0c975a4ea6e043e729f53d6725878d0b968e0f05
[fw/openocd] / src / target / xtensa / xtensa.c
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2
3 /***************************************************************************
4  *   Generic Xtensa target API for OpenOCD                                 *
5  *   Copyright (C) 2020-2022 Cadence Design Systems, Inc.                  *
6  *   Copyright (C) 2016-2019 Espressif Systems Ltd.                        *
7  *   Derived from esp108.c                                                 *
8  *   Author: Angus Gratton gus@projectgus.com                              *
9  ***************************************************************************/
10
11 #ifdef HAVE_CONFIG_H
12 #include "config.h"
13 #endif
14
15 #include <stdlib.h>
16 #include <helper/time_support.h>
17 #include <helper/align.h>
18 #include <target/register.h>
19
20 #include "xtensa_chip.h"
21 #include "xtensa.h"
22
23 /* Swap 4-bit Xtensa opcodes and fields */
24 #define XT_NIBSWAP8(V)                                                                  \
25         ((((V) & 0x0F) << 4)                                                            \
26                 | (((V) & 0xF0) >> 4))
27
28 #define XT_NIBSWAP16(V)                                                                 \
29         ((((V) & 0x000F) << 12)                                                         \
30                 | (((V) & 0x00F0) << 4)                                                 \
31                 | (((V) & 0x0F00) >> 4)                                                 \
32                 | (((V) & 0xF000) >> 12))
33
34 #define XT_NIBSWAP24(V)                                                                 \
35         ((((V) & 0x00000F) << 20)                                                       \
36                 | (((V) & 0x0000F0) << 12)                                              \
37                 | (((V) & 0x000F00) << 4)                                               \
38                 | (((V) & 0x00F000) >> 4)                                               \
39                 | (((V) & 0x0F0000) >> 12)                                              \
40                 | (((V) & 0xF00000) >> 20))
41
42 /* _XT_INS_FORMAT_*()
43  * Instruction formatting converted from little-endian inputs
44  * and shifted to the MSB-side of DIR for BE systems.
45  */
46 #define _XT_INS_FORMAT_RSR(X, OPCODE, SR, T)                    \
47         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
48                         | (((T) & 0x0F) << 16)                                          \
49                         | (((SR) & 0xFF) << 8)) << 8                            \
50                 : (OPCODE)                                                                              \
51                 | (((SR) & 0xFF) << 8)                                                  \
52                 | (((T) & 0x0F) << 4))
53
54 #define _XT_INS_FORMAT_RRR(X, OPCODE, ST, R)                    \
55         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
56                         | ((XT_NIBSWAP8((ST) & 0xFF)) << 12)            \
57                         | (((R) & 0x0F) << 8)) << 8                                     \
58                 : (OPCODE)                                                                              \
59                 | (((ST) & 0xFF) << 4)                                                  \
60                 | (((R) & 0x0F) << 12))
61
62 #define _XT_INS_FORMAT_RRRN(X, OPCODE, S, T, IMM4)              \
63         (XT_ISBE(X) ? (XT_NIBSWAP16(OPCODE)                                     \
64                         | (((T) & 0x0F) << 8)                                           \
65                         | (((S) & 0x0F) << 4)                                           \
66                         | ((IMM4) & 0x0F)) << 16                                        \
67                 : (OPCODE)                                                                              \
68                 | (((T) & 0x0F) << 4)                                                   \
69                 | (((S) & 0x0F) << 8)                                                   \
70                 | (((IMM4) & 0x0F) << 12))
71
72 #define _XT_INS_FORMAT_RRI8(X, OPCODE, R, S, T, IMM8)   \
73         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
74                         | (((T) & 0x0F) << 16)                                          \
75                         | (((S) & 0x0F) << 12)                                          \
76                         | (((R) & 0x0F) << 8)                                           \
77                         | ((IMM8) & 0xFF)) << 8                                         \
78                 : (OPCODE)                                                                              \
79                 | (((IMM8) & 0xFF) << 16)                                               \
80                 | (((R) & 0x0F) << 12)                                                  \
81                 | (((S) & 0x0F) << 8)                                                   \
82                 | (((T) & 0x0F) << 4))
83
84 #define _XT_INS_FORMAT_RRI4(X, OPCODE, IMM4, R, S, T)   \
85         (XT_ISBE(X) ? (XT_NIBSWAP24(OPCODE)                                     \
86                         | (((T) & 0x0F) << 16)                                          \
87                         | (((S) & 0x0F) << 12)                                          \
88                         | (((R) & 0x0F) << 8)) << 8                                     \
89                 | ((IMM4) & 0x0F)                                                               \
90                 : (OPCODE)                                                                              \
91                 | (((IMM4) & 0x0F) << 20)                                               \
92                 | (((R) & 0x0F) << 12)                                                  \
93                 | (((S) & 0x0F) << 8)                                                   \
94                 | (((T) & 0x0F) << 4))
95
96 /* Xtensa processor instruction opcodes
97 */
98 /* "Return From Debug Operation" to Normal */
99 #define XT_INS_RFDO(X) (XT_ISBE(X) ? 0x000e1f << 8 : 0xf1e000)
100 /* "Return From Debug and Dispatch" - allow sw debugging stuff to take over */
101 #define XT_INS_RFDD(X) (XT_ISBE(X) ? 0x010e1f << 8 : 0xf1e010)
102
103 /* Load to DDR register, increase addr register */
104 #define XT_INS_LDDR32P(X, S) (XT_ISBE(X) ? (0x0E0700 | ((S) << 12)) << 8 : (0x0070E0 | ((S) << 8)))
105 /* Store from DDR register, increase addr register */
106 #define XT_INS_SDDR32P(X, S) (XT_ISBE(X) ? (0x0F0700 | ((S) << 12)) << 8 : (0x0070F0 | ((S) << 8)))
107
108 /* Load 32-bit Indirect from A(S)+4*IMM8 to A(T) */
109 #define XT_INS_L32I(X, S, T, IMM8)  _XT_INS_FORMAT_RRI8(X, 0x002002, 0, S, T, IMM8)
110 /* Load 16-bit Unsigned from A(S)+2*IMM8 to A(T) */
111 #define XT_INS_L16UI(X, S, T, IMM8) _XT_INS_FORMAT_RRI8(X, 0x001002, 0, S, T, IMM8)
112 /* Load 8-bit Unsigned from A(S)+IMM8 to A(T) */
113 #define XT_INS_L8UI(X, S, T, IMM8)  _XT_INS_FORMAT_RRI8(X, 0x000002, 0, S, T, IMM8)
114
115 /* Store 32-bit Indirect to A(S)+4*IMM8 from A(T) */
116 #define XT_INS_S32I(X, S, T, IMM8) _XT_INS_FORMAT_RRI8(X, 0x006002, 0, S, T, IMM8)
117 /* Store 16-bit to A(S)+2*IMM8 from A(T) */
118 #define XT_INS_S16I(X, S, T, IMM8) _XT_INS_FORMAT_RRI8(X, 0x005002, 0, S, T, IMM8)
119 /* Store 8-bit to A(S)+IMM8 from A(T) */
120 #define XT_INS_S8I(X, S, T, IMM8)  _XT_INS_FORMAT_RRI8(X, 0x004002, 0, S, T, IMM8)
121
122 /* Cache Instructions */
123 #define XT_INS_IHI(X, S, IMM8) _XT_INS_FORMAT_RRI8(X, 0x0070E2, 0, S, 0, IMM8)
124 #define XT_INS_DHWBI(X, S, IMM8) _XT_INS_FORMAT_RRI8(X, 0x007052, 0, S, 0, IMM8)
125 #define XT_INS_DHWB(X, S, IMM8) _XT_INS_FORMAT_RRI8(X, 0x007042, 0, S, 0, IMM8)
126 #define XT_INS_ISYNC(X) (XT_ISBE(X) ? 0x000200 << 8 : 0x002000)
127
128 /* Control Instructions */
129 #define XT_INS_JX(X, S) (XT_ISBE(X) ? (0x050000 | ((S) << 12)) : (0x0000a0 | ((S) << 8)))
130 #define XT_INS_CALL0(X, IMM18) (XT_ISBE(X) ? (0x500000 | ((IMM18) & 0x3ffff)) : (0x000005 | (((IMM18) & 0x3ffff) << 6)))
131
132 /* Read Special Register */
133 #define XT_INS_RSR(X, SR, T) _XT_INS_FORMAT_RSR(X, 0x030000, SR, T)
134 /* Write Special Register */
135 #define XT_INS_WSR(X, SR, T) _XT_INS_FORMAT_RSR(X, 0x130000, SR, T)
136 /* Swap Special Register */
137 #define XT_INS_XSR(X, SR, T) _XT_INS_FORMAT_RSR(X, 0x610000, SR, T)
138
139 /* Rotate Window by (-8..7) */
140 #define XT_INS_ROTW(X, N) (XT_ISBE(X) ? ((0x000804) | (((N) & 15) << 16)) << 8 : ((0x408000) | (((N) & 15) << 4)))
141
142 /* Read User Register */
143 #define XT_INS_RUR(X, UR, T) _XT_INS_FORMAT_RRR(X, 0xE30000, UR, T)
144 /* Write User Register */
145 #define XT_INS_WUR(X, UR, T) _XT_INS_FORMAT_RSR(X, 0xF30000, UR, T)
146
147 /* Read Floating-Point Register */
148 #define XT_INS_RFR(X, FR, T) _XT_INS_FORMAT_RRR(X, 0xFA0000, ((FR << 4) | 0x4), T)
149 /* Write Floating-Point Register */
150 #define XT_INS_WFR(X, FR, T) _XT_INS_FORMAT_RRR(X, 0xFA0000, ((T << 4) | 0x5), FR)
151
152 #define XT_INS_L32E(X, R, S, T) _XT_INS_FORMAT_RRI4(X, 0x090000, 0, R, S, T)
153 #define XT_INS_S32E(X, R, S, T) _XT_INS_FORMAT_RRI4(X, 0x490000, 0, R, S, T)
154 #define XT_INS_L32E_S32E_MASK(X)   (XT_ISBE(X) ? 0xF000FF << 8 : 0xFF000F)
155
156 #define XT_INS_RFWO(X) (XT_ISBE(X) ? 0x004300 << 8 : 0x003400)
157 #define XT_INS_RFWU(X) (XT_ISBE(X) ? 0x005300 << 8 : 0x003500)
158 #define XT_INS_RFWO_RFWU_MASK(X)   (XT_ISBE(X) ? 0xFFFFFF << 8 : 0xFFFFFF)
159
160 #define XT_WATCHPOINTS_NUM_MAX  2
161
162 /* Special register number macro for DDR, PS, WB, A3, A4 registers.
163  * These get used a lot so making a shortcut is useful.
164  */
165 #define XT_SR_DDR         (xtensa_regs[XT_REG_IDX_DDR].reg_num)
166 #define XT_SR_PS          (xtensa_regs[XT_REG_IDX_PS].reg_num)
167 #define XT_SR_WB          (xtensa_regs[XT_REG_IDX_WINDOWBASE].reg_num)
168 #define XT_REG_A3         (xtensa_regs[XT_REG_IDX_AR3].reg_num)
169 #define XT_REG_A4         (xtensa_regs[XT_REG_IDX_AR4].reg_num)
170
171 #define XT_PS_REG_NUM_BASE          (0xc0U)     /* (EPS2 - 2), for adding DBGLEVEL */
172 #define XT_PC_REG_NUM_BASE          (0xb0U)     /* (EPC1 - 1), for adding DBGLEVEL */
173 #define XT_PC_REG_NUM_VIRTUAL       (0xffU)     /* Marker for computing PC (EPC[DBGLEVEL) */
174 #define XT_PC_DBREG_NUM_BASE        (0x20U)     /* External (i.e., GDB) access */
175
176 #define XT_SW_BREAKPOINTS_MAX_NUM       32
177 #define XT_HW_IBREAK_MAX_NUM            2
178 #define XT_HW_DBREAK_MAX_NUM            2
179
180 struct xtensa_reg_desc xtensa_regs[XT_NUM_REGS] = {
181         XT_MK_REG_DESC("pc", XT_PC_REG_NUM_VIRTUAL, XT_REG_SPECIAL, 0),
182         XT_MK_REG_DESC("ar0", 0x00, XT_REG_GENERAL, 0),
183         XT_MK_REG_DESC("ar1", 0x01, XT_REG_GENERAL, 0),
184         XT_MK_REG_DESC("ar2", 0x02, XT_REG_GENERAL, 0),
185         XT_MK_REG_DESC("ar3", 0x03, XT_REG_GENERAL, 0),
186         XT_MK_REG_DESC("ar4", 0x04, XT_REG_GENERAL, 0),
187         XT_MK_REG_DESC("ar5", 0x05, XT_REG_GENERAL, 0),
188         XT_MK_REG_DESC("ar6", 0x06, XT_REG_GENERAL, 0),
189         XT_MK_REG_DESC("ar7", 0x07, XT_REG_GENERAL, 0),
190         XT_MK_REG_DESC("ar8", 0x08, XT_REG_GENERAL, 0),
191         XT_MK_REG_DESC("ar9", 0x09, XT_REG_GENERAL, 0),
192         XT_MK_REG_DESC("ar10", 0x0A, XT_REG_GENERAL, 0),
193         XT_MK_REG_DESC("ar11", 0x0B, XT_REG_GENERAL, 0),
194         XT_MK_REG_DESC("ar12", 0x0C, XT_REG_GENERAL, 0),
195         XT_MK_REG_DESC("ar13", 0x0D, XT_REG_GENERAL, 0),
196         XT_MK_REG_DESC("ar14", 0x0E, XT_REG_GENERAL, 0),
197         XT_MK_REG_DESC("ar15", 0x0F, XT_REG_GENERAL, 0),
198         XT_MK_REG_DESC("ar16", 0x10, XT_REG_GENERAL, 0),
199         XT_MK_REG_DESC("ar17", 0x11, XT_REG_GENERAL, 0),
200         XT_MK_REG_DESC("ar18", 0x12, XT_REG_GENERAL, 0),
201         XT_MK_REG_DESC("ar19", 0x13, XT_REG_GENERAL, 0),
202         XT_MK_REG_DESC("ar20", 0x14, XT_REG_GENERAL, 0),
203         XT_MK_REG_DESC("ar21", 0x15, XT_REG_GENERAL, 0),
204         XT_MK_REG_DESC("ar22", 0x16, XT_REG_GENERAL, 0),
205         XT_MK_REG_DESC("ar23", 0x17, XT_REG_GENERAL, 0),
206         XT_MK_REG_DESC("ar24", 0x18, XT_REG_GENERAL, 0),
207         XT_MK_REG_DESC("ar25", 0x19, XT_REG_GENERAL, 0),
208         XT_MK_REG_DESC("ar26", 0x1A, XT_REG_GENERAL, 0),
209         XT_MK_REG_DESC("ar27", 0x1B, XT_REG_GENERAL, 0),
210         XT_MK_REG_DESC("ar28", 0x1C, XT_REG_GENERAL, 0),
211         XT_MK_REG_DESC("ar29", 0x1D, XT_REG_GENERAL, 0),
212         XT_MK_REG_DESC("ar30", 0x1E, XT_REG_GENERAL, 0),
213         XT_MK_REG_DESC("ar31", 0x1F, XT_REG_GENERAL, 0),
214         XT_MK_REG_DESC("ar32", 0x20, XT_REG_GENERAL, 0),
215         XT_MK_REG_DESC("ar33", 0x21, XT_REG_GENERAL, 0),
216         XT_MK_REG_DESC("ar34", 0x22, XT_REG_GENERAL, 0),
217         XT_MK_REG_DESC("ar35", 0x23, XT_REG_GENERAL, 0),
218         XT_MK_REG_DESC("ar36", 0x24, XT_REG_GENERAL, 0),
219         XT_MK_REG_DESC("ar37", 0x25, XT_REG_GENERAL, 0),
220         XT_MK_REG_DESC("ar38", 0x26, XT_REG_GENERAL, 0),
221         XT_MK_REG_DESC("ar39", 0x27, XT_REG_GENERAL, 0),
222         XT_MK_REG_DESC("ar40", 0x28, XT_REG_GENERAL, 0),
223         XT_MK_REG_DESC("ar41", 0x29, XT_REG_GENERAL, 0),
224         XT_MK_REG_DESC("ar42", 0x2A, XT_REG_GENERAL, 0),
225         XT_MK_REG_DESC("ar43", 0x2B, XT_REG_GENERAL, 0),
226         XT_MK_REG_DESC("ar44", 0x2C, XT_REG_GENERAL, 0),
227         XT_MK_REG_DESC("ar45", 0x2D, XT_REG_GENERAL, 0),
228         XT_MK_REG_DESC("ar46", 0x2E, XT_REG_GENERAL, 0),
229         XT_MK_REG_DESC("ar47", 0x2F, XT_REG_GENERAL, 0),
230         XT_MK_REG_DESC("ar48", 0x30, XT_REG_GENERAL, 0),
231         XT_MK_REG_DESC("ar49", 0x31, XT_REG_GENERAL, 0),
232         XT_MK_REG_DESC("ar50", 0x32, XT_REG_GENERAL, 0),
233         XT_MK_REG_DESC("ar51", 0x33, XT_REG_GENERAL, 0),
234         XT_MK_REG_DESC("ar52", 0x34, XT_REG_GENERAL, 0),
235         XT_MK_REG_DESC("ar53", 0x35, XT_REG_GENERAL, 0),
236         XT_MK_REG_DESC("ar54", 0x36, XT_REG_GENERAL, 0),
237         XT_MK_REG_DESC("ar55", 0x37, XT_REG_GENERAL, 0),
238         XT_MK_REG_DESC("ar56", 0x38, XT_REG_GENERAL, 0),
239         XT_MK_REG_DESC("ar57", 0x39, XT_REG_GENERAL, 0),
240         XT_MK_REG_DESC("ar58", 0x3A, XT_REG_GENERAL, 0),
241         XT_MK_REG_DESC("ar59", 0x3B, XT_REG_GENERAL, 0),
242         XT_MK_REG_DESC("ar60", 0x3C, XT_REG_GENERAL, 0),
243         XT_MK_REG_DESC("ar61", 0x3D, XT_REG_GENERAL, 0),
244         XT_MK_REG_DESC("ar62", 0x3E, XT_REG_GENERAL, 0),
245         XT_MK_REG_DESC("ar63", 0x3F, XT_REG_GENERAL, 0),
246         XT_MK_REG_DESC("windowbase", 0x48, XT_REG_SPECIAL, 0),
247         XT_MK_REG_DESC("windowstart", 0x49, XT_REG_SPECIAL, 0),
248         XT_MK_REG_DESC("ps", 0xE6, XT_REG_SPECIAL, 0),  /* PS (not mapped through EPS[]) */
249         XT_MK_REG_DESC("ibreakenable", 0x60, XT_REG_SPECIAL, 0),
250         XT_MK_REG_DESC("ddr", 0x68, XT_REG_DEBUG, XT_REGF_NOREAD),
251         XT_MK_REG_DESC("ibreaka0", 0x80, XT_REG_SPECIAL, 0),
252         XT_MK_REG_DESC("ibreaka1", 0x81, XT_REG_SPECIAL, 0),
253         XT_MK_REG_DESC("dbreaka0", 0x90, XT_REG_SPECIAL, 0),
254         XT_MK_REG_DESC("dbreaka1", 0x91, XT_REG_SPECIAL, 0),
255         XT_MK_REG_DESC("dbreakc0", 0xA0, XT_REG_SPECIAL, 0),
256         XT_MK_REG_DESC("dbreakc1", 0xA1, XT_REG_SPECIAL, 0),
257         XT_MK_REG_DESC("cpenable", 0xE0, XT_REG_SPECIAL, 0),
258         XT_MK_REG_DESC("exccause", 0xE8, XT_REG_SPECIAL, 0),
259         XT_MK_REG_DESC("debugcause", 0xE9, XT_REG_SPECIAL, 0),
260         XT_MK_REG_DESC("icount", 0xEC, XT_REG_SPECIAL, 0),
261         XT_MK_REG_DESC("icountlevel", 0xED, XT_REG_SPECIAL, 0),
262
263         /* WARNING: For these registers, regnum points to the
264          * index of the corresponding ARx registers, NOT to
265          * the processor register number! */
266         XT_MK_REG_DESC("a0", XT_REG_IDX_AR0, XT_REG_RELGEN, 0),
267         XT_MK_REG_DESC("a1", XT_REG_IDX_AR1, XT_REG_RELGEN, 0),
268         XT_MK_REG_DESC("a2", XT_REG_IDX_AR2, XT_REG_RELGEN, 0),
269         XT_MK_REG_DESC("a3", XT_REG_IDX_AR3, XT_REG_RELGEN, 0),
270         XT_MK_REG_DESC("a4", XT_REG_IDX_AR4, XT_REG_RELGEN, 0),
271         XT_MK_REG_DESC("a5", XT_REG_IDX_AR5, XT_REG_RELGEN, 0),
272         XT_MK_REG_DESC("a6", XT_REG_IDX_AR6, XT_REG_RELGEN, 0),
273         XT_MK_REG_DESC("a7", XT_REG_IDX_AR7, XT_REG_RELGEN, 0),
274         XT_MK_REG_DESC("a8", XT_REG_IDX_AR8, XT_REG_RELGEN, 0),
275         XT_MK_REG_DESC("a9", XT_REG_IDX_AR9, XT_REG_RELGEN, 0),
276         XT_MK_REG_DESC("a10", XT_REG_IDX_AR10, XT_REG_RELGEN, 0),
277         XT_MK_REG_DESC("a11", XT_REG_IDX_AR11, XT_REG_RELGEN, 0),
278         XT_MK_REG_DESC("a12", XT_REG_IDX_AR12, XT_REG_RELGEN, 0),
279         XT_MK_REG_DESC("a13", XT_REG_IDX_AR13, XT_REG_RELGEN, 0),
280         XT_MK_REG_DESC("a14", XT_REG_IDX_AR14, XT_REG_RELGEN, 0),
281         XT_MK_REG_DESC("a15", XT_REG_IDX_AR15, XT_REG_RELGEN, 0),
282 };
283
284 /**
285  * Types of memory used at xtensa target
286  */
287 enum xtensa_mem_region_type {
288         XTENSA_MEM_REG_IROM = 0x0,
289         XTENSA_MEM_REG_IRAM,
290         XTENSA_MEM_REG_DROM,
291         XTENSA_MEM_REG_DRAM,
292         XTENSA_MEM_REG_SRAM,
293         XTENSA_MEM_REG_SROM,
294         XTENSA_MEM_REGS_NUM
295 };
296
297 /* Register definition as union for list allocation */
298 union xtensa_reg_val_u {
299         xtensa_reg_val_t val;
300         uint8_t buf[4];
301 };
302
303 const struct xtensa_keyval_info_s xt_qerr[XT_QERR_NUM] = {
304         { .chrval = "E00", .intval = ERROR_FAIL },
305         { .chrval = "E01", .intval = ERROR_FAIL },
306         { .chrval = "E02", .intval = ERROR_COMMAND_ARGUMENT_INVALID },
307         { .chrval = "E03", .intval = ERROR_FAIL },
308 };
309
310 /* Set to true for extra debug logging */
311 static const bool xtensa_extra_debug_log;
312
313 /**
314  * Gets a config for the specific mem type
315  */
316 static inline const struct xtensa_local_mem_config *xtensa_get_mem_config(
317         struct xtensa *xtensa,
318         enum xtensa_mem_region_type type)
319 {
320         switch (type) {
321         case XTENSA_MEM_REG_IROM:
322                 return &xtensa->core_config->irom;
323         case XTENSA_MEM_REG_IRAM:
324                 return &xtensa->core_config->iram;
325         case XTENSA_MEM_REG_DROM:
326                 return &xtensa->core_config->drom;
327         case XTENSA_MEM_REG_DRAM:
328                 return &xtensa->core_config->dram;
329         case XTENSA_MEM_REG_SRAM:
330                 return &xtensa->core_config->sram;
331         case XTENSA_MEM_REG_SROM:
332                 return &xtensa->core_config->srom;
333         default:
334                 return NULL;
335         }
336 }
337
338 /**
339  * Extracts an exact xtensa_local_mem_region_config from xtensa_local_mem_config
340  * for a given address
341  * Returns NULL if nothing found
342  */
343 static inline const struct xtensa_local_mem_region_config *xtensa_memory_region_find(
344         const struct xtensa_local_mem_config *mem,
345         target_addr_t address)
346 {
347         for (unsigned int i = 0; i < mem->count; i++) {
348                 const struct xtensa_local_mem_region_config *region = &mem->regions[i];
349                 if (address >= region->base && address < (region->base + region->size))
350                         return region;
351         }
352         return NULL;
353 }
354
355 /**
356  * Returns a corresponding xtensa_local_mem_region_config from the xtensa target
357  * for a given address
358  * Returns NULL if nothing found
359  */
360 static inline const struct xtensa_local_mem_region_config *xtensa_target_memory_region_find(
361         struct xtensa *xtensa,
362         target_addr_t address)
363 {
364         const struct xtensa_local_mem_region_config *result;
365         const struct xtensa_local_mem_config *mcgf;
366         for (unsigned int mtype = 0; mtype < XTENSA_MEM_REGS_NUM; mtype++) {
367                 mcgf = xtensa_get_mem_config(xtensa, mtype);
368                 result = xtensa_memory_region_find(mcgf, address);
369                 if (result)
370                         return result;
371         }
372         return NULL;
373 }
374
375 static inline bool xtensa_is_cacheable(const struct xtensa_cache_config *cache,
376         const struct xtensa_local_mem_config *mem,
377         target_addr_t address)
378 {
379         if (!cache->size)
380                 return false;
381         return xtensa_memory_region_find(mem, address);
382 }
383
384 static inline bool xtensa_is_icacheable(struct xtensa *xtensa, target_addr_t address)
385 {
386         return xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->iram, address) ||
387                xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->irom, address) ||
388                xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->sram, address) ||
389                xtensa_is_cacheable(&xtensa->core_config->icache, &xtensa->core_config->srom, address);
390 }
391
392 static inline bool xtensa_is_dcacheable(struct xtensa *xtensa, target_addr_t address)
393 {
394         return xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->dram, address) ||
395                xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->drom, address) ||
396                xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->sram, address) ||
397                xtensa_is_cacheable(&xtensa->core_config->dcache, &xtensa->core_config->srom, address);
398 }
399
400 static int xtensa_core_reg_get(struct reg *reg)
401 {
402         /* We don't need this because we read all registers on halt anyway. */
403         struct xtensa *xtensa = (struct xtensa *)reg->arch_info;
404         struct target *target = xtensa->target;
405
406         if (target->state != TARGET_HALTED)
407                 return ERROR_TARGET_NOT_HALTED;
408         if (!reg->exist) {
409                 if (strncmp(reg->name, "?0x", 3) == 0) {
410                         unsigned int regnum = strtoul(reg->name + 1, 0, 0);
411                         LOG_WARNING("Read unknown register 0x%04x ignored", regnum);
412                         return ERROR_OK;
413                 }
414                 return ERROR_COMMAND_ARGUMENT_INVALID;
415         }
416         return ERROR_OK;
417 }
418
419 static int xtensa_core_reg_set(struct reg *reg, uint8_t *buf)
420 {
421         struct xtensa *xtensa = (struct xtensa *)reg->arch_info;
422         struct target *target = xtensa->target;
423
424         assert(reg->size <= 64 && "up to 64-bit regs are supported only!");
425         if (target->state != TARGET_HALTED)
426                 return ERROR_TARGET_NOT_HALTED;
427
428         if (!reg->exist) {
429                 if (strncmp(reg->name, "?0x", 3) == 0) {
430                         unsigned int regnum = strtoul(reg->name + 1, 0, 0);
431                         LOG_WARNING("Write unknown register 0x%04x ignored", regnum);
432                         return ERROR_OK;
433                 }
434                 return ERROR_COMMAND_ARGUMENT_INVALID;
435         }
436
437         buf_cpy(buf, reg->value, reg->size);
438
439         if (xtensa->core_config->windowed) {
440                 /* If the user updates a potential scratch register, track for conflicts */
441                 for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++) {
442                         if (strcmp(reg->name, xtensa->scratch_ars[s].chrval) == 0) {
443                                 LOG_DEBUG("Scratch reg %s [0x%08" PRIx32 "] set from gdb", reg->name,
444                                         buf_get_u32(reg->value, 0, 32));
445                                 LOG_DEBUG("scratch_ars mapping: a3/%s, a4/%s",
446                                         xtensa->scratch_ars[XT_AR_SCRATCH_AR3].chrval,
447                                         xtensa->scratch_ars[XT_AR_SCRATCH_AR4].chrval);
448                                 xtensa->scratch_ars[s].intval = true;
449                                 break;
450                         }
451                 }
452         }
453         reg->dirty = true;
454         reg->valid = true;
455
456         return ERROR_OK;
457 }
458
459 static const struct reg_arch_type xtensa_reg_type = {
460         .get = xtensa_core_reg_get,
461         .set = xtensa_core_reg_set,
462 };
463
464 /* Convert a register index that's indexed relative to windowbase, to the real address. */
465 static enum xtensa_reg_id xtensa_windowbase_offset_to_canonical(struct xtensa *xtensa,
466         enum xtensa_reg_id reg_idx,
467         int windowbase)
468 {
469         unsigned int idx;
470         if (reg_idx >= XT_REG_IDX_AR0 && reg_idx <= XT_REG_IDX_ARLAST) {
471                 idx = reg_idx - XT_REG_IDX_AR0;
472         } else if (reg_idx >= XT_REG_IDX_A0 && reg_idx <= XT_REG_IDX_A15) {
473                 idx = reg_idx - XT_REG_IDX_A0;
474         } else {
475                 LOG_ERROR("Error: can't convert register %d to non-windowbased register!", reg_idx);
476                 return -1;
477         }
478         return ((idx + windowbase * 4) & (xtensa->core_config->aregs_num - 1)) + XT_REG_IDX_AR0;
479 }
480
481 static enum xtensa_reg_id xtensa_canonical_to_windowbase_offset(struct xtensa *xtensa,
482         enum xtensa_reg_id reg_idx,
483         int windowbase)
484 {
485         return xtensa_windowbase_offset_to_canonical(xtensa, reg_idx, -windowbase);
486 }
487
488 static void xtensa_mark_register_dirty(struct xtensa *xtensa, enum xtensa_reg_id reg_idx)
489 {
490         struct reg *reg_list = xtensa->core_cache->reg_list;
491         reg_list[reg_idx].dirty = true;
492 }
493
494 static void xtensa_queue_exec_ins(struct xtensa *xtensa, uint32_t ins)
495 {
496         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DIR0EXEC, ins);
497 }
498
499 static void xtensa_queue_exec_ins_wide(struct xtensa *xtensa, uint8_t *ops, uint8_t oplen)
500 {
501         if ((oplen > 0) && (oplen <= 64)) {
502                 uint32_t opsw[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };  /* 8 DIRx regs: max width 64B */
503                 uint8_t oplenw = (oplen + 3) / 4;
504                 if (xtensa->target->endianness == TARGET_BIG_ENDIAN)
505                         buf_bswap32((uint8_t *)opsw, ops, oplenw * 4);
506                 else
507                         memcpy(opsw, ops, oplen);
508                 for (int32_t i = oplenw - 1; i > 0; i--)
509                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DIR0 + i, opsw[i]);
510                 /* Write DIR0EXEC last */
511                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DIR0EXEC, opsw[0]);
512         }
513 }
514
515 static int xtensa_queue_pwr_reg_write(struct xtensa *xtensa, unsigned int reg, uint32_t data)
516 {
517         struct xtensa_debug_module *dm = &xtensa->dbg_mod;
518         return dm->pwr_ops->queue_reg_write(dm, reg, data);
519 }
520
521 /* NOTE: Assumes A3 has already been saved */
522 int xtensa_window_state_save(struct target *target, uint32_t *woe)
523 {
524         struct xtensa *xtensa = target_to_xtensa(target);
525         int woe_dis;
526         uint8_t woe_buf[4];
527
528         if (xtensa->core_config->windowed) {
529                 /* Save PS (LX) and disable window overflow exceptions prior to AR save */
530                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_PS, XT_REG_A3));
531                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
532                 xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR, woe_buf);
533                 int res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
534                 if (res != ERROR_OK) {
535                         LOG_ERROR("Failed to read PS (%d)!", res);
536                         return res;
537                 }
538                 xtensa_core_status_check(target);
539                 *woe = buf_get_u32(woe_buf, 0, 32);
540                 woe_dis = *woe & ~XT_PS_WOE_MSK;
541                 LOG_DEBUG("Clearing PS.WOE (0x%08" PRIx32 " -> 0x%08" PRIx32 ")", *woe, woe_dis);
542                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, woe_dis);
543                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
544                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_PS, XT_REG_A3));
545         }
546         return ERROR_OK;
547 }
548
549 /* NOTE: Assumes A3 has already been saved */
550 void xtensa_window_state_restore(struct target *target, uint32_t woe)
551 {
552         struct xtensa *xtensa = target_to_xtensa(target);
553         if (xtensa->core_config->windowed) {
554                 /* Restore window overflow exception state */
555                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, woe);
556                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
557                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_PS, XT_REG_A3));
558                 LOG_DEBUG("Restored PS.WOE (0x%08" PRIx32 ")", woe);
559         }
560 }
561
562 static bool xtensa_reg_is_readable(int flags, int cpenable)
563 {
564         if (flags & XT_REGF_NOREAD)
565                 return false;
566         if ((flags & XT_REGF_COPROC0) && (cpenable & BIT(0)) == 0)
567                 return false;
568         return true;
569 }
570
571 static bool xtensa_scratch_regs_fixup(struct xtensa *xtensa, struct reg *reg_list, int i, int j, int a_idx, int ar_idx)
572 {
573         int a_name = (a_idx == XT_AR_SCRATCH_A3) ? 3 : 4;
574         if (xtensa->scratch_ars[a_idx].intval && !xtensa->scratch_ars[ar_idx].intval) {
575                 LOG_DEBUG("AR conflict: a%d -> ar%d", a_name, j - XT_REG_IDX_AR0);
576                 memcpy(reg_list[j].value, reg_list[i].value, sizeof(xtensa_reg_val_t));
577         } else {
578                 LOG_DEBUG("AR conflict: ar%d -> a%d", j - XT_REG_IDX_AR0, a_name);
579                 memcpy(reg_list[i].value, reg_list[j].value, sizeof(xtensa_reg_val_t));
580         }
581         return xtensa->scratch_ars[a_idx].intval && xtensa->scratch_ars[ar_idx].intval;
582 }
583
584 static int xtensa_write_dirty_registers(struct target *target)
585 {
586         struct xtensa *xtensa = target_to_xtensa(target);
587         int res;
588         xtensa_reg_val_t regval, windowbase = 0;
589         bool scratch_reg_dirty = false, delay_cpenable = false;
590         struct reg *reg_list = xtensa->core_cache->reg_list;
591         unsigned int reg_list_size = xtensa->core_cache->num_regs;
592         bool preserve_a3 = false;
593         uint8_t a3_buf[4];
594         xtensa_reg_val_t a3 = 0, woe;
595
596         LOG_TARGET_DEBUG(target, "start");
597
598         /* We need to write the dirty registers in the cache list back to the processor.
599          * Start by writing the SFR/user registers. */
600         for (unsigned int i = 0; i < reg_list_size; i++) {
601                 struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
602                 unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
603                 if (reg_list[i].dirty) {
604                         if (rlist[ridx].type == XT_REG_SPECIAL ||
605                                 rlist[ridx].type == XT_REG_USER ||
606                                 rlist[ridx].type == XT_REG_FR) {
607                                 scratch_reg_dirty = true;
608                                 if (i == XT_REG_IDX_CPENABLE) {
609                                         delay_cpenable = true;
610                                         continue;
611                                 }
612                                 regval = xtensa_reg_get(target, i);
613                                 LOG_TARGET_DEBUG(target, "Writing back reg %s (%d) val %08" PRIX32,
614                                         reg_list[i].name,
615                                         rlist[ridx].reg_num,
616                                         regval);
617                                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, regval);
618                                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
619                                 if (reg_list[i].exist) {
620                                         unsigned int reg_num = rlist[ridx].reg_num;
621                                         if (rlist[ridx].type == XT_REG_USER) {
622                                                 xtensa_queue_exec_ins(xtensa, XT_INS_WUR(xtensa, reg_num, XT_REG_A3));
623                                         } else if (rlist[ridx].type == XT_REG_FR) {
624                                                 xtensa_queue_exec_ins(xtensa, XT_INS_WFR(xtensa, reg_num, XT_REG_A3));
625                                         } else {/*SFR */
626                                                 if (reg_num == XT_PC_REG_NUM_VIRTUAL)
627                                                         /* reg number of PC for debug interrupt depends on NDEBUGLEVEL
628                                                          **/
629                                                         reg_num =
630                                                                 (XT_PC_REG_NUM_BASE +
631                                                                 xtensa->core_config->debug.irq_level);
632                                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, reg_num, XT_REG_A3));
633                                         }
634                                 }
635                                 reg_list[i].dirty = false;
636                         }
637                 }
638         }
639         if (scratch_reg_dirty)
640                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
641         if (delay_cpenable) {
642                 regval = xtensa_reg_get(target, XT_REG_IDX_CPENABLE);
643                 LOG_TARGET_DEBUG(target, "Writing back reg cpenable (224) val %08" PRIX32, regval);
644                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, regval);
645                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
646                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa,
647                                 xtensa_regs[XT_REG_IDX_CPENABLE].reg_num,
648                                 XT_REG_A3));
649                 reg_list[XT_REG_IDX_CPENABLE].dirty = false;
650         }
651
652         preserve_a3 = (xtensa->core_config->windowed);
653         if (preserve_a3) {
654                 /* Save (windowed) A3 for scratch use */
655                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
656                 xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR, a3_buf);
657                 res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
658                 if (res != ERROR_OK)
659                         return res;
660                 xtensa_core_status_check(target);
661                 a3 = buf_get_u32(a3_buf, 0, 32);
662         }
663
664         if (xtensa->core_config->windowed) {
665                 res = xtensa_window_state_save(target, &woe);
666                 if (res != ERROR_OK)
667                         return res;
668                 /* Grab the windowbase, we need it. */
669                 windowbase = xtensa_reg_get(target, XT_REG_IDX_WINDOWBASE);
670                 /* Check if there are mismatches between the ARx and corresponding Ax registers.
671                  * When the user sets a register on a windowed config, xt-gdb may set the ARx
672                  * register directly.  Thus we take ARx as priority over Ax if both are dirty
673                  * and it's unclear if the user set one over the other explicitly.
674                  */
675                 for (unsigned int i = XT_REG_IDX_A0; i <= XT_REG_IDX_A15; i++) {
676                         unsigned int j = xtensa_windowbase_offset_to_canonical(xtensa, i, windowbase);
677                         if (reg_list[i].dirty && reg_list[j].dirty) {
678                                 if (memcmp(reg_list[i].value, reg_list[j].value, sizeof(xtensa_reg_val_t)) != 0) {
679                                         bool show_warning = true;
680                                         if (i == XT_REG_IDX_A3)
681                                                 show_warning = xtensa_scratch_regs_fixup(xtensa,
682                                                         reg_list, i, j, XT_AR_SCRATCH_A3, XT_AR_SCRATCH_AR3);
683                                         else if (i == XT_REG_IDX_A4)
684                                                 show_warning = xtensa_scratch_regs_fixup(xtensa,
685                                                         reg_list, i, j, XT_AR_SCRATCH_A4, XT_AR_SCRATCH_AR4);
686                                         if (show_warning)
687                                                 LOG_WARNING(
688                                                         "Warning: Both A%d [0x%08" PRIx32
689                                                         "] as well as its underlying physical register "
690                                                         "(AR%d) [0x%08" PRIx32 "] are dirty and differ in value",
691                                                         i - XT_REG_IDX_A0,
692                                                         buf_get_u32(reg_list[i].value, 0, 32),
693                                                         j - XT_REG_IDX_AR0,
694                                                         buf_get_u32(reg_list[j].value, 0, 32));
695                                 }
696                         }
697                 }
698         }
699
700         /* Write A0-A16. */
701         for (unsigned int i = 0; i < 16; i++) {
702                 if (reg_list[XT_REG_IDX_A0 + i].dirty) {
703                         regval = xtensa_reg_get(target, XT_REG_IDX_A0 + i);
704                         LOG_TARGET_DEBUG(target, "Writing back reg %s value %08" PRIX32 ", num =%i",
705                                 xtensa_regs[XT_REG_IDX_A0 + i].name,
706                                 regval,
707                                 xtensa_regs[XT_REG_IDX_A0 + i].reg_num);
708                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, regval);
709                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, i));
710                         reg_list[XT_REG_IDX_A0 + i].dirty = false;
711                         if (i == 3) {
712                                 /* Avoid stomping A3 during restore at end of function */
713                                 a3 = regval;
714                         }
715                 }
716         }
717
718         if (xtensa->core_config->windowed) {
719                 /* Now write AR registers */
720                 for (unsigned int j = 0; j < XT_REG_IDX_ARLAST; j += 16) {
721                         /* Write the 16 registers we can see */
722                         for (unsigned int i = 0; i < 16; i++) {
723                                 if (i + j < xtensa->core_config->aregs_num) {
724                                         enum xtensa_reg_id realadr =
725                                                 xtensa_windowbase_offset_to_canonical(xtensa, XT_REG_IDX_AR0 + i + j,
726                                                 windowbase);
727                                         /* Write back any dirty un-windowed registers */
728                                         if (reg_list[realadr].dirty) {
729                                                 regval = xtensa_reg_get(target, realadr);
730                                                 LOG_TARGET_DEBUG(
731                                                         target,
732                                                         "Writing back reg %s value %08" PRIX32 ", num =%i",
733                                                         xtensa_regs[realadr].name,
734                                                         regval,
735                                                         xtensa_regs[realadr].reg_num);
736                                                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, regval);
737                                                 xtensa_queue_exec_ins(xtensa,
738                                                         XT_INS_RSR(xtensa, XT_SR_DDR,
739                                                                 xtensa_regs[XT_REG_IDX_AR0 + i].reg_num));
740                                                 reg_list[realadr].dirty = false;
741                                                 if ((i + j) == 3)
742                                                         /* Avoid stomping AR during A3 restore at end of function */
743                                                         a3 = regval;
744                                         }
745                                 }
746                         }
747                         /*Now rotate the window so we'll see the next 16 registers. The final rotate
748                          * will wraparound, */
749                         /*leaving us in the state we were. */
750                         xtensa_queue_exec_ins(xtensa, XT_INS_ROTW(xtensa, 4));
751                 }
752
753                 xtensa_window_state_restore(target, woe);
754
755                 for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++)
756                         xtensa->scratch_ars[s].intval = false;
757         }
758
759         if (preserve_a3) {
760                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, a3);
761                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
762         }
763
764         res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
765         xtensa_core_status_check(target);
766
767         return res;
768 }
769
770 static inline bool xtensa_is_stopped(struct target *target)
771 {
772         struct xtensa *xtensa = target_to_xtensa(target);
773         return xtensa->dbg_mod.core_status.dsr & OCDDSR_STOPPED;
774 }
775
776 int xtensa_examine(struct target *target)
777 {
778         struct xtensa *xtensa = target_to_xtensa(target);
779         unsigned int cmd = PWRCTL_DEBUGWAKEUP(xtensa) | PWRCTL_MEMWAKEUP(xtensa) | PWRCTL_COREWAKEUP(xtensa);
780
781         LOG_DEBUG("coreid = %d", target->coreid);
782
783         if (xtensa->core_config->core_type == XT_UNDEF) {
784                 LOG_ERROR("XTensa core not configured; is xtensa-core-openocd.cfg missing?");
785                 return ERROR_FAIL;
786         }
787
788         xtensa_queue_pwr_reg_write(xtensa, XDMREG_PWRCTL, cmd);
789         xtensa_queue_pwr_reg_write(xtensa, XDMREG_PWRCTL, cmd | PWRCTL_JTAGDEBUGUSE(xtensa));
790         xtensa_dm_queue_enable(&xtensa->dbg_mod);
791         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
792         int res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
793         if (res != ERROR_OK)
794                 return res;
795         if (!xtensa_dm_is_online(&xtensa->dbg_mod)) {
796                 LOG_ERROR("Unexpected OCD_ID = %08" PRIx32, xtensa->dbg_mod.device_id);
797                 return ERROR_TARGET_FAILURE;
798         }
799         LOG_DEBUG("OCD_ID = %08" PRIx32, xtensa->dbg_mod.device_id);
800         if (!target_was_examined(target))
801                 target_set_examined(target);
802         xtensa_smpbreak_write(xtensa, xtensa->smp_break);
803         return ERROR_OK;
804 }
805
806 int xtensa_wakeup(struct target *target)
807 {
808         struct xtensa *xtensa = target_to_xtensa(target);
809         unsigned int cmd = PWRCTL_DEBUGWAKEUP(xtensa) | PWRCTL_MEMWAKEUP(xtensa) | PWRCTL_COREWAKEUP(xtensa);
810
811         if (xtensa->reset_asserted)
812                 cmd |= PWRCTL_CORERESET(xtensa);
813         xtensa_queue_pwr_reg_write(xtensa, XDMREG_PWRCTL, cmd);
814         /* TODO: can we join this with the write above? */
815         xtensa_queue_pwr_reg_write(xtensa, XDMREG_PWRCTL, cmd | PWRCTL_JTAGDEBUGUSE(xtensa));
816         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
817         return xtensa_dm_queue_execute(&xtensa->dbg_mod);
818 }
819
820 int xtensa_smpbreak_write(struct xtensa *xtensa, uint32_t set)
821 {
822         uint32_t dsr_data = 0x00110000;
823         uint32_t clear = (set | OCDDCR_ENABLEOCD) ^
824                 (OCDDCR_BREAKINEN | OCDDCR_BREAKOUTEN | OCDDCR_RUNSTALLINEN |
825                 OCDDCR_DEBUGMODEOUTEN | OCDDCR_ENABLEOCD);
826
827         LOG_TARGET_DEBUG(xtensa->target, "write smpbreak set=0x%" PRIx32 " clear=0x%" PRIx32, set, clear);
828         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DCRSET, set | OCDDCR_ENABLEOCD);
829         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DCRCLR, clear);
830         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DSR, dsr_data);
831         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
832         return xtensa_dm_queue_execute(&xtensa->dbg_mod);
833 }
834
835 int xtensa_smpbreak_set(struct target *target, uint32_t set)
836 {
837         struct xtensa *xtensa = target_to_xtensa(target);
838         int res = ERROR_OK;
839
840         xtensa->smp_break = set;
841         if (target_was_examined(target))
842                 res = xtensa_smpbreak_write(xtensa, xtensa->smp_break);
843         LOG_TARGET_DEBUG(target, "set smpbreak=%" PRIx32 ", state=%i", set, target->state);
844         return res;
845 }
846
847 int xtensa_smpbreak_read(struct xtensa *xtensa, uint32_t *val)
848 {
849         uint8_t dcr_buf[sizeof(uint32_t)];
850
851         xtensa_queue_dbg_reg_read(xtensa, XDMREG_DCRSET, dcr_buf);
852         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
853         int res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
854         *val = buf_get_u32(dcr_buf, 0, 32);
855
856         return res;
857 }
858
859 int xtensa_smpbreak_get(struct target *target, uint32_t *val)
860 {
861         struct xtensa *xtensa = target_to_xtensa(target);
862         *val = xtensa->smp_break;
863         return ERROR_OK;
864 }
865
866 static inline xtensa_reg_val_t xtensa_reg_get_value(struct reg *reg)
867 {
868         return buf_get_u32(reg->value, 0, 32);
869 }
870
871 static inline void xtensa_reg_set_value(struct reg *reg, xtensa_reg_val_t value)
872 {
873         buf_set_u32(reg->value, 0, 32, value);
874         reg->dirty = true;
875 }
876
877 int xtensa_core_status_check(struct target *target)
878 {
879         struct xtensa *xtensa = target_to_xtensa(target);
880         int res, needclear = 0;
881
882         xtensa_dm_core_status_read(&xtensa->dbg_mod);
883         xtensa_dsr_t dsr = xtensa_dm_core_status_get(&xtensa->dbg_mod);
884         LOG_TARGET_DEBUG(target, "DSR (%08" PRIX32 ")", dsr);
885         if (dsr & OCDDSR_EXECBUSY) {
886                 if (!xtensa->suppress_dsr_errors)
887                         LOG_TARGET_ERROR(target, "DSR (%08" PRIX32 ") indicates target still busy!", dsr);
888                 needclear = 1;
889         }
890         if (dsr & OCDDSR_EXECEXCEPTION) {
891                 if (!xtensa->suppress_dsr_errors)
892                         LOG_TARGET_ERROR(target,
893                                 "DSR (%08" PRIX32 ") indicates DIR instruction generated an exception!",
894                                 dsr);
895                 needclear = 1;
896         }
897         if (dsr & OCDDSR_EXECOVERRUN) {
898                 if (!xtensa->suppress_dsr_errors)
899                         LOG_TARGET_ERROR(target,
900                                 "DSR (%08" PRIX32 ") indicates DIR instruction generated an overrun!",
901                                 dsr);
902                 needclear = 1;
903         }
904         if (needclear) {
905                 res = xtensa_dm_core_status_clear(&xtensa->dbg_mod,
906                         OCDDSR_EXECEXCEPTION | OCDDSR_EXECOVERRUN);
907                 if (res != ERROR_OK && !xtensa->suppress_dsr_errors)
908                         LOG_TARGET_ERROR(target, "clearing DSR failed!");
909                 return ERROR_FAIL;
910         }
911         return ERROR_OK;
912 }
913
914 xtensa_reg_val_t xtensa_reg_get(struct target *target, enum xtensa_reg_id reg_id)
915 {
916         struct xtensa *xtensa = target_to_xtensa(target);
917         struct reg *reg = &xtensa->core_cache->reg_list[reg_id];
918         return xtensa_reg_get_value(reg);
919 }
920
921 void xtensa_reg_set(struct target *target, enum xtensa_reg_id reg_id, xtensa_reg_val_t value)
922 {
923         struct xtensa *xtensa = target_to_xtensa(target);
924         struct reg *reg = &xtensa->core_cache->reg_list[reg_id];
925         if (xtensa_reg_get_value(reg) == value)
926                 return;
927         xtensa_reg_set_value(reg, value);
928 }
929
930 /* Set Ax (XT_REG_RELGEN) register along with its underlying ARx (XT_REG_GENERAL) */
931 void xtensa_reg_set_deep_relgen(struct target *target, enum xtensa_reg_id a_idx, xtensa_reg_val_t value)
932 {
933         struct xtensa *xtensa = target_to_xtensa(target);
934         uint32_t windowbase = (xtensa->core_config->windowed ?
935                 xtensa_reg_get(target, XT_REG_IDX_WINDOWBASE) : 0);
936         int ar_idx = xtensa_windowbase_offset_to_canonical(xtensa, a_idx, windowbase);
937         xtensa_reg_set(target, a_idx, value);
938         xtensa_reg_set(target, ar_idx, value);
939 }
940
941 /* Read cause for entering halted state; return bitmask in DEBUGCAUSE_* format */
942 uint32_t xtensa_cause_get(struct target *target)
943 {
944         return xtensa_reg_get(target, XT_REG_IDX_DEBUGCAUSE);
945 }
946
947 void xtensa_cause_clear(struct target *target)
948 {
949         struct xtensa *xtensa = target_to_xtensa(target);
950         xtensa_reg_set(target, XT_REG_IDX_DEBUGCAUSE, 0);
951         xtensa->core_cache->reg_list[XT_REG_IDX_DEBUGCAUSE].dirty = false;
952 }
953
954 int xtensa_assert_reset(struct target *target)
955 {
956         struct xtensa *xtensa = target_to_xtensa(target);
957
958         LOG_TARGET_DEBUG(target, "target_number=%i, begin", target->target_number);
959         target->state = TARGET_RESET;
960         xtensa_queue_pwr_reg_write(xtensa,
961                 XDMREG_PWRCTL,
962                 PWRCTL_JTAGDEBUGUSE(xtensa) | PWRCTL_DEBUGWAKEUP(xtensa) | PWRCTL_MEMWAKEUP(xtensa) |
963                 PWRCTL_COREWAKEUP(xtensa) | PWRCTL_CORERESET(xtensa));
964         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
965         int res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
966         if (res != ERROR_OK)
967                 return res;
968         xtensa->reset_asserted = true;
969         return res;
970 }
971
972 int xtensa_deassert_reset(struct target *target)
973 {
974         struct xtensa *xtensa = target_to_xtensa(target);
975
976         LOG_TARGET_DEBUG(target, "halt=%d", target->reset_halt);
977         if (target->reset_halt)
978                 xtensa_queue_dbg_reg_write(xtensa,
979                         XDMREG_DCRSET,
980                         OCDDCR_ENABLEOCD | OCDDCR_DEBUGINTERRUPT);
981         xtensa_queue_pwr_reg_write(xtensa,
982                 XDMREG_PWRCTL,
983                 PWRCTL_JTAGDEBUGUSE(xtensa) | PWRCTL_DEBUGWAKEUP(xtensa) | PWRCTL_MEMWAKEUP(xtensa) |
984                 PWRCTL_COREWAKEUP(xtensa));
985         xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
986         int res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
987         if (res != ERROR_OK)
988                 return res;
989         target->state = TARGET_RUNNING;
990         xtensa->reset_asserted = false;
991         return res;
992 }
993
994 int xtensa_soft_reset_halt(struct target *target)
995 {
996         LOG_TARGET_DEBUG(target, "begin");
997         return xtensa_assert_reset(target);
998 }
999
1000 int xtensa_fetch_all_regs(struct target *target)
1001 {
1002         struct xtensa *xtensa = target_to_xtensa(target);
1003         struct reg *reg_list = xtensa->core_cache->reg_list;
1004         unsigned int reg_list_size = xtensa->core_cache->num_regs;
1005         xtensa_reg_val_t cpenable = 0, windowbase = 0, a3;
1006         uint32_t woe;
1007         uint8_t a3_buf[4];
1008         bool debug_dsrs = !xtensa->regs_fetched || LOG_LEVEL_IS(LOG_LVL_DEBUG);
1009
1010         union xtensa_reg_val_u *regvals = calloc(reg_list_size, sizeof(*regvals));
1011         if (!regvals) {
1012                 LOG_TARGET_ERROR(target, "unable to allocate memory for regvals!");
1013                 return ERROR_FAIL;
1014         }
1015         union xtensa_reg_val_u *dsrs = calloc(reg_list_size, sizeof(*dsrs));
1016         if (!dsrs) {
1017                 LOG_TARGET_ERROR(target, "unable to allocate memory for dsrs!");
1018                 free(regvals);
1019                 return ERROR_FAIL;
1020         }
1021
1022         LOG_TARGET_DEBUG(target, "start");
1023
1024         /* Save (windowed) A3 so cache matches physical AR3; A3 usable as scratch */
1025         xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1026         xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR, a3_buf);
1027         int res = xtensa_window_state_save(target, &woe);
1028         if (res != ERROR_OK)
1029                 goto xtensa_fetch_all_regs_done;
1030
1031         /* Assume the CPU has just halted. We now want to fill the register cache with all the
1032          * register contents GDB needs. For speed, we pipeline all the read operations, execute them
1033          * in one go, then sort everything out from the regvals variable. */
1034
1035         /* Start out with AREGS; we can reach those immediately. Grab them per 16 registers. */
1036         for (unsigned int j = 0; j < XT_AREGS_NUM_MAX; j += 16) {
1037                 /*Grab the 16 registers we can see */
1038                 for (unsigned int i = 0; i < 16; i++) {
1039                         if (i + j < xtensa->core_config->aregs_num) {
1040                                 xtensa_queue_exec_ins(xtensa,
1041                                         XT_INS_WSR(xtensa, XT_SR_DDR, xtensa_regs[XT_REG_IDX_AR0 + i].reg_num));
1042                                 xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR,
1043                                         regvals[XT_REG_IDX_AR0 + i + j].buf);
1044                                 if (debug_dsrs)
1045                                         xtensa_queue_dbg_reg_read(xtensa, XDMREG_DSR,
1046                                                 dsrs[XT_REG_IDX_AR0 + i + j].buf);
1047                         }
1048                 }
1049                 if (xtensa->core_config->windowed)
1050                         /* Now rotate the window so we'll see the next 16 registers. The final rotate
1051                          * will wraparound, */
1052                         /* leaving us in the state we were. */
1053                         xtensa_queue_exec_ins(xtensa, XT_INS_ROTW(xtensa, 4));
1054         }
1055         xtensa_window_state_restore(target, woe);
1056
1057         if (xtensa->core_config->coproc) {
1058                 /* As the very first thing after AREGS, go grab CPENABLE */
1059                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, xtensa_regs[XT_REG_IDX_CPENABLE].reg_num, XT_REG_A3));
1060                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1061                 xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR, regvals[XT_REG_IDX_CPENABLE].buf);
1062         }
1063         res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1064         if (res != ERROR_OK) {
1065                 LOG_ERROR("Failed to read ARs (%d)!", res);
1066                 goto xtensa_fetch_all_regs_done;
1067         }
1068         xtensa_core_status_check(target);
1069
1070         a3 = buf_get_u32(a3_buf, 0, 32);
1071
1072         if (xtensa->core_config->coproc) {
1073                 cpenable = buf_get_u32(regvals[XT_REG_IDX_CPENABLE].buf, 0, 32);
1074
1075                 /* Enable all coprocessors (by setting all bits in CPENABLE) so we can read FP and user registers. */
1076                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, 0xffffffff);
1077                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1078                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, xtensa_regs[XT_REG_IDX_CPENABLE].reg_num, XT_REG_A3));
1079
1080                 /* Save CPENABLE; flag dirty later (when regcache updated) so original value is always restored */
1081                 LOG_TARGET_DEBUG(target, "CPENABLE: was 0x%" PRIx32 ", all enabled", cpenable);
1082                 xtensa_reg_set(target, XT_REG_IDX_CPENABLE, cpenable);
1083         }
1084         /* We're now free to use any of A0-A15 as scratch registers
1085          * Grab the SFRs and user registers first. We use A3 as a scratch register. */
1086         for (unsigned int i = 0; i < reg_list_size; i++) {
1087                 struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1088                 unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1089                 if (xtensa_reg_is_readable(rlist[ridx].flags, cpenable) && rlist[ridx].exist) {
1090                         bool reg_fetched = true;
1091                         unsigned int reg_num = rlist[ridx].reg_num;
1092                         switch (rlist[ridx].type) {
1093                         case XT_REG_USER:
1094                                 xtensa_queue_exec_ins(xtensa, XT_INS_RUR(xtensa, reg_num, XT_REG_A3));
1095                                 break;
1096                         case XT_REG_FR:
1097                                 xtensa_queue_exec_ins(xtensa, XT_INS_RFR(xtensa, reg_num, XT_REG_A3));
1098                                 break;
1099                         case XT_REG_SPECIAL:
1100                                 if (reg_num == XT_PC_REG_NUM_VIRTUAL) {
1101                                         /* reg number of PC for debug interrupt depends on NDEBUGLEVEL */
1102                                         reg_num = (XT_PC_REG_NUM_BASE + xtensa->core_config->debug.irq_level);
1103                                 } else if (reg_num == xtensa_regs[XT_REG_IDX_CPENABLE].reg_num) {
1104                                         /* CPENABLE already read/updated; don't re-read */
1105                                         reg_fetched = false;
1106                                         break;
1107                                 }
1108                                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, reg_num, XT_REG_A3));
1109                                 break;
1110                         default:
1111                                 reg_fetched = false;
1112                         }
1113                         if (reg_fetched) {
1114                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1115                                 xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR, regvals[i].buf);
1116                                 if (debug_dsrs)
1117                                         xtensa_queue_dbg_reg_read(xtensa, XDMREG_DSR, dsrs[i].buf);
1118                         }
1119                 }
1120         }
1121         /* Ok, send the whole mess to the CPU. */
1122         res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1123         if (res != ERROR_OK) {
1124                 LOG_ERROR("Failed to fetch AR regs!");
1125                 goto xtensa_fetch_all_regs_done;
1126         }
1127         xtensa_core_status_check(target);
1128
1129         if (debug_dsrs) {
1130                 /* DSR checking: follows order in which registers are requested. */
1131                 for (unsigned int i = 0; i < reg_list_size; i++) {
1132                         struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1133                         unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1134                         if (xtensa_reg_is_readable(rlist[ridx].flags, cpenable) && rlist[ridx].exist &&
1135                                 (rlist[ridx].type != XT_REG_DEBUG) &&
1136                                 (rlist[ridx].type != XT_REG_RELGEN) &&
1137                                 (rlist[ridx].type != XT_REG_TIE) &&
1138                                 (rlist[ridx].type != XT_REG_OTHER)) {
1139                                 if (buf_get_u32(dsrs[i].buf, 0, 32) & OCDDSR_EXECEXCEPTION) {
1140                                         LOG_ERROR("Exception reading %s!", reg_list[i].name);
1141                                         res = ERROR_FAIL;
1142                                         goto xtensa_fetch_all_regs_done;
1143                                 }
1144                         }
1145                 }
1146         }
1147
1148         if (xtensa->core_config->windowed)
1149                 /* We need the windowbase to decode the general addresses. */
1150                 windowbase = buf_get_u32(regvals[XT_REG_IDX_WINDOWBASE].buf, 0, 32);
1151         /* Decode the result and update the cache. */
1152         for (unsigned int i = 0; i < reg_list_size; i++) {
1153                 struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1154                 unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1155                 if (xtensa_reg_is_readable(rlist[ridx].flags, cpenable) && rlist[ridx].exist) {
1156                         if ((xtensa->core_config->windowed) && (rlist[ridx].type == XT_REG_GENERAL)) {
1157                                 /* The 64-value general register set is read from (windowbase) on down.
1158                                  * We need to get the real register address by subtracting windowbase and
1159                                  * wrapping around. */
1160                                 enum xtensa_reg_id realadr = xtensa_canonical_to_windowbase_offset(xtensa, i,
1161                                         windowbase);
1162                                 buf_cpy(regvals[realadr].buf, reg_list[i].value, reg_list[i].size);
1163                         } else if (rlist[ridx].type == XT_REG_RELGEN) {
1164                                 buf_cpy(regvals[rlist[ridx].reg_num].buf, reg_list[i].value, reg_list[i].size);
1165                                 if (xtensa_extra_debug_log) {
1166                                         xtensa_reg_val_t regval = buf_get_u32(regvals[rlist[ridx].reg_num].buf, 0, 32);
1167                                         LOG_DEBUG("%s = 0x%x", rlist[ridx].name, regval);
1168                                 }
1169                         } else {
1170                                 xtensa_reg_val_t regval = buf_get_u32(regvals[i].buf, 0, 32);
1171                                 bool is_dirty = (i == XT_REG_IDX_CPENABLE);
1172                                 if (xtensa_extra_debug_log)
1173                                         LOG_INFO("Register %s: 0x%X", reg_list[i].name, regval);
1174                                 xtensa_reg_set(target, i, regval);
1175                                 reg_list[i].dirty = is_dirty;   /*always do this _after_ xtensa_reg_set! */
1176                         }
1177                         reg_list[i].valid = true;
1178                 } else {
1179                         if ((rlist[ridx].flags & XT_REGF_MASK) == XT_REGF_NOREAD) {
1180                                 /* Report read-only registers all-zero but valid */
1181                                 reg_list[i].valid = true;
1182                                 xtensa_reg_set(target, i, 0);
1183                         } else {
1184                                 reg_list[i].valid = false;
1185                         }
1186                 }
1187         }
1188
1189         if (xtensa->core_config->windowed) {
1190                 /* We have used A3 as a scratch register.
1191                  * Windowed configs: restore A3's AR (XT_REG_GENERAL) and and flag for write-back.
1192                  */
1193                 enum xtensa_reg_id ar3_idx = xtensa_windowbase_offset_to_canonical(xtensa, XT_REG_IDX_A3, windowbase);
1194                 xtensa_reg_set(target, ar3_idx, a3);
1195                 xtensa_mark_register_dirty(xtensa, ar3_idx);
1196
1197                 /* Reset scratch_ars[] on fetch.  .chrval tracks AR mapping and changes w/ window */
1198                 sprintf(xtensa->scratch_ars[XT_AR_SCRATCH_AR3].chrval, "ar%d", ar3_idx - XT_REG_IDX_AR0);
1199                 enum xtensa_reg_id ar4_idx = xtensa_windowbase_offset_to_canonical(xtensa, XT_REG_IDX_A4, windowbase);
1200                 sprintf(xtensa->scratch_ars[XT_AR_SCRATCH_AR4].chrval, "ar%d", ar4_idx - XT_REG_IDX_AR0);
1201                 for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++)
1202                         xtensa->scratch_ars[s].intval = false;
1203         }
1204
1205         /* We have used A3 (XT_REG_RELGEN) as a scratch register.  Restore and flag for write-back. */
1206         xtensa_reg_set(target, XT_REG_IDX_A3, a3);
1207         xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
1208         xtensa->regs_fetched = true;
1209 xtensa_fetch_all_regs_done:
1210         free(regvals);
1211         free(dsrs);
1212         return res;
1213 }
1214
1215 int xtensa_get_gdb_reg_list(struct target *target,
1216         struct reg **reg_list[],
1217         int *reg_list_size,
1218         enum target_register_class reg_class)
1219 {
1220         struct xtensa *xtensa = target_to_xtensa(target);
1221         unsigned int num_regs;
1222
1223         if (reg_class == REG_CLASS_GENERAL) {
1224                 if ((xtensa->genpkt_regs_num == 0) || !xtensa->contiguous_regs_list) {
1225                         LOG_ERROR("reg_class %d unhandled; 'xtgregs' not found", reg_class);
1226                         return ERROR_FAIL;
1227                 }
1228                 num_regs = xtensa->genpkt_regs_num;
1229         } else {
1230                 /* Determine whether to return a contiguous or sparse register map */
1231                 num_regs = xtensa->regmap_contiguous ? xtensa->total_regs_num : xtensa->dbregs_num;
1232         }
1233
1234         LOG_DEBUG("reg_class=%i, num_regs=%d", (int)reg_class, num_regs);
1235
1236         *reg_list = calloc(num_regs, sizeof(struct reg *));
1237         if (!*reg_list)
1238                 return ERROR_FAIL;
1239
1240         *reg_list_size = num_regs;
1241         if (xtensa->regmap_contiguous) {
1242                 assert((num_regs <= xtensa->total_regs_num) && "contiguous regmap size internal error!");
1243                 for (unsigned int i = 0; i < num_regs; i++)
1244                         (*reg_list)[i] = xtensa->contiguous_regs_list[i];
1245                 return ERROR_OK;
1246         }
1247
1248         for (unsigned int i = 0; i < num_regs; i++)
1249                 (*reg_list)[i] = (struct reg *)&xtensa->empty_regs[i];
1250         unsigned int k = 0;
1251         for (unsigned int i = 0; i < xtensa->core_cache->num_regs && k < num_regs; i++) {
1252                 if (xtensa->core_cache->reg_list[i].exist) {
1253                         struct xtensa_reg_desc *rlist = (i < XT_NUM_REGS) ? xtensa_regs : xtensa->optregs;
1254                         unsigned int ridx = (i < XT_NUM_REGS) ? i : i - XT_NUM_REGS;
1255                         int sparse_idx = rlist[ridx].dbreg_num;
1256                         if (i == XT_REG_IDX_PS) {
1257                                 if (xtensa->eps_dbglevel_idx == 0) {
1258                                         LOG_ERROR("eps_dbglevel_idx not set\n");
1259                                         return ERROR_FAIL;
1260                                 }
1261                                 (*reg_list)[sparse_idx] = &xtensa->core_cache->reg_list[xtensa->eps_dbglevel_idx];
1262                                 if (xtensa_extra_debug_log)
1263                                         LOG_DEBUG("SPARSE GDB reg 0x%x getting EPS%d 0x%x",
1264                                                 sparse_idx, xtensa->core_config->debug.irq_level,
1265                                                 xtensa_reg_get_value((*reg_list)[sparse_idx]));
1266                         } else if (rlist[ridx].type == XT_REG_RELGEN) {
1267                                 (*reg_list)[sparse_idx - XT_REG_IDX_ARFIRST] = &xtensa->core_cache->reg_list[i];
1268                         } else {
1269                                 (*reg_list)[sparse_idx] = &xtensa->core_cache->reg_list[i];
1270                         }
1271                         if (i == XT_REG_IDX_PC)
1272                                 /* Make a duplicate copy of PC for external access */
1273                                 (*reg_list)[XT_PC_DBREG_NUM_BASE] = &xtensa->core_cache->reg_list[i];
1274                         k++;
1275                 }
1276         }
1277
1278         if (k == num_regs)
1279                 LOG_ERROR("SPARSE GDB reg list full (size %d)", k);
1280
1281         return ERROR_OK;
1282 }
1283
1284 int xtensa_mmu_is_enabled(struct target *target, int *enabled)
1285 {
1286         struct xtensa *xtensa = target_to_xtensa(target);
1287         *enabled = xtensa->core_config->mmu.itlb_entries_count > 0 ||
1288                 xtensa->core_config->mmu.dtlb_entries_count > 0;
1289         return ERROR_OK;
1290 }
1291
1292 int xtensa_halt(struct target *target)
1293 {
1294         struct xtensa *xtensa = target_to_xtensa(target);
1295
1296         LOG_TARGET_DEBUG(target, "start");
1297         if (target->state == TARGET_HALTED) {
1298                 LOG_TARGET_DEBUG(target, "target was already halted");
1299                 return ERROR_OK;
1300         }
1301         /* First we have to read dsr and check if the target stopped */
1302         int res = xtensa_dm_core_status_read(&xtensa->dbg_mod);
1303         if (res != ERROR_OK) {
1304                 LOG_TARGET_ERROR(target, "Failed to read core status!");
1305                 return res;
1306         }
1307         LOG_TARGET_DEBUG(target, "Core status 0x%" PRIx32, xtensa_dm_core_status_get(&xtensa->dbg_mod));
1308         if (!xtensa_is_stopped(target)) {
1309                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DCRSET, OCDDCR_ENABLEOCD | OCDDCR_DEBUGINTERRUPT);
1310                 xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
1311                 res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1312                 if (res != ERROR_OK)
1313                         LOG_TARGET_ERROR(target, "Failed to set OCDDCR_DEBUGINTERRUPT. Can't halt.");
1314         }
1315
1316         return res;
1317 }
1318
1319 int xtensa_prepare_resume(struct target *target,
1320         int current,
1321         target_addr_t address,
1322         int handle_breakpoints,
1323         int debug_execution)
1324 {
1325         struct xtensa *xtensa = target_to_xtensa(target);
1326         uint32_t bpena = 0;
1327
1328         LOG_TARGET_DEBUG(target,
1329                 "current=%d address=" TARGET_ADDR_FMT ", handle_breakpoints=%i, debug_execution=%i)",
1330                 current,
1331                 address,
1332                 handle_breakpoints,
1333                 debug_execution);
1334
1335         if (target->state != TARGET_HALTED) {
1336                 LOG_TARGET_WARNING(target, "target not halted");
1337                 return ERROR_TARGET_NOT_HALTED;
1338         }
1339
1340         if (address && !current) {
1341                 xtensa_reg_set(target, XT_REG_IDX_PC, address);
1342         } else {
1343                 uint32_t cause = xtensa_cause_get(target);
1344                 LOG_TARGET_DEBUG(target, "DEBUGCAUSE 0x%x (watchpoint %lu) (break %lu)",
1345                         cause, (cause & DEBUGCAUSE_DB), (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN)));
1346                 if (cause & DEBUGCAUSE_DB)
1347                         /* We stopped due to a watchpoint. We can't just resume executing the
1348                          * instruction again because */
1349                         /* that would trigger the watchpoint again. To fix this, we single-step,
1350                          * which ignores watchpoints. */
1351                         xtensa_do_step(target, current, address, handle_breakpoints);
1352                 if (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN))
1353                         /* We stopped due to a break instruction. We can't just resume executing the
1354                          * instruction again because */
1355                         /* that would trigger the break again. To fix this, we single-step, which
1356                          * ignores break. */
1357                         xtensa_do_step(target, current, address, handle_breakpoints);
1358         }
1359
1360         /* Write back hw breakpoints. Current FreeRTOS SMP code can set a hw breakpoint on an
1361          * exception; we need to clear that and return to the breakpoints gdb has set on resume. */
1362         for (unsigned int slot = 0; slot < xtensa->core_config->debug.ibreaks_num; slot++) {
1363                 if (xtensa->hw_brps[slot]) {
1364                         /* Write IBREAKA[slot] and set bit #slot in IBREAKENABLE */
1365                         xtensa_reg_set(target, XT_REG_IDX_IBREAKA0 + slot, xtensa->hw_brps[slot]->address);
1366                         bpena |= BIT(slot);
1367                 }
1368         }
1369         xtensa_reg_set(target, XT_REG_IDX_IBREAKENABLE, bpena);
1370
1371         /* Here we write all registers to the targets */
1372         int res = xtensa_write_dirty_registers(target);
1373         if (res != ERROR_OK)
1374                 LOG_TARGET_ERROR(target, "Failed to write back register cache.");
1375         return res;
1376 }
1377
1378 int xtensa_do_resume(struct target *target)
1379 {
1380         struct xtensa *xtensa = target_to_xtensa(target);
1381
1382         LOG_TARGET_DEBUG(target, "start");
1383
1384         xtensa_queue_exec_ins(xtensa, XT_INS_RFDO(xtensa));
1385         int res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1386         if (res != ERROR_OK) {
1387                 LOG_TARGET_ERROR(target, "Failed to exec RFDO %d!", res);
1388                 return res;
1389         }
1390         xtensa_core_status_check(target);
1391         return ERROR_OK;
1392 }
1393
1394 int xtensa_resume(struct target *target,
1395         int current,
1396         target_addr_t address,
1397         int handle_breakpoints,
1398         int debug_execution)
1399 {
1400         LOG_TARGET_DEBUG(target, "start");
1401         int res = xtensa_prepare_resume(target, current, address, handle_breakpoints, debug_execution);
1402         if (res != ERROR_OK) {
1403                 LOG_TARGET_ERROR(target, "Failed to prepare for resume!");
1404                 return res;
1405         }
1406         res = xtensa_do_resume(target);
1407         if (res != ERROR_OK) {
1408                 LOG_TARGET_ERROR(target, "Failed to resume!");
1409                 return res;
1410         }
1411
1412         target->debug_reason = DBG_REASON_NOTHALTED;
1413         if (!debug_execution)
1414                 target->state = TARGET_RUNNING;
1415         else
1416                 target->state = TARGET_DEBUG_RUNNING;
1417
1418         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1419
1420         return ERROR_OK;
1421 }
1422
1423 static bool xtensa_pc_in_winexc(struct target *target, target_addr_t pc)
1424 {
1425         struct xtensa *xtensa = target_to_xtensa(target);
1426         uint8_t insn_buf[XT_ISNS_SZ_MAX];
1427         int err = xtensa_read_buffer(target, pc, sizeof(insn_buf), insn_buf);
1428         if (err != ERROR_OK)
1429                 return false;
1430
1431         xtensa_insn_t insn = buf_get_u32(insn_buf, 0, 24);
1432         xtensa_insn_t masked = insn & XT_INS_L32E_S32E_MASK(xtensa);
1433         if (masked == XT_INS_L32E(xtensa, 0, 0, 0) || masked == XT_INS_S32E(xtensa, 0, 0, 0))
1434                 return true;
1435
1436         masked = insn & XT_INS_RFWO_RFWU_MASK(xtensa);
1437         if (masked == XT_INS_RFWO(xtensa) || masked == XT_INS_RFWU(xtensa))
1438                 return true;
1439
1440         return false;
1441 }
1442
1443 int xtensa_do_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
1444 {
1445         struct xtensa *xtensa = target_to_xtensa(target);
1446         int res;
1447         const uint32_t icount_val = -2; /* ICOUNT value to load for 1 step */
1448         xtensa_reg_val_t dbreakc[XT_WATCHPOINTS_NUM_MAX];
1449         xtensa_reg_val_t icountlvl, cause;
1450         xtensa_reg_val_t oldps, oldpc, cur_pc;
1451         bool ps_lowered = false;
1452
1453         LOG_TARGET_DEBUG(target, "current=%d, address=" TARGET_ADDR_FMT ", handle_breakpoints=%i",
1454                 current, address, handle_breakpoints);
1455
1456         if (target->state != TARGET_HALTED) {
1457                 LOG_TARGET_WARNING(target, "target not halted");
1458                 return ERROR_TARGET_NOT_HALTED;
1459         }
1460
1461         if (xtensa->eps_dbglevel_idx == 0) {
1462                 LOG_ERROR("eps_dbglevel_idx not set\n");
1463                 return ERROR_FAIL;
1464         }
1465
1466         /* Save old ps (EPS[dbglvl] on LX), pc */
1467         oldps = xtensa_reg_get(target, xtensa->eps_dbglevel_idx);
1468         oldpc = xtensa_reg_get(target, XT_REG_IDX_PC);
1469
1470         cause = xtensa_cause_get(target);
1471         LOG_TARGET_DEBUG(target, "oldps=%" PRIx32 ", oldpc=%" PRIx32 " dbg_cause=%" PRIx32 " exc_cause=%" PRIx32,
1472                 oldps,
1473                 oldpc,
1474                 cause,
1475                 xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE));
1476         if (handle_breakpoints && (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN))) {
1477                 /* handle hard-coded SW breakpoints (e.g. syscalls) */
1478                 LOG_TARGET_DEBUG(target, "Increment PC to pass break instruction...");
1479                 xtensa_cause_clear(target);     /* so we don't recurse into the same routine */
1480                 /* pretend that we have stepped */
1481                 if (cause & DEBUGCAUSE_BI)
1482                         xtensa_reg_set(target, XT_REG_IDX_PC, oldpc + 3);       /* PC = PC+3 */
1483                 else
1484                         xtensa_reg_set(target, XT_REG_IDX_PC, oldpc + 2);       /* PC = PC+2 */
1485                 return ERROR_OK;
1486         }
1487
1488         /* Xtensa LX has an ICOUNTLEVEL register which sets the maximum interrupt level
1489          * at which the instructions are to be counted while stepping.
1490          *
1491          * For example, if we need to step by 2 instructions, and an interrupt occurs
1492          * in between, the processor will trigger the interrupt and halt after the 2nd
1493          * instruction within the interrupt vector and/or handler.
1494          *
1495          * However, sometimes we don't want the interrupt handlers to be executed at all
1496          * while stepping through the code. In this case (XT_STEPPING_ISR_OFF),
1497          * ICOUNTLEVEL can be lowered to the executing code's (level + 1) to prevent ISR
1498          * code from being counted during stepping.  Note that C exception handlers must
1499          * run at level 0 and hence will be counted and stepped into, should one occur.
1500          *
1501          * TODO: Certain instructions should never be single-stepped and should instead
1502          * be emulated (per DUG): RSIL >= DBGLEVEL, RSR/WSR [ICOUNT|ICOUNTLEVEL], and
1503          * RFI >= DBGLEVEL.
1504          */
1505         if (xtensa->stepping_isr_mode == XT_STEPPING_ISR_OFF) {
1506                 if (!xtensa->core_config->high_irq.enabled) {
1507                         LOG_TARGET_WARNING(
1508                                 target,
1509                                 "disabling IRQs while stepping is not implemented w/o high prio IRQs option!");
1510                         return ERROR_FAIL;
1511                 }
1512                 /* Update ICOUNTLEVEL accordingly */
1513                 icountlvl = MIN((oldps & 0xF) + 1, xtensa->core_config->debug.irq_level);
1514         } else {
1515                 icountlvl = xtensa->core_config->debug.irq_level;
1516         }
1517
1518         if (cause & DEBUGCAUSE_DB) {
1519                 /* We stopped due to a watchpoint. We can't just resume executing the instruction again because
1520                  * that would trigger the watchpoint again. To fix this, we remove watchpoints,single-step and
1521                  * re-enable the watchpoint. */
1522                 LOG_TARGET_DEBUG(
1523                         target,
1524                         "Single-stepping to get past instruction that triggered the watchpoint...");
1525                 xtensa_cause_clear(target);     /* so we don't recurse into the same routine */
1526                 /* Save all DBREAKCx registers and set to 0 to disable watchpoints */
1527                 for (unsigned int slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++) {
1528                         dbreakc[slot] = xtensa_reg_get(target, XT_REG_IDX_DBREAKC0 + slot);
1529                         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, 0);
1530                 }
1531         }
1532
1533         if (!handle_breakpoints && (cause & (DEBUGCAUSE_BI | DEBUGCAUSE_BN)))
1534                 /* handle normal SW breakpoint */
1535                 xtensa_cause_clear(target);     /* so we don't recurse into the same routine */
1536         if ((oldps & 0xf) >= icountlvl) {
1537                 /* Lower interrupt level to allow stepping, but flag eps[dbglvl] to be restored */
1538                 ps_lowered = true;
1539                 uint32_t newps = (oldps & ~0xf) | (icountlvl - 1);
1540                 xtensa_reg_set(target, xtensa->eps_dbglevel_idx, newps);
1541                 LOG_TARGET_DEBUG(target,
1542                         "Lowering PS.INTLEVEL to allow stepping: %s <- 0x%08" PRIx32 " (was 0x%08" PRIx32 ")",
1543                         xtensa->core_cache->reg_list[xtensa->eps_dbglevel_idx].name,
1544                         newps,
1545                         oldps);
1546         }
1547         do {
1548                 xtensa_reg_set(target, XT_REG_IDX_ICOUNTLEVEL, icountlvl);
1549                 xtensa_reg_set(target, XT_REG_IDX_ICOUNT, icount_val);
1550
1551                 /* Now ICOUNT is set, we can resume as if we were going to run */
1552                 res = xtensa_prepare_resume(target, current, address, 0, 0);
1553                 if (res != ERROR_OK) {
1554                         LOG_TARGET_ERROR(target, "Failed to prepare resume for single step");
1555                         return res;
1556                 }
1557                 res = xtensa_do_resume(target);
1558                 if (res != ERROR_OK) {
1559                         LOG_TARGET_ERROR(target, "Failed to resume after setting up single step");
1560                         return res;
1561                 }
1562
1563                 /* Wait for stepping to complete */
1564                 long long start = timeval_ms();
1565                 while (timeval_ms() < start + 500) {
1566                         /* Do not use target_poll here, it also triggers other things... just manually read the DSR
1567                          *until stepping is complete. */
1568                         usleep(1000);
1569                         res = xtensa_dm_core_status_read(&xtensa->dbg_mod);
1570                         if (res != ERROR_OK) {
1571                                 LOG_TARGET_ERROR(target, "Failed to read core status!");
1572                                 return res;
1573                         }
1574                         if (xtensa_is_stopped(target))
1575                                 break;
1576                         usleep(1000);
1577                 }
1578                 LOG_TARGET_DEBUG(target, "Finish stepping. dsr=0x%08" PRIx32,
1579                         xtensa_dm_core_status_get(&xtensa->dbg_mod));
1580                 if (!xtensa_is_stopped(target)) {
1581                         LOG_TARGET_WARNING(
1582                                 target,
1583                                 "Timed out waiting for target to finish stepping. dsr=0x%08" PRIx32,
1584                                 xtensa_dm_core_status_get(&xtensa->dbg_mod));
1585                         target->debug_reason = DBG_REASON_NOTHALTED;
1586                         target->state = TARGET_RUNNING;
1587                         return ERROR_FAIL;
1588                 }
1589                 target->debug_reason = DBG_REASON_SINGLESTEP;
1590                 target->state = TARGET_HALTED;
1591
1592                 xtensa_fetch_all_regs(target);
1593
1594                 cur_pc = xtensa_reg_get(target, XT_REG_IDX_PC);
1595
1596                 LOG_TARGET_DEBUG(target,
1597                         "cur_ps=%" PRIx32 ", cur_pc=%" PRIx32 " dbg_cause=%" PRIx32 " exc_cause=%" PRIx32,
1598                         xtensa_reg_get(target, XT_REG_IDX_PS),
1599                         cur_pc,
1600                         xtensa_cause_get(target),
1601                         xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE));
1602
1603                 /* Do not step into WindowOverflow if ISRs are masked.
1604                    If we stop in WindowOverflow at breakpoint with masked ISRs and
1605                    try to do a step it will get us out of that handler */
1606                 if (xtensa->core_config->windowed &&
1607                         xtensa->stepping_isr_mode == XT_STEPPING_ISR_OFF &&
1608                         xtensa_pc_in_winexc(target, cur_pc)) {
1609                         /* isrmask = on, need to step out of the window exception handler */
1610                         LOG_DEBUG("Stepping out of window exception, PC=%" PRIX32, cur_pc);
1611                         oldpc = cur_pc;
1612                         address = oldpc + 3;
1613                         continue;
1614                 }
1615
1616                 if (oldpc == cur_pc)
1617                         LOG_TARGET_WARNING(target, "Stepping doesn't seem to change PC! dsr=0x%08" PRIx32,
1618                                 xtensa_dm_core_status_get(&xtensa->dbg_mod));
1619                 else
1620                         LOG_DEBUG("Stepped from %" PRIX32 " to %" PRIX32, oldpc, cur_pc);
1621                 break;
1622         } while (true);
1623         LOG_DEBUG("Done stepping, PC=%" PRIX32, cur_pc);
1624
1625         if (cause & DEBUGCAUSE_DB) {
1626                 LOG_TARGET_DEBUG(target, "...Done, re-installing watchpoints.");
1627                 /* Restore the DBREAKCx registers */
1628                 for (unsigned int slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++)
1629                         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, dbreakc[slot]);
1630         }
1631
1632         /* Restore int level */
1633         if (ps_lowered) {
1634                 LOG_DEBUG("Restoring %s after stepping: 0x%08" PRIx32,
1635                         xtensa->core_cache->reg_list[xtensa->eps_dbglevel_idx].name,
1636                         oldps);
1637                 xtensa_reg_set(target, xtensa->eps_dbglevel_idx, oldps);
1638         }
1639
1640         /* write ICOUNTLEVEL back to zero */
1641         xtensa_reg_set(target, XT_REG_IDX_ICOUNTLEVEL, 0);
1642         /* TODO: can we skip writing dirty registers and re-fetching them? */
1643         res = xtensa_write_dirty_registers(target);
1644         xtensa_fetch_all_regs(target);
1645         return res;
1646 }
1647
1648 int xtensa_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
1649 {
1650         return xtensa_do_step(target, current, address, handle_breakpoints);
1651 }
1652
1653 /**
1654  * Returns true if two ranges are overlapping
1655  */
1656 static inline bool xtensa_memory_regions_overlap(target_addr_t r1_start,
1657         target_addr_t r1_end,
1658         target_addr_t r2_start,
1659         target_addr_t r2_end)
1660 {
1661         if ((r2_start >= r1_start) && (r2_start < r1_end))
1662                 return true;    /* r2_start is in r1 region */
1663         if ((r2_end > r1_start) && (r2_end <= r1_end))
1664                 return true;    /* r2_end is in r1 region */
1665         return false;
1666 }
1667
1668 /**
1669  * Returns a size of overlapped region of two ranges.
1670  */
1671 static inline target_addr_t xtensa_get_overlap_size(target_addr_t r1_start,
1672         target_addr_t r1_end,
1673         target_addr_t r2_start,
1674         target_addr_t r2_end)
1675 {
1676         if (xtensa_memory_regions_overlap(r1_start, r1_end, r2_start, r2_end)) {
1677                 target_addr_t ov_start = r1_start < r2_start ? r2_start : r1_start;
1678                 target_addr_t ov_end = r1_end > r2_end ? r2_end : r1_end;
1679                 return ov_end - ov_start;
1680         }
1681         return 0;
1682 }
1683
1684 /**
1685  * Check if the address gets to memory regions, and its access mode
1686  */
1687 static bool xtensa_memory_op_validate_range(struct xtensa *xtensa, target_addr_t address, size_t size, int access)
1688 {
1689         target_addr_t adr_pos = address;        /* address cursor set to the beginning start */
1690         target_addr_t adr_end = address + size; /* region end */
1691         target_addr_t overlap_size;
1692         const struct xtensa_local_mem_region_config *cm;        /* current mem region */
1693
1694         while (adr_pos < adr_end) {
1695                 cm = xtensa_target_memory_region_find(xtensa, adr_pos);
1696                 if (!cm)        /* address is not belong to anything */
1697                         return false;
1698                 if ((cm->access & access) != access)    /* access check */
1699                         return false;
1700                 overlap_size = xtensa_get_overlap_size(cm->base, (cm->base + cm->size), adr_pos, adr_end);
1701                 assert(overlap_size != 0);
1702                 adr_pos += overlap_size;
1703         }
1704         return true;
1705 }
1706
1707 int xtensa_read_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1708 {
1709         struct xtensa *xtensa = target_to_xtensa(target);
1710         /* We are going to read memory in 32-bit increments. This may not be what the calling
1711          * function expects, so we may need to allocate a temp buffer and read into that first. */
1712         target_addr_t addrstart_al = ALIGN_DOWN(address, 4);
1713         target_addr_t addrend_al = ALIGN_UP(address + size * count, 4);
1714         target_addr_t adr = addrstart_al;
1715         uint8_t *albuff;
1716         bool bswap = xtensa->target->endianness == TARGET_BIG_ENDIAN;
1717
1718         if (target->state != TARGET_HALTED) {
1719                 LOG_TARGET_WARNING(target, "target not halted");
1720                 return ERROR_TARGET_NOT_HALTED;
1721         }
1722
1723         if (!xtensa->permissive_mode) {
1724                 if (!xtensa_memory_op_validate_range(xtensa, address, (size * count),
1725                                 XT_MEM_ACCESS_READ)) {
1726                         LOG_DEBUG("address " TARGET_ADDR_FMT " not readable", address);
1727                         return ERROR_FAIL;
1728                 }
1729         }
1730
1731         if (addrstart_al == address && addrend_al == address + (size * count)) {
1732                 albuff = buffer;
1733         } else {
1734                 albuff = malloc(addrend_al - addrstart_al);
1735                 if (!albuff) {
1736                         LOG_TARGET_ERROR(target, "Out of memory allocating %" TARGET_PRIdADDR " bytes!",
1737                                 addrend_al - addrstart_al);
1738                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1739                 }
1740         }
1741
1742         /* We're going to use A3 here */
1743         xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
1744         /* Write start address to A3 */
1745         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, addrstart_al);
1746         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1747         /* Now we can safely read data from addrstart_al up to addrend_al into albuff */
1748         if (xtensa->probe_lsddr32p != 0) {
1749                 xtensa_queue_exec_ins(xtensa, XT_INS_LDDR32P(xtensa, XT_REG_A3));
1750                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t))
1751                         xtensa_queue_dbg_reg_read(xtensa,
1752                                 (adr + sizeof(uint32_t) == addrend_al) ? XDMREG_DDR : XDMREG_DDREXEC,
1753                                 &albuff[i]);
1754         } else {
1755                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A4);
1756                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t)) {
1757                         xtensa_queue_exec_ins(xtensa, XT_INS_L32I(xtensa, XT_REG_A3, XT_REG_A4, 0));
1758                         xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A4));
1759                         xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR, &albuff[i]);
1760                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, adr + sizeof(uint32_t));
1761                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1762                 }
1763         }
1764         int res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1765         if (res == ERROR_OK) {
1766                 bool prev_suppress = xtensa->suppress_dsr_errors;
1767                 xtensa->suppress_dsr_errors = true;
1768                 res = xtensa_core_status_check(target);
1769                 if (xtensa->probe_lsddr32p == -1)
1770                         xtensa->probe_lsddr32p = 1;
1771                 xtensa->suppress_dsr_errors = prev_suppress;
1772         }
1773         if (res != ERROR_OK) {
1774                 if (xtensa->probe_lsddr32p != 0) {
1775                         /* Disable fast memory access instructions and retry before reporting an error */
1776                         LOG_TARGET_INFO(target, "Disabling LDDR32.P/SDDR32.P");
1777                         xtensa->probe_lsddr32p = 0;
1778                         res = xtensa_read_memory(target, address, size, count, buffer);
1779                         bswap = false;
1780                 } else {
1781                         LOG_TARGET_WARNING(target, "Failed reading %d bytes at address "TARGET_ADDR_FMT,
1782                                 count * size, address);
1783                 }
1784         }
1785
1786         if (bswap)
1787                 buf_bswap32(albuff, albuff, addrend_al - addrstart_al);
1788         if (albuff != buffer) {
1789                 memcpy(buffer, albuff + (address & 3), (size * count));
1790                 free(albuff);
1791         }
1792
1793         return res;
1794 }
1795
1796 int xtensa_read_buffer(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
1797 {
1798         /* xtensa_read_memory can also read unaligned stuff. Just pass through to that routine. */
1799         return xtensa_read_memory(target, address, 1, count, buffer);
1800 }
1801
1802 int xtensa_write_memory(struct target *target,
1803         target_addr_t address,
1804         uint32_t size,
1805         uint32_t count,
1806         const uint8_t *buffer)
1807 {
1808         /* This memory write function can get thrown nigh everything into it, from
1809          * aligned uint32 writes to unaligned uint8ths. The Xtensa memory doesn't always
1810          * accept anything but aligned uint32 writes, though. That is why we convert
1811          * everything into that. */
1812         struct xtensa *xtensa = target_to_xtensa(target);
1813         target_addr_t addrstart_al = ALIGN_DOWN(address, 4);
1814         target_addr_t addrend_al = ALIGN_UP(address + size * count, 4);
1815         target_addr_t adr = addrstart_al;
1816         int res;
1817         uint8_t *albuff;
1818         bool fill_head_tail = false;
1819
1820         if (target->state != TARGET_HALTED) {
1821                 LOG_TARGET_WARNING(target, "target not halted");
1822                 return ERROR_TARGET_NOT_HALTED;
1823         }
1824
1825         if (!xtensa->permissive_mode) {
1826                 if (!xtensa_memory_op_validate_range(xtensa, address, (size * count), XT_MEM_ACCESS_WRITE)) {
1827                         LOG_WARNING("address " TARGET_ADDR_FMT " not writable", address);
1828                         return ERROR_FAIL;
1829                 }
1830         }
1831
1832         if (size == 0 || count == 0 || !buffer)
1833                 return ERROR_COMMAND_SYNTAX_ERROR;
1834
1835         /* Allocate a temporary buffer to put the aligned bytes in, if needed. */
1836         if (addrstart_al == address && addrend_al == address + (size * count)) {
1837                 if (xtensa->target->endianness == TARGET_BIG_ENDIAN)
1838                         /* Need a buffer for byte-swapping */
1839                         albuff = malloc(addrend_al - addrstart_al);
1840                 else
1841                         /* We discard the const here because albuff can also be non-const */
1842                         albuff = (uint8_t *)buffer;
1843         } else {
1844                 fill_head_tail = true;
1845                 albuff = malloc(addrend_al - addrstart_al);
1846         }
1847         if (!albuff) {
1848                 LOG_TARGET_ERROR(target, "Out of memory allocating %" TARGET_PRIdADDR " bytes!",
1849                         addrend_al - addrstart_al);
1850                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1851         }
1852
1853         /* We're going to use A3 here */
1854         xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
1855
1856         /* If we're using a temp aligned buffer, we need to fill the head and/or tail bit of it. */
1857         if (fill_head_tail) {
1858                 /* See if we need to read the first and/or last word. */
1859                 if (address & 3) {
1860                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, addrstart_al);
1861                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1862                         if (xtensa->probe_lsddr32p == 1) {
1863                                 xtensa_queue_exec_ins(xtensa, XT_INS_LDDR32P(xtensa, XT_REG_A3));
1864                         } else {
1865                                 xtensa_queue_exec_ins(xtensa, XT_INS_L32I(xtensa, XT_REG_A3, XT_REG_A3, 0));
1866                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1867                         }
1868                         xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR, &albuff[0]);
1869                 }
1870                 if ((address + (size * count)) & 3) {
1871                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, addrend_al - 4);
1872                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1873                         if (xtensa->probe_lsddr32p == 1) {
1874                                 xtensa_queue_exec_ins(xtensa, XT_INS_LDDR32P(xtensa, XT_REG_A3));
1875                         } else {
1876                                 xtensa_queue_exec_ins(xtensa, XT_INS_L32I(xtensa, XT_REG_A3, XT_REG_A3, 0));
1877                                 xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa, XT_SR_DDR, XT_REG_A3));
1878                         }
1879                         xtensa_queue_dbg_reg_read(xtensa, XDMREG_DDR,
1880                                 &albuff[addrend_al - addrstart_al - 4]);
1881                 }
1882                 /* Grab bytes */
1883                 res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1884                 if (res != ERROR_OK) {
1885                         LOG_ERROR("Error issuing unaligned memory write context instruction(s): %d", res);
1886                         if (albuff != buffer)
1887                                 free(albuff);
1888                         return res;
1889                 }
1890                 xtensa_core_status_check(target);
1891                 if (xtensa->target->endianness == TARGET_BIG_ENDIAN) {
1892                         bool swapped_w0 = false;
1893                         if (address & 3) {
1894                                 buf_bswap32(&albuff[0], &albuff[0], 4);
1895                                 swapped_w0 = true;
1896                         }
1897                         if ((address + (size * count)) & 3) {
1898                                 if ((addrend_al - addrstart_al - 4 == 0) && swapped_w0) {
1899                                         /* Don't double-swap if buffer start/end are within the same word */
1900                                 } else {
1901                                         buf_bswap32(&albuff[addrend_al - addrstart_al - 4],
1902                                                 &albuff[addrend_al - addrstart_al - 4], 4);
1903                                 }
1904                         }
1905                 }
1906                 /* Copy data to be written into the aligned buffer (in host-endianness) */
1907                 memcpy(&albuff[address & 3], buffer, size * count);
1908                 /* Now we can write albuff in aligned uint32s. */
1909         }
1910
1911         if (xtensa->target->endianness == TARGET_BIG_ENDIAN)
1912                 buf_bswap32(albuff, fill_head_tail ? albuff : buffer, addrend_al - addrstart_al);
1913
1914         /* Write start address to A3 */
1915         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, addrstart_al);
1916         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1917         /* Write the aligned buffer */
1918         if (xtensa->probe_lsddr32p != 0) {
1919                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t)) {
1920                         if (i == 0) {
1921                                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, buf_get_u32(&albuff[i], 0, 32));
1922                                 xtensa_queue_exec_ins(xtensa, XT_INS_SDDR32P(xtensa, XT_REG_A3));
1923                         } else {
1924                                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDREXEC, buf_get_u32(&albuff[i], 0, 32));
1925                         }
1926                 }
1927         } else {
1928                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A4);
1929                 for (unsigned int i = 0; adr != addrend_al; i += sizeof(uint32_t), adr += sizeof(uint32_t)) {
1930                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, buf_get_u32(&albuff[i], 0, 32));
1931                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A4));
1932                         xtensa_queue_exec_ins(xtensa, XT_INS_S32I(xtensa, XT_REG_A3, XT_REG_A4, 0));
1933                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, adr + sizeof(uint32_t));
1934                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1935                 }
1936         }
1937
1938         res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1939         if (res == ERROR_OK) {
1940                 bool prev_suppress = xtensa->suppress_dsr_errors;
1941                 xtensa->suppress_dsr_errors = true;
1942                 res = xtensa_core_status_check(target);
1943                 if (xtensa->probe_lsddr32p == -1)
1944                         xtensa->probe_lsddr32p = 1;
1945                 xtensa->suppress_dsr_errors = prev_suppress;
1946         }
1947         if (res != ERROR_OK) {
1948                 if (xtensa->probe_lsddr32p != 0) {
1949                         /* Disable fast memory access instructions and retry before reporting an error */
1950                         LOG_TARGET_INFO(target, "Disabling LDDR32.P/SDDR32.P");
1951                         xtensa->probe_lsddr32p = 0;
1952                         res = xtensa_write_memory(target, address, size, count, buffer);
1953                 } else {
1954                         LOG_TARGET_WARNING(target, "Failed writing %d bytes at address "TARGET_ADDR_FMT,
1955                                 count * size, address);
1956                 }
1957         } else {
1958                 /* Invalidate ICACHE, writeback DCACHE if present */
1959                 uint32_t issue_ihi = xtensa_is_icacheable(xtensa, address);
1960                 uint32_t issue_dhwb = xtensa_is_dcacheable(xtensa, address);
1961                 if (issue_ihi || issue_dhwb) {
1962                         uint32_t ilinesize = issue_ihi ?  xtensa->core_config->icache.line_size : UINT32_MAX;
1963                         uint32_t dlinesize = issue_dhwb ? xtensa->core_config->dcache.line_size : UINT32_MAX;
1964                         uint32_t linesize = MIN(ilinesize, dlinesize);
1965                         uint32_t off = 0;
1966                         adr = addrstart_al;
1967
1968                         while ((adr + off) < addrend_al) {
1969                                 if (off == 0) {
1970                                         /* Write start address to A3 */
1971                                         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, adr);
1972                                         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
1973                                 }
1974                                 if (issue_ihi)
1975                                         xtensa_queue_exec_ins(xtensa, XT_INS_IHI(xtensa, XT_REG_A3, off));
1976                                 if (issue_dhwb)
1977                                         xtensa_queue_exec_ins(xtensa, XT_INS_DHWBI(xtensa, XT_REG_A3, off));
1978                                 off += linesize;
1979                                 if (off > 1020) {
1980                                         /* IHI, DHWB have 8-bit immediate operands (0..1020) */
1981                                         adr += off;
1982                                         off = 0;
1983                                 }
1984                         }
1985
1986                         /* Execute cache WB/INV instructions */
1987                         res = xtensa_dm_queue_execute(&xtensa->dbg_mod);
1988                         xtensa_core_status_check(target);
1989                         if (res != ERROR_OK)
1990                                 LOG_TARGET_ERROR(target,
1991                                         "Error issuing cache writeback/invaldate instruction(s): %d",
1992                                         res);
1993                 }
1994         }
1995         if (albuff != buffer)
1996                 free(albuff);
1997
1998         return res;
1999 }
2000
2001 int xtensa_write_buffer(struct target *target, target_addr_t address, uint32_t count, const uint8_t *buffer)
2002 {
2003         /* xtensa_write_memory can handle everything. Just pass on to that. */
2004         return xtensa_write_memory(target, address, 1, count, buffer);
2005 }
2006
2007 int xtensa_checksum_memory(struct target *target, target_addr_t address, uint32_t count, uint32_t *checksum)
2008 {
2009         LOG_WARNING("not implemented yet");
2010         return ERROR_FAIL;
2011 }
2012
2013 int xtensa_poll(struct target *target)
2014 {
2015         struct xtensa *xtensa = target_to_xtensa(target);
2016         if (xtensa_dm_poll(&xtensa->dbg_mod) != ERROR_OK) {
2017                 target->state = TARGET_UNKNOWN;
2018                 return ERROR_TARGET_NOT_EXAMINED;
2019         }
2020
2021         int res = xtensa_dm_power_status_read(&xtensa->dbg_mod, PWRSTAT_DEBUGWASRESET(xtensa) |
2022                 PWRSTAT_COREWASRESET(xtensa));
2023         if (xtensa->dbg_mod.power_status.stat != xtensa->dbg_mod.power_status.stath)
2024                 LOG_TARGET_DEBUG(target, "PWRSTAT: read 0x%08" PRIx32 ", clear 0x%08lx, reread 0x%08" PRIx32,
2025                         xtensa->dbg_mod.power_status.stat,
2026                         PWRSTAT_DEBUGWASRESET(xtensa) | PWRSTAT_COREWASRESET(xtensa),
2027                         xtensa->dbg_mod.power_status.stath);
2028         if (res != ERROR_OK)
2029                 return res;
2030
2031         if (xtensa_dm_tap_was_reset(&xtensa->dbg_mod)) {
2032                 LOG_TARGET_INFO(target, "Debug controller was reset.");
2033                 res = xtensa_smpbreak_write(xtensa, xtensa->smp_break);
2034                 if (res != ERROR_OK)
2035                         return res;
2036         }
2037         if (xtensa_dm_core_was_reset(&xtensa->dbg_mod))
2038                 LOG_TARGET_INFO(target, "Core was reset.");
2039         xtensa_dm_power_status_cache(&xtensa->dbg_mod);
2040         /* Enable JTAG, set reset if needed */
2041         res = xtensa_wakeup(target);
2042         if (res != ERROR_OK)
2043                 return res;
2044
2045         uint32_t prev_dsr = xtensa->dbg_mod.core_status.dsr;
2046         res = xtensa_dm_core_status_read(&xtensa->dbg_mod);
2047         if (res != ERROR_OK)
2048                 return res;
2049         if (prev_dsr != xtensa->dbg_mod.core_status.dsr)
2050                 LOG_TARGET_DEBUG(target,
2051                         "DSR has changed: was 0x%08" PRIx32 " now 0x%08" PRIx32,
2052                         prev_dsr,
2053                         xtensa->dbg_mod.core_status.dsr);
2054         if (xtensa->dbg_mod.power_status.stath & PWRSTAT_COREWASRESET(xtensa)) {
2055                 /* if RESET state is persitent  */
2056                 target->state = TARGET_RESET;
2057         } else if (!xtensa_dm_is_powered(&xtensa->dbg_mod)) {
2058                 LOG_TARGET_DEBUG(target, "not powered 0x%" PRIX32 "%ld",
2059                         xtensa->dbg_mod.core_status.dsr,
2060                         xtensa->dbg_mod.core_status.dsr & OCDDSR_STOPPED);
2061                 target->state = TARGET_UNKNOWN;
2062                 if (xtensa->come_online_probes_num == 0)
2063                         target->examined = false;
2064                 else
2065                         xtensa->come_online_probes_num--;
2066         } else if (xtensa_is_stopped(target)) {
2067                 if (target->state != TARGET_HALTED) {
2068                         enum target_state oldstate = target->state;
2069                         target->state = TARGET_HALTED;
2070                         /* Examine why the target has been halted */
2071                         target->debug_reason = DBG_REASON_DBGRQ;
2072                         xtensa_fetch_all_regs(target);
2073                         /* When setting debug reason DEBUGCAUSE events have the following
2074                          * priorities: watchpoint == breakpoint > single step > debug interrupt. */
2075                         /* Watchpoint and breakpoint events at the same time results in special
2076                          * debug reason: DBG_REASON_WPTANDBKPT. */
2077                         uint32_t halt_cause = xtensa_cause_get(target);
2078                         /* TODO: Add handling of DBG_REASON_EXC_CATCH */
2079                         if (halt_cause & DEBUGCAUSE_IC)
2080                                 target->debug_reason = DBG_REASON_SINGLESTEP;
2081                         if (halt_cause & (DEBUGCAUSE_IB | DEBUGCAUSE_BN | DEBUGCAUSE_BI)) {
2082                                 if (halt_cause & DEBUGCAUSE_DB)
2083                                         target->debug_reason = DBG_REASON_WPTANDBKPT;
2084                                 else
2085                                         target->debug_reason = DBG_REASON_BREAKPOINT;
2086                         } else if (halt_cause & DEBUGCAUSE_DB) {
2087                                 target->debug_reason = DBG_REASON_WATCHPOINT;
2088                         }
2089                         LOG_TARGET_DEBUG(target, "Target halted, pc=0x%08" PRIx32
2090                                 ", debug_reason=%08" PRIx32 ", oldstate=%08" PRIx32,
2091                                 xtensa_reg_get(target, XT_REG_IDX_PC),
2092                                 target->debug_reason,
2093                                 oldstate);
2094                         LOG_TARGET_DEBUG(target, "Halt reason=0x%08" PRIX32 ", exc_cause=%" PRId32 ", dsr=0x%08" PRIx32,
2095                                 halt_cause,
2096                                 xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE),
2097                                 xtensa->dbg_mod.core_status.dsr);
2098                         xtensa_dm_core_status_clear(
2099                                 &xtensa->dbg_mod,
2100                                 OCDDSR_DEBUGPENDBREAK | OCDDSR_DEBUGINTBREAK | OCDDSR_DEBUGPENDTRAX |
2101                                 OCDDSR_DEBUGINTTRAX |
2102                                 OCDDSR_DEBUGPENDHOST | OCDDSR_DEBUGINTHOST);
2103                 }
2104         } else {
2105                 target->debug_reason = DBG_REASON_NOTHALTED;
2106                 if (target->state != TARGET_RUNNING && target->state != TARGET_DEBUG_RUNNING) {
2107                         target->state = TARGET_RUNNING;
2108                         target->debug_reason = DBG_REASON_NOTHALTED;
2109                 }
2110         }
2111         if (xtensa->trace_active) {
2112                 /* Detect if tracing was active but has stopped. */
2113                 struct xtensa_trace_status trace_status;
2114                 res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
2115                 if (res == ERROR_OK) {
2116                         if (!(trace_status.stat & TRAXSTAT_TRACT)) {
2117                                 LOG_INFO("Detected end of trace.");
2118                                 if (trace_status.stat & TRAXSTAT_PCMTG)
2119                                         LOG_TARGET_INFO(target, "Trace stop triggered by PC match");
2120                                 if (trace_status.stat & TRAXSTAT_PTITG)
2121                                         LOG_TARGET_INFO(target, "Trace stop triggered by Processor Trigger Input");
2122                                 if (trace_status.stat & TRAXSTAT_CTITG)
2123                                         LOG_TARGET_INFO(target, "Trace stop triggered by Cross-trigger Input");
2124                                 xtensa->trace_active = false;
2125                         }
2126                 }
2127         }
2128         return ERROR_OK;
2129 }
2130
2131 static int xtensa_update_instruction(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2132 {
2133         struct xtensa *xtensa = target_to_xtensa(target);
2134         unsigned int issue_ihi = xtensa_is_icacheable(xtensa, address);
2135         unsigned int issue_dhwbi = xtensa_is_dcacheable(xtensa, address);
2136         uint32_t icache_line_size = issue_ihi ? xtensa->core_config->icache.line_size : UINT32_MAX;
2137         uint32_t dcache_line_size = issue_dhwbi ? xtensa->core_config->dcache.line_size : UINT32_MAX;
2138         unsigned int same_ic_line = ((address & (icache_line_size - 1)) + size) <= icache_line_size;
2139         unsigned int same_dc_line = ((address & (dcache_line_size - 1)) + size) <= dcache_line_size;
2140         int ret;
2141
2142         if (size > icache_line_size)
2143                 return ERROR_FAIL;
2144
2145         if (issue_ihi || issue_dhwbi) {
2146                 /* We're going to use A3 here */
2147                 xtensa_mark_register_dirty(xtensa, XT_REG_IDX_A3);
2148
2149                 /* Write start address to A3 and invalidate */
2150                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, address);
2151                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
2152                 LOG_TARGET_DEBUG(target, "DHWBI, IHI for address "TARGET_ADDR_FMT, address);
2153                 if (issue_dhwbi) {
2154                         xtensa_queue_exec_ins(xtensa, XT_INS_DHWBI(xtensa, XT_REG_A3, 0));
2155                         if (!same_dc_line) {
2156                                 LOG_TARGET_DEBUG(target,
2157                                         "DHWBI second dcache line for address "TARGET_ADDR_FMT,
2158                                         address + 4);
2159                                 xtensa_queue_exec_ins(xtensa, XT_INS_DHWBI(xtensa, XT_REG_A3, 4));
2160                         }
2161                 }
2162                 if (issue_ihi) {
2163                         xtensa_queue_exec_ins(xtensa, XT_INS_IHI(xtensa, XT_REG_A3, 0));
2164                         if (!same_ic_line) {
2165                                 LOG_TARGET_DEBUG(target,
2166                                         "IHI second icache line for address "TARGET_ADDR_FMT,
2167                                         address + 4);
2168                                 xtensa_queue_exec_ins(xtensa, XT_INS_IHI(xtensa, XT_REG_A3, 4));
2169                         }
2170                 }
2171
2172                 /* Execute invalidate instructions */
2173                 ret = xtensa_dm_queue_execute(&xtensa->dbg_mod);
2174                 xtensa_core_status_check(target);
2175                 if (ret != ERROR_OK) {
2176                         LOG_ERROR("Error issuing cache invaldate instruction(s): %d", ret);
2177                         return ret;
2178                 }
2179         }
2180
2181         /* Write new instructions to memory */
2182         ret = target_write_buffer(target, address, size, buffer);
2183         if (ret != ERROR_OK) {
2184                 LOG_TARGET_ERROR(target, "Error writing instruction to memory: %d", ret);
2185                 return ret;
2186         }
2187
2188         if (issue_dhwbi) {
2189                 /* Flush dcache so instruction propagates.  A3 may be corrupted during memory write */
2190                 xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, address);
2191                 xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
2192                 xtensa_queue_exec_ins(xtensa, XT_INS_DHWB(xtensa, XT_REG_A3, 0));
2193                 LOG_DEBUG("DHWB dcache line for address "TARGET_ADDR_FMT, address);
2194                 if (!same_dc_line) {
2195                         LOG_TARGET_DEBUG(target, "DHWB second dcache line for address "TARGET_ADDR_FMT, address + 4);
2196                         xtensa_queue_exec_ins(xtensa, XT_INS_DHWB(xtensa, XT_REG_A3, 4));
2197                 }
2198
2199                 /* Execute invalidate instructions */
2200                 ret = xtensa_dm_queue_execute(&xtensa->dbg_mod);
2201                 xtensa_core_status_check(target);
2202         }
2203
2204         /* TODO: Handle L2 cache if present */
2205         return ret;
2206 }
2207
2208 static int xtensa_sw_breakpoint_add(struct target *target,
2209         struct breakpoint *breakpoint,
2210         struct xtensa_sw_breakpoint *sw_bp)
2211 {
2212         struct xtensa *xtensa = target_to_xtensa(target);
2213         int ret = target_read_buffer(target, breakpoint->address, XT_ISNS_SZ_MAX, sw_bp->insn);
2214         if (ret != ERROR_OK) {
2215                 LOG_TARGET_ERROR(target, "Failed to read original instruction (%d)!", ret);
2216                 return ret;
2217         }
2218
2219         sw_bp->insn_sz = MIN(XT_ISNS_SZ_MAX, breakpoint->length);
2220         sw_bp->oocd_bp = breakpoint;
2221
2222         uint32_t break_insn = sw_bp->insn_sz == XT_ISNS_SZ_MAX ? XT_INS_BREAK(xtensa, 0, 0) : XT_INS_BREAKN(xtensa, 0);
2223
2224         /* Underlying memory write will convert instruction endianness, don't do that here */
2225         ret = xtensa_update_instruction(target, breakpoint->address, sw_bp->insn_sz, (uint8_t *)&break_insn);
2226         if (ret != ERROR_OK) {
2227                 LOG_TARGET_ERROR(target, "Failed to write breakpoint instruction (%d)!", ret);
2228                 return ret;
2229         }
2230
2231         return ERROR_OK;
2232 }
2233
2234 static int xtensa_sw_breakpoint_remove(struct target *target, struct xtensa_sw_breakpoint *sw_bp)
2235 {
2236         int ret = xtensa_update_instruction(target, sw_bp->oocd_bp->address, sw_bp->insn_sz, sw_bp->insn);
2237         if (ret != ERROR_OK) {
2238                 LOG_TARGET_ERROR(target, "Failed to write insn (%d)!", ret);
2239                 return ret;
2240         }
2241         sw_bp->oocd_bp = NULL;
2242         return ERROR_OK;
2243 }
2244
2245 int xtensa_breakpoint_add(struct target *target, struct breakpoint *breakpoint)
2246 {
2247         struct xtensa *xtensa = target_to_xtensa(target);
2248         unsigned int slot;
2249
2250         if (breakpoint->type == BKPT_SOFT) {
2251                 for (slot = 0; slot < XT_SW_BREAKPOINTS_MAX_NUM; slot++) {
2252                         if (!xtensa->sw_brps[slot].oocd_bp ||
2253                                 xtensa->sw_brps[slot].oocd_bp == breakpoint)
2254                                 break;
2255                 }
2256                 if (slot == XT_SW_BREAKPOINTS_MAX_NUM) {
2257                         LOG_TARGET_WARNING(target, "No free slots to add SW breakpoint!");
2258                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2259                 }
2260                 int ret = xtensa_sw_breakpoint_add(target, breakpoint, &xtensa->sw_brps[slot]);
2261                 if (ret != ERROR_OK) {
2262                         LOG_TARGET_ERROR(target, "Failed to add SW breakpoint!");
2263                         return ret;
2264                 }
2265                 LOG_TARGET_DEBUG(target, "placed SW breakpoint %u @ " TARGET_ADDR_FMT,
2266                         slot,
2267                         breakpoint->address);
2268                 return ERROR_OK;
2269         }
2270
2271         for (slot = 0; slot < xtensa->core_config->debug.ibreaks_num; slot++) {
2272                 if (!xtensa->hw_brps[slot] || xtensa->hw_brps[slot] == breakpoint)
2273                         break;
2274         }
2275         if (slot == xtensa->core_config->debug.ibreaks_num) {
2276                 LOG_TARGET_ERROR(target, "No free slots to add HW breakpoint!");
2277                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2278         }
2279
2280         xtensa->hw_brps[slot] = breakpoint;
2281         /* We will actually write the breakpoints when we resume the target. */
2282         LOG_TARGET_DEBUG(target, "placed HW breakpoint %u @ " TARGET_ADDR_FMT,
2283                 slot,
2284                 breakpoint->address);
2285
2286         return ERROR_OK;
2287 }
2288
2289 int xtensa_breakpoint_remove(struct target *target, struct breakpoint *breakpoint)
2290 {
2291         struct xtensa *xtensa = target_to_xtensa(target);
2292         unsigned int slot;
2293
2294         if (breakpoint->type == BKPT_SOFT) {
2295                 for (slot = 0; slot < XT_SW_BREAKPOINTS_MAX_NUM; slot++) {
2296                         if (xtensa->sw_brps[slot].oocd_bp && xtensa->sw_brps[slot].oocd_bp == breakpoint)
2297                                 break;
2298                 }
2299                 if (slot == XT_SW_BREAKPOINTS_MAX_NUM) {
2300                         LOG_TARGET_WARNING(target, "Max SW breakpoints slot reached, slot=%u!", slot);
2301                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2302                 }
2303                 int ret = xtensa_sw_breakpoint_remove(target, &xtensa->sw_brps[slot]);
2304                 if (ret != ERROR_OK) {
2305                         LOG_TARGET_ERROR(target, "Failed to remove SW breakpoint (%d)!", ret);
2306                         return ret;
2307                 }
2308                 LOG_TARGET_DEBUG(target, "cleared SW breakpoint %u @ " TARGET_ADDR_FMT, slot, breakpoint->address);
2309                 return ERROR_OK;
2310         }
2311
2312         for (slot = 0; slot < xtensa->core_config->debug.ibreaks_num; slot++) {
2313                 if (xtensa->hw_brps[slot] == breakpoint)
2314                         break;
2315         }
2316         if (slot == xtensa->core_config->debug.ibreaks_num) {
2317                 LOG_TARGET_ERROR(target, "HW breakpoint not found!");
2318                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2319         }
2320         xtensa->hw_brps[slot] = NULL;
2321         LOG_TARGET_DEBUG(target, "cleared HW breakpoint %u @ " TARGET_ADDR_FMT, slot, breakpoint->address);
2322         return ERROR_OK;
2323 }
2324
2325 int xtensa_watchpoint_add(struct target *target, struct watchpoint *watchpoint)
2326 {
2327         struct xtensa *xtensa = target_to_xtensa(target);
2328         unsigned int slot;
2329         xtensa_reg_val_t dbreakcval;
2330
2331         if (target->state != TARGET_HALTED) {
2332                 LOG_TARGET_WARNING(target, "target not halted");
2333                 return ERROR_TARGET_NOT_HALTED;
2334         }
2335
2336         if (watchpoint->mask != ~(uint32_t)0) {
2337                 LOG_TARGET_ERROR(target, "watchpoint value masks not supported");
2338                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2339         }
2340
2341         for (slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++) {
2342                 if (!xtensa->hw_wps[slot] || xtensa->hw_wps[slot] == watchpoint)
2343                         break;
2344         }
2345         if (slot == xtensa->core_config->debug.dbreaks_num) {
2346                 LOG_TARGET_WARNING(target, "No free slots to add HW watchpoint!");
2347                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2348         }
2349
2350         /* Figure out value for dbreakc5..0
2351          * It's basically 0x3F with an incremental bit removed from the LSB for each extra length power of 2. */
2352         if (watchpoint->length < 1 || watchpoint->length > 64 ||
2353                 !IS_PWR_OF_2(watchpoint->length) ||
2354                 !IS_ALIGNED(watchpoint->address, watchpoint->length)) {
2355                 LOG_TARGET_WARNING(
2356                         target,
2357                         "Watchpoint with length %d on address " TARGET_ADDR_FMT
2358                         " not supported by hardware.",
2359                         watchpoint->length,
2360                         watchpoint->address);
2361                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2362         }
2363         dbreakcval = ALIGN_DOWN(0x3F, watchpoint->length);
2364
2365         if (watchpoint->rw == WPT_READ)
2366                 dbreakcval |= BIT(30);
2367         if (watchpoint->rw == WPT_WRITE)
2368                 dbreakcval |= BIT(31);
2369         if (watchpoint->rw == WPT_ACCESS)
2370                 dbreakcval |= BIT(30) | BIT(31);
2371
2372         /* Write DBREAKA[slot] and DBCREAKC[slot] */
2373         xtensa_reg_set(target, XT_REG_IDX_DBREAKA0 + slot, watchpoint->address);
2374         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, dbreakcval);
2375         xtensa->hw_wps[slot] = watchpoint;
2376         LOG_TARGET_DEBUG(target, "placed HW watchpoint @ " TARGET_ADDR_FMT,
2377                 watchpoint->address);
2378         return ERROR_OK;
2379 }
2380
2381 int xtensa_watchpoint_remove(struct target *target, struct watchpoint *watchpoint)
2382 {
2383         struct xtensa *xtensa = target_to_xtensa(target);
2384         unsigned int slot;
2385
2386         for (slot = 0; slot < xtensa->core_config->debug.dbreaks_num; slot++) {
2387                 if (xtensa->hw_wps[slot] == watchpoint)
2388                         break;
2389         }
2390         if (slot == xtensa->core_config->debug.dbreaks_num) {
2391                 LOG_TARGET_WARNING(target, "HW watchpoint " TARGET_ADDR_FMT " not found!", watchpoint->address);
2392                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2393         }
2394         xtensa_reg_set(target, XT_REG_IDX_DBREAKC0 + slot, 0);
2395         xtensa->hw_wps[slot] = NULL;
2396         LOG_TARGET_DEBUG(target, "cleared HW watchpoint @ " TARGET_ADDR_FMT,
2397                 watchpoint->address);
2398         return ERROR_OK;
2399 }
2400
2401 static int xtensa_build_reg_cache(struct target *target)
2402 {
2403         struct xtensa *xtensa = target_to_xtensa(target);
2404         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
2405         unsigned int last_dbreg_num = 0;
2406
2407         if (xtensa->core_regs_num + xtensa->num_optregs != xtensa->total_regs_num)
2408                 LOG_TARGET_WARNING(target, "Register count MISMATCH: %d core regs, %d extended regs; %d expected",
2409                         xtensa->core_regs_num, xtensa->num_optregs, xtensa->total_regs_num);
2410
2411         struct reg_cache *reg_cache = calloc(1, sizeof(struct reg_cache));
2412
2413         if (!reg_cache) {
2414                 LOG_ERROR("Failed to alloc reg cache!");
2415                 return ERROR_FAIL;
2416         }
2417         reg_cache->name = "Xtensa registers";
2418         reg_cache->next = NULL;
2419         /* Init reglist */
2420         unsigned int reg_list_size = XT_NUM_REGS + xtensa->num_optregs;
2421         struct reg *reg_list = calloc(reg_list_size, sizeof(struct reg));
2422         if (!reg_list) {
2423                 LOG_ERROR("Failed to alloc reg list!");
2424                 goto fail;
2425         }
2426         xtensa->dbregs_num = 0;
2427         unsigned int didx = 0;
2428         for (unsigned int whichlist = 0; whichlist < 2; whichlist++) {
2429                 struct xtensa_reg_desc *rlist = (whichlist == 0) ? xtensa_regs : xtensa->optregs;
2430                 unsigned int listsize = (whichlist == 0) ? XT_NUM_REGS : xtensa->num_optregs;
2431                 for (unsigned int i = 0; i < listsize; i++, didx++) {
2432                         reg_list[didx].exist = rlist[i].exist;
2433                         reg_list[didx].name = rlist[i].name;
2434                         reg_list[didx].size = 32;
2435                         reg_list[didx].value = calloc(1, 4 /*XT_REG_LEN*/);     /* make Clang Static Analyzer happy */
2436                         if (!reg_list[didx].value) {
2437                                 LOG_ERROR("Failed to alloc reg list value!");
2438                                 goto fail;
2439                         }
2440                         reg_list[didx].dirty = false;
2441                         reg_list[didx].valid = false;
2442                         reg_list[didx].type = &xtensa_reg_type;
2443                         reg_list[didx].arch_info = xtensa;
2444                         if (rlist[i].exist && (rlist[i].dbreg_num > last_dbreg_num))
2445                                 last_dbreg_num = rlist[i].dbreg_num;
2446
2447                         if (xtensa_extra_debug_log) {
2448                                 LOG_TARGET_DEBUG(target,
2449                                         "POPULATE %-16s list %d exist %d, idx %d, type %d, dbreg_num 0x%04x",
2450                                         reg_list[didx].name,
2451                                         whichlist,
2452                                         reg_list[didx].exist,
2453                                         didx,
2454                                         rlist[i].type,
2455                                         rlist[i].dbreg_num);
2456                         }
2457                 }
2458         }
2459
2460         xtensa->dbregs_num = last_dbreg_num + 1;
2461         reg_cache->reg_list = reg_list;
2462         reg_cache->num_regs = reg_list_size;
2463
2464         LOG_TARGET_DEBUG(target, "xtensa->total_regs_num %d reg_list_size %d xtensa->dbregs_num %d",
2465                 xtensa->total_regs_num, reg_list_size, xtensa->dbregs_num);
2466
2467         /* Construct empty-register list for handling unknown register requests */
2468         xtensa->empty_regs = calloc(xtensa->dbregs_num, sizeof(struct reg));
2469         if (!xtensa->empty_regs) {
2470                 LOG_TARGET_ERROR(target, "ERROR: Out of memory");
2471                 goto fail;
2472         }
2473         for (unsigned int i = 0; i < xtensa->dbregs_num; i++) {
2474                 xtensa->empty_regs[i].name = calloc(8, sizeof(char));
2475                 if (!xtensa->empty_regs[i].name) {
2476                         LOG_TARGET_ERROR(target, "ERROR: Out of memory");
2477                         goto fail;
2478                 }
2479                 sprintf((char *)xtensa->empty_regs[i].name, "?0x%04x", i & 0x0000FFFF);
2480                 xtensa->empty_regs[i].size = 32;
2481                 xtensa->empty_regs[i].type = &xtensa_reg_type;
2482                 xtensa->empty_regs[i].value = calloc(1, 4 /*XT_REG_LEN*/);      /* make Clang Static Analyzer happy */
2483                 if (!xtensa->empty_regs[i].value) {
2484                         LOG_ERROR("Failed to alloc empty reg list value!");
2485                         goto fail;
2486                 }
2487                 xtensa->empty_regs[i].arch_info = xtensa;
2488         }
2489
2490         /* Construct contiguous register list from contiguous descriptor list */
2491         if (xtensa->regmap_contiguous && xtensa->contiguous_regs_desc) {
2492                 xtensa->contiguous_regs_list = calloc(xtensa->total_regs_num, sizeof(struct reg *));
2493                 if (!xtensa->contiguous_regs_list) {
2494                         LOG_TARGET_ERROR(target, "ERROR: Out of memory");
2495                         goto fail;
2496                 }
2497                 for (unsigned int i = 0; i < xtensa->total_regs_num; i++) {
2498                         unsigned int j;
2499                         for (j = 0; j < reg_cache->num_regs; j++) {
2500                                 if (!strcmp(reg_cache->reg_list[j].name, xtensa->contiguous_regs_desc[i]->name)) {
2501                                         xtensa->contiguous_regs_list[i] = &(reg_cache->reg_list[j]);
2502                                         LOG_TARGET_DEBUG(target,
2503                                                 "POPULATE contiguous regs list: %-16s, dbreg_num 0x%04x",
2504                                                 xtensa->contiguous_regs_list[i]->name,
2505                                                 xtensa->contiguous_regs_desc[i]->dbreg_num);
2506                                         break;
2507                                 }
2508                         }
2509                         if (j == reg_cache->num_regs)
2510                                 LOG_TARGET_WARNING(target, "contiguous register %s not found",
2511                                         xtensa->contiguous_regs_desc[i]->name);
2512                 }
2513         }
2514
2515         xtensa->algo_context_backup = calloc(reg_cache->num_regs, sizeof(void *));
2516         if (!xtensa->algo_context_backup) {
2517                 LOG_ERROR("Failed to alloc mem for algorithm context backup!");
2518                 goto fail;
2519         }
2520         for (unsigned int i = 0; i < reg_cache->num_regs; i++) {
2521                 struct reg *reg = &reg_cache->reg_list[i];
2522                 xtensa->algo_context_backup[i] = calloc(1, reg->size / 8);
2523                 if (!xtensa->algo_context_backup[i]) {
2524                         LOG_ERROR("Failed to alloc mem for algorithm context!");
2525                         goto fail;
2526                 }
2527         }
2528         xtensa->core_cache = reg_cache;
2529         if (cache_p)
2530                 *cache_p = reg_cache;
2531         return ERROR_OK;
2532
2533 fail:
2534         if (reg_list) {
2535                 for (unsigned int i = 0; i < reg_list_size; i++)
2536                         free(reg_list[i].value);
2537                 free(reg_list);
2538         }
2539         if (xtensa->empty_regs) {
2540                 for (unsigned int i = 0; i < xtensa->dbregs_num; i++) {
2541                         free((void *)xtensa->empty_regs[i].name);
2542                         free(xtensa->empty_regs[i].value);
2543                 }
2544                 free(xtensa->empty_regs);
2545         }
2546         if (xtensa->algo_context_backup) {
2547                 for (unsigned int i = 0; i < reg_cache->num_regs; i++)
2548                         free(xtensa->algo_context_backup[i]);
2549                 free(xtensa->algo_context_backup);
2550         }
2551         free(reg_cache);
2552
2553         return ERROR_FAIL;
2554 }
2555
2556 static int32_t xtensa_gdbqc_parse_exec_tie_ops(struct target *target, char *opstr)
2557 {
2558         struct xtensa *xtensa = target_to_xtensa(target);
2559         int32_t status = ERROR_COMMAND_ARGUMENT_INVALID;
2560         /* Process op[] list */
2561         while (opstr && (*opstr == ':')) {
2562                 uint8_t ops[32];
2563                 unsigned int oplen = strtoul(opstr + 1, &opstr, 16);
2564                 if (oplen > 32) {
2565                         LOG_TARGET_ERROR(target, "TIE access instruction too long (%d)\n", oplen);
2566                         break;
2567                 }
2568                 unsigned int i = 0;
2569                 while ((i < oplen) && opstr && (*opstr == ':'))
2570                         ops[i++] = strtoul(opstr + 1, &opstr, 16);
2571                 if (i != oplen) {
2572                         LOG_TARGET_ERROR(target, "TIE access instruction malformed (%d)\n", i);
2573                         break;
2574                 }
2575
2576                 char insn_buf[128];
2577                 sprintf(insn_buf, "Exec %d-byte TIE sequence: ", oplen);
2578                 for (i = 0; i < oplen; i++)
2579                         sprintf(insn_buf + strlen(insn_buf), "%02x:", ops[i]);
2580                 LOG_TARGET_DEBUG(target, "%s", insn_buf);
2581                 xtensa_queue_exec_ins_wide(xtensa, ops, oplen); /* Handles endian-swap */
2582                 status = ERROR_OK;
2583         }
2584         return status;
2585 }
2586
2587 static int xtensa_gdbqc_qxtreg(struct target *target, const char *packet, char **response_p)
2588 {
2589         struct xtensa *xtensa = target_to_xtensa(target);
2590         bool iswrite = (packet[0] == 'Q');
2591         enum xtensa_qerr_e error;
2592
2593         /* Read/write TIE register.  Requires spill location.
2594          * qxtreg<num>:<len>:<oplen>:<op[0]>:<...>[:<oplen>:<op[0]>:<...>]
2595          * Qxtreg<num>:<len>:<oplen>:<op[0]>:<...>[:<oplen>:<op[0]>:<...>]=<value>
2596          */
2597         if (!(xtensa->spill_buf)) {
2598                 LOG_ERROR("Spill location not specified. Try 'target remote <host>:3333 &spill_location0'");
2599                 error = XT_QERR_FAIL;
2600                 goto xtensa_gdbqc_qxtreg_fail;
2601         }
2602
2603         char *delim;
2604         uint32_t regnum = strtoul(packet + 6, &delim, 16);
2605         if (*delim != ':') {
2606                 LOG_ERROR("Malformed qxtreg packet");
2607                 error = XT_QERR_INVAL;
2608                 goto xtensa_gdbqc_qxtreg_fail;
2609         }
2610         uint32_t reglen = strtoul(delim + 1, &delim, 16);
2611         if (*delim != ':') {
2612                 LOG_ERROR("Malformed qxtreg packet");
2613                 error = XT_QERR_INVAL;
2614                 goto xtensa_gdbqc_qxtreg_fail;
2615         }
2616         uint8_t regbuf[XT_QUERYPKT_RESP_MAX];
2617         memset(regbuf, 0, XT_QUERYPKT_RESP_MAX);
2618         LOG_DEBUG("TIE reg 0x%08" PRIx32 " %s (%d bytes)", regnum, iswrite ? "write" : "read", reglen);
2619         if (reglen * 2 + 1 > XT_QUERYPKT_RESP_MAX) {
2620                 LOG_ERROR("TIE register too large");
2621                 error = XT_QERR_MEM;
2622                 goto xtensa_gdbqc_qxtreg_fail;
2623         }
2624
2625         /* (1) Save spill memory, (1.5) [if write then store value to spill location],
2626          * (2) read old a4, (3) write spill address to a4.
2627          * NOTE: ensure a4 is restored properly by all error handling logic
2628          */
2629         unsigned int memop_size = (xtensa->spill_loc & 3) ? 1 : 4;
2630         int status = xtensa_read_memory(target, xtensa->spill_loc, memop_size,
2631                 xtensa->spill_bytes / memop_size, xtensa->spill_buf);
2632         if (status != ERROR_OK) {
2633                 LOG_ERROR("Spill memory save");
2634                 error = XT_QERR_MEM;
2635                 goto xtensa_gdbqc_qxtreg_fail;
2636         }
2637         if (iswrite) {
2638                 /* Extract value and store in spill memory */
2639                 unsigned int b = 0;
2640                 char *valbuf = strchr(delim, '=');
2641                 if (!(valbuf && (*valbuf == '='))) {
2642                         LOG_ERROR("Malformed Qxtreg packet");
2643                         error = XT_QERR_INVAL;
2644                         goto xtensa_gdbqc_qxtreg_fail;
2645                 }
2646                 valbuf++;
2647                 while (*valbuf && *(valbuf + 1)) {
2648                         char bytestr[3] = { 0, 0, 0 };
2649                         strncpy(bytestr, valbuf, 2);
2650                         regbuf[b++] = strtoul(bytestr, NULL, 16);
2651                         valbuf += 2;
2652                 }
2653                 if (b != reglen) {
2654                         LOG_ERROR("Malformed Qxtreg packet");
2655                         error = XT_QERR_INVAL;
2656                         goto xtensa_gdbqc_qxtreg_fail;
2657                 }
2658                 status = xtensa_write_memory(target, xtensa->spill_loc, memop_size,
2659                         reglen / memop_size, regbuf);
2660                 if (status != ERROR_OK) {
2661                         LOG_ERROR("TIE value store");
2662                         error = XT_QERR_MEM;
2663                         goto xtensa_gdbqc_qxtreg_fail;
2664                 }
2665         }
2666         xtensa_reg_val_t orig_a4 = xtensa_reg_get(target, XT_REG_IDX_A4);
2667         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, xtensa->spill_loc);
2668         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A4));
2669
2670         int32_t tieop_status = xtensa_gdbqc_parse_exec_tie_ops(target, delim);
2671
2672         /* Restore a4 but not yet spill memory.  Execute it all... */
2673         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, orig_a4);
2674         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A4));
2675         status = xtensa_dm_queue_execute(&xtensa->dbg_mod);
2676         if (status != ERROR_OK) {
2677                 LOG_TARGET_ERROR(target, "TIE queue execute: %d\n", status);
2678                 tieop_status = status;
2679         }
2680         status = xtensa_core_status_check(target);
2681         if (status != ERROR_OK) {
2682                 LOG_TARGET_ERROR(target, "TIE instr execute: %d\n", status);
2683                 tieop_status = status;
2684         }
2685
2686         if (tieop_status == ERROR_OK) {
2687                 if (iswrite) {
2688                         /* TIE write succeeded; send OK */
2689                         strcpy(*response_p, "OK");
2690                 } else {
2691                         /* TIE read succeeded; copy result from spill memory */
2692                         status = xtensa_read_memory(target, xtensa->spill_loc, memop_size, reglen, regbuf);
2693                         if (status != ERROR_OK) {
2694                                 LOG_TARGET_ERROR(target, "TIE result read");
2695                                 tieop_status = status;
2696                         }
2697                         unsigned int i;
2698                         for (i = 0; i < reglen; i++)
2699                                 sprintf(*response_p + 2 * i, "%02x", regbuf[i]);
2700                         *(*response_p + 2 * i) = '\0';
2701                         LOG_TARGET_DEBUG(target, "TIE response: %s", *response_p);
2702                 }
2703         }
2704
2705         /* Restore spill memory first, then report any previous errors */
2706         status = xtensa_write_memory(target, xtensa->spill_loc, memop_size,
2707                 xtensa->spill_bytes / memop_size, xtensa->spill_buf);
2708         if (status != ERROR_OK) {
2709                 LOG_ERROR("Spill memory restore");
2710                 error = XT_QERR_MEM;
2711                 goto xtensa_gdbqc_qxtreg_fail;
2712         }
2713         if (tieop_status != ERROR_OK) {
2714                 LOG_ERROR("TIE execution");
2715                 error = XT_QERR_FAIL;
2716                 goto xtensa_gdbqc_qxtreg_fail;
2717         }
2718         return ERROR_OK;
2719
2720 xtensa_gdbqc_qxtreg_fail:
2721         strcpy(*response_p, xt_qerr[error].chrval);
2722         return xt_qerr[error].intval;
2723 }
2724
2725 int xtensa_gdb_query_custom(struct target *target, const char *packet, char **response_p)
2726 {
2727         struct xtensa *xtensa = target_to_xtensa(target);
2728         enum xtensa_qerr_e error;
2729         if (!packet || !response_p) {
2730                 LOG_TARGET_ERROR(target, "invalid parameter: packet %p response_p %p", packet, response_p);
2731                 return ERROR_FAIL;
2732         }
2733
2734         *response_p = xtensa->qpkt_resp;
2735         if (strncmp(packet, "qxtn", 4) == 0) {
2736                 strcpy(*response_p, "OpenOCD");
2737                 return ERROR_OK;
2738         } else if (strncasecmp(packet, "qxtgdbversion=", 14) == 0) {
2739                 return ERROR_OK;
2740         } else if ((strncmp(packet, "Qxtsis=", 7) == 0) || (strncmp(packet, "Qxtsds=", 7) == 0)) {
2741                 /* Confirm host cache params match core .cfg file */
2742                 struct xtensa_cache_config *cachep = (packet[4] == 'i') ?
2743                         &xtensa->core_config->icache : &xtensa->core_config->dcache;
2744                 unsigned int line_size = 0, size = 0, way_count = 0;
2745                 sscanf(&packet[7], "%x,%x,%x", &line_size, &size, &way_count);
2746                 if ((cachep->line_size != line_size) ||
2747                         (cachep->size != size) ||
2748                         (cachep->way_count != way_count)) {
2749                         LOG_TARGET_WARNING(target, "%cCache mismatch; check xtensa-core-XXX.cfg file",
2750                                 cachep == &xtensa->core_config->icache ? 'I' : 'D');
2751                 }
2752                 strcpy(*response_p, "OK");
2753                 return ERROR_OK;
2754         } else if ((strncmp(packet, "Qxtiram=", 8) == 0) || (strncmp(packet, "Qxtirom=", 8) == 0)) {
2755                 /* Confirm host IRAM/IROM params match core .cfg file */
2756                 struct xtensa_local_mem_config *memp = (packet[5] == 'a') ?
2757                         &xtensa->core_config->iram : &xtensa->core_config->irom;
2758                 unsigned int base = 0, size = 0, i;
2759                 char *pkt = (char *)&packet[7];
2760                 do {
2761                         pkt++;
2762                         size = strtoul(pkt, &pkt, 16);
2763                         pkt++;
2764                         base = strtoul(pkt, &pkt, 16);
2765                         LOG_TARGET_DEBUG(target, "memcheck: %dB @ 0x%08x", size, base);
2766                         for (i = 0; i < memp->count; i++) {
2767                                 if ((memp->regions[i].base == base) && (memp->regions[i].size == size))
2768                                         break;
2769                         }
2770                         if (i == memp->count) {
2771                                 LOG_TARGET_WARNING(target, "%s mismatch; check xtensa-core-XXX.cfg file",
2772                                         memp == &xtensa->core_config->iram ? "IRAM" : "IROM");
2773                                 break;
2774                         }
2775                         for (i = 0; i < 11; i++) {
2776                                 pkt++;
2777                                 strtoul(pkt, &pkt, 16);
2778                         }
2779                 } while (pkt && (pkt[0] == ','));
2780                 strcpy(*response_p, "OK");
2781                 return ERROR_OK;
2782         } else if (strncmp(packet, "Qxtexcmlvl=", 11) == 0) {
2783                 /* Confirm host EXCM_LEVEL matches core .cfg file */
2784                 unsigned int excm_level = strtoul(&packet[11], NULL, 0);
2785                 if (!xtensa->core_config->high_irq.enabled ||
2786                         (excm_level != xtensa->core_config->high_irq.excm_level))
2787                         LOG_TARGET_WARNING(target, "EXCM_LEVEL mismatch; check xtensa-core-XXX.cfg file");
2788                 strcpy(*response_p, "OK");
2789                 return ERROR_OK;
2790         } else if ((strncmp(packet, "Qxtl2cs=", 8) == 0) ||
2791                 (strncmp(packet, "Qxtl2ca=", 8) == 0) ||
2792                 (strncmp(packet, "Qxtdensity=", 11) == 0)) {
2793                 strcpy(*response_p, "OK");
2794                 return ERROR_OK;
2795         } else if (strncmp(packet, "Qxtspill=", 9) == 0) {
2796                 char *delim;
2797                 uint32_t spill_loc = strtoul(packet + 9, &delim, 16);
2798                 if (*delim != ':') {
2799                         LOG_ERROR("Malformed Qxtspill packet");
2800                         error = XT_QERR_INVAL;
2801                         goto xtensa_gdb_query_custom_fail;
2802                 }
2803                 xtensa->spill_loc = spill_loc;
2804                 xtensa->spill_bytes = strtoul(delim + 1, NULL, 16);
2805                 if (xtensa->spill_buf)
2806                         free(xtensa->spill_buf);
2807                 xtensa->spill_buf = calloc(1, xtensa->spill_bytes);
2808                 if (!xtensa->spill_buf) {
2809                         LOG_ERROR("Spill buf alloc");
2810                         error = XT_QERR_MEM;
2811                         goto xtensa_gdb_query_custom_fail;
2812                 }
2813                 LOG_TARGET_DEBUG(target, "Set spill 0x%08" PRIx32 " (%d)", xtensa->spill_loc, xtensa->spill_bytes);
2814                 strcpy(*response_p, "OK");
2815                 return ERROR_OK;
2816         } else if (strncasecmp(packet, "qxtreg", 6) == 0) {
2817                 return xtensa_gdbqc_qxtreg(target, packet, response_p);
2818         } else if ((strncmp(packet, "qTStatus", 8) == 0) ||
2819                 (strncmp(packet, "qxtftie", 7) == 0) ||
2820                 (strncmp(packet, "qxtstie", 7) == 0)) {
2821                 /* Return empty string to indicate trace, TIE wire debug are unsupported */
2822                 strcpy(*response_p, "");
2823                 return ERROR_OK;
2824         }
2825
2826         /* Warn for all other queries, but do not return errors */
2827         LOG_TARGET_WARNING(target, "Unknown target-specific query packet: %s", packet);
2828         strcpy(*response_p, "");
2829         return ERROR_OK;
2830
2831 xtensa_gdb_query_custom_fail:
2832         strcpy(*response_p, xt_qerr[error].chrval);
2833         return xt_qerr[error].intval;
2834 }
2835
2836 int xtensa_init_arch_info(struct target *target, struct xtensa *xtensa,
2837         const struct xtensa_debug_module_config *dm_cfg)
2838 {
2839         target->arch_info = xtensa;
2840         xtensa->common_magic = XTENSA_COMMON_MAGIC;
2841         xtensa->target = target;
2842         xtensa->stepping_isr_mode = XT_STEPPING_ISR_ON;
2843
2844         xtensa->core_config = calloc(1, sizeof(struct xtensa_config));
2845         if (!xtensa->core_config) {
2846                 LOG_ERROR("Xtensa configuration alloc failed\n");
2847                 return ERROR_FAIL;
2848         }
2849
2850         /* Default cache settings are disabled with 1 way */
2851         xtensa->core_config->icache.way_count = 1;
2852         xtensa->core_config->dcache.way_count = 1;
2853
2854         /* chrval: AR3/AR4 register names will change with window mapping.
2855          * intval: tracks whether scratch register was set through gdb P packet.
2856          */
2857         for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++) {
2858                 xtensa->scratch_ars[s].chrval = calloc(8, sizeof(char));
2859                 if (!xtensa->scratch_ars[s].chrval) {
2860                         for (enum xtensa_ar_scratch_set_e f = 0; f < s; f++)
2861                                 free(xtensa->scratch_ars[f].chrval);
2862                         free(xtensa->core_config);
2863                         LOG_ERROR("Xtensa scratch AR alloc failed\n");
2864                         return ERROR_FAIL;
2865                 }
2866                 xtensa->scratch_ars[s].intval = false;
2867                 sprintf(xtensa->scratch_ars[s].chrval, "%s%d",
2868                         ((s == XT_AR_SCRATCH_A3) || (s == XT_AR_SCRATCH_A4)) ? "a" : "ar",
2869                         ((s == XT_AR_SCRATCH_A3) || (s == XT_AR_SCRATCH_AR3)) ? 3 : 4);
2870         }
2871
2872         return xtensa_dm_init(&xtensa->dbg_mod, dm_cfg);
2873 }
2874
2875 void xtensa_set_permissive_mode(struct target *target, bool state)
2876 {
2877         target_to_xtensa(target)->permissive_mode = state;
2878 }
2879
2880 int xtensa_target_init(struct command_context *cmd_ctx, struct target *target)
2881 {
2882         struct xtensa *xtensa = target_to_xtensa(target);
2883
2884         xtensa->come_online_probes_num = 3;
2885         xtensa->hw_brps = calloc(XT_HW_IBREAK_MAX_NUM, sizeof(struct breakpoint *));
2886         if (!xtensa->hw_brps) {
2887                 LOG_ERROR("Failed to alloc memory for HW breakpoints!");
2888                 return ERROR_FAIL;
2889         }
2890         xtensa->hw_wps = calloc(XT_HW_DBREAK_MAX_NUM, sizeof(struct watchpoint *));
2891         if (!xtensa->hw_wps) {
2892                 free(xtensa->hw_brps);
2893                 LOG_ERROR("Failed to alloc memory for HW watchpoints!");
2894                 return ERROR_FAIL;
2895         }
2896         xtensa->sw_brps = calloc(XT_SW_BREAKPOINTS_MAX_NUM, sizeof(struct xtensa_sw_breakpoint));
2897         if (!xtensa->sw_brps) {
2898                 free(xtensa->hw_brps);
2899                 free(xtensa->hw_wps);
2900                 LOG_ERROR("Failed to alloc memory for SW breakpoints!");
2901                 return ERROR_FAIL;
2902         }
2903
2904         xtensa->spill_loc = 0xffffffff;
2905         xtensa->spill_bytes = 0;
2906         xtensa->spill_buf = NULL;
2907         xtensa->probe_lsddr32p = -1;    /* Probe for fast load/store operations */
2908
2909         return xtensa_build_reg_cache(target);
2910 }
2911
2912 static void xtensa_free_reg_cache(struct target *target)
2913 {
2914         struct xtensa *xtensa = target_to_xtensa(target);
2915         struct reg_cache *cache = xtensa->core_cache;
2916
2917         if (cache) {
2918                 register_unlink_cache(&target->reg_cache, cache);
2919                 for (unsigned int i = 0; i < cache->num_regs; i++) {
2920                         free(xtensa->algo_context_backup[i]);
2921                         free(cache->reg_list[i].value);
2922                 }
2923                 free(xtensa->algo_context_backup);
2924                 free(cache->reg_list);
2925                 free(cache);
2926         }
2927         xtensa->core_cache = NULL;
2928         xtensa->algo_context_backup = NULL;
2929
2930         if (xtensa->empty_regs) {
2931                 for (unsigned int i = 0; i < xtensa->dbregs_num; i++) {
2932                         free((void *)xtensa->empty_regs[i].name);
2933                         free(xtensa->empty_regs[i].value);
2934                 }
2935                 free(xtensa->empty_regs);
2936         }
2937         xtensa->empty_regs = NULL;
2938         if (xtensa->optregs) {
2939                 for (unsigned int i = 0; i < xtensa->num_optregs; i++)
2940                         free((void *)xtensa->optregs[i].name);
2941                 free(xtensa->optregs);
2942         }
2943         xtensa->optregs = NULL;
2944 }
2945
2946 void xtensa_target_deinit(struct target *target)
2947 {
2948         struct xtensa *xtensa = target_to_xtensa(target);
2949
2950         LOG_DEBUG("start");
2951
2952         if (target_was_examined(target)) {
2953                 int ret = xtensa_queue_dbg_reg_write(xtensa, XDMREG_DCRCLR, OCDDCR_ENABLEOCD);
2954                 if (ret != ERROR_OK) {
2955                         LOG_ERROR("Failed to queue OCDDCR_ENABLEOCD clear operation!");
2956                         return;
2957                 }
2958                 xtensa_dm_queue_tdi_idle(&xtensa->dbg_mod);
2959                 ret = xtensa_dm_queue_execute(&xtensa->dbg_mod);
2960                 if (ret != ERROR_OK) {
2961                         LOG_ERROR("Failed to clear OCDDCR_ENABLEOCD!");
2962                         return;
2963                 }
2964                 xtensa_dm_deinit(&xtensa->dbg_mod);
2965         }
2966         xtensa_free_reg_cache(target);
2967         free(xtensa->hw_brps);
2968         free(xtensa->hw_wps);
2969         free(xtensa->sw_brps);
2970         if (xtensa->spill_buf) {
2971                 free(xtensa->spill_buf);
2972                 xtensa->spill_buf = NULL;
2973         }
2974         for (enum xtensa_ar_scratch_set_e s = 0; s < XT_AR_SCRATCH_NUM; s++)
2975                 free(xtensa->scratch_ars[s].chrval);
2976         free(xtensa->core_config);
2977 }
2978
2979 const char *xtensa_get_gdb_arch(struct target *target)
2980 {
2981         return "xtensa";
2982 }
2983
2984 /* exe <ascii-encoded hexadecimal instruction bytes> */
2985 COMMAND_HELPER(xtensa_cmd_exe_do, struct target *target)
2986 {
2987         struct xtensa *xtensa = target_to_xtensa(target);
2988
2989         if (CMD_ARGC != 1)
2990                 return ERROR_COMMAND_SYNTAX_ERROR;
2991
2992         /* Process ascii-encoded hex byte string */
2993         const char *parm = CMD_ARGV[0];
2994         unsigned int parm_len = strlen(parm);
2995         if ((parm_len >= 64) || (parm_len & 1)) {
2996                 LOG_ERROR("Invalid parameter length (%d): must be even, < 64 characters", parm_len);
2997                 return ERROR_FAIL;
2998         }
2999
3000         uint8_t ops[32];
3001         memset(ops, 0, 32);
3002         unsigned int oplen = parm_len / 2;
3003         char encoded_byte[3] = { 0, 0, 0 };
3004         for (unsigned int i = 0; i < oplen; i++) {
3005                 encoded_byte[0] = *parm++;
3006                 encoded_byte[1] = *parm++;
3007                 ops[i] = strtoul(encoded_byte, NULL, 16);
3008         }
3009
3010         /* GDB must handle state save/restore.
3011          * Flush reg cache in case spill location is in an AR
3012          * Update CPENABLE only for this execution; later restore cached copy
3013          * Keep a copy of exccause in case executed code triggers an exception
3014          */
3015         int status = xtensa_write_dirty_registers(target);
3016         if (status != ERROR_OK) {
3017                 LOG_ERROR("%s: Failed to write back register cache.", target_name(target));
3018                 return ERROR_FAIL;
3019         }
3020         xtensa_reg_val_t exccause = xtensa_reg_get(target, XT_REG_IDX_EXCCAUSE);
3021         xtensa_reg_val_t cpenable = xtensa_reg_get(target, XT_REG_IDX_CPENABLE);
3022         xtensa_reg_val_t a3 = xtensa_reg_get(target, XT_REG_IDX_A3);
3023         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, 0xffffffff);
3024         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
3025         xtensa_queue_exec_ins(xtensa, XT_INS_WSR(xtensa,
3026                         xtensa_regs[XT_REG_IDX_CPENABLE].reg_num, XT_REG_A3));
3027         xtensa_queue_dbg_reg_write(xtensa, XDMREG_DDR, a3);
3028         xtensa_queue_exec_ins(xtensa, XT_INS_RSR(xtensa, XT_SR_DDR, XT_REG_A3));
3029
3030         /* Queue instruction list and execute everything */
3031         LOG_TARGET_DEBUG(target, "execute stub: %s", CMD_ARGV[0]);
3032         xtensa_queue_exec_ins_wide(xtensa, ops, oplen); /* Handles endian-swap */
3033         status = xtensa_dm_queue_execute(&xtensa->dbg_mod);
3034         if (status != ERROR_OK)
3035                 LOG_TARGET_ERROR(target, "TIE queue execute: %d\n", status);
3036         status = xtensa_core_status_check(target);
3037         if (status != ERROR_OK)
3038                 LOG_TARGET_ERROR(target, "TIE instr execute: %d\n", status);
3039
3040         /* Reread register cache and restore saved regs after instruction execution */
3041         if (xtensa_fetch_all_regs(target) != ERROR_OK)
3042                 LOG_TARGET_ERROR(target, "%s: Failed to fetch register cache (post-exec).", target_name(target));
3043         xtensa_reg_set(target, XT_REG_IDX_EXCCAUSE, exccause);
3044         xtensa_reg_set(target, XT_REG_IDX_CPENABLE, cpenable);
3045         return status;
3046 }
3047
3048 COMMAND_HANDLER(xtensa_cmd_exe)
3049 {
3050         return CALL_COMMAND_HANDLER(xtensa_cmd_exe_do, get_current_target(CMD_CTX));
3051 }
3052
3053 /* xtdef <name> */
3054 COMMAND_HELPER(xtensa_cmd_xtdef_do, struct xtensa *xtensa)
3055 {
3056         if (CMD_ARGC != 1)
3057                 return ERROR_COMMAND_SYNTAX_ERROR;
3058
3059         const char *core_name = CMD_ARGV[0];
3060         if (strcasecmp(core_name, "LX") == 0) {
3061                 xtensa->core_config->core_type = XT_LX;
3062         } else {
3063                 LOG_ERROR("xtdef [LX]\n");
3064                 return ERROR_COMMAND_SYNTAX_ERROR;
3065         }
3066         return ERROR_OK;
3067 }
3068
3069 COMMAND_HANDLER(xtensa_cmd_xtdef)
3070 {
3071         return CALL_COMMAND_HANDLER(xtensa_cmd_xtdef_do,
3072                 target_to_xtensa(get_current_target(CMD_CTX)));
3073 }
3074
3075 static inline bool xtensa_cmd_xtopt_legal_val(char *opt, int val, int min, int max)
3076 {
3077         if ((val < min) || (val > max)) {
3078                 LOG_ERROR("xtopt %s (%d) out of range [%d..%d]\n", opt, val, min, max);
3079                 return false;
3080         }
3081         return true;
3082 }
3083
3084 /* xtopt <name> <value> */
3085 COMMAND_HELPER(xtensa_cmd_xtopt_do, struct xtensa *xtensa)
3086 {
3087         if (CMD_ARGC != 2)
3088                 return ERROR_COMMAND_SYNTAX_ERROR;
3089
3090         const char *opt_name = CMD_ARGV[0];
3091         int opt_val = strtol(CMD_ARGV[1], NULL, 0);
3092         if (strcasecmp(opt_name, "arnum") == 0) {
3093                 if (!xtensa_cmd_xtopt_legal_val("arnum", opt_val, 0, 64))
3094                         return ERROR_COMMAND_ARGUMENT_INVALID;
3095                 xtensa->core_config->aregs_num = opt_val;
3096         } else if (strcasecmp(opt_name, "windowed") == 0) {
3097                 if (!xtensa_cmd_xtopt_legal_val("windowed", opt_val, 0, 1))
3098                         return ERROR_COMMAND_ARGUMENT_INVALID;
3099                 xtensa->core_config->windowed = opt_val;
3100         } else if (strcasecmp(opt_name, "cpenable") == 0) {
3101                 if (!xtensa_cmd_xtopt_legal_val("cpenable", opt_val, 0, 1))
3102                         return ERROR_COMMAND_ARGUMENT_INVALID;
3103                 xtensa->core_config->coproc = opt_val;
3104         } else if (strcasecmp(opt_name, "exceptions") == 0) {
3105                 if (!xtensa_cmd_xtopt_legal_val("exceptions", opt_val, 0, 1))
3106                         return ERROR_COMMAND_ARGUMENT_INVALID;
3107                 xtensa->core_config->exceptions = opt_val;
3108         } else if (strcasecmp(opt_name, "intnum") == 0) {
3109                 if (!xtensa_cmd_xtopt_legal_val("intnum", opt_val, 0, 32))
3110                         return ERROR_COMMAND_ARGUMENT_INVALID;
3111                 xtensa->core_config->irq.enabled = (opt_val > 0);
3112                 xtensa->core_config->irq.irq_num = opt_val;
3113         } else if (strcasecmp(opt_name, "hipriints") == 0) {
3114                 if (!xtensa_cmd_xtopt_legal_val("hipriints", opt_val, 0, 1))
3115                         return ERROR_COMMAND_ARGUMENT_INVALID;
3116                 xtensa->core_config->high_irq.enabled = opt_val;
3117         } else if (strcasecmp(opt_name, "excmlevel") == 0) {
3118                 if (!xtensa_cmd_xtopt_legal_val("excmlevel", opt_val, 1, 6))
3119                         return ERROR_COMMAND_ARGUMENT_INVALID;
3120                 if (!xtensa->core_config->high_irq.enabled) {
3121                         LOG_ERROR("xtopt excmlevel requires hipriints\n");
3122                         return ERROR_COMMAND_ARGUMENT_INVALID;
3123                 }
3124                 xtensa->core_config->high_irq.excm_level = opt_val;
3125         } else if (strcasecmp(opt_name, "intlevels") == 0) {
3126                 if (xtensa->core_config->core_type == XT_LX) {
3127                         if (!xtensa_cmd_xtopt_legal_val("intlevels", opt_val, 2, 6))
3128                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3129                 } else {
3130                         if (!xtensa_cmd_xtopt_legal_val("intlevels", opt_val, 1, 255))
3131                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3132                 }
3133                 if (!xtensa->core_config->high_irq.enabled) {
3134                         LOG_ERROR("xtopt intlevels requires hipriints\n");
3135                         return ERROR_COMMAND_ARGUMENT_INVALID;
3136                 }
3137                 xtensa->core_config->high_irq.level_num = opt_val;
3138         } else if (strcasecmp(opt_name, "debuglevel") == 0) {
3139                 if (xtensa->core_config->core_type == XT_LX) {
3140                         if (!xtensa_cmd_xtopt_legal_val("debuglevel", opt_val, 2, 6))
3141                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3142                 } else {
3143                         if (!xtensa_cmd_xtopt_legal_val("debuglevel", opt_val, 0, 0))
3144                                 return ERROR_COMMAND_ARGUMENT_INVALID;
3145                 }
3146                 xtensa->core_config->debug.enabled = 1;
3147                 xtensa->core_config->debug.irq_level = opt_val;
3148         } else if (strcasecmp(opt_name, "ibreaknum") == 0) {
3149                 if (!xtensa_cmd_xtopt_legal_val("ibreaknum", opt_val, 0, 2))
3150                         return ERROR_COMMAND_ARGUMENT_INVALID;
3151                 xtensa->core_config->debug.ibreaks_num = opt_val;
3152         } else if (strcasecmp(opt_name, "dbreaknum") == 0) {
3153                 if (!xtensa_cmd_xtopt_legal_val("dbreaknum", opt_val, 0, 2))
3154                         return ERROR_COMMAND_ARGUMENT_INVALID;
3155                 xtensa->core_config->debug.dbreaks_num = opt_val;
3156         } else if (strcasecmp(opt_name, "tracemem") == 0) {
3157                 if (!xtensa_cmd_xtopt_legal_val("tracemem", opt_val, 0, 256 * 1024))
3158                         return ERROR_COMMAND_ARGUMENT_INVALID;
3159                 xtensa->core_config->trace.mem_sz = opt_val;
3160                 xtensa->core_config->trace.enabled = (opt_val > 0);
3161         } else if (strcasecmp(opt_name, "tracememrev") == 0) {
3162                 if (!xtensa_cmd_xtopt_legal_val("tracememrev", opt_val, 0, 1))
3163                         return ERROR_COMMAND_ARGUMENT_INVALID;
3164                 xtensa->core_config->trace.reversed_mem_access = opt_val;
3165         } else if (strcasecmp(opt_name, "perfcount") == 0) {
3166                 if (!xtensa_cmd_xtopt_legal_val("perfcount", opt_val, 0, 8))
3167                         return ERROR_COMMAND_ARGUMENT_INVALID;
3168                 xtensa->core_config->debug.perfcount_num = opt_val;
3169         } else {
3170                 LOG_WARNING("Unknown xtensa command ignored: \"xtopt %s %s\"", CMD_ARGV[0], CMD_ARGV[1]);
3171                 return ERROR_OK;
3172         }
3173
3174         return ERROR_OK;
3175 }
3176
3177 COMMAND_HANDLER(xtensa_cmd_xtopt)
3178 {
3179         return CALL_COMMAND_HANDLER(xtensa_cmd_xtopt_do,
3180                 target_to_xtensa(get_current_target(CMD_CTX)));
3181 }
3182
3183 /* xtmem <type> [parameters] */
3184 COMMAND_HELPER(xtensa_cmd_xtmem_do, struct xtensa *xtensa)
3185 {
3186         struct xtensa_cache_config *cachep = NULL;
3187         struct xtensa_local_mem_config *memp = NULL;
3188         int mem_access = 0;
3189         bool is_dcache = false;
3190
3191         if (CMD_ARGC == 0) {
3192                 LOG_ERROR("xtmem <type> [parameters]\n");
3193                 return ERROR_COMMAND_SYNTAX_ERROR;
3194         }
3195
3196         const char *mem_name = CMD_ARGV[0];
3197         if (strcasecmp(mem_name, "icache") == 0) {
3198                 cachep = &xtensa->core_config->icache;
3199         } else if (strcasecmp(mem_name, "dcache") == 0) {
3200                 cachep = &xtensa->core_config->dcache;
3201                 is_dcache = true;
3202         } else if (strcasecmp(mem_name, "l2cache") == 0) {
3203                 /* TODO: support L2 cache */
3204         } else if (strcasecmp(mem_name, "l2addr") == 0) {
3205                 /* TODO: support L2 cache */
3206         } else if (strcasecmp(mem_name, "iram") == 0) {
3207                 memp = &xtensa->core_config->iram;
3208                 mem_access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE;
3209         } else if (strcasecmp(mem_name, "dram") == 0) {
3210                 memp = &xtensa->core_config->dram;
3211                 mem_access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE;
3212         } else if (strcasecmp(mem_name, "sram") == 0) {
3213                 memp = &xtensa->core_config->sram;
3214                 mem_access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE;
3215         } else if (strcasecmp(mem_name, "irom") == 0) {
3216                 memp = &xtensa->core_config->irom;
3217                 mem_access = XT_MEM_ACCESS_READ;
3218         } else if (strcasecmp(mem_name, "drom") == 0) {
3219                 memp = &xtensa->core_config->drom;
3220                 mem_access = XT_MEM_ACCESS_READ;
3221         } else if (strcasecmp(mem_name, "srom") == 0) {
3222                 memp = &xtensa->core_config->srom;
3223                 mem_access = XT_MEM_ACCESS_READ;
3224         } else {
3225                 LOG_ERROR("xtmem types: <icache|dcache|l2cache|l2addr|iram|irom|dram|drom|sram|srom>\n");
3226                 return ERROR_COMMAND_ARGUMENT_INVALID;
3227         }
3228
3229         if (cachep) {
3230                 if ((CMD_ARGC != 4) && (CMD_ARGC != 5)) {
3231                         LOG_ERROR("xtmem <cachetype> <linebytes> <cachebytes> <ways> [writeback]\n");
3232                         return ERROR_COMMAND_SYNTAX_ERROR;
3233                 }
3234                 cachep->line_size = strtoul(CMD_ARGV[1], NULL, 0);
3235                 cachep->size = strtoul(CMD_ARGV[2], NULL, 0);
3236                 cachep->way_count = strtoul(CMD_ARGV[3], NULL, 0);
3237                 cachep->writeback = ((CMD_ARGC == 5) && is_dcache) ?
3238                         strtoul(CMD_ARGV[4], NULL, 0) : 0;
3239         } else if (memp) {
3240                 if (CMD_ARGC != 3) {
3241                         LOG_ERROR("xtmem <memtype> <baseaddr> <bytes>\n");
3242                         return ERROR_COMMAND_SYNTAX_ERROR;
3243                 }
3244                 struct xtensa_local_mem_region_config *memcfgp = &memp->regions[memp->count];
3245                 memcfgp->base = strtoul(CMD_ARGV[1], NULL, 0);
3246                 memcfgp->size = strtoul(CMD_ARGV[2], NULL, 0);
3247                 memcfgp->access = mem_access;
3248                 memp->count++;
3249         }
3250
3251         return ERROR_OK;
3252 }
3253
3254 COMMAND_HANDLER(xtensa_cmd_xtmem)
3255 {
3256         return CALL_COMMAND_HANDLER(xtensa_cmd_xtmem_do,
3257                 target_to_xtensa(get_current_target(CMD_CTX)));
3258 }
3259
3260 /* xtmpu <num FG seg> <min seg size> <lockable> <executeonly> */
3261 COMMAND_HELPER(xtensa_cmd_xtmpu_do, struct xtensa *xtensa)
3262 {
3263         if (CMD_ARGC != 4) {
3264                 LOG_ERROR("xtmpu <num FG seg> <min seg size> <lockable> <executeonly>\n");
3265                 return ERROR_COMMAND_SYNTAX_ERROR;
3266         }
3267
3268         unsigned int nfgseg = strtoul(CMD_ARGV[0], NULL, 0);
3269         unsigned int minsegsize = strtoul(CMD_ARGV[1], NULL, 0);
3270         unsigned int lockable = strtoul(CMD_ARGV[2], NULL, 0);
3271         unsigned int execonly = strtoul(CMD_ARGV[3], NULL, 0);
3272
3273         if ((nfgseg > 32)) {
3274                 LOG_ERROR("<nfgseg> must be within [0..32]\n");
3275                 return ERROR_COMMAND_ARGUMENT_INVALID;
3276         } else if (minsegsize & (minsegsize - 1)) {
3277                 LOG_ERROR("<minsegsize> must be a power of 2 >= 32\n");
3278                 return ERROR_COMMAND_ARGUMENT_INVALID;
3279         } else if (lockable > 1) {
3280                 LOG_ERROR("<lockable> must be 0 or 1\n");
3281                 return ERROR_COMMAND_ARGUMENT_INVALID;
3282         } else if (execonly > 1) {
3283                 LOG_ERROR("<execonly> must be 0 or 1\n");
3284                 return ERROR_COMMAND_ARGUMENT_INVALID;
3285         }
3286
3287         xtensa->core_config->mpu.enabled = true;
3288         xtensa->core_config->mpu.nfgseg = nfgseg;
3289         xtensa->core_config->mpu.minsegsize = minsegsize;
3290         xtensa->core_config->mpu.lockable = lockable;
3291         xtensa->core_config->mpu.execonly = execonly;
3292         return ERROR_OK;
3293 }
3294
3295 COMMAND_HANDLER(xtensa_cmd_xtmpu)
3296 {
3297         return CALL_COMMAND_HANDLER(xtensa_cmd_xtmpu_do,
3298                 target_to_xtensa(get_current_target(CMD_CTX)));
3299 }
3300
3301 /* xtmmu <NIREFILLENTRIES> <NDREFILLENTRIES> <IVARWAY56> <DVARWAY56> */
3302 COMMAND_HELPER(xtensa_cmd_xtmmu_do, struct xtensa *xtensa)
3303 {
3304         if (CMD_ARGC != 2) {
3305                 LOG_ERROR("xtmmu <NIREFILLENTRIES> <NDREFILLENTRIES>\n");
3306                 return ERROR_COMMAND_SYNTAX_ERROR;
3307         }
3308
3309         unsigned int nirefillentries = strtoul(CMD_ARGV[0], NULL, 0);
3310         unsigned int ndrefillentries = strtoul(CMD_ARGV[1], NULL, 0);
3311         if ((nirefillentries != 16) && (nirefillentries != 32)) {
3312                 LOG_ERROR("<nirefillentries> must be 16 or 32\n");
3313                 return ERROR_COMMAND_ARGUMENT_INVALID;
3314         } else if ((ndrefillentries != 16) && (ndrefillentries != 32)) {
3315                 LOG_ERROR("<ndrefillentries> must be 16 or 32\n");
3316                 return ERROR_COMMAND_ARGUMENT_INVALID;
3317         }
3318
3319         xtensa->core_config->mmu.enabled = true;
3320         xtensa->core_config->mmu.itlb_entries_count = nirefillentries;
3321         xtensa->core_config->mmu.dtlb_entries_count = ndrefillentries;
3322         return ERROR_OK;
3323 }
3324
3325 COMMAND_HANDLER(xtensa_cmd_xtmmu)
3326 {
3327         return CALL_COMMAND_HANDLER(xtensa_cmd_xtmmu_do,
3328                 target_to_xtensa(get_current_target(CMD_CTX)));
3329 }
3330
3331 /* xtregs <numregs>
3332  * xtreg <regname> <regnum> */
3333 COMMAND_HELPER(xtensa_cmd_xtreg_do, struct xtensa *xtensa)
3334 {
3335         if (CMD_ARGC == 1) {
3336                 int32_t numregs = strtoul(CMD_ARGV[0], NULL, 0);
3337                 if ((numregs <= 0) || (numregs > UINT16_MAX)) {
3338                         LOG_ERROR("xtreg <numregs>: Invalid 'numregs' (%d)", numregs);
3339                         return ERROR_COMMAND_SYNTAX_ERROR;
3340                 }
3341                 if ((xtensa->genpkt_regs_num > 0) && (numregs < (int32_t)xtensa->genpkt_regs_num)) {
3342                         LOG_ERROR("xtregs (%d) must be larger than numgenregs (%d) (if xtregfmt specified)",
3343                                 numregs, xtensa->genpkt_regs_num);
3344                         return ERROR_COMMAND_SYNTAX_ERROR;
3345                 }
3346                 xtensa->total_regs_num = numregs;
3347                 xtensa->core_regs_num = 0;
3348                 xtensa->num_optregs = 0;
3349                 /* A little more memory than required, but saves a second initialization pass */
3350                 xtensa->optregs = calloc(xtensa->total_regs_num, sizeof(struct xtensa_reg_desc));
3351                 if (!xtensa->optregs) {
3352                         LOG_ERROR("Failed to allocate xtensa->optregs!");
3353                         return ERROR_FAIL;
3354                 }
3355                 return ERROR_OK;
3356         } else if (CMD_ARGC != 2) {
3357                 return ERROR_COMMAND_SYNTAX_ERROR;
3358         }
3359
3360         /* "xtregfmt contiguous" must be specified prior to the first "xtreg" definition
3361          * if general register (g-packet) requests or contiguous register maps are supported */
3362         if (xtensa->regmap_contiguous && !xtensa->contiguous_regs_desc) {
3363                 xtensa->contiguous_regs_desc = calloc(xtensa->total_regs_num, sizeof(struct xtensa_reg_desc *));
3364                 if (!xtensa->contiguous_regs_desc) {
3365                         LOG_ERROR("Failed to allocate xtensa->contiguous_regs_desc!");
3366                         return ERROR_FAIL;
3367                 }
3368         }
3369
3370         const char *regname = CMD_ARGV[0];
3371         unsigned int regnum = strtoul(CMD_ARGV[1], NULL, 0);
3372         if (regnum > UINT16_MAX) {
3373                 LOG_ERROR("<regnum> must be a 16-bit number");
3374                 return ERROR_COMMAND_ARGUMENT_INVALID;
3375         }
3376
3377         if ((xtensa->num_optregs + xtensa->core_regs_num) >= xtensa->total_regs_num) {
3378                 if (xtensa->total_regs_num)
3379                         LOG_ERROR("'xtreg %s 0x%04x': Too many registers (%d expected, %d core %d extended)",
3380                                 regname, regnum,
3381                                 xtensa->total_regs_num, xtensa->core_regs_num, xtensa->num_optregs);
3382                 else
3383                         LOG_ERROR("'xtreg %s 0x%04x': Number of registers unspecified",
3384                                 regname, regnum);
3385                 return ERROR_FAIL;
3386         }
3387
3388         /* Determine whether register belongs in xtensa_regs[] or xtensa->xtensa_spec_regs[] */
3389         struct xtensa_reg_desc *rptr = &xtensa->optregs[xtensa->num_optregs];
3390         bool is_extended_reg = true;
3391         unsigned int ridx;
3392         for (ridx = 0; ridx < XT_NUM_REGS; ridx++) {
3393                 if (strcmp(CMD_ARGV[0], xtensa_regs[ridx].name) == 0) {
3394                         /* Flag core register as defined */
3395                         rptr = &xtensa_regs[ridx];
3396                         xtensa->core_regs_num++;
3397                         is_extended_reg = false;
3398                         break;
3399                 }
3400         }
3401
3402         rptr->exist = true;
3403         if (is_extended_reg) {
3404                 /* Register ID, debugger-visible register ID */
3405                 rptr->name = strdup(CMD_ARGV[0]);
3406                 rptr->dbreg_num = regnum;
3407                 rptr->reg_num = (regnum & XT_REG_INDEX_MASK);
3408                 xtensa->num_optregs++;
3409
3410                 /* Register type */
3411                 if ((regnum & XT_REG_GENERAL_MASK) == XT_REG_GENERAL_VAL) {
3412                         rptr->type = XT_REG_GENERAL;
3413                 } else if ((regnum & XT_REG_USER_MASK) == XT_REG_USER_VAL) {
3414                         rptr->type = XT_REG_USER;
3415                 } else if ((regnum & XT_REG_FR_MASK) == XT_REG_FR_VAL) {
3416                         rptr->type = XT_REG_FR;
3417                 } else if ((regnum & XT_REG_SPECIAL_MASK) == XT_REG_SPECIAL_VAL) {
3418                         rptr->type = XT_REG_SPECIAL;
3419                 } else if ((regnum & XT_REG_RELGEN_MASK) == XT_REG_RELGEN_VAL) {
3420                         /* WARNING: For these registers, regnum points to the
3421                          * index of the corresponding ARx registers, NOT to
3422                          * the processor register number! */
3423                         rptr->type = XT_REG_RELGEN;
3424                         rptr->reg_num += XT_REG_IDX_ARFIRST;
3425                         rptr->dbreg_num += XT_REG_IDX_ARFIRST;
3426                 } else if ((regnum & XT_REG_TIE_MASK) != 0) {
3427                         rptr->type = XT_REG_TIE;
3428                 } else {
3429                         rptr->type = XT_REG_OTHER;
3430                 }
3431
3432                 /* Register flags */
3433                 if ((strcmp(rptr->name, "mmid") == 0) || (strcmp(rptr->name, "eraccess") == 0) ||
3434                         (strcmp(rptr->name, "ddr") == 0) || (strcmp(rptr->name, "intset") == 0) ||
3435                         (strcmp(rptr->name, "intclear") == 0))
3436                         rptr->flags = XT_REGF_NOREAD;
3437                 else
3438                         rptr->flags = 0;
3439
3440                 if ((rptr->reg_num == (XT_PS_REG_NUM_BASE + xtensa->core_config->debug.irq_level)) &&
3441                         (xtensa->core_config->core_type == XT_LX) && (rptr->type == XT_REG_SPECIAL)) {
3442                         xtensa->eps_dbglevel_idx = XT_NUM_REGS + xtensa->num_optregs - 1;
3443                         LOG_DEBUG("Setting PS (%s) index to %d", rptr->name, xtensa->eps_dbglevel_idx);
3444                 }
3445         } else if (strcmp(rptr->name, "cpenable") == 0) {
3446                 xtensa->core_config->coproc = true;
3447         }
3448
3449         /* Build out list of contiguous registers in specified order */
3450         unsigned int running_reg_count = xtensa->num_optregs + xtensa->core_regs_num;
3451         if (xtensa->contiguous_regs_desc) {
3452                 assert((running_reg_count <= xtensa->total_regs_num) && "contiguous register address internal error!");
3453                 xtensa->contiguous_regs_desc[running_reg_count - 1] = rptr;
3454         }
3455         if (xtensa_extra_debug_log)
3456                 LOG_DEBUG("Added %s register %-16s: 0x%04x/0x%02x t%d (%d of %d)",
3457                         is_extended_reg ? "config-specific" : "core",
3458                         rptr->name, rptr->dbreg_num, rptr->reg_num, rptr->type,
3459                         is_extended_reg ? xtensa->num_optregs : ridx,
3460                         is_extended_reg ? xtensa->total_regs_num : XT_NUM_REGS);
3461         return ERROR_OK;
3462 }
3463
3464 COMMAND_HANDLER(xtensa_cmd_xtreg)
3465 {
3466         return CALL_COMMAND_HANDLER(xtensa_cmd_xtreg_do,
3467                 target_to_xtensa(get_current_target(CMD_CTX)));
3468 }
3469
3470 /* xtregfmt <contiguous|sparse> [numgregs] */
3471 COMMAND_HELPER(xtensa_cmd_xtregfmt_do, struct xtensa *xtensa)
3472 {
3473         if ((CMD_ARGC == 1) || (CMD_ARGC == 2)) {
3474                 if (!strcasecmp(CMD_ARGV[0], "sparse")) {
3475                         return ERROR_OK;
3476                 } else if (!strcasecmp(CMD_ARGV[0], "contiguous")) {
3477                         xtensa->regmap_contiguous = true;
3478                         if (CMD_ARGC == 2) {
3479                                 unsigned int numgregs = strtoul(CMD_ARGV[1], NULL, 0);
3480                                 if ((numgregs <= 0) ||
3481                                         ((numgregs > xtensa->total_regs_num) &&
3482                                         (xtensa->total_regs_num > 0))) {
3483                                         LOG_ERROR("xtregfmt: if specified, numgregs (%d) must be <= numregs (%d)",
3484                                                 numgregs, xtensa->total_regs_num);
3485                                         return ERROR_COMMAND_SYNTAX_ERROR;
3486                                 }
3487                                 xtensa->genpkt_regs_num = numgregs;
3488                         }
3489                         return ERROR_OK;
3490                 }
3491         }
3492         return ERROR_COMMAND_SYNTAX_ERROR;
3493 }
3494
3495 COMMAND_HANDLER(xtensa_cmd_xtregfmt)
3496 {
3497         return CALL_COMMAND_HANDLER(xtensa_cmd_xtregfmt_do,
3498                 target_to_xtensa(get_current_target(CMD_CTX)));
3499 }
3500
3501 COMMAND_HELPER(xtensa_cmd_permissive_mode_do, struct xtensa *xtensa)
3502 {
3503         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
3504                 &xtensa->permissive_mode, "xtensa permissive mode");
3505 }
3506
3507 COMMAND_HANDLER(xtensa_cmd_permissive_mode)
3508 {
3509         return CALL_COMMAND_HANDLER(xtensa_cmd_permissive_mode_do,
3510                 target_to_xtensa(get_current_target(CMD_CTX)));
3511 }
3512
3513 /* perfmon_enable <counter_id> <select> [mask] [kernelcnt] [tracelevel] */
3514 COMMAND_HELPER(xtensa_cmd_perfmon_enable_do, struct xtensa *xtensa)
3515 {
3516         struct xtensa_perfmon_config config = {
3517                 .mask = 0xffff,
3518                 .kernelcnt = 0,
3519                 .tracelevel = -1        /* use DEBUGLEVEL by default */
3520         };
3521
3522         if (CMD_ARGC < 2 || CMD_ARGC > 6)
3523                 return ERROR_COMMAND_SYNTAX_ERROR;
3524
3525         unsigned int counter_id = strtoul(CMD_ARGV[0], NULL, 0);
3526         if (counter_id >= XTENSA_MAX_PERF_COUNTERS) {
3527                 command_print(CMD, "counter_id should be < %d", XTENSA_MAX_PERF_COUNTERS);
3528                 return ERROR_COMMAND_ARGUMENT_INVALID;
3529         }
3530
3531         config.select = strtoul(CMD_ARGV[1], NULL, 0);
3532         if (config.select > XTENSA_MAX_PERF_SELECT) {
3533                 command_print(CMD, "select should be < %d", XTENSA_MAX_PERF_SELECT);
3534                 return ERROR_COMMAND_ARGUMENT_INVALID;
3535         }
3536
3537         if (CMD_ARGC >= 3) {
3538                 config.mask = strtoul(CMD_ARGV[2], NULL, 0);
3539                 if (config.mask > XTENSA_MAX_PERF_MASK) {
3540                         command_print(CMD, "mask should be < %d", XTENSA_MAX_PERF_MASK);
3541                         return ERROR_COMMAND_ARGUMENT_INVALID;
3542                 }
3543         }
3544
3545         if (CMD_ARGC >= 4) {
3546                 config.kernelcnt = strtoul(CMD_ARGV[3], NULL, 0);
3547                 if (config.kernelcnt > 1) {
3548                         command_print(CMD, "kernelcnt should be 0 or 1");
3549                         return ERROR_COMMAND_ARGUMENT_INVALID;
3550                 }
3551         }
3552
3553         if (CMD_ARGC >= 5) {
3554                 config.tracelevel = strtoul(CMD_ARGV[4], NULL, 0);
3555                 if (config.tracelevel > 7) {
3556                         command_print(CMD, "tracelevel should be <=7");
3557                         return ERROR_COMMAND_ARGUMENT_INVALID;
3558                 }
3559         }
3560
3561         if (config.tracelevel == -1)
3562                 config.tracelevel = xtensa->core_config->debug.irq_level;
3563
3564         return xtensa_dm_perfmon_enable(&xtensa->dbg_mod, counter_id, &config);
3565 }
3566
3567 COMMAND_HANDLER(xtensa_cmd_perfmon_enable)
3568 {
3569         return CALL_COMMAND_HANDLER(xtensa_cmd_perfmon_enable_do,
3570                 target_to_xtensa(get_current_target(CMD_CTX)));
3571 }
3572
3573 /* perfmon_dump [counter_id] */
3574 COMMAND_HELPER(xtensa_cmd_perfmon_dump_do, struct xtensa *xtensa)
3575 {
3576         if (CMD_ARGC > 1)
3577                 return ERROR_COMMAND_SYNTAX_ERROR;
3578
3579         int counter_id = -1;
3580         if (CMD_ARGC == 1) {
3581                 counter_id = strtol(CMD_ARGV[0], NULL, 0);
3582                 if (counter_id > XTENSA_MAX_PERF_COUNTERS) {
3583                         command_print(CMD, "counter_id should be < %d", XTENSA_MAX_PERF_COUNTERS);
3584                         return ERROR_COMMAND_ARGUMENT_INVALID;
3585                 }
3586         }
3587
3588         unsigned int counter_start = (counter_id < 0) ? 0 : counter_id;
3589         unsigned int counter_end = (counter_id < 0) ? XTENSA_MAX_PERF_COUNTERS : counter_id + 1;
3590         for (unsigned int counter = counter_start; counter < counter_end; ++counter) {
3591                 char result_buf[128] = { 0 };
3592                 size_t result_pos = snprintf(result_buf, sizeof(result_buf), "Counter %d: ", counter);
3593                 struct xtensa_perfmon_result result;
3594                 int res = xtensa_dm_perfmon_dump(&xtensa->dbg_mod, counter, &result);
3595                 if (res != ERROR_OK)
3596                         return res;
3597                 snprintf(result_buf + result_pos, sizeof(result_buf) - result_pos,
3598                         "%-12" PRIu64 "%s",
3599                         result.value,
3600                         result.overflow ? " (overflow)" : "");
3601                 LOG_INFO("%s", result_buf);
3602         }
3603
3604         return ERROR_OK;
3605 }
3606
3607 COMMAND_HANDLER(xtensa_cmd_perfmon_dump)
3608 {
3609         return CALL_COMMAND_HANDLER(xtensa_cmd_perfmon_dump_do,
3610                 target_to_xtensa(get_current_target(CMD_CTX)));
3611 }
3612
3613 COMMAND_HELPER(xtensa_cmd_mask_interrupts_do, struct xtensa *xtensa)
3614 {
3615         int state = -1;
3616
3617         if (CMD_ARGC < 1) {
3618                 const char *st;
3619                 state = xtensa->stepping_isr_mode;
3620                 if (state == XT_STEPPING_ISR_ON)
3621                         st = "OFF";
3622                 else if (state == XT_STEPPING_ISR_OFF)
3623                         st = "ON";
3624                 else
3625                         st = "UNKNOWN";
3626                 command_print(CMD, "Current ISR step mode: %s", st);
3627                 return ERROR_OK;
3628         }
3629         /* Masking is ON -> interrupts during stepping are OFF, and vice versa */
3630         if (!strcasecmp(CMD_ARGV[0], "off"))
3631                 state = XT_STEPPING_ISR_ON;
3632         else if (!strcasecmp(CMD_ARGV[0], "on"))
3633                 state = XT_STEPPING_ISR_OFF;
3634
3635         if (state == -1) {
3636                 command_print(CMD, "Argument unknown. Please pick one of ON, OFF");
3637                 return ERROR_FAIL;
3638         }
3639         xtensa->stepping_isr_mode = state;
3640         return ERROR_OK;
3641 }
3642
3643 COMMAND_HANDLER(xtensa_cmd_mask_interrupts)
3644 {
3645         return CALL_COMMAND_HANDLER(xtensa_cmd_mask_interrupts_do,
3646                 target_to_xtensa(get_current_target(CMD_CTX)));
3647 }
3648
3649 COMMAND_HELPER(xtensa_cmd_smpbreak_do, struct target *target)
3650 {
3651         int res;
3652         uint32_t val = 0;
3653
3654         if (CMD_ARGC >= 1) {
3655                 for (unsigned int i = 0; i < CMD_ARGC; i++) {
3656                         if (!strcasecmp(CMD_ARGV[0], "none")) {
3657                                 val = 0;
3658                         } else if (!strcasecmp(CMD_ARGV[i], "BreakIn")) {
3659                                 val |= OCDDCR_BREAKINEN;
3660                         } else if (!strcasecmp(CMD_ARGV[i], "BreakOut")) {
3661                                 val |= OCDDCR_BREAKOUTEN;
3662                         } else if (!strcasecmp(CMD_ARGV[i], "RunStallIn")) {
3663                                 val |= OCDDCR_RUNSTALLINEN;
3664                         } else if (!strcasecmp(CMD_ARGV[i], "DebugModeOut")) {
3665                                 val |= OCDDCR_DEBUGMODEOUTEN;
3666                         } else if (!strcasecmp(CMD_ARGV[i], "BreakInOut")) {
3667                                 val |= OCDDCR_BREAKINEN | OCDDCR_BREAKOUTEN;
3668                         } else if (!strcasecmp(CMD_ARGV[i], "RunStall")) {
3669                                 val |= OCDDCR_RUNSTALLINEN | OCDDCR_DEBUGMODEOUTEN;
3670                         } else {
3671                                 command_print(CMD, "Unknown arg %s", CMD_ARGV[i]);
3672                                 command_print(
3673                                         CMD,
3674                                         "use either BreakInOut, None or RunStall as arguments, or any combination of BreakIn, BreakOut, RunStallIn and DebugModeOut.");
3675                                 return ERROR_OK;
3676                         }
3677                 }
3678                 res = xtensa_smpbreak_set(target, val);
3679                 if (res != ERROR_OK)
3680                         command_print(CMD, "Failed to set smpbreak config %d", res);
3681         } else {
3682                 struct xtensa *xtensa = target_to_xtensa(target);
3683                 res = xtensa_smpbreak_read(xtensa, &val);
3684                 if (res == ERROR_OK)
3685                         command_print(CMD, "Current bits set:%s%s%s%s",
3686                                 (val & OCDDCR_BREAKINEN) ? " BreakIn" : "",
3687                                 (val & OCDDCR_BREAKOUTEN) ? " BreakOut" : "",
3688                                 (val & OCDDCR_RUNSTALLINEN) ? " RunStallIn" : "",
3689                                 (val & OCDDCR_DEBUGMODEOUTEN) ? " DebugModeOut" : ""
3690                                 );
3691                 else
3692                         command_print(CMD, "Failed to get smpbreak config %d", res);
3693         }
3694         return res;
3695 }
3696
3697 COMMAND_HANDLER(xtensa_cmd_smpbreak)
3698 {
3699         return CALL_COMMAND_HANDLER(xtensa_cmd_smpbreak_do,
3700                 get_current_target(CMD_CTX));
3701 }
3702
3703 COMMAND_HELPER(xtensa_cmd_tracestart_do, struct xtensa *xtensa)
3704 {
3705         struct xtensa_trace_status trace_status;
3706         struct xtensa_trace_start_config cfg = {
3707                 .stoppc = 0,
3708                 .stopmask = XTENSA_STOPMASK_DISABLED,
3709                 .after = 0,
3710                 .after_is_words = false
3711         };
3712
3713         /* Parse arguments */
3714         for (unsigned int i = 0; i < CMD_ARGC; i++) {
3715                 if ((!strcasecmp(CMD_ARGV[i], "pc")) && CMD_ARGC > i) {
3716                         char *e;
3717                         i++;
3718                         cfg.stoppc = strtol(CMD_ARGV[i], &e, 0);
3719                         cfg.stopmask = 0;
3720                         if (*e == '/')
3721                                 cfg.stopmask = strtol(e, NULL, 0);
3722                 } else if ((!strcasecmp(CMD_ARGV[i], "after")) && CMD_ARGC > i) {
3723                         i++;
3724                         cfg.after = strtol(CMD_ARGV[i], NULL, 0);
3725                 } else if (!strcasecmp(CMD_ARGV[i], "ins")) {
3726                         cfg.after_is_words = 0;
3727                 } else if (!strcasecmp(CMD_ARGV[i], "words")) {
3728                         cfg.after_is_words = 1;
3729                 } else {
3730                         command_print(CMD, "Did not understand %s", CMD_ARGV[i]);
3731                         return ERROR_FAIL;
3732                 }
3733         }
3734
3735         int res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
3736         if (res != ERROR_OK)
3737                 return res;
3738         if (trace_status.stat & TRAXSTAT_TRACT) {
3739                 LOG_WARNING("Silently stop active tracing!");
3740                 res = xtensa_dm_trace_stop(&xtensa->dbg_mod, false);
3741                 if (res != ERROR_OK)
3742                         return res;
3743         }
3744
3745         res = xtensa_dm_trace_start(&xtensa->dbg_mod, &cfg);
3746         if (res != ERROR_OK)
3747                 return res;
3748
3749         xtensa->trace_active = true;
3750         command_print(CMD, "Trace started.");
3751         return ERROR_OK;
3752 }
3753
3754 COMMAND_HANDLER(xtensa_cmd_tracestart)
3755 {
3756         return CALL_COMMAND_HANDLER(xtensa_cmd_tracestart_do,
3757                 target_to_xtensa(get_current_target(CMD_CTX)));
3758 }
3759
3760 COMMAND_HELPER(xtensa_cmd_tracestop_do, struct xtensa *xtensa)
3761 {
3762         struct xtensa_trace_status trace_status;
3763
3764         int res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
3765         if (res != ERROR_OK)
3766                 return res;
3767
3768         if (!(trace_status.stat & TRAXSTAT_TRACT)) {
3769                 command_print(CMD, "No trace is currently active.");
3770                 return ERROR_FAIL;
3771         }
3772
3773         res = xtensa_dm_trace_stop(&xtensa->dbg_mod, true);
3774         if (res != ERROR_OK)
3775                 return res;
3776
3777         xtensa->trace_active = false;
3778         command_print(CMD, "Trace stop triggered.");
3779         return ERROR_OK;
3780 }
3781
3782 COMMAND_HANDLER(xtensa_cmd_tracestop)
3783 {
3784         return CALL_COMMAND_HANDLER(xtensa_cmd_tracestop_do,
3785                 target_to_xtensa(get_current_target(CMD_CTX)));
3786 }
3787
3788 COMMAND_HELPER(xtensa_cmd_tracedump_do, struct xtensa *xtensa, const char *fname)
3789 {
3790         struct xtensa_trace_config trace_config;
3791         struct xtensa_trace_status trace_status;
3792         uint32_t memsz, wmem;
3793
3794         int res = xtensa_dm_trace_status_read(&xtensa->dbg_mod, &trace_status);
3795         if (res != ERROR_OK)
3796                 return res;
3797
3798         if (trace_status.stat & TRAXSTAT_TRACT) {
3799                 command_print(CMD, "Tracing is still active. Please stop it first.");
3800                 return ERROR_FAIL;
3801         }
3802
3803         res = xtensa_dm_trace_config_read(&xtensa->dbg_mod, &trace_config);
3804         if (res != ERROR_OK)
3805                 return res;
3806
3807         if (!(trace_config.ctrl & TRAXCTRL_TREN)) {
3808                 command_print(CMD, "No active trace found; nothing to dump.");
3809                 return ERROR_FAIL;
3810         }
3811
3812         memsz = trace_config.memaddr_end - trace_config.memaddr_start + 1;
3813         LOG_INFO("Total trace memory: %d words", memsz);
3814         if ((trace_config.addr &
3815                         ((TRAXADDR_TWRAP_MASK << TRAXADDR_TWRAP_SHIFT) | TRAXADDR_TWSAT)) == 0) {
3816                 /*Memory hasn't overwritten itself yet. */
3817                 wmem = trace_config.addr & TRAXADDR_TADDR_MASK;
3818                 LOG_INFO("...but trace is only %d words", wmem);
3819                 if (wmem < memsz)
3820                         memsz = wmem;
3821         } else {
3822                 if (trace_config.addr & TRAXADDR_TWSAT) {
3823                         LOG_INFO("Real trace is many times longer than that (overflow)");
3824                 } else {
3825                         uint32_t trc_sz = (trace_config.addr >> TRAXADDR_TWRAP_SHIFT) & TRAXADDR_TWRAP_MASK;
3826                         trc_sz = (trc_sz * memsz) + (trace_config.addr & TRAXADDR_TADDR_MASK);
3827                         LOG_INFO("Real trace is %d words, but the start has been truncated.", trc_sz);
3828                 }
3829         }
3830
3831         uint8_t *tracemem = malloc(memsz * 4);
3832         if (!tracemem) {
3833                 command_print(CMD, "Failed to alloc memory for trace data!");
3834                 return ERROR_FAIL;
3835         }
3836         res = xtensa_dm_trace_data_read(&xtensa->dbg_mod, tracemem, memsz * 4);
3837         if (res != ERROR_OK) {
3838                 free(tracemem);
3839                 return res;
3840         }
3841
3842         int f = open(fname, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3843         if (f <= 0) {
3844                 free(tracemem);
3845                 command_print(CMD, "Unable to open file %s", fname);
3846                 return ERROR_FAIL;
3847         }
3848         if (write(f, tracemem, memsz * 4) != (int)memsz * 4)
3849                 command_print(CMD, "Unable to write to file %s", fname);
3850         else
3851                 command_print(CMD, "Written %d bytes of trace data to %s", memsz * 4, fname);
3852         close(f);
3853
3854         bool is_all_zeroes = true;
3855         for (unsigned int i = 0; i < memsz * 4; i++) {
3856                 if (tracemem[i] != 0) {
3857                         is_all_zeroes = false;
3858                         break;
3859                 }
3860         }
3861         free(tracemem);
3862         if (is_all_zeroes)
3863                 command_print(
3864                         CMD,
3865                         "WARNING: File written is all zeroes. Are you sure you enabled trace memory?");
3866
3867         return ERROR_OK;
3868 }
3869
3870 COMMAND_HANDLER(xtensa_cmd_tracedump)
3871 {
3872         if (CMD_ARGC != 1) {
3873                 command_print(CMD, "Command takes exactly 1 parameter.Need filename to dump to as output!");
3874                 return ERROR_FAIL;
3875         }
3876
3877         return CALL_COMMAND_HANDLER(xtensa_cmd_tracedump_do,
3878                 target_to_xtensa(get_current_target(CMD_CTX)), CMD_ARGV[0]);
3879 }
3880
3881 static const struct command_registration xtensa_any_command_handlers[] = {
3882         {
3883                 .name = "xtdef",
3884                 .handler = xtensa_cmd_xtdef,
3885                 .mode = COMMAND_CONFIG,
3886                 .help = "Configure Xtensa core type",
3887                 .usage = "<type>",
3888         },
3889         {
3890                 .name = "xtopt",
3891                 .handler = xtensa_cmd_xtopt,
3892                 .mode = COMMAND_CONFIG,
3893                 .help = "Configure Xtensa core option",
3894                 .usage = "<name> <value>",
3895         },
3896         {
3897                 .name = "xtmem",
3898                 .handler = xtensa_cmd_xtmem,
3899                 .mode = COMMAND_CONFIG,
3900                 .help = "Configure Xtensa memory/cache option",
3901                 .usage = "<type> [parameters]",
3902         },
3903         {
3904                 .name = "xtmmu",
3905                 .handler = xtensa_cmd_xtmmu,
3906                 .mode = COMMAND_CONFIG,
3907                 .help = "Configure Xtensa MMU option",
3908                 .usage = "<NIREFILLENTRIES> <NDREFILLENTRIES> <IVARWAY56> <DVARWAY56>",
3909         },
3910         {
3911                 .name = "xtmpu",
3912                 .handler = xtensa_cmd_xtmpu,
3913                 .mode = COMMAND_CONFIG,
3914                 .help = "Configure Xtensa MPU option",
3915                 .usage = "<num FG seg> <min seg size> <lockable> <executeonly>",
3916         },
3917         {
3918                 .name = "xtreg",
3919                 .handler = xtensa_cmd_xtreg,
3920                 .mode = COMMAND_CONFIG,
3921                 .help = "Configure Xtensa register",
3922                 .usage = "<regname> <regnum>",
3923         },
3924         {
3925                 .name = "xtregs",
3926                 .handler = xtensa_cmd_xtreg,
3927                 .mode = COMMAND_CONFIG,
3928                 .help = "Configure number of Xtensa registers",
3929                 .usage = "<numregs>",
3930         },
3931         {
3932                 .name = "xtregfmt",
3933                 .handler = xtensa_cmd_xtregfmt,
3934                 .mode = COMMAND_CONFIG,
3935                 .help = "Configure format of Xtensa register map",
3936                 .usage = "<contiguous|sparse> [numgregs]",
3937         },
3938         {
3939                 .name = "set_permissive",
3940                 .handler = xtensa_cmd_permissive_mode,
3941                 .mode = COMMAND_ANY,
3942                 .help = "When set to 1, enable Xtensa permissive mode (fewer client-side checks)",
3943                 .usage = "[0|1]",
3944         },
3945         {
3946                 .name = "maskisr",
3947                 .handler = xtensa_cmd_mask_interrupts,
3948                 .mode = COMMAND_ANY,
3949                 .help = "mask Xtensa interrupts at step",
3950                 .usage = "['on'|'off']",
3951         },
3952         {
3953                 .name = "smpbreak",
3954                 .handler = xtensa_cmd_smpbreak,
3955                 .mode = COMMAND_ANY,
3956                 .help = "Set the way the CPU chains OCD breaks",
3957                 .usage = "[none|breakinout|runstall] | [BreakIn] [BreakOut] [RunStallIn] [DebugModeOut]",
3958         },
3959         {
3960                 .name = "perfmon_enable",
3961                 .handler = xtensa_cmd_perfmon_enable,
3962                 .mode = COMMAND_EXEC,
3963                 .help = "Enable and start performance counter",
3964                 .usage = "<counter_id> <select> [mask] [kernelcnt] [tracelevel]",
3965         },
3966         {
3967                 .name = "perfmon_dump",
3968                 .handler = xtensa_cmd_perfmon_dump,
3969                 .mode = COMMAND_EXEC,
3970                 .help = "Dump performance counter value. If no argument specified, dumps all counters.",
3971                 .usage = "[counter_id]",
3972         },
3973         {
3974                 .name = "tracestart",
3975                 .handler = xtensa_cmd_tracestart,
3976                 .mode = COMMAND_EXEC,
3977                 .help =
3978                         "Tracing: Set up and start a trace. Optionally set stop trigger address and amount of data captured after.",
3979                 .usage = "[pc <pcval>/[maskbitcount]] [after <n> [ins|words]]",
3980         },
3981         {
3982                 .name = "tracestop",
3983                 .handler = xtensa_cmd_tracestop,
3984                 .mode = COMMAND_EXEC,
3985                 .help = "Tracing: Stop current trace as started by the tracestart command",
3986                 .usage = "",
3987         },
3988         {
3989                 .name = "tracedump",
3990                 .handler = xtensa_cmd_tracedump,
3991                 .mode = COMMAND_EXEC,
3992                 .help = "Tracing: Dump trace memory to a files. One file per core.",
3993                 .usage = "<outfile>",
3994         },
3995         {
3996                 .name = "exe",
3997                 .handler = xtensa_cmd_exe,
3998                 .mode = COMMAND_ANY,
3999                 .help = "Xtensa stub execution",
4000                 .usage = "<ascii-encoded hexadecimal instruction bytes>",
4001         },
4002         COMMAND_REGISTRATION_DONE
4003 };
4004
4005 const struct command_registration xtensa_command_handlers[] = {
4006         {
4007                 .name = "xtensa",
4008                 .mode = COMMAND_ANY,
4009                 .help = "Xtensa command group",
4010                 .usage = "",
4011                 .chain = xtensa_any_command_handlers,
4012         },
4013         COMMAND_REGISTRATION_DONE
4014 };