(result_buf + result_pos, sizeof(result_buf) - result_pos,
3585                         "%-12" PRIu64 "%s",
3586                         result.value,
3587                         result.overflow ? " (overflow)" : "");
3588                 LOG_INFO("%s", result_buf);
3589         }
3590
3591         return ERROR_OK;
3592 }
3593
3594 COMMAND_HANDLER(xtensa_cmd_perfmon_dump)
3595 {
3596         return CALL_COMMAND_HANDLER(xtensa_cmd_perfmon_dump_do,
3597                 target_to_xtensa(get_current_target(CMD_CTX)));
3598 }
3599
3600 COMMAND_HELPER(xtensa_cmd_mask_interrupts_do, struct xtensa *xtensa)
3601 {
3602         int state = -1;
3603
3604         if (CMD_ARGC < 1) {
3605                 const char *st;
3606                 state = xtensa->stepping_isr_mode;
3607                 if (state == XT_STEPPING_ISR_ON)
3608                         st = "OFF";
3609                 else if (state == XT_STEPPING_ISR_OFF)
3610                         st = "ON";
3611                 else
3612                         st = "UNKNOWN";
3613                 command_print(CMD, "Current ISR step mode: %s", st);
3614                 return ERROR_OK;
3615         }
3616         /* Masking is ON -> interrupts during stepping are OFF, and vice versa */
3617         if (!strcasecmp(CMD_ARGV[0], "off"))
3618                 state = XT_STEPPING_ISR_ON;
3619         else if (!strcasecmp(CMD_ARGV[0], "on"))
3620                 state = XT_STEPPING_ISR_OFF;
3621
3622         if (state == -1) {
3623                 command_print(CMD, "Argument unknown. Please pick one of ON, OFF");
3624                 return ERROR_FAIL;
3625         }
3626         xtensa->stepping_isr_mode = state;
3627         return ERROR_OK;
3628 }
3629
3630 COMMAND_HANDLER(xtensa_cmd_mask_interrupts)
3631 {
3632         return CALL_COMMAND_HANDLER(xtensa_cmd_mask_interrupts_do,
3633                 target_to_xtensa(get_current_target(CMD_CTX)));
3634 }
3635
3636 COMMAND_HELPER(xtensa_cmd_smpbreak_do, struct target *target)
3637 {
3638         int res;
3639         uint32_t val = 0;
3640
3641         if (CMD_ARGC >= 1) {
3642                 for (unsigned int i = 0; i < CMD_ARGC; i++) {
3643                         if (!strcasecmp(CMD_ARGV[0], "none")) {
3644                                 val = 0;
3645                         } else if (!strcasecmp(CMD_ARGV[i], "BreakIn")) {
3646                                 val |= OCDDCR_BREAKINEN;
3647                         } else if (!strcasecmp(CMD_ARGV[i], "BreakOut")) {
3648                                 val |= OCDDCR_BREAKOUTEN;
3649                         } else if (!strcasecmp(CMD_ARGV[i], "RunStallIn")) {
3650                                 val |= OCDDCR_RUNSTALLINEN;
3651                         } else if (!strcasecmp(CMD_ARGV[i], "DebugModeOut")) {
3652                                 val |= OCDDCR_DEBUGMODEOUTEN;
3653                         } else if (!strcasecmp(CMD_ARGV[i], "BreakInOut")) {
3654                                 val |= OCDDCR_BREAKINEN | OCDDCR_BREAKOUTEN;
3655                         } else if (!strcasecmp(CMD_ARGV[i], "RunStall")) {
3656                                 val |= OCDDCR_RUNSTALLINEN | OCDDCR_DEBUGMODEOUTEN;
3657                         } else {
3658                                 command_print(CMD, "Unknown arg %s", CMD_ARGV[i]);
3659                                 command_print(
3660                                         CMD,
3661                                         "use either BreakInOut, None or RunStall as arguments, or any combination of BreakIn, BreakOut, RunStallIn and DebugModeOut.");
3662                                 return ERROR_OK;
3663                         }
3664                 }
3665                 res = xtensa_smpbreak_set(target, val);
3666                 if (res != ERROR_OK)
3667                         command_print(CMD, "Failed to set smpbreak config %d", res);
3668         } else {
3669                 struct xtensa *xtensa = target_to_xtensa(target);
3670                 res = xtensa_smpbreak_read(xtensa, &val);
3671                 if (res == ERROR_OK)
3672                         command_print(CMD, "Current bits set:%s%s%s%s",
3673                                 (val & OCDDCR_BREAKINEN) ? " BreakIn" : "",
3674                                 (val & OCDDCR_BREAKOUTEN) ? " BreakOut" : "",
3675                                 (val & OCDDCR_RUNSTALLINEN) ? " RunStallIn" : "",
3676                                 (val & OCDDCR_DEBUGMODEOUTEN) ? " DebugModeOut" : ""
3677                                 );
3678                 else
3679                         command_print(CMD, "Failed to get smpbreak config %d", res);
3680         }
3681         return res;
3682 }
3683
3684 COMMAND_HANDLER(xtensa_cmd_smpbreak)
3685 {
3686         return CALL_COMMAND_HANDLER(xtensa_cmd_smpbreak_do,
3687                 get_current_target(CMD_CTX));
3688 }
3689
3690 COMMAND_HELPER(xtensa_cmd_tracestart_do, struct xtensa *xtensa)
3691 {
3692         struct xtensa_trace_status trace_status;
3693         struct xtensa_trace_start_config cfg = {
3694                 .stoppc = 0,
3695                 .stopmask = XTENSA_STOPMASK_DISABLED,
3696                 .after = 0,
3697                 .after_is_words = false
3698         };
3699
3700         /* Parse arguments */
3701         for (unsigned int i = 0; i < CMD_ARGC; i++) {
3702                 if ((!strcasecmp(CMD_ARGV[i], "pc")) && CMD_ARGC > i) {
3703                         char *e;
3704                         i++;
3705                         cfg.stoppc = strtol(CMD_ARGV[i], &e, 0);
3706                         cfg.stopmask = 0;
3707                         if (*e == '/')
3708                                 cfg.stopmask = strtol(e, NULL, 0);
3709                 } else if ((!strcasecmp(CMD_ARGV[i], "after")) && CMD_ARGC > i) {
3710                         i++;
3711                         cfg.after = strtol(CMD_ARGV[i], NULL, 0);
3712                 } else if (!strcasecmp(CMD_ARGV[i], "ins")) {
3713                         cfg.after_is_words = 0;
3714                 } else if (!strcasecmp(CMD_ARGV[i], "words")) {
3715                         cfg.after_is_words = 1;
3716                 } else {
3717                         command_print(CMD, "Did not understand %s", CMD_ARGV[i]);
3718                         return ERROR_FAIL;
3719                 }
3720         }
3721
3722         int res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
3723         if (res != ERROR_OK)
3724                 return res;
3725         if (trace_status.stat & TRAXSTAT_TRACT) {
3726                 LOG_WARNING("Silently stop active tracing!");
3727                 res = xtensa_dm_trace_stop(&xtensa->dbg_mod, false);
3728                 if (res != ERROR_OK)
3729                         return res;
3730         }
3731
3732         res = xtensa_dm_trace_start(&xtensa->dbg_mod, &cfg);
3733         if (res != ERROR_OK)
3734                 return res;
3735
3736         xtensa->trace_active = true;
3737         command_print(CMD, "Trace started.");
3738         return ERROR_OK;
3739 }
3740
3741 COMMAND_HANDLER(xtensa_cmd_tracestart)
3742 {
3743         return CALL_COMMAND_HANDLER(xtensa_cmd_tracestart_do,
3744                 target_to_xtensa(get_current_target(CMD_CTX)));
3745 }
3746
3747 COMMAND_HELPER(xtensa_cmd_tracestop_do, struct xtensa *xtensa)
3748 {
3749         struct xtensa_trace_status trace_status;
3750
3751         int res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
3752         if (res != ERROR_OK)
3753                 return res;
3754
3755         if (!(trace_status.stat & TRAXSTAT_TRACT)) {
3756                 command_print(CMD, "No trace is currently active.");
3757                 return ERROR_FAIL;
3758         }
3759
3760         res = xtensa_dm_trace_stop(&xtensa->dbg_mod, true);
3761         if (res != ERROR_OK)
3762                 return res;
3763
3764         xtensa->trace_active = false;
3765         command_print(CMD, "Trace stop triggered.");
3766         return ERROR_OK;
3767 }
3768
3769 COMMAND_HANDLER(xtensa_cmd_tracestop)
3770 {
3771         return CALL_COMMAND_HANDLER(xtensa_cmd_tracestop_do,
3772                 target_to_xtensa(get_current_target(CMD_CTX)));
3773 }
3774
3775 COMMAND_HELPER(xtensa_cmd_tracedump_do, struct xtensa *xtensa, const char *fname)
3776 {
3777         struct xtensa_trace_config trace_config;
3778         struct xtensa_trace_status trace_status;
3779         uint32_t memsz, wmem;
3780
3781         int res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
3782         if (res != ERROR_OK)
3783                 return res;
3784
3785         if (trace_status.stat & TRAXSTAT_TRACT) {
3786                 command_print(CMD, "Tracing is still active. Please stop it first.");
3787                 return ERROR_FAIL;
3788         }
3789
3790         res = xtensa_dm_trace_config_read(&xtensa->dbg_mod, &trace_config);
3791         if (res != ERROR_OK)
3792                 return res;
3793
3794         if (!(trace_config.ctrl & TRAXCTRL_TREN)) {
3795                 command_print(CMD, "No active trace found; nothing to dump.");
3796                 return ERROR_FAIL;
3797         }
3798
3799         memsz = trace_config.memaddr_end - trace_config.memaddr_start + 1;
3800         LOG_INFO("Total trace memory: %d words", memsz);
3801         if ((trace_config.addr &
3802                         ((TRAXADDR_TWRAP_MASK << TRAXADDR_TWRAP_SHIFT) | TRAXADDR_TWSAT)) == 0) {
3803                 /*Memory hasn't overwritten itself yet. */
3804                 wmem = trace_config.addr & TRAXADDR_TADDR_MASK;
3805                 LOG_INFO("...but trace is only %d words", wmem);
3806                 if (wmem < memsz)
3807                         memsz = wmem;
3808         } else {
3809                 if (trace_config.addr & TRAXADDR_TWSAT) {
3810                         LOG_INFO("Real trace is many times longer than that (overflow)");
3811                 } else {
3812                         uint32_t trc_sz = (trace_config.addr >> TRAXADDR_TWRAP_SHIFT) & TRAXADDR_TWRAP_MASK;
3813                         trc_sz = (trc_sz * memsz) + (trace_config.addr & TRAXADDR_TADDR_MASK);
3814                         LOG_INFO("Real trace is %d words, but the start has been truncated.", trc_sz);
3815                 }
3816         }
3817
3818         uint8_t *tracemem = malloc(memsz * 4);
3819         if (!tracemem) {
3820                 command_print(CMD, "Failed to alloc memory for trace data!");
3821                 return ERROR_FAIL;
3822         }
3823         res = xtensa_dm_trace_data_read(&xtensa->dbg_mod, tracemem, memsz * 4);
3824         if (res != ERROR_OK) {
3825                 free(tracemem);
3826                 return res;
3827         }
3828
3829         int f = open(fname, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3830         if (f <= 0) {
3831                 free(tracemem);
3832                 command_print(CMD, "Unable to open file %s", fname);
3833                 return ERROR_FAIL;
3834         }
3835         if (write(f, tracemem, memsz * 4) != (int)memsz * 4)
3836                 command_print(CMD, "Unable to write to file %s", fname);
3837         else
3838                 command_print(CMD, "Written %d bytes of trace data to %s", memsz * 4, fname);
3839         close(f);
3840
3841         bool is_all_zeroes = true;
3842         for (unsigned int i = 0; i < memsz * 4; i++) {
3843                 if (tracemem[i] != 0) {
3844                         is_all_zeroes = false;
3845                         break;
3846                 }
3847         }
3848         free(tracemem);
3849         if (is_all_zeroes)
3850                 command_print(
3851                         CMD,
3852                         "WARNING: File written is all zeroes. Are you sure you enabled trace memory?");
3853
3854         return ERROR_OK;
3855 }
3856
3857 COMMAND_HANDLER(xtensa_cmd_tracedump)
3858 {
3859         if (CMD_ARGC != 1) {
3860                 command_print(CMD, "Command takes exactly 1 parameter.Need filename to dump to as output!");
3861                 return ERROR_FAIL;
3862         }
3863
3864         return CALL_COMMAND_HANDLER(xtensa_cmd_tracedump_do,
3865                 target_to_xtensa(get_current_target(CMD_CTX)), CMD_ARGV[0]);
3866 }
3867
3868 static const struct command_registration xtensa_any_command_handlers[] = {
3869         {
3870                 .name = "xtdef",
3871                 .handler = xtensa_cmd_xtdef,
3872                 .mode = COMMAND_CONFIG,
3873                 .help = "Configure Xtensa core type",
3874                 .usage = "<type>",
3875         },
3876         {
3877                 .name = "xtopt",
3878                 .handler = xtensa_cmd_xtopt,
3879                 .mode = COMMAND_CONFIG,
3880                 .help = "Configure Xtensa core option",
3881                 .usage = "<name> <value>",
3882         },
3883         {
3884                 .name = "xtmem",
3885                 .handler = xtensa_cmd_xtmem,
3886                 .mode = COMMAND_CONFIG,
3887                 .help = "Configure Xtensa memory/cache option",
3888                 .usage = "<type> [parameters]",
3889         },
3890         {
3891                 .name = "xtmmu",
3892                 .handler = xtensa_cmd_xtmmu,
3893                 .mode = COMMAND_CONFIG,
3894                 .help = "Configure Xtensa MMU option",
3895                 .usage = "<NIREFILLENTRIES> <NDREFILLENTRIES> <IVARWAY56> <DVARWAY56>",
3896         },
3897         {
3898                 .name = "xtmpu",
3899                 .handler = xtensa_cmd_xtmpu,
3900                 .mode = COMMAND_CONFIG,
3901                 .help = "Configure Xtensa MPU option",
3902                 .usage = "<num FG seg> <min seg size> <lockable> <executeonly>",
3903         },
3904         {
3905                 .name = "xtreg",
3906                 .handler = xtensa_cmd_xtreg,
3907                 .mode = COMMAND_CONFIG,
3908                 .help = "Configure Xtensa register",
3909                 .usage = "<regname> <regnum>",
3910         },
3911         {
3912                 .name = "xtregs",
3913                 .handler = xtensa_cmd_xtreg,
3914                 .mode = COMMAND_CONFIG,
3915                 .help = "Configure number of Xtensa registers",
3916                 .usage = "<numregs>",
3917         },
3918         {
3919                 .name = "xtregfmt",
3920                 .handler = xtensa_cmd_xtregfmt,
3921                 .mode = COMMAND_CONFIG,
3922                 .help = "Configure format of Xtensa register map",
3923                 .usage = "<contiguous|sparse> [numgregs]",
3924         },
3925         {
3926                 .name = "set_permissive",
3927                 .handler = xtensa_cmd_permissive_mode,
3928                 .mode = COMMAND_ANY,
3929                 .help = "When set to 1, enable Xtensa permissive mode (fewer client-side checks)",
3930                 .usage = "[0|1]",
3931         },
3932         {
3933                 .name = "maskisr",
3934                 .handler = xtensa_cmd_mask_interrupts,
3935                 .mode = COMMAND_ANY,
3936                 .help = "mask Xtensa interrupts at step",
3937                 .usage = "['on'|'off']",
3938         },
3939         {
3940                 .name = "smpbreak",
3941                 .handler = xtensa_cmd_smpbreak,
3942                 .mode = COMMAND_ANY,
3943                 .help = "Set the way the CPU chains OCD breaks",
3944                 .usage = "[none|breakinout|runstall] | [BreakIn] [BreakOut] [RunStallIn] [DebugModeOut]",
3945         },
3946         {
3947                 .name = "perfmon_enable",
3948                 .handler = xtensa_cmd_perfmon_enable,
3949                 .mode = COMMAND_EXEC,
3950                 .help = "Enable and start performance counter",
3951                 .usage = "<counter_id> <select> [mask] [kernelcnt] [tracelevel]",
3952         },
3953         {
3954                 .name = "perfmon_dump",
3955                 .handler = xtensa_cmd_perfmon_dump,
3956                 .mode = COMMAND_EXEC,
3957                 .help = "Dump performance counter value. If no argument specified, dumps all counters.",
3958                 .usage = "[counter_id]",
3959         },
3960         {
3961                 .name = "tracestart",
3962                 .handler = xtensa_cmd_tracestart,
3963                 .mode = COMMAND_EXEC,
3964                 .help =
3965                         "Tracing: Set up and start a trace. Optionally set stop trigger address and amount of data captured after.",
3966                 .usage = "[pc <pcval>/[maskbitcount]] [after <n> [ins|words]]",
3967         },
3968         {
3969                 .name = "tracestop",
3970                 .handler = xtensa_cmd_tracestop,
3971                 .mode = COMMAND_EXEC,
3972                 .help = "Tracing: Stop current trace as started by the tracestart command",
3973                 .usage = "",
3974         },
3975         {
3976                 .name = "tracedump",
3977                 .handler = xtensa_cmd_tracedump,
3978                 .mode = COMMAND_EXEC,
3979                 .help = "Tracing: Dump trace memory to a files. One file per core.",
3980                 .usage = "<outfile>",
3981         },
3982         {
3983                 .name = "exe",
3984                 .handler = xtensa_cmd_exe,
3985                 .mode = COMMAND_ANY,
3986                 .help = "Xtensa stub execution",
3987                 .usage = "<ascii-encoded hexadecimal instruction bytes>",
3988         },
3989         COMMAND_REGISTRATION_DONE
3990 };
3991
3992 const struct command_registration xtensa_command_handlers[] = {
3993         {
3994                 .name = "xtensa",
3995                 .mode = COMMAND_ANY,
3996                 .help = "Xtensa command group",
3997                 .usage = "",
3998                 .chain = xtensa_any_command_handlers,
3999         },
4000         COMMAND_REGISTRATION_DONE
4001 };