4e18e3eb480ca214078cca5cb5139a70f73ad8d9
[fw/openocd] / src / target / xtensa / xtensa.c
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2
3 /***************************************************************************
4  *   Generic Xtensa target API for OpenOCD                                 *
5  *   Copyright (C) 2020-2022 Cadence Design Systems, Inc.                  *
6  *   Copyright (C) 2016-2019 Espressif Systems Ltd.                        *
7  *   Derived from esp108.c                                                 *
8  *   Author: Angus Gratton gus@projectgus.com                              *
9  ***************************************************************************/
10
11 #ifdef HAVE_CONFIG_H
12 #include "config.h"
13 #endif
14
15 #include <stdlib.h>
16 #include <helper/time_support.h>
17 #include <helper/align.h>
18 #include <target/register.h>
19
20 #include "xtensa_chip.h"
21 #include "xtensa.h"
22
23 /* Swap 4-bit Xtensa opcodes and fields */
24 #define XT_NIBSWAP8(V)                                                                  \
25         ((((V) & 0x0F) << 4)                                                            \
26                 | (((V) & 0xF0) >> 4))
27
28 #define XT_NIBSWAP16(V)                                                                 \
29         ((((V) & 0x000F) << 12)                                                         \
30                 | (((V) & 0x00F0) << 4)                                                 \
31                 | (((V) & 0x0F00) >> 4)                                                 \
32                 | (((V) & 0xF000) >> 12))
33
34 #define XT_NIBSWAP24(V)                                                                 \
35         ((((V) & 0x00000F) << 20)                                                       \
36                 | (((V) & 0x0000F0) << 12)                                              \
37                 | (((V) & 0x000F00) << 4)                                               \
38                 | (((V) & 0x00F000) >> 4)                                               \
39                 | (((V) & 0x0F0000) >> 12)                                              \
40                 | (((V) & 0xF00000) >> 20))
41
42 /* _XT_INS_FORMAT_*()
43  * Instruction formatting converted from little-endian inputs
44  * and shifted to the MSB-side of DIR for BE systems.
45  */
46 #define _XT_INS_FORMAT_RSR(X, OPCODE, SR, T)                    \
47         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
48                         | (((T) & 0x0F) << 16)                                          \
49                         | (((SR) & 0xFF) << 8)) << 8                            \
50                 : (OPCODE)                                                                              \
51                 | (((SR) & 0xFF) << 8)                                                  \
52                 | (((T) & 0x0F) << 4))
53
54 #define _XT_INS_FORMAT_RRR(X, OPCODE, ST, R)                    \
55         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
56                         | ((XT_NIBSWAP8((ST) & 0xFF)) << 12)            \
57                         | (((R) & 0x0F) << 8)) << 8                                     \
58                 : (OPCODE)                                                                              \
59                 | (((ST) & 0xFF) << 4)                                                  \
60                 | (((R) & 0x0F) << 12))
61
62 #define _XT_INS_FORMAT_RRRN(X, OPCODE, S, T, IMM4)              \
63         (XT_ISBE(X) ? (XT_NIBSWAP16(OPCODE)                                     \
64                         | (((T) & 0x0F) << 8)                                           \
65                         | (((S) & 0x0F) << 4)                                           \
66                         | ((IMM4) & 0x0F)) << 16                                        \
67                 : (OPCODE)                                                                              \
68                 | (((T) & 0x0F) << 4)                                                   \
69                 | (((S) & 0x0F) << 8)                                                   \
70                 | (((IMM4) & 0x0F) << 12))
71
72 #define _XT_INS_FORMAT_RRI8(X, OPCODE, R, S, T, IMM8)   \
73         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
74                         | (((T) & 0x0F) << 16)                                          \
75                         | (((S) & 0x0F) << 12)                                          \
76                         | (((R) & 0x0F) << 8)                                           \
77                         | ((IMM8) & 0xFF)) << 8                                         \
78                 : (OPCODE)                                                                              \
79                 | (((IMM8) & 0xFF) << 16)                                               \
80                 | (((R) & 0x0F) << 12)                                                  \
81                 | (((S) & 0x0F) << 8)                                                   \
82                 | (((T) & 0x0F) << 4))
83
84 #define _XT_INS_FORMAT_RRI4(X, OPCODE, IMM4, R, S, T)   \
85         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
86                         | (((T) & 0x0F) << 16)                                          \
87                         | (((S) & 0x0F) << 12)                                          \
88                         | (((R) & 0x0F) << 8)) << 8                                     \
89                 | ((IMM4) & 0x0F)                                                               \
90                 : (OPCODE)                                                                              \
91                 | (((IMM4) & 0x0F) << 20)                                               \
92                 | (((R) & 0x0F) << 12)                                                  \
93                 | (((S) & 0x0F) << 8)                                                   \
94                 | (((T) & 0x0F) << 4))
95
96 /* Xtensa processor instruction opcodes
97 */
98 /* "Return From Debug Operation" to Normal */
99 #define XT_INS_RFDO(X) (XT_ISBE(X) ? 0x000e1f << 8 : 0xf1e000)
100 /* "Return From Debug and Dispatch" - allow sw debugging stuff to take over */
101 #define XT_INS_RFDD(X) (XT_ISBE(X) ? 0x010e1f << 8 : 0xf1e010)
102
103 /* Load to DDR register, increase addr register */
104 #define XT_INS_LDDR32P(X, S) (XT_ISBE(X) ? (0x0E0700 | ((S) << 12)) << 8 : (0x0070E0 | ((S) << 8)))
105 /* Store from DDR register, increase addr register */
106 #define XT_INS_SDDR32P(X, S) (XT_ISBE(X) ? (0x0F0700 | ((S) << 12)) << 8 : (0x0070F0 | ((S) << 8)))
107
108 /* Load 32-bit Indirect from A(S)+4*IMM8 to A(T) */
109 #define XT_INS_L32I(X, S, T, IMM8)  _XT_INS_FORMAT_RRI8(X, 0x002002, 0, S, T, IMM8)
110 /* Load 16-bit Unsigned from A(S)+2*IMM8 to A(T) */
111 #define XT_INS_L16UI(X, S, T, IMM8) _XT_INS_FORMAT_RRI8(X, 0x001002, 0, S, T, IMM8)
112 /* Load 8-bit Unsigned from A(S)+IMM8 to A(T) */
113 #define XT_INS_L8UI(X, S, T, IMM8)  _XT_INS_FORMAT_RRI8(X, 0x000002, 0, S, T, IMM8)
114
115 /* Store 32-bit Indirect to A(S)+4*IMM8 from A(T) */
116 #define XT_INS_S32I(X, S, T, IMM8) _XT_INS_FORMAT_RRI8(X, 0x006002, 0, S, T, IMM8)
117 /* Store 16-bit to A(S)+2*IMM8 from A(T) */
118 #define XT_INS_S16I(X, S, T, IMM8) _XT_INS_FORMAT_RRI8(X, 0x005002, 0, S, T, IMM8)
119 /* Store 8-bit to A(S)+IMM8 from A(T) */
120 #define XT_INS_S8I(X, S, T, IMM8)  _XT_INS_FORMAT_RRI8(X, 0x004002, 0, S, T, IMM8)
121
122 /* Cache Instructions */
123 #define XT_INS_IHI(X, S, IMM8) _XT_INS_FORMAT_RRI8(X, 0x0070E2, 0, S, 0, IMM8)
124 #define XT_INS_DHWBI(X, S, IMM8) _XT_INS_FORMAT_RRI8(X, 0x007052, 0, S, 0, IMM8)
125 #define XT_INS_DHWB(X, S, IMM8) _XT_INS_FORMAT_RRI8(X, 0x007042, 0, S, 0, IMM8)
126 #define XT_INS_ISYNC(X) (XT_ISBE(X) ? 0x000200 << 8 : 0x002000)
127
128 /* Control Instructions */
129 #define XT_INS_JX(X, S) (XT_ISBE(X) ? (0x050000 | ((S) << 12)) : (0x0000a0 | ((S) << 8)))
130 #define XT_INS_CALL0(X, IMM18) (XT_ISBE(X) ? (0x500000 | ((IMM18) & 0x3ffff)) : (0x000005 | (((IMM18) & 0x3ffff) << 6)))
131
132 /* Read Special Register */
133 #define XT_INS_RSR(X, SR, T) _XT_INS_FORMAT_RSR(X, 0x030000, SR, T)
134 /* Write Special Register */
135 #define XT_INS_WSR(X, SR, T) _XT_INS_FORMAT_RSR(X, 0x130000, SR, T)
136 /* Swap Special Register */
137 #define XT_INS_XSR(X, SR, T) _XT_INS_FORMAT_RSR(X, 0x610000, SR, T)
138
139 /* Rotate Window by (-8..7) */
140 #define XT_INS_ROTW(X, N) (XT_ISBE(X) ? ((0x000804) | (((N) & 15) << 16)) << 8 : ((0x408000) | (((N) & 15) << 4)))
141
142 /* Read User Register */
143 #define XT_INS_RUR(X, UR, T) _XT_INS_FORMAT_RRR(X, 0xE30000, UR, T)
144 /* Write User Register */
145 #define XT_INS_WUR(X, UR, T) _XT_INS_FORMAT_RSR(X, 0xF30000, UR, T)
146
147 /* Read Floating-Point Register */
148 #define XT_INS_RFR(X, FR, T) _XT_INS_FORMAT_RRR(X, 0xFA0000, ((FR << 4) | 0x4), T)
149 /* Write Floating-Point Register */
150 #define XT_INS_WFR(X, FR, T) _XT_INS_FORMAT_RRR(X, 0xFA0000, ((T << 4) | 0x5), FR)
151
152 #define XT_INS_L32E(X, R, S, T) _XT_INS_FORMAT_RRI4(X, 0x090000, 0, R, S, T)
153 #define XT_INS_S32E(X, R, S, T) _XT_INS_FORMAT_RRI4(X, 0x490000, 0, R, S, T)
154 #define XT_INS_L32E_S32E_MASK(X)   (XT_ISBE(X) ? 0xF000FF << 8 : 0xFF000F)
155
156 #define XT_INS_RFWO(X) (XT_ISBE(X) ? 0x004300 << 8 : 0x003400)
157 #define XT_INS_RFWU(X) (XT_ISBE(X) ? 0x005300 << 8 : 0x003500)
158 #define XT_INS_RFWO_RFWU_MASK(X)   (XT_ISBE(X) ? 0xFFFFFF << 8 : 0xFFFFFF)
159
160 #define XT_WATCHPOINTS_NUM_MAX  2
161
162 /* Special register number macro for DDR, PS, WB, A3, A4 registers.
163  * These get used a lot so making a shortcut is useful.
164  */
165 #define XT_SR_DDR         (xtensa_regs[XT_REG_IDX_DDR].reg_num)
166 #define XT_SR_PS          (xtensa_regs[XT_REG_IDX_PS].reg_num)
167 #define XT_SR_WB          (xtensa_regs[XT_REG_IDX_WINDOWBASE].reg_num)
168 #define XT_REG_A3         (xtensa_regs[XT_REG_IDX_AR3].reg_num)
169 #define XT_REG_A4         (xtensa_regs[XT_REG_IDX_AR4].reg_num)
170
171 #define XT_PS_REG_NUM_BASE          (0xc0U)     /* (EPS2 - 2), for adding DBGLEVEL */
172 #define XT_PC_REG_NUM_BASE          (0xb0U)     /* (EPC1 - 1), for adding DBGLEVEL */
173 #define XT_PC_REG_NUM_VIRTUAL       (0xffU)     /* Marker for computing PC (EPC[DBGLEVEL) */
174 #define XT_PC_DBREG_NUM_BASE        (0x20U)     /* External (i.e., GDB) access */
175
176 #define XT_SW_BREAKPOINTS_MAX_NUM       32
177 #define XT_HW_IBREAK_MAX_NUM            2
178 #define XT_HW_DBREAK_MAX_NUM            2
179
180 struct xtensa_reg_desc xtensa_regs[XT_NUM_REGS] = {
181         XT_MK_REG_DESC("pc", XT_PC_REG_NUM_VIRTUAL, XT_REG_SPECIAL, 0),
182         XT_MK_REG_DESC("ar0", 0x00, XT_REG_GENERAL, 0),
183         XT_MK_REG_DESC("ar1", 0x01, XT_REG_GENERAL, 0),
184         XT_MK_REG_DESC("ar2", 0x02, XT_REG_GENERAL, 0),
185         XT_MK_REG_DESC("ar3", 0x03, XT_REG_GENERAL, 0),
186         XT_MK_REG_DESC("ar4", 0x04, XT_REG_GENERAL, 0),
187         XT_MK_REG_DESC("ar5", 0x05, XT_REG_GENERAL, 0),
188         XT_MK_REG_DESC("ar6", 0x06, XT_REG_GENERAL, 0),
189         XT_MK_REG_DESC("ar7", 0x07, XT_REG_GENERAL, 0),
190         XT_MK_REG_DESC("ar8", 0x08, XT_REG_GENERAL, 0),
191         XT_MK_REG_DESC("ar9", 0x09, XT_REG_GENERAL, 0),
192         XT_MK_REG_DESC("ar10", 0x0A, XT_REG_GENERAL, 0),
193         XT_MK_REG_DESC("ar11", 0x0B, XT_REG_GENERAL, 0),
194         XT_MK_REG_DESC("ar12", 0x0C, XT_REG_GENERAL, 0),
195         XT_MK_REG_DESC("ar13", 0x0D, XT_REG_GENERAL, 0),
196         XT_MK_REG_DESC("ar14", 0x0E, XT_REG_GENERAL, 0),
197         XT_MK_REG_DESC("ar15", 0x0F, XT_REG_GENERAL, 0),
198         XT_MK_REG_DESC("ar16", 0x10, XT_REG_GENERAL, 0),
199         XT_MK_REG_DESC("ar17", 0x11, XT_REG_GENERAL, 0),
200         XT_MK_REG_DESC("ar18", 0x12, XT_REG_GENERAL, 0),
201         XT_MK_REG_DESC("ar19", 0x13, XT_REG_GENERAL, 0),
202         XT_MK_REG_DESC("ar20", 0x14, XT_REG_GENERAL, 0),
203         XT_MK_REG_DESC("ar21", 0x15, XT_REG_GENERAL, 0),
204         XT_MK_REG_DESC("ar22", 0x16, XT_REG_GENERAL, 0),
205         XT_MK_REG_DESC("ar23", 0x17, XT_REG_GENERAL, 0),
206         XT_MK_REG_DESC("ar24", 0x18, XT_REG_GENERAL, 0),
207         XT_MK_REG_DESC("ar25", 0x19, XT_REG_GENERAL, 0),
208         XT_MK_REG_DESC("ar26", 0x1A, XT_REG_GENERAL, 0),
209         XT_MK_REG_DESC("ar27", 0x1B, XT_REG_GENERAL, 0),
210         XT_MK_REG_DESC("ar28", 0x1C, XT_REG_GENERAL, 0),
211         XT_MK_REG_DESC("ar29", 0x1D, XT_REG_GENERAL, 0),
212         XT_MK_REG_DESC("ar30", 0x1E, XT_REG_GENERAL, 0),
213         XT_MK_REG_DESC("ar31", 0x1F, XT_REG_GENERAL, 0),
214         XT_MK_REG_DESC("ar32", 0x20, XT_REG_GENERAL, 0),
215         XT_MK_REG_DESC("ar33", 0x21, XT_REG_GENERAL, 0),
216         XT_MK_REG_DESC("ar34", 0x22, XT_REG_GENERAL, 0),
217         XT_MK_REG_DESC("ar35", 0x23, XT_REG_GENERAL, 0),
218         XT_MK_REG_DESC("ar36", 0x24, XT_REG_GENERAL, 0),
219         XT_MK_REG_DESC("ar37", 0x25, XT_REG_GENERAL, 0),
220         XT_MK_REG_DESC("ar38", 0x26, XT_REG_GENERAL, 0),
221         XT_MK_REG_DESC("ar39", 0x27, XT_REG_GENERAL, 0),
222         XT_MK_REG_DESC("ar40", 0x28, XT_REG_GENERAL, 0),
223         XT_MK_REG_DESC("ar41", 0x29, XT_REG_GENERAL, 0),
224         XT_MK_REG_DESC("ar42", 0x2A, XT_REG_GENERAL, 0),
225         XT_MK_REG_DESC("ar43", 0x2B, XT_REG_GENERAL, 0),
226         XT_MK_REG_DESC("ar44", 0x2C, XT_REG_GENERAL, 0),
227         XT_MK_REG_DESC("ar45", 0x2D, XT_REG_GENERAL, 0),
228         XT_MK_REG_DESC("ar46", 0x2E, XT_REG_GENERAL, 0),
229         XT_MK_REG_DESC("ar47", 0x2F, XT_REG_GENERAL, 0),
230         XT_MK_REG_DESC("ar48", 0x30, XT_REG_GENERAL, 0),
231         XT_MK_REG_DESC("ar49", 0x31, XT_REG_GENERAL, 0),
232         XT_MK_REG_DESC("ar50", 0x32, XT_REG_GENERAL, 0),
233         XT_MK_REG_DESC("ar51", 0x33, XT_REG_GENERAL, 0),
234         XT_MK_REG_DESC("ar52", 0x34, XT_REG_GENERAL, 0),
235         XT_MK_REG_DESC("ar53", 0x35, XT_REG_GENERAL, 0),
236         XT_MK_REG_DESC("ar54", 0x36, XT_REG_GENERAL, 0),
237         XT_MK_REG_DESC("ar55", 0x37, XT_REG_GENERAL, 0),
238         XT_MK_REG_DESC("ar56", 0x38, XT_REG_GENERAL, 0),
239         XT_MK_REG_DESC("ar57", 0x39, XT_REG_GENERAL, 0),
240         XT_MK_REG_DESC("ar58", 0x3A, XT_REG_GENERAL, 0),
241         XT_MK_REG_DESC("ar59", 0x3B, XT_REG_GENERAL, 0),
242         XT_MK_REG_DESC("ar60", 0x3C, XT_REG_GENERAL, 0),
243         XT_MK_REG_DESC("ar61", 0x3D, XT_REG_GENERAL, 0),
244         XT_MK_REG_DESC("ar62", 0x3E, XT_REG_GENERAL, 0),
245         XT_MK_REG_DESC("ar63", 0x3F, XT_REG_GENERAL, 0),
246         XT_MK_REG_DESC("windowbase", 0x48, XT_REG_SPECIAL, 0),
247         XT_MK_REG_DESC("windowstart", 0x49, XT_REG_SPECIAL, 0),
248         XT_MK_REG_DESC("ps", 0xE6, XT_REG_SPECIAL, 0),  /* PS (not mapped through EPS[]) */
249         XT_MK_REG_DESC("ibreakenable", 0x60, XT_REG_SPECIAL, 0),
250         XT_MK_REG_DESC("ddr", 0x68, XT_REG_DEBUG, XT_REGF_NOREAD),
251         XT_MK_REG_DESC("ibreaka0", 0x80, XT_REG_SPECIAL, 0),
252         XT_MK_REG_DESC("ibreaka1", 0x81, XT_REG_SPECIAL, 0),
253         XT_MK_REG_DESC("dbreaka0", 0x90, XT_REG_SPECIAL, 0),
254         XT_MK_REG_DESC("dbreaka1", 0x91, XT_REG_SPECIAL, 0),
255         XT_MK_REG_DESC("dbreakc0", 0xA0, XT_REG_SPECIAL, 0),
256         XT_MK_REG_DESC("dbreakc1", 0xA1, XT_REG_SPECIAL, 0),
257         XT_MK_REG_DESC("cpenable", 0xE0, XT_REG_SPECIAL, 0),
258         XT_MK_REG_DESC("exccause", 0xE8, XT_REG_SPECIAL, 0),
259         XT_MK_REG_DESC("debugcause", 0xE9, XT_REG_SPECIAL, 0),
260         XT_MK_REG_DESC("icount", 0xEC, XT_REG_SPECIAL, 0),
261         XT_MK_REG_DESC("icountlevel", 0xED, XT_REG_SPECIAL, 0),
262
263         /* WARNING: For these registers, regnum points to the
264          * index of the corresponding ARx registers, NOT to
265          * the processor register number! */
266         XT_MK_REG_DESC("a0", XT_REG_IDX_AR0, XT_REG_RELGEN, 0),
267         XT_MK_REG_DESC("a1", XT_REG_IDX_AR1, XT_REG_RELGEN, 0),
268         XT_MK_REG_DESC("a2", XT_REG_IDX_AR2, XT_REG_RELGEN, 0),
269         XT_MK_REG_DESC("a3", XT_REG_IDX_AR3, XT_REG_RELGEN, 0),
270         XT_MK_REG_DESC("a4", XT_REG_IDX_AR4, XT_REG_RELGEN, 0),
271         XT_MK_REG_DESC("a5", XT_REG_IDX_AR5, XT_REG_RELGEN, 0),
272         XT_MK_REG_DESC("a6", XT_REG_IDX_AR6, XT_REG_RELGEN, 0),
273         XT_MK_REG_DESC("a7", XT_REG_IDX_AR7, XT_REG_RELGEN, 0),
274         XT_MK_REG_DESC("a8", XT_REG_IDX_AR8, XT_REG_RELGEN, 0),
275         XT_MK_REG_DESC("a9", XT_REG_IDX_AR9, XT_REG_RELGEN, 0),
276         XT_MK_REG_DESC("a10", XT_REG_IDX_AR10, XT_REG_RELGEN, 0),
277         XT_MK_REG_DESC("a11", XT_REG_IDX_AR11, XT_REG_RELGEN, 0),
278         XT_MK_REG_DESC("a12", XT_REG_IDX_AR12, XT_REG_RELGEN, 0),
279         XT_MK_REG_DESC("a13", XT_REG_IDX_AR13, XT_REG_RELGEN, 0),
280         XT_MK_REG_DESC("a14", XT_REG_IDX_AR14, XT_REG_RELGEN, 0),
281         XT_MK_REG_DESC("a15", XT_REG_IDX_AR15, XT_REG_RELGEN, 0),
282 };
283
284 /**
285  * Types of memory used at xtensa target
286  */
287 enum xtensa_mem_region_type {
288         XTENSA_MEM_REG_IROM = 0x0,
289         XTENSA_MEM_REG_IRAM,
290         XTENSA_MEM_REG_DROM,
291         XTENSA_MEM_REG_DRAM,
292         XTENSA_MEM_REG_SRAM,
293         XTENSA_MEM_REG_SROM,
294         XTENSA_MEM_REGS_NUM
295 };
296
297 /* Register definition as union for list allocation */
298 union xtensa_reg_val_u {
299         xtensa_reg_val_t val;
300         uint8_t buf[4];
301 };
302
303 const struct xtensa_keyval_info_s xt_qerr[XT_QERR_NUM] = {
304         { .chrval = "E00", .intval = ERROR_FAIL },
305         { .chrval = "E01", .intval = ERROR_FAIL },
306         { .chrval = "E02", .intval = ERROR_COMMAND_ARGUMENT_INVALID },
307         { .chrval = "E03", .intval = ERROR_FAIL },
308 };
309
310 /* Set to true for extra debug logging */
311 static const bool xtensa_extra_debug_log;
312
313 /**
314  * Gets a config for the specific mem type
315  */
316 static inline const struct xtensa_local_mem_config *xtensa_get_mem_config(
317         struct xtensa *xtensa,
318         enum xtensa_mem_region_type type)
319 {
320         switch (type) {
321         case XTENSA_MEM_REG_IROM:
322                 return &xtensa->core_config->irom;
323         case XTENSA_MEM_REG_IRAM:
324                 return &xtensa->core_config->iram;
325         case XTENSA_MEM_REG_DROM:
326                 return &xtensa->core_config->drom;
327         case XTENSA_MEM_REG_DRAM:
328                 return &xtensa->core_config->dram;
329         case XTENSA_MEM_REG_SRAM:
330                 return &xtensa->core_config->sram;
331         case XTENSA_MEM_REG_SROM:
332                 return &xtensa->core_config->srom;
333         default:
334                 return NULL;
335         }
336 }
337
338 /**
339  * Extracts an exact xtensa_local_mem_region_config from xtensa_local_mem_config
340  * for a given address
341  * Returns NULL if nothing found
342  */
343 static inline const struct xtensa_local_mem_region_config *xtensa_memory_region_find(
344         const struct xtensa_local_mem_config *mem,
345         target_addr_t address)
346 {
347         for (unsigned int i = 0; i < mem->count; i++) {
348                 const struct xtensa_local_mem_region_config *region = &mem->regions[i];
349                 if (address >= region->base && address < (region->base + region->size))
350                         return region;
351         }
352         return NULL;
353 }
354
355 /**
356  * Returns a corresponding xtensa_local_mem_region_config from the xtensa target
357  * for a given address
358  * Returns NULL if nothing found
359  */
360 static inline const struct xtensa_local_mem_region_config *xtensa_target_memory_region_find(
361         struct xtensa *xtensa,
362         target_addr_t address)
363 {
364         const struct xtensa_local_mem_region_config *result;
365         const struct xtensa_local_mem_config *mcgf;
366         for (unsigned int mtype = 0; mtype < XTENSA_MEM_REGS_NUM; mtype++) {
367                 mcgf = xtensa_get_mem_config(xtensa, mtype);
368                 result = xtensa_memory_region_find(mcgf, address);
369                 if (result)
370                         return result;
371         }
372         return NULL;
373 }
374
375 static inline bool xtensa_is_cacheable(const struct xtensa_cache_config *cache,
376         const struct xtensa_local_mem_config *mem,
377         target_addr_t address)
378 {
379         if (!cache->size)
380                 return false;
381         return xtensa_memory_region_find(mem, address);
382 }
383
384 static inline bool xtensa_is_icacheable(struct xtensa *xtensa, target_addr_t address)
385 {
386         return xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->iram, address) ||
387                xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->irom, address) ||
388                xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->sram, address) ||
389                xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->srom, address);
390 }
391
392 static inline bool xtensa_is_dcacheable(struct xtensa *xtensa, target_addr_t address)
393 {
394         return xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->dram, address) ||
395                xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->drom, address) ||
396                xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->sram, address) ||
397                xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->srom, address);
398 }
399
400 static int xtensa_core_reg_get(struct reg *reg)
401 {
402         /* We don't need this because we read all registers on halt anyway. */
403         struct xtensa *xtensa = (struct xtensa *)reg->arch_info;
404         struct target *target = xtensa->target;
405
406         if (target->state != TARGET_HALTED)
407                 return ERROR_TARGET_NOT_HALTED;
408         if (!reg->exist) {
409                 if (strncmp(reg->name, "?0x", 3) == 0) {
410                         unsigned int regnum = strtoul(reg->name + 1, 0, 0);
411                         LOG_WARNING("Read unknown register 0x%04x ignored", regnum);
412                         return ERROR_OK;
413                 }
414                 return ERROR_COMMAND_ARGUMENT_INVALID;
415         }
416         return ERROR_OK;
417 }
418
419 static int xtensa_core_reg_set(struct reg *reg, uint8_t *buf)
420 {
421         struct xtensa *xtensa = (struct xtensa *)reg->arch_info;
422         struct target *target = xtensa->target;
423
424         assert(reg->size <= 64 && "up to 64-bit regs are supported only!");
425         if (target->state != TARGET_HALTED)
426                 return ERROR_TARGET_NOT_HALTED;
427
428         if (!reg->exist) {
429                 if (strncmp(reg->name, "?0x", 3) == 0) {
430                         unsigned int regnum = strtoul(reg->name + 1, 0, 0);
431                         LOG_WARNING("Write unknown register 0x%04x ignored", regnum);
432                         return ERROR_OK;
433                 }
434                 return ERROR_COMMAND_ARGUMENT_INVALID;
435         }
436
437         buf_cpy(buf, reg->value, reg->size);
438
439         if (xtensa->core_config->windowed) {
440                 /* If the user updates a potential scratch register, track for conflicts */
441                 for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++) {
442                         if (strcmp(reg->name, xtensa->scratch_ars[s].chrval) == 0) {
443                                 LOG_DEBUG("Scratch reg %s [0x%08" PRIx32 "] set from gdb", reg->name,
444                                         buf_get_u32(reg->value, 0, 32));
445                                 LOG_DEBUG("scratch_ars mapping: a3/%s, a4/%s",
446                                         xtensa->scratch_ars[XT_AR_SCRATCH_AR3].chrval,
447                                         xtensa->scratch_ars[XT_AR_SCRATCH_AR4].chrval);
448                                 xtensa->scratch_ars[s].intval = true;
449                                 break;
450                         }
451                 }
452         }
453         reg->dirty = true;
454         reg->valid = true;
455
456         return ERROR_OK;
457 }
458
459 static const struct reg_arch_type xtensa_reg_type = {
460         .get = xtensa_core_reg_get,
461         .set = xtensa_core_reg_set,
462 };
463
464 /* Convert a register index that's indexed relative to windowbase, to the real address. */
465 static enum xtensa_reg_id xtensa_windowbase_offset_to_canonical(struct xtensa *xtensa,
466         enum xtensa_reg_id reg_idx,
467         int windowbase)
468 {
469         unsigned int idx;
470         if (reg_idx >= XT_REG_IDX_AR0 && reg_idx <= XT_REG_IDX_ARLAST) {
471                 idx = reg_idx - XT_REG_IDX_AR0;
472         } else if (reg_idx >= XT_REG_IDX_A0 && reg_idx <= XT_REG_IDX_A15) {
473                 idx = reg_idx - XT_REG_IDX_A0;
474         } else {
475                 LOG_ERROR("Error: can't convert register %d to non-windowbased register!", reg_idx);
476                 return -1;
477         }
478         return ((idx + windowbase * 4) & (xtensa->core_config->aregs_num - 1)) + XT_REG_IDX_AR0;
479 }
480
481 static enum xtensa_reg_id xtensa_canonical_to_windowbase_offset(struct xtensa *xtensa,
482         enum xtensa_reg_id reg_idx,
483         int windowbase)
484 {
485         return xtensa_windowbase_offset_to_canonical(xtensa, reg_idx, -windowbase);
486 }
487
488 static void xtensa_mark_register_dirty(struct xtensa *xtensa, enum xtensa_reg_id reg_idx)
489 {
490         struct reg *reg_list = xtensa->core_cache->reg_list;
491         reg_list[reg_idx].dirty = true;
492 }
493
494 static void xtensa_queue_exec_ins(struct xtensa *xtensa, uint32_t ins)
495 {
496         xtensa_queue_dbg_reg_write(xtensa, NARADR_DIR0EXEC, ins);
497 }
498
499 static void xtensa_queue_exec_ins_wide(struct xtensa *xtensa, uint8_t *ops, uint8_t oplen)
500 {
501         if ((oplen > 0) && (oplen <= 64)) {
502                 uint32_t opsw[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };  /* 8 DIRx regs: max width 64B */
503                 uint8_t oplenw = (oplen + 3) / 4;
504                 if (xtensa->target->endianness == TARGET_BIG_ENDIAN)
505                         buf_bswap32((uint8_t *)opsw, ops, oplenw * 4);
506                 else
507                         memcpy(opsw, ops, oplen);
508                 for (int32_t i = oplenw - 1; i > 0; i--)
509                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DIR0 + i, opsw[i]);
510                 /* Write DIR0EXEC last */
511                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DIR0EXEC, opsw[0]);
512         }
513 }
514
515 static int xtensa_queue_pwr_reg_write(struct xtensa *xtensa, unsigned int reg, uint32_t data)
516 {
517         struct xtensa_debug_module *dm = &xtensa->dbg_mod;
518         return dm->pwr_ops->queue_reg_write(dm, reg, data);
519 }
520
521 /* NOTE: Assumes A3 has already been saved */
522 int xtensa_window_state_save(struct target *target, uint32_t *woe)
523 {
524         struct xtensa *xtensa = target_to_xtensa(target);
525         int woe_dis;
526         uint8_t woe_buf[4];
527
528         if (xtensa->core_config->windowed) {
529                 /* Save PS (LX) and disable window overflow exceptions prior to AR save */
530                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_PS, XT_REG_A3));
531                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
532                 xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR, woe_buf);
533                 int res = jtag_execute_queue();
534                 if (res != ERROR_OK) {
535                         LOG_ERROR("Failed to read PS (%d)!", res);
536                         return res;
537                 }
538                 xtensa_core_status_check(target);
539                 *woe = buf_get_u32(woe_buf, 0, 32);
540                 woe_dis = *woe & ~XT_PS_WOE_MSK;
541                 LOG_DEBUG("Clearing PS.WOE (0x%08" PRIx32 " -> 0x%08" PRIx32 ")", *woe, woe_dis);
542                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, woe_dis);
543                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
544                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_PS, XT_REG_A3));
545         }
546         return ERROR_OK;
547 }
548
549 /* NOTE: Assumes A3 has already been saved */
550 void xtensa_window_state_restore(struct target *target, uint32_t woe)
551 {
552         struct xtensa *xtensa = target_to_xtensa(target);
553         if (xtensa->core_config->windowed) {
554                 /* Restore window overflow exception state */
555                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, woe);
556                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
557                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_PS, XT_REG_A3));
558                 LOG_DEBUG("Restored PS.WOE (0x%08" PRIx32 ")", woe);
559         }
560 }
561
562 static bool xtensa_reg_is_readable(int flags, int cpenable)
563 {
564         if (flags & XT_REGF_NOREAD)
565                 return false;
566         if ((flags & XT_REGF_COPROC0) && (cpenable & BIT(0)) == 0)
567                 return false;
568         return true;
569 }
570
571 static bool xtensa_scratch_regs_fixup(struct xtensa *xtensa, struct reg *reg_list, int i, int j, int a_idx, int ar_idx)
572 {
573         int a_name = (a_idx == XT_AR_SCRATCH_A3) ? 3 : 4;
574         if (xtensa->scratch_ars[a_idx].intval && !xtensa->scratch_ars[ar_idx].intval) {
575                 LOG_DEBUG("AR conflict: a%d -> ar%d", a_name, j - XT_REG_IDX_AR0);
576                 memcpy(reg_list[j].value, reg_list[i].value, sizeof(xtensa_reg_val_t));
577         } else {
578                 LOG_DEBUG("AR conflict: ar%d -> a%d", j - XT_REG_IDX_AR0, a_name);
579                 memcpy(reg_list[i].value, reg_list[j].value, sizeof(xtensa_reg_val_t));
580         }
581         return xtensa->scratch_ars[a_idx].intval && xtensa->scratch_ars[ar_idx].intval;
582 }
583
584 static int xtensa_write_dirty_registers(struct target *target)
585 {
586         struct xtensa *xtensa = target_to_xtensa(target);
587         int res;
588         xtensa_reg_val_t regval, windowbase = 0;
589         bool scratch_reg_dirty = false, delay_cpenable = false;
590         struct reg *reg_list = xtensa->core_cache->reg_list;
591         unsigned int reg_list_size = xtensa->core_cache->num_regs;
592         bool preserve_a3 = false;
593         uint8_t a3_buf[4];
594         xtensa_reg_val_t a3 = 0, woe;
595
596         LOG_TARGET_DEBUG(target, "start");
597
598         /* We need to write the dirty registers in the cache list back to the processor.
599          * Start by writing the SFR/user registers. */
600         for (unsigned int i = 0; i < reg_list_size; i++) {
601                 struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
602                 unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
603                 if (reg_list[i].dirty) {
604                         if (rlist[ridx].type == XT_REG_SPECIAL ||
605                                 rlist[ridx].type == XT_REG_USER ||
606                                 rlist[ridx].type == XT_REG_FR) {
607                                 scratch_reg_dirty = true;
608                                 if (i == XT_REG_IDX_CPENABLE) {
609                                         delay_cpenable = true;
610                                         continue;
611                                 }
612                                 regval = xtensa_reg_get(target, i);
613                                 LOG_TARGET_DEBUG(target, "Writing back reg %s (%d) val %08" PRIX32,
614                                         reg_list[i].name,
615                                         rlist[ridx].reg_num,
616                                         regval);
617                                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, regval);
618                                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
619                                 if (reg_list[i].exist) {
620                                         unsigned int reg_num = rlist[ridx].reg_num;
621                                         if (rlist[ridx].type == XT_REG_USER) {
622                                                 xtensa_queue_exec_ins(xtensa, XT_INS_WUR(xtensa, reg_num, XT_REG_A3));
623                                         } else if (rlist[ridx].type == XT_REG_FR) {
624                                                 xtensa_queue_exec_ins(xtensa, XT_INS_WFR(xtensa, reg_num, XT_REG_A3));
625                                         } else {/*SFR */
626                                                 if (reg_num == XT_PC_REG_NUM_VIRTUAL)
627                                                         /* reg number of PC for debug interrupt depends on NDEBUGLEVEL
628                                                          **/
629                                                         reg_num =
630                                                                 (XT_PC_REG_NUM_BASE +
631                                                                 xtensa->core_config->debug.irq_level);
632                                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, reg_num, XT_REG_A3));
633                                         }
634                                 }
635                                 reg_list[i].dirty = false;
636                         }
637                 }
638         }
639         if (scratch_reg_dirty)
640                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
641         if (delay_cpenable) {
642                 regval = xtensa_reg_get(target, XT_REG_IDX_CPENABLE);
643                 LOG_TARGET_DEBUG(target, "Writing back reg cpenable (224) val %08" PRIX32, regval);
644                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, regval);
645                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
646                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa,
647                                 xtensa_regs[XT_REG_IDX_CPENABLE].reg_num,
648                                 XT_REG_A3));
649                 reg_list[XT_REG_IDX_CPENABLE].dirty = false;
650         }
651
652         preserve_a3 = (xtensa->core_config->windowed);
653         if (preserve_a3) {
654                 /* Save (windowed) A3 for scratch use */
655                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
656                 xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR, a3_buf);
657                 res = jtag_execute_queue();
658                 if (res != ERROR_OK)
659                         return res;
660                 xtensa_core_status_check(target);
661                 a3 = buf_get_u32(a3_buf, 0, 32);
662         }
663
664         if (xtensa->core_config->windowed) {
665                 res = xtensa_window_state_save(target, &woe);
666                 if (res != ERROR_OK)
667                         return res;
668                 /* Grab the windowbase, we need it. */
669                 windowbase = xtensa_reg_get(target, XT_REG_IDX_WINDOWBASE);
670                 /* Check if there are mismatches between the ARx and corresponding Ax registers.
671                  * When the user sets a register on a windowed config, xt-gdb may set the ARx
672                  * register directly.  Thus we take ARx as priority over Ax if both are dirty
673                  * and it's unclear if the user set one over the other explicitly.
674                  */
675                 for (unsigned int i = XT_REG_IDX_A0; i <= XT_REG_IDX_A15; i++) {
676                         unsigned int j = xtensa_windowbase_offset_to_canonical(xtensa, i, windowbase);
677                         if (reg_list[i].dirty && reg_list[j].dirty) {
678                                 if (memcmp(reg_list[i].value, reg_list[j].value, sizeof(xtensa_reg_val_t)) != 0) {
679                                         bool show_warning = true;
680                                         if (i == XT_REG_IDX_A3)
681                                                 show_warning = xtensa_scratch_regs_fixup(xtensa,
682                                                         reg_list, i, j, XT_AR_SCRATCH_A3, XT_AR_SCRATCH_AR3);
683                                         else if (i == XT_REG_IDX_A4)
684                                                 show_warning = xtensa_scratch_regs_fixup(xtensa,
685                                                         reg_list, i, j, XT_AR_SCRATCH_A4, XT_AR_SCRATCH_AR4);
686                                         if (show_warning)
687                                                 LOG_WARNING(
688                                                         "Warning: Both A%d [0x%08" PRIx32
689                                                         "] as well as its underlying physical register "
690                                                         "(AR%d) [0x%08" PRIx32 "] are dirty and differ in value",
691                                                         i - XT_REG_IDX_A0,
692                                                         buf_get_u32(reg_list[i].value, 0, 32),
693                                                         j - XT_REG_IDX_AR0,
694                                                         buf_get_u32(reg_list[j].value, 0, 32));
695                                 }
696                         }
697                 }
698         }
699
700         /* Write A0-A16. */
701         for (unsigned int i = 0; i < 16; i++) {
702                 if (reg_list[XT_REG_IDX_A0 + i].dirty) {
703                         regval = xtensa_reg_get(target, XT_REG_IDX_A0 + i);
704                         LOG_TARGET_DEBUG(target, "Writing back reg %s value %08" PRIX32 ", num =%i",
705                                 xtensa_regs[XT_REG_IDX_A0 + i].name,
706                                 regval,
707                                 xtensa_regs[XT_REG_IDX_A0 + i].reg_num);
708                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, regval);
709                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, i));
710                         reg_list[XT_REG_IDX_A0 + i].dirty = false;
711                         if (i == 3) {
712                                 /* Avoid stomping A3 during restore at end of function */
713                                 a3 = regval;
714                         }
715                 }
716         }
717
718         if (xtensa->core_config->windowed) {
719                 /* Now write AR registers */
720                 for (unsigned int j = 0; j < XT_REG_IDX_ARLAST; j += 16) {
721                         /* Write the 16 registers we can see */
722                         for (unsigned int i = 0; i < 16; i++) {
723                                 if (i + j < xtensa->core_config->aregs_num) {
724                                         enum xtensa_reg_id realadr =
725                                                 xtensa_windowbase_offset_to_canonical(xtensa, XT_REG_IDX_AR0 + i + j,
726                                                 windowbase);
727                                         /* Write back any dirty un-windowed registers */
728                                         if (reg_list[realadr].dirty) {
729                                                 regval = xtensa_reg_get(target, realadr);
730                                                 LOG_TARGET_DEBUG(
731                                                         target,
732                                                         "Writing back reg %s value %08" PRIX32 ", num =%i",
733                                                         xtensa_regs[realadr].name,
734                                                         regval,
735                                                         xtensa_regs[realadr].reg_num);
736                                                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, regval);
737                                                 xtensa_queue_exec_ins(xtensa,
738                                                         XT_INS_RSR(xtensa, XT_SR_DDR,
739                                                                 xtensa_regs[XT_REG_IDX_AR0 + i].reg_num));
740                                                 reg_list[realadr].dirty = false;
741                                                 if ((i + j) == 3)
742                                                         /* Avoid stomping AR during A3 restore at end of function */
743                                                         a3 = regval;
744                                         }
745                                 }
746                         }
747                         /*Now rotate the window so we'll see the next 16 registers. The final rotate
748                          * will wraparound, */
749                         /*leaving us in the state we were. */
750                         xtensa_queue_exec_ins(xtensa, XT_INS_ROTW(xtensa, 4));
751                 }
752
753                 xtensa_window_state_restore(target, woe);
754
755                 for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++)
756                         xtensa->scratch_ars[s].intval = false;
757         }
758
759         if (preserve_a3) {
760                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, a3);
761                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
762         }
763
764         res = jtag_execute_queue();
765         xtensa_core_status_check(target);
766
767         return res;
768 }
769
770 static inline bool xtensa_is_stopped(struct target *target)
771 {
772         struct xtensa *xtensa = target_to_xtensa(target);
773         return xtensa->dbg_mod.core_status.dsr & OCDDSR_STOPPED;
774 }
775
776 int xtensa_examine(struct target *target)
777 {
778         struct xtensa *xtensa = target_to_xtensa(target);
779         unsigned int cmd = PWRCTL_DEBUGWAKEUP | PWRCTL_MEMWAKEUP | PWRCTL_COREWAKEUP;
780
781         LOG_DEBUG("coreid = %d", target->coreid);
782
783         if (xtensa->core_config->core_type == XT_UNDEF) {
784                 LOG_ERROR("XTensa core not configured; is xtensa-core-openocd.cfg missing?");
785                 return ERROR_FAIL;
786         }
787
788         xtensa_queue_pwr_reg_write(xtensa, DMREG_PWRCTL, cmd);
789         xtensa_queue_pwr_reg_write(xtensa, DMREG_PWRCTL, cmd | PWRCTL_JTAGDEBUGUSE);
790         xtensa_dm_queue_enable(&xtensa->dbg_mod);
791         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
792         int res = jtag_execute_queue();
793         if (res != ERROR_OK)
794                 return res;
795         if (!xtensa_dm_is_online(&xtensa->dbg_mod)) {
796                 LOG_ERROR("Unexpected OCD_ID = %08" PRIx32, xtensa->dbg_mod.device_id);
797                 return ERROR_TARGET_FAILURE;
798         }
799         LOG_DEBUG("OCD_ID = %08" PRIx32, xtensa->dbg_mod.device_id);
800         if (!target_was_examined(target))
801                 target_set_examined(target);
802         xtensa_smpbreak_write(xtensa, xtensa->smp_break);
803         return ERROR_OK;
804 }
805
806 int xtensa_wakeup(struct target *target)
807 {
808         struct xtensa *xtensa = target_to_xtensa(target);
809         unsigned int cmd = PWRCTL_DEBUGWAKEUP | PWRCTL_MEMWAKEUP | PWRCTL_COREWAKEUP;
810
811         if (xtensa->reset_asserted)
812                 cmd |= PWRCTL_CORERESET;
813         xtensa_queue_pwr_reg_write(xtensa, DMREG_PWRCTL, cmd);
814         /* TODO: can we join this with the write above? */
815         xtensa_queue_pwr_reg_write(xtensa, DMREG_PWRCTL, cmd | PWRCTL_JTAGDEBUGUSE);
816         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
817         return jtag_execute_queue();
818 }
819
820 int xtensa_smpbreak_write(struct xtensa *xtensa, uint32_t set)
821 {
822         uint32_t dsr_data = 0x00110000;
823         uint32_t clear = (set | OCDDCR_ENABLEOCD) ^
824                 (OCDDCR_BREAKINEN | OCDDCR_BREAKOUTEN | OCDDCR_RUNSTALLINEN |
825                 OCDDCR_DEBUGMODEOUTEN | OCDDCR_ENABLEOCD);
826
827         LOG_TARGET_DEBUG(xtensa->target, "write smpbreak set=0x%" PRIx32 " clear=0x%" PRIx32, set, clear);
828         xtensa_queue_dbg_reg_write(xtensa, NARADR_DCRSET, set | OCDDCR_ENABLEOCD);
829         xtensa_queue_dbg_reg_write(xtensa, NARADR_DCRCLR, clear);
830         xtensa_queue_dbg_reg_write(xtensa, NARADR_DSR, dsr_data);
831         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
832         return jtag_execute_queue();
833 }
834
835 int xtensa_smpbreak_set(struct target *target, uint32_t set)
836 {
837         struct xtensa *xtensa = target_to_xtensa(target);
838         int res = ERROR_OK;
839
840         xtensa->smp_break = set;
841         if (target_was_examined(target))
842                 res = xtensa_smpbreak_write(xtensa, xtensa->smp_break);
843         LOG_TARGET_DEBUG(target, "set smpbreak=%" PRIx32 ", state=%i", set, target->state);
844         return res;
845 }
846
847 int xtensa_smpbreak_read(struct xtensa *xtensa, uint32_t *val)
848 {
849         uint8_t dcr_buf[sizeof(uint32_t)];
850
851         xtensa_queue_dbg_reg_read(xtensa, NARADR_DCRSET, dcr_buf);
852         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
853         int res = jtag_execute_queue();
854         *val = buf_get_u32(dcr_buf, 0, 32);
855
856         return res;
857 }
858
859 int xtensa_smpbreak_get(struct target *target, uint32_t *val)
860 {
861         struct xtensa *xtensa = target_to_xtensa(target);
862         *val = xtensa->smp_break;
863         return ERROR_OK;
864 }
865
866 static inline xtensa_reg_val_t xtensa_reg_get_value(struct reg *reg)
867 {
868         return buf_get_u32(reg->value, 0, 32);
869 }
870
871 static inline void xtensa_reg_set_value(struct reg *reg, xtensa_reg_val_t value)
872 {
873         buf_set_u32(reg->value, 0, 32, value);
874         reg->dirty = true;
875 }
876
877 int xtensa_core_status_check(struct target *target)
878 {
879         struct xtensa *xtensa = target_to_xtensa(target);
880         int res, needclear = 0;
881
882         xtensa_dm_core_status_read(&xtensa->dbg_mod);
883         xtensa_dsr_t dsr = xtensa_dm_core_status_get(&xtensa->dbg_mod);
884         LOG_TARGET_DEBUG(target, "DSR (%08" PRIX32 ")", dsr);
885         if (dsr & OCDDSR_EXECBUSY) {
886                 if (!xtensa->suppress_dsr_errors)
887                         LOG_TARGET_ERROR(target, "DSR (%08" PRIX32 ") indicates target still busy!", dsr);
888                 needclear = 1;
889         }
890         if (dsr & OCDDSR_EXECEXCEPTION) {
891                 if (!xtensa->suppress_dsr_errors)
892                         LOG_TARGET_ERROR(target,
893                                 "DSR (%08" PRIX32 ") indicates DIR instruction generated an exception!",
894                                 dsr);
895                 needclear = 1;
896         }
897         if (dsr & OCDDSR_EXECOVERRUN) {
898                 if (!xtensa->suppress_dsr_errors)
899                         LOG_TARGET_ERROR(target,
900                                 "DSR (%08" PRIX32 ") indicates DIR instruction generated an overrun!",
901                                 dsr);
902                 needclear = 1;
903         }
904         if (needclear) {
905                 res = xtensa_dm_core_status_clear(&xtensa->dbg_mod,
906                         OCDDSR_EXECEXCEPTION | OCDDSR_EXECOVERRUN);
907                 if (res != ERROR_OK && !xtensa->suppress_dsr_errors)
908                         LOG_TARGET_ERROR(target, "clearing DSR failed!");
909                 return ERROR_FAIL;
910         }
911         return ERROR_OK;
912 }
913
914 xtensa_reg_val_t xtensa_reg_get(struct target *target, enum xtensa_reg_id reg_id)
915 {
916         struct xtensa *xtensa = target_to_xtensa(target);
917         struct reg *reg = &xtensa->core_cache->reg_list[reg_id];
918         return xtensa_reg_get_value(reg);
919 }
920
921 void xtensa_reg_set(struct target *target, enum xtensa_reg_id reg_id, xtensa_reg_val_t value)
922 {
923         struct xtensa *xtensa = target_to_xtensa(target);
924         struct reg *reg = &xtensa->core_cache->reg_list[reg_id];
925         if (xtensa_reg_get_value(reg) == value)
926                 return;
927         xtensa_reg_set_value(reg, value);
928 }
929
930 /* Set Ax (XT_REG_RELGEN) register along with its underlying ARx (XT_REG_GENERAL) */
931 void xtensa_reg_set_deep_relgen(struct target *target, enum xtensa_reg_id a_idx, xtensa_reg_val_t value)
932 {
933         struct xtensa *xtensa = target_to_xtensa(target);
934         uint32_t windowbase = (xtensa->core_config->windowed ?
935                 xtensa_reg_get(target, XT_REG_IDX_WINDOWBASE) : 0);
936         int ar_idx = xtensa_windowbase_offset_to_canonical(xtensa, a_idx, windowbase);
937         xtensa_reg_set(target, a_idx, value);
938         xtensa_reg_set(target, ar_idx, value);
939 }
940
941 /* Read cause for entering halted state; return bitmask in DEBUGCAUSE_* format */
942 uint32_t xtensa_cause_get(struct target *target)
943 {
944         return xtensa_reg_get(target, XT_REG_IDX_DEBUGCAUSE);
945 }
946
947 void xtensa_cause_clear(struct target *target)
948 {
949         struct xtensa *xtensa = target_to_xtensa(target);
950         xtensa_reg_set(target, XT_REG_IDX_DEBUGCAUSE, 0);
951         xtensa->core_cache->reg_list[XT_REG_IDX_DEBUGCAUSE].dirty = false;
952 }
953
954 int xtensa_assert_reset(struct target *target)
955 {
956         struct xtensa *xtensa = target_to_xtensa(target);
957
958         LOG_TARGET_DEBUG(target, "target_number=%i, begin", target->target_number);
959         target->state = TARGET_RESET;
960         xtensa_queue_pwr_reg_write(xtensa,
961                 DMREG_PWRCTL,
962                 PWRCTL_JTAGDEBUGUSE | PWRCTL_DEBUGWAKEUP | PWRCTL_MEMWAKEUP | PWRCTL_COREWAKEUP |
963                 PWRCTL_CORERESET);
964         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
965         int res = jtag_execute_queue();
966         if (res != ERROR_OK)
967                 return res;
968         xtensa->reset_asserted = true;
969         return res;
970 }
971
972 int xtensa_deassert_reset(struct target *target)
973 {
974         struct xtensa *xtensa = target_to_xtensa(target);
975
976         LOG_TARGET_DEBUG(target, "halt=%d", target->reset_halt);
977         if (target->reset_halt)
978                 xtensa_queue_dbg_reg_write(xtensa,
979                         NARADR_DCRSET,
980                         OCDDCR_ENABLEOCD | OCDDCR_DEBUGINTERRUPT);
981         xtensa_queue_pwr_reg_write(xtensa,
982                 DMREG_PWRCTL,
983                 PWRCTL_JTAGDEBUGUSE | PWRCTL_DEBUGWAKEUP | PWRCTL_MEMWAKEUP | PWRCTL_COREWAKEUP);
984         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
985         int res = jtag_execute_queue();
986         if (res != ERROR_OK)
987                 return res;
988         target->state = TARGET_RUNNING;
989         xtensa->reset_asserted = false;
990         return res;
991 }
992
993 int xtensa_soft_reset_halt(struct target *target)
994 {
995         LOG_TARGET_DEBUG(target, "begin");
996         return xtensa_assert_reset(target);
997 }
998
999 int xtensa_fetch_all_regs(struct target *target)
1000 {
1001         struct xtensa *xtensa = target_to_xtensa(target);
1002         struct reg *reg_list = xtensa->core_cache->reg_list;
1003         unsigned int reg_list_size = xtensa->core_cache->num_regs;
1004         xtensa_reg_val_t cpenable = 0, windowbase = 0, a3;
1005         uint32_t woe;
1006         uint8_t a3_buf[4];
1007         bool debug_dsrs = !xtensa->regs_fetched || LOG_LEVEL_IS(LOG_LVL_DEBUG);
1008
1009         union xtensa_reg_val_u *regvals = calloc(reg_list_size, sizeof(*regvals));
1010         if (!regvals) {
1011                 LOG_TARGET_ERROR(target, "unable to allocate memory for regvals!");
1012                 return ERROR_FAIL;
1013         }
1014         union xtensa_reg_val_u *dsrs = calloc(reg_list_size, sizeof(*dsrs));
1015         if (!dsrs) {
1016                 LOG_TARGET_ERROR(target, "unable to allocate memory for dsrs!");
1017                 free(regvals);
1018                 return ERROR_FAIL;
1019         }
1020
1021         LOG_TARGET_DEBUG(target, "start");
1022
1023         /* Save (windowed) A3 so cache matches physical AR3; A3 usable as scratch */
1024         xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1025         xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR, a3_buf);
1026         int res = xtensa_window_state_save(target, &woe);
1027         if (res != ERROR_OK)
1028                 goto xtensa_fetch_all_regs_done;
1029
1030         /* Assume the CPU has just halted. We now want to fill the register cache with all the
1031          * register contents GDB needs. For speed, we pipeline all the read operations, execute them
1032          * in one go, then sort everything out from the regvals variable. */
1033
1034         /* Start out with AREGS; we can reach those immediately. Grab them per 16 registers. */
1035         for (unsigned int j = 0; j < XT_AREGS_NUM_MAX; j += 16) {
1036                 /*Grab the 16 registers we can see */
1037                 for (unsigned int i = 0; i < 16; i++) {
1038                         if (i + j < xtensa->core_config->aregs_num) {
1039                                 xtensa_queue_exec_ins(xtensa,
1040                                         XT_INS_WSR(xtensa, XT_SR_DDR, xtensa_regs[XT_REG_IDX_AR0 + i].reg_num));
1041                                 xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR,
1042                                         regvals[XT_REG_IDX_AR0 + i + j].buf);
1043                                 if (debug_dsrs)
1044                                         xtensa_queue_dbg_reg_read(xtensa, NARADR_DSR,
1045                                                 dsrs[XT_REG_IDX_AR0 + i + j].buf);
1046                         }
1047                 }
1048                 if (xtensa->core_config->windowed)
1049                         /* Now rotate the window so we'll see the next 16 registers. The final rotate
1050                          * will wraparound, */
1051                         /* leaving us in the state we were. */
1052                         xtensa_queue_exec_ins(xtensa, XT_INS_ROTW(xtensa, 4));
1053         }
1054         xtensa_window_state_restore(target, woe);
1055
1056         if (xtensa->core_config->coproc) {
1057                 /* As the very first thing after AREGS, go grab CPENABLE */
1058                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, xtensa_regs[XT_REG_IDX_CPENABLE].reg_num, XT_REG_A3));
1059                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1060                 xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR, regvals[XT_REG_IDX_CPENABLE].buf);
1061         }
1062         res = jtag_execute_queue();
1063         if (res != ERROR_OK) {
1064                 LOG_ERROR("Failed to read ARs (%d)!", res);
1065                 goto xtensa_fetch_all_regs_done;
1066         }
1067         xtensa_core_status_check(target);
1068
1069         a3 = buf_get_u32(a3_buf, 0, 32);
1070
1071         if (xtensa->core_config->coproc) {
1072                 cpenable = buf_get_u32(regvals[XT_REG_IDX_CPENABLE].buf, 0, 32);
1073
1074                 /* Enable all coprocessors (by setting all bits in CPENABLE) so we can read FP and user registers. */
1075                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, 0xffffffff);
1076                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1077                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, xtensa_regs[XT_REG_IDX_CPENABLE].reg_num, XT_REG_A3));
1078
1079                 /* Save CPENABLE; flag dirty later (when regcache updated) so original value is always restored */
1080                 LOG_TARGET_DEBUG(target, "CPENABLE: was 0x%" PRIx32 ", all enabled", cpenable);
1081                 xtensa_reg_set(target, XT_REG_IDX_CPENABLE, cpenable);
1082         }
1083         /* We're now free to use any of A0-A15 as scratch registers
1084          * Grab the SFRs and user registers first. We use A3 as a scratch register. */
1085         for (unsigned int i = 0; i < reg_list_size; i++) {
1086                 struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1087                 unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1088                 if (xtensa_reg_is_readable(rlist[ridx].flags, cpenable) && rlist[ridx].exist) {
1089                         bool reg_fetched = true;
1090                         unsigned int reg_num = rlist[ridx].reg_num;
1091                         switch (rlist[ridx].type) {
1092                         case XT_REG_USER:
1093                                 xtensa_queue_exec_ins(xtensa, XT_INS_RUR(xtensa, reg_num, XT_REG_A3));
1094                                 break;
1095                         case XT_REG_FR:
1096                                 xtensa_queue_exec_ins(xtensa, XT_INS_RFR(xtensa, reg_num, XT_REG_A3));
1097                                 break;
1098                         case XT_REG_SPECIAL:
1099                                 if (reg_num == XT_PC_REG_NUM_VIRTUAL) {
1100                                         /* reg number of PC for debug interrupt depends on NDEBUGLEVEL */
1101                                         reg_num = (XT_PC_REG_NUM_BASE + xtensa->core_config->debug.irq_level);
1102                                 } else if (reg_num == xtensa_regs[XT_REG_IDX_CPENABLE].reg_num) {
1103                                         /* CPENABLE already read/updated; don't re-read */
1104                                         reg_fetched = false;
1105                                         break;
1106                                 }
1107                                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, reg_num, XT_REG_A3));
1108                                 break;
1109                         default:
1110                                 reg_fetched = false;
1111                         }
1112                         if (reg_fetched) {
1113                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1114                                 xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR, regvals[i].buf);
1115                                 if (debug_dsrs)
1116                                         xtensa_queue_dbg_reg_read(xtensa, NARADR_DSR, dsrs[i].buf);
1117                         }
1118                 }
1119         }
1120         /* Ok, send the whole mess to the CPU. */
1121         res = jtag_execute_queue();
1122         if (res != ERROR_OK) {
1123                 LOG_ERROR("Failed to fetch AR regs!");
1124                 goto xtensa_fetch_all_regs_done;
1125         }
1126         xtensa_core_status_check(target);
1127
1128         if (debug_dsrs) {
1129                 /* DSR checking: follows order in which registers are requested. */
1130                 for (unsigned int i = 0; i < reg_list_size; i++) {
1131                         struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1132                         unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1133                         if (xtensa_reg_is_readable(rlist[ridx].flags, cpenable) && rlist[ridx].exist &&
1134                                 (rlist[ridx].type != XT_REG_DEBUG) &&
1135                                 (rlist[ridx].type != XT_REG_RELGEN) &&
1136                                 (rlist[ridx].type != XT_REG_TIE) &&
1137                                 (rlist[ridx].type != XT_REG_OTHER)) {
1138                                 if (buf_get_u32(dsrs[i].buf, 0, 32) & OCDDSR_EXECEXCEPTION) {
1139                                         LOG_ERROR("Exception reading %s!", reg_list[i].name);
1140                                         res = ERROR_FAIL;
1141                                         goto xtensa_fetch_all_regs_done;
1142                                 }
1143                         }
1144                 }
1145         }
1146
1147         if (xtensa->core_config->windowed)
1148                 /* We need the windowbase to decode the general addresses. */
1149                 windowbase = buf_get_u32(regvals[XT_REG_IDX_WINDOWBASE].buf, 0, 32);
1150         /* Decode the result and update the cache. */
1151         for (unsigned int i = 0; i < reg_list_size; i++) {
1152                 struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1153                 unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1154                 if (xtensa_reg_is_readable(rlist[ridx].flags, cpenable) && rlist[ridx].exist) {
1155                         if ((xtensa->core_config->windowed) && (rlist[ridx].type == XT_REG_GENERAL)) {
1156                                 /* The 64-value general register set is read from (windowbase) on down.
1157                                  * We need to get the real register address by subtracting windowbase and
1158                                  * wrapping around. */
1159                                 enum xtensa_reg_id realadr = xtensa_canonical_to_windowbase_offset(xtensa, i,
1160                                         windowbase);
1161                                 buf_cpy(regvals[realadr].buf, reg_list[i].value, reg_list[i].size);
1162                         } else if (rlist[ridx].type == XT_REG_RELGEN) {
1163                                 buf_cpy(regvals[rlist[ridx].reg_num].buf, reg_list[i].value, reg_list[i].size);
1164                                 if (xtensa_extra_debug_log) {
1165                                         xtensa_reg_val_t regval = buf_get_u32(regvals[rlist[ridx].reg_num].buf, 0, 32);
1166                                         LOG_DEBUG("%s = 0x%x", rlist[ridx].name, regval);
1167                                 }
1168                         } else {
1169                                 xtensa_reg_val_t regval = buf_get_u32(regvals[i].buf, 0, 32);
1170                                 bool is_dirty = (i == XT_REG_IDX_CPENABLE);
1171                                 if (xtensa_extra_debug_log)
1172                                         LOG_INFO("Register %s: 0x%X", reg_list[i].name, regval);
1173                                 xtensa_reg_set(target, i, regval);
1174                                 reg_list[i].dirty = is_dirty;   /*always do this _after_ xtensa_reg_set! */
1175                         }
1176                         reg_list[i].valid = true;
1177                 } else {
1178                         if ((rlist[ridx].flags & XT_REGF_MASK) == XT_REGF_NOREAD) {
1179                                 /* Report read-only registers all-zero but valid */
1180                                 reg_list[i].valid = true;
1181                                 xtensa_reg_set(target, i, 0);
1182                         } else {
1183                                 reg_list[i].valid = false;
1184                         }
1185                 }
1186         }
1187
1188         if (xtensa->core_config->windowed) {
1189                 /* We have used A3 as a scratch register.
1190                  * Windowed configs: restore A3's AR (XT_REG_GENERAL) and and flag for write-back.
1191                  */
1192                 enum xtensa_reg_id ar3_idx = xtensa_windowbase_offset_to_canonical(xtensa, XT_REG_IDX_A3, windowbase);
1193                 xtensa_reg_set(target, ar3_idx, a3);
1194                 xtensa_mark_register_dirty(xtensa, ar3_idx);
1195
1196                 /* Reset scratch_ars[] on fetch.  .chrval tracks AR mapping and changes w/ window */
1197                 sprintf(xtensa->scratch_ars[XT_AR_SCRATCH_AR3].chrval, "ar%d", ar3_idx - XT_REG_IDX_AR0);
1198                 enum xtensa_reg_id ar4_idx = xtensa_windowbase_offset_to_canonical(xtensa, XT_REG_IDX_A4, windowbase);
1199                 sprintf(xtensa->scratch_ars[XT_AR_SCRATCH_AR4].chrval, "ar%d", ar4_idx - XT_REG_IDX_AR0);
1200                 for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++)
1201                         xtensa->scratch_ars[s].intval = false;
1202         }
1203
1204         /* We have used A3 (XT_REG_RELGEN) as a scratch register.  Restore and flag for write-back. */
1205         xtensa_reg_set(target, XT_REG_IDX_A3, a3);
1206         xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
1207         xtensa->regs_fetched = true;
1208 xtensa_fetch_all_regs_done:
1209         free(regvals);
1210         free(dsrs);
1211         return res;
1212 }
1213
1214 int xtensa_get_gdb_reg_list(struct target *target,
1215         struct reg **reg_list[],
1216         int *reg_list_size,
1217         enum target_register_class reg_class)
1218 {
1219         struct xtensa *xtensa = target_to_xtensa(target);
1220         unsigned int num_regs;
1221
1222         if (reg_class == REG_CLASS_GENERAL) {
1223                 if ((xtensa->genpkt_regs_num == 0) || !xtensa->contiguous_regs_list) {
1224                         LOG_ERROR("reg_class %d unhandled; 'xtgregs' not found", reg_class);
1225                         return ERROR_FAIL;
1226                 }
1227                 num_regs = xtensa->genpkt_regs_num;
1228         } else {
1229                 /* Determine whether to return a contiguous or sparse register map */
1230                 num_regs = xtensa->regmap_contiguous ? xtensa->total_regs_num : xtensa->dbregs_num;
1231         }
1232
1233         LOG_DEBUG("reg_class=%i, num_regs=%d", (int)reg_class, num_regs);
1234
1235         *reg_list = calloc(num_regs, sizeof(struct reg *));
1236         if (!*reg_list)
1237                 return ERROR_FAIL;
1238
1239         *reg_list_size = num_regs;
1240         if (xtensa->regmap_contiguous) {
1241                 assert((num_regs <= xtensa->total_regs_num) && "contiguous regmap size internal error!");
1242                 for (unsigned int i = 0; i < num_regs; i++)
1243                         (*reg_list)[i] = xtensa->contiguous_regs_list[i];
1244                 return ERROR_OK;
1245         }
1246
1247         for (unsigned int i = 0; i < num_regs; i++)
1248                 (*reg_list)[i] = (struct reg *)&xtensa->empty_regs[i];
1249         unsigned int k = 0;
1250         for (unsigned int i = 0; i < xtensa->core_cache->num_regs && k < num_regs; i++) {
1251                 if (xtensa->core_cache->reg_list[i].exist) {
1252                         struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1253                         unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1254                         int sparse_idx = rlist[ridx].dbreg_num;
1255                         if (i == XT_REG_IDX_PS) {
1256                                 if (xtensa->eps_dbglevel_idx == 0) {
1257                                         LOG_ERROR("eps_dbglevel_idx not set\n");
1258                                         return ERROR_FAIL;
1259                                 }
1260                                 (*reg_list)[sparse_idx] = &xtensa->core_cache->reg_list[xtensa->eps_dbglevel_idx];
1261                                 if (xtensa_extra_debug_log)
1262                                         LOG_DEBUG("SPARSE GDB reg 0x%x getting EPS%d 0x%x",
1263                                                 sparse_idx, xtensa->core_config->debug.irq_level,
1264                                                 xtensa_reg_get_value((*reg_list)[sparse_idx]));
1265                         } else if (rlist[ridx].type == XT_REG_RELGEN) {
1266                                 (*reg_list)[sparse_idx - XT_REG_IDX_ARFIRST] = &xtensa->core_cache->reg_list[i];
1267                         } else {
1268                                 (*reg_list)[sparse_idx] = &xtensa->core_cache->reg_list[i];
1269                         }
1270                         if (i == XT_REG_IDX_PC)
1271                                 /* Make a duplicate copy of PC for external access */
1272                                 (*reg_list)[XT_PC_DBREG_NUM_BASE] = &xtensa->core_cache->reg_list[i];
1273                         k++;
1274                 }
1275         }
1276
1277         if (k == num_regs)
1278                 LOG_ERROR("SPARSE GDB reg list full (size %d)", k);
1279
1280         return ERROR_OK;
1281 }
1282
1283 int xtensa_mmu_is_enabled(struct target *target, int *enabled)
1284 {
1285         struct xtensa *xtensa = target_to_xtensa(target);
1286         *enabled = xtensa->core_config->mmu.itlb_entries_count > 0 ||
1287                 xtensa->core_config->mmu.dtlb_entries_count > 0;
1288         return ERROR_OK;
1289 }
1290
1291 int xtensa_halt(struct target *target)
1292 {
1293         struct xtensa *xtensa = target_to_xtensa(target);
1294
1295         LOG_TARGET_DEBUG(target, "start");
1296         if (target->state == TARGET_HALTED) {
1297                 LOG_TARGET_DEBUG(target, "target was already halted");
1298                 return ERROR_OK;
1299         }
1300         /* First we have to read dsr and check if the target stopped */
1301         int res = xtensa_dm_core_status_read(&xtensa->dbg_mod);
1302         if (res != ERROR_OK) {
1303                 LOG_TARGET_ERROR(target, "Failed to read core status!");
1304                 return res;
1305         }
1306         LOG_TARGET_DEBUG(target, "Core status 0x%" PRIx32, xtensa_dm_core_status_get(&xtensa->dbg_mod));
1307         if (!xtensa_is_stopped(target)) {
1308                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DCRSET, OCDDCR_ENABLEOCD | OCDDCR_DEBUGINTERRUPT);
1309                 xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
1310                 res = jtag_execute_queue();
1311                 if (res != ERROR_OK)
1312                         LOG_TARGET_ERROR(target, "Failed to set OCDDCR_DEBUGINTERRUPT. Can't halt.");
1313         }
1314
1315         return res;
1316 }
1317
1318 int xtensa_prepare_resume(struct target *target,
1319         int current,
1320         target_addr_t address,
1321         int handle_breakpoints,
1322         int debug_execution)
1323 {
1324         struct xtensa *xtensa = target_to_xtensa(target);
1325         uint32_t bpena = 0;
1326
1327         LOG_TARGET_DEBUG(target,
1328                 "current=%d address=" TARGET_ADDR_FMT ", handle_breakpoints=%i, debug_execution=%i)",
1329                 current,
1330                 address,
1331                 handle_breakpoints,
1332                 debug_execution);
1333
1334         if (target->state != TARGET_HALTED) {
1335                 LOG_TARGET_WARNING(target, "target not halted");
1336                 return ERROR_TARGET_NOT_HALTED;
1337         }
1338
1339         if (address && !current) {
1340                 xtensa_reg_set(target, XT_REG_IDX_PC, address);
1341         } else {
1342                 uint32_t cause = xtensa_cause_get(target);
1343                 LOG_TARGET_DEBUG(target, "DEBUGCAUSE 0x%x (watchpoint %lu) (break %lu)",
1344                         cause, (cause & DEBUGCAUSE_DB), (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN)));
1345                 if (cause & DEBUGCAUSE_DB)
1346                         /* We stopped due to a watchpoint. We can't just resume executing the
1347                          * instruction again because */
1348                         /* that would trigger the watchpoint again. To fix this, we single-step,
1349                          * which ignores watchpoints. */
1350                         xtensa_do_step(target, current, address, handle_breakpoints);
1351                 if (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN))
1352                         /* We stopped due to a break instruction. We can't just resume executing the
1353                          * instruction again because */
1354                         /* that would trigger the break again. To fix this, we single-step, which
1355                          * ignores break. */
1356                         xtensa_do_step(target, current, address, handle_breakpoints);
1357         }
1358
1359         /* Write back hw breakpoints. Current FreeRTOS SMP code can set a hw breakpoint on an
1360          * exception; we need to clear that and return to the breakpoints gdb has set on resume. */
1361         for (unsigned int slot = 0; slot < xtensa->core_config->debug.ibreaks_num; slot++) {
1362                 if (xtensa->hw_brps[slot]) {
1363                         /* Write IBREAKA[slot] and set bit #slot in IBREAKENABLE */
1364                         xtensa_reg_set(target, XT_REG_IDX_IBREAKA0 + slot, xtensa->hw_brps[slot]->address);
1365                         bpena |= BIT(slot);
1366                 }
1367         }
1368         xtensa_reg_set(target, XT_REG_IDX_IBREAKENABLE, bpena);
1369
1370         /* Here we write all registers to the targets */
1371         int res = xtensa_write_dirty_registers(target);
1372         if (res != ERROR_OK)
1373                 LOG_TARGET_ERROR(target, "Failed to write back register cache.");
1374         return res;
1375 }
1376
1377 int xtensa_do_resume(struct target *target)
1378 {
1379         struct xtensa *xtensa = target_to_xtensa(target);
1380
1381         LOG_TARGET_DEBUG(target, "start");
1382
1383         xtensa_queue_exec_ins(xtensa, XT_INS_RFDO(xtensa));
1384         int res = jtag_execute_queue();
1385         if (res != ERROR_OK) {
1386                 LOG_TARGET_ERROR(target, "Failed to exec RFDO %d!", res);
1387                 return res;
1388         }
1389         xtensa_core_status_check(target);
1390         return ERROR_OK;
1391 }
1392
1393 int xtensa_resume(struct target *target,
1394         int current,
1395         target_addr_t address,
1396         int handle_breakpoints,
1397         int debug_execution)
1398 {
1399         LOG_TARGET_DEBUG(target, "start");
1400         int res = xtensa_prepare_resume(target, current, address, handle_breakpoints, debug_execution);
1401         if (res != ERROR_OK) {
1402                 LOG_TARGET_ERROR(target, "Failed to prepare for resume!");
1403                 return res;
1404         }
1405         res = xtensa_do_resume(target);
1406         if (res != ERROR_OK) {
1407                 LOG_TARGET_ERROR(target, "Failed to resume!");
1408                 return res;
1409         }
1410
1411         target->debug_reason = DBG_REASON_NOTHALTED;
1412         if (!debug_execution)
1413                 target->state = TARGET_RUNNING;
1414         else
1415                 target->state = TARGET_DEBUG_RUNNING;
1416
1417         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1418
1419         return ERROR_OK;
1420 }
1421
1422 static bool xtensa_pc_in_winexc(struct target *target, target_addr_t pc)
1423 {
1424         struct xtensa *xtensa = target_to_xtensa(target);
1425         uint8_t insn_buf[XT_ISNS_SZ_MAX];
1426         int err = xtensa_read_buffer(target, pc, sizeof(insn_buf), insn_buf);
1427         if (err != ERROR_OK)
1428                 return false;
1429
1430         xtensa_insn_t insn = buf_get_u32(insn_buf, 0, 24);
1431         xtensa_insn_t masked = insn & XT_INS_L32E_S32E_MASK(xtensa);
1432         if (masked == XT_INS_L32E(xtensa, 0, 0, 0) || masked == XT_INS_S32E(xtensa, 0, 0, 0))
1433                 return true;
1434
1435         masked = insn & XT_INS_RFWO_RFWU_MASK(xtensa);
1436         if (masked == XT_INS_RFWO(xtensa) || masked == XT_INS_RFWU(xtensa))
1437                 return true;
1438
1439         return false;
1440 }
1441
1442 int xtensa_do_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
1443 {
1444         struct xtensa *xtensa = target_to_xtensa(target);
1445         int res;
1446         const uint32_t icount_val = -2; /* ICOUNT value to load for 1 step */
1447         xtensa_reg_val_t dbreakc[XT_WATCHPOINTS_NUM_MAX];
1448         xtensa_reg_val_t icountlvl, cause;
1449         xtensa_reg_val_t oldps, oldpc, cur_pc;
1450         bool ps_lowered = false;
1451
1452         LOG_TARGET_DEBUG(target, "current=%d, address=" TARGET_ADDR_FMT ", handle_breakpoints=%i",
1453                 current, address, handle_breakpoints);
1454
1455         if (target->state != TARGET_HALTED) {
1456                 LOG_TARGET_WARNING(target, "target not halted");
1457                 return ERROR_TARGET_NOT_HALTED;
1458         }
1459
1460         if (xtensa->eps_dbglevel_idx == 0) {
1461                 LOG_ERROR("eps_dbglevel_idx not set\n");
1462                 return ERROR_FAIL;
1463         }
1464
1465         /* Save old ps (EPS[dbglvl] on LX), pc */
1466         oldps = xtensa_reg_get(target, xtensa->eps_dbglevel_idx);
1467         oldpc = xtensa_reg_get(target, XT_REG_IDX_PC);
1468
1469         cause = xtensa_cause_get(target);
1470         LOG_TARGET_DEBUG(target, "oldps=%" PRIx32 ", oldpc=%" PRIx32 " dbg_cause=%" PRIx32 " exc_cause=%" PRIx32,
1471                 oldps,
1472                 oldpc,
1473                 cause,
1474                 xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE));
1475         if (handle_breakpoints && (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN))) {
1476                 /* handle hard-coded SW breakpoints (e.g. syscalls) */
1477                 LOG_TARGET_DEBUG(target, "Increment PC to pass break instruction...");
1478                 xtensa_cause_clear(target);     /* so we don't recurse into the same routine */
1479                 /* pretend that we have stepped */
1480                 if (cause & DEBUGCAUSE_BI)
1481                         xtensa_reg_set(target, XT_REG_IDX_PC, oldpc + 3);       /* PC = PC+3 */
1482                 else
1483                         xtensa_reg_set(target, XT_REG_IDX_PC, oldpc + 2);       /* PC = PC+2 */
1484                 return ERROR_OK;
1485         }
1486
1487         /* Xtensa LX has an ICOUNTLEVEL register which sets the maximum interrupt level
1488          * at which the instructions are to be counted while stepping.
1489          *
1490          * For example, if we need to step by 2 instructions, and an interrupt occurs
1491          * in between, the processor will trigger the interrupt and halt after the 2nd
1492          * instruction within the interrupt vector and/or handler.
1493          *
1494          * However, sometimes we don't want the interrupt handlers to be executed at all
1495          * while stepping through the code. In this case (XT_STEPPING_ISR_OFF),
1496          * ICOUNTLEVEL can be lowered to the executing code's (level + 1) to prevent ISR
1497          * code from being counted during stepping.  Note that C exception handlers must
1498          * run at level 0 and hence will be counted and stepped into, should one occur.
1499          *
1500          * TODO: Certain instructions should never be single-stepped and should instead
1501          * be emulated (per DUG): RSIL >= DBGLEVEL, RSR/WSR [ICOUNT|ICOUNTLEVEL], and
1502          * RFI >= DBGLEVEL.
1503          */
1504         if (xtensa->stepping_isr_mode == XT_STEPPING_ISR_OFF) {
1505                 if (!xtensa->core_config->high_irq.enabled) {
1506                         LOG_TARGET_WARNING(
1507                                 target,
1508                                 "disabling IRQs while stepping is not implemented w/o high prio IRQs option!");
1509                         return ERROR_FAIL;
1510                 }
1511                 /* Update ICOUNTLEVEL accordingly */
1512                 icountlvl = MIN((oldps & 0xF) + 1, xtensa->core_config->debug.irq_level);
1513         } else {
1514                 icountlvl = xtensa->core_config->debug.irq_level;
1515         }
1516
1517         if (cause & DEBUGCAUSE_DB) {
1518                 /* We stopped due to a watchpoint. We can't just resume executing the instruction again because
1519                  * that would trigger the watchpoint again. To fix this, we remove watchpoints,single-step and
1520                  * re-enable the watchpoint. */
1521                 LOG_TARGET_DEBUG(
1522                         target,
1523                         "Single-stepping to get past instruction that triggered the watchpoint...");
1524                 xtensa_cause_clear(target);     /* so we don't recurse into the same routine */
1525                 /* Save all DBREAKCx registers and set to 0 to disable watchpoints */
1526                 for (unsigned int slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++) {
1527                         dbreakc[slot] = xtensa_reg_get(target, XT_REG_IDX_DBREAKC0 + slot);
1528                         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, 0);
1529                 }
1530         }
1531
1532         if (!handle_breakpoints && (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN)))
1533                 /* handle normal SW breakpoint */
1534                 xtensa_cause_clear(target);     /* so we don't recurse into the same routine */
1535         if ((oldps & 0xf) >= icountlvl) {
1536                 /* Lower interrupt level to allow stepping, but flag eps[dbglvl] to be restored */
1537                 ps_lowered = true;
1538                 uint32_t newps = (oldps & ~0xf) | (icountlvl - 1);
1539                 xtensa_reg_set(target, xtensa->eps_dbglevel_idx, newps);
1540                 LOG_TARGET_DEBUG(target,
1541                         "Lowering PS.INTLEVEL to allow stepping: %s <- 0x%08" PRIx32 " (was 0x%08" PRIx32 ")",
1542                         xtensa->core_cache->reg_list[xtensa->eps_dbglevel_idx].name,
1543                         newps,
1544                         oldps);
1545         }
1546         do {
1547                 xtensa_reg_set(target, XT_REG_IDX_ICOUNTLEVEL, icountlvl);
1548                 xtensa_reg_set(target, XT_REG_IDX_ICOUNT, icount_val);
1549
1550                 /* Now ICOUNT is set, we can resume as if we were going to run */
1551                 res = xtensa_prepare_resume(target, current, address, 0, 0);
1552                 if (res != ERROR_OK) {
1553                         LOG_TARGET_ERROR(target, "Failed to prepare resume for single step");
1554                         return res;
1555                 }
1556                 res = xtensa_do_resume(target);
1557                 if (res != ERROR_OK) {
1558                         LOG_TARGET_ERROR(target, "Failed to resume after setting up single step");
1559                         return res;
1560                 }
1561
1562                 /* Wait for stepping to complete */
1563                 long long start = timeval_ms();
1564                 while (timeval_ms() < start + 500) {
1565                         /* Do not use target_poll here, it also triggers other things... just manually read the DSR
1566                          *until stepping is complete. */
1567                         usleep(1000);
1568                         res = xtensa_dm_core_status_read(&xtensa->dbg_mod);
1569                         if (res != ERROR_OK) {
1570                                 LOG_TARGET_ERROR(target, "Failed to read core status!");
1571                                 return res;
1572                         }
1573                         if (xtensa_is_stopped(target))
1574                                 break;
1575                         usleep(1000);
1576                 }
1577                 LOG_TARGET_DEBUG(target, "Finish stepping. dsr=0x%08" PRIx32,
1578                         xtensa_dm_core_status_get(&xtensa->dbg_mod));
1579                 if (!xtensa_is_stopped(target)) {
1580                         LOG_TARGET_WARNING(
1581                                 target,
1582                                 "Timed out waiting for target to finish stepping. dsr=0x%08" PRIx32,
1583                                 xtensa_dm_core_status_get(&xtensa->dbg_mod));
1584                         target->debug_reason = DBG_REASON_NOTHALTED;
1585                         target->state = TARGET_RUNNING;
1586                         return ERROR_FAIL;
1587                 }
1588                 target->debug_reason = DBG_REASON_SINGLESTEP;
1589                 target->state = TARGET_HALTED;
1590
1591                 xtensa_fetch_all_regs(target);
1592
1593                 cur_pc = xtensa_reg_get(target, XT_REG_IDX_PC);
1594
1595                 LOG_TARGET_DEBUG(target,
1596                         "cur_ps=%" PRIx32 ", cur_pc=%" PRIx32 " dbg_cause=%" PRIx32 " exc_cause=%" PRIx32,
1597                         xtensa_reg_get(target, XT_REG_IDX_PS),
1598                         cur_pc,
1599                         xtensa_cause_get(target),
1600                         xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE));
1601
1602                 /* Do not step into WindowOverflow if ISRs are masked.
1603                    If we stop in WindowOverflow at breakpoint with masked ISRs and
1604                    try to do a step it will get us out of that handler */
1605                 if (xtensa->core_config->windowed &&
1606                         xtensa->stepping_isr_mode == XT_STEPPING_ISR_OFF &&
1607                         xtensa_pc_in_winexc(target, cur_pc)) {
1608                         /* isrmask = on, need to step out of the window exception handler */
1609                         LOG_DEBUG("Stepping out of window exception, PC=%" PRIX32, cur_pc);
1610                         oldpc = cur_pc;
1611                         address = oldpc + 3;
1612                         continue;
1613                 }
1614
1615                 if (oldpc == cur_pc)
1616                         LOG_TARGET_WARNING(target, "Stepping doesn't seem to change PC! dsr=0x%08" PRIx32,
1617                                 xtensa_dm_core_status_get(&xtensa->dbg_mod));
1618                 else
1619                         LOG_DEBUG("Stepped from %" PRIX32 " to %" PRIX32, oldpc, cur_pc);
1620                 break;
1621         } while (true);
1622         LOG_DEBUG("Done stepping, PC=%" PRIX32, cur_pc);
1623
1624         if (cause & DEBUGCAUSE_DB) {
1625                 LOG_TARGET_DEBUG(target, "...Done, re-installing watchpoints.");
1626                 /* Restore the DBREAKCx registers */
1627                 for (unsigned int slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++)
1628                         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, dbreakc[slot]);
1629         }
1630
1631         /* Restore int level */
1632         if (ps_lowered) {
1633                 LOG_DEBUG("Restoring %s after stepping: 0x%08" PRIx32,
1634                         xtensa->core_cache->reg_list[xtensa->eps_dbglevel_idx].name,
1635                         oldps);
1636                 xtensa_reg_set(target, xtensa->eps_dbglevel_idx, oldps);
1637         }
1638
1639         /* write ICOUNTLEVEL back to zero */
1640         xtensa_reg_set(target, XT_REG_IDX_ICOUNTLEVEL, 0);
1641         /* TODO: can we skip writing dirty registers and re-fetching them? */
1642         res = xtensa_write_dirty_registers(target);
1643         xtensa_fetch_all_regs(target);
1644         return res;
1645 }
1646
1647 int xtensa_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
1648 {
1649         return xtensa_do_step(target, current, address, handle_breakpoints);
1650 }
1651
1652 /**
1653  * Returns true if two ranges are overlapping
1654  */
1655 static inline bool xtensa_memory_regions_overlap(target_addr_t r1_start,
1656         target_addr_t r1_end,
1657         target_addr_t r2_start,
1658         target_addr_t r2_end)
1659 {
1660         if ((r2_start >= r1_start) && (r2_start < r1_end))
1661                 return true;    /* r2_start is in r1 region */
1662         if ((r2_end > r1_start) && (r2_end <= r1_end))
1663                 return true;    /* r2_end is in r1 region */
1664         return false;
1665 }
1666
1667 /**
1668  * Returns a size of overlapped region of two ranges.
1669  */
1670 static inline target_addr_t xtensa_get_overlap_size(target_addr_t r1_start,
1671         target_addr_t r1_end,
1672         target_addr_t r2_start,
1673         target_addr_t r2_end)
1674 {
1675         if (xtensa_memory_regions_overlap(r1_start, r1_end, r2_start, r2_end)) {
1676                 target_addr_t ov_start = r1_start < r2_start ? r2_start : r1_start;
1677                 target_addr_t ov_end = r1_end > r2_end ? r2_end : r1_end;
1678                 return ov_end - ov_start;
1679         }
1680         return 0;
1681 }
1682
1683 /**
1684  * Check if the address gets to memory regions, and its access mode
1685  */
1686 static bool xtensa_memory_op_validate_range(struct xtensa *xtensa, target_addr_t address, size_t size, int access)
1687 {
1688         target_addr_t adr_pos = address;        /* address cursor set to the beginning start */
1689         target_addr_t adr_end = address + size; /* region end */
1690         target_addr_t overlap_size;
1691         const struct xtensa_local_mem_region_config *cm;        /* current mem region */
1692
1693         while (adr_pos < adr_end) {
1694                 cm = xtensa_target_memory_region_find(xtensa, adr_pos);
1695                 if (!cm)        /* address is not belong to anything */
1696                         return false;
1697                 if ((cm->access & access) != access)    /* access check */
1698                         return false;
1699                 overlap_size = xtensa_get_overlap_size(cm->base, (cm->base + cm->size), adr_pos, adr_end);
1700                 assert(overlap_size != 0);
1701                 adr_pos += overlap_size;
1702         }
1703         return true;
1704 }
1705
1706 int xtensa_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1707 {
1708         struct xtensa *xtensa = target_to_xtensa(target);
1709         /* We are going to read memory in 32-bit increments. This may not be what the calling
1710          * function expects, so we may need to allocate a temp buffer and read into that first. */
1711         target_addr_t addrstart_al = ALIGN_DOWN(address, 4);
1712         target_addr_t addrend_al = ALIGN_UP(address + size * count, 4);
1713         target_addr_t adr = addrstart_al;
1714         uint8_t *albuff;
1715         bool bswap = xtensa->target->endianness == TARGET_BIG_ENDIAN;
1716
1717         if (target->state != TARGET_HALTED) {
1718                 LOG_TARGET_WARNING(target, "target not halted");
1719                 return ERROR_TARGET_NOT_HALTED;
1720         }
1721
1722         if (!xtensa->permissive_mode) {
1723                 if (!xtensa_memory_op_validate_range(xtensa, address, (size * count),
1724                                 XT_MEM_ACCESS_READ)) {
1725                         LOG_DEBUG("address " TARGET_ADDR_FMT " not readable", address);
1726                         return ERROR_FAIL;
1727                 }
1728         }
1729
1730         if (addrstart_al == address && addrend_al == address + (size * count)) {
1731                 albuff = buffer;
1732         } else {
1733                 albuff = malloc(addrend_al - addrstart_al);
1734                 if (!albuff) {
1735                         LOG_TARGET_ERROR(target, "Out of memory allocating %" TARGET_PRIdADDR " bytes!",
1736                                 addrend_al - addrstart_al);
1737                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1738                 }
1739         }
1740
1741         /* We're going to use A3 here */
1742         xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
1743         /* Write start address to A3 */
1744         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, addrstart_al);
1745         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1746         /* Now we can safely read data from addrstart_al up to addrend_al into albuff */
1747         if (xtensa->probe_lsddr32p != 0) {
1748                 xtensa_queue_exec_ins(xtensa, XT_INS_LDDR32P(xtensa, XT_REG_A3));
1749                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t))
1750                         xtensa_queue_dbg_reg_read(xtensa,
1751                                 (adr + sizeof(uint32_t) == addrend_al) ? NARADR_DDR : NARADR_DDREXEC,
1752                                 &albuff[i]);
1753         } else {
1754                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A4);
1755                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t)) {
1756                         xtensa_queue_exec_ins(xtensa, XT_INS_L32I(xtensa, XT_REG_A3, XT_REG_A4, 0));
1757                         xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A4));
1758                         xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR, &albuff[i]);
1759                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, adr + sizeof(uint32_t));
1760                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1761                 }
1762         }
1763         int res = jtag_execute_queue();
1764         if (res == ERROR_OK) {
1765                 bool prev_suppress = xtensa->suppress_dsr_errors;
1766                 xtensa->suppress_dsr_errors = true;
1767                 res = xtensa_core_status_check(target);
1768                 if (xtensa->probe_lsddr32p == -1)
1769                         xtensa->probe_lsddr32p = 1;
1770                 xtensa->suppress_dsr_errors = prev_suppress;
1771         }
1772         if (res != ERROR_OK) {
1773                 if (xtensa->probe_lsddr32p != 0) {
1774                         /* Disable fast memory access instructions and retry before reporting an error */
1775                         LOG_TARGET_INFO(target, "Disabling LDDR32.P/SDDR32.P");
1776                         xtensa->probe_lsddr32p = 0;
1777                         res = xtensa_read_memory(target, address, size, count, buffer);
1778                         bswap = false;
1779                 } else {
1780                         LOG_TARGET_WARNING(target, "Failed reading %d bytes at address "TARGET_ADDR_FMT,
1781                                 count * size, address);
1782                 }
1783         }
1784
1785         if (bswap)
1786                 buf_bswap32(albuff, albuff, addrend_al - addrstart_al);
1787         if (albuff != buffer) {
1788                 memcpy(buffer, albuff + (address & 3), (size * count));
1789                 free(albuff);
1790         }
1791
1792         return res;
1793 }
1794
1795 int xtensa_read_buffer(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
1796 {
1797         /* xtensa_read_memory can also read unaligned stuff. Just pass through to that routine. */
1798         return xtensa_read_memory(target, address, 1, count, buffer);
1799 }
1800
1801 int xtensa_write_memory(struct target *target,
1802         target_addr_t address,
1803         uint32_t size,
1804         uint32_t count,
1805         const uint8_t *buffer)
1806 {
1807         /* This memory write function can get thrown nigh everything into it, from
1808          * aligned uint32 writes to unaligned uint8ths. The Xtensa memory doesn't always
1809          * accept anything but aligned uint32 writes, though. That is why we convert
1810          * everything into that. */
1811         struct xtensa *xtensa = target_to_xtensa(target);
1812         target_addr_t addrstart_al = ALIGN_DOWN(address, 4);
1813         target_addr_t addrend_al = ALIGN_UP(address + size * count, 4);
1814         target_addr_t adr = addrstart_al;
1815         int res;
1816         uint8_t *albuff;
1817         bool fill_head_tail = false;
1818
1819         if (target->state != TARGET_HALTED) {
1820                 LOG_TARGET_WARNING(target, "target not halted");
1821                 return ERROR_TARGET_NOT_HALTED;
1822         }
1823
1824         if (!xtensa->permissive_mode) {
1825                 if (!xtensa_memory_op_validate_range(xtensa, address, (size * count), XT_MEM_ACCESS_WRITE)) {
1826                         LOG_WARNING("address " TARGET_ADDR_FMT " not writable", address);
1827                         return ERROR_FAIL;
1828                 }
1829         }
1830
1831         if (size == 0 || count == 0 || !buffer)
1832                 return ERROR_COMMAND_SYNTAX_ERROR;
1833
1834         /* Allocate a temporary buffer to put the aligned bytes in, if needed. */
1835         if (addrstart_al == address && addrend_al == address + (size * count)) {
1836                 if (xtensa->target->endianness == TARGET_BIG_ENDIAN)
1837                         /* Need a buffer for byte-swapping */
1838                         albuff = malloc(addrend_al - addrstart_al);
1839                 else
1840                         /* We discard the const here because albuff can also be non-const */
1841                         albuff = (uint8_t *)buffer;
1842         } else {
1843                 fill_head_tail = true;
1844                 albuff = malloc(addrend_al - addrstart_al);
1845         }
1846         if (!albuff) {
1847                 LOG_TARGET_ERROR(target, "Out of memory allocating %" TARGET_PRIdADDR " bytes!",
1848                         addrend_al - addrstart_al);
1849                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1850         }
1851
1852         /* We're going to use A3 here */
1853         xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
1854
1855         /* If we're using a temp aligned buffer, we need to fill the head and/or tail bit of it. */
1856         if (fill_head_tail) {
1857                 /* See if we need to read the first and/or last word. */
1858                 if (address & 3) {
1859                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, addrstart_al);
1860                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1861                         if (xtensa->probe_lsddr32p == 1) {
1862                                 xtensa_queue_exec_ins(xtensa, XT_INS_LDDR32P(xtensa, XT_REG_A3));
1863                         } else {
1864                                 xtensa_queue_exec_ins(xtensa, XT_INS_L32I(xtensa, XT_REG_A3, XT_REG_A3, 0));
1865                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1866                         }
1867                         xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR, &albuff[0]);
1868                 }
1869                 if ((address + (size * count)) & 3) {
1870                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, addrend_al - 4);
1871                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1872                         if (xtensa->probe_lsddr32p == 1) {
1873                                 xtensa_queue_exec_ins(xtensa, XT_INS_LDDR32P(xtensa, XT_REG_A3));
1874                         } else {
1875                                 xtensa_queue_exec_ins(xtensa, XT_INS_L32I(xtensa, XT_REG_A3, XT_REG_A3, 0));
1876                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1877                         }
1878                         xtensa_queue_dbg_reg_read(xtensa, NARADR_DDR,
1879                                 &albuff[addrend_al - addrstart_al - 4]);
1880                 }
1881                 /* Grab bytes */
1882                 res = jtag_execute_queue();
1883                 if (res != ERROR_OK) {
1884                         LOG_ERROR("Error issuing unaligned memory write context instruction(s): %d", res);
1885                         if (albuff != buffer)
1886                                 free(albuff);
1887                         return res;
1888                 }
1889                 xtensa_core_status_check(target);
1890                 if (xtensa->target->endianness == TARGET_BIG_ENDIAN) {
1891                         bool swapped_w0 = false;
1892                         if (address & 3) {
1893                                 buf_bswap32(&albuff[0], &albuff[0], 4);
1894                                 swapped_w0 = true;
1895                         }
1896                         if ((address + (size * count)) & 3) {
1897                                 if ((addrend_al - addrstart_al - 4 == 0) && swapped_w0) {
1898                                         /* Don't double-swap if buffer start/end are within the same word */
1899                                 } else {
1900                                         buf_bswap32(&albuff[addrend_al - addrstart_al - 4],
1901                                                 &albuff[addrend_al - addrstart_al - 4], 4);
1902                                 }
1903                         }
1904                 }
1905                 /* Copy data to be written into the aligned buffer (in host-endianness) */
1906                 memcpy(&albuff[address & 3], buffer, size * count);
1907                 /* Now we can write albuff in aligned uint32s. */
1908         }
1909
1910         if (xtensa->target->endianness == TARGET_BIG_ENDIAN)
1911                 buf_bswap32(albuff, fill_head_tail ? albuff : buffer, addrend_al - addrstart_al);
1912
1913         /* Write start address to A3 */
1914         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, addrstart_al);
1915         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1916         /* Write the aligned buffer */
1917         if (xtensa->probe_lsddr32p != 0) {
1918                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t)) {
1919                         if (i == 0) {
1920                                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, buf_get_u32(&albuff[i], 0, 32));
1921                                 xtensa_queue_exec_ins(xtensa, XT_INS_SDDR32P(xtensa, XT_REG_A3));
1922                         } else {
1923                                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDREXEC, buf_get_u32(&albuff[i], 0, 32));
1924                         }
1925                 }
1926         } else {
1927                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A4);
1928                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t)) {
1929                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, buf_get_u32(&albuff[i], 0, 32));
1930                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A4));
1931                         xtensa_queue_exec_ins(xtensa, XT_INS_S32I(xtensa, XT_REG_A3, XT_REG_A4, 0));
1932                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, adr + sizeof(uint32_t));
1933                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1934                 }
1935         }
1936
1937         res = jtag_execute_queue();
1938         if (res == ERROR_OK) {
1939                 bool prev_suppress = xtensa->suppress_dsr_errors;
1940                 xtensa->suppress_dsr_errors = true;
1941                 res = xtensa_core_status_check(target);
1942                 if (xtensa->probe_lsddr32p == -1)
1943                         xtensa->probe_lsddr32p = 1;
1944                 xtensa->suppress_dsr_errors = prev_suppress;
1945         }
1946         if (res != ERROR_OK) {
1947                 if (xtensa->probe_lsddr32p != 0) {
1948                         /* Disable fast memory access instructions and retry before reporting an error */
1949                         LOG_TARGET_INFO(target, "Disabling LDDR32.P/SDDR32.P");
1950                         xtensa->probe_lsddr32p = 0;
1951                         res = xtensa_write_memory(target, address, size, count, buffer);
1952                 } else {
1953                         LOG_TARGET_WARNING(target, "Failed writing %d bytes at address "TARGET_ADDR_FMT,
1954                                 count * size, address);
1955                 }
1956         } else {
1957                 /* Invalidate ICACHE, writeback DCACHE if present */
1958                 uint32_t issue_ihi = xtensa_is_icacheable(xtensa, address);
1959                 uint32_t issue_dhwb = xtensa_is_dcacheable(xtensa, address);
1960                 if (issue_ihi || issue_dhwb) {
1961                         uint32_t ilinesize = issue_ihi ?  xtensa->core_config->icache.line_size : UINT32_MAX;
1962                         uint32_t dlinesize = issue_dhwb ? xtensa->core_config->dcache.line_size : UINT32_MAX;
1963                         uint32_t linesize = MIN(ilinesize, dlinesize);
1964                         uint32_t off = 0;
1965                         adr = addrstart_al;
1966
1967                         while ((adr + off) < addrend_al) {
1968                                 if (off == 0) {
1969                                         /* Write start address to A3 */
1970                                         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, adr);
1971                                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1972                                 }
1973                                 if (issue_ihi)
1974                                         xtensa_queue_exec_ins(xtensa, XT_INS_IHI(xtensa, XT_REG_A3, off));
1975                                 if (issue_dhwb)
1976                                         xtensa_queue_exec_ins(xtensa, XT_INS_DHWBI(xtensa, XT_REG_A3, off));
1977                                 off += linesize;
1978                                 if (off > 1020) {
1979                                         /* IHI, DHWB have 8-bit immediate operands (0..1020) */
1980                                         adr += off;
1981                                         off = 0;
1982                                 }
1983                         }
1984
1985                         /* Execute cache WB/INV instructions */
1986                         res = jtag_execute_queue();
1987                         xtensa_core_status_check(target);
1988                         if (res != ERROR_OK)
1989                                 LOG_TARGET_ERROR(target,
1990                                         "Error issuing cache writeback/invaldate instruction(s): %d",
1991                                         res);
1992                 }
1993         }
1994         if (albuff != buffer)
1995                 free(albuff);
1996
1997         return res;
1998 }
1999
2000 int xtensa_write_buffer(struct target *target, target_addr_t address, uint32_t count, const uint8_t *buffer)
2001 {
2002         /* xtensa_write_memory can handle everything. Just pass on to that. */
2003         return xtensa_write_memory(target, address, 1, count, buffer);
2004 }
2005
2006 int xtensa_checksum_memory(struct target *target, target_addr_t address, uint32_t count, uint32_t *checksum)
2007 {
2008         LOG_WARNING("not implemented yet");
2009         return ERROR_FAIL;
2010 }
2011
2012 int xtensa_poll(struct target *target)
2013 {
2014         struct xtensa *xtensa = target_to_xtensa(target);
2015
2016         int res = xtensa_dm_power_status_read(&xtensa->dbg_mod, PWRSTAT_DEBUGWASRESET | PWRSTAT_COREWASRESET);
2017         if (xtensa->dbg_mod.power_status.stat != xtensa->dbg_mod.power_status.stath)
2018                 LOG_TARGET_DEBUG(target, "PWRSTAT: read 0x%08" PRIx32 ", clear 0x%08lx, reread 0x%08" PRIx32,
2019                         xtensa->dbg_mod.power_status.stat,
2020                         PWRSTAT_DEBUGWASRESET | PWRSTAT_COREWASRESET,
2021                         xtensa->dbg_mod.power_status.stath);
2022         if (res != ERROR_OK)
2023                 return res;
2024
2025         if (xtensa_dm_tap_was_reset(&xtensa->dbg_mod)) {
2026                 LOG_TARGET_INFO(target, "Debug controller was reset.");
2027                 res = xtensa_smpbreak_write(xtensa, xtensa->smp_break);
2028                 if (res != ERROR_OK)
2029                         return res;
2030         }
2031         if (xtensa_dm_core_was_reset(&xtensa->dbg_mod))
2032                 LOG_TARGET_INFO(target, "Core was reset.");
2033         xtensa_dm_power_status_cache(&xtensa->dbg_mod);
2034         /* Enable JTAG, set reset if needed */
2035         res = xtensa_wakeup(target);
2036         if (res != ERROR_OK)
2037                 return res;
2038
2039         uint32_t prev_dsr = xtensa->dbg_mod.core_status.dsr;
2040         res = xtensa_dm_core_status_read(&xtensa->dbg_mod);
2041         if (res != ERROR_OK)
2042                 return res;
2043         if (prev_dsr != xtensa->dbg_mod.core_status.dsr)
2044                 LOG_TARGET_DEBUG(target,
2045                         "DSR has changed: was 0x%08" PRIx32 " now 0x%08" PRIx32,
2046                         prev_dsr,
2047                         xtensa->dbg_mod.core_status.dsr);
2048         if (xtensa->dbg_mod.power_status.stath & PWRSTAT_COREWASRESET) {
2049                 /* if RESET state is persitent  */
2050                 target->state = TARGET_RESET;
2051         } else if (!xtensa_dm_is_powered(&xtensa->dbg_mod)) {
2052                 LOG_TARGET_DEBUG(target, "not powered 0x%" PRIX32 "%ld",
2053                         xtensa->dbg_mod.core_status.dsr,
2054                         xtensa->dbg_mod.core_status.dsr & OCDDSR_STOPPED);
2055                 target->state = TARGET_UNKNOWN;
2056                 if (xtensa->come_online_probes_num == 0)
2057                         target->examined = false;
2058                 else
2059                         xtensa->come_online_probes_num--;
2060         } else if (xtensa_is_stopped(target)) {
2061                 if (target->state != TARGET_HALTED) {
2062                         enum target_state oldstate = target->state;
2063                         target->state = TARGET_HALTED;
2064                         /* Examine why the target has been halted */
2065                         target->debug_reason = DBG_REASON_DBGRQ;
2066                         xtensa_fetch_all_regs(target);
2067                         /* When setting debug reason DEBUGCAUSE events have the following
2068                          * priorities: watchpoint == breakpoint > single step > debug interrupt. */
2069                         /* Watchpoint and breakpoint events at the same time results in special
2070                          * debug reason: DBG_REASON_WPTANDBKPT. */
2071                         uint32_t halt_cause = xtensa_cause_get(target);
2072                         /* TODO: Add handling of DBG_REASON_EXC_CATCH */
2073                         if (halt_cause & DEBUGCAUSE_IC)
2074                                 target->debug_reason = DBG_REASON_SINGLESTEP;
2075                         if (halt_cause & (DEBUGCAUSE_IB | DEBUGCAUSE_BN | DEBUGCAUSE_BI)) {
2076                                 if (halt_cause & DEBUGCAUSE_DB)
2077                                         target->debug_reason = DBG_REASON_WPTANDBKPT;
2078                                 else
2079                                         target->debug_reason = DBG_REASON_BREAKPOINT;
2080                         } else if (halt_cause & DEBUGCAUSE_DB) {
2081                                 target->debug_reason = DBG_REASON_WATCHPOINT;
2082                         }
2083                         LOG_TARGET_DEBUG(target, "Target halted, pc=0x%08" PRIx32
2084                                 ", debug_reason=%08" PRIx32 ", oldstate=%08" PRIx32,
2085                                 xtensa_reg_get(target, XT_REG_IDX_PC),
2086                                 target->debug_reason,
2087                                 oldstate);
2088                         LOG_TARGET_DEBUG(target, "Halt reason=0x%08" PRIX32 ", exc_cause=%" PRId32 ", dsr=0x%08" PRIx32,
2089                                 halt_cause,
2090                                 xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE),
2091                                 xtensa->dbg_mod.core_status.dsr);
2092                         xtensa_dm_core_status_clear(
2093                                 &xtensa->dbg_mod,
2094                                 OCDDSR_DEBUGPENDBREAK | OCDDSR_DEBUGINTBREAK | OCDDSR_DEBUGPENDTRAX |
2095                                 OCDDSR_DEBUGINTTRAX |
2096                                 OCDDSR_DEBUGPENDHOST | OCDDSR_DEBUGINTHOST);
2097                 }
2098         } else {
2099                 target->debug_reason = DBG_REASON_NOTHALTED;
2100                 if (target->state != TARGET_RUNNING && target->state != TARGET_DEBUG_RUNNING) {
2101                         target->state = TARGET_RUNNING;
2102                         target->debug_reason = DBG_REASON_NOTHALTED;
2103                 }
2104         }
2105         if (xtensa->trace_active) {
2106                 /* Detect if tracing was active but has stopped. */
2107                 struct xtensa_trace_status trace_status;
2108                 res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
2109                 if (res == ERROR_OK) {
2110                         if (!(trace_status.stat & TRAXSTAT_TRACT)) {
2111                                 LOG_INFO("Detected end of trace.");
2112                                 if (trace_status.stat & TRAXSTAT_PCMTG)
2113                                         LOG_TARGET_INFO(target, "Trace stop triggered by PC match");
2114                                 if (trace_status.stat & TRAXSTAT_PTITG)
2115                                         LOG_TARGET_INFO(target, "Trace stop triggered by Processor Trigger Input");
2116                                 if (trace_status.stat & TRAXSTAT_CTITG)
2117                                         LOG_TARGET_INFO(target, "Trace stop triggered by Cross-trigger Input");
2118                                 xtensa->trace_active = false;
2119                         }
2120                 }
2121         }
2122         return ERROR_OK;
2123 }
2124
2125 static int xtensa_update_instruction(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2126 {
2127         struct xtensa *xtensa = target_to_xtensa(target);
2128         unsigned int issue_ihi = xtensa_is_icacheable(xtensa, address);
2129         unsigned int issue_dhwbi = xtensa_is_dcacheable(xtensa, address);
2130         uint32_t icache_line_size = issue_ihi ? xtensa->core_config->icache.line_size : UINT32_MAX;
2131         uint32_t dcache_line_size = issue_dhwbi ? xtensa->core_config->dcache.line_size : UINT32_MAX;
2132         unsigned int same_ic_line = ((address & (icache_line_size - 1)) + size) <= icache_line_size;
2133         unsigned int same_dc_line = ((address & (dcache_line_size - 1)) + size) <= dcache_line_size;
2134         int ret;
2135
2136         if (size > icache_line_size)
2137                 return ERROR_FAIL;
2138
2139         if (issue_ihi || issue_dhwbi) {
2140                 /* We're going to use A3 here */
2141                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
2142
2143                 /* Write start address to A3 and invalidate */
2144                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, address);
2145                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
2146                 LOG_TARGET_DEBUG(target, "DHWBI, IHI for address "TARGET_ADDR_FMT, address);
2147                 if (issue_dhwbi) {
2148                         xtensa_queue_exec_ins(xtensa, XT_INS_DHWBI(xtensa, XT_REG_A3, 0));
2149                         if (!same_dc_line) {
2150                                 LOG_TARGET_DEBUG(target,
2151                                         "DHWBI second dcache line for address "TARGET_ADDR_FMT,
2152                                         address + 4);
2153                                 xtensa_queue_exec_ins(xtensa, XT_INS_DHWBI(xtensa, XT_REG_A3, 4));
2154                         }
2155                 }
2156                 if (issue_ihi) {
2157                         xtensa_queue_exec_ins(xtensa, XT_INS_IHI(xtensa, XT_REG_A3, 0));
2158                         if (!same_ic_line) {
2159                                 LOG_TARGET_DEBUG(target,
2160                                         "IHI second icache line for address "TARGET_ADDR_FMT,
2161                                         address + 4);
2162                                 xtensa_queue_exec_ins(xtensa, XT_INS_IHI(xtensa, XT_REG_A3, 4));
2163                         }
2164                 }
2165
2166                 /* Execute invalidate instructions */
2167                 ret = jtag_execute_queue();
2168                 xtensa_core_status_check(target);
2169                 if (ret != ERROR_OK) {
2170                         LOG_ERROR("Error issuing cache invaldate instruction(s): %d", ret);
2171                         return ret;
2172                 }
2173         }
2174
2175         /* Write new instructions to memory */
2176         ret = target_write_buffer(target, address, size, buffer);
2177         if (ret != ERROR_OK) {
2178                 LOG_TARGET_ERROR(target, "Error writing instruction to memory: %d", ret);
2179                 return ret;
2180         }
2181
2182         if (issue_dhwbi) {
2183                 /* Flush dcache so instruction propagates.  A3 may be corrupted during memory write */
2184                 xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, address);
2185                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
2186                 xtensa_queue_exec_ins(xtensa, XT_INS_DHWB(xtensa, XT_REG_A3, 0));
2187                 LOG_DEBUG("DHWB dcache line for address "TARGET_ADDR_FMT, address);
2188                 if (!same_dc_line) {
2189                         LOG_TARGET_DEBUG(target, "DHWB second dcache line for address "TARGET_ADDR_FMT, address + 4);
2190                         xtensa_queue_exec_ins(xtensa, XT_INS_DHWB(xtensa, XT_REG_A3, 4));
2191                 }
2192
2193                 /* Execute invalidate instructions */
2194                 ret = jtag_execute_queue();
2195                 xtensa_core_status_check(target);
2196         }
2197
2198         /* TODO: Handle L2 cache if present */
2199         return ret;
2200 }
2201
2202 static int xtensa_sw_breakpoint_add(struct target *target,
2203         struct breakpoint *breakpoint,
2204         struct xtensa_sw_breakpoint *sw_bp)
2205 {
2206         struct xtensa *xtensa = target_to_xtensa(target);
2207         int ret = target_read_buffer(target, breakpoint->address, XT_ISNS_SZ_MAX, sw_bp->insn);
2208         if (ret != ERROR_OK) {
2209                 LOG_TARGET_ERROR(target, "Failed to read original instruction (%d)!", ret);
2210                 return ret;
2211         }
2212
2213         sw_bp->insn_sz = MIN(XT_ISNS_SZ_MAX, breakpoint->length);
2214         sw_bp->oocd_bp = breakpoint;
2215
2216         uint32_t break_insn = sw_bp->insn_sz == XT_ISNS_SZ_MAX ? XT_INS_BREAK(xtensa, 0, 0) : XT_INS_BREAKN(xtensa, 0);
2217
2218         /* Underlying memory write will convert instruction endianness, don't do that here */
2219         ret = xtensa_update_instruction(target, breakpoint->address, sw_bp->insn_sz, (uint8_t *)&break_insn);
2220         if (ret != ERROR_OK) {
2221                 LOG_TARGET_ERROR(target, "Failed to write breakpoint instruction (%d)!", ret);
2222                 return ret;
2223         }
2224
2225         return ERROR_OK;
2226 }
2227
2228 static int xtensa_sw_breakpoint_remove(struct target *target, struct xtensa_sw_breakpoint *sw_bp)
2229 {
2230         int ret = xtensa_update_instruction(target, sw_bp->oocd_bp->address, sw_bp->insn_sz, sw_bp->insn);
2231         if (ret != ERROR_OK) {
2232                 LOG_TARGET_ERROR(target, "Failed to write insn (%d)!", ret);
2233                 return ret;
2234         }
2235         sw_bp->oocd_bp = NULL;
2236         return ERROR_OK;
2237 }
2238
2239 int xtensa_breakpoint_add(struct target *target, struct breakpoint *breakpoint)
2240 {
2241         struct xtensa *xtensa = target_to_xtensa(target);
2242         unsigned int slot;
2243
2244         if (breakpoint->type == BKPT_SOFT) {
2245                 for (slot = 0; slot < XT_SW_BREAKPOINTS_MAX_NUM; slot++) {
2246                         if (!xtensa->sw_brps[slot].oocd_bp ||
2247                                 xtensa->sw_brps[slot].oocd_bp == breakpoint)
2248                                 break;
2249                 }
2250                 if (slot == XT_SW_BREAKPOINTS_MAX_NUM) {
2251                         LOG_TARGET_WARNING(target, "No free slots to add SW breakpoint!");
2252                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2253                 }
2254                 int ret = xtensa_sw_breakpoint_add(target, breakpoint, &xtensa->sw_brps[slot]);
2255                 if (ret != ERROR_OK) {
2256                         LOG_TARGET_ERROR(target, "Failed to add SW breakpoint!");
2257                         return ret;
2258                 }
2259                 LOG_TARGET_DEBUG(target, "placed SW breakpoint %u @ " TARGET_ADDR_FMT,
2260                         slot,
2261                         breakpoint->address);
2262                 return ERROR_OK;
2263         }
2264
2265         for (slot = 0; slot < xtensa->core_config->debug.ibreaks_num; slot++) {
2266                 if (!xtensa->hw_brps[slot] || xtensa->hw_brps[slot] == breakpoint)
2267                         break;
2268         }
2269         if (slot == xtensa->core_config->debug.ibreaks_num) {
2270                 LOG_TARGET_ERROR(target, "No free slots to add HW breakpoint!");
2271                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2272         }
2273
2274         xtensa->hw_brps[slot] = breakpoint;
2275         /* We will actually write the breakpoints when we resume the target. */
2276         LOG_TARGET_DEBUG(target, "placed HW breakpoint %u @ " TARGET_ADDR_FMT,
2277                 slot,
2278                 breakpoint->address);
2279
2280         return ERROR_OK;
2281 }
2282
2283 int xtensa_breakpoint_remove(struct target *target, struct breakpoint *breakpoint)
2284 {
2285         struct xtensa *xtensa = target_to_xtensa(target);
2286         unsigned int slot;
2287
2288         if (breakpoint->type == BKPT_SOFT) {
2289                 for (slot = 0; slot < XT_SW_BREAKPOINTS_MAX_NUM; slot++) {
2290                         if (xtensa->sw_brps[slot].oocd_bp && xtensa->sw_brps[slot].oocd_bp == breakpoint)
2291                                 break;
2292                 }
2293                 if (slot == XT_SW_BREAKPOINTS_MAX_NUM) {
2294                         LOG_TARGET_WARNING(target, "Max SW breakpoints slot reached, slot=%u!", slot);
2295                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2296                 }
2297                 int ret = xtensa_sw_breakpoint_remove(target, &xtensa->sw_brps[slot]);
2298                 if (ret != ERROR_OK) {
2299                         LOG_TARGET_ERROR(target, "Failed to remove SW breakpoint (%d)!", ret);
2300                         return ret;
2301                 }
2302                 LOG_TARGET_DEBUG(target, "cleared SW breakpoint %u @ " TARGET_ADDR_FMT, slot, breakpoint->address);
2303                 return ERROR_OK;
2304         }
2305
2306         for (slot = 0; slot < xtensa->core_config->debug.ibreaks_num; slot++) {
2307                 if (xtensa->hw_brps[slot] == breakpoint)
2308                         break;
2309         }
2310         if (slot == xtensa->core_config->debug.ibreaks_num) {
2311                 LOG_TARGET_ERROR(target, "HW breakpoint not found!");
2312                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2313         }
2314         xtensa->hw_brps[slot] = NULL;
2315         LOG_TARGET_DEBUG(target, "cleared HW breakpoint %u @ " TARGET_ADDR_FMT, slot, breakpoint->address);
2316         return ERROR_OK;
2317 }
2318
2319 int xtensa_watchpoint_add(struct target *target, struct watchpoint *watchpoint)
2320 {
2321         struct xtensa *xtensa = target_to_xtensa(target);
2322         unsigned int slot;
2323         xtensa_reg_val_t dbreakcval;
2324
2325         if (target->state != TARGET_HALTED) {
2326                 LOG_TARGET_WARNING(target, "target not halted");
2327                 return ERROR_TARGET_NOT_HALTED;
2328         }
2329
2330         if (watchpoint->mask != ~(uint32_t)0) {
2331                 LOG_TARGET_ERROR(target, "watchpoint value masks not supported");
2332                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2333         }
2334
2335         for (slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++) {
2336                 if (!xtensa->hw_wps[slot] || xtensa->hw_wps[slot] == watchpoint)
2337                         break;
2338         }
2339         if (slot == xtensa->core_config->debug.dbreaks_num) {
2340                 LOG_TARGET_WARNING(target, "No free slots to add HW watchpoint!");
2341                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2342         }
2343
2344         /* Figure out value for dbreakc5..0
2345          * It's basically 0x3F with an incremental bit removed from the LSB for each extra length power of 2. */
2346         if (watchpoint->length < 1 || watchpoint->length > 64 ||
2347                 !IS_PWR_OF_2(watchpoint->length) ||
2348                 !IS_ALIGNED(watchpoint->address, watchpoint->length)) {
2349                 LOG_TARGET_WARNING(
2350                         target,
2351                         "Watchpoint with length %d on address " TARGET_ADDR_FMT
2352                         " not supported by hardware.",
2353                         watchpoint->length,
2354                         watchpoint->address);
2355                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2356         }
2357         dbreakcval = ALIGN_DOWN(0x3F, watchpoint->length);
2358
2359         if (watchpoint->rw == WPT_READ)
2360                 dbreakcval |= BIT(30);
2361         if (watchpoint->rw == WPT_WRITE)
2362                 dbreakcval |= BIT(31);
2363         if (watchpoint->rw == WPT_ACCESS)
2364                 dbreakcval |= BIT(30) | BIT(31);
2365
2366         /* Write DBREAKA[slot] and DBCREAKC[slot] */
2367         xtensa_reg_set(target, XT_REG_IDX_DBREAKA0 + slot, watchpoint->address);
2368         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, dbreakcval);
2369         xtensa->hw_wps[slot] = watchpoint;
2370         LOG_TARGET_DEBUG(target, "placed HW watchpoint @ " TARGET_ADDR_FMT,
2371                 watchpoint->address);
2372         return ERROR_OK;
2373 }
2374
2375 int xtensa_watchpoint_remove(struct target *target, struct watchpoint *watchpoint)
2376 {
2377         struct xtensa *xtensa = target_to_xtensa(target);
2378         unsigned int slot;
2379
2380         for (slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++) {
2381                 if (xtensa->hw_wps[slot] == watchpoint)
2382                         break;
2383         }
2384         if (slot == xtensa->core_config->debug.dbreaks_num) {
2385                 LOG_TARGET_WARNING(target, "HW watchpoint " TARGET_ADDR_FMT " not found!", watchpoint->address);
2386                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2387         }
2388         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, 0);
2389         xtensa->hw_wps[slot] = NULL;
2390         LOG_TARGET_DEBUG(target, "cleared HW watchpoint @ " TARGET_ADDR_FMT,
2391                 watchpoint->address);
2392         return ERROR_OK;
2393 }
2394
2395 static int xtensa_build_reg_cache(struct target *target)
2396 {
2397         struct xtensa *xtensa = target_to_xtensa(target);
2398         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
2399         unsigned int last_dbreg_num = 0;
2400
2401         if (xtensa->core_regs_num + xtensa->num_optregs != xtensa->total_regs_num)
2402                 LOG_TARGET_WARNING(target, "Register count MISMATCH: %d core regs, %d extended regs; %d expected",
2403                         xtensa->core_regs_num, xtensa->num_optregs, xtensa->total_regs_num);
2404
2405         struct reg_cache *reg_cache = calloc(1, sizeof(struct reg_cache));
2406
2407         if (!reg_cache) {
2408                 LOG_ERROR("Failed to alloc reg cache!");
2409                 return ERROR_FAIL;
2410         }
2411         reg_cache->name = "Xtensa registers";
2412         reg_cache->next = NULL;
2413         /* Init reglist */
2414         unsigned int reg_list_size = XT_NUM_REGS + xtensa->num_optregs;
2415         struct reg *reg_list = calloc(reg_list_size, sizeof(struct reg));
2416         if (!reg_list) {
2417                 LOG_ERROR("Failed to alloc reg list!");
2418                 goto fail;
2419         }
2420         xtensa->dbregs_num = 0;
2421         unsigned int didx = 0;
2422         for (unsigned int whichlist = 0; whichlist < 2; whichlist++) {
2423                 struct xtensa_reg_desc *rlist = (whichlist == 0) ? xtensa_regs : xtensa->optregs;
2424                 unsigned int listsize = (whichlist == 0) ? XT_NUM_REGS : xtensa->num_optregs;
2425                 for (unsigned int i = 0; i < listsize; i++, didx++) {
2426                         reg_list[didx].exist = rlist[i].exist;
2427                         reg_list[didx].name = rlist[i].name;
2428                         reg_list[didx].size = 32;
2429                         reg_list[didx].value = calloc(1, 4 /*XT_REG_LEN*/);     /* make Clang Static Analyzer happy */
2430                         if (!reg_list[didx].value) {
2431                                 LOG_ERROR("Failed to alloc reg list value!");
2432                                 goto fail;
2433                         }
2434                         reg_list[didx].dirty = false;
2435                         reg_list[didx].valid = false;
2436                         reg_list[didx].type = &xtensa_reg_type;
2437                         reg_list[didx].arch_info = xtensa;
2438                         if (rlist[i].exist && (rlist[i].dbreg_num > last_dbreg_num))
2439                                 last_dbreg_num = rlist[i].dbreg_num;
2440
2441                         if (xtensa_extra_debug_log) {
2442                                 LOG_TARGET_DEBUG(target,
2443                                         "POPULATE %-16s list %d exist %d, idx %d, type %d, dbreg_num 0x%04x",
2444                                         reg_list[didx].name,
2445                                         whichlist,
2446                                         reg_list[didx].exist,
2447                                         didx,
2448                                         rlist[i].type,
2449                                         rlist[i].dbreg_num);
2450                         }
2451                 }
2452         }
2453
2454         xtensa->dbregs_num = last_dbreg_num + 1;
2455         reg_cache->reg_list = reg_list;
2456         reg_cache->num_regs = reg_list_size;
2457
2458         LOG_TARGET_DEBUG(target, "xtensa->total_regs_num %d reg_list_size %d xtensa->dbregs_num %d",
2459                 xtensa->total_regs_num, reg_list_size, xtensa->dbregs_num);
2460
2461         /* Construct empty-register list for handling unknown register requests */
2462         xtensa->empty_regs = calloc(xtensa->dbregs_num, sizeof(struct reg));
2463         if (!xtensa->empty_regs) {
2464                 LOG_TARGET_ERROR(target, "ERROR: Out of memory");
2465                 goto fail;
2466         }
2467         for (unsigned int i = 0; i < xtensa->dbregs_num; i++) {
2468                 xtensa->empty_regs[i].name = calloc(8, sizeof(char));
2469                 if (!xtensa->empty_regs[i].name) {
2470                         LOG_TARGET_ERROR(target, "ERROR: Out of memory");
2471                         goto fail;
2472                 }
2473                 sprintf((char *)xtensa->empty_regs[i].name, "?0x%04x", i & 0x0000FFFF);
2474                 xtensa->empty_regs[i].size = 32;
2475                 xtensa->empty_regs[i].type = &xtensa_reg_type;
2476                 xtensa->empty_regs[i].value = calloc(1, 4 /*XT_REG_LEN*/);      /* make Clang Static Analyzer happy */
2477                 if (!xtensa->empty_regs[i].value) {
2478                         LOG_ERROR("Failed to alloc empty reg list value!");
2479                         goto fail;
2480                 }
2481                 xtensa->empty_regs[i].arch_info = xtensa;
2482         }
2483
2484         /* Construct contiguous register list from contiguous descriptor list */
2485         if (xtensa->regmap_contiguous && xtensa->contiguous_regs_desc) {
2486                 xtensa->contiguous_regs_list = calloc(xtensa->total_regs_num, sizeof(struct reg *));
2487                 if (!xtensa->contiguous_regs_list) {
2488                         LOG_TARGET_ERROR(target, "ERROR: Out of memory");
2489                         goto fail;
2490                 }
2491                 for (unsigned int i = 0; i < xtensa->total_regs_num; i++) {
2492                         unsigned int j;
2493                         for (j = 0; j < reg_cache->num_regs; j++) {
2494                                 if (!strcmp(reg_cache->reg_list[j].name, xtensa->contiguous_regs_desc[i]->name)) {
2495                                         xtensa->contiguous_regs_list[i] = &(reg_cache->reg_list[j]);
2496                                         LOG_TARGET_DEBUG(target,
2497                                                 "POPULATE contiguous regs list: %-16s, dbreg_num 0x%04x",
2498                                                 xtensa->contiguous_regs_list[i]->name,
2499                                                 xtensa->contiguous_regs_desc[i]->dbreg_num);
2500                                         break;
2501                                 }
2502                         }
2503                         if (j == reg_cache->num_regs)
2504                                 LOG_TARGET_WARNING(target, "contiguous register %s not found",
2505                                         xtensa->contiguous_regs_desc[i]->name);
2506                 }
2507         }
2508
2509         xtensa->algo_context_backup = calloc(reg_cache->num_regs, sizeof(void *));
2510         if (!xtensa->algo_context_backup) {
2511                 LOG_ERROR("Failed to alloc mem for algorithm context backup!");
2512                 goto fail;
2513         }
2514         for (unsigned int i = 0; i < reg_cache->num_regs; i++) {
2515                 struct reg *reg = &reg_cache->reg_list[i];
2516                 xtensa->algo_context_backup[i] = calloc(1, reg->size / 8);
2517                 if (!xtensa->algo_context_backup[i]) {
2518                         LOG_ERROR("Failed to alloc mem for algorithm context!");
2519                         goto fail;
2520                 }
2521         }
2522         xtensa->core_cache = reg_cache;
2523         if (cache_p)
2524                 *cache_p = reg_cache;
2525         return ERROR_OK;
2526
2527 fail:
2528         if (reg_list) {
2529                 for (unsigned int i = 0; i < reg_list_size; i++)
2530                         free(reg_list[i].value);
2531                 free(reg_list);
2532         }
2533         if (xtensa->empty_regs) {
2534                 for (unsigned int i = 0; i < xtensa->dbregs_num; i++) {
2535                         free((void *)xtensa->empty_regs[i].name);
2536                         free(xtensa->empty_regs[i].value);
2537                 }
2538                 free(xtensa->empty_regs);
2539         }
2540         if (xtensa->algo_context_backup) {
2541                 for (unsigned int i = 0; i < reg_cache->num_regs; i++)
2542                         free(xtensa->algo_context_backup[i]);
2543                 free(xtensa->algo_context_backup);
2544         }
2545         free(reg_cache);
2546
2547         return ERROR_FAIL;
2548 }
2549
2550 static int32_t xtensa_gdbqc_parse_exec_tie_ops(struct target *target, char *opstr)
2551 {
2552         struct xtensa *xtensa = target_to_xtensa(target);
2553         int32_t status = ERROR_COMMAND_ARGUMENT_INVALID;
2554         /* Process op[] list */
2555         while (opstr && (*opstr == ':')) {
2556                 uint8_t ops[32];
2557                 unsigned int oplen = strtoul(opstr + 1, &opstr, 16);
2558                 if (oplen > 32) {
2559                         LOG_TARGET_ERROR(target, "TIE access instruction too long (%d)\n", oplen);
2560                         break;
2561                 }
2562                 unsigned int i = 0;
2563                 while ((i < oplen) && opstr && (*opstr == ':'))
2564                         ops[i++] = strtoul(opstr + 1, &opstr, 16);
2565                 if (i != oplen) {
2566                         LOG_TARGET_ERROR(target, "TIE access instruction malformed (%d)\n", i);
2567                         break;
2568                 }
2569
2570                 char insn_buf[128];
2571                 sprintf(insn_buf, "Exec %d-byte TIE sequence: ", oplen);
2572                 for (i = 0; i < oplen; i++)
2573                         sprintf(insn_buf + strlen(insn_buf), "%02x:", ops[i]);
2574                 LOG_TARGET_DEBUG(target, "%s", insn_buf);
2575                 xtensa_queue_exec_ins_wide(xtensa, ops, oplen); /* Handles endian-swap */
2576                 status = ERROR_OK;
2577         }
2578         return status;
2579 }
2580
2581 static int xtensa_gdbqc_qxtreg(struct target *target, const char *packet, char **response_p)
2582 {
2583         struct xtensa *xtensa = target_to_xtensa(target);
2584         bool iswrite = (packet[0] == 'Q');
2585         enum xtensa_qerr_e error;
2586
2587         /* Read/write TIE register.  Requires spill location.
2588          * qxtreg<num>:<len>:<oplen>:<op[0]>:<...>[:<oplen>:<op[0]>:<...>]
2589          * Qxtreg<num>:<len>:<oplen>:<op[0]>:<...>[:<oplen>:<op[0]>:<...>]=<value>
2590          */
2591         if (!(xtensa->spill_buf)) {
2592                 LOG_ERROR("Spill location not specified. Try 'target remote <host>:3333 &spill_location0'");
2593                 error = XT_QERR_FAIL;
2594                 goto xtensa_gdbqc_qxtreg_fail;
2595         }
2596
2597         char *delim;
2598         uint32_t regnum = strtoul(packet + 6, &delim, 16);
2599         if (*delim != ':') {
2600                 LOG_ERROR("Malformed qxtreg packet");
2601                 error = XT_QERR_INVAL;
2602                 goto xtensa_gdbqc_qxtreg_fail;
2603         }
2604         uint32_t reglen = strtoul(delim + 1, &delim, 16);
2605         if (*delim != ':') {
2606                 LOG_ERROR("Malformed qxtreg packet");
2607                 error = XT_QERR_INVAL;
2608                 goto xtensa_gdbqc_qxtreg_fail;
2609         }
2610         uint8_t regbuf[XT_QUERYPKT_RESP_MAX];
2611         LOG_DEBUG("TIE reg 0x%08" PRIx32 " %s (%d bytes)", regnum, iswrite ? "write" : "read", reglen);
2612         if (reglen * 2 + 1 > XT_QUERYPKT_RESP_MAX) {
2613                 LOG_ERROR("TIE register too large");
2614                 error = XT_QERR_MEM;
2615                 goto xtensa_gdbqc_qxtreg_fail;
2616         }
2617
2618         /* (1) Save spill memory, (1.5) [if write then store value to spill location],
2619          * (2) read old a4, (3) write spill address to a4.
2620          * NOTE: ensure a4 is restored properly by all error handling logic
2621          */
2622         unsigned int memop_size = (xtensa->spill_loc & 3) ? 1 : 4;
2623         int status = xtensa_read_memory(target, xtensa->spill_loc, memop_size,
2624                 xtensa->spill_bytes / memop_size, xtensa->spill_buf);
2625         if (status != ERROR_OK) {
2626                 LOG_ERROR("Spill memory save");
2627                 error = XT_QERR_MEM;
2628                 goto xtensa_gdbqc_qxtreg_fail;
2629         }
2630         if (iswrite) {
2631                 /* Extract value and store in spill memory */
2632                 unsigned int b = 0;
2633                 char *valbuf = strchr(delim, '=');
2634                 if (!(valbuf && (*valbuf == '='))) {
2635                         LOG_ERROR("Malformed Qxtreg packet");
2636                         error = XT_QERR_INVAL;
2637                         goto xtensa_gdbqc_qxtreg_fail;
2638                 }
2639                 valbuf++;
2640                 while (*valbuf && *(valbuf + 1)) {
2641                         char bytestr[3] = { 0, 0, 0 };
2642                         strncpy(bytestr, valbuf, 2);
2643                         regbuf[b++] = strtoul(bytestr, NULL, 16);
2644                         valbuf += 2;
2645                 }
2646                 if (b != reglen) {
2647                         LOG_ERROR("Malformed Qxtreg packet");
2648                         error = XT_QERR_INVAL;
2649                         goto xtensa_gdbqc_qxtreg_fail;
2650                 }
2651                 status = xtensa_write_memory(target, xtensa->spill_loc, memop_size,
2652                         reglen / memop_size, regbuf);
2653                 if (status != ERROR_OK) {
2654                         LOG_ERROR("TIE value store");
2655                         error = XT_QERR_MEM;
2656                         goto xtensa_gdbqc_qxtreg_fail;
2657                 }
2658         }
2659         xtensa_reg_val_t orig_a4 = xtensa_reg_get(target, XT_REG_IDX_A4);
2660         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, xtensa->spill_loc);
2661         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A4));
2662
2663         int32_t tieop_status = xtensa_gdbqc_parse_exec_tie_ops(target, delim);
2664
2665         /* Restore a4 but not yet spill memory.  Execute it all... */
2666         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, orig_a4);
2667         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A4));
2668         status = jtag_execute_queue();
2669         if (status != ERROR_OK) {
2670                 LOG_TARGET_ERROR(target, "TIE queue execute: %d\n", status);
2671                 tieop_status = status;
2672         }
2673         status = xtensa_core_status_check(target);
2674         if (status != ERROR_OK) {
2675                 LOG_TARGET_ERROR(target, "TIE instr execute: %d\n", status);
2676                 tieop_status = status;
2677         }
2678
2679         if (tieop_status == ERROR_OK) {
2680                 if (iswrite) {
2681                         /* TIE write succeeded; send OK */
2682                         strcpy(*response_p, "OK");
2683                 } else {
2684                         /* TIE read succeeded; copy result from spill memory */
2685                         status = xtensa_read_memory(target, xtensa->spill_loc, memop_size, reglen, regbuf);
2686                         if (status != ERROR_OK) {
2687                                 LOG_TARGET_ERROR(target, "TIE result read");
2688                                 tieop_status = status;
2689                         }
2690                         unsigned int i;
2691                         for (i = 0; i < reglen; i++)
2692                                 sprintf(*response_p + 2 * i, "%02x", regbuf[i]);
2693                         *(*response_p + 2 * i) = '\0';
2694                         LOG_TARGET_DEBUG(target, "TIE response: %s", *response_p);
2695                 }
2696         }
2697
2698         /* Restore spill memory first, then report any previous errors */
2699         status = xtensa_write_memory(target, xtensa->spill_loc, memop_size,
2700                 xtensa->spill_bytes / memop_size, xtensa->spill_buf);
2701         if (status != ERROR_OK) {
2702                 LOG_ERROR("Spill memory restore");
2703                 error = XT_QERR_MEM;
2704                 goto xtensa_gdbqc_qxtreg_fail;
2705         }
2706         if (tieop_status != ERROR_OK) {
2707                 LOG_ERROR("TIE execution");
2708                 error = XT_QERR_FAIL;
2709                 goto xtensa_gdbqc_qxtreg_fail;
2710         }
2711         return ERROR_OK;
2712
2713 xtensa_gdbqc_qxtreg_fail:
2714         strcpy(*response_p, xt_qerr[error].chrval);
2715         return xt_qerr[error].intval;
2716 }
2717
2718 int xtensa_gdb_query_custom(struct target *target, const char *packet, char **response_p)
2719 {
2720         struct xtensa *xtensa = target_to_xtensa(target);
2721         enum xtensa_qerr_e error;
2722         if (!packet || !response_p) {
2723                 LOG_TARGET_ERROR(target, "invalid parameter: packet %p response_p %p", packet, response_p);
2724                 return ERROR_FAIL;
2725         }
2726
2727         *response_p = xtensa->qpkt_resp;
2728         if (strncmp(packet, "qxtn", 4) == 0) {
2729                 strcpy(*response_p, "OpenOCD");
2730                 return ERROR_OK;
2731         } else if (strncasecmp(packet, "qxtgdbversion=", 14) == 0) {
2732                 return ERROR_OK;
2733         } else if ((strncmp(packet, "Qxtsis=", 7) == 0) || (strncmp(packet, "Qxtsds=", 7) == 0)) {
2734                 /* Confirm host cache params match core .cfg file */
2735                 struct xtensa_cache_config *cachep = (packet[4] == 'i') ?
2736                         &xtensa->core_config->icache : &xtensa->core_config->dcache;
2737                 unsigned int line_size = 0, size = 0, way_count = 0;
2738                 sscanf(&packet[7], "%x,%x,%x", &line_size, &size, &way_count);
2739                 if ((cachep->line_size != line_size) ||
2740                         (cachep->size != size) ||
2741                         (cachep->way_count != way_count)) {
2742                         LOG_TARGET_WARNING(target, "%cCache mismatch; check xtensa-core-XXX.cfg file",
2743                                 cachep == &xtensa->core_config->icache ? 'I' : 'D');
2744                 }
2745                 strcpy(*response_p, "OK");
2746                 return ERROR_OK;
2747         } else if ((strncmp(packet, "Qxtiram=", 8) == 0) || (strncmp(packet, "Qxtirom=", 8) == 0)) {
2748                 /* Confirm host IRAM/IROM params match core .cfg file */
2749                 struct xtensa_local_mem_config *memp = (packet[5] == 'a') ?
2750                         &xtensa->core_config->iram : &xtensa->core_config->irom;
2751                 unsigned int base = 0, size = 0, i;
2752                 char *pkt = (char *)&packet[7];
2753                 do {
2754                         pkt++;
2755                         size = strtoul(pkt, &pkt, 16);
2756                         pkt++;
2757                         base = strtoul(pkt, &pkt, 16);
2758                         LOG_TARGET_DEBUG(target, "memcheck: %dB @ 0x%08x", size, base);
2759                         for (i = 0; i < memp->count; i++) {
2760                                 if ((memp->regions[i].base == base) && (memp->regions[i].size == size))
2761                                         break;
2762                         }
2763                         if (i == memp->count) {
2764                                 LOG_TARGET_WARNING(target, "%s mismatch; check xtensa-core-XXX.cfg file",
2765                                         memp == &xtensa->core_config->iram ? "IRAM" : "IROM");
2766                                 break;
2767                         }
2768                         for (i = 0; i < 11; i++) {
2769                                 pkt++;
2770                                 strtoul(pkt, &pkt, 16);
2771                         }
2772                 } while (pkt && (pkt[0] == ','));
2773                 strcpy(*response_p, "OK");
2774                 return ERROR_OK;
2775         } else if (strncmp(packet, "Qxtexcmlvl=", 11) == 0) {
2776                 /* Confirm host EXCM_LEVEL matches core .cfg file */
2777                 unsigned int excm_level = strtoul(&packet[11], NULL, 0);
2778                 if (!xtensa->core_config->high_irq.enabled ||
2779                         (excm_level != xtensa->core_config->high_irq.excm_level))
2780                         LOG_TARGET_WARNING(target, "EXCM_LEVEL mismatch; check xtensa-core-XXX.cfg file");
2781                 strcpy(*response_p, "OK");
2782                 return ERROR_OK;
2783         } else if ((strncmp(packet, "Qxtl2cs=", 8) == 0) ||
2784                 (strncmp(packet, "Qxtl2ca=", 8) == 0) ||
2785                 (strncmp(packet, "Qxtdensity=", 11) == 0)) {
2786                 strcpy(*response_p, "OK");
2787                 return ERROR_OK;
2788         } else if (strncmp(packet, "Qxtspill=", 9) == 0) {
2789                 char *delim;
2790                 uint32_t spill_loc = strtoul(packet + 9, &delim, 16);
2791                 if (*delim != ':') {
2792                         LOG_ERROR("Malformed Qxtspill packet");
2793                         error = XT_QERR_INVAL;
2794                         goto xtensa_gdb_query_custom_fail;
2795                 }
2796                 xtensa->spill_loc = spill_loc;
2797                 xtensa->spill_bytes = strtoul(delim + 1, NULL, 16);
2798                 if (xtensa->spill_buf)
2799                         free(xtensa->spill_buf);
2800                 xtensa->spill_buf = calloc(1, xtensa->spill_bytes);
2801                 if (!xtensa->spill_buf) {
2802                         LOG_ERROR("Spill buf alloc");
2803                         error = XT_QERR_MEM;
2804                         goto xtensa_gdb_query_custom_fail;
2805                 }
2806                 LOG_TARGET_DEBUG(target, "Set spill 0x%08" PRIx32 " (%d)", xtensa->spill_loc, xtensa->spill_bytes);
2807                 strcpy(*response_p, "OK");
2808                 return ERROR_OK;
2809         } else if (strncasecmp(packet, "qxtreg", 6) == 0) {
2810                 return xtensa_gdbqc_qxtreg(target, packet, response_p);
2811         } else if ((strncmp(packet, "qTStatus", 8) == 0) ||
2812                 (strncmp(packet, "qxtftie", 7) == 0) ||
2813                 (strncmp(packet, "qxtstie", 7) == 0)) {
2814                 /* Return empty string to indicate trace, TIE wire debug are unsupported */
2815                 strcpy(*response_p, "");
2816                 return ERROR_OK;
2817         }
2818
2819         /* Warn for all other queries, but do not return errors */
2820         LOG_TARGET_WARNING(target, "Unknown target-specific query packet: %s", packet);
2821         strcpy(*response_p, "");
2822         return ERROR_OK;
2823
2824 xtensa_gdb_query_custom_fail:
2825         strcpy(*response_p, xt_qerr[error].chrval);
2826         return xt_qerr[error].intval;
2827 }
2828
2829 int xtensa_init_arch_info(struct target *target, struct xtensa *xtensa,
2830         const struct xtensa_debug_module_config *dm_cfg)
2831 {
2832         target->arch_info = xtensa;
2833         xtensa->common_magic = XTENSA_COMMON_MAGIC;
2834         xtensa->target = target;
2835         xtensa->stepping_isr_mode = XT_STEPPING_ISR_ON;
2836
2837         xtensa->core_config = calloc(1, sizeof(struct xtensa_config));
2838         if (!xtensa->core_config) {
2839                 LOG_ERROR("Xtensa configuration alloc failed\n");
2840                 return ERROR_FAIL;
2841         }
2842
2843         /* Default cache settings are disabled with 1 way */
2844         xtensa->core_config->icache.way_count = 1;
2845         xtensa->core_config->dcache.way_count = 1;
2846
2847         /* chrval: AR3/AR4 register names will change with window mapping.
2848          * intval: tracks whether scratch register was set through gdb P packet.
2849          */
2850         for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++) {
2851                 xtensa->scratch_ars[s].chrval = calloc(8, sizeof(char));
2852                 if (!xtensa->scratch_ars[s].chrval) {
2853                         for (enum xtensa_ar_scratch_set_e f = 0; f < s; f++)
2854                                 free(xtensa->scratch_ars[f].chrval);
2855                         free(xtensa->core_config);
2856                         LOG_ERROR("Xtensa scratch AR alloc failed\n");
2857                         return ERROR_FAIL;
2858                 }
2859                 xtensa->scratch_ars[s].intval = false;
2860                 sprintf(xtensa->scratch_ars[s].chrval, "%s%d",
2861                         ((s == XT_AR_SCRATCH_A3) || (s == XT_AR_SCRATCH_A4)) ? "a" : "ar",
2862                         ((s == XT_AR_SCRATCH_A3) || (s == XT_AR_SCRATCH_AR3)) ? 3 : 4);
2863         }
2864
2865         return xtensa_dm_init(&xtensa->dbg_mod, dm_cfg);
2866 }
2867
2868 void xtensa_set_permissive_mode(struct target *target, bool state)
2869 {
2870         target_to_xtensa(target)->permissive_mode = state;
2871 }
2872
2873 int xtensa_target_init(struct command_context *cmd_ctx, struct target *target)
2874 {
2875         struct xtensa *xtensa = target_to_xtensa(target);
2876
2877         xtensa->come_online_probes_num = 3;
2878         xtensa->hw_brps = calloc(XT_HW_IBREAK_MAX_NUM, sizeof(struct breakpoint *));
2879         if (!xtensa->hw_brps) {
2880                 LOG_ERROR("Failed to alloc memory for HW breakpoints!");
2881                 return ERROR_FAIL;
2882         }
2883         xtensa->hw_wps = calloc(XT_HW_DBREAK_MAX_NUM, sizeof(struct watchpoint *));
2884         if (!xtensa->hw_wps) {
2885                 free(xtensa->hw_brps);
2886                 LOG_ERROR("Failed to alloc memory for HW watchpoints!");
2887                 return ERROR_FAIL;
2888         }
2889         xtensa->sw_brps = calloc(XT_SW_BREAKPOINTS_MAX_NUM, sizeof(struct xtensa_sw_breakpoint));
2890         if (!xtensa->sw_brps) {
2891                 free(xtensa->hw_brps);
2892                 free(xtensa->hw_wps);
2893                 LOG_ERROR("Failed to alloc memory for SW breakpoints!");
2894                 return ERROR_FAIL;
2895         }
2896
2897         xtensa->spill_loc = 0xffffffff;
2898         xtensa->spill_bytes = 0;
2899         xtensa->spill_buf = NULL;
2900         xtensa->probe_lsddr32p = -1;    /* Probe for fast load/store operations */
2901
2902         return xtensa_build_reg_cache(target);
2903 }
2904
2905 static void xtensa_free_reg_cache(struct target *target)
2906 {
2907         struct xtensa *xtensa = target_to_xtensa(target);
2908         struct reg_cache *cache = xtensa->core_cache;
2909
2910         if (cache) {
2911                 register_unlink_cache(&target->reg_cache, cache);
2912                 for (unsigned int i = 0; i < cache->num_regs; i++) {
2913                         free(xtensa->algo_context_backup[i]);
2914                         free(cache->reg_list[i].value);
2915                 }
2916                 free(xtensa->algo_context_backup);
2917                 free(cache->reg_list);
2918                 free(cache);
2919         }
2920         xtensa->core_cache = NULL;
2921         xtensa->algo_context_backup = NULL;
2922
2923         if (xtensa->empty_regs) {
2924                 for (unsigned int i = 0; i < xtensa->dbregs_num; i++) {
2925                         free((void *)xtensa->empty_regs[i].name);
2926                         free(xtensa->empty_regs[i].value);
2927                 }
2928                 free(xtensa->empty_regs);
2929         }
2930         xtensa->empty_regs = NULL;
2931         if (xtensa->optregs) {
2932                 for (unsigned int i = 0; i < xtensa->num_optregs; i++)
2933                         free((void *)xtensa->optregs[i].name);
2934                 free(xtensa->optregs);
2935         }
2936         xtensa->optregs = NULL;
2937 }
2938
2939 void xtensa_target_deinit(struct target *target)
2940 {
2941         struct xtensa *xtensa = target_to_xtensa(target);
2942
2943         LOG_DEBUG("start");
2944
2945         if (target_was_examined(target)) {
2946                 int ret = xtensa_queue_dbg_reg_write(xtensa, NARADR_DCRCLR, OCDDCR_ENABLEOCD);
2947                 if (ret != ERROR_OK) {
2948                         LOG_ERROR("Failed to queue OCDDCR_ENABLEOCD clear operation!");
2949                         return;
2950                 }
2951                 xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
2952                 ret = jtag_execute_queue();
2953                 if (ret != ERROR_OK) {
2954                         LOG_ERROR("Failed to clear OCDDCR_ENABLEOCD!");
2955                         return;
2956                 }
2957         }
2958         xtensa_free_reg_cache(target);
2959         free(xtensa->hw_brps);
2960         free(xtensa->hw_wps);
2961         free(xtensa->sw_brps);
2962         if (xtensa->spill_buf) {
2963                 free(xtensa->spill_buf);
2964                 xtensa->spill_buf = NULL;
2965         }
2966         for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++)
2967                 free(xtensa->scratch_ars[s].chrval);
2968         free(xtensa->core_config);
2969 }
2970
2971 const char *xtensa_get_gdb_arch(struct target *target)
2972 {
2973         return "xtensa";
2974 }
2975
2976 /* exe <ascii-encoded hexadecimal instruction bytes> */
2977 COMMAND_HELPER(xtensa_cmd_exe_do, struct target *target)
2978 {
2979         struct xtensa *xtensa = target_to_xtensa(target);
2980
2981         if (CMD_ARGC != 1)
2982                 return ERROR_COMMAND_SYNTAX_ERROR;
2983
2984         /* Process ascii-encoded hex byte string */
2985         const char *parm = CMD_ARGV[0];
2986         unsigned int parm_len = strlen(parm);
2987         if ((parm_len >= 64) || (parm_len & 1)) {
2988                 LOG_ERROR("Invalid parameter length (%d): must be even, < 64 characters", parm_len);
2989                 return ERROR_FAIL;
2990         }
2991
2992         uint8_t ops[32];
2993         unsigned int oplen = parm_len / 2;
2994         char encoded_byte[3] = { 0, 0, 0 };
2995         for (unsigned int i = 0; i < oplen; i++) {
2996                 encoded_byte[0] = *parm++;
2997                 encoded_byte[1] = *parm++;
2998                 ops[i] = strtoul(encoded_byte, NULL, 16);
2999         }
3000
3001         /* GDB must handle state save/restore.
3002          * Flush reg cache in case spill location is in an AR
3003          * Update CPENABLE only for this execution; later restore cached copy
3004          * Keep a copy of exccause in case executed code triggers an exception
3005          */
3006         int status = xtensa_write_dirty_registers(target);
3007         if (status != ERROR_OK) {
3008                 LOG_ERROR("%s: Failed to write back register cache.", target_name(target));
3009                 return ERROR_FAIL;
3010         }
3011         xtensa_reg_val_t exccause = xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE);
3012         xtensa_reg_val_t cpenable = xtensa_reg_get(target, XT_REG_IDX_CPENABLE);
3013         xtensa_reg_val_t a3 = xtensa_reg_get(target, XT_REG_IDX_A3);
3014         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, 0xffffffff);
3015         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
3016         xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa,
3017                         xtensa_regs[XT_REG_IDX_CPENABLE].reg_num, XT_REG_A3));
3018         xtensa_queue_dbg_reg_write(xtensa, NARADR_DDR, a3);
3019         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
3020
3021         /* Queue instruction list and execute everything */
3022         LOG_TARGET_DEBUG(target, "execute stub: %s", CMD_ARGV[0]);
3023         xtensa_queue_exec_ins_wide(xtensa, ops, oplen); /* Handles endian-swap */
3024         status = jtag_execute_queue();
3025         if (status != ERROR_OK)
3026                 LOG_TARGET_ERROR(target, "TIE queue execute: %d\n", status);
3027         status = xtensa_core_status_check(target);
3028         if (status != ERROR_OK)
3029                 LOG_TARGET_ERROR(target, "TIE instr execute: %d\n", status);
3030
3031         /* Reread register cache and restore saved regs after instruction execution */
3032         if (xtensa_fetch_all_regs(target) != ERROR_OK)
3033                 LOG_TARGET_ERROR(target, "%s: Failed to fetch register cache (post-exec).", target_name(target));
3034         xtensa_reg_set(target, XT_REG_IDX_EXCCAUSE, exccause);
3035         xtensa_reg_set(target, XT_REG_IDX_CPENABLE, cpenable);
3036         return status;
3037 }
3038
3039 COMMAND_HANDLER(xtensa_cmd_exe)
3040 {
3041         return CALL_COMMAND_HANDLER(xtensa_cmd_exe_do, get_current_target(CMD_CTX));
3042 }
3043
3044 /* xtdef <name> */
3045 COMMAND_HELPER(xtensa_cmd_xtdef_do, struct xtensa *xtensa)
3046 {
3047         if (CMD_ARGC != 1)
3048                 return ERROR_COMMAND_SYNTAX_ERROR;
3049
3050         const char *core_name = CMD_ARGV[0];
3051         if (strcasecmp(core_name, "LX") == 0) {
3052                 xtensa->core_config->core_type = XT_LX;
3053         } else {
3054                 LOG_ERROR("xtdef [LX]\n");
3055                 return ERROR_COMMAND_SYNTAX_ERROR;
3056         }
3057         return ERROR_OK;
3058 }
3059
3060 COMMAND_HANDLER(xtensa_cmd_xtdef)
3061 {
3062         return CALL_COMMAND_HANDLER(xtensa_cmd_xtdef_do,
3063                 target_to_xtensa(get_current_target(CMD_CTX)));
3064 }
3065
3066 static inline bool xtensa_cmd_xtopt_legal_val(char *opt, int val, int min, int max)
3067 {
3068         if ((val < min) || (val > max)) {
3069                 LOG_ERROR("xtopt %s (%d) out of range [%d..%d]\n", opt, val, min, max);
3070                 return false;
3071         }
3072         return true;
3073 }
3074
3075 /* xtopt <name> <value> */
3076 COMMAND_HELPER(xtensa_cmd_xtopt_do, struct xtensa *xtensa)
3077 {
3078         if (CMD_ARGC != 2)
3079                 return ERROR_COMMAND_SYNTAX_ERROR;
3080
3081         const char *opt_name = CMD_ARGV[0];
3082         int opt_val = strtol(CMD_ARGV[1], NULL, 0);
3083         if (strcasecmp(opt_name, "arnum") == 0) {
3084                 if (!xtensa_cmd_xtopt_legal_val("arnum", opt_val, 0, 64))
3085                         return ERROR_COMMAND_ARGUMENT_INVALID;
3086                 xtensa->core_config->aregs_num = opt_val;
3087         } else if (strcasecmp(opt_name, "windowed") == 0) {
3088                 if (!xtensa_cmd_xtopt_legal_val("windowed", opt_val, 0, 1))
3089                         return ERROR_COMMAND_ARGUMENT_INVALID;
3090                 xtensa->core_config->windowed = opt_val;
3091         } else if (strcasecmp(opt_name, "cpenable") == 0) {
3092                 if (!xtensa_cmd_xtopt_legal_val("cpenable", opt_val, 0, 1))
3093                         return ERROR_COMMAND_ARGUMENT_INVALID;
3094                 xtensa->core_config->coproc = opt_val;
3095         } else if (strcasecmp(opt_name, "exceptions") == 0) {
3096                 if (!xtensa_cmd_xtopt_legal_val("exceptions", opt_val, 0, 1))
3097                         return ERROR_COMMAND_ARGUMENT_INVALID;
3098                 xtensa->core_config->exceptions = opt_val;
3099         } else if (strcasecmp(opt_name, "intnum") == 0) {
3100                 if (!xtensa_cmd_xtopt_legal_val("intnum", opt_val, 0, 32))
3101                         return ERROR_COMMAND_ARGUMENT_INVALID;
3102                 xtensa->core_config->irq.enabled = (opt_val > 0);
3103                 xtensa->core_config->irq.irq_num = opt_val;
3104         } else if (strcasecmp(opt_name, "hipriints") == 0) {
3105                 if (!xtensa_cmd_xtopt_legal_val("hipriints", opt_val, 0, 1))
3106                         return ERROR_COMMAND_ARGUMENT_INVALID;
3107                 xtensa->core_config->high_irq.enabled = opt_val;
3108         } else if (strcasecmp(opt_name, "excmlevel") == 0) {
3109                 if (!xtensa_cmd_xtopt_legal_val("excmlevel", opt_val, 1, 6))
3110                         return ERROR_COMMAND_ARGUMENT_INVALID;
3111                 if (!xtensa->core_config->high_irq.enabled) {
3112                         LOG_ERROR("xtopt excmlevel requires hipriints\n");
3113                         return ERROR_COMMAND_ARGUMENT_INVALID;
3114                 }
3115                 xtensa->core_config->high_irq.excm_level = opt_val;
3116         } else if (strcasecmp(opt_name, "intlevels") == 0) {
3117                 if (xtensa->core_config->core_type == XT_LX) {
3118                         if (!xtensa_cmd_xtopt_legal_val("intlevels", opt_val, 2, 6))
3119                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3120                 } else {
3121                         if (!xtensa_cmd_xtopt_legal_val("intlevels", opt_val, 1, 255))
3122                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3123                 }
3124                 if (!xtensa->core_config->high_irq.enabled) {
3125                         LOG_ERROR("xtopt intlevels requires hipriints\n");
3126                         return ERROR_COMMAND_ARGUMENT_INVALID;
3127                 }
3128                 xtensa->core_config->high_irq.level_num = opt_val;
3129         } else if (strcasecmp(opt_name, "debuglevel") == 0) {
3130                 if (xtensa->core_config->core_type == XT_LX) {
3131                         if (!xtensa_cmd_xtopt_legal_val("debuglevel", opt_val, 2, 6))
3132                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3133                 } else {
3134                         if (!xtensa_cmd_xtopt_legal_val("debuglevel", opt_val, 0, 0))
3135                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3136                 }
3137                 xtensa->core_config->debug.enabled = 1;
3138                 xtensa->core_config->debug.irq_level = opt_val;
3139         } else if (strcasecmp(opt_name, "ibreaknum") == 0) {
3140                 if (!xtensa_cmd_xtopt_legal_val("ibreaknum", opt_val, 0, 2))
3141                         return ERROR_COMMAND_ARGUMENT_INVALID;
3142                 xtensa->core_config->debug.ibreaks_num = opt_val;
3143         } else if (strcasecmp(opt_name, "dbreaknum") == 0) {
3144                 if (!xtensa_cmd_xtopt_legal_val("dbreaknum", opt_val, 0, 2))
3145                         return ERROR_COMMAND_ARGUMENT_INVALID;
3146                 xtensa->core_config->debug.dbreaks_num = opt_val;
3147         } else if (strcasecmp(opt_name, "tracemem") == 0) {
3148                 if (!xtensa_cmd_xtopt_legal_val("tracemem", opt_val, 0, 256 * 1024))
3149                         return ERROR_COMMAND_ARGUMENT_INVALID;
3150                 xtensa->core_config->trace.mem_sz = opt_val;
3151                 xtensa->core_config->trace.enabled = (opt_val > 0);
3152         } else if (strcasecmp(opt_name, "tracememrev") == 0) {
3153                 if (!xtensa_cmd_xtopt_legal_val("tracememrev", opt_val, 0, 1))
3154                         return ERROR_COMMAND_ARGUMENT_INVALID;
3155                 xtensa->core_config->trace.reversed_mem_access = opt_val;
3156         } else if (strcasecmp(opt_name, "perfcount") == 0) {
3157                 if (!xtensa_cmd_xtopt_legal_val("perfcount", opt_val, 0, 8))
3158                         return ERROR_COMMAND_ARGUMENT_INVALID;
3159                 xtensa->core_config->debug.perfcount_num = opt_val;
3160         } else {
3161                 LOG_WARNING("Unknown xtensa command ignored: \"xtopt %s %s\"", CMD_ARGV[0], CMD_ARGV[1]);
3162                 return ERROR_OK;
3163         }
3164
3165         return ERROR_OK;
3166 }
3167
3168 COMMAND_HANDLER(xtensa_cmd_xtopt)
3169 {
3170         return CALL_COMMAND_HANDLER(xtensa_cmd_xtopt_do,
3171                 target_to_xtensa(get_current_target(CMD_CTX)));
3172 }
3173
3174 /* xtmem <type> [parameters] */
3175 COMMAND_HELPER(xtensa_cmd_xtmem_do, struct xtensa *xtensa)
3176 {
3177         struct xtensa_cache_config *cachep = NULL;
3178         struct xtensa_local_mem_config *memp = NULL;
3179         int mem_access = 0;
3180         bool is_dcache = false;
3181
3182         if (CMD_ARGC == 0) {
3183                 LOG_ERROR("xtmem <type> [parameters]\n");
3184                 return ERROR_COMMAND_SYNTAX_ERROR;
3185         }
3186
3187         const char *mem_name = CMD_ARGV[0];
3188         if (strcasecmp(mem_name, "icache") == 0) {
3189                 cachep = &xtensa->core_config->icache;
3190         } else if (strcasecmp(mem_name, "dcache") == 0) {
3191                 cachep = &xtensa->core_config->dcache;
3192                 is_dcache = true;
3193         } else if (strcasecmp(mem_name, "l2cache") == 0) {
3194                 /* TODO: support L2 cache */
3195         } else if (strcasecmp(mem_name, "l2addr") == 0) {
3196                 /* TODO: support L2 cache */
3197         } else if (strcasecmp(mem_name, "iram") == 0) {
3198                 memp = &xtensa->core_config->iram;
3199                 mem_access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE;
3200         } else if (strcasecmp(mem_name, "dram") == 0) {
3201                 memp = &xtensa->core_config->dram;
3202                 mem_access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE;
3203         } else if (strcasecmp(mem_name, "sram") == 0) {
3204                 memp = &xtensa->core_config->sram;
3205                 mem_access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE;
3206         } else if (strcasecmp(mem_name, "irom") == 0) {
3207                 memp = &xtensa->core_config->irom;
3208                 mem_access = XT_MEM_ACCESS_READ;
3209         } else if (strcasecmp(mem_name, "drom") == 0) {
3210                 memp = &xtensa->core_config->drom;
3211                 mem_access = XT_MEM_ACCESS_READ;
3212         } else if (strcasecmp(mem_name, "srom") == 0) {
3213                 memp = &xtensa->core_config->srom;
3214                 mem_access = XT_MEM_ACCESS_READ;
3215         } else {
3216                 LOG_ERROR("xtmem types: <icache|dcache|l2cache|l2addr|iram|irom|dram|drom|sram|srom>\n");
3217                 return ERROR_COMMAND_ARGUMENT_INVALID;
3218         }
3219
3220         if (cachep) {
3221                 if ((CMD_ARGC != 4) && (CMD_ARGC != 5)) {
3222                         LOG_ERROR("xtmem <cachetype> <linebytes> <cachebytes> <ways> [writeback]\n");
3223                         return ERROR_COMMAND_SYNTAX_ERROR;
3224                 }
3225                 cachep->line_size = strtoul(CMD_ARGV[1], NULL, 0);
3226                 cachep->size = strtoul(CMD_ARGV[2], NULL, 0);
3227                 cachep->way_count = strtoul(CMD_ARGV[3], NULL, 0);
3228                 cachep->writeback = ((CMD_ARGC == 5) && is_dcache) ?
3229                         strtoul(CMD_ARGV[4], NULL, 0) : 0;
3230         } else if (memp) {
3231                 if (CMD_ARGC != 3) {
3232                         LOG_ERROR("xtmem <memtype> <baseaddr> <bytes>\n");
3233                         return ERROR_COMMAND_SYNTAX_ERROR;
3234                 }
3235                 struct xtensa_local_mem_region_config *memcfgp = &memp->regions[memp->count];
3236                 memcfgp->base = strtoul(CMD_ARGV[1], NULL, 0);
3237                 memcfgp->size = strtoul(CMD_ARGV[2], NULL, 0);
3238                 memcfgp->access = mem_access;
3239                 memp->count++;
3240         }
3241
3242         return ERROR_OK;
3243 }
3244
3245 COMMAND_HANDLER(xtensa_cmd_xtmem)
3246 {
3247         return CALL_COMMAND_HANDLER(xtensa_cmd_xtmem_do,
3248                 target_to_xtensa(get_current_target(CMD_CTX)));
3249 }
3250
3251 /* xtmpu <num FG seg> <min seg size> <lockable> <executeonly> */
3252 COMMAND_HELPER(xtensa_cmd_xtmpu_do, struct xtensa *xtensa)
3253 {
3254         if (CMD_ARGC != 4) {
3255                 LOG_ERROR("xtmpu <num FG seg> <min seg size> <lockable> <executeonly>\n");
3256                 return ERROR_COMMAND_SYNTAX_ERROR;
3257         }
3258
3259         unsigned int nfgseg = strtoul(CMD_ARGV[0], NULL, 0);
3260         unsigned int minsegsize = strtoul(CMD_ARGV[1], NULL, 0);
3261         unsigned int lockable = strtoul(CMD_ARGV[2], NULL, 0);
3262         unsigned int execonly = strtoul(CMD_ARGV[3], NULL, 0);
3263
3264         if ((nfgseg > 32)) {
3265                 LOG_ERROR("<nfgseg> must be within [0..32]\n");
3266                 return ERROR_COMMAND_ARGUMENT_INVALID;
3267         } else if (minsegsize & (minsegsize - 1)) {
3268                 LOG_ERROR("<minsegsize> must be a power of 2 >= 32\n");
3269                 return ERROR_COMMAND_ARGUMENT_INVALID;
3270         } else if (lockable > 1) {
3271                 LOG_ERROR("<lockable> must be 0 or 1\n");
3272                 return ERROR_COMMAND_ARGUMENT_INVALID;
3273         } else if (execonly > 1) {
3274                 LOG_ERROR("<execonly> must be 0 or 1\n");
3275                 return ERROR_COMMAND_ARGUMENT_INVALID;
3276         }
3277
3278         xtensa->core_config->mpu.enabled = true;
3279         xtensa->core_config->mpu.nfgseg = nfgseg;
3280         xtensa->core_config->mpu.minsegsize = minsegsize;
3281         xtensa->core_config->mpu.lockable = lockable;
3282         xtensa->core_config->mpu.execonly = execonly;
3283         return ERROR_OK;
3284 }
3285
3286 COMMAND_HANDLER(xtensa_cmd_xtmpu)
3287 {
3288         return CALL_COMMAND_HANDLER(xtensa_cmd_xtmpu_do,
3289                 target_to_xtensa(get_current_target(CMD_CTX)));
3290 }
3291
3292 /* xtmmu <NIREFILLENTRIES> <NDREFILLENTRIES> <IVARWAY56> <DVARWAY56> */
3293 COMMAND_HELPER(xtensa_cmd_xtmmu_do, struct xtensa *xtensa)
3294 {
3295         if (CMD_ARGC != 2) {
3296                 LOG_ERROR("xtmmu <NIREFILLENTRIES> <NDREFILLENTRIES>\n");
3297                 return ERROR_COMMAND_SYNTAX_ERROR;
3298         }
3299
3300         unsigned int nirefillentries = strtoul(CMD_ARGV[0], NULL, 0);
3301         unsigned int ndrefillentries = strtoul(CMD_ARGV[1], NULL, 0);
3302         if ((nirefillentries != 16) && (nirefillentries != 32)) {
3303                 LOG_ERROR("<nirefillentries> must be 16 or 32\n");
3304                 return ERROR_COMMAND_ARGUMENT_INVALID;
3305         } else if ((ndrefillentries != 16) && (ndrefillentries != 32)) {
3306                 LOG_ERROR("<ndrefillentries> must be 16 or 32\n");
3307                 return ERROR_COMMAND_ARGUMENT_INVALID;
3308         }
3309
3310         xtensa->core_config->mmu.enabled = true;
3311         xtensa->core_config->mmu.itlb_entries_count = nirefillentries;
3312         xtensa->core_config->mmu.dtlb_entries_count = ndrefillentries;
3313         return ERROR_OK;
3314 }
3315
3316 COMMAND_HANDLER(xtensa_cmd_xtmmu)
3317 {
3318         return CALL_COMMAND_HANDLER(xtensa_cmd_xtmmu_do,
3319                 target_to_xtensa(get_current_target(CMD_CTX)));
3320 }
3321
3322 /* xtregs <numregs>
3323  * xtreg <regname> <regnum> */
3324 COMMAND_HELPER(xtensa_cmd_xtreg_do, struct xtensa *xtensa)
3325 {
3326         if (CMD_ARGC == 1) {
3327                 int32_t numregs = strtoul(CMD_ARGV[0], NULL, 0);
3328                 if ((numregs <= 0) || (numregs > UINT16_MAX)) {
3329                         LOG_ERROR("xtreg <numregs>: Invalid 'numregs' (%d)", numregs);
3330                         return ERROR_COMMAND_SYNTAX_ERROR;
3331                 }
3332                 if ((xtensa->genpkt_regs_num > 0) && (numregs < (int32_t)xtensa->genpkt_regs_num)) {
3333                         LOG_ERROR("xtregs (%d) must be larger than numgenregs (%d) (if xtregfmt specified)",
3334                                 numregs, xtensa->genpkt_regs_num);
3335                         return ERROR_COMMAND_SYNTAX_ERROR;
3336                 }
3337                 xtensa->total_regs_num = numregs;
3338                 xtensa->core_regs_num = 0;
3339                 xtensa->num_optregs = 0;
3340                 /* A little more memory than required, but saves a second initialization pass */
3341                 xtensa->optregs = calloc(xtensa->total_regs_num, sizeof(struct xtensa_reg_desc));
3342                 if (!xtensa->optregs) {
3343                         LOG_ERROR("Failed to allocate xtensa->optregs!");
3344                         return ERROR_FAIL;
3345                 }
3346                 return ERROR_OK;
3347         } else if (CMD_ARGC != 2)
3348                 return ERROR_COMMAND_SYNTAX_ERROR;
3349
3350         /* "xtregfmt contiguous" must be specified prior to the first "xtreg" definition
3351          * if general register (g-packet) requests or contiguous register maps are supported */
3352         if (xtensa->regmap_contiguous && !xtensa->contiguous_regs_desc) {
3353                 xtensa->contiguous_regs_desc = calloc(xtensa->total_regs_num, sizeof(struct xtensa_reg_desc *));
3354                 if (!xtensa->contiguous_regs_desc) {
3355                         LOG_ERROR("Failed to allocate xtensa->contiguous_regs_desc!");
3356                         return ERROR_FAIL;
3357                 }
3358         }
3359
3360         const char *regname = CMD_ARGV[0];
3361         unsigned int regnum = strtoul(CMD_ARGV[1], NULL, 0);
3362         if (regnum > UINT16_MAX) {
3363                 LOG_ERROR("<regnum> must be a 16-bit number");
3364                 return ERROR_COMMAND_ARGUMENT_INVALID;
3365         }
3366
3367         if ((xtensa->num_optregs + xtensa->core_regs_num) >= xtensa->total_regs_num) {
3368                 if (xtensa->total_regs_num)
3369                         LOG_ERROR("'xtreg %s 0x%04x': Too many registers (%d expected, %d core %d extended)",
3370                                 regname, regnum,
3371                                 xtensa->total_regs_num, xtensa->core_regs_num, xtensa->num_optregs);
3372                 else
3373                         LOG_ERROR("'xtreg %s 0x%04x': Number of registers unspecified",
3374                                 regname, regnum);
3375                 return ERROR_FAIL;
3376         }
3377
3378         /* Determine whether register belongs in xtensa_regs[] or xtensa->xtensa_spec_regs[] */
3379         struct xtensa_reg_desc *rptr = &xtensa->optregs[xtensa->num_optregs];
3380         bool is_extended_reg = true;
3381         unsigned int ridx;
3382         for (ridx = 0; ridx < XT_NUM_REGS; ridx++) {
3383                 if (strcmp(CMD_ARGV[0], xtensa_regs[ridx].name) == 0) {
3384                         /* Flag core register as defined */
3385                         rptr = &xtensa_regs[ridx];
3386                         xtensa->core_regs_num++;
3387                         is_extended_reg = false;
3388                         break;
3389                 }
3390         }
3391
3392         rptr->exist = true;
3393         if (is_extended_reg) {
3394                 /* Register ID, debugger-visible register ID */
3395                 rptr->name = strdup(CMD_ARGV[0]);
3396                 rptr->dbreg_num = regnum;
3397                 rptr->reg_num = (regnum & XT_REG_INDEX_MASK);
3398                 xtensa->num_optregs++;
3399
3400                 /* Register type */
3401                 if ((regnum & XT_REG_GENERAL_MASK) == XT_REG_GENERAL_VAL) {
3402                         rptr->type = XT_REG_GENERAL;
3403                 } else if ((regnum & XT_REG_USER_MASK) == XT_REG_USER_VAL) {
3404                         rptr->type = XT_REG_USER;
3405                 } else if ((regnum & XT_REG_FR_MASK) == XT_REG_FR_VAL) {
3406                         rptr->type = XT_REG_FR;
3407                 } else if ((regnum & XT_REG_SPECIAL_MASK) == XT_REG_SPECIAL_VAL) {
3408                         rptr->type = XT_REG_SPECIAL;
3409                 } else if ((regnum & XT_REG_RELGEN_MASK) == XT_REG_RELGEN_VAL) {
3410                         /* WARNING: For these registers, regnum points to the
3411                          * index of the corresponding ARx registers, NOT to
3412                          * the processor register number! */
3413                         rptr->type = XT_REG_RELGEN;
3414                         rptr->reg_num += XT_REG_IDX_ARFIRST;
3415                         rptr->dbreg_num += XT_REG_IDX_ARFIRST;
3416                 } else if ((regnum & XT_REG_TIE_MASK) != 0) {
3417                         rptr->type = XT_REG_TIE;
3418                 } else {
3419                         rptr->type = XT_REG_OTHER;
3420                 }
3421
3422                 /* Register flags */
3423                 if ((strcmp(rptr->name, "mmid") == 0) || (strcmp(rptr->name, "eraccess") == 0) ||
3424                         (strcmp(rptr->name, "ddr") == 0) || (strcmp(rptr->name, "intset") == 0) ||
3425                         (strcmp(rptr->name, "intclear") == 0))
3426                         rptr->flags = XT_REGF_NOREAD;
3427                 else
3428                         rptr->flags = 0;
3429
3430                 if ((rptr->reg_num == (XT_PS_REG_NUM_BASE + xtensa->core_config->debug.irq_level)) &&
3431                         (xtensa->core_config->core_type == XT_LX) && (rptr->type == XT_REG_SPECIAL)) {
3432                         xtensa->eps_dbglevel_idx = XT_NUM_REGS + xtensa->num_optregs - 1;
3433                         LOG_DEBUG("Setting PS (%s) index to %d", rptr->name, xtensa->eps_dbglevel_idx);
3434                 }
3435         } else if (strcmp(rptr->name, "cpenable") == 0) {
3436                 xtensa->core_config->coproc = true;
3437         }
3438
3439         /* Build out list of contiguous registers in specified order */
3440         unsigned int running_reg_count = xtensa->num_optregs + xtensa->core_regs_num;
3441         if (xtensa->contiguous_regs_desc) {
3442                 assert((running_reg_count <= xtensa->total_regs_num) && "contiguous register address internal error!");
3443                 xtensa->contiguous_regs_desc[running_reg_count - 1] = rptr;
3444         }
3445         if (xtensa_extra_debug_log)
3446                 LOG_DEBUG("Added %s register %-16s: 0x%04x/0x%02x t%d (%d of %d)",
3447                         is_extended_reg ? "config-specific" : "core",
3448                         rptr->name, rptr->dbreg_num, rptr->reg_num, rptr->type,
3449                         is_extended_reg ? xtensa->num_optregs : ridx,
3450                         is_extended_reg ? xtensa->total_regs_num : XT_NUM_REGS);
3451         return ERROR_OK;
3452 }
3453
3454 COMMAND_HANDLER(xtensa_cmd_xtreg)
3455 {
3456         return CALL_COMMAND_HANDLER(xtensa_cmd_xtreg_do,
3457                 target_to_xtensa(get_current_target(CMD_CTX)));
3458 }
3459
3460 /* xtregfmt <contiguous|sparse> [numgregs] */
3461 COMMAND_HELPER(xtensa_cmd_xtregfmt_do, struct xtensa *xtensa)
3462 {
3463         if ((CMD_ARGC == 1) || (CMD_ARGC == 2)) {
3464                 if (!strcasecmp(CMD_ARGV[0], "sparse")) {
3465                         return ERROR_OK;
3466                 } else if (!strcasecmp(CMD_ARGV[0], "contiguous")) {
3467                         xtensa->regmap_contiguous = true;
3468                         if (CMD_ARGC == 2) {
3469                                 unsigned int numgregs = strtoul(CMD_ARGV[1], NULL, 0);
3470                                 if ((numgregs <= 0) ||
3471                                         ((numgregs > xtensa->total_regs_num) &&
3472                                                 (xtensa->total_regs_num > 0))) {
3473                                         LOG_ERROR("xtregfmt: if specified, numgregs (%d) must be <= numregs (%d)",
3474                                                 numgregs, xtensa->total_regs_num);
3475                                         return ERROR_COMMAND_SYNTAX_ERROR;
3476                                 }
3477                                 xtensa->genpkt_regs_num = numgregs;
3478                         }
3479                         return ERROR_OK;
3480                 }
3481         }
3482         return ERROR_COMMAND_SYNTAX_ERROR;
3483 }
3484
3485 COMMAND_HANDLER(xtensa_cmd_xtregfmt)
3486 {
3487         return CALL_COMMAND_HANDLER(xtensa_cmd_xtregfmt_do,
3488                 target_to_xtensa(get_current_target(CMD_CTX)));
3489 }
3490
3491 COMMAND_HELPER(xtensa_cmd_permissive_mode_do, struct xtensa *xtensa)
3492 {
3493         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
3494                 &xtensa->permissive_mode, "xtensa permissive mode");
3495 }
3496
3497 COMMAND_HANDLER(xtensa_cmd_permissive_mode)
3498 {
3499         return CALL_COMMAND_HANDLER(xtensa_cmd_permissive_mode_do,
3500                 target_to_xtensa(get_current_target(CMD_CTX)));
3501 }
3502
3503 /* perfmon_enable <counter_id> <select> [mask] [kernelcnt] [tracelevel] */
3504 COMMAND_HELPER(xtensa_cmd_perfmon_enable_do, struct xtensa *xtensa)
3505 {
3506         struct xtensa_perfmon_config config = {
3507                 .mask = 0xffff,
3508                 .kernelcnt = 0,
3509                 .tracelevel = -1        /* use DEBUGLEVEL by default */
3510         };
3511
3512         if (CMD_ARGC < 2 || CMD_ARGC > 6)
3513                 return ERROR_COMMAND_SYNTAX_ERROR;
3514
3515         unsigned int counter_id = strtoul(CMD_ARGV[0], NULL, 0);
3516         if (counter_id >= XTENSA_MAX_PERF_COUNTERS) {
3517                 command_print(CMD, "counter_id should be < %d", XTENSA_MAX_PERF_COUNTERS);
3518                 return ERROR_COMMAND_ARGUMENT_INVALID;
3519         }
3520
3521         config.select = strtoul(CMD_ARGV[1], NULL, 0);
3522         if (config.select > XTENSA_MAX_PERF_SELECT) {
3523                 command_print(CMD, "select should be < %d", XTENSA_MAX_PERF_SELECT);
3524                 return ERROR_COMMAND_ARGUMENT_INVALID;
3525         }
3526
3527         if (CMD_ARGC >= 3) {
3528                 config.mask = strtoul(CMD_ARGV[2], NULL, 0);
3529                 if (config.mask > XTENSA_MAX_PERF_MASK) {
3530                         command_print(CMD, "mask should be < %d", XTENSA_MAX_PERF_MASK);
3531                         return ERROR_COMMAND_ARGUMENT_INVALID;
3532                 }
3533         }
3534
3535         if (CMD_ARGC >= 4) {
3536                 config.kernelcnt = strtoul(CMD_ARGV[3], NULL, 0);
3537                 if (config.kernelcnt > 1) {
3538                         command_print(CMD, "kernelcnt should be 0 or 1");
3539                         return ERROR_COMMAND_ARGUMENT_INVALID;
3540                 }
3541         }
3542
3543         if (CMD_ARGC >= 5) {
3544                 config.tracelevel = strtoul(CMD_ARGV[4], NULL, 0);
3545                 if (config.tracelevel > 7) {
3546                         command_print(CMD, "tracelevel should be <=7");
3547                         return ERROR_COMMAND_ARGUMENT_INVALID;
3548                 }
3549         }
3550
3551         if (config.tracelevel == -1)
3552                 config.tracelevel = xtensa->core_config->debug.irq_level;
3553
3554         return xtensa_dm_perfmon_enable(&xtensa->dbg_mod, counter_id, &config);
3555 }
3556
3557 COMMAND_HANDLER(xtensa_cmd_perfmon_enable)
3558 {
3559         return CALL_COMMAND_HANDLER(xtensa_cmd_perfmon_enable_do,
3560                 target_to_xtensa(get_current_target(CMD_CTX)));
3561 }
3562
3563 /* perfmon_dump [counter_id] */
3564 COMMAND_HELPER(xtensa_cmd_perfmon_dump_do, struct xtensa *xtensa)
3565 {
3566         if (CMD_ARGC > 1)
3567                 return ERROR_COMMAND_SYNTAX_ERROR;
3568
3569         int counter_id = -1;
3570         if (CMD_ARGC == 1) {
3571                 counter_id = strtol(CMD_ARGV[0], NULL, 0);
3572                 if (counter_id > XTENSA_MAX_PERF_COUNTERS) {
3573                         command_print(CMD, "counter_id should be < %d", XTENSA_MAX_PERF_COUNTERS);
3574                         return ERROR_COMMAND_ARGUMENT_INVALID;
3575                 }
3576         }
3577
3578         unsigned int counter_start = (counter_id < 0) ? 0 : counter_id;
3579         unsigned int counter_end = (counter_id < 0) ? XTENSA_MAX_PERF_COUNTERS : counter_id + 1;
3580         for (unsigned int counter = counter_start; counter < counter_end; ++counter) {
3581                 char result_buf[128] = { 0 };
3582                 size_t result_pos = snprintf(result_buf, sizeof(result_buf), "Counter %d: ", counter);
3583                 struct xtensa_perfmon_result result;
3584                 int res = xtensa_dm_perfmon_dump(&xtensa->dbg_mod, counter, &result);
3585                 if (res != ERROR_OK)
3586                         return res;
3587                 snprintf(result_buf + result_pos, sizeof(result_buf) - result_pos,
3588                         "%-12" PRIu64 "%s",
3589                         result.value,
3590                         result.overflow ? " (overflow)" : "");
3591                 LOG_INFO("%s", result_buf);
3592         }
3593
3594         return ERROR_OK;
3595 }
3596
3597 COMMAND_HANDLER(xtensa_cmd_perfmon_dump)
3598 {
3599         return CALL_COMMAND_HANDLER(xtensa_cmd_perfmon_dump_do,
3600                 target_to_xtensa(get_current_target(CMD_CTX)));
3601 }
3602
3603 COMMAND_HELPER(xtensa_cmd_mask_interrupts_do, struct xtensa *xtensa)
3604 {
3605         int state = -1;
3606
3607         if (CMD_ARGC < 1) {
3608                 const char *st;
3609                 state = xtensa->stepping_isr_mode;
3610                 if (state == XT_STEPPING_ISR_ON)
3611                         st = "OFF";
3612                 else if (state == XT_STEPPING_ISR_OFF)
3613                         st = "ON";
3614                 else
3615                         st = "UNKNOWN";
3616                 command_print(CMD, "Current ISR step mode: %s", st);
3617                 return ERROR_OK;
3618         }
3619         /* Masking is ON -> interrupts during stepping are OFF, and vice versa */
3620         if (!strcasecmp(CMD_ARGV[0], "off"))
3621                 state = XT_STEPPING_ISR_ON;
3622         else if (!strcasecmp(CMD_ARGV[0], "on"))
3623                 state = XT_STEPPING_ISR_OFF;
3624
3625         if (state == -1) {
3626                 command_print(CMD, "Argument unknown. Please pick one of ON, OFF");
3627                 return ERROR_FAIL;
3628         }
3629         xtensa->stepping_isr_mode = state;
3630         return ERROR_OK;
3631 }
3632
3633 COMMAND_HANDLER(xtensa_cmd_mask_interrupts)
3634 {
3635         return CALL_COMMAND_HANDLER(xtensa_cmd_mask_interrupts_do,
3636                 target_to_xtensa(get_current_target(CMD_CTX)));
3637 }
3638
3639 COMMAND_HELPER(xtensa_cmd_smpbreak_do, struct target *target)
3640 {
3641         int res;
3642         uint32_t val = 0;
3643
3644         if (CMD_ARGC >= 1) {
3645                 for (unsigned int i = 0; i < CMD_ARGC; i++) {
3646                         if (!strcasecmp(CMD_ARGV[0], "none")) {
3647                                 val = 0;
3648                         } else if (!strcasecmp(CMD_ARGV[i], "BreakIn")) {
3649                                 val |= OCDDCR_BREAKINEN;
3650                         } else if (!strcasecmp(CMD_ARGV[i], "BreakOut")) {
3651                                 val |= OCDDCR_BREAKOUTEN;
3652                         } else if (!strcasecmp(CMD_ARGV[i], "RunStallIn")) {
3653                                 val |= OCDDCR_RUNSTALLINEN;
3654                         } else if (!strcasecmp(CMD_ARGV[i], "DebugModeOut")) {
3655                                 val |= OCDDCR_DEBUGMODEOUTEN;
3656                         } else if (!strcasecmp(CMD_ARGV[i], "BreakInOut")) {
3657                                 val |= OCDDCR_BREAKINEN | OCDDCR_BREAKOUTEN;
3658                         } else if (!strcasecmp(CMD_ARGV[i], "RunStall")) {
3659                                 val |= OCDDCR_RUNSTALLINEN | OCDDCR_DEBUGMODEOUTEN;
3660                         } else {
3661                                 command_print(CMD, "Unknown arg %s", CMD_ARGV[i]);
3662                                 command_print(
3663                                         CMD,
3664                                         "use either BreakInOut, None or RunStall as arguments, or any combination of BreakIn, BreakOut, RunStallIn and DebugModeOut.");
3665                                 return ERROR_OK;
3666                         }
3667                 }
3668                 res = xtensa_smpbreak_set(target, val);
3669                 if (res != ERROR_OK)
3670                         command_print(CMD, "Failed to set smpbreak config %d", res);
3671         } else {
3672                 struct xtensa *xtensa = target_to_xtensa(target);
3673                 res = xtensa_smpbreak_read(xtensa, &val);
3674                 if (res == ERROR_OK)
3675                         command_print(CMD, "Current bits set:%s%s%s%s",
3676                                 (val & OCDDCR_BREAKINEN) ? " BreakIn" : "",
3677                                 (val & OCDDCR_BREAKOUTEN) ? " BreakOut" : "",
3678                                 (val & OCDDCR_RUNSTALLINEN) ? " RunStallIn" : "",
3679                                 (val & OCDDCR_DEBUGMODEOUTEN) ? " DebugModeOut" : ""
3680                                 );
3681                 else
3682                         command_print(CMD, "Failed to get smpbreak config %d", res);
3683         }
3684         return res;
3685 }
3686
3687 COMMAND_HANDLER(xtensa_cmd_smpbreak)
3688 {
3689         return CALL_COMMAND_HANDLER(xtensa_cmd_smpbreak_do,
3690                 get_current_target(CMD_CTX));
3691 }
3692
3693 COMMAND_HELPER(xtensa_cmd_tracestart_do, struct xtensa *xtensa)
3694 {
3695         struct xtensa_trace_status trace_status;
3696         struct xtensa_trace_start_config cfg = {
3697                 .stoppc = 0,
3698                 .stopmask = XTENSA_STOPMASK_DISABLED,
3699                 .after = 0,
3700                 .after_is_words = false
3701         };
3702
3703         /* Parse arguments */
3704         for (unsigned int i = 0; i < CMD_ARGC; i++) {
3705                 if ((!strcasecmp(CMD_ARGV[i], "pc")) && CMD_ARGC > i) {
3706                         char *e;
3707                         i++;
3708                         cfg.stoppc = strtol(CMD_ARGV[i], &e, 0);
3709                         cfg.stopmask = 0;
3710                         if (*e == '/')
3711                                 cfg.stopmask = strtol(e, NULL, 0);
3712                 } else if ((!strcasecmp(CMD_ARGV[i], "after")) && CMD_ARGC > i) {
3713                         i++;
3714                         cfg.after = strtol(CMD_ARGV[i], NULL, 0);
3715                 } else if (!strcasecmp(CMD_ARGV[i], "ins")) {
3716                         cfg.after_is_words = 0;
3717                 } else if (!strcasecmp(CMD_ARGV[i], "words")) {
3718                         cfg.after_is_words = 1;
3719                 } else {
3720                         command_print(CMD, "Did not understand %s", CMD_ARGV[i]);
3721                         return ERROR_FAIL;
3722                 }
3723         }
3724
3725         int res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
3726         if (res != ERROR_OK)
3727                 return res;
3728         if (trace_status.stat & TRAXSTAT_TRACT) {
3729                 LOG_WARNING("Silently stop active tracing!");
3730                 res = xtensa_dm_trace_stop(&xtensa->dbg_mod, false);
3731                 if (res != ERROR_OK)
3732                         return res;
3733         }
3734
3735         res = xtensa_dm_trace_start(&xtensa->dbg_mod, &cfg);
3736         if (res != ERROR_OK)
3737                 return res;
3738
3739         xtensa->trace_active = true;
3740         command_print(CMD, "Trace started.");
3741         return ERROR_OK;
3742 }
3743
3744 COMMAND_HANDLER(xtensa_cmd_tracestart)
3745 {
3746         return CALL_COMMAND_HANDLER(xtensa_cmd_tracestart_do,
3747                 target_to_xtensa(get_current_target(CMD_CTX)));
3748 }
3749
3750 COMMAND_HELPER(xtensa_cmd_tracestop_do, struct xtensa *xtensa)
3751 {
3752         struct xtensa_trace_status trace_status;
3753
3754         int res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
3755         if (res != ERROR_OK)
3756                 return res;
3757
3758         if (!(trace_status.stat & TRAXSTAT_TRACT)) {
3759                 command_print(CMD, "No trace is currently active.");
3760                 return ERROR_FAIL;
3761         }
3762
3763         res = xtensa_dm_trace_stop(&xtensa->dbg_mod, true);
3764         if (res != ERROR_OK)
3765                 return res;
3766
3767         xtensa->trace_active = false;
3768         command_print(CMD, "Trace stop triggered.");
3769         return ERROR_OK;
3770 }
3771
3772 COMMAND_HANDLER(xtensa_cmd_tracestop)
3773 {
3774         return CALL_COMMAND_HANDLER(xtensa_cmd_tracestop_do,
3775                 target_to_xtensa(get_current_target(CMD_CTX)));
3776 }
3777
3778 COMMAND_HELPER(xtensa_cmd_tracedump_do, struct xtensa *xtensa, const char *fname)
3779 {
3780         struct xtensa_trace_config trace_config;
3781         struct xtensa_trace_status trace_status;
3782         uint32_t memsz, wmem;
3783
3784         int res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
3785         if (res != ERROR_OK)
3786                 return res;
3787
3788         if (trace_status.stat & TRAXSTAT_TRACT) {
3789                 command_print(CMD, "Tracing is still active. Please stop it first.");
3790                 return ERROR_FAIL;
3791         }
3792
3793         res = xtensa_dm_trace_config_read(&xtensa->dbg_mod, &trace_config);
3794         if (res != ERROR_OK)
3795                 return res;
3796
3797         if (!(trace_config.ctrl & TRAXCTRL_TREN)) {
3798                 command_print(CMD, "No active trace found; nothing to dump.");
3799                 return ERROR_FAIL;
3800         }
3801
3802         memsz = trace_config.memaddr_end - trace_config.memaddr_start + 1;
3803         LOG_INFO("Total trace memory: %d words", memsz);
3804         if ((trace_config.addr &
3805                         ((TRAXADDR_TWRAP_MASK << TRAXADDR_TWRAP_SHIFT) | TRAXADDR_TWSAT)) == 0) {
3806                 /*Memory hasn't overwritten itself yet. */
3807                 wmem = trace_config.addr & TRAXADDR_TADDR_MASK;
3808                 LOG_INFO("...but trace is only %d words", wmem);
3809                 if (wmem < memsz)
3810                         memsz = wmem;
3811         } else {
3812                 if (trace_config.addr & TRAXADDR_TWSAT) {
3813                         LOG_INFO("Real trace is many times longer than that (overflow)");
3814                 } else {
3815                         uint32_t trc_sz = (trace_config.addr >> TRAXADDR_TWRAP_SHIFT) & TRAXADDR_TWRAP_MASK;
3816                         trc_sz = (trc_sz * memsz) + (trace_config.addr & TRAXADDR_TADDR_MASK);
3817                         LOG_INFO("Real trace is %d words, but the start has been truncated.", trc_sz);
3818                 }
3819         }
3820
3821         uint8_t *tracemem = malloc(memsz * 4);
3822         if (!tracemem) {
3823                 command_print(CMD, "Failed to alloc memory for trace data!");
3824                 return ERROR_FAIL;
3825         }
3826         res = xtensa_dm_trace_data_read(&xtensa->dbg_mod, tracemem, memsz * 4);
3827         if (res != ERROR_OK) {
3828                 free(tracemem);
3829                 return res;
3830         }
3831
3832         int f = open(fname, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3833         if (f <= 0) {
3834                 free(tracemem);
3835                 command_print(CMD, "Unable to open file %s", fname);
3836                 return ERROR_FAIL;
3837         }
3838         if (write(f, tracemem, memsz * 4) != (int)memsz * 4)
3839                 command_print(CMD, "Unable to write to file %s", fname);
3840         else
3841                 command_print(CMD, "Written %d bytes of trace data to %s", memsz * 4, fname);
3842         close(f);
3843
3844         bool is_all_zeroes = true;
3845         for (unsigned int i = 0; i < memsz * 4; i++) {
3846                 if (tracemem[i] != 0) {
3847                         is_all_zeroes = false;
3848                         break;
3849                 }
3850         }
3851         free(tracemem);
3852         if (is_all_zeroes)
3853                 command_print(
3854                         CMD,
3855                         "WARNING: File written is all zeroes. Are you sure you enabled trace memory?");
3856
3857         return ERROR_OK;
3858 }
3859
3860 COMMAND_HANDLER(xtensa_cmd_tracedump)
3861 {
3862         if (CMD_ARGC != 1) {
3863                 command_print(CMD, "Command takes exactly 1 parameter.Need filename to dump to as output!");
3864                 return ERROR_FAIL;
3865         }
3866
3867         return CALL_COMMAND_HANDLER(xtensa_cmd_tracedump_do,
3868                 target_to_xtensa(get_current_target(CMD_CTX)), CMD_ARGV[0]);
3869 }
3870
3871 static const struct command_registration xtensa_any_command_handlers[] = {
3872         {
3873                 .name = "xtdef",
3874                 .handler = xtensa_cmd_xtdef,
3875                 .mode = COMMAND_CONFIG,
3876                 .help = "Configure Xtensa core type",
3877                 .usage = "<type>",
3878         },
3879         {
3880                 .name = "xtopt",
3881                 .handler = xtensa_cmd_xtopt,
3882                 .mode = COMMAND_CONFIG,
3883                 .help = "Configure Xtensa core option",
3884                 .usage = "<name> <value>",
3885         },
3886         {
3887                 .name = "xtmem",
3888                 .handler = xtensa_cmd_xtmem,
3889                 .mode = COMMAND_CONFIG,
3890                 .help = "Configure Xtensa memory/cache option",
3891                 .usage = "<type> [parameters]",
3892         },
3893         {
3894                 .name = "xtmmu",
3895                 .handler = xtensa_cmd_xtmmu,
3896                 .mode = COMMAND_CONFIG,
3897                 .help = "Configure Xtensa MMU option",
3898                 .usage = "<NIREFILLENTRIES> <NDREFILLENTRIES> <IVARWAY56> <DVARWAY56>",
3899         },
3900         {
3901                 .name = "xtmpu",
3902                 .handler = xtensa_cmd_xtmpu,
3903                 .mode = COMMAND_CONFIG,
3904                 .help = "Configure Xtensa MPU option",
3905                 .usage = "<num FG seg> <min seg size> <lockable> <executeonly>",
3906         },
3907         {
3908                 .name = "xtreg",
3909                 .handler = xtensa_cmd_xtreg,
3910                 .mode = COMMAND_CONFIG,
3911                 .help = "Configure Xtensa register",
3912                 .usage = "<regname> <regnum>",
3913         },
3914         {
3915                 .name = "xtregs",
3916                 .handler = xtensa_cmd_xtreg,
3917                 .mode = COMMAND_CONFIG,
3918                 .help = "Configure number of Xtensa registers",
3919                 .usage = "<numregs>",
3920         },
3921         {
3922                 .name = "xtregfmt",
3923                 .handler = xtensa_cmd_xtregfmt,
3924                 .mode = COMMAND_CONFIG,
3925                 .help = "Configure format of Xtensa register map",
3926                 .usage = "<contiguous|sparse> [numgregs]",
3927         },
3928         {
3929                 .name = "set_permissive",
3930                 .handler = xtensa_cmd_permissive_mode,
3931                 .mode = COMMAND_ANY,
3932                 .help = "When set to 1, enable Xtensa permissive mode (fewer client-side checks)",
3933                 .usage = "[0|1]",
3934         },
3935         {
3936                 .name = "maskisr",
3937                 .handler = xtensa_cmd_mask_interrupts,
3938                 .mode = COMMAND_ANY,
3939                 .help = "mask Xtensa interrupts at step",
3940                 .usage = "['on'|'off']",
3941         },
3942         {
3943                 .name = "smpbreak",
3944                 .handler = xtensa_cmd_smpbreak,
3945                 .mode = COMMAND_ANY,
3946                 .help = "Set the way the CPU chains OCD breaks",
3947                 .usage = "[none|breakinout|runstall] | [BreakIn] [BreakOut] [RunStallIn] [DebugModeOut]",
3948         },
3949         {
3950                 .name = "perfmon_enable",
3951                 .handler = xtensa_cmd_perfmon_enable,
3952                 .mode = COMMAND_EXEC,
3953                 .help = "Enable and start performance counter",
3954                 .usage = "<counter_id> <select> [mask] [kernelcnt] [tracelevel]",
3955         },
3956         {
3957                 .name = "perfmon_dump",
3958                 .handler = xtensa_cmd_perfmon_dump,
3959                 .mode = COMMAND_EXEC,
3960                 .help = "Dump performance counter value. If no argument specified, dumps all counters.",
3961                 .usage = "[counter_id]",
3962         },
3963         {
3964                 .name = "tracestart",
3965                 .handler = xtensa_cmd_tracestart,
3966                 .mode = COMMAND_EXEC,
3967                 .help =
3968                         "Tracing: Set up and start a trace. Optionally set stop trigger address and amount of data captured after.",
3969                 .usage = "[pc <pcval>/[maskbitcount]] [after <n> [ins|words]]",
3970         },
3971         {
3972                 .name = "tracestop",
3973                 .handler = xtensa_cmd_tracestop,
3974                 .mode = COMMAND_EXEC,
3975                 .help = "Tracing: Stop current trace as started by the tracestart command",
3976                 .usage = "",
3977         },
3978         {
3979                 .name = "tracedump",
3980                 .handler = xtensa_cmd_tracedump,
3981                 .mode = COMMAND_EXEC,
3982                 .help = "Tracing: Dump trace memory to a files. One file per core.",
3983                 .usage = "<outfile>",
3984         },
3985         {
3986                 .name = "exe",
3987                 .handler = xtensa_cmd_exe,
3988                 .mode = COMMAND_ANY,
3989                 .help = "Xtensa stub execution",
3990                 .usage = "<ascii-encoded hexadecimal instruction bytes>",
3991         },
3992         COMMAND_REGISTRATION_DONE
3993 };
3994
3995 const struct command_registration xtensa_command_handlers[] = {
3996         {
3997                 .name = "xtensa",
3998                 .mode = COMMAND_ANY,
3999                 .help = "Xtensa command group",
4000                 .usage = "",
4001                 .chain = xtensa_any_command_handlers,
4002         },
4003         COMMAND_REGISTRATION_DONE
4004 };