target: remove more exit() calls
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "breakpoints.h"
40 #include <helper/time_support.h>
41 #include "register.h"
42 #include "trace.h"
43 #include "image.h"
44 #include <jtag/jtag.h>
45
46
47 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
48 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
49
50 /* targets */
51 extern struct target_type arm7tdmi_target;
52 extern struct target_type arm720t_target;
53 extern struct target_type arm9tdmi_target;
54 extern struct target_type arm920t_target;
55 extern struct target_type arm966e_target;
56 extern struct target_type arm926ejs_target;
57 extern struct target_type fa526_target;
58 extern struct target_type feroceon_target;
59 extern struct target_type dragonite_target;
60 extern struct target_type xscale_target;
61 extern struct target_type cortexm3_target;
62 extern struct target_type cortexa8_target;
63 extern struct target_type arm11_target;
64 extern struct target_type mips_m4k_target;
65 extern struct target_type avr_target;
66 extern struct target_type testee_target;
67
68 struct target_type *target_types[] =
69 {
70         &arm7tdmi_target,
71         &arm9tdmi_target,
72         &arm920t_target,
73         &arm720t_target,
74         &arm966e_target,
75         &arm926ejs_target,
76         &fa526_target,
77         &feroceon_target,
78         &dragonite_target,
79         &xscale_target,
80         &cortexm3_target,
81         &cortexa8_target,
82         &arm11_target,
83         &mips_m4k_target,
84         &avr_target,
85         &testee_target,
86         NULL,
87 };
88
89 struct target *all_targets = NULL;
90 struct target_event_callback *target_event_callbacks = NULL;
91 struct target_timer_callback *target_timer_callbacks = NULL;
92
93 static const Jim_Nvp nvp_assert[] = {
94         { .name = "assert", NVP_ASSERT },
95         { .name = "deassert", NVP_DEASSERT },
96         { .name = "T", NVP_ASSERT },
97         { .name = "F", NVP_DEASSERT },
98         { .name = "t", NVP_ASSERT },
99         { .name = "f", NVP_DEASSERT },
100         { .name = NULL, .value = -1 }
101 };
102
103 static const Jim_Nvp nvp_error_target[] = {
104         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
105         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
106         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
107         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
108         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
109         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
110         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
111         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
112         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
113         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
114         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
115         { .value = -1, .name = NULL }
116 };
117
118 const char *target_strerror_safe(int err)
119 {
120         const Jim_Nvp *n;
121
122         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
123         if (n->name == NULL) {
124                 return "unknown";
125         } else {
126                 return n->name;
127         }
128 }
129
130 static const Jim_Nvp nvp_target_event[] = {
131         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
132         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
133
134         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
135         { .value = TARGET_EVENT_HALTED, .name = "halted" },
136         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
137         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
138         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
139
140         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
141         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
142
143         /* historical name */
144
145         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
146
147         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
148         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
149         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
150         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
151         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
152         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
153         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
154         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
155         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
156         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
157         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
158
159         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
160         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
161
162         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
163         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
164
165         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
166         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
167
168         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
169         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
170
171         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
172         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
173
174         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
175         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
176         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
177
178         { .name = NULL, .value = -1 }
179 };
180
181 static const Jim_Nvp nvp_target_state[] = {
182         { .name = "unknown", .value = TARGET_UNKNOWN },
183         { .name = "running", .value = TARGET_RUNNING },
184         { .name = "halted",  .value = TARGET_HALTED },
185         { .name = "reset",   .value = TARGET_RESET },
186         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
187         { .name = NULL, .value = -1 },
188 };
189
190 static const Jim_Nvp nvp_target_debug_reason [] = {
191         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
192         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
193         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
194         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
195         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
196         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
197         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
198         { .name = NULL, .value = -1 },
199 };
200
201 static const Jim_Nvp nvp_target_endian[] = {
202         { .name = "big",    .value = TARGET_BIG_ENDIAN },
203         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
204         { .name = "be",     .value = TARGET_BIG_ENDIAN },
205         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
206         { .name = NULL,     .value = -1 },
207 };
208
209 static const Jim_Nvp nvp_reset_modes[] = {
210         { .name = "unknown", .value = RESET_UNKNOWN },
211         { .name = "run"    , .value = RESET_RUN },
212         { .name = "halt"   , .value = RESET_HALT },
213         { .name = "init"   , .value = RESET_INIT },
214         { .name = NULL     , .value = -1 },
215 };
216
217 const char *debug_reason_name(struct target *t)
218 {
219         const char *cp;
220
221         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
222                         t->debug_reason)->name;
223         if (!cp) {
224                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
225                 cp = "(*BUG*unknown*BUG*)";
226         }
227         return cp;
228 }
229
230 const char *
231 target_state_name( struct target *t )
232 {
233         const char *cp;
234         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
235         if( !cp ){
236                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
237                 cp = "(*BUG*unknown*BUG*)";
238         }
239         return cp;
240 }
241
242 /* determine the number of the new target */
243 static int new_target_number(void)
244 {
245         struct target *t;
246         int x;
247
248         /* number is 0 based */
249         x = -1;
250         t = all_targets;
251         while (t) {
252                 if (x < t->target_number) {
253                         x = t->target_number;
254                 }
255                 t = t->next;
256         }
257         return x + 1;
258 }
259
260 /* read a uint32_t from a buffer in target memory endianness */
261 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
262 {
263         if (target->endianness == TARGET_LITTLE_ENDIAN)
264                 return le_to_h_u32(buffer);
265         else
266                 return be_to_h_u32(buffer);
267 }
268
269 /* read a uint16_t from a buffer in target memory endianness */
270 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
271 {
272         if (target->endianness == TARGET_LITTLE_ENDIAN)
273                 return le_to_h_u16(buffer);
274         else
275                 return be_to_h_u16(buffer);
276 }
277
278 /* read a uint8_t from a buffer in target memory endianness */
279 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
280 {
281         return *buffer & 0x0ff;
282 }
283
284 /* write a uint32_t to a buffer in target memory endianness */
285 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
286 {
287         if (target->endianness == TARGET_LITTLE_ENDIAN)
288                 h_u32_to_le(buffer, value);
289         else
290                 h_u32_to_be(buffer, value);
291 }
292
293 /* write a uint16_t to a buffer in target memory endianness */
294 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
295 {
296         if (target->endianness == TARGET_LITTLE_ENDIAN)
297                 h_u16_to_le(buffer, value);
298         else
299                 h_u16_to_be(buffer, value);
300 }
301
302 /* write a uint8_t to a buffer in target memory endianness */
303 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
304 {
305         *buffer = value;
306 }
307
308 /* return a pointer to a configured target; id is name or number */
309 struct target *get_target(const char *id)
310 {
311         struct target *target;
312
313         /* try as tcltarget name */
314         for (target = all_targets; target; target = target->next) {
315                 if (target->cmd_name == NULL)
316                         continue;
317                 if (strcmp(id, target->cmd_name) == 0)
318                         return target;
319         }
320
321         /* It's OK to remove this fallback sometime after August 2010 or so */
322
323         /* no match, try as number */
324         unsigned num;
325         if (parse_uint(id, &num) != ERROR_OK)
326                 return NULL;
327
328         for (target = all_targets; target; target = target->next) {
329                 if (target->target_number == (int)num) {
330                         LOG_WARNING("use '%s' as target identifier, not '%u'",
331                                         target->cmd_name, num);
332                         return target;
333                 }
334         }
335
336         return NULL;
337 }
338
339 /* returns a pointer to the n-th configured target */
340 static struct target *get_target_by_num(int num)
341 {
342         struct target *target = all_targets;
343
344         while (target) {
345                 if (target->target_number == num) {
346                         return target;
347                 }
348                 target = target->next;
349         }
350
351         return NULL;
352 }
353
354 struct target* get_current_target(struct command_context *cmd_ctx)
355 {
356         struct target *target = get_target_by_num(cmd_ctx->current_target);
357
358         if (target == NULL)
359         {
360                 LOG_ERROR("BUG: current_target out of bounds");
361                 exit(-1);
362         }
363
364         return target;
365 }
366
367 int target_poll(struct target *target)
368 {
369         int retval;
370
371         /* We can't poll until after examine */
372         if (!target_was_examined(target))
373         {
374                 /* Fail silently lest we pollute the log */
375                 return ERROR_FAIL;
376         }
377
378         retval = target->type->poll(target);
379         if (retval != ERROR_OK)
380                 return retval;
381
382         if (target->halt_issued)
383         {
384                 if (target->state == TARGET_HALTED)
385                 {
386                         target->halt_issued = false;
387                 } else
388                 {
389                         long long t = timeval_ms() - target->halt_issued_time;
390                         if (t>1000)
391                         {
392                                 target->halt_issued = false;
393                                 LOG_INFO("Halt timed out, wake up GDB.");
394                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
395                         }
396                 }
397         }
398
399         return ERROR_OK;
400 }
401
402 int target_halt(struct target *target)
403 {
404         int retval;
405         /* We can't poll until after examine */
406         if (!target_was_examined(target))
407         {
408                 LOG_ERROR("Target not examined yet");
409                 return ERROR_FAIL;
410         }
411
412         retval = target->type->halt(target);
413         if (retval != ERROR_OK)
414                 return retval;
415
416         target->halt_issued = true;
417         target->halt_issued_time = timeval_ms();
418
419         return ERROR_OK;
420 }
421
422 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
423 {
424         int retval;
425
426         /* We can't poll until after examine */
427         if (!target_was_examined(target))
428         {
429                 LOG_ERROR("Target not examined yet");
430                 return ERROR_FAIL;
431         }
432
433         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
434          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
435          * the application.
436          */
437         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
438                 return retval;
439
440         return retval;
441 }
442
443 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
444 {
445         char buf[100];
446         int retval;
447         Jim_Nvp *n;
448         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
449         if (n->name == NULL) {
450                 LOG_ERROR("invalid reset mode");
451                 return ERROR_FAIL;
452         }
453
454         /* disable polling during reset to make reset event scripts
455          * more predictable, i.e. dr/irscan & pathmove in events will
456          * not have JTAG operations injected into the middle of a sequence.
457          */
458         bool save_poll = jtag_poll_get_enabled();
459
460         jtag_poll_set_enabled(false);
461
462         sprintf(buf, "ocd_process_reset %s", n->name);
463         retval = Jim_Eval(cmd_ctx->interp, buf);
464
465         jtag_poll_set_enabled(save_poll);
466
467         if (retval != JIM_OK) {
468                 Jim_PrintErrorMessage(cmd_ctx->interp);
469                 return ERROR_FAIL;
470         }
471
472         /* We want any events to be processed before the prompt */
473         retval = target_call_timer_callbacks_now();
474
475         return retval;
476 }
477
478 static int identity_virt2phys(struct target *target,
479                 uint32_t virtual, uint32_t *physical)
480 {
481         *physical = virtual;
482         return ERROR_OK;
483 }
484
485 static int no_mmu(struct target *target, int *enabled)
486 {
487         *enabled = 0;
488         return ERROR_OK;
489 }
490
491 static int default_examine(struct target *target)
492 {
493         target_set_examined(target);
494         return ERROR_OK;
495 }
496
497 int target_examine_one(struct target *target)
498 {
499         return target->type->examine(target);
500 }
501
502 static int jtag_enable_callback(enum jtag_event event, void *priv)
503 {
504         struct target *target = priv;
505
506         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
507                 return ERROR_OK;
508
509         jtag_unregister_event_callback(jtag_enable_callback, target);
510         return target_examine_one(target);
511 }
512
513
514 /* Targets that correctly implement init + examine, i.e.
515  * no communication with target during init:
516  *
517  * XScale
518  */
519 int target_examine(void)
520 {
521         int retval = ERROR_OK;
522         struct target *target;
523
524         for (target = all_targets; target; target = target->next)
525         {
526                 /* defer examination, but don't skip it */
527                 if (!target->tap->enabled) {
528                         jtag_register_event_callback(jtag_enable_callback,
529                                         target);
530                         continue;
531                 }
532                 if ((retval = target_examine_one(target)) != ERROR_OK)
533                         return retval;
534         }
535         return retval;
536 }
537 const char *target_type_name(struct target *target)
538 {
539         return target->type->name;
540 }
541
542 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
543 {
544         if (!target_was_examined(target))
545         {
546                 LOG_ERROR("Target not examined yet");
547                 return ERROR_FAIL;
548         }
549         return target->type->write_memory_imp(target, address, size, count, buffer);
550 }
551
552 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
553 {
554         if (!target_was_examined(target))
555         {
556                 LOG_ERROR("Target not examined yet");
557                 return ERROR_FAIL;
558         }
559         return target->type->read_memory_imp(target, address, size, count, buffer);
560 }
561
562 static int target_soft_reset_halt_imp(struct target *target)
563 {
564         if (!target_was_examined(target))
565         {
566                 LOG_ERROR("Target not examined yet");
567                 return ERROR_FAIL;
568         }
569         if (!target->type->soft_reset_halt_imp) {
570                 LOG_ERROR("Target %s does not support soft_reset_halt",
571                                 target_name(target));
572                 return ERROR_FAIL;
573         }
574         return target->type->soft_reset_halt_imp(target);
575 }
576
577 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
578 {
579         if (!target_was_examined(target))
580         {
581                 LOG_ERROR("Target not examined yet");
582                 return ERROR_FAIL;
583         }
584         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
585 }
586
587 int target_read_memory(struct target *target,
588                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
589 {
590         return target->type->read_memory(target, address, size, count, buffer);
591 }
592
593 int target_read_phys_memory(struct target *target,
594                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
595 {
596         return target->type->read_phys_memory(target, address, size, count, buffer);
597 }
598
599 int target_write_memory(struct target *target,
600                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
601 {
602         return target->type->write_memory(target, address, size, count, buffer);
603 }
604
605 int target_write_phys_memory(struct target *target,
606                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
607 {
608         return target->type->write_phys_memory(target, address, size, count, buffer);
609 }
610
611 int target_bulk_write_memory(struct target *target,
612                 uint32_t address, uint32_t count, uint8_t *buffer)
613 {
614         return target->type->bulk_write_memory(target, address, count, buffer);
615 }
616
617 int target_add_breakpoint(struct target *target,
618                 struct breakpoint *breakpoint)
619 {
620         if (target->state != TARGET_HALTED) {
621                 LOG_WARNING("target %s is not halted", target->cmd_name);
622                 return ERROR_TARGET_NOT_HALTED;
623         }
624         return target->type->add_breakpoint(target, breakpoint);
625 }
626 int target_remove_breakpoint(struct target *target,
627                 struct breakpoint *breakpoint)
628 {
629         return target->type->remove_breakpoint(target, breakpoint);
630 }
631
632 int target_add_watchpoint(struct target *target,
633                 struct watchpoint *watchpoint)
634 {
635         if (target->state != TARGET_HALTED) {
636                 LOG_WARNING("target %s is not halted", target->cmd_name);
637                 return ERROR_TARGET_NOT_HALTED;
638         }
639         return target->type->add_watchpoint(target, watchpoint);
640 }
641 int target_remove_watchpoint(struct target *target,
642                 struct watchpoint *watchpoint)
643 {
644         return target->type->remove_watchpoint(target, watchpoint);
645 }
646
647 int target_get_gdb_reg_list(struct target *target,
648                 struct reg **reg_list[], int *reg_list_size)
649 {
650         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
651 }
652 int target_step(struct target *target,
653                 int current, uint32_t address, int handle_breakpoints)
654 {
655         return target->type->step(target, current, address, handle_breakpoints);
656 }
657
658
659 int target_run_algorithm(struct target *target,
660                 int num_mem_params, struct mem_param *mem_params,
661                 int num_reg_params, struct reg_param *reg_param,
662                 uint32_t entry_point, uint32_t exit_point,
663                 int timeout_ms, void *arch_info)
664 {
665         return target->type->run_algorithm(target,
666                         num_mem_params, mem_params, num_reg_params, reg_param,
667                         entry_point, exit_point, timeout_ms, arch_info);
668 }
669
670 /**
671  * Reset the @c examined flag for the given target.
672  * Pure paranoia -- targets are zeroed on allocation.
673  */
674 static void target_reset_examined(struct target *target)
675 {
676         target->examined = false;
677 }
678
679 static int
680 err_read_phys_memory(struct target *target, uint32_t address,
681                 uint32_t size, uint32_t count, uint8_t *buffer)
682 {
683         LOG_ERROR("Not implemented: %s", __func__);
684         return ERROR_FAIL;
685 }
686
687 static int
688 err_write_phys_memory(struct target *target, uint32_t address,
689                 uint32_t size, uint32_t count, uint8_t *buffer)
690 {
691         LOG_ERROR("Not implemented: %s", __func__);
692         return ERROR_FAIL;
693 }
694
695 static int handle_target(void *priv);
696
697 static int target_init_one(struct command_context *cmd_ctx,
698                 struct target *target)
699 {
700         target_reset_examined(target);
701
702         struct target_type *type = target->type;
703         if (type->examine == NULL)
704                 type->examine = default_examine;
705
706         int retval = type->init_target(cmd_ctx, target);
707         if (ERROR_OK != retval)
708         {
709                 LOG_ERROR("target '%s' init failed", target_name(target));
710                 return retval;
711         }
712
713         /**
714          * @todo get rid of those *memory_imp() methods, now that all
715          * callers are using target_*_memory() accessors ... and make
716          * sure the "physical" paths handle the same issues.
717          */
718         /* a non-invasive way(in terms of patches) to add some code that
719          * runs before the type->write/read_memory implementation
720          */
721         type->write_memory_imp = target->type->write_memory;
722         type->write_memory = target_write_memory_imp;
723
724         type->read_memory_imp = target->type->read_memory;
725         type->read_memory = target_read_memory_imp;
726
727         type->soft_reset_halt_imp = target->type->soft_reset_halt;
728         type->soft_reset_halt = target_soft_reset_halt_imp;
729
730         type->run_algorithm_imp = target->type->run_algorithm;
731         type->run_algorithm = target_run_algorithm_imp;
732
733         /* Sanity-check MMU support ... stub in what we must, to help
734          * implement it in stages, but warn if we need to do so.
735          */
736         if (type->mmu)
737         {
738                 if (type->write_phys_memory == NULL)
739                 {
740                         LOG_ERROR("type '%s' is missing write_phys_memory",
741                                         type->name);
742                         type->write_phys_memory = err_write_phys_memory;
743                 }
744                 if (type->read_phys_memory == NULL)
745                 {
746                         LOG_ERROR("type '%s' is missing read_phys_memory",
747                                         type->name);
748                         type->read_phys_memory = err_read_phys_memory;
749                 }
750                 if (type->virt2phys == NULL)
751                 {
752                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
753                         type->virt2phys = identity_virt2phys;
754                 }
755         }
756         else
757         {
758                 /* Make sure no-MMU targets all behave the same:  make no
759                  * distinction between physical and virtual addresses, and
760                  * ensure that virt2phys() is always an identity mapping.
761                  */
762                 if (type->write_phys_memory || type->read_phys_memory
763                                 || type->virt2phys)
764                 {
765                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
766                 }
767
768                 type->mmu = no_mmu;
769                 type->write_phys_memory = type->write_memory;
770                 type->read_phys_memory = type->read_memory;
771                 type->virt2phys = identity_virt2phys;
772         }
773         return ERROR_OK;
774 }
775
776 int target_init(struct command_context *cmd_ctx)
777 {
778         struct target *target;
779         int retval;
780
781         for (target = all_targets; target; target = target->next)
782         {
783                 retval = target_init_one(cmd_ctx, target);
784                 if (ERROR_OK != retval)
785                         return retval;
786         }
787
788         if (!all_targets)
789                 return ERROR_OK;
790
791         retval = target_register_user_commands(cmd_ctx);
792         if (ERROR_OK != retval)
793                 return retval;
794
795         retval = target_register_timer_callback(&handle_target,
796                         100, 1, cmd_ctx->interp);
797         if (ERROR_OK != retval)
798                 return retval;
799
800         return ERROR_OK;
801 }
802
803 COMMAND_HANDLER(handle_target_init_command)
804 {
805         if (CMD_ARGC != 0)
806                 return ERROR_COMMAND_SYNTAX_ERROR;
807
808         static bool target_initialized = false;
809         if (target_initialized)
810         {
811                 LOG_INFO("'target init' has already been called");
812                 return ERROR_OK;
813         }
814         target_initialized = true;
815
816         LOG_DEBUG("Initializing targets...");
817         return target_init(CMD_CTX);
818 }
819
820 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
821 {
822         struct target_event_callback **callbacks_p = &target_event_callbacks;
823
824         if (callback == NULL)
825         {
826                 return ERROR_INVALID_ARGUMENTS;
827         }
828
829         if (*callbacks_p)
830         {
831                 while ((*callbacks_p)->next)
832                         callbacks_p = &((*callbacks_p)->next);
833                 callbacks_p = &((*callbacks_p)->next);
834         }
835
836         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
837         (*callbacks_p)->callback = callback;
838         (*callbacks_p)->priv = priv;
839         (*callbacks_p)->next = NULL;
840
841         return ERROR_OK;
842 }
843
844 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
845 {
846         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
847         struct timeval now;
848
849         if (callback == NULL)
850         {
851                 return ERROR_INVALID_ARGUMENTS;
852         }
853
854         if (*callbacks_p)
855         {
856                 while ((*callbacks_p)->next)
857                         callbacks_p = &((*callbacks_p)->next);
858                 callbacks_p = &((*callbacks_p)->next);
859         }
860
861         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
862         (*callbacks_p)->callback = callback;
863         (*callbacks_p)->periodic = periodic;
864         (*callbacks_p)->time_ms = time_ms;
865
866         gettimeofday(&now, NULL);
867         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
868         time_ms -= (time_ms % 1000);
869         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
870         if ((*callbacks_p)->when.tv_usec > 1000000)
871         {
872                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
873                 (*callbacks_p)->when.tv_sec += 1;
874         }
875
876         (*callbacks_p)->priv = priv;
877         (*callbacks_p)->next = NULL;
878
879         return ERROR_OK;
880 }
881
882 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
883 {
884         struct target_event_callback **p = &target_event_callbacks;
885         struct target_event_callback *c = target_event_callbacks;
886
887         if (callback == NULL)
888         {
889                 return ERROR_INVALID_ARGUMENTS;
890         }
891
892         while (c)
893         {
894                 struct target_event_callback *next = c->next;
895                 if ((c->callback == callback) && (c->priv == priv))
896                 {
897                         *p = next;
898                         free(c);
899                         return ERROR_OK;
900                 }
901                 else
902                         p = &(c->next);
903                 c = next;
904         }
905
906         return ERROR_OK;
907 }
908
909 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
910 {
911         struct target_timer_callback **p = &target_timer_callbacks;
912         struct target_timer_callback *c = target_timer_callbacks;
913
914         if (callback == NULL)
915         {
916                 return ERROR_INVALID_ARGUMENTS;
917         }
918
919         while (c)
920         {
921                 struct target_timer_callback *next = c->next;
922                 if ((c->callback == callback) && (c->priv == priv))
923                 {
924                         *p = next;
925                         free(c);
926                         return ERROR_OK;
927                 }
928                 else
929                         p = &(c->next);
930                 c = next;
931         }
932
933         return ERROR_OK;
934 }
935
936 int target_call_event_callbacks(struct target *target, enum target_event event)
937 {
938         struct target_event_callback *callback = target_event_callbacks;
939         struct target_event_callback *next_callback;
940
941         if (event == TARGET_EVENT_HALTED)
942         {
943                 /* execute early halted first */
944                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
945         }
946
947         LOG_DEBUG("target event %i (%s)",
948                           event,
949                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
950
951         target_handle_event(target, event);
952
953         while (callback)
954         {
955                 next_callback = callback->next;
956                 callback->callback(target, event, callback->priv);
957                 callback = next_callback;
958         }
959
960         return ERROR_OK;
961 }
962
963 static int target_timer_callback_periodic_restart(
964                 struct target_timer_callback *cb, struct timeval *now)
965 {
966         int time_ms = cb->time_ms;
967         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
968         time_ms -= (time_ms % 1000);
969         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
970         if (cb->when.tv_usec > 1000000)
971         {
972                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
973                 cb->when.tv_sec += 1;
974         }
975         return ERROR_OK;
976 }
977
978 static int target_call_timer_callback(struct target_timer_callback *cb,
979                 struct timeval *now)
980 {
981         cb->callback(cb->priv);
982
983         if (cb->periodic)
984                 return target_timer_callback_periodic_restart(cb, now);
985
986         return target_unregister_timer_callback(cb->callback, cb->priv);
987 }
988
989 static int target_call_timer_callbacks_check_time(int checktime)
990 {
991         keep_alive();
992
993         struct timeval now;
994         gettimeofday(&now, NULL);
995
996         struct target_timer_callback *callback = target_timer_callbacks;
997         while (callback)
998         {
999                 // cleaning up may unregister and free this callback
1000                 struct target_timer_callback *next_callback = callback->next;
1001
1002                 bool call_it = callback->callback &&
1003                         ((!checktime && callback->periodic) ||
1004                           now.tv_sec > callback->when.tv_sec ||
1005                          (now.tv_sec == callback->when.tv_sec &&
1006                           now.tv_usec >= callback->when.tv_usec));
1007
1008                 if (call_it)
1009                 {
1010                         int retval = target_call_timer_callback(callback, &now);
1011                         if (retval != ERROR_OK)
1012                                 return retval;
1013                 }
1014
1015                 callback = next_callback;
1016         }
1017
1018         return ERROR_OK;
1019 }
1020
1021 int target_call_timer_callbacks(void)
1022 {
1023         return target_call_timer_callbacks_check_time(1);
1024 }
1025
1026 /* invoke periodic callbacks immediately */
1027 int target_call_timer_callbacks_now(void)
1028 {
1029         return target_call_timer_callbacks_check_time(0);
1030 }
1031
1032 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1033 {
1034         struct working_area *c = target->working_areas;
1035         struct working_area *new_wa = NULL;
1036
1037         /* Reevaluate working area address based on MMU state*/
1038         if (target->working_areas == NULL)
1039         {
1040                 int retval;
1041                 int enabled;
1042
1043                 retval = target->type->mmu(target, &enabled);
1044                 if (retval != ERROR_OK)
1045                 {
1046                         return retval;
1047                 }
1048
1049                 if (!enabled) {
1050                         if (target->working_area_phys_spec) {
1051                                 LOG_DEBUG("MMU disabled, using physical "
1052                                         "address for working memory 0x%08x",
1053                                         (unsigned)target->working_area_phys);
1054                                 target->working_area = target->working_area_phys;
1055                         } else {
1056                                 LOG_ERROR("No working memory available. "
1057                                         "Specify -work-area-phys to target.");
1058                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1059                         }
1060                 } else {
1061                         if (target->working_area_virt_spec) {
1062                                 LOG_DEBUG("MMU enabled, using virtual "
1063                                         "address for working memory 0x%08x",
1064                                         (unsigned)target->working_area_virt);
1065                                 target->working_area = target->working_area_virt;
1066                         } else {
1067                                 LOG_ERROR("No working memory available. "
1068                                         "Specify -work-area-virt to target.");
1069                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1070                         }
1071                 }
1072         }
1073
1074         /* only allocate multiples of 4 byte */
1075         if (size % 4)
1076         {
1077                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1078                 size = (size + 3) & (~3);
1079         }
1080
1081         /* see if there's already a matching working area */
1082         while (c)
1083         {
1084                 if ((c->free) && (c->size == size))
1085                 {
1086                         new_wa = c;
1087                         break;
1088                 }
1089                 c = c->next;
1090         }
1091
1092         /* if not, allocate a new one */
1093         if (!new_wa)
1094         {
1095                 struct working_area **p = &target->working_areas;
1096                 uint32_t first_free = target->working_area;
1097                 uint32_t free_size = target->working_area_size;
1098
1099                 c = target->working_areas;
1100                 while (c)
1101                 {
1102                         first_free += c->size;
1103                         free_size -= c->size;
1104                         p = &c->next;
1105                         c = c->next;
1106                 }
1107
1108                 if (free_size < size)
1109                 {
1110                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1111                                     (unsigned)(size), (unsigned)(free_size));
1112                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1113                 }
1114
1115                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1116
1117                 new_wa = malloc(sizeof(struct working_area));
1118                 new_wa->next = NULL;
1119                 new_wa->size = size;
1120                 new_wa->address = first_free;
1121
1122                 if (target->backup_working_area)
1123                 {
1124                         int retval;
1125                         new_wa->backup = malloc(new_wa->size);
1126                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1127                         {
1128                                 free(new_wa->backup);
1129                                 free(new_wa);
1130                                 return retval;
1131                         }
1132                 }
1133                 else
1134                 {
1135                         new_wa->backup = NULL;
1136                 }
1137
1138                 /* put new entry in list */
1139                 *p = new_wa;
1140         }
1141
1142         /* mark as used, and return the new (reused) area */
1143         new_wa->free = 0;
1144         *area = new_wa;
1145
1146         /* user pointer */
1147         new_wa->user = area;
1148
1149         return ERROR_OK;
1150 }
1151
1152 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1153 {
1154         if (area->free)
1155                 return ERROR_OK;
1156
1157         if (restore && target->backup_working_area)
1158         {
1159                 int retval;
1160                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1161                         return retval;
1162         }
1163
1164         area->free = 1;
1165
1166         /* mark user pointer invalid */
1167         *area->user = NULL;
1168         area->user = NULL;
1169
1170         return ERROR_OK;
1171 }
1172
1173 int target_free_working_area(struct target *target, struct working_area *area)
1174 {
1175         return target_free_working_area_restore(target, area, 1);
1176 }
1177
1178 /* free resources and restore memory, if restoring memory fails,
1179  * free up resources anyway
1180  */
1181 void target_free_all_working_areas_restore(struct target *target, int restore)
1182 {
1183         struct working_area *c = target->working_areas;
1184
1185         while (c)
1186         {
1187                 struct working_area *next = c->next;
1188                 target_free_working_area_restore(target, c, restore);
1189
1190                 if (c->backup)
1191                         free(c->backup);
1192
1193                 free(c);
1194
1195                 c = next;
1196         }
1197
1198         target->working_areas = NULL;
1199 }
1200
1201 void target_free_all_working_areas(struct target *target)
1202 {
1203         target_free_all_working_areas_restore(target, 1);
1204 }
1205
1206 int target_arch_state(struct target *target)
1207 {
1208         int retval;
1209         if (target == NULL)
1210         {
1211                 LOG_USER("No target has been configured");
1212                 return ERROR_OK;
1213         }
1214
1215         LOG_USER("target state: %s", target_state_name( target ));
1216
1217         if (target->state != TARGET_HALTED)
1218                 return ERROR_OK;
1219
1220         retval = target->type->arch_state(target);
1221         return retval;
1222 }
1223
1224 /* Single aligned words are guaranteed to use 16 or 32 bit access
1225  * mode respectively, otherwise data is handled as quickly as
1226  * possible
1227  */
1228 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1229 {
1230         int retval;
1231         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1232                   (int)size, (unsigned)address);
1233
1234         if (!target_was_examined(target))
1235         {
1236                 LOG_ERROR("Target not examined yet");
1237                 return ERROR_FAIL;
1238         }
1239
1240         if (size == 0) {
1241                 return ERROR_OK;
1242         }
1243
1244         if ((address + size - 1) < address)
1245         {
1246                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1247                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1248                                   (unsigned)address,
1249                                   (unsigned)size);
1250                 return ERROR_FAIL;
1251         }
1252
1253         if (((address % 2) == 0) && (size == 2))
1254         {
1255                 return target_write_memory(target, address, 2, 1, buffer);
1256         }
1257
1258         /* handle unaligned head bytes */
1259         if (address % 4)
1260         {
1261                 uint32_t unaligned = 4 - (address % 4);
1262
1263                 if (unaligned > size)
1264                         unaligned = size;
1265
1266                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1267                         return retval;
1268
1269                 buffer += unaligned;
1270                 address += unaligned;
1271                 size -= unaligned;
1272         }
1273
1274         /* handle aligned words */
1275         if (size >= 4)
1276         {
1277                 int aligned = size - (size % 4);
1278
1279                 /* use bulk writes above a certain limit. This may have to be changed */
1280                 if (aligned > 128)
1281                 {
1282                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1283                                 return retval;
1284                 }
1285                 else
1286                 {
1287                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1288                                 return retval;
1289                 }
1290
1291                 buffer += aligned;
1292                 address += aligned;
1293                 size -= aligned;
1294         }
1295
1296         /* handle tail writes of less than 4 bytes */
1297         if (size > 0)
1298         {
1299                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1300                         return retval;
1301         }
1302
1303         return ERROR_OK;
1304 }
1305
1306 /* Single aligned words are guaranteed to use 16 or 32 bit access
1307  * mode respectively, otherwise data is handled as quickly as
1308  * possible
1309  */
1310 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1311 {
1312         int retval;
1313         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1314                           (int)size, (unsigned)address);
1315
1316         if (!target_was_examined(target))
1317         {
1318                 LOG_ERROR("Target not examined yet");
1319                 return ERROR_FAIL;
1320         }
1321
1322         if (size == 0) {
1323                 return ERROR_OK;
1324         }
1325
1326         if ((address + size - 1) < address)
1327         {
1328                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1329                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1330                                   address,
1331                                   size);
1332                 return ERROR_FAIL;
1333         }
1334
1335         if (((address % 2) == 0) && (size == 2))
1336         {
1337                 return target_read_memory(target, address, 2, 1, buffer);
1338         }
1339
1340         /* handle unaligned head bytes */
1341         if (address % 4)
1342         {
1343                 uint32_t unaligned = 4 - (address % 4);
1344
1345                 if (unaligned > size)
1346                         unaligned = size;
1347
1348                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1349                         return retval;
1350
1351                 buffer += unaligned;
1352                 address += unaligned;
1353                 size -= unaligned;
1354         }
1355
1356         /* handle aligned words */
1357         if (size >= 4)
1358         {
1359                 int aligned = size - (size % 4);
1360
1361                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1362                         return retval;
1363
1364                 buffer += aligned;
1365                 address += aligned;
1366                 size -= aligned;
1367         }
1368
1369         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1370         if(size >=2)
1371         {
1372                 int aligned = size - (size%2);
1373                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1374                 if (retval != ERROR_OK)
1375                         return retval;
1376
1377                 buffer += aligned;
1378                 address += aligned;
1379                 size -= aligned;
1380         }
1381         /* handle tail writes of less than 4 bytes */
1382         if (size > 0)
1383         {
1384                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1385                         return retval;
1386         }
1387
1388         return ERROR_OK;
1389 }
1390
1391 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1392 {
1393         uint8_t *buffer;
1394         int retval;
1395         uint32_t i;
1396         uint32_t checksum = 0;
1397         if (!target_was_examined(target))
1398         {
1399                 LOG_ERROR("Target not examined yet");
1400                 return ERROR_FAIL;
1401         }
1402
1403         if ((retval = target->type->checksum_memory(target, address,
1404                 size, &checksum)) != ERROR_OK)
1405         {
1406                 buffer = malloc(size);
1407                 if (buffer == NULL)
1408                 {
1409                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1410                         return ERROR_INVALID_ARGUMENTS;
1411                 }
1412                 retval = target_read_buffer(target, address, size, buffer);
1413                 if (retval != ERROR_OK)
1414                 {
1415                         free(buffer);
1416                         return retval;
1417                 }
1418
1419                 /* convert to target endianess */
1420                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1421                 {
1422                         uint32_t target_data;
1423                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1424                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1425                 }
1426
1427                 retval = image_calculate_checksum(buffer, size, &checksum);
1428                 free(buffer);
1429         }
1430
1431         *crc = checksum;
1432
1433         return retval;
1434 }
1435
1436 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1437 {
1438         int retval;
1439         if (!target_was_examined(target))
1440         {
1441                 LOG_ERROR("Target not examined yet");
1442                 return ERROR_FAIL;
1443         }
1444
1445         if (target->type->blank_check_memory == 0)
1446                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1447
1448         retval = target->type->blank_check_memory(target, address, size, blank);
1449
1450         return retval;
1451 }
1452
1453 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1454 {
1455         uint8_t value_buf[4];
1456         if (!target_was_examined(target))
1457         {
1458                 LOG_ERROR("Target not examined yet");
1459                 return ERROR_FAIL;
1460         }
1461
1462         int retval = target_read_memory(target, address, 4, 1, value_buf);
1463
1464         if (retval == ERROR_OK)
1465         {
1466                 *value = target_buffer_get_u32(target, value_buf);
1467                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1468                                   address,
1469                                   *value);
1470         }
1471         else
1472         {
1473                 *value = 0x0;
1474                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1475                                   address);
1476         }
1477
1478         return retval;
1479 }
1480
1481 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1482 {
1483         uint8_t value_buf[2];
1484         if (!target_was_examined(target))
1485         {
1486                 LOG_ERROR("Target not examined yet");
1487                 return ERROR_FAIL;
1488         }
1489
1490         int retval = target_read_memory(target, address, 2, 1, value_buf);
1491
1492         if (retval == ERROR_OK)
1493         {
1494                 *value = target_buffer_get_u16(target, value_buf);
1495                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1496                                   address,
1497                                   *value);
1498         }
1499         else
1500         {
1501                 *value = 0x0;
1502                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1503                                   address);
1504         }
1505
1506         return retval;
1507 }
1508
1509 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1510 {
1511         int retval = target_read_memory(target, address, 1, 1, value);
1512         if (!target_was_examined(target))
1513         {
1514                 LOG_ERROR("Target not examined yet");
1515                 return ERROR_FAIL;
1516         }
1517
1518         if (retval == ERROR_OK)
1519         {
1520                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1521                                   address,
1522                                   *value);
1523         }
1524         else
1525         {
1526                 *value = 0x0;
1527                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1528                                   address);
1529         }
1530
1531         return retval;
1532 }
1533
1534 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1535 {
1536         int retval;
1537         uint8_t value_buf[4];
1538         if (!target_was_examined(target))
1539         {
1540                 LOG_ERROR("Target not examined yet");
1541                 return ERROR_FAIL;
1542         }
1543
1544         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1545                           address,
1546                           value);
1547
1548         target_buffer_set_u32(target, value_buf, value);
1549         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1550         {
1551                 LOG_DEBUG("failed: %i", retval);
1552         }
1553
1554         return retval;
1555 }
1556
1557 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1558 {
1559         int retval;
1560         uint8_t value_buf[2];
1561         if (!target_was_examined(target))
1562         {
1563                 LOG_ERROR("Target not examined yet");
1564                 return ERROR_FAIL;
1565         }
1566
1567         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1568                           address,
1569                           value);
1570
1571         target_buffer_set_u16(target, value_buf, value);
1572         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1573         {
1574                 LOG_DEBUG("failed: %i", retval);
1575         }
1576
1577         return retval;
1578 }
1579
1580 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1581 {
1582         int retval;
1583         if (!target_was_examined(target))
1584         {
1585                 LOG_ERROR("Target not examined yet");
1586                 return ERROR_FAIL;
1587         }
1588
1589         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1590                           address, value);
1591
1592         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1593         {
1594                 LOG_DEBUG("failed: %i", retval);
1595         }
1596
1597         return retval;
1598 }
1599
1600 COMMAND_HANDLER(handle_targets_command)
1601 {
1602         struct target *target = all_targets;
1603
1604         if (CMD_ARGC == 1)
1605         {
1606                 target = get_target(CMD_ARGV[0]);
1607                 if (target == NULL) {
1608                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1609                         goto DumpTargets;
1610                 }
1611                 if (!target->tap->enabled) {
1612                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1613                                         "can't be the current target\n",
1614                                         target->tap->dotted_name);
1615                         return ERROR_FAIL;
1616                 }
1617
1618                 CMD_CTX->current_target = target->target_number;
1619                 return ERROR_OK;
1620         }
1621 DumpTargets:
1622
1623         target = all_targets;
1624         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1625         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1626         while (target)
1627         {
1628                 const char *state;
1629                 char marker = ' ';
1630
1631                 if (target->tap->enabled)
1632                         state = target_state_name( target );
1633                 else
1634                         state = "tap-disabled";
1635
1636                 if (CMD_CTX->current_target == target->target_number)
1637                         marker = '*';
1638
1639                 /* keep columns lined up to match the headers above */
1640                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1641                                           target->target_number,
1642                                           marker,
1643                                           target_name(target),
1644                                           target_type_name(target),
1645                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1646                                                                 target->endianness)->name,
1647                                           target->tap->dotted_name,
1648                                           state);
1649                 target = target->next;
1650         }
1651
1652         return ERROR_OK;
1653 }
1654
1655 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1656
1657 static int powerDropout;
1658 static int srstAsserted;
1659
1660 static int runPowerRestore;
1661 static int runPowerDropout;
1662 static int runSrstAsserted;
1663 static int runSrstDeasserted;
1664
1665 static int sense_handler(void)
1666 {
1667         static int prevSrstAsserted = 0;
1668         static int prevPowerdropout = 0;
1669
1670         int retval;
1671         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1672                 return retval;
1673
1674         int powerRestored;
1675         powerRestored = prevPowerdropout && !powerDropout;
1676         if (powerRestored)
1677         {
1678                 runPowerRestore = 1;
1679         }
1680
1681         long long current = timeval_ms();
1682         static long long lastPower = 0;
1683         int waitMore = lastPower + 2000 > current;
1684         if (powerDropout && !waitMore)
1685         {
1686                 runPowerDropout = 1;
1687                 lastPower = current;
1688         }
1689
1690         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1691                 return retval;
1692
1693         int srstDeasserted;
1694         srstDeasserted = prevSrstAsserted && !srstAsserted;
1695
1696         static long long lastSrst = 0;
1697         waitMore = lastSrst + 2000 > current;
1698         if (srstDeasserted && !waitMore)
1699         {
1700                 runSrstDeasserted = 1;
1701                 lastSrst = current;
1702         }
1703
1704         if (!prevSrstAsserted && srstAsserted)
1705         {
1706                 runSrstAsserted = 1;
1707         }
1708
1709         prevSrstAsserted = srstAsserted;
1710         prevPowerdropout = powerDropout;
1711
1712         if (srstDeasserted || powerRestored)
1713         {
1714                 /* Other than logging the event we can't do anything here.
1715                  * Issuing a reset is a particularly bad idea as we might
1716                  * be inside a reset already.
1717                  */
1718         }
1719
1720         return ERROR_OK;
1721 }
1722
1723 static void target_call_event_callbacks_all(enum target_event e) {
1724         struct target *target;
1725         target = all_targets;
1726         while (target) {
1727                 target_call_event_callbacks(target, e);
1728                 target = target->next;
1729         }
1730 }
1731
1732 /* process target state changes */
1733 static int handle_target(void *priv)
1734 {
1735         Jim_Interp *interp = (Jim_Interp *)priv;
1736         int retval = ERROR_OK;
1737
1738         /* we do not want to recurse here... */
1739         static int recursive = 0;
1740         if (! recursive)
1741         {
1742                 recursive = 1;
1743                 sense_handler();
1744                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1745                  * We need to avoid an infinite loop/recursion here and we do that by
1746                  * clearing the flags after running these events.
1747                  */
1748                 int did_something = 0;
1749                 if (runSrstAsserted)
1750                 {
1751                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1752                         Jim_Eval(interp, "srst_asserted");
1753                         did_something = 1;
1754                 }
1755                 if (runSrstDeasserted)
1756                 {
1757                         Jim_Eval(interp, "srst_deasserted");
1758                         did_something = 1;
1759                 }
1760                 if (runPowerDropout)
1761                 {
1762                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1763                         Jim_Eval(interp, "power_dropout");
1764                         did_something = 1;
1765                 }
1766                 if (runPowerRestore)
1767                 {
1768                         Jim_Eval(interp, "power_restore");
1769                         did_something = 1;
1770                 }
1771
1772                 if (did_something)
1773                 {
1774                         /* clear detect flags */
1775                         sense_handler();
1776                 }
1777
1778                 /* clear action flags */
1779
1780                 runSrstAsserted = 0;
1781                 runSrstDeasserted = 0;
1782                 runPowerRestore = 0;
1783                 runPowerDropout = 0;
1784
1785                 recursive = 0;
1786         }
1787
1788         /* Poll targets for state changes unless that's globally disabled.
1789          * Skip targets that are currently disabled.
1790          */
1791         for (struct target *target = all_targets;
1792                         is_jtag_poll_safe() && target;
1793                         target = target->next)
1794         {
1795                 if (!target->tap->enabled)
1796                         continue;
1797
1798                 /* only poll target if we've got power and srst isn't asserted */
1799                 if (!powerDropout && !srstAsserted)
1800                 {
1801                         /* polling may fail silently until the target has been examined */
1802                         if ((retval = target_poll(target)) != ERROR_OK)
1803                         {
1804                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1805                                 return retval;
1806                         }
1807                 }
1808         }
1809
1810         return retval;
1811 }
1812
1813 COMMAND_HANDLER(handle_reg_command)
1814 {
1815         struct target *target;
1816         struct reg *reg = NULL;
1817         unsigned count = 0;
1818         char *value;
1819
1820         LOG_DEBUG("-");
1821
1822         target = get_current_target(CMD_CTX);
1823
1824         /* list all available registers for the current target */
1825         if (CMD_ARGC == 0)
1826         {
1827                 struct reg_cache *cache = target->reg_cache;
1828
1829                 count = 0;
1830                 while (cache)
1831                 {
1832                         unsigned i;
1833
1834                         command_print(CMD_CTX, "===== %s", cache->name);
1835
1836                         for (i = 0, reg = cache->reg_list;
1837                                         i < cache->num_regs;
1838                                         i++, reg++, count++)
1839                         {
1840                                 /* only print cached values if they are valid */
1841                                 if (reg->valid) {
1842                                         value = buf_to_str(reg->value,
1843                                                         reg->size, 16);
1844                                         command_print(CMD_CTX,
1845                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1846                                                         count, reg->name,
1847                                                         reg->size, value,
1848                                                         reg->dirty
1849                                                                 ? " (dirty)"
1850                                                                 : "");
1851                                         free(value);
1852                                 } else {
1853                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1854                                                           count, reg->name,
1855                                                           reg->size) ;
1856                                 }
1857                         }
1858                         cache = cache->next;
1859                 }
1860
1861                 return ERROR_OK;
1862         }
1863
1864         /* access a single register by its ordinal number */
1865         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1866         {
1867                 unsigned num;
1868                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1869
1870                 struct reg_cache *cache = target->reg_cache;
1871                 count = 0;
1872                 while (cache)
1873                 {
1874                         unsigned i;
1875                         for (i = 0; i < cache->num_regs; i++)
1876                         {
1877                                 if (count++ == num)
1878                                 {
1879                                         reg = &cache->reg_list[i];
1880                                         break;
1881                                 }
1882                         }
1883                         if (reg)
1884                                 break;
1885                         cache = cache->next;
1886                 }
1887
1888                 if (!reg)
1889                 {
1890                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1891                         return ERROR_OK;
1892                 }
1893         } else /* access a single register by its name */
1894         {
1895                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1896
1897                 if (!reg)
1898                 {
1899                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1900                         return ERROR_OK;
1901                 }
1902         }
1903
1904         /* display a register */
1905         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1906         {
1907                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1908                         reg->valid = 0;
1909
1910                 if (reg->valid == 0)
1911                 {
1912                         reg->type->get(reg);
1913                 }
1914                 value = buf_to_str(reg->value, reg->size, 16);
1915                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1916                 free(value);
1917                 return ERROR_OK;
1918         }
1919
1920         /* set register value */
1921         if (CMD_ARGC == 2)
1922         {
1923                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
1924                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
1925
1926                 reg->type->set(reg, buf);
1927
1928                 value = buf_to_str(reg->value, reg->size, 16);
1929                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1930                 free(value);
1931
1932                 free(buf);
1933
1934                 return ERROR_OK;
1935         }
1936
1937         command_print(CMD_CTX, "usage: reg <#|name> [value]");
1938
1939         return ERROR_OK;
1940 }
1941
1942 COMMAND_HANDLER(handle_poll_command)
1943 {
1944         int retval = ERROR_OK;
1945         struct target *target = get_current_target(CMD_CTX);
1946
1947         if (CMD_ARGC == 0)
1948         {
1949                 command_print(CMD_CTX, "background polling: %s",
1950                                 jtag_poll_get_enabled() ? "on" : "off");
1951                 command_print(CMD_CTX, "TAP: %s (%s)",
1952                                 target->tap->dotted_name,
1953                                 target->tap->enabled ? "enabled" : "disabled");
1954                 if (!target->tap->enabled)
1955                         return ERROR_OK;
1956                 if ((retval = target_poll(target)) != ERROR_OK)
1957                         return retval;
1958                 if ((retval = target_arch_state(target)) != ERROR_OK)
1959                         return retval;
1960         }
1961         else if (CMD_ARGC == 1)
1962         {
1963                 bool enable;
1964                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
1965                 jtag_poll_set_enabled(enable);
1966         }
1967         else
1968         {
1969                 return ERROR_COMMAND_SYNTAX_ERROR;
1970         }
1971
1972         return retval;
1973 }
1974
1975 COMMAND_HANDLER(handle_wait_halt_command)
1976 {
1977         if (CMD_ARGC > 1)
1978                 return ERROR_COMMAND_SYNTAX_ERROR;
1979
1980         unsigned ms = 5000;
1981         if (1 == CMD_ARGC)
1982         {
1983                 int retval = parse_uint(CMD_ARGV[0], &ms);
1984                 if (ERROR_OK != retval)
1985                 {
1986                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
1987                         return ERROR_COMMAND_SYNTAX_ERROR;
1988                 }
1989                 // convert seconds (given) to milliseconds (needed)
1990                 ms *= 1000;
1991         }
1992
1993         struct target *target = get_current_target(CMD_CTX);
1994         return target_wait_state(target, TARGET_HALTED, ms);
1995 }
1996
1997 /* wait for target state to change. The trick here is to have a low
1998  * latency for short waits and not to suck up all the CPU time
1999  * on longer waits.
2000  *
2001  * After 500ms, keep_alive() is invoked
2002  */
2003 int target_wait_state(struct target *target, enum target_state state, int ms)
2004 {
2005         int retval;
2006         long long then = 0, cur;
2007         int once = 1;
2008
2009         for (;;)
2010         {
2011                 if ((retval = target_poll(target)) != ERROR_OK)
2012                         return retval;
2013                 if (target->state == state)
2014                 {
2015                         break;
2016                 }
2017                 cur = timeval_ms();
2018                 if (once)
2019                 {
2020                         once = 0;
2021                         then = timeval_ms();
2022                         LOG_DEBUG("waiting for target %s...",
2023                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2024                 }
2025
2026                 if (cur-then > 500)
2027                 {
2028                         keep_alive();
2029                 }
2030
2031                 if ((cur-then) > ms)
2032                 {
2033                         LOG_ERROR("timed out while waiting for target %s",
2034                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2035                         return ERROR_FAIL;
2036                 }
2037         }
2038
2039         return ERROR_OK;
2040 }
2041
2042 COMMAND_HANDLER(handle_halt_command)
2043 {
2044         LOG_DEBUG("-");
2045
2046         struct target *target = get_current_target(CMD_CTX);
2047         int retval = target_halt(target);
2048         if (ERROR_OK != retval)
2049                 return retval;
2050
2051         if (CMD_ARGC == 1)
2052         {
2053                 unsigned wait;
2054                 retval = parse_uint(CMD_ARGV[0], &wait);
2055                 if (ERROR_OK != retval)
2056                         return ERROR_COMMAND_SYNTAX_ERROR;
2057                 if (!wait)
2058                         return ERROR_OK;
2059         }
2060
2061         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2062 }
2063
2064 COMMAND_HANDLER(handle_soft_reset_halt_command)
2065 {
2066         struct target *target = get_current_target(CMD_CTX);
2067
2068         LOG_USER("requesting target halt and executing a soft reset");
2069
2070         target->type->soft_reset_halt(target);
2071
2072         return ERROR_OK;
2073 }
2074
2075 COMMAND_HANDLER(handle_reset_command)
2076 {
2077         if (CMD_ARGC > 1)
2078                 return ERROR_COMMAND_SYNTAX_ERROR;
2079
2080         enum target_reset_mode reset_mode = RESET_RUN;
2081         if (CMD_ARGC == 1)
2082         {
2083                 const Jim_Nvp *n;
2084                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2085                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2086                         return ERROR_COMMAND_SYNTAX_ERROR;
2087                 }
2088                 reset_mode = n->value;
2089         }
2090
2091         /* reset *all* targets */
2092         return target_process_reset(CMD_CTX, reset_mode);
2093 }
2094
2095
2096 COMMAND_HANDLER(handle_resume_command)
2097 {
2098         int current = 1;
2099         if (CMD_ARGC > 1)
2100                 return ERROR_COMMAND_SYNTAX_ERROR;
2101
2102         struct target *target = get_current_target(CMD_CTX);
2103         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2104
2105         /* with no CMD_ARGV, resume from current pc, addr = 0,
2106          * with one arguments, addr = CMD_ARGV[0],
2107          * handle breakpoints, not debugging */
2108         uint32_t addr = 0;
2109         if (CMD_ARGC == 1)
2110         {
2111                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2112                 current = 0;
2113         }
2114
2115         return target_resume(target, current, addr, 1, 0);
2116 }
2117
2118 COMMAND_HANDLER(handle_step_command)
2119 {
2120         if (CMD_ARGC > 1)
2121                 return ERROR_COMMAND_SYNTAX_ERROR;
2122
2123         LOG_DEBUG("-");
2124
2125         /* with no CMD_ARGV, step from current pc, addr = 0,
2126          * with one argument addr = CMD_ARGV[0],
2127          * handle breakpoints, debugging */
2128         uint32_t addr = 0;
2129         int current_pc = 1;
2130         if (CMD_ARGC == 1)
2131         {
2132                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2133                 current_pc = 0;
2134         }
2135
2136         struct target *target = get_current_target(CMD_CTX);
2137
2138         return target->type->step(target, current_pc, addr, 1);
2139 }
2140
2141 static void handle_md_output(struct command_context *cmd_ctx,
2142                 struct target *target, uint32_t address, unsigned size,
2143                 unsigned count, const uint8_t *buffer)
2144 {
2145         const unsigned line_bytecnt = 32;
2146         unsigned line_modulo = line_bytecnt / size;
2147
2148         char output[line_bytecnt * 4 + 1];
2149         unsigned output_len = 0;
2150
2151         const char *value_fmt;
2152         switch (size) {
2153         case 4: value_fmt = "%8.8x "; break;
2154         case 2: value_fmt = "%4.2x "; break;
2155         case 1: value_fmt = "%2.2x "; break;
2156         default:
2157                 /* "can't happen", caller checked */
2158                 LOG_ERROR("invalid memory read size: %u", size);
2159                 return;
2160         }
2161
2162         for (unsigned i = 0; i < count; i++)
2163         {
2164                 if (i % line_modulo == 0)
2165                 {
2166                         output_len += snprintf(output + output_len,
2167                                         sizeof(output) - output_len,
2168                                         "0x%8.8x: ",
2169                                         (unsigned)(address + (i*size)));
2170                 }
2171
2172                 uint32_t value = 0;
2173                 const uint8_t *value_ptr = buffer + i * size;
2174                 switch (size) {
2175                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2176                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2177                 case 1: value = *value_ptr;
2178                 }
2179                 output_len += snprintf(output + output_len,
2180                                 sizeof(output) - output_len,
2181                                 value_fmt, value);
2182
2183                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2184                 {
2185                         command_print(cmd_ctx, "%s", output);
2186                         output_len = 0;
2187                 }
2188         }
2189 }
2190
2191 COMMAND_HANDLER(handle_md_command)
2192 {
2193         if (CMD_ARGC < 1)
2194                 return ERROR_COMMAND_SYNTAX_ERROR;
2195
2196         unsigned size = 0;
2197         switch (CMD_NAME[2]) {
2198         case 'w': size = 4; break;
2199         case 'h': size = 2; break;
2200         case 'b': size = 1; break;
2201         default: return ERROR_COMMAND_SYNTAX_ERROR;
2202         }
2203
2204         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2205         int (*fn)(struct target *target,
2206                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2207         if (physical)
2208         {
2209                 CMD_ARGC--;
2210                 CMD_ARGV++;
2211                 fn=target_read_phys_memory;
2212         } else
2213         {
2214                 fn=target_read_memory;
2215         }
2216         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2217         {
2218                 return ERROR_COMMAND_SYNTAX_ERROR;
2219         }
2220
2221         uint32_t address;
2222         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2223
2224         unsigned count = 1;
2225         if (CMD_ARGC == 2)
2226                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2227
2228         uint8_t *buffer = calloc(count, size);
2229
2230         struct target *target = get_current_target(CMD_CTX);
2231         int retval = fn(target, address, size, count, buffer);
2232         if (ERROR_OK == retval)
2233                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2234
2235         free(buffer);
2236
2237         return retval;
2238 }
2239
2240 COMMAND_HANDLER(handle_mw_command)
2241 {
2242         if (CMD_ARGC < 2)
2243         {
2244                 return ERROR_COMMAND_SYNTAX_ERROR;
2245         }
2246         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2247         int (*fn)(struct target *target,
2248                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2249         if (physical)
2250         {
2251                 CMD_ARGC--;
2252                 CMD_ARGV++;
2253                 fn=target_write_phys_memory;
2254         } else
2255         {
2256                 fn=target_write_memory;
2257         }
2258         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2259                 return ERROR_COMMAND_SYNTAX_ERROR;
2260
2261         uint32_t address;
2262         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2263
2264         uint32_t value;
2265         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2266
2267         unsigned count = 1;
2268         if (CMD_ARGC == 3)
2269                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2270
2271         struct target *target = get_current_target(CMD_CTX);
2272         unsigned wordsize;
2273         uint8_t value_buf[4];
2274         switch (CMD_NAME[2])
2275         {
2276                 case 'w':
2277                         wordsize = 4;
2278                         target_buffer_set_u32(target, value_buf, value);
2279                         break;
2280                 case 'h':
2281                         wordsize = 2;
2282                         target_buffer_set_u16(target, value_buf, value);
2283                         break;
2284                 case 'b':
2285                         wordsize = 1;
2286                         value_buf[0] = value;
2287                         break;
2288                 default:
2289                         return ERROR_COMMAND_SYNTAX_ERROR;
2290         }
2291         for (unsigned i = 0; i < count; i++)
2292         {
2293                 int retval = fn(target,
2294                                 address + i * wordsize, wordsize, 1, value_buf);
2295                 if (ERROR_OK != retval)
2296                         return retval;
2297                 keep_alive();
2298         }
2299
2300         return ERROR_OK;
2301
2302 }
2303
2304 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2305                 uint32_t *min_address, uint32_t *max_address)
2306 {
2307         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2308                 return ERROR_COMMAND_SYNTAX_ERROR;
2309
2310         /* a base address isn't always necessary,
2311          * default to 0x0 (i.e. don't relocate) */
2312         if (CMD_ARGC >= 2)
2313         {
2314                 uint32_t addr;
2315                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2316                 image->base_address = addr;
2317                 image->base_address_set = 1;
2318         }
2319         else
2320                 image->base_address_set = 0;
2321
2322         image->start_address_set = 0;
2323
2324         if (CMD_ARGC >= 4)
2325         {
2326                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2327         }
2328         if (CMD_ARGC == 5)
2329         {
2330                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2331                 // use size (given) to find max (required)
2332                 *max_address += *min_address;
2333         }
2334
2335         if (*min_address > *max_address)
2336                 return ERROR_COMMAND_SYNTAX_ERROR;
2337
2338         return ERROR_OK;
2339 }
2340
2341 COMMAND_HANDLER(handle_load_image_command)
2342 {
2343         uint8_t *buffer;
2344         size_t buf_cnt;
2345         uint32_t image_size;
2346         uint32_t min_address = 0;
2347         uint32_t max_address = 0xffffffff;
2348         int i;
2349         struct image image;
2350
2351         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2352                         &image, &min_address, &max_address);
2353         if (ERROR_OK != retval)
2354                 return retval;
2355
2356         struct target *target = get_current_target(CMD_CTX);
2357
2358         struct duration bench;
2359         duration_start(&bench);
2360
2361         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2362         {
2363                 return ERROR_OK;
2364         }
2365
2366         image_size = 0x0;
2367         retval = ERROR_OK;
2368         for (i = 0; i < image.num_sections; i++)
2369         {
2370                 buffer = malloc(image.sections[i].size);
2371                 if (buffer == NULL)
2372                 {
2373                         command_print(CMD_CTX,
2374                                                   "error allocating buffer for section (%d bytes)",
2375                                                   (int)(image.sections[i].size));
2376                         break;
2377                 }
2378
2379                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2380                 {
2381                         free(buffer);
2382                         break;
2383                 }
2384
2385                 uint32_t offset = 0;
2386                 uint32_t length = buf_cnt;
2387
2388                 /* DANGER!!! beware of unsigned comparision here!!! */
2389
2390                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2391                                 (image.sections[i].base_address < max_address))
2392                 {
2393                         if (image.sections[i].base_address < min_address)
2394                         {
2395                                 /* clip addresses below */
2396                                 offset += min_address-image.sections[i].base_address;
2397                                 length -= offset;
2398                         }
2399
2400                         if (image.sections[i].base_address + buf_cnt > max_address)
2401                         {
2402                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2403                         }
2404
2405                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2406                         {
2407                                 free(buffer);
2408                                 break;
2409                         }
2410                         image_size += length;
2411                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2412                                                   (unsigned int)length,
2413                                                   image.sections[i].base_address + offset);
2414                 }
2415
2416                 free(buffer);
2417         }
2418
2419         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2420         {
2421                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2422                                 "in %fs (%0.3f kb/s)", image_size,
2423                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2424         }
2425
2426         image_close(&image);
2427
2428         return retval;
2429
2430 }
2431
2432 COMMAND_HANDLER(handle_dump_image_command)
2433 {
2434         struct fileio fileio;
2435
2436         uint8_t buffer[560];
2437         int retvaltemp;
2438
2439
2440         struct target *target = get_current_target(CMD_CTX);
2441
2442         if (CMD_ARGC != 3)
2443         {
2444                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2445                 return ERROR_OK;
2446         }
2447
2448         uint32_t address;
2449         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2450         uint32_t size;
2451         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2452
2453         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2454         {
2455                 return ERROR_OK;
2456         }
2457
2458         struct duration bench;
2459         duration_start(&bench);
2460
2461         int retval = ERROR_OK;
2462         while (size > 0)
2463         {
2464                 size_t size_written;
2465                 uint32_t this_run_size = (size > 560) ? 560 : size;
2466                 retval = target_read_buffer(target, address, this_run_size, buffer);
2467                 if (retval != ERROR_OK)
2468                 {
2469                         break;
2470                 }
2471
2472                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2473                 if (retval != ERROR_OK)
2474                 {
2475                         break;
2476                 }
2477
2478                 size -= this_run_size;
2479                 address += this_run_size;
2480         }
2481
2482         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2483                 return retvaltemp;
2484
2485         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2486         {
2487                 command_print(CMD_CTX,
2488                                 "dumped %zu bytes in %fs (%0.3f kb/s)", fileio.size,
2489                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2490         }
2491
2492         return retval;
2493 }
2494
2495 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2496 {
2497         uint8_t *buffer;
2498         size_t buf_cnt;
2499         uint32_t image_size;
2500         int i;
2501         int retval;
2502         uint32_t checksum = 0;
2503         uint32_t mem_checksum = 0;
2504
2505         struct image image;
2506
2507         struct target *target = get_current_target(CMD_CTX);
2508
2509         if (CMD_ARGC < 1)
2510         {
2511                 return ERROR_COMMAND_SYNTAX_ERROR;
2512         }
2513
2514         if (!target)
2515         {
2516                 LOG_ERROR("no target selected");
2517                 return ERROR_FAIL;
2518         }
2519
2520         struct duration bench;
2521         duration_start(&bench);
2522
2523         if (CMD_ARGC >= 2)
2524         {
2525                 uint32_t addr;
2526                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2527                 image.base_address = addr;
2528                 image.base_address_set = 1;
2529         }
2530         else
2531         {
2532                 image.base_address_set = 0;
2533                 image.base_address = 0x0;
2534         }
2535
2536         image.start_address_set = 0;
2537
2538         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2539         {
2540                 return retval;
2541         }
2542
2543         image_size = 0x0;
2544         retval = ERROR_OK;
2545         for (i = 0; i < image.num_sections; i++)
2546         {
2547                 buffer = malloc(image.sections[i].size);
2548                 if (buffer == NULL)
2549                 {
2550                         command_print(CMD_CTX,
2551                                                   "error allocating buffer for section (%d bytes)",
2552                                                   (int)(image.sections[i].size));
2553                         break;
2554                 }
2555                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2556                 {
2557                         free(buffer);
2558                         break;
2559                 }
2560
2561                 if (verify)
2562                 {
2563                         /* calculate checksum of image */
2564                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2565
2566                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2567                         if (retval != ERROR_OK)
2568                         {
2569                                 free(buffer);
2570                                 break;
2571                         }
2572
2573                         if (checksum != mem_checksum)
2574                         {
2575                                 /* failed crc checksum, fall back to a binary compare */
2576                                 uint8_t *data;
2577
2578                                 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2579
2580                                 data = (uint8_t*)malloc(buf_cnt);
2581
2582                                 /* Can we use 32bit word accesses? */
2583                                 int size = 1;
2584                                 int count = buf_cnt;
2585                                 if ((count % 4) == 0)
2586                                 {
2587                                         size *= 4;
2588                                         count /= 4;
2589                                 }
2590                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2591                                 if (retval == ERROR_OK)
2592                                 {
2593                                         uint32_t t;
2594                                         for (t = 0; t < buf_cnt; t++)
2595                                         {
2596                                                 if (data[t] != buffer[t])
2597                                                 {
2598                                                         command_print(CMD_CTX,
2599                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2600                                                                                   (unsigned)(t + image.sections[i].base_address),
2601                                                                                   data[t],
2602                                                                                   buffer[t]);
2603                                                         free(data);
2604                                                         free(buffer);
2605                                                         retval = ERROR_FAIL;
2606                                                         goto done;
2607                                                 }
2608                                                 if ((t%16384) == 0)
2609                                                 {
2610                                                         keep_alive();
2611                                                 }
2612                                         }
2613                                 }
2614
2615                                 free(data);
2616                         }
2617                 } else
2618                 {
2619                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2620                                                   image.sections[i].base_address,
2621                                                   buf_cnt);
2622                 }
2623
2624                 free(buffer);
2625                 image_size += buf_cnt;
2626         }
2627 done:
2628         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2629         {
2630                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2631                                 "in %fs (%0.3f kb/s)", image_size,
2632                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2633         }
2634
2635         image_close(&image);
2636
2637         return retval;
2638 }
2639
2640 COMMAND_HANDLER(handle_verify_image_command)
2641 {
2642         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2643 }
2644
2645 COMMAND_HANDLER(handle_test_image_command)
2646 {
2647         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2648 }
2649
2650 static int handle_bp_command_list(struct command_context *cmd_ctx)
2651 {
2652         struct target *target = get_current_target(cmd_ctx);
2653         struct breakpoint *breakpoint = target->breakpoints;
2654         while (breakpoint)
2655         {
2656                 if (breakpoint->type == BKPT_SOFT)
2657                 {
2658                         char* buf = buf_to_str(breakpoint->orig_instr,
2659                                         breakpoint->length, 16);
2660                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2661                                         breakpoint->address,
2662                                         breakpoint->length,
2663                                         breakpoint->set, buf);
2664                         free(buf);
2665                 }
2666                 else
2667                 {
2668                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2669                                                   breakpoint->address,
2670                                                   breakpoint->length, breakpoint->set);
2671                 }
2672
2673                 breakpoint = breakpoint->next;
2674         }
2675         return ERROR_OK;
2676 }
2677
2678 static int handle_bp_command_set(struct command_context *cmd_ctx,
2679                 uint32_t addr, uint32_t length, int hw)
2680 {
2681         struct target *target = get_current_target(cmd_ctx);
2682         int retval = breakpoint_add(target, addr, length, hw);
2683         if (ERROR_OK == retval)
2684                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2685         else
2686                 LOG_ERROR("Failure setting breakpoint");
2687         return retval;
2688 }
2689
2690 COMMAND_HANDLER(handle_bp_command)
2691 {
2692         if (CMD_ARGC == 0)
2693                 return handle_bp_command_list(CMD_CTX);
2694
2695         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2696         {
2697                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2698                 return ERROR_COMMAND_SYNTAX_ERROR;
2699         }
2700
2701         uint32_t addr;
2702         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2703         uint32_t length;
2704         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2705
2706         int hw = BKPT_SOFT;
2707         if (CMD_ARGC == 3)
2708         {
2709                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2710                         hw = BKPT_HARD;
2711                 else
2712                         return ERROR_COMMAND_SYNTAX_ERROR;
2713         }
2714
2715         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2716 }
2717
2718 COMMAND_HANDLER(handle_rbp_command)
2719 {
2720         if (CMD_ARGC != 1)
2721                 return ERROR_COMMAND_SYNTAX_ERROR;
2722
2723         uint32_t addr;
2724         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2725
2726         struct target *target = get_current_target(CMD_CTX);
2727         breakpoint_remove(target, addr);
2728
2729         return ERROR_OK;
2730 }
2731
2732 COMMAND_HANDLER(handle_wp_command)
2733 {
2734         struct target *target = get_current_target(CMD_CTX);
2735
2736         if (CMD_ARGC == 0)
2737         {
2738                 struct watchpoint *watchpoint = target->watchpoints;
2739
2740                 while (watchpoint)
2741                 {
2742                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2743                                         ", len: 0x%8.8" PRIx32
2744                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2745                                         ", mask: 0x%8.8" PRIx32,
2746                                         watchpoint->address,
2747                                         watchpoint->length,
2748                                         (int)watchpoint->rw,
2749                                         watchpoint->value,
2750                                         watchpoint->mask);
2751                         watchpoint = watchpoint->next;
2752                 }
2753                 return ERROR_OK;
2754         }
2755
2756         enum watchpoint_rw type = WPT_ACCESS;
2757         uint32_t addr = 0;
2758         uint32_t length = 0;
2759         uint32_t data_value = 0x0;
2760         uint32_t data_mask = 0xffffffff;
2761
2762         switch (CMD_ARGC)
2763         {
2764         case 5:
2765                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2766                 // fall through
2767         case 4:
2768                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2769                 // fall through
2770         case 3:
2771                 switch (CMD_ARGV[2][0])
2772                 {
2773                 case 'r':
2774                         type = WPT_READ;
2775                         break;
2776                 case 'w':
2777                         type = WPT_WRITE;
2778                         break;
2779                 case 'a':
2780                         type = WPT_ACCESS;
2781                         break;
2782                 default:
2783                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2784                         return ERROR_COMMAND_SYNTAX_ERROR;
2785                 }
2786                 // fall through
2787         case 2:
2788                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2789                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2790                 break;
2791
2792         default:
2793                 command_print(CMD_CTX, "usage: wp [address length "
2794                                 "[(r|w|a) [value [mask]]]]");
2795                 return ERROR_COMMAND_SYNTAX_ERROR;
2796         }
2797
2798         int retval = watchpoint_add(target, addr, length, type,
2799                         data_value, data_mask);
2800         if (ERROR_OK != retval)
2801                 LOG_ERROR("Failure setting watchpoints");
2802
2803         return retval;
2804 }
2805
2806 COMMAND_HANDLER(handle_rwp_command)
2807 {
2808         if (CMD_ARGC != 1)
2809                 return ERROR_COMMAND_SYNTAX_ERROR;
2810
2811         uint32_t addr;
2812         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2813
2814         struct target *target = get_current_target(CMD_CTX);
2815         watchpoint_remove(target, addr);
2816
2817         return ERROR_OK;
2818 }
2819
2820
2821 /**
2822  * Translate a virtual address to a physical address.
2823  *
2824  * The low-level target implementation must have logged a detailed error
2825  * which is forwarded to telnet/GDB session.
2826  */
2827 COMMAND_HANDLER(handle_virt2phys_command)
2828 {
2829         if (CMD_ARGC != 1)
2830                 return ERROR_COMMAND_SYNTAX_ERROR;
2831
2832         uint32_t va;
2833         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2834         uint32_t pa;
2835
2836         struct target *target = get_current_target(CMD_CTX);
2837         int retval = target->type->virt2phys(target, va, &pa);
2838         if (retval == ERROR_OK)
2839                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2840
2841         return retval;
2842 }
2843
2844 static void writeData(FILE *f, const void *data, size_t len)
2845 {
2846         size_t written = fwrite(data, 1, len, f);
2847         if (written != len)
2848                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2849 }
2850
2851 static void writeLong(FILE *f, int l)
2852 {
2853         int i;
2854         for (i = 0; i < 4; i++)
2855         {
2856                 char c = (l >> (i*8))&0xff;
2857                 writeData(f, &c, 1);
2858         }
2859
2860 }
2861
2862 static void writeString(FILE *f, char *s)
2863 {
2864         writeData(f, s, strlen(s));
2865 }
2866
2867 /* Dump a gmon.out histogram file. */
2868 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2869 {
2870         uint32_t i;
2871         FILE *f = fopen(filename, "w");
2872         if (f == NULL)
2873                 return;
2874         writeString(f, "gmon");
2875         writeLong(f, 0x00000001); /* Version */
2876         writeLong(f, 0); /* padding */
2877         writeLong(f, 0); /* padding */
2878         writeLong(f, 0); /* padding */
2879
2880         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
2881         writeData(f, &zero, 1);
2882
2883         /* figure out bucket size */
2884         uint32_t min = samples[0];
2885         uint32_t max = samples[0];
2886         for (i = 0; i < sampleNum; i++)
2887         {
2888                 if (min > samples[i])
2889                 {
2890                         min = samples[i];
2891                 }
2892                 if (max < samples[i])
2893                 {
2894                         max = samples[i];
2895                 }
2896         }
2897
2898         int addressSpace = (max-min + 1);
2899
2900         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2901         uint32_t length = addressSpace;
2902         if (length > maxBuckets)
2903         {
2904                 length = maxBuckets;
2905         }
2906         int *buckets = malloc(sizeof(int)*length);
2907         if (buckets == NULL)
2908         {
2909                 fclose(f);
2910                 return;
2911         }
2912         memset(buckets, 0, sizeof(int)*length);
2913         for (i = 0; i < sampleNum;i++)
2914         {
2915                 uint32_t address = samples[i];
2916                 long long a = address-min;
2917                 long long b = length-1;
2918                 long long c = addressSpace-1;
2919                 int index = (a*b)/c; /* danger!!!! int32 overflows */
2920                 buckets[index]++;
2921         }
2922
2923         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2924         writeLong(f, min);                      /* low_pc */
2925         writeLong(f, max);                      /* high_pc */
2926         writeLong(f, length);           /* # of samples */
2927         writeLong(f, 64000000);         /* 64MHz */
2928         writeString(f, "seconds");
2929         for (i = 0; i < (15-strlen("seconds")); i++)
2930                 writeData(f, &zero, 1);
2931         writeString(f, "s");
2932
2933         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2934
2935         char *data = malloc(2*length);
2936         if (data != NULL)
2937         {
2938                 for (i = 0; i < length;i++)
2939                 {
2940                         int val;
2941                         val = buckets[i];
2942                         if (val > 65535)
2943                         {
2944                                 val = 65535;
2945                         }
2946                         data[i*2]=val&0xff;
2947                         data[i*2 + 1]=(val >> 8)&0xff;
2948                 }
2949                 free(buckets);
2950                 writeData(f, data, length * 2);
2951                 free(data);
2952         } else
2953         {
2954                 free(buckets);
2955         }
2956
2957         fclose(f);
2958 }
2959
2960 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2961 COMMAND_HANDLER(handle_profile_command)
2962 {
2963         struct target *target = get_current_target(CMD_CTX);
2964         struct timeval timeout, now;
2965
2966         gettimeofday(&timeout, NULL);
2967         if (CMD_ARGC != 2)
2968         {
2969                 return ERROR_COMMAND_SYNTAX_ERROR;
2970         }
2971         unsigned offset;
2972         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
2973
2974         timeval_add_time(&timeout, offset, 0);
2975
2976         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
2977
2978         static const int maxSample = 10000;
2979         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
2980         if (samples == NULL)
2981                 return ERROR_OK;
2982
2983         int numSamples = 0;
2984         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2985         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2986
2987         for (;;)
2988         {
2989                 int retval;
2990                 target_poll(target);
2991                 if (target->state == TARGET_HALTED)
2992                 {
2993                         uint32_t t=*((uint32_t *)reg->value);
2994                         samples[numSamples++]=t;
2995                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2996                         target_poll(target);
2997                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2998                 } else if (target->state == TARGET_RUNNING)
2999                 {
3000                         /* We want to quickly sample the PC. */
3001                         if ((retval = target_halt(target)) != ERROR_OK)
3002                         {
3003                                 free(samples);
3004                                 return retval;
3005                         }
3006                 } else
3007                 {
3008                         command_print(CMD_CTX, "Target not halted or running");
3009                         retval = ERROR_OK;
3010                         break;
3011                 }
3012                 if (retval != ERROR_OK)
3013                 {
3014                         break;
3015                 }
3016
3017                 gettimeofday(&now, NULL);
3018                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3019                 {
3020                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3021                         if ((retval = target_poll(target)) != ERROR_OK)
3022                         {
3023                                 free(samples);
3024                                 return retval;
3025                         }
3026                         if (target->state == TARGET_HALTED)
3027                         {
3028                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3029                         }
3030                         if ((retval = target_poll(target)) != ERROR_OK)
3031                         {
3032                                 free(samples);
3033                                 return retval;
3034                         }
3035                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3036                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3037                         break;
3038                 }
3039         }
3040         free(samples);
3041
3042         return ERROR_OK;
3043 }
3044
3045 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3046 {
3047         char *namebuf;
3048         Jim_Obj *nameObjPtr, *valObjPtr;
3049         int result;
3050
3051         namebuf = alloc_printf("%s(%d)", varname, idx);
3052         if (!namebuf)
3053                 return JIM_ERR;
3054
3055         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3056         valObjPtr = Jim_NewIntObj(interp, val);
3057         if (!nameObjPtr || !valObjPtr)
3058         {
3059                 free(namebuf);
3060                 return JIM_ERR;
3061         }
3062
3063         Jim_IncrRefCount(nameObjPtr);
3064         Jim_IncrRefCount(valObjPtr);
3065         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3066         Jim_DecrRefCount(interp, nameObjPtr);
3067         Jim_DecrRefCount(interp, valObjPtr);
3068         free(namebuf);
3069         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3070         return result;
3071 }
3072
3073 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3074 {
3075         struct command_context *context;
3076         struct target *target;
3077
3078         context = Jim_GetAssocData(interp, "context");
3079         if (context == NULL)
3080         {
3081                 LOG_ERROR("mem2array: no command context");
3082                 return JIM_ERR;
3083         }
3084         target = get_current_target(context);
3085         if (target == NULL)
3086         {
3087                 LOG_ERROR("mem2array: no current target");
3088                 return JIM_ERR;
3089         }
3090
3091         return  target_mem2array(interp, target, argc-1, argv + 1);
3092 }
3093
3094 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3095 {
3096         long l;
3097         uint32_t width;
3098         int len;
3099         uint32_t addr;
3100         uint32_t count;
3101         uint32_t v;
3102         const char *varname;
3103         int  n, e, retval;
3104         uint32_t i;
3105
3106         /* argv[1] = name of array to receive the data
3107          * argv[2] = desired width
3108          * argv[3] = memory address
3109          * argv[4] = count of times to read
3110          */
3111         if (argc != 4) {
3112                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3113                 return JIM_ERR;
3114         }
3115         varname = Jim_GetString(argv[0], &len);
3116         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3117
3118         e = Jim_GetLong(interp, argv[1], &l);
3119         width = l;
3120         if (e != JIM_OK) {
3121                 return e;
3122         }
3123
3124         e = Jim_GetLong(interp, argv[2], &l);
3125         addr = l;
3126         if (e != JIM_OK) {
3127                 return e;
3128         }
3129         e = Jim_GetLong(interp, argv[3], &l);
3130         len = l;
3131         if (e != JIM_OK) {
3132                 return e;
3133         }
3134         switch (width) {
3135                 case 8:
3136                         width = 1;
3137                         break;
3138                 case 16:
3139                         width = 2;
3140                         break;
3141                 case 32:
3142                         width = 4;
3143                         break;
3144                 default:
3145                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3146                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3147                         return JIM_ERR;
3148         }
3149         if (len == 0) {
3150                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3151                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3152                 return JIM_ERR;
3153         }
3154         if ((addr + (len * width)) < addr) {
3155                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3156                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3157                 return JIM_ERR;
3158         }
3159         /* absurd transfer size? */
3160         if (len > 65536) {
3161                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3162                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3163                 return JIM_ERR;
3164         }
3165
3166         if ((width == 1) ||
3167                 ((width == 2) && ((addr & 1) == 0)) ||
3168                 ((width == 4) && ((addr & 3) == 0))) {
3169                 /* all is well */
3170         } else {
3171                 char buf[100];
3172                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3173                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3174                                 addr,
3175                                 width);
3176                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3177                 return JIM_ERR;
3178         }
3179
3180         /* Transfer loop */
3181
3182         /* index counter */
3183         n = 0;
3184
3185         size_t buffersize = 4096;
3186         uint8_t *buffer = malloc(buffersize);
3187         if (buffer == NULL)
3188                 return JIM_ERR;
3189
3190         /* assume ok */
3191         e = JIM_OK;
3192         while (len) {
3193                 /* Slurp... in buffer size chunks */
3194
3195                 count = len; /* in objects.. */
3196                 if (count > (buffersize/width)) {
3197                         count = (buffersize/width);
3198                 }
3199
3200                 retval = target_read_memory(target, addr, width, count, buffer);
3201                 if (retval != ERROR_OK) {
3202                         /* BOO !*/
3203                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3204                                           (unsigned int)addr,
3205                                           (int)width,
3206                                           (int)count);
3207                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3208                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3209                         e = JIM_ERR;
3210                         len = 0;
3211                 } else {
3212                         v = 0; /* shut up gcc */
3213                         for (i = 0 ;i < count ;i++, n++) {
3214                                 switch (width) {
3215                                         case 4:
3216                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3217                                                 break;
3218                                         case 2:
3219                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3220                                                 break;
3221                                         case 1:
3222                                                 v = buffer[i] & 0x0ff;
3223                                                 break;
3224                                 }
3225                                 new_int_array_element(interp, varname, n, v);
3226                         }
3227                         len -= count;
3228                 }
3229         }
3230
3231         free(buffer);
3232
3233         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3234
3235         return JIM_OK;
3236 }
3237
3238 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3239 {
3240         char *namebuf;
3241         Jim_Obj *nameObjPtr, *valObjPtr;
3242         int result;
3243         long l;
3244
3245         namebuf = alloc_printf("%s(%d)", varname, idx);
3246         if (!namebuf)
3247                 return JIM_ERR;
3248
3249         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3250         if (!nameObjPtr)
3251         {
3252                 free(namebuf);
3253                 return JIM_ERR;
3254         }
3255
3256         Jim_IncrRefCount(nameObjPtr);
3257         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3258         Jim_DecrRefCount(interp, nameObjPtr);
3259         free(namebuf);
3260         if (valObjPtr == NULL)
3261                 return JIM_ERR;
3262
3263         result = Jim_GetLong(interp, valObjPtr, &l);
3264         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3265         *val = l;
3266         return result;
3267 }
3268
3269 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3270 {
3271         struct command_context *context;
3272         struct target *target;
3273
3274         context = Jim_GetAssocData(interp, "context");
3275         if (context == NULL) {
3276                 LOG_ERROR("array2mem: no command context");
3277                 return JIM_ERR;
3278         }
3279         target = get_current_target(context);
3280         if (target == NULL) {
3281                 LOG_ERROR("array2mem: no current target");
3282                 return JIM_ERR;
3283         }
3284
3285         return target_array2mem(interp,target, argc-1, argv + 1);
3286 }
3287 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3288 {
3289         long l;
3290         uint32_t width;
3291         int len;
3292         uint32_t addr;
3293         uint32_t count;
3294         uint32_t v;
3295         const char *varname;
3296         int  n, e, retval;
3297         uint32_t i;
3298
3299         /* argv[1] = name of array to get the data
3300          * argv[2] = desired width
3301          * argv[3] = memory address
3302          * argv[4] = count to write
3303          */
3304         if (argc != 4) {
3305                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3306                 return JIM_ERR;
3307         }
3308         varname = Jim_GetString(argv[0], &len);
3309         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3310
3311         e = Jim_GetLong(interp, argv[1], &l);
3312         width = l;
3313         if (e != JIM_OK) {
3314                 return e;
3315         }
3316
3317         e = Jim_GetLong(interp, argv[2], &l);
3318         addr = l;
3319         if (e != JIM_OK) {
3320                 return e;
3321         }
3322         e = Jim_GetLong(interp, argv[3], &l);
3323         len = l;
3324         if (e != JIM_OK) {
3325                 return e;
3326         }
3327         switch (width) {
3328                 case 8:
3329                         width = 1;
3330                         break;
3331                 case 16:
3332                         width = 2;
3333                         break;
3334                 case 32:
3335                         width = 4;
3336                         break;
3337                 default:
3338                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3339                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3340                         return JIM_ERR;
3341         }
3342         if (len == 0) {
3343                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3344                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3345                 return JIM_ERR;
3346         }
3347         if ((addr + (len * width)) < addr) {
3348                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3349                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3350                 return JIM_ERR;
3351         }
3352         /* absurd transfer size? */
3353         if (len > 65536) {
3354                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3355                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3356                 return JIM_ERR;
3357         }
3358
3359         if ((width == 1) ||
3360                 ((width == 2) && ((addr & 1) == 0)) ||
3361                 ((width == 4) && ((addr & 3) == 0))) {
3362                 /* all is well */
3363         } else {
3364                 char buf[100];
3365                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3366                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3367                                 (unsigned int)addr,
3368                                 (int)width);
3369                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3370                 return JIM_ERR;
3371         }
3372
3373         /* Transfer loop */
3374
3375         /* index counter */
3376         n = 0;
3377         /* assume ok */
3378         e = JIM_OK;
3379
3380         size_t buffersize = 4096;
3381         uint8_t *buffer = malloc(buffersize);
3382         if (buffer == NULL)
3383                 return JIM_ERR;
3384
3385         while (len) {
3386                 /* Slurp... in buffer size chunks */
3387
3388                 count = len; /* in objects.. */
3389                 if (count > (buffersize/width)) {
3390                         count = (buffersize/width);
3391                 }
3392
3393                 v = 0; /* shut up gcc */
3394                 for (i = 0 ;i < count ;i++, n++) {
3395                         get_int_array_element(interp, varname, n, &v);
3396                         switch (width) {
3397                         case 4:
3398                                 target_buffer_set_u32(target, &buffer[i*width], v);
3399                                 break;
3400                         case 2:
3401                                 target_buffer_set_u16(target, &buffer[i*width], v);
3402                                 break;
3403                         case 1:
3404                                 buffer[i] = v & 0x0ff;
3405                                 break;
3406                         }
3407                 }
3408                 len -= count;
3409
3410                 retval = target_write_memory(target, addr, width, count, buffer);
3411                 if (retval != ERROR_OK) {
3412                         /* BOO !*/
3413                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3414                                           (unsigned int)addr,
3415                                           (int)width,
3416                                           (int)count);
3417                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3418                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3419                         e = JIM_ERR;
3420                         len = 0;
3421                 }
3422         }
3423
3424         free(buffer);
3425
3426         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3427
3428         return JIM_OK;
3429 }
3430
3431 void target_all_handle_event(enum target_event e)
3432 {
3433         struct target *target;
3434
3435         LOG_DEBUG("**all*targets: event: %d, %s",
3436                            (int)e,
3437                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3438
3439         target = all_targets;
3440         while (target) {
3441                 target_handle_event(target, e);
3442                 target = target->next;
3443         }
3444 }
3445
3446
3447 /* FIX? should we propagate errors here rather than printing them
3448  * and continuing?
3449  */
3450 void target_handle_event(struct target *target, enum target_event e)
3451 {
3452         struct target_event_action *teap;
3453
3454         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3455                 if (teap->event == e) {
3456                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3457                                            target->target_number,
3458                                            target_name(target),
3459                                            target_type_name(target),
3460                                            e,
3461                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3462                                            Jim_GetString(teap->body, NULL));
3463                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3464                         {
3465                                 Jim_PrintErrorMessage(teap->interp);
3466                         }
3467                 }
3468         }
3469 }
3470
3471 /**
3472  * Returns true only if the target has a handler for the specified event.
3473  */
3474 bool target_has_event_action(struct target *target, enum target_event event)
3475 {
3476         struct target_event_action *teap;
3477
3478         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3479                 if (teap->event == event)
3480                         return true;
3481         }
3482         return false;
3483 }
3484
3485 enum target_cfg_param {
3486         TCFG_TYPE,
3487         TCFG_EVENT,
3488         TCFG_WORK_AREA_VIRT,
3489         TCFG_WORK_AREA_PHYS,
3490         TCFG_WORK_AREA_SIZE,
3491         TCFG_WORK_AREA_BACKUP,
3492         TCFG_ENDIAN,
3493         TCFG_VARIANT,
3494         TCFG_CHAIN_POSITION,
3495 };
3496
3497 static Jim_Nvp nvp_config_opts[] = {
3498         { .name = "-type",             .value = TCFG_TYPE },
3499         { .name = "-event",            .value = TCFG_EVENT },
3500         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3501         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3502         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3503         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3504         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3505         { .name = "-variant",          .value = TCFG_VARIANT },
3506         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3507
3508         { .name = NULL, .value = -1 }
3509 };
3510
3511 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3512 {
3513         Jim_Nvp *n;
3514         Jim_Obj *o;
3515         jim_wide w;
3516         char *cp;
3517         int e;
3518
3519         /* parse config or cget options ... */
3520         while (goi->argc > 0) {
3521                 Jim_SetEmptyResult(goi->interp);
3522                 /* Jim_GetOpt_Debug(goi); */
3523
3524                 if (target->type->target_jim_configure) {
3525                         /* target defines a configure function */
3526                         /* target gets first dibs on parameters */
3527                         e = (*(target->type->target_jim_configure))(target, goi);
3528                         if (e == JIM_OK) {
3529                                 /* more? */
3530                                 continue;
3531                         }
3532                         if (e == JIM_ERR) {
3533                                 /* An error */
3534                                 return e;
3535                         }
3536                         /* otherwise we 'continue' below */
3537                 }
3538                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3539                 if (e != JIM_OK) {
3540                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3541                         return e;
3542                 }
3543                 switch (n->value) {
3544                 case TCFG_TYPE:
3545                         /* not setable */
3546                         if (goi->isconfigure) {
3547                                 Jim_SetResult_sprintf(goi->interp,
3548                                                 "not settable: %s", n->name);
3549                                 return JIM_ERR;
3550                         } else {
3551                         no_params:
3552                                 if (goi->argc != 0) {
3553                                         Jim_WrongNumArgs(goi->interp,
3554                                                         goi->argc, goi->argv,
3555                                                         "NO PARAMS");
3556                                         return JIM_ERR;
3557                                 }
3558                         }
3559                         Jim_SetResultString(goi->interp,
3560                                         target_type_name(target), -1);
3561                         /* loop for more */
3562                         break;
3563                 case TCFG_EVENT:
3564                         if (goi->argc == 0) {
3565                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3566                                 return JIM_ERR;
3567                         }
3568
3569                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3570                         if (e != JIM_OK) {
3571                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3572                                 return e;
3573                         }
3574
3575                         if (goi->isconfigure) {
3576                                 if (goi->argc != 1) {
3577                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3578                                         return JIM_ERR;
3579                                 }
3580                         } else {
3581                                 if (goi->argc != 0) {
3582                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3583                                         return JIM_ERR;
3584                                 }
3585                         }
3586
3587                         {
3588                                 struct target_event_action *teap;
3589
3590                                 teap = target->event_action;
3591                                 /* replace existing? */
3592                                 while (teap) {
3593                                         if (teap->event == (enum target_event)n->value) {
3594                                                 break;
3595                                         }
3596                                         teap = teap->next;
3597                                 }
3598
3599                                 if (goi->isconfigure) {
3600                                         bool replace = true;
3601                                         if (teap == NULL) {
3602                                                 /* create new */
3603                                                 teap = calloc(1, sizeof(*teap));
3604                                                 replace = false;
3605                                         }
3606                                         teap->event = n->value;
3607                                         teap->interp = goi->interp;
3608                                         Jim_GetOpt_Obj(goi, &o);
3609                                         if (teap->body) {
3610                                                 Jim_DecrRefCount(teap->interp, teap->body);
3611                                         }
3612                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3613                                         /*
3614                                          * FIXME:
3615                                          *     Tcl/TK - "tk events" have a nice feature.
3616                                          *     See the "BIND" command.
3617                                          *    We should support that here.
3618                                          *     You can specify %X and %Y in the event code.
3619                                          *     The idea is: %T - target name.
3620                                          *     The idea is: %N - target number
3621                                          *     The idea is: %E - event name.
3622                                          */
3623                                         Jim_IncrRefCount(teap->body);
3624
3625                                         if (!replace)
3626                                         {
3627                                                 /* add to head of event list */
3628                                                 teap->next = target->event_action;
3629                                                 target->event_action = teap;
3630                                         }
3631                                         Jim_SetEmptyResult(goi->interp);
3632                                 } else {
3633                                         /* get */
3634                                         if (teap == NULL) {
3635                                                 Jim_SetEmptyResult(goi->interp);
3636                                         } else {
3637                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3638                                         }
3639                                 }
3640                         }
3641                         /* loop for more */
3642                         break;
3643
3644                 case TCFG_WORK_AREA_VIRT:
3645                         if (goi->isconfigure) {
3646                                 target_free_all_working_areas(target);
3647                                 e = Jim_GetOpt_Wide(goi, &w);
3648                                 if (e != JIM_OK) {
3649                                         return e;
3650                                 }
3651                                 target->working_area_virt = w;
3652                                 target->working_area_virt_spec = true;
3653                         } else {
3654                                 if (goi->argc != 0) {
3655                                         goto no_params;
3656                                 }
3657                         }
3658                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3659                         /* loop for more */
3660                         break;
3661
3662                 case TCFG_WORK_AREA_PHYS:
3663                         if (goi->isconfigure) {
3664                                 target_free_all_working_areas(target);
3665                                 e = Jim_GetOpt_Wide(goi, &w);
3666                                 if (e != JIM_OK) {
3667                                         return e;
3668                                 }
3669                                 target->working_area_phys = w;
3670                                 target->working_area_phys_spec = true;
3671                         } else {
3672                                 if (goi->argc != 0) {
3673                                         goto no_params;
3674                                 }
3675                         }
3676                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3677                         /* loop for more */
3678                         break;
3679
3680                 case TCFG_WORK_AREA_SIZE:
3681                         if (goi->isconfigure) {
3682                                 target_free_all_working_areas(target);
3683                                 e = Jim_GetOpt_Wide(goi, &w);
3684                                 if (e != JIM_OK) {
3685                                         return e;
3686                                 }
3687                                 target->working_area_size = w;
3688                         } else {
3689                                 if (goi->argc != 0) {
3690                                         goto no_params;
3691                                 }
3692                         }
3693                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3694                         /* loop for more */
3695                         break;
3696
3697                 case TCFG_WORK_AREA_BACKUP:
3698                         if (goi->isconfigure) {
3699                                 target_free_all_working_areas(target);
3700                                 e = Jim_GetOpt_Wide(goi, &w);
3701                                 if (e != JIM_OK) {
3702                                         return e;
3703                                 }
3704                                 /* make this exactly 1 or 0 */
3705                                 target->backup_working_area = (!!w);
3706                         } else {
3707                                 if (goi->argc != 0) {
3708                                         goto no_params;
3709                                 }
3710                         }
3711                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3712                         /* loop for more e*/
3713                         break;
3714
3715                 case TCFG_ENDIAN:
3716                         if (goi->isconfigure) {
3717                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3718                                 if (e != JIM_OK) {
3719                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3720                                         return e;
3721                                 }
3722                                 target->endianness = n->value;
3723                         } else {
3724                                 if (goi->argc != 0) {
3725                                         goto no_params;
3726                                 }
3727                         }
3728                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3729                         if (n->name == NULL) {
3730                                 target->endianness = TARGET_LITTLE_ENDIAN;
3731                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3732                         }
3733                         Jim_SetResultString(goi->interp, n->name, -1);
3734                         /* loop for more */
3735                         break;
3736
3737                 case TCFG_VARIANT:
3738                         if (goi->isconfigure) {
3739                                 if (goi->argc < 1) {
3740                                         Jim_SetResult_sprintf(goi->interp,
3741                                                                                    "%s ?STRING?",
3742                                                                                    n->name);
3743                                         return JIM_ERR;
3744                                 }
3745                                 if (target->variant) {
3746                                         free((void *)(target->variant));
3747                                 }
3748                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3749                                 target->variant = strdup(cp);
3750                         } else {
3751                                 if (goi->argc != 0) {
3752                                         goto no_params;
3753                                 }
3754                         }
3755                         Jim_SetResultString(goi->interp, target->variant,-1);
3756                         /* loop for more */
3757                         break;
3758                 case TCFG_CHAIN_POSITION:
3759                         if (goi->isconfigure) {
3760                                 Jim_Obj *o;
3761                                 struct jtag_tap *tap;
3762                                 target_free_all_working_areas(target);
3763                                 e = Jim_GetOpt_Obj(goi, &o);
3764                                 if (e != JIM_OK) {
3765                                         return e;
3766                                 }
3767                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3768                                 if (tap == NULL) {
3769                                         return JIM_ERR;
3770                                 }
3771                                 /* make this exactly 1 or 0 */
3772                                 target->tap = tap;
3773                         } else {
3774                                 if (goi->argc != 0) {
3775                                         goto no_params;
3776                                 }
3777                         }
3778                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3779                         /* loop for more e*/
3780                         break;
3781                 }
3782         } /* while (goi->argc) */
3783
3784
3785                 /* done - we return */
3786         return JIM_OK;
3787 }
3788
3789 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3790 {
3791         Jim_GetOptInfo goi;
3792         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3793         goi.isconfigure = strcmp(Jim_GetString(argv[0], NULL), "configure") == 0;
3794         int need_args = 1 + goi.isconfigure;
3795         if (goi.argc < need_args)
3796         {
3797                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3798                         goi.isconfigure
3799                                 ? "missing: -option VALUE ..."
3800                                 : "missing: -option ...");
3801                 return JIM_ERR;
3802         }
3803         struct target *target = Jim_CmdPrivData(goi.interp);
3804         return target_configure(&goi, target);
3805 }
3806
3807 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3808 {
3809         const char *cmd_name = Jim_GetString(argv[0], NULL);
3810
3811         Jim_GetOptInfo goi;
3812         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3813
3814         if (goi.argc != 2 && goi.argc != 3)
3815         {
3816                 Jim_SetResult_sprintf(goi.interp,
3817                                 "usage: %s <address> <data> [<count>]", cmd_name);
3818                 return JIM_ERR;
3819         }
3820
3821         jim_wide a;
3822         int e = Jim_GetOpt_Wide(&goi, &a);
3823         if (e != JIM_OK)
3824                 return e;
3825
3826         jim_wide b;
3827         e = Jim_GetOpt_Wide(&goi, &b);
3828         if (e != JIM_OK)
3829                 return e;
3830
3831         jim_wide c = 1;
3832         if (goi.argc == 3)
3833         {
3834                 e = Jim_GetOpt_Wide(&goi, &c);
3835                 if (e != JIM_OK)
3836                         return e;
3837         }
3838
3839         struct target *target = Jim_CmdPrivData(goi.interp);
3840         uint8_t  target_buf[32];
3841         if (strcasecmp(cmd_name, "mww") == 0) {
3842                 target_buffer_set_u32(target, target_buf, b);
3843                 b = 4;
3844         }
3845         else if (strcasecmp(cmd_name, "mwh") == 0) {
3846                 target_buffer_set_u16(target, target_buf, b);
3847                 b = 2;
3848         }
3849         else if (strcasecmp(cmd_name, "mwb") == 0) {
3850                 target_buffer_set_u8(target, target_buf, b);
3851                 b = 1;
3852         } else {
3853                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3854                 return JIM_ERR;
3855         }
3856
3857         for (jim_wide x = 0; x < c; x++)
3858         {
3859                 e = target_write_memory(target, a, b, 1, target_buf);
3860                 if (e != ERROR_OK)
3861                 {
3862                         Jim_SetResult_sprintf(interp,
3863                                         "Error writing @ 0x%08x: %d\n", (int)(a), e);
3864                         return JIM_ERR;
3865                 }
3866                 /* b = width */
3867                 a = a + b;
3868         }
3869         return JIM_OK;
3870 }
3871
3872 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3873 {
3874         const char *cmd_name = Jim_GetString(argv[0], NULL);
3875
3876         Jim_GetOptInfo goi;
3877         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3878
3879         if ((goi.argc == 2) || (goi.argc == 3))
3880         {
3881                 Jim_SetResult_sprintf(goi.interp,
3882                                 "usage: %s <address> [<count>]", cmd_name);
3883                 return JIM_ERR;
3884         }
3885
3886         jim_wide a;
3887         int e = Jim_GetOpt_Wide(&goi, &a);
3888         if (e != JIM_OK) {
3889                 return JIM_ERR;
3890         }
3891         jim_wide c;
3892         if (goi.argc) {
3893                 e = Jim_GetOpt_Wide(&goi, &c);
3894                 if (e != JIM_OK) {
3895                         return JIM_ERR;
3896                 }
3897         } else {
3898                 c = 1;
3899         }
3900         jim_wide b = 1; /* shut up gcc */
3901         if (strcasecmp(cmd_name, "mdw") == 0)
3902                 b = 4;
3903         else if (strcasecmp(cmd_name, "mdh") == 0)
3904                 b = 2;
3905         else if (strcasecmp(cmd_name, "mdb") == 0)
3906                 b = 1;
3907         else {
3908                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3909                 return JIM_ERR;
3910         }
3911
3912         /* convert count to "bytes" */
3913         c = c * b;
3914
3915         struct target *target = Jim_CmdPrivData(goi.interp);
3916         uint8_t  target_buf[32];
3917         jim_wide x, y, z;
3918         while (c > 0) {
3919                 y = c;
3920                 if (y > 16) {
3921                         y = 16;
3922                 }
3923                 e = target_read_memory(target, a, b, y / b, target_buf);
3924                 if (e != ERROR_OK) {
3925                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
3926                         return JIM_ERR;
3927                 }
3928
3929                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
3930                 switch (b) {
3931                 case 4:
3932                         for (x = 0; x < 16 && x < y; x += 4)
3933                         {
3934                                 z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
3935                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
3936                         }
3937                         for (; (x < 16) ; x += 4) {
3938                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
3939                         }
3940                         break;
3941                 case 2:
3942                         for (x = 0; x < 16 && x < y; x += 2)
3943                         {
3944                                 z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
3945                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
3946                         }
3947                         for (; (x < 16) ; x += 2) {
3948                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
3949                         }
3950                         break;
3951                 case 1:
3952                 default:
3953                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
3954                                 z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
3955                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
3956                         }
3957                         for (; (x < 16) ; x += 1) {
3958                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
3959                         }
3960                         break;
3961                 }
3962                 /* ascii-ify the bytes */
3963                 for (x = 0 ; x < y ; x++) {
3964                         if ((target_buf[x] >= 0x20) &&
3965                                 (target_buf[x] <= 0x7e)) {
3966                                 /* good */
3967                         } else {
3968                                 /* smack it */
3969                                 target_buf[x] = '.';
3970                         }
3971                 }
3972                 /* space pad  */
3973                 while (x < 16) {
3974                         target_buf[x] = ' ';
3975                         x++;
3976                 }
3977                 /* terminate */
3978                 target_buf[16] = 0;
3979                 /* print - with a newline */
3980                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
3981                 /* NEXT... */
3982                 c -= 16;
3983                 a += 16;
3984         }
3985         return JIM_OK;
3986 }
3987
3988 static int jim_target_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3989 {
3990         struct target *target = Jim_CmdPrivData(interp);
3991         return target_mem2array(interp, target, argc - 1, argv + 1);
3992 }
3993
3994 static int jim_target_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3995 {
3996         struct target *target = Jim_CmdPrivData(interp);
3997         return target_array2mem(interp, target, argc - 1, argv + 1);
3998 }
3999
4000 static int jim_target_tap_disabled(Jim_Interp *interp)
4001 {
4002         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4003         return JIM_ERR;
4004 }
4005
4006 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4007 {
4008         if (argc != 1)
4009         {
4010                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4011                 return JIM_ERR;
4012         }
4013         struct target *target = Jim_CmdPrivData(interp);
4014         if (!target->tap->enabled)
4015                 return jim_target_tap_disabled(interp);
4016
4017         int e = target->type->examine(target);
4018         if (e != ERROR_OK)
4019         {
4020                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4021                 return JIM_ERR;
4022         }
4023         return JIM_OK;
4024 }
4025
4026 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4027 {
4028         if (argc != 1)
4029         {
4030                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4031                 return JIM_ERR;
4032         }
4033         struct target *target = Jim_CmdPrivData(interp);
4034         if (!target->tap->enabled)
4035                 return jim_target_tap_disabled(interp);
4036
4037         int e;
4038         if (!(target_was_examined(target))) {
4039                 e = ERROR_TARGET_NOT_EXAMINED;
4040         } else {
4041                 e = target->type->poll(target);
4042         }
4043         if (e != ERROR_OK)
4044         {
4045                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4046                 return JIM_ERR;
4047         }
4048         return JIM_OK;
4049 }
4050
4051 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4052 {
4053         Jim_GetOptInfo goi;
4054         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4055
4056         if (goi.argc != 2)
4057         {
4058                 Jim_WrongNumArgs(interp, 0, argv,
4059                                 "([tT]|[fF]|assert|deassert) BOOL");
4060                 return JIM_ERR;
4061         }
4062
4063         Jim_Nvp *n;
4064         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4065         if (e != JIM_OK)
4066         {
4067                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4068                 return e;
4069         }
4070         /* the halt or not param */
4071         jim_wide a;
4072         e = Jim_GetOpt_Wide(&goi, &a);
4073         if (e != JIM_OK)
4074                 return e;
4075
4076         struct target *target = Jim_CmdPrivData(goi.interp);
4077         if (!target->tap->enabled)
4078                 return jim_target_tap_disabled(interp);
4079         if (!target->type->assert_reset || !target->type->deassert_reset)
4080         {
4081                 Jim_SetResult_sprintf(interp,
4082                                 "No target-specific reset for %s",
4083                                 target_name(target));
4084                 return JIM_ERR;
4085         }
4086         /* determine if we should halt or not. */
4087         target->reset_halt = !!a;
4088         /* When this happens - all workareas are invalid. */
4089         target_free_all_working_areas_restore(target, 0);
4090
4091         /* do the assert */
4092         if (n->value == NVP_ASSERT) {
4093                 e = target->type->assert_reset(target);
4094         } else {
4095                 e = target->type->deassert_reset(target);
4096         }
4097         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4098 }
4099
4100 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4101 {
4102         if (argc != 1) {
4103                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4104                 return JIM_ERR;
4105         }
4106         struct target *target = Jim_CmdPrivData(interp);
4107         if (!target->tap->enabled)
4108                 return jim_target_tap_disabled(interp);
4109         int e = target->type->halt(target);
4110         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4111 }
4112
4113 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4114 {
4115         Jim_GetOptInfo goi;
4116         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4117
4118         /* params:  <name>  statename timeoutmsecs */
4119         if (goi.argc != 2)
4120         {
4121                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4122                 Jim_SetResult_sprintf(goi.interp,
4123                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4124                 return JIM_ERR;
4125         }
4126
4127         Jim_Nvp *n;
4128         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4129         if (e != JIM_OK) {
4130                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4131                 return e;
4132         }
4133         jim_wide a;
4134         e = Jim_GetOpt_Wide(&goi, &a);
4135         if (e != JIM_OK) {
4136                 return e;
4137         }
4138         struct target *target = Jim_CmdPrivData(interp);
4139         if (!target->tap->enabled)
4140                 return jim_target_tap_disabled(interp);
4141
4142         e = target_wait_state(target, n->value, a);
4143         if (e != ERROR_OK)
4144         {
4145                 Jim_SetResult_sprintf(goi.interp,
4146                                 "target: %s wait %s fails (%d) %s",
4147                                 target_name(target), n->name,
4148                                 e, target_strerror_safe(e));
4149                 return JIM_ERR;
4150         }
4151         return JIM_OK;
4152 }
4153 /* List for human, Events defined for this target.
4154  * scripts/programs should use 'name cget -event NAME'
4155  */
4156 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4157 {
4158         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4159         struct target *target = Jim_CmdPrivData(interp);
4160         struct target_event_action *teap = target->event_action;
4161         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4162                                    target->target_number,
4163                                    target_name(target));
4164         command_print(cmd_ctx, "%-25s | Body", "Event");
4165         command_print(cmd_ctx, "------------------------- | "
4166                         "----------------------------------------");
4167         while (teap)
4168         {
4169                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4170                 command_print(cmd_ctx, "%-25s | %s",
4171                                 opt->name, Jim_GetString(teap->body, NULL));
4172                 teap = teap->next;
4173         }
4174         command_print(cmd_ctx, "***END***");
4175         return JIM_OK;
4176 }
4177 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4178 {
4179         if (argc != 1)
4180         {
4181                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4182                 return JIM_ERR;
4183         }
4184         struct target *target = Jim_CmdPrivData(interp);
4185         Jim_SetResultString(interp, target_state_name(target), -1);
4186         return JIM_OK;
4187 }
4188 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4189 {
4190         Jim_GetOptInfo goi;
4191         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4192         if (goi.argc != 1)
4193         {
4194                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4195                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4196                 return JIM_ERR;
4197         }
4198         Jim_Nvp *n;
4199         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4200         if (e != JIM_OK)
4201         {
4202                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4203                 return e;
4204         }
4205         struct target *target = Jim_CmdPrivData(interp);
4206         target_handle_event(target, n->value);
4207         return JIM_OK;
4208 }
4209
4210 static const struct command_registration target_instance_command_handlers[] = {
4211         {
4212                 .name = "configure",
4213                 .mode = COMMAND_CONFIG,
4214                 .jim_handler = &jim_target_configure,
4215                 .usage = "[<target_options> ...]",
4216                 .help  = "configure a new target for use",
4217         },
4218         {
4219                 .name = "cget",
4220                 .mode = COMMAND_ANY,
4221                 .jim_handler = &jim_target_configure,
4222                 .usage = "<target_type> [<target_options> ...]",
4223                 .help  = "configure a new target for use",
4224         },
4225         {
4226                 .name = "mww",
4227                 .mode = COMMAND_EXEC,
4228                 .jim_handler = &jim_target_mw,
4229                 .usage = "<address> <data> [<count>]",
4230                 .help = "Write 32-bit word(s) to target memory",
4231         },
4232         {
4233                 .name = "mwh",
4234                 .mode = COMMAND_EXEC,
4235                 .jim_handler = &jim_target_mw,
4236                 .usage = "<address> <data> [<count>]",
4237                 .help = "Write 16-bit half-word(s) to target memory",
4238         },
4239         {
4240                 .name = "mwb",
4241                 .mode = COMMAND_EXEC,
4242                 .jim_handler = &jim_target_mw,
4243                 .usage = "<address> <data> [<count>]",
4244                 .help = "Write byte(s) to target memory",
4245         },
4246         {
4247                 .name = "mdw",
4248                 .mode = COMMAND_EXEC,
4249                 .jim_handler = &jim_target_md,
4250                 .usage = "<address> [<count>]",
4251                 .help = "Display target memory as 32-bit words",
4252         },
4253         {
4254                 .name = "mdh",
4255                 .mode = COMMAND_EXEC,
4256                 .jim_handler = &jim_target_md,
4257                 .usage = "<address> [<count>]",
4258                 .help = "Display target memory as 16-bit half-words",
4259         },
4260         {
4261                 .name = "mdb",
4262                 .mode = COMMAND_EXEC,
4263                 .jim_handler = &jim_target_md,
4264                 .usage = "<address> [<count>]",
4265                 .help = "Display target memory as 8-bit bytes",
4266         },
4267         {
4268                 .name = "array2mem",
4269                 .mode = COMMAND_EXEC,
4270                 .jim_handler = &jim_target_array2mem,
4271         },
4272         {
4273                 .name = "mem2array",
4274                 .mode = COMMAND_EXEC,
4275                 .jim_handler = &jim_target_mem2array,
4276         },
4277         {
4278                 .name = "eventlist",
4279                 .mode = COMMAND_EXEC,
4280                 .jim_handler = &jim_target_event_list,
4281         },
4282         {
4283                 .name = "curstate",
4284                 .mode = COMMAND_EXEC,
4285                 .jim_handler = &jim_target_current_state,
4286         },
4287         {
4288                 .name = "arp_examine",
4289                 .mode = COMMAND_EXEC,
4290                 .jim_handler = &jim_target_examine,
4291         },
4292         {
4293                 .name = "arp_poll",
4294                 .mode = COMMAND_EXEC,
4295                 .jim_handler = &jim_target_poll,
4296         },
4297         {
4298                 .name = "arp_reset",
4299                 .mode = COMMAND_EXEC,
4300                 .jim_handler = &jim_target_reset,
4301         },
4302         {
4303                 .name = "arp_halt",
4304                 .mode = COMMAND_EXEC,
4305                 .jim_handler = &jim_target_halt,
4306         },
4307         {
4308                 .name = "arp_waitstate",
4309                 .mode = COMMAND_EXEC,
4310                 .jim_handler = &jim_target_wait_state,
4311         },
4312         {
4313                 .name = "invoke-event",
4314                 .mode = COMMAND_EXEC,
4315                 .jim_handler = &jim_target_invoke_event,
4316         },
4317         COMMAND_REGISTRATION_DONE
4318 };
4319
4320 static int target_create(Jim_GetOptInfo *goi)
4321 {
4322         Jim_Obj *new_cmd;
4323         Jim_Cmd *cmd;
4324         const char *cp;
4325         char *cp2;
4326         int e;
4327         int x;
4328         struct target *target;
4329         struct command_context *cmd_ctx;
4330
4331         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4332         if (goi->argc < 3) {
4333                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4334                 return JIM_ERR;
4335         }
4336
4337         /* COMMAND */
4338         Jim_GetOpt_Obj(goi, &new_cmd);
4339         /* does this command exist? */
4340         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4341         if (cmd) {
4342                 cp = Jim_GetString(new_cmd, NULL);
4343                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4344                 return JIM_ERR;
4345         }
4346
4347         /* TYPE */
4348         e = Jim_GetOpt_String(goi, &cp2, NULL);
4349         cp = cp2;
4350         /* now does target type exist */
4351         for (x = 0 ; target_types[x] ; x++) {
4352                 if (0 == strcmp(cp, target_types[x]->name)) {
4353                         /* found */
4354                         break;
4355                 }
4356         }
4357         if (target_types[x] == NULL) {
4358                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4359                 for (x = 0 ; target_types[x] ; x++) {
4360                         if (target_types[x + 1]) {
4361                                 Jim_AppendStrings(goi->interp,
4362                                                                    Jim_GetResult(goi->interp),
4363                                                                    target_types[x]->name,
4364                                                                    ", ", NULL);
4365                         } else {
4366                                 Jim_AppendStrings(goi->interp,
4367                                                                    Jim_GetResult(goi->interp),
4368                                                                    " or ",
4369                                                                    target_types[x]->name,NULL);
4370                         }
4371                 }
4372                 return JIM_ERR;
4373         }
4374
4375         /* Create it */
4376         target = calloc(1,sizeof(struct target));
4377         /* set target number */
4378         target->target_number = new_target_number();
4379
4380         /* allocate memory for each unique target type */
4381         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4382
4383         memcpy(target->type, target_types[x], sizeof(struct target_type));
4384
4385         /* will be set by "-endian" */
4386         target->endianness = TARGET_ENDIAN_UNKNOWN;
4387
4388         target->working_area        = 0x0;
4389         target->working_area_size   = 0x0;
4390         target->working_areas       = NULL;
4391         target->backup_working_area = 0;
4392
4393         target->state               = TARGET_UNKNOWN;
4394         target->debug_reason        = DBG_REASON_UNDEFINED;
4395         target->reg_cache           = NULL;
4396         target->breakpoints         = NULL;
4397         target->watchpoints         = NULL;
4398         target->next                = NULL;
4399         target->arch_info           = NULL;
4400
4401         target->display             = 1;
4402
4403         target->halt_issued                     = false;
4404
4405         /* initialize trace information */
4406         target->trace_info = malloc(sizeof(struct trace));
4407         target->trace_info->num_trace_points         = 0;
4408         target->trace_info->trace_points_size        = 0;
4409         target->trace_info->trace_points             = NULL;
4410         target->trace_info->trace_history_size       = 0;
4411         target->trace_info->trace_history            = NULL;
4412         target->trace_info->trace_history_pos        = 0;
4413         target->trace_info->trace_history_overflowed = 0;
4414
4415         target->dbgmsg          = NULL;
4416         target->dbg_msg_enabled = 0;
4417
4418         target->endianness = TARGET_ENDIAN_UNKNOWN;
4419
4420         /* Do the rest as "configure" options */
4421         goi->isconfigure = 1;
4422         e = target_configure(goi, target);
4423
4424         if (target->tap == NULL)
4425         {
4426                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4427                 e = JIM_ERR;
4428         }
4429
4430         if (e != JIM_OK) {
4431                 free(target->type);
4432                 free(target);
4433                 return e;
4434         }
4435
4436         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4437                 /* default endian to little if not specified */
4438                 target->endianness = TARGET_LITTLE_ENDIAN;
4439         }
4440
4441         /* incase variant is not set */
4442         if (!target->variant)
4443                 target->variant = strdup("");
4444
4445         cp = Jim_GetString(new_cmd, NULL);
4446         target->cmd_name = strdup(cp);
4447
4448         /* create the target specific commands */
4449         if (target->type->commands) {
4450                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4451                 if (ERROR_OK != e)
4452                         LOG_ERROR("unable to register '%s' commands", cp);
4453         }
4454         if (target->type->target_create) {
4455                 (*(target->type->target_create))(target, goi->interp);
4456         }
4457
4458         /* append to end of list */
4459         {
4460                 struct target **tpp;
4461                 tpp = &(all_targets);
4462                 while (*tpp) {
4463                         tpp = &((*tpp)->next);
4464                 }
4465                 *tpp = target;
4466         }
4467         
4468         /* now - create the new target name command */
4469         const const struct command_registration target_subcommands[] = {
4470                 {
4471                         .chain = target_instance_command_handlers,
4472                 },
4473                 {
4474                         .chain = target->type->commands,
4475                 },
4476                 COMMAND_REGISTRATION_DONE
4477         };
4478         const const struct command_registration target_commands[] = {
4479                 {
4480                         .name = cp,
4481                         .mode = COMMAND_ANY,
4482                         .help = "target command group",
4483                         .chain = target_subcommands,
4484                 },
4485                 COMMAND_REGISTRATION_DONE
4486         };
4487         e = register_commands(cmd_ctx, NULL, target_commands);
4488         if (ERROR_OK != e)
4489                 return JIM_ERR;
4490
4491         struct command *c = command_find_in_context(cmd_ctx, cp);
4492         assert(c);
4493         command_set_handler_data(c, target);
4494
4495         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4496 }
4497
4498 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4499 {
4500         if (argc != 1)
4501         {
4502                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4503                 return JIM_ERR;
4504         }
4505         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4506         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4507         return JIM_OK;
4508 }
4509
4510 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4511 {
4512         if (argc != 1)
4513         {
4514                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4515                 return JIM_ERR;
4516         }
4517         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4518         for (unsigned x = 0; NULL != target_types[x]; x++)
4519         {
4520                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4521                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4522         }
4523         return JIM_OK;
4524 }
4525
4526 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4527 {
4528         if (argc != 1)
4529         {
4530                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4531                 return JIM_ERR;
4532         }
4533         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4534         struct target *target = all_targets;
4535         while (target)
4536         {
4537                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4538                         Jim_NewStringObj(interp, target_name(target), -1));
4539                 target = target->next;
4540         }
4541         return JIM_OK;
4542 }
4543
4544 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4545 {
4546         Jim_GetOptInfo goi;
4547         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4548         if (goi.argc < 3)
4549         {
4550                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4551                         "<name> <target_type> [<target_options> ...]");
4552                 return JIM_ERR;
4553         }
4554         return target_create(&goi);
4555 }
4556
4557 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4558 {
4559         Jim_GetOptInfo goi;
4560         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4561
4562         /* It's OK to remove this mechanism sometime after August 2010 or so */
4563         LOG_WARNING("don't use numbers as target identifiers; use names");
4564         if (goi.argc != 1)
4565         {
4566                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4567                 return JIM_ERR;
4568         }
4569         jim_wide w;
4570         int e = Jim_GetOpt_Wide(&goi, &w);
4571         if (e != JIM_OK)
4572                 return JIM_ERR;
4573
4574         struct target *target;
4575         for (target = all_targets; NULL != target; target = target->next)
4576         {
4577                 if (target->target_number != w)
4578                         continue;
4579
4580                 Jim_SetResultString(goi.interp, target_name(target), -1);
4581                 return JIM_OK;
4582         }
4583         Jim_SetResult_sprintf(goi.interp,
4584                         "Target: number %d does not exist", (int)(w));
4585         return JIM_ERR;
4586 }
4587
4588 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4589 {
4590         if (argc != 1)
4591         {
4592                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4593                 return JIM_ERR;
4594         }
4595         unsigned count = 0;
4596         struct target *target = all_targets;
4597         while (NULL != target)
4598         {
4599                 target = target->next;
4600                 count++;
4601         }
4602         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4603         return JIM_OK;
4604 }
4605
4606 static const struct command_registration target_subcommand_handlers[] = {
4607         {
4608                 .name = "init",
4609                 .mode = COMMAND_CONFIG,
4610                 .handler = &handle_target_init_command,
4611                 .help = "initialize targets",
4612         },
4613         {
4614                 .name = "create",
4615                 .mode = COMMAND_ANY,
4616                 .jim_handler = &jim_target_create,
4617                 .usage = "<name> <type> ...",
4618                 .help = "Returns the currently selected target",
4619         },
4620         {
4621                 .name = "current",
4622                 .mode = COMMAND_ANY,
4623                 .jim_handler = &jim_target_current,
4624                 .help = "Returns the currently selected target",
4625         },
4626         {
4627                 .name = "types",
4628                 .mode = COMMAND_ANY,
4629                 .jim_handler = &jim_target_types,
4630                 .help = "Returns the available target types as a list of strings",
4631         },
4632         {
4633                 .name = "names",
4634                 .mode = COMMAND_ANY,
4635                 .jim_handler = &jim_target_names,
4636                 .help = "Returns the names of all targets as a list of strings",
4637         },
4638         {
4639                 .name = "number",
4640                 .mode = COMMAND_ANY,
4641                 .jim_handler = &jim_target_number,
4642                 .usage = "<number>",
4643                 .help = "Returns the name of target <n>",
4644         },
4645         {
4646                 .name = "count",
4647                 .mode = COMMAND_ANY,
4648                 .jim_handler = &jim_target_count,
4649                 .help = "Returns the number of targets as an integer",
4650         },
4651         COMMAND_REGISTRATION_DONE
4652 };
4653
4654
4655 struct FastLoad
4656 {
4657         uint32_t address;
4658         uint8_t *data;
4659         int length;
4660
4661 };
4662
4663 static int fastload_num;
4664 static struct FastLoad *fastload;
4665
4666 static void free_fastload(void)
4667 {
4668         if (fastload != NULL)
4669         {
4670                 int i;
4671                 for (i = 0; i < fastload_num; i++)
4672                 {
4673                         if (fastload[i].data)
4674                                 free(fastload[i].data);
4675                 }
4676                 free(fastload);
4677                 fastload = NULL;
4678         }
4679 }
4680
4681
4682
4683
4684 COMMAND_HANDLER(handle_fast_load_image_command)
4685 {
4686         uint8_t *buffer;
4687         size_t buf_cnt;
4688         uint32_t image_size;
4689         uint32_t min_address = 0;
4690         uint32_t max_address = 0xffffffff;
4691         int i;
4692
4693         struct image image;
4694
4695         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4696                         &image, &min_address, &max_address);
4697         if (ERROR_OK != retval)
4698                 return retval;
4699
4700         struct duration bench;
4701         duration_start(&bench);
4702
4703         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4704         {
4705                 return ERROR_OK;
4706         }
4707
4708         image_size = 0x0;
4709         retval = ERROR_OK;
4710         fastload_num = image.num_sections;
4711         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4712         if (fastload == NULL)
4713         {
4714                 image_close(&image);
4715                 return ERROR_FAIL;
4716         }
4717         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4718         for (i = 0; i < image.num_sections; i++)
4719         {
4720                 buffer = malloc(image.sections[i].size);
4721                 if (buffer == NULL)
4722                 {
4723                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4724                                                   (int)(image.sections[i].size));
4725                         break;
4726                 }
4727
4728                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4729                 {
4730                         free(buffer);
4731                         break;
4732                 }
4733
4734                 uint32_t offset = 0;
4735                 uint32_t length = buf_cnt;
4736
4737
4738                 /* DANGER!!! beware of unsigned comparision here!!! */
4739
4740                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4741                                 (image.sections[i].base_address < max_address))
4742                 {
4743                         if (image.sections[i].base_address < min_address)
4744                         {
4745                                 /* clip addresses below */
4746                                 offset += min_address-image.sections[i].base_address;
4747                                 length -= offset;
4748                         }
4749
4750                         if (image.sections[i].base_address + buf_cnt > max_address)
4751                         {
4752                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4753                         }
4754
4755                         fastload[i].address = image.sections[i].base_address + offset;
4756                         fastload[i].data = malloc(length);
4757                         if (fastload[i].data == NULL)
4758                         {
4759                                 free(buffer);
4760                                 break;
4761                         }
4762                         memcpy(fastload[i].data, buffer + offset, length);
4763                         fastload[i].length = length;
4764
4765                         image_size += length;
4766                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4767                                                   (unsigned int)length,
4768                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4769                 }
4770
4771                 free(buffer);
4772         }
4773
4774         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4775         {
4776                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4777                                 "in %fs (%0.3f kb/s)", image_size, 
4778                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4779
4780                 command_print(CMD_CTX,
4781                                 "WARNING: image has not been loaded to target!"
4782                                 "You can issue a 'fast_load' to finish loading.");
4783         }
4784
4785         image_close(&image);
4786
4787         if (retval != ERROR_OK)
4788         {
4789                 free_fastload();
4790         }
4791
4792         return retval;
4793 }
4794
4795 COMMAND_HANDLER(handle_fast_load_command)
4796 {
4797         if (CMD_ARGC > 0)
4798                 return ERROR_COMMAND_SYNTAX_ERROR;
4799         if (fastload == NULL)
4800         {
4801                 LOG_ERROR("No image in memory");
4802                 return ERROR_FAIL;
4803         }
4804         int i;
4805         int ms = timeval_ms();
4806         int size = 0;
4807         int retval = ERROR_OK;
4808         for (i = 0; i < fastload_num;i++)
4809         {
4810                 struct target *target = get_current_target(CMD_CTX);
4811                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
4812                                           (unsigned int)(fastload[i].address),
4813                                           (unsigned int)(fastload[i].length));
4814                 if (retval == ERROR_OK)
4815                 {
4816                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4817                 }
4818                 size += fastload[i].length;
4819         }
4820         int after = timeval_ms();
4821         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4822         return retval;
4823 }
4824
4825 static const struct command_registration target_command_handlers[] = {
4826         {
4827                 .name = "targets",
4828                 .handler = &handle_targets_command,
4829                 .mode = COMMAND_ANY,
4830                 .help = "change current command line target (one parameter) "
4831                         "or list targets (no parameters)",
4832                 .usage = "[<new_current_target>]",
4833         },
4834         {
4835                 .name = "target",
4836                 .mode = COMMAND_CONFIG,
4837                 .help = "configure target",
4838
4839                 .chain = target_subcommand_handlers,
4840         },
4841         COMMAND_REGISTRATION_DONE
4842 };
4843
4844 int target_register_commands(struct command_context *cmd_ctx)
4845 {
4846         return register_commands(cmd_ctx, NULL, target_command_handlers);
4847 }
4848
4849 static const struct command_registration target_exec_command_handlers[] = {
4850         {
4851                 .name = "fast_load_image",
4852                 .handler = &handle_fast_load_image_command,
4853                 .mode = COMMAND_ANY,
4854                 .help = "Load image into memory, mainly for profiling purposes",
4855                 .usage = "<file> <address> ['bin'|'ihex'|'elf'|'s19'] "
4856                         "[min_address] [max_length]",
4857         },
4858         {
4859                 .name = "fast_load",
4860                 .handler = &handle_fast_load_command,
4861                 .mode = COMMAND_ANY,
4862                 .help = "loads active fast load image to current target "
4863                         "- mainly for profiling purposes",
4864         },
4865         {
4866                 .name = "profile",
4867                 .handler = &handle_profile_command,
4868                 .mode = COMMAND_EXEC,
4869                 .help = "profiling samples the CPU PC",
4870         },
4871         /** @todo don't register virt2phys() unless target supports it */
4872         {
4873                 .name = "virt2phys",
4874                 .handler = &handle_virt2phys_command,
4875                 .mode = COMMAND_ANY,
4876                 .help = "translate a virtual address into a physical address",
4877         },
4878
4879         {
4880                 .name = "reg",
4881                 .handler = &handle_reg_command,
4882                 .mode = COMMAND_EXEC,
4883                 .help = "display or set a register",
4884         },
4885
4886         {
4887                 .name = "poll",
4888                 .handler = &handle_poll_command,
4889                 .mode = COMMAND_EXEC,
4890                 .help = "poll target state",
4891         },
4892         {
4893                 .name = "wait_halt",
4894                 .handler = &handle_wait_halt_command,
4895                 .mode = COMMAND_EXEC,
4896                 .help = "wait for target halt",
4897                 .usage = "[time (s)]",
4898         },
4899         {
4900                 .name = "halt",
4901                 .handler = &handle_halt_command,
4902                 .mode = COMMAND_EXEC,
4903                 .help = "halt target",
4904         },
4905         {
4906                 .name = "resume",
4907                 .handler = &handle_resume_command,
4908                 .mode = COMMAND_EXEC,
4909                 .help = "resume target",
4910                 .usage = "[<address>]",
4911         },
4912         {
4913                 .name = "reset",
4914                 .handler = &handle_reset_command,
4915                 .mode = COMMAND_EXEC,
4916                 .usage = "[run|halt|init]",
4917                 .help = "Reset all targets into the specified mode."
4918                         "Default reset mode is run, if not given.",
4919         },
4920         {
4921                 .name = "soft_reset_halt",
4922                 .handler = &handle_soft_reset_halt_command,
4923                 .mode = COMMAND_EXEC,
4924                 .help = "halt the target and do a soft reset",
4925         },
4926         {
4927
4928                 .name = "step",
4929                 .handler = &handle_step_command,
4930                 .mode = COMMAND_EXEC,
4931                 .help = "step one instruction from current PC or [addr]",
4932                 .usage = "[<address>]",
4933         },
4934         {
4935
4936                 .name = "mdw",
4937                 .handler = &handle_md_command,
4938                 .mode = COMMAND_EXEC,
4939                 .help = "display memory words",
4940                 .usage = "[phys] <addr> [count]",
4941         },
4942         {
4943                 .name = "mdh",
4944                 .handler = &handle_md_command,
4945                 .mode = COMMAND_EXEC,
4946                 .help = "display memory half-words",
4947                 .usage = "[phys] <addr> [count]",
4948         },
4949         {
4950                 .name = "mdb",
4951                 .handler = &handle_md_command,
4952                 .mode = COMMAND_EXEC,
4953                 .help = "display memory bytes",
4954                 .usage = "[phys] <addr> [count]",
4955         },
4956         {
4957
4958                 .name = "mww",
4959                 .handler = &handle_mw_command,
4960                 .mode = COMMAND_EXEC,
4961                 .help = "write memory word",
4962                 .usage = "[phys]  <addr> <value> [count]",
4963         },
4964         {
4965                 .name = "mwh",
4966                 .handler = &handle_mw_command,
4967                 .mode = COMMAND_EXEC,
4968                 .help = "write memory half-word",
4969                 .usage = "[phys] <addr> <value> [count]",
4970         },
4971         {
4972                 .name = "mwb",
4973                 .handler = &handle_mw_command,
4974                 .mode = COMMAND_EXEC,
4975                 .help = "write memory byte",
4976                 .usage = "[phys] <addr> <value> [count]",
4977         },
4978         {
4979
4980                 .name = "bp",
4981                 .handler = &handle_bp_command,
4982                 .mode = COMMAND_EXEC,
4983                 .help = "list or set breakpoint",
4984                 .usage = "[<address> <length> [hw]]",
4985         },
4986         {
4987                 .name = "rbp",
4988                 .handler = &handle_rbp_command,
4989                 .mode = COMMAND_EXEC,
4990                 .help = "remove breakpoint",
4991                 .usage = "<address>",
4992         },
4993         {
4994
4995                 .name = "wp",
4996                 .handler = &handle_wp_command,
4997                 .mode = COMMAND_EXEC,
4998                 .help = "list or set watchpoint",
4999                 .usage = "[<address> <length> <r/w/a> [value] [mask]]",
5000         },
5001         {
5002                 .name = "rwp",
5003                 .handler = &handle_rwp_command,
5004                 .mode = COMMAND_EXEC,
5005                 .help = "remove watchpoint",
5006                 .usage = "<address>",
5007
5008         },
5009         {
5010                 .name = "load_image",
5011                 .handler = &handle_load_image_command,
5012                 .mode = COMMAND_EXEC,
5013                 .usage = "<file> <address> ['bin'|'ihex'|'elf'|'s19'] "
5014                         "[min_address] [max_length]",
5015         },
5016         {
5017                 .name = "dump_image",
5018                 .handler = &handle_dump_image_command,
5019                 .mode = COMMAND_EXEC,
5020                 .usage = "<file> <address> <size>",
5021         },
5022         {
5023                 .name = "verify_image",
5024                 .handler = &handle_verify_image_command,
5025                 .mode = COMMAND_EXEC,
5026                 .usage = "<file> [offset] [type]",
5027         },
5028         {
5029                 .name = "test_image",
5030                 .handler = &handle_test_image_command,
5031                 .mode = COMMAND_EXEC,
5032                 .usage = "<file> [offset] [type]",
5033         },
5034         {
5035                 .name = "ocd_mem2array",
5036                 .mode = COMMAND_EXEC,
5037                 .jim_handler = &jim_mem2array,
5038                 .help = "read memory and return as a TCL array "
5039                         "for script processing",
5040                 .usage = "<arrayname> <width=32|16|8> <address> <count>",
5041         },
5042         {
5043                 .name = "ocd_array2mem",
5044                 .mode = COMMAND_EXEC,
5045                 .jim_handler = &jim_array2mem,
5046                 .help = "convert a TCL array to memory locations "
5047                         "and write the values",
5048                 .usage = "<arrayname> <width=32|16|8> <address> <count>",
5049         },
5050         COMMAND_REGISTRATION_DONE
5051 };
5052 int target_register_user_commands(struct command_context *cmd_ctx)
5053 {
5054         int retval = ERROR_OK;
5055         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5056                 return retval;
5057
5058         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5059                 return retval;
5060
5061
5062         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5063 }