target init sanity check
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   This program is free software; you can redistribute it and/or modify  *
24  *   it under the terms of the GNU General Public License as published by  *
25  *   the Free Software Foundation; either version 2 of the License, or     *
26  *   (at your option) any later version.                                   *
27  *                                                                         *
28  *   This program is distributed in the hope that it will be useful,       *
29  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
30  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
31  *   GNU General Public License for more details.                          *
32  *                                                                         *
33  *   You should have received a copy of the GNU General Public License     *
34  *   along with this program; if not, write to the                         *
35  *   Free Software Foundation, Inc.,                                       *
36  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
37  ***************************************************************************/
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41
42 #include <helper/time_support.h>
43 #include <jtag/jtag.h>
44 #include <flash/nor/core.h>
45
46 #include "target.h"
47 #include "target_type.h"
48 #include "target_request.h"
49 #include "breakpoints.h"
50 #include "register.h"
51 #include "trace.h"
52 #include "image.h"
53 #include "rtos/rtos.h"
54
55
56 static int target_read_buffer_default(struct target *target, uint32_t address,
57                 uint32_t size, uint8_t *buffer);
58 static int target_write_buffer_default(struct target *target, uint32_t address,
59                 uint32_t size, const uint8_t *buffer);
60 static int target_array2mem(Jim_Interp *interp, struct target *target,
61                 int argc, Jim_Obj *const *argv);
62 static int target_mem2array(Jim_Interp *interp, struct target *target,
63                 int argc, Jim_Obj *const *argv);
64 static int target_register_user_commands(struct command_context *cmd_ctx);
65
66 /* targets */
67 extern struct target_type arm7tdmi_target;
68 extern struct target_type arm720t_target;
69 extern struct target_type arm9tdmi_target;
70 extern struct target_type arm920t_target;
71 extern struct target_type arm966e_target;
72 extern struct target_type arm946e_target;
73 extern struct target_type arm926ejs_target;
74 extern struct target_type fa526_target;
75 extern struct target_type feroceon_target;
76 extern struct target_type dragonite_target;
77 extern struct target_type xscale_target;
78 extern struct target_type cortexm3_target;
79 extern struct target_type cortexa8_target;
80 extern struct target_type arm11_target;
81 extern struct target_type mips_m4k_target;
82 extern struct target_type avr_target;
83 extern struct target_type dsp563xx_target;
84 extern struct target_type dsp5680xx_target;
85 extern struct target_type testee_target;
86 extern struct target_type avr32_ap7k_target;
87
88 static struct target_type *target_types[] =
89 {
90         &arm7tdmi_target,
91         &arm9tdmi_target,
92         &arm920t_target,
93         &arm720t_target,
94         &arm966e_target,
95         &arm946e_target,
96         &arm926ejs_target,
97         &fa526_target,
98         &feroceon_target,
99         &dragonite_target,
100         &xscale_target,
101         &cortexm3_target,
102         &cortexa8_target,
103         &arm11_target,
104         &mips_m4k_target,
105         &avr_target,
106         &dsp563xx_target,
107         &dsp5680xx_target,
108         &testee_target,
109         &avr32_ap7k_target,
110         NULL,
111 };
112
113 struct target *all_targets = NULL;
114 static struct target_event_callback *target_event_callbacks = NULL;
115 static struct target_timer_callback *target_timer_callbacks = NULL;
116 static const int polling_interval = 100;
117
118 static const Jim_Nvp nvp_assert[] = {
119         { .name = "assert", NVP_ASSERT },
120         { .name = "deassert", NVP_DEASSERT },
121         { .name = "T", NVP_ASSERT },
122         { .name = "F", NVP_DEASSERT },
123         { .name = "t", NVP_ASSERT },
124         { .name = "f", NVP_DEASSERT },
125         { .name = NULL, .value = -1 }
126 };
127
128 static const Jim_Nvp nvp_error_target[] = {
129         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
130         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
131         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
132         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
133         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
134         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
135         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
136         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
137         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
138         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
139         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
140         { .value = -1, .name = NULL }
141 };
142
143 static const char *target_strerror_safe(int err)
144 {
145         const Jim_Nvp *n;
146
147         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
148         if (n->name == NULL) {
149                 return "unknown";
150         } else {
151                 return n->name;
152         }
153 }
154
155 static const Jim_Nvp nvp_target_event[] = {
156         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
157         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
158
159         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
160         { .value = TARGET_EVENT_HALTED, .name = "halted" },
161         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
162         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
163         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
164
165         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
166         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
167
168         /* historical name */
169
170         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
171
172         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
173         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
174         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
175         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
176         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
177         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
178         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
179         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
180         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
181         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
182         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
183
184         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
185         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
186
187         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
188         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
189
190         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
191         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
192
193         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
195
196         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
197         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
198
199         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
200         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
201         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
202
203         { .name = NULL, .value = -1 }
204 };
205
206 static const Jim_Nvp nvp_target_state[] = {
207         { .name = "unknown", .value = TARGET_UNKNOWN },
208         { .name = "running", .value = TARGET_RUNNING },
209         { .name = "halted",  .value = TARGET_HALTED },
210         { .name = "reset",   .value = TARGET_RESET },
211         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
212         { .name = NULL, .value = -1 },
213 };
214
215 static const Jim_Nvp nvp_target_debug_reason [] = {
216         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
217         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
218         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
219         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
220         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
221         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
222         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
223         { .name = NULL, .value = -1 },
224 };
225
226 static const Jim_Nvp nvp_target_endian[] = {
227         { .name = "big",    .value = TARGET_BIG_ENDIAN },
228         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
229         { .name = "be",     .value = TARGET_BIG_ENDIAN },
230         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
231         { .name = NULL,     .value = -1 },
232 };
233
234 static const Jim_Nvp nvp_reset_modes[] = {
235         { .name = "unknown", .value = RESET_UNKNOWN },
236         { .name = "run"    , .value = RESET_RUN },
237         { .name = "halt"   , .value = RESET_HALT },
238         { .name = "init"   , .value = RESET_INIT },
239         { .name = NULL     , .value = -1 },
240 };
241
242 const char *debug_reason_name(struct target *t)
243 {
244         const char *cp;
245
246         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
247                         t->debug_reason)->name;
248         if (!cp) {
249                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
250                 cp = "(*BUG*unknown*BUG*)";
251         }
252         return cp;
253 }
254
255 const char *
256 target_state_name( struct target *t )
257 {
258         const char *cp;
259         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
260         if( !cp ){
261                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
262                 cp = "(*BUG*unknown*BUG*)";
263         }
264         return cp;
265 }
266
267 /* determine the number of the new target */
268 static int new_target_number(void)
269 {
270         struct target *t;
271         int x;
272
273         /* number is 0 based */
274         x = -1;
275         t = all_targets;
276         while (t) {
277                 if (x < t->target_number) {
278                         x = t->target_number;
279                 }
280                 t = t->next;
281         }
282         return x + 1;
283 }
284
285 /* read a uint32_t from a buffer in target memory endianness */
286 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
287 {
288         if (target->endianness == TARGET_LITTLE_ENDIAN)
289                 return le_to_h_u32(buffer);
290         else
291                 return be_to_h_u32(buffer);
292 }
293
294 /* read a uint24_t from a buffer in target memory endianness */
295 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
296 {
297         if (target->endianness == TARGET_LITTLE_ENDIAN)
298                 return le_to_h_u24(buffer);
299         else
300                 return be_to_h_u24(buffer);
301 }
302
303 /* read a uint16_t from a buffer in target memory endianness */
304 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
305 {
306         if (target->endianness == TARGET_LITTLE_ENDIAN)
307                 return le_to_h_u16(buffer);
308         else
309                 return be_to_h_u16(buffer);
310 }
311
312 /* read a uint8_t from a buffer in target memory endianness */
313 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
314 {
315         return *buffer & 0x0ff;
316 }
317
318 /* write a uint32_t to a buffer in target memory endianness */
319 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
320 {
321         if (target->endianness == TARGET_LITTLE_ENDIAN)
322                 h_u32_to_le(buffer, value);
323         else
324                 h_u32_to_be(buffer, value);
325 }
326
327 /* write a uint24_t to a buffer in target memory endianness */
328 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
329 {
330         if (target->endianness == TARGET_LITTLE_ENDIAN)
331                 h_u24_to_le(buffer, value);
332         else
333                 h_u24_to_be(buffer, value);
334 }
335
336 /* write a uint16_t to a buffer in target memory endianness */
337 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
338 {
339         if (target->endianness == TARGET_LITTLE_ENDIAN)
340                 h_u16_to_le(buffer, value);
341         else
342                 h_u16_to_be(buffer, value);
343 }
344
345 /* write a uint8_t to a buffer in target memory endianness */
346 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
347 {
348         *buffer = value;
349 }
350
351 /* write a uint32_t array to a buffer in target memory endianness */
352 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
353 {
354         uint32_t i;
355         for(i = 0; i < count; i ++)
356                 dstbuf[i] = target_buffer_get_u32(target,&buffer[i*4]);
357 }
358
359 /* write a uint16_t array to a buffer in target memory endianness */
360 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
361 {
362         uint32_t i;
363         for(i = 0; i < count; i ++)
364                 dstbuf[i] = target_buffer_get_u16(target,&buffer[i*2]);
365 }
366
367 /* write a uint32_t array to a buffer in target memory endianness */
368 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
369 {
370         uint32_t i;
371         for(i = 0; i < count; i ++)
372                 target_buffer_set_u32(target,&buffer[i*4],srcbuf[i]);
373 }
374
375 /* write a uint16_t array to a buffer in target memory endianness */
376 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
377 {
378         uint32_t i;
379         for(i = 0; i < count; i ++)
380                 target_buffer_set_u16(target,&buffer[i*2],srcbuf[i]);
381 }
382
383 /* return a pointer to a configured target; id is name or number */
384 struct target *get_target(const char *id)
385 {
386         struct target *target;
387
388         /* try as tcltarget name */
389         for (target = all_targets; target; target = target->next) {
390                 if (target->cmd_name == NULL)
391                         continue;
392                 if (strcmp(id, target->cmd_name) == 0)
393                         return target;
394         }
395
396         /* It's OK to remove this fallback sometime after August 2010 or so */
397
398         /* no match, try as number */
399         unsigned num;
400         if (parse_uint(id, &num) != ERROR_OK)
401                 return NULL;
402
403         for (target = all_targets; target; target = target->next) {
404                 if (target->target_number == (int)num) {
405                         LOG_WARNING("use '%s' as target identifier, not '%u'",
406                                         target->cmd_name, num);
407                         return target;
408                 }
409         }
410
411         return NULL;
412 }
413
414 /* returns a pointer to the n-th configured target */
415 static struct target *get_target_by_num(int num)
416 {
417         struct target *target = all_targets;
418
419         while (target) {
420                 if (target->target_number == num) {
421                         return target;
422                 }
423                 target = target->next;
424         }
425
426         return NULL;
427 }
428
429 struct target* get_current_target(struct command_context *cmd_ctx)
430 {
431         struct target *target = get_target_by_num(cmd_ctx->current_target);
432
433         if (target == NULL)
434         {
435                 LOG_ERROR("BUG: current_target out of bounds");
436                 exit(-1);
437         }
438
439         return target;
440 }
441
442 int target_poll(struct target *target)
443 {
444         int retval;
445
446         /* We can't poll until after examine */
447         if (!target_was_examined(target))
448         {
449                 /* Fail silently lest we pollute the log */
450                 return ERROR_FAIL;
451         }
452
453         retval = target->type->poll(target);
454         if (retval != ERROR_OK)
455                 return retval;
456
457         if (target->halt_issued)
458         {
459                 if (target->state == TARGET_HALTED)
460                 {
461                         target->halt_issued = false;
462                 } else
463                 {
464                         long long t = timeval_ms() - target->halt_issued_time;
465                         if (t>1000)
466                         {
467                                 target->halt_issued = false;
468                                 LOG_INFO("Halt timed out, wake up GDB.");
469                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
470                         }
471                 }
472         }
473
474         return ERROR_OK;
475 }
476
477 int target_halt(struct target *target)
478 {
479         int retval;
480         /* We can't poll until after examine */
481         if (!target_was_examined(target))
482         {
483                 LOG_ERROR("Target not examined yet");
484                 return ERROR_FAIL;
485         }
486
487         retval = target->type->halt(target);
488         if (retval != ERROR_OK)
489                 return retval;
490
491         target->halt_issued = true;
492         target->halt_issued_time = timeval_ms();
493
494         return ERROR_OK;
495 }
496
497 /**
498  * Make the target (re)start executing using its saved execution
499  * context (possibly with some modifications).
500  *
501  * @param target Which target should start executing.
502  * @param current True to use the target's saved program counter instead
503  *      of the address parameter
504  * @param address Optionally used as the program counter.
505  * @param handle_breakpoints True iff breakpoints at the resumption PC
506  *      should be skipped.  (For example, maybe execution was stopped by
507  *      such a breakpoint, in which case it would be counterprodutive to
508  *      let it re-trigger.
509  * @param debug_execution False if all working areas allocated by OpenOCD
510  *      should be released and/or restored to their original contents.
511  *      (This would for example be true to run some downloaded "helper"
512  *      algorithm code, which resides in one such working buffer and uses
513  *      another for data storage.)
514  *
515  * @todo Resolve the ambiguity about what the "debug_execution" flag
516  * signifies.  For example, Target implementations don't agree on how
517  * it relates to invalidation of the register cache, or to whether
518  * breakpoints and watchpoints should be enabled.  (It would seem wrong
519  * to enable breakpoints when running downloaded "helper" algorithms
520  * (debug_execution true), since the breakpoints would be set to match
521  * target firmware being debugged, not the helper algorithm.... and
522  * enabling them could cause such helpers to malfunction (for example,
523  * by overwriting data with a breakpoint instruction.  On the other
524  * hand the infrastructure for running such helpers might use this
525  * procedure but rely on hardware breakpoint to detect termination.)
526  */
527 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
528 {
529         int retval;
530
531         /* We can't poll until after examine */
532         if (!target_was_examined(target))
533         {
534                 LOG_ERROR("Target not examined yet");
535                 return ERROR_FAIL;
536         }
537
538         /* note that resume *must* be asynchronous. The CPU can halt before
539          * we poll. The CPU can even halt at the current PC as a result of
540          * a software breakpoint being inserted by (a bug?) the application.
541          */
542         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
543                 return retval;
544
545         return retval;
546 }
547
548 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
549 {
550         char buf[100];
551         int retval;
552         Jim_Nvp *n;
553         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
554         if (n->name == NULL) {
555                 LOG_ERROR("invalid reset mode");
556                 return ERROR_FAIL;
557         }
558
559         /* disable polling during reset to make reset event scripts
560          * more predictable, i.e. dr/irscan & pathmove in events will
561          * not have JTAG operations injected into the middle of a sequence.
562          */
563         bool save_poll = jtag_poll_get_enabled();
564
565         jtag_poll_set_enabled(false);
566
567         sprintf(buf, "ocd_process_reset %s", n->name);
568         retval = Jim_Eval(cmd_ctx->interp, buf);
569
570         jtag_poll_set_enabled(save_poll);
571
572         if (retval != JIM_OK) {
573                 Jim_MakeErrorMessage(cmd_ctx->interp);
574                 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
575                 return ERROR_FAIL;
576         }
577
578         /* We want any events to be processed before the prompt */
579         retval = target_call_timer_callbacks_now();
580
581         struct target *target;
582         for (target = all_targets; target; target = target->next) {
583                 target->type->check_reset(target);
584         }
585
586         return retval;
587 }
588
589 static int identity_virt2phys(struct target *target,
590                 uint32_t virtual, uint32_t *physical)
591 {
592         *physical = virtual;
593         return ERROR_OK;
594 }
595
596 static int no_mmu(struct target *target, int *enabled)
597 {
598         *enabled = 0;
599         return ERROR_OK;
600 }
601
602 static int default_examine(struct target *target)
603 {
604         target_set_examined(target);
605         return ERROR_OK;
606 }
607
608 /* no check by default */
609 static int default_check_reset(struct target *target)
610 {
611         return ERROR_OK;
612 }
613
614 int target_examine_one(struct target *target)
615 {
616         return target->type->examine(target);
617 }
618
619 static int jtag_enable_callback(enum jtag_event event, void *priv)
620 {
621         struct target *target = priv;
622
623         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
624                 return ERROR_OK;
625
626         jtag_unregister_event_callback(jtag_enable_callback, target);
627         return target_examine_one(target);
628 }
629
630
631 /* Targets that correctly implement init + examine, i.e.
632  * no communication with target during init:
633  *
634  * XScale
635  */
636 int target_examine(void)
637 {
638         int retval = ERROR_OK;
639         struct target *target;
640
641         for (target = all_targets; target; target = target->next)
642         {
643                 /* defer examination, but don't skip it */
644                 if (!target->tap->enabled) {
645                         jtag_register_event_callback(jtag_enable_callback,
646                                         target);
647                         continue;
648                 }
649                 if ((retval = target_examine_one(target)) != ERROR_OK)
650                         return retval;
651         }
652         return retval;
653 }
654 const char *target_type_name(struct target *target)
655 {
656         return target->type->name;
657 }
658
659 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
660 {
661         if (!target_was_examined(target))
662         {
663                 LOG_ERROR("Target not examined yet");
664                 return ERROR_FAIL;
665         }
666         return target->type->write_memory_imp(target, address, size, count, buffer);
667 }
668
669 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
670 {
671         if (!target_was_examined(target))
672         {
673                 LOG_ERROR("Target not examined yet");
674                 return ERROR_FAIL;
675         }
676         return target->type->read_memory_imp(target, address, size, count, buffer);
677 }
678
679 static int target_soft_reset_halt_imp(struct target *target)
680 {
681         if (!target_was_examined(target))
682         {
683                 LOG_ERROR("Target not examined yet");
684                 return ERROR_FAIL;
685         }
686         if (!target->type->soft_reset_halt_imp) {
687                 LOG_ERROR("Target %s does not support soft_reset_halt",
688                                 target_name(target));
689                 return ERROR_FAIL;
690         }
691         return target->type->soft_reset_halt_imp(target);
692 }
693
694 /**
695  * Downloads a target-specific native code algorithm to the target,
696  * and executes it.  * Note that some targets may need to set up, enable,
697  * and tear down a breakpoint (hard or * soft) to detect algorithm
698  * termination, while others may support  lower overhead schemes where
699  * soft breakpoints embedded in the algorithm automatically terminate the
700  * algorithm.
701  *
702  * @param target used to run the algorithm
703  * @param arch_info target-specific description of the algorithm.
704  */
705 int target_run_algorithm(struct target *target,
706                 int num_mem_params, struct mem_param *mem_params,
707                 int num_reg_params, struct reg_param *reg_param,
708                 uint32_t entry_point, uint32_t exit_point,
709                 int timeout_ms, void *arch_info)
710 {
711         int retval = ERROR_FAIL;
712
713         if (!target_was_examined(target))
714         {
715                 LOG_ERROR("Target not examined yet");
716                 goto done;
717         }
718         if (!target->type->run_algorithm) {
719                 LOG_ERROR("Target type '%s' does not support %s",
720                                 target_type_name(target), __func__);
721                 goto done;
722         }
723
724         target->running_alg = true;
725         retval = target->type->run_algorithm(target,
726                         num_mem_params, mem_params,
727                         num_reg_params, reg_param,
728                         entry_point, exit_point, timeout_ms, arch_info);
729         target->running_alg = false;
730
731 done:
732         return retval;
733 }
734
735 /**
736  * Downloads a target-specific native code algorithm to the target,
737  * executes and leaves it running.
738  *
739  * @param target used to run the algorithm
740  * @param arch_info target-specific description of the algorithm.
741  */
742 int target_start_algorithm(struct target *target,
743                 int num_mem_params, struct mem_param *mem_params,
744                 int num_reg_params, struct reg_param *reg_params,
745                 uint32_t entry_point, uint32_t exit_point,
746                 void *arch_info)
747 {
748         int retval = ERROR_FAIL;
749
750         if (!target_was_examined(target))
751         {
752                 LOG_ERROR("Target not examined yet");
753                 goto done;
754         }
755         if (!target->type->start_algorithm) {
756                 LOG_ERROR("Target type '%s' does not support %s",
757                                 target_type_name(target), __func__);
758                 goto done;
759         }
760         if (target->running_alg) {
761                 LOG_ERROR("Target is already running an algorithm");
762                 goto done;
763         }
764
765         target->running_alg = true;
766         retval = target->type->start_algorithm(target,
767                         num_mem_params, mem_params,
768                         num_reg_params, reg_params,
769                         entry_point, exit_point, arch_info);
770
771 done:
772         return retval;
773 }
774
775 /**
776  * Waits for an algorithm started with target_start_algorithm() to complete.
777  *
778  * @param target used to run the algorithm
779  * @param arch_info target-specific description of the algorithm.
780  */
781 int target_wait_algorithm(struct target *target,
782                 int num_mem_params, struct mem_param *mem_params,
783                 int num_reg_params, struct reg_param *reg_params,
784                 uint32_t exit_point, int timeout_ms,
785                 void *arch_info)
786 {
787         int retval = ERROR_FAIL;
788
789         if (!target->type->wait_algorithm) {
790                 LOG_ERROR("Target type '%s' does not support %s",
791                                 target_type_name(target), __func__);
792                 goto done;
793         }
794         if (!target->running_alg) {
795                 LOG_ERROR("Target is not running an algorithm");
796                 goto done;
797         }
798
799         retval = target->type->wait_algorithm(target,
800                         num_mem_params, mem_params,
801                         num_reg_params, reg_params,
802                         exit_point, timeout_ms, arch_info);
803         if (retval != ERROR_TARGET_TIMEOUT)
804                 target->running_alg = false;
805
806 done:
807         return retval;
808 }
809
810
811 int target_read_memory(struct target *target,
812                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
813 {
814         return target->type->read_memory(target, address, size, count, buffer);
815 }
816
817 static int target_read_phys_memory(struct target *target,
818                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
819 {
820         return target->type->read_phys_memory(target, address, size, count, buffer);
821 }
822
823 int target_write_memory(struct target *target,
824                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
825 {
826         return target->type->write_memory(target, address, size, count, buffer);
827 }
828
829 static int target_write_phys_memory(struct target *target,
830                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
831 {
832         return target->type->write_phys_memory(target, address, size, count, buffer);
833 }
834
835 int target_bulk_write_memory(struct target *target,
836                 uint32_t address, uint32_t count, const uint8_t *buffer)
837 {
838         return target->type->bulk_write_memory(target, address, count, buffer);
839 }
840
841 int target_add_breakpoint(struct target *target,
842                 struct breakpoint *breakpoint)
843 {
844         if ((target->state != TARGET_HALTED)&&(breakpoint->type!=BKPT_HARD)) {
845                 LOG_WARNING("target %s is not halted", target->cmd_name);
846                 return ERROR_TARGET_NOT_HALTED;
847         }
848         return target->type->add_breakpoint(target, breakpoint);
849 }
850
851 int target_add_context_breakpoint(struct target *target,
852                 struct breakpoint *breakpoint)
853 {
854         if (target->state != TARGET_HALTED) {
855                 LOG_WARNING("target %s is not halted", target->cmd_name);
856                 return ERROR_TARGET_NOT_HALTED;
857         }
858         return target->type->add_context_breakpoint(target, breakpoint);
859 }
860
861 int target_add_hybrid_breakpoint(struct target *target,
862                 struct breakpoint *breakpoint)
863 {
864         if (target->state != TARGET_HALTED) {
865                 LOG_WARNING("target %s is not halted", target->cmd_name);
866                 return ERROR_TARGET_NOT_HALTED;
867         }
868         return target->type->add_hybrid_breakpoint(target, breakpoint);
869 }
870
871 int target_remove_breakpoint(struct target *target,
872                 struct breakpoint *breakpoint)
873 {
874         return target->type->remove_breakpoint(target, breakpoint);
875 }
876
877 int target_add_watchpoint(struct target *target,
878                 struct watchpoint *watchpoint)
879 {
880         if (target->state != TARGET_HALTED) {
881                 LOG_WARNING("target %s is not halted", target->cmd_name);
882                 return ERROR_TARGET_NOT_HALTED;
883         }
884         return target->type->add_watchpoint(target, watchpoint);
885 }
886 int target_remove_watchpoint(struct target *target,
887                 struct watchpoint *watchpoint)
888 {
889         return target->type->remove_watchpoint(target, watchpoint);
890 }
891
892 int target_get_gdb_reg_list(struct target *target,
893                 struct reg **reg_list[], int *reg_list_size)
894 {
895         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
896 }
897 int target_step(struct target *target,
898                 int current, uint32_t address, int handle_breakpoints)
899 {
900         return target->type->step(target, current, address, handle_breakpoints);
901 }
902
903
904 /**
905  * Reset the @c examined flag for the given target.
906  * Pure paranoia -- targets are zeroed on allocation.
907  */
908 static void target_reset_examined(struct target *target)
909 {
910         target->examined = false;
911 }
912
913 static int
914 err_read_phys_memory(struct target *target, uint32_t address,
915                 uint32_t size, uint32_t count, uint8_t *buffer)
916 {
917         LOG_ERROR("Not implemented: %s", __func__);
918         return ERROR_FAIL;
919 }
920
921 static int
922 err_write_phys_memory(struct target *target, uint32_t address,
923                 uint32_t size, uint32_t count, const uint8_t *buffer)
924 {
925         LOG_ERROR("Not implemented: %s", __func__);
926         return ERROR_FAIL;
927 }
928
929 static int handle_target(void *priv);
930
931 static int target_init_one(struct command_context *cmd_ctx,
932                 struct target *target)
933 {
934         target_reset_examined(target);
935
936         struct target_type *type = target->type;
937         if (type->examine == NULL)
938                 type->examine = default_examine;
939
940         if (type->check_reset== NULL)
941                 type->check_reset = default_check_reset;
942
943         assert(type->init_target != NULL);
944
945         int retval = type->init_target(cmd_ctx, target);
946         if (ERROR_OK != retval)
947         {
948                 LOG_ERROR("target '%s' init failed", target_name(target));
949                 return retval;
950         }
951
952         /**
953          * @todo get rid of those *memory_imp() methods, now that all
954          * callers are using target_*_memory() accessors ... and make
955          * sure the "physical" paths handle the same issues.
956          */
957         /* a non-invasive way(in terms of patches) to add some code that
958          * runs before the type->write/read_memory implementation
959          */
960         type->write_memory_imp = target->type->write_memory;
961         type->write_memory = target_write_memory_imp;
962
963         type->read_memory_imp = target->type->read_memory;
964         type->read_memory = target_read_memory_imp;
965
966         type->soft_reset_halt_imp = target->type->soft_reset_halt;
967         type->soft_reset_halt = target_soft_reset_halt_imp;
968
969         /* Sanity-check MMU support ... stub in what we must, to help
970          * implement it in stages, but warn if we need to do so.
971          */
972         if (type->mmu)
973         {
974                 if (type->write_phys_memory == NULL)
975                 {
976                         LOG_ERROR("type '%s' is missing write_phys_memory",
977                                         type->name);
978                         type->write_phys_memory = err_write_phys_memory;
979                 }
980                 if (type->read_phys_memory == NULL)
981                 {
982                         LOG_ERROR("type '%s' is missing read_phys_memory",
983                                         type->name);
984                         type->read_phys_memory = err_read_phys_memory;
985                 }
986                 if (type->virt2phys == NULL)
987                 {
988                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
989                         type->virt2phys = identity_virt2phys;
990                 }
991         }
992         else
993         {
994                 /* Make sure no-MMU targets all behave the same:  make no
995                  * distinction between physical and virtual addresses, and
996                  * ensure that virt2phys() is always an identity mapping.
997                  */
998                 if (type->write_phys_memory || type->read_phys_memory
999                                 || type->virt2phys)
1000                 {
1001                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1002                 }
1003
1004                 type->mmu = no_mmu;
1005                 type->write_phys_memory = type->write_memory;
1006                 type->read_phys_memory = type->read_memory;
1007                 type->virt2phys = identity_virt2phys;
1008         }
1009
1010         if (target->type->read_buffer == NULL)
1011                 target->type->read_buffer = target_read_buffer_default;
1012
1013         if (target->type->write_buffer == NULL)
1014                 target->type->write_buffer = target_write_buffer_default;
1015
1016         return ERROR_OK;
1017 }
1018
1019 static int target_init(struct command_context *cmd_ctx)
1020 {
1021         struct target *target;
1022         int retval;
1023
1024         for (target = all_targets; target; target = target->next)
1025         {
1026                 retval = target_init_one(cmd_ctx, target);
1027                 if (ERROR_OK != retval)
1028                         return retval;
1029         }
1030
1031         if (!all_targets)
1032                 return ERROR_OK;
1033
1034         retval = target_register_user_commands(cmd_ctx);
1035         if (ERROR_OK != retval)
1036                 return retval;
1037
1038         retval = target_register_timer_callback(&handle_target,
1039                         polling_interval, 1, cmd_ctx->interp);
1040         if (ERROR_OK != retval)
1041                 return retval;
1042
1043         return ERROR_OK;
1044 }
1045
1046 COMMAND_HANDLER(handle_target_init_command)
1047 {
1048         int retval;
1049
1050         if (CMD_ARGC != 0)
1051                 return ERROR_COMMAND_SYNTAX_ERROR;
1052
1053         static bool target_initialized = false;
1054         if (target_initialized)
1055         {
1056                 LOG_INFO("'target init' has already been called");
1057                 return ERROR_OK;
1058         }
1059         target_initialized = true;
1060
1061         retval = command_run_line(CMD_CTX, "init_targets");
1062         if (ERROR_OK != retval)
1063                 return retval;
1064
1065         LOG_DEBUG("Initializing targets...");
1066         return target_init(CMD_CTX);
1067 }
1068
1069 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1070 {
1071         struct target_event_callback **callbacks_p = &target_event_callbacks;
1072
1073         if (callback == NULL)
1074         {
1075                 return ERROR_INVALID_ARGUMENTS;
1076         }
1077
1078         if (*callbacks_p)
1079         {
1080                 while ((*callbacks_p)->next)
1081                         callbacks_p = &((*callbacks_p)->next);
1082                 callbacks_p = &((*callbacks_p)->next);
1083         }
1084
1085         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1086         (*callbacks_p)->callback = callback;
1087         (*callbacks_p)->priv = priv;
1088         (*callbacks_p)->next = NULL;
1089
1090         return ERROR_OK;
1091 }
1092
1093 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1094 {
1095         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1096         struct timeval now;
1097
1098         if (callback == NULL)
1099         {
1100                 return ERROR_INVALID_ARGUMENTS;
1101         }
1102
1103         if (*callbacks_p)
1104         {
1105                 while ((*callbacks_p)->next)
1106                         callbacks_p = &((*callbacks_p)->next);
1107                 callbacks_p = &((*callbacks_p)->next);
1108         }
1109
1110         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1111         (*callbacks_p)->callback = callback;
1112         (*callbacks_p)->periodic = periodic;
1113         (*callbacks_p)->time_ms = time_ms;
1114
1115         gettimeofday(&now, NULL);
1116         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1117         time_ms -= (time_ms % 1000);
1118         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1119         if ((*callbacks_p)->when.tv_usec > 1000000)
1120         {
1121                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1122                 (*callbacks_p)->when.tv_sec += 1;
1123         }
1124
1125         (*callbacks_p)->priv = priv;
1126         (*callbacks_p)->next = NULL;
1127
1128         return ERROR_OK;
1129 }
1130
1131 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1132 {
1133         struct target_event_callback **p = &target_event_callbacks;
1134         struct target_event_callback *c = target_event_callbacks;
1135
1136         if (callback == NULL)
1137         {
1138                 return ERROR_INVALID_ARGUMENTS;
1139         }
1140
1141         while (c)
1142         {
1143                 struct target_event_callback *next = c->next;
1144                 if ((c->callback == callback) && (c->priv == priv))
1145                 {
1146                         *p = next;
1147                         free(c);
1148                         return ERROR_OK;
1149                 }
1150                 else
1151                         p = &(c->next);
1152                 c = next;
1153         }
1154
1155         return ERROR_OK;
1156 }
1157
1158 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1159 {
1160         struct target_timer_callback **p = &target_timer_callbacks;
1161         struct target_timer_callback *c = target_timer_callbacks;
1162
1163         if (callback == NULL)
1164         {
1165                 return ERROR_INVALID_ARGUMENTS;
1166         }
1167
1168         while (c)
1169         {
1170                 struct target_timer_callback *next = c->next;
1171                 if ((c->callback == callback) && (c->priv == priv))
1172                 {
1173                         *p = next;
1174                         free(c);
1175                         return ERROR_OK;
1176                 }
1177                 else
1178                         p = &(c->next);
1179                 c = next;
1180         }
1181
1182         return ERROR_OK;
1183 }
1184
1185 int target_call_event_callbacks(struct target *target, enum target_event event)
1186 {
1187         struct target_event_callback *callback = target_event_callbacks;
1188         struct target_event_callback *next_callback;
1189
1190         if (event == TARGET_EVENT_HALTED)
1191         {
1192                 /* execute early halted first */
1193                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1194         }
1195
1196         LOG_DEBUG("target event %i (%s)",
1197                           event,
1198                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1199
1200         target_handle_event(target, event);
1201
1202         while (callback)
1203         {
1204                 next_callback = callback->next;
1205                 callback->callback(target, event, callback->priv);
1206                 callback = next_callback;
1207         }
1208
1209         return ERROR_OK;
1210 }
1211
1212 static int target_timer_callback_periodic_restart(
1213                 struct target_timer_callback *cb, struct timeval *now)
1214 {
1215         int time_ms = cb->time_ms;
1216         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1217         time_ms -= (time_ms % 1000);
1218         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1219         if (cb->when.tv_usec > 1000000)
1220         {
1221                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1222                 cb->when.tv_sec += 1;
1223         }
1224         return ERROR_OK;
1225 }
1226
1227 static int target_call_timer_callback(struct target_timer_callback *cb,
1228                 struct timeval *now)
1229 {
1230         cb->callback(cb->priv);
1231
1232         if (cb->periodic)
1233                 return target_timer_callback_periodic_restart(cb, now);
1234
1235         return target_unregister_timer_callback(cb->callback, cb->priv);
1236 }
1237
1238 static int target_call_timer_callbacks_check_time(int checktime)
1239 {
1240         keep_alive();
1241
1242         struct timeval now;
1243         gettimeofday(&now, NULL);
1244
1245         struct target_timer_callback *callback = target_timer_callbacks;
1246         while (callback)
1247         {
1248                 // cleaning up may unregister and free this callback
1249                 struct target_timer_callback *next_callback = callback->next;
1250
1251                 bool call_it = callback->callback &&
1252                         ((!checktime && callback->periodic) ||
1253                           now.tv_sec > callback->when.tv_sec ||
1254                          (now.tv_sec == callback->when.tv_sec &&
1255                           now.tv_usec >= callback->when.tv_usec));
1256
1257                 if (call_it)
1258                 {
1259                         int retval = target_call_timer_callback(callback, &now);
1260                         if (retval != ERROR_OK)
1261                                 return retval;
1262                 }
1263
1264                 callback = next_callback;
1265         }
1266
1267         return ERROR_OK;
1268 }
1269
1270 int target_call_timer_callbacks(void)
1271 {
1272         return target_call_timer_callbacks_check_time(1);
1273 }
1274
1275 /* invoke periodic callbacks immediately */
1276 int target_call_timer_callbacks_now(void)
1277 {
1278         return target_call_timer_callbacks_check_time(0);
1279 }
1280
1281 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1282 {
1283         struct working_area *c = target->working_areas;
1284         struct working_area *new_wa = NULL;
1285
1286         /* Reevaluate working area address based on MMU state*/
1287         if (target->working_areas == NULL)
1288         {
1289                 int retval;
1290                 int enabled;
1291
1292                 retval = target->type->mmu(target, &enabled);
1293                 if (retval != ERROR_OK)
1294                 {
1295                         return retval;
1296                 }
1297
1298                 if (!enabled) {
1299                         if (target->working_area_phys_spec) {
1300                                 LOG_DEBUG("MMU disabled, using physical "
1301                                         "address for working memory 0x%08x",
1302                                         (unsigned)target->working_area_phys);
1303                                 target->working_area = target->working_area_phys;
1304                         } else {
1305                                 LOG_ERROR("No working memory available. "
1306                                         "Specify -work-area-phys to target.");
1307                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1308                         }
1309                 } else {
1310                         if (target->working_area_virt_spec) {
1311                                 LOG_DEBUG("MMU enabled, using virtual "
1312                                         "address for working memory 0x%08x",
1313                                         (unsigned)target->working_area_virt);
1314                                 target->working_area = target->working_area_virt;
1315                         } else {
1316                                 LOG_ERROR("No working memory available. "
1317                                         "Specify -work-area-virt to target.");
1318                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1319                         }
1320                 }
1321         }
1322
1323         /* only allocate multiples of 4 byte */
1324         if (size % 4)
1325         {
1326                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1327                 size = (size + 3) & (~3);
1328         }
1329
1330         /* see if there's already a matching working area */
1331         while (c)
1332         {
1333                 if ((c->free) && (c->size == size))
1334                 {
1335                         new_wa = c;
1336                         break;
1337                 }
1338                 c = c->next;
1339         }
1340
1341         /* if not, allocate a new one */
1342         if (!new_wa)
1343         {
1344                 struct working_area **p = &target->working_areas;
1345                 uint32_t first_free = target->working_area;
1346                 uint32_t free_size = target->working_area_size;
1347
1348                 c = target->working_areas;
1349                 while (c)
1350                 {
1351                         first_free += c->size;
1352                         free_size -= c->size;
1353                         p = &c->next;
1354                         c = c->next;
1355                 }
1356
1357                 if (free_size < size)
1358                 {
1359                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1360                 }
1361
1362                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1363
1364                 new_wa = malloc(sizeof(struct working_area));
1365                 new_wa->next = NULL;
1366                 new_wa->size = size;
1367                 new_wa->address = first_free;
1368
1369                 if (target->backup_working_area)
1370                 {
1371                         int retval;
1372                         new_wa->backup = malloc(new_wa->size);
1373                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1374                         {
1375                                 free(new_wa->backup);
1376                                 free(new_wa);
1377                                 return retval;
1378                         }
1379                 }
1380                 else
1381                 {
1382                         new_wa->backup = NULL;
1383                 }
1384
1385                 /* put new entry in list */
1386                 *p = new_wa;
1387         }
1388
1389         /* mark as used, and return the new (reused) area */
1390         new_wa->free = false;
1391         *area = new_wa;
1392
1393         /* user pointer */
1394         new_wa->user = area;
1395
1396         return ERROR_OK;
1397 }
1398
1399 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1400 {
1401         int retval;
1402
1403         retval = target_alloc_working_area_try(target, size, area);
1404         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1405         {
1406                 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1407         }
1408         return retval;
1409
1410 }
1411
1412 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1413 {
1414         if (area->free)
1415                 return ERROR_OK;
1416
1417         if (restore && target->backup_working_area)
1418         {
1419                 int retval;
1420                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1421                         return retval;
1422         }
1423
1424         area->free = true;
1425
1426         /* mark user pointer invalid */
1427         *area->user = NULL;
1428         area->user = NULL;
1429
1430         return ERROR_OK;
1431 }
1432
1433 int target_free_working_area(struct target *target, struct working_area *area)
1434 {
1435         return target_free_working_area_restore(target, area, 1);
1436 }
1437
1438 /* free resources and restore memory, if restoring memory fails,
1439  * free up resources anyway
1440  */
1441 static void target_free_all_working_areas_restore(struct target *target, int restore)
1442 {
1443         struct working_area *c = target->working_areas;
1444
1445         while (c)
1446         {
1447                 struct working_area *next = c->next;
1448                 target_free_working_area_restore(target, c, restore);
1449
1450                 if (c->backup)
1451                         free(c->backup);
1452
1453                 free(c);
1454
1455                 c = next;
1456         }
1457
1458         target->working_areas = NULL;
1459 }
1460
1461 void target_free_all_working_areas(struct target *target)
1462 {
1463         target_free_all_working_areas_restore(target, 1);
1464 }
1465
1466 int target_arch_state(struct target *target)
1467 {
1468         int retval;
1469         if (target == NULL)
1470         {
1471                 LOG_USER("No target has been configured");
1472                 return ERROR_OK;
1473         }
1474
1475         LOG_USER("target state: %s", target_state_name( target ));
1476
1477         if (target->state != TARGET_HALTED)
1478                 return ERROR_OK;
1479
1480         retval = target->type->arch_state(target);
1481         return retval;
1482 }
1483
1484 /* Single aligned words are guaranteed to use 16 or 32 bit access
1485  * mode respectively, otherwise data is handled as quickly as
1486  * possible
1487  */
1488 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1489 {
1490         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1491                   (int)size, (unsigned)address);
1492
1493         if (!target_was_examined(target))
1494         {
1495                 LOG_ERROR("Target not examined yet");
1496                 return ERROR_FAIL;
1497         }
1498
1499         if (size == 0) {
1500                 return ERROR_OK;
1501         }
1502
1503         if ((address + size - 1) < address)
1504         {
1505                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1506                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1507                                   (unsigned)address,
1508                                   (unsigned)size);
1509                 return ERROR_FAIL;
1510         }
1511
1512         return target->type->write_buffer(target, address, size, buffer);
1513 }
1514
1515 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1516 {
1517         int retval = ERROR_OK;
1518
1519         if (((address % 2) == 0) && (size == 2))
1520         {
1521                 return target_write_memory(target, address, 2, 1, buffer);
1522         }
1523
1524         /* handle unaligned head bytes */
1525         if (address % 4)
1526         {
1527                 uint32_t unaligned = 4 - (address % 4);
1528
1529                 if (unaligned > size)
1530                         unaligned = size;
1531
1532                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1533                         return retval;
1534
1535                 buffer += unaligned;
1536                 address += unaligned;
1537                 size -= unaligned;
1538         }
1539
1540         /* handle aligned words */
1541         if (size >= 4)
1542         {
1543                 int aligned = size - (size % 4);
1544
1545                 /* use bulk writes above a certain limit. This may have to be changed */
1546                 if (aligned > 128)
1547                 {
1548                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1549                                 return retval;
1550                 }
1551                 else
1552                 {
1553                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1554                                 return retval;
1555                 }
1556
1557                 buffer += aligned;
1558                 address += aligned;
1559                 size -= aligned;
1560         }
1561
1562         /* handle tail writes of less than 4 bytes */
1563         if (size > 0)
1564         {
1565                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1566                         return retval;
1567         }
1568
1569         return retval;
1570 }
1571
1572 /* Single aligned words are guaranteed to use 16 or 32 bit access
1573  * mode respectively, otherwise data is handled as quickly as
1574  * possible
1575  */
1576 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1577 {
1578         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1579                           (int)size, (unsigned)address);
1580
1581         if (!target_was_examined(target))
1582         {
1583                 LOG_ERROR("Target not examined yet");
1584                 return ERROR_FAIL;
1585         }
1586
1587         if (size == 0) {
1588                 return ERROR_OK;
1589         }
1590
1591         if ((address + size - 1) < address)
1592         {
1593                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1594                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1595                                   address,
1596                                   size);
1597                 return ERROR_FAIL;
1598         }
1599
1600         return target->type->read_buffer(target, address, size, buffer);
1601 }
1602
1603 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1604 {
1605         int retval = ERROR_OK;
1606
1607         if (((address % 2) == 0) && (size == 2))
1608         {
1609                 return target_read_memory(target, address, 2, 1, buffer);
1610         }
1611
1612         /* handle unaligned head bytes */
1613         if (address % 4)
1614         {
1615                 uint32_t unaligned = 4 - (address % 4);
1616
1617                 if (unaligned > size)
1618                         unaligned = size;
1619
1620                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1621                         return retval;
1622
1623                 buffer += unaligned;
1624                 address += unaligned;
1625                 size -= unaligned;
1626         }
1627
1628         /* handle aligned words */
1629         if (size >= 4)
1630         {
1631                 int aligned = size - (size % 4);
1632
1633                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1634                         return retval;
1635
1636                 buffer += aligned;
1637                 address += aligned;
1638                 size -= aligned;
1639         }
1640
1641         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1642         if(size >=2)
1643         {
1644                 int aligned = size - (size%2);
1645                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1646                 if (retval != ERROR_OK)
1647                         return retval;
1648
1649                 buffer += aligned;
1650                 address += aligned;
1651                 size -= aligned;
1652         }
1653         /* handle tail writes of less than 4 bytes */
1654         if (size > 0)
1655         {
1656                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1657                         return retval;
1658         }
1659
1660         return ERROR_OK;
1661 }
1662
1663 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1664 {
1665         uint8_t *buffer;
1666         int retval;
1667         uint32_t i;
1668         uint32_t checksum = 0;
1669         if (!target_was_examined(target))
1670         {
1671                 LOG_ERROR("Target not examined yet");
1672                 return ERROR_FAIL;
1673         }
1674
1675         if ((retval = target->type->checksum_memory(target, address,
1676                 size, &checksum)) != ERROR_OK)
1677         {
1678                 buffer = malloc(size);
1679                 if (buffer == NULL)
1680                 {
1681                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1682                         return ERROR_INVALID_ARGUMENTS;
1683                 }
1684                 retval = target_read_buffer(target, address, size, buffer);
1685                 if (retval != ERROR_OK)
1686                 {
1687                         free(buffer);
1688                         return retval;
1689                 }
1690
1691                 /* convert to target endianness */
1692                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1693                 {
1694                         uint32_t target_data;
1695                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1696                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1697                 }
1698
1699                 retval = image_calculate_checksum(buffer, size, &checksum);
1700                 free(buffer);
1701         }
1702
1703         *crc = checksum;
1704
1705         return retval;
1706 }
1707
1708 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1709 {
1710         int retval;
1711         if (!target_was_examined(target))
1712         {
1713                 LOG_ERROR("Target not examined yet");
1714                 return ERROR_FAIL;
1715         }
1716
1717         if (target->type->blank_check_memory == 0)
1718                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1719
1720         retval = target->type->blank_check_memory(target, address, size, blank);
1721
1722         return retval;
1723 }
1724
1725 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1726 {
1727         uint8_t value_buf[4];
1728         if (!target_was_examined(target))
1729         {
1730                 LOG_ERROR("Target not examined yet");
1731                 return ERROR_FAIL;
1732         }
1733
1734         int retval = target_read_memory(target, address, 4, 1, value_buf);
1735
1736         if (retval == ERROR_OK)
1737         {
1738                 *value = target_buffer_get_u32(target, value_buf);
1739                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1740                                   address,
1741                                   *value);
1742         }
1743         else
1744         {
1745                 *value = 0x0;
1746                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1747                                   address);
1748         }
1749
1750         return retval;
1751 }
1752
1753 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1754 {
1755         uint8_t value_buf[2];
1756         if (!target_was_examined(target))
1757         {
1758                 LOG_ERROR("Target not examined yet");
1759                 return ERROR_FAIL;
1760         }
1761
1762         int retval = target_read_memory(target, address, 2, 1, value_buf);
1763
1764         if (retval == ERROR_OK)
1765         {
1766                 *value = target_buffer_get_u16(target, value_buf);
1767                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1768                                   address,
1769                                   *value);
1770         }
1771         else
1772         {
1773                 *value = 0x0;
1774                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1775                                   address);
1776         }
1777
1778         return retval;
1779 }
1780
1781 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1782 {
1783         int retval = target_read_memory(target, address, 1, 1, value);
1784         if (!target_was_examined(target))
1785         {
1786                 LOG_ERROR("Target not examined yet");
1787                 return ERROR_FAIL;
1788         }
1789
1790         if (retval == ERROR_OK)
1791         {
1792                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1793                                   address,
1794                                   *value);
1795         }
1796         else
1797         {
1798                 *value = 0x0;
1799                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1800                                   address);
1801         }
1802
1803         return retval;
1804 }
1805
1806 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1807 {
1808         int retval;
1809         uint8_t value_buf[4];
1810         if (!target_was_examined(target))
1811         {
1812                 LOG_ERROR("Target not examined yet");
1813                 return ERROR_FAIL;
1814         }
1815
1816         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1817                           address,
1818                           value);
1819
1820         target_buffer_set_u32(target, value_buf, value);
1821         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1822         {
1823                 LOG_DEBUG("failed: %i", retval);
1824         }
1825
1826         return retval;
1827 }
1828
1829 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1830 {
1831         int retval;
1832         uint8_t value_buf[2];
1833         if (!target_was_examined(target))
1834         {
1835                 LOG_ERROR("Target not examined yet");
1836                 return ERROR_FAIL;
1837         }
1838
1839         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1840                           address,
1841                           value);
1842
1843         target_buffer_set_u16(target, value_buf, value);
1844         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1845         {
1846                 LOG_DEBUG("failed: %i", retval);
1847         }
1848
1849         return retval;
1850 }
1851
1852 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1853 {
1854         int retval;
1855         if (!target_was_examined(target))
1856         {
1857                 LOG_ERROR("Target not examined yet");
1858                 return ERROR_FAIL;
1859         }
1860
1861         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1862                           address, value);
1863
1864         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1865         {
1866                 LOG_DEBUG("failed: %i", retval);
1867         }
1868
1869         return retval;
1870 }
1871
1872 static int find_target(struct command_context *cmd_ctx, const char *name)
1873 {
1874         struct target *target = get_target(name);
1875         if (target == NULL) {
1876                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
1877                 return ERROR_FAIL;
1878         }
1879         if (!target->tap->enabled) {
1880                 LOG_USER("Target: TAP %s is disabled, "
1881                          "can't be the current target\n",
1882                          target->tap->dotted_name);
1883                 return ERROR_FAIL;
1884         }
1885
1886         cmd_ctx->current_target = target->target_number;
1887         return ERROR_OK;
1888 }
1889
1890
1891 COMMAND_HANDLER(handle_targets_command)
1892 {
1893         int retval = ERROR_OK;
1894         if (CMD_ARGC == 1)
1895         {
1896                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
1897                 if (retval == ERROR_OK) {
1898                         /* we're done! */
1899                         return retval;
1900                 }
1901         }
1902
1903         struct target *target = all_targets;
1904         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1905         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1906         while (target)
1907         {
1908                 const char *state;
1909                 char marker = ' ';
1910
1911                 if (target->tap->enabled)
1912                         state = target_state_name( target );
1913                 else
1914                         state = "tap-disabled";
1915
1916                 if (CMD_CTX->current_target == target->target_number)
1917                         marker = '*';
1918
1919                 /* keep columns lined up to match the headers above */
1920                 command_print(CMD_CTX,
1921                                 "%2d%c %-18s %-10s %-6s %-18s %s",
1922                                 target->target_number,
1923                                 marker,
1924                                 target_name(target),
1925                                 target_type_name(target),
1926                                 Jim_Nvp_value2name_simple(nvp_target_endian,
1927                                         target->endianness)->name,
1928                                 target->tap->dotted_name,
1929                                 state);
1930                 target = target->next;
1931         }
1932
1933         return retval;
1934 }
1935
1936 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1937
1938 static int powerDropout;
1939 static int srstAsserted;
1940
1941 static int runPowerRestore;
1942 static int runPowerDropout;
1943 static int runSrstAsserted;
1944 static int runSrstDeasserted;
1945
1946 static int sense_handler(void)
1947 {
1948         static int prevSrstAsserted = 0;
1949         static int prevPowerdropout = 0;
1950
1951         int retval;
1952         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1953                 return retval;
1954
1955         int powerRestored;
1956         powerRestored = prevPowerdropout && !powerDropout;
1957         if (powerRestored)
1958         {
1959                 runPowerRestore = 1;
1960         }
1961
1962         long long current = timeval_ms();
1963         static long long lastPower = 0;
1964         int waitMore = lastPower + 2000 > current;
1965         if (powerDropout && !waitMore)
1966         {
1967                 runPowerDropout = 1;
1968                 lastPower = current;
1969         }
1970
1971         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1972                 return retval;
1973
1974         int srstDeasserted;
1975         srstDeasserted = prevSrstAsserted && !srstAsserted;
1976
1977         static long long lastSrst = 0;
1978         waitMore = lastSrst + 2000 > current;
1979         if (srstDeasserted && !waitMore)
1980         {
1981                 runSrstDeasserted = 1;
1982                 lastSrst = current;
1983         }
1984
1985         if (!prevSrstAsserted && srstAsserted)
1986         {
1987                 runSrstAsserted = 1;
1988         }
1989
1990         prevSrstAsserted = srstAsserted;
1991         prevPowerdropout = powerDropout;
1992
1993         if (srstDeasserted || powerRestored)
1994         {
1995                 /* Other than logging the event we can't do anything here.
1996                  * Issuing a reset is a particularly bad idea as we might
1997                  * be inside a reset already.
1998                  */
1999         }
2000
2001         return ERROR_OK;
2002 }
2003
2004 static int backoff_times = 0;
2005 static int backoff_count = 0;
2006
2007 /* process target state changes */
2008 static int handle_target(void *priv)
2009 {
2010         Jim_Interp *interp = (Jim_Interp *)priv;
2011         int retval = ERROR_OK;
2012
2013         if (!is_jtag_poll_safe())
2014         {
2015                 /* polling is disabled currently */
2016                 return ERROR_OK;
2017         }
2018
2019         /* we do not want to recurse here... */
2020         static int recursive = 0;
2021         if (! recursive)
2022         {
2023                 recursive = 1;
2024                 sense_handler();
2025                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2026                  * We need to avoid an infinite loop/recursion here and we do that by
2027                  * clearing the flags after running these events.
2028                  */
2029                 int did_something = 0;
2030                 if (runSrstAsserted)
2031                 {
2032                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2033                         Jim_Eval(interp, "srst_asserted");
2034                         did_something = 1;
2035                 }
2036                 if (runSrstDeasserted)
2037                 {
2038                         Jim_Eval(interp, "srst_deasserted");
2039                         did_something = 1;
2040                 }
2041                 if (runPowerDropout)
2042                 {
2043                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2044                         Jim_Eval(interp, "power_dropout");
2045                         did_something = 1;
2046                 }
2047                 if (runPowerRestore)
2048                 {
2049                         Jim_Eval(interp, "power_restore");
2050                         did_something = 1;
2051                 }
2052
2053                 if (did_something)
2054                 {
2055                         /* clear detect flags */
2056                         sense_handler();
2057                 }
2058
2059                 /* clear action flags */
2060
2061                 runSrstAsserted = 0;
2062                 runSrstDeasserted = 0;
2063                 runPowerRestore = 0;
2064                 runPowerDropout = 0;
2065
2066                 recursive = 0;
2067         }
2068
2069         if (backoff_times > backoff_count)
2070         {
2071                 /* do not poll this time as we failed previously */
2072                 backoff_count++;
2073                 return ERROR_OK;
2074         }
2075         backoff_count = 0;
2076
2077         /* Poll targets for state changes unless that's globally disabled.
2078          * Skip targets that are currently disabled.
2079          */
2080         for (struct target *target = all_targets;
2081                         is_jtag_poll_safe() && target;
2082                         target = target->next)
2083         {
2084                 if (!target->tap->enabled)
2085                         continue;
2086
2087                 /* only poll target if we've got power and srst isn't asserted */
2088                 if (!powerDropout && !srstAsserted)
2089                 {
2090                         /* polling may fail silently until the target has been examined */
2091                         if ((retval = target_poll(target)) != ERROR_OK)
2092                         {
2093                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2094                                 if (backoff_times * polling_interval < 5000)
2095                                 {
2096                                         backoff_times *= 2;
2097                                         backoff_times++;
2098                                 }
2099                                 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);
2100
2101                                 /* Tell GDB to halt the debugger. This allows the user to
2102                                  * run monitor commands to handle the situation.
2103                                  */
2104                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2105                                 return retval;
2106                         }
2107                         /* Since we succeeded, we reset backoff count */
2108                         if (backoff_times > 0)
2109                         {
2110                                 LOG_USER("Polling succeeded again");
2111                         }
2112                         backoff_times = 0;
2113                 }
2114         }
2115
2116         return retval;
2117 }
2118
2119 COMMAND_HANDLER(handle_reg_command)
2120 {
2121         struct target *target;
2122         struct reg *reg = NULL;
2123         unsigned count = 0;
2124         char *value;
2125
2126         LOG_DEBUG("-");
2127
2128         target = get_current_target(CMD_CTX);
2129
2130         /* list all available registers for the current target */
2131         if (CMD_ARGC == 0)
2132         {
2133                 struct reg_cache *cache = target->reg_cache;
2134
2135                 count = 0;
2136                 while (cache)
2137                 {
2138                         unsigned i;
2139
2140                         command_print(CMD_CTX, "===== %s", cache->name);
2141
2142                         for (i = 0, reg = cache->reg_list;
2143                                         i < cache->num_regs;
2144                                         i++, reg++, count++)
2145                         {
2146                                 /* only print cached values if they are valid */
2147                                 if (reg->valid) {
2148                                         value = buf_to_str(reg->value,
2149                                                         reg->size, 16);
2150                                         command_print(CMD_CTX,
2151                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2152                                                         count, reg->name,
2153                                                         reg->size, value,
2154                                                         reg->dirty
2155                                                                 ? " (dirty)"
2156                                                                 : "");
2157                                         free(value);
2158                                 } else {
2159                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2160                                                           count, reg->name,
2161                                                           reg->size) ;
2162                                 }
2163                         }
2164                         cache = cache->next;
2165                 }
2166
2167                 return ERROR_OK;
2168         }
2169
2170         /* access a single register by its ordinal number */
2171         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
2172         {
2173                 unsigned num;
2174                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2175
2176                 struct reg_cache *cache = target->reg_cache;
2177                 count = 0;
2178                 while (cache)
2179                 {
2180                         unsigned i;
2181                         for (i = 0; i < cache->num_regs; i++)
2182                         {
2183                                 if (count++ == num)
2184                                 {
2185                                         reg = &cache->reg_list[i];
2186                                         break;
2187                                 }
2188                         }
2189                         if (reg)
2190                                 break;
2191                         cache = cache->next;
2192                 }
2193
2194                 if (!reg)
2195                 {
2196                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
2197                         return ERROR_OK;
2198                 }
2199         } else /* access a single register by its name */
2200         {
2201                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2202
2203                 if (!reg)
2204                 {
2205                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2206                         return ERROR_OK;
2207                 }
2208         }
2209
2210         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2211
2212         /* display a register */
2213         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2214         {
2215                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2216                         reg->valid = 0;
2217
2218                 if (reg->valid == 0)
2219                 {
2220                         reg->type->get(reg);
2221                 }
2222                 value = buf_to_str(reg->value, reg->size, 16);
2223                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2224                 free(value);
2225                 return ERROR_OK;
2226         }
2227
2228         /* set register value */
2229         if (CMD_ARGC == 2)
2230         {
2231                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2232                 if (buf == NULL)
2233                         return ERROR_FAIL;
2234                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2235
2236                 reg->type->set(reg, buf);
2237
2238                 value = buf_to_str(reg->value, reg->size, 16);
2239                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2240                 free(value);
2241
2242                 free(buf);
2243
2244                 return ERROR_OK;
2245         }
2246
2247         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2248
2249         return ERROR_OK;
2250 }
2251
2252 COMMAND_HANDLER(handle_poll_command)
2253 {
2254         int retval = ERROR_OK;
2255         struct target *target = get_current_target(CMD_CTX);
2256
2257         if (CMD_ARGC == 0)
2258         {
2259                 command_print(CMD_CTX, "background polling: %s",
2260                                 jtag_poll_get_enabled() ? "on" : "off");
2261                 command_print(CMD_CTX, "TAP: %s (%s)",
2262                                 target->tap->dotted_name,
2263                                 target->tap->enabled ? "enabled" : "disabled");
2264                 if (!target->tap->enabled)
2265                         return ERROR_OK;
2266                 if ((retval = target_poll(target)) != ERROR_OK)
2267                         return retval;
2268                 if ((retval = target_arch_state(target)) != ERROR_OK)
2269                         return retval;
2270         }
2271         else if (CMD_ARGC == 1)
2272         {
2273                 bool enable;
2274                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2275                 jtag_poll_set_enabled(enable);
2276         }
2277         else
2278         {
2279                 return ERROR_COMMAND_SYNTAX_ERROR;
2280         }
2281
2282         return retval;
2283 }
2284
2285 COMMAND_HANDLER(handle_wait_halt_command)
2286 {
2287         if (CMD_ARGC > 1)
2288                 return ERROR_COMMAND_SYNTAX_ERROR;
2289
2290         unsigned ms = 5000;
2291         if (1 == CMD_ARGC)
2292         {
2293                 int retval = parse_uint(CMD_ARGV[0], &ms);
2294                 if (ERROR_OK != retval)
2295                 {
2296                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2297                         return ERROR_COMMAND_SYNTAX_ERROR;
2298                 }
2299                 // convert seconds (given) to milliseconds (needed)
2300                 ms *= 1000;
2301         }
2302
2303         struct target *target = get_current_target(CMD_CTX);
2304         return target_wait_state(target, TARGET_HALTED, ms);
2305 }
2306
2307 /* wait for target state to change. The trick here is to have a low
2308  * latency for short waits and not to suck up all the CPU time
2309  * on longer waits.
2310  *
2311  * After 500ms, keep_alive() is invoked
2312  */
2313 int target_wait_state(struct target *target, enum target_state state, int ms)
2314 {
2315         int retval;
2316         long long then = 0, cur;
2317         int once = 1;
2318
2319         for (;;)
2320         {
2321                 if ((retval = target_poll(target)) != ERROR_OK)
2322                         return retval;
2323                 if (target->state == state)
2324                 {
2325                         break;
2326                 }
2327                 cur = timeval_ms();
2328                 if (once)
2329                 {
2330                         once = 0;
2331                         then = timeval_ms();
2332                         LOG_DEBUG("waiting for target %s...",
2333                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2334                 }
2335
2336                 if (cur-then > 500)
2337                 {
2338                         keep_alive();
2339                 }
2340
2341                 if ((cur-then) > ms)
2342                 {
2343                         LOG_ERROR("timed out while waiting for target %s",
2344                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2345                         return ERROR_FAIL;
2346                 }
2347         }
2348
2349         return ERROR_OK;
2350 }
2351
2352 COMMAND_HANDLER(handle_halt_command)
2353 {
2354         LOG_DEBUG("-");
2355
2356         struct target *target = get_current_target(CMD_CTX);
2357         int retval = target_halt(target);
2358         if (ERROR_OK != retval)
2359                 return retval;
2360
2361         if (CMD_ARGC == 1)
2362         {
2363                 unsigned wait_local;
2364                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2365                 if (ERROR_OK != retval)
2366                         return ERROR_COMMAND_SYNTAX_ERROR;
2367                 if (!wait_local)
2368                         return ERROR_OK;
2369         }
2370
2371         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2372 }
2373
2374 COMMAND_HANDLER(handle_soft_reset_halt_command)
2375 {
2376         struct target *target = get_current_target(CMD_CTX);
2377
2378         LOG_USER("requesting target halt and executing a soft reset");
2379
2380         target->type->soft_reset_halt(target);
2381
2382         return ERROR_OK;
2383 }
2384
2385 COMMAND_HANDLER(handle_reset_command)
2386 {
2387         if (CMD_ARGC > 1)
2388                 return ERROR_COMMAND_SYNTAX_ERROR;
2389
2390         enum target_reset_mode reset_mode = RESET_RUN;
2391         if (CMD_ARGC == 1)
2392         {
2393                 const Jim_Nvp *n;
2394                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2395                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2396                         return ERROR_COMMAND_SYNTAX_ERROR;
2397                 }
2398                 reset_mode = n->value;
2399         }
2400
2401         /* reset *all* targets */
2402         return target_process_reset(CMD_CTX, reset_mode);
2403 }
2404
2405
2406 COMMAND_HANDLER(handle_resume_command)
2407 {
2408         int current = 1;
2409         if (CMD_ARGC > 1)
2410                 return ERROR_COMMAND_SYNTAX_ERROR;
2411
2412         struct target *target = get_current_target(CMD_CTX);
2413         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2414
2415         /* with no CMD_ARGV, resume from current pc, addr = 0,
2416          * with one arguments, addr = CMD_ARGV[0],
2417          * handle breakpoints, not debugging */
2418         uint32_t addr = 0;
2419         if (CMD_ARGC == 1)
2420         {
2421                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2422                 current = 0;
2423         }
2424
2425         return target_resume(target, current, addr, 1, 0);
2426 }
2427
2428 COMMAND_HANDLER(handle_step_command)
2429 {
2430         if (CMD_ARGC > 1)
2431                 return ERROR_COMMAND_SYNTAX_ERROR;
2432
2433         LOG_DEBUG("-");
2434
2435         /* with no CMD_ARGV, step from current pc, addr = 0,
2436          * with one argument addr = CMD_ARGV[0],
2437          * handle breakpoints, debugging */
2438         uint32_t addr = 0;
2439         int current_pc = 1;
2440         if (CMD_ARGC == 1)
2441         {
2442                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2443                 current_pc = 0;
2444         }
2445
2446         struct target *target = get_current_target(CMD_CTX);
2447
2448         return target->type->step(target, current_pc, addr, 1);
2449 }
2450
2451 static void handle_md_output(struct command_context *cmd_ctx,
2452                 struct target *target, uint32_t address, unsigned size,
2453                 unsigned count, const uint8_t *buffer)
2454 {
2455         const unsigned line_bytecnt = 32;
2456         unsigned line_modulo = line_bytecnt / size;
2457
2458         char output[line_bytecnt * 4 + 1];
2459         unsigned output_len = 0;
2460
2461         const char *value_fmt;
2462         switch (size) {
2463         case 4: value_fmt = "%8.8x "; break;
2464         case 2: value_fmt = "%4.4x "; break;
2465         case 1: value_fmt = "%2.2x "; break;
2466         default:
2467                 /* "can't happen", caller checked */
2468                 LOG_ERROR("invalid memory read size: %u", size);
2469                 return;
2470         }
2471
2472         for (unsigned i = 0; i < count; i++)
2473         {
2474                 if (i % line_modulo == 0)
2475                 {
2476                         output_len += snprintf(output + output_len,
2477                                         sizeof(output) - output_len,
2478                                         "0x%8.8x: ",
2479                                         (unsigned)(address + (i*size)));
2480                 }
2481
2482                 uint32_t value = 0;
2483                 const uint8_t *value_ptr = buffer + i * size;
2484                 switch (size) {
2485                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2486                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2487                 case 1: value = *value_ptr;
2488                 }
2489                 output_len += snprintf(output + output_len,
2490                                 sizeof(output) - output_len,
2491                                 value_fmt, value);
2492
2493                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2494                 {
2495                         command_print(cmd_ctx, "%s", output);
2496                         output_len = 0;
2497                 }
2498         }
2499 }
2500
2501 COMMAND_HANDLER(handle_md_command)
2502 {
2503         if (CMD_ARGC < 1)
2504                 return ERROR_COMMAND_SYNTAX_ERROR;
2505
2506         unsigned size = 0;
2507         switch (CMD_NAME[2]) {
2508         case 'w': size = 4; break;
2509         case 'h': size = 2; break;
2510         case 'b': size = 1; break;
2511         default: return ERROR_COMMAND_SYNTAX_ERROR;
2512         }
2513
2514         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2515         int (*fn)(struct target *target,
2516                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2517         if (physical)
2518         {
2519                 CMD_ARGC--;
2520                 CMD_ARGV++;
2521                 fn=target_read_phys_memory;
2522         } else
2523         {
2524                 fn=target_read_memory;
2525         }
2526         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2527         {
2528                 return ERROR_COMMAND_SYNTAX_ERROR;
2529         }
2530
2531         uint32_t address;
2532         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2533
2534         unsigned count = 1;
2535         if (CMD_ARGC == 2)
2536                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2537
2538         uint8_t *buffer = calloc(count, size);
2539
2540         struct target *target = get_current_target(CMD_CTX);
2541         int retval = fn(target, address, size, count, buffer);
2542         if (ERROR_OK == retval)
2543                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2544
2545         free(buffer);
2546
2547         return retval;
2548 }
2549
2550 typedef int (*target_write_fn)(struct target *target,
2551                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2552
2553 static int target_write_memory_fast(struct target *target,
2554                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2555 {
2556         return target_write_buffer(target, address, size * count, buffer);
2557 }
2558
2559 static int target_fill_mem(struct target *target,
2560                 uint32_t address,
2561                 target_write_fn fn,
2562                 unsigned data_size,
2563                 /* value */
2564                 uint32_t b,
2565                 /* count */
2566                 unsigned c)
2567 {
2568         /* We have to write in reasonably large chunks to be able
2569          * to fill large memory areas with any sane speed */
2570         const unsigned chunk_size = 16384;
2571         uint8_t *target_buf = malloc(chunk_size * data_size);
2572         if (target_buf == NULL)
2573         {
2574                 LOG_ERROR("Out of memory");
2575                 return ERROR_FAIL;
2576         }
2577
2578         for (unsigned i = 0; i < chunk_size; i ++)
2579         {
2580                 switch (data_size)
2581                 {
2582                 case 4:
2583                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2584                         break;
2585                 case 2:
2586                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2587                         break;
2588                 case 1:
2589                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2590                         break;
2591                 default:
2592                         exit(-1);
2593                 }
2594         }
2595
2596         int retval = ERROR_OK;
2597
2598         for (unsigned x = 0; x < c; x += chunk_size)
2599         {
2600                 unsigned current;
2601                 current = c - x;
2602                 if (current > chunk_size)
2603                 {
2604                         current = chunk_size;
2605                 }
2606                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2607                 if (retval != ERROR_OK)
2608                 {
2609                         break;
2610                 }
2611                 /* avoid GDB timeouts */
2612                 keep_alive();
2613         }
2614         free(target_buf);
2615
2616         return retval;
2617 }
2618
2619
2620 COMMAND_HANDLER(handle_mw_command)
2621 {
2622         if (CMD_ARGC < 2)
2623         {
2624                 return ERROR_COMMAND_SYNTAX_ERROR;
2625         }
2626         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2627         target_write_fn fn;
2628         if (physical)
2629         {
2630                 CMD_ARGC--;
2631                 CMD_ARGV++;
2632                 fn=target_write_phys_memory;
2633         } else
2634         {
2635                 fn = target_write_memory_fast;
2636         }
2637         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2638                 return ERROR_COMMAND_SYNTAX_ERROR;
2639
2640         uint32_t address;
2641         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2642
2643         uint32_t value;
2644         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2645
2646         unsigned count = 1;
2647         if (CMD_ARGC == 3)
2648                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2649
2650         struct target *target = get_current_target(CMD_CTX);
2651         unsigned wordsize;
2652         switch (CMD_NAME[2])
2653         {
2654                 case 'w':
2655                         wordsize = 4;
2656                         break;
2657                 case 'h':
2658                         wordsize = 2;
2659                         break;
2660                 case 'b':
2661                         wordsize = 1;
2662                         break;
2663                 default:
2664                         return ERROR_COMMAND_SYNTAX_ERROR;
2665         }
2666
2667         return target_fill_mem(target, address, fn, wordsize, value, count);
2668 }
2669
2670 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2671                 uint32_t *min_address, uint32_t *max_address)
2672 {
2673         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2674                 return ERROR_COMMAND_SYNTAX_ERROR;
2675
2676         /* a base address isn't always necessary,
2677          * default to 0x0 (i.e. don't relocate) */
2678         if (CMD_ARGC >= 2)
2679         {
2680                 uint32_t addr;
2681                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2682                 image->base_address = addr;
2683                 image->base_address_set = 1;
2684         }
2685         else
2686                 image->base_address_set = 0;
2687
2688         image->start_address_set = 0;
2689
2690         if (CMD_ARGC >= 4)
2691         {
2692                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2693         }
2694         if (CMD_ARGC == 5)
2695         {
2696                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2697                 // use size (given) to find max (required)
2698                 *max_address += *min_address;
2699         }
2700
2701         if (*min_address > *max_address)
2702                 return ERROR_COMMAND_SYNTAX_ERROR;
2703
2704         return ERROR_OK;
2705 }
2706
2707 COMMAND_HANDLER(handle_load_image_command)
2708 {
2709         uint8_t *buffer;
2710         size_t buf_cnt;
2711         uint32_t image_size;
2712         uint32_t min_address = 0;
2713         uint32_t max_address = 0xffffffff;
2714         int i;
2715         struct image image;
2716
2717         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2718                         &image, &min_address, &max_address);
2719         if (ERROR_OK != retval)
2720                 return retval;
2721
2722         struct target *target = get_current_target(CMD_CTX);
2723
2724         struct duration bench;
2725         duration_start(&bench);
2726
2727         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2728         {
2729                 return ERROR_OK;
2730         }
2731
2732         image_size = 0x0;
2733         retval = ERROR_OK;
2734         for (i = 0; i < image.num_sections; i++)
2735         {
2736                 buffer = malloc(image.sections[i].size);
2737                 if (buffer == NULL)
2738                 {
2739                         command_print(CMD_CTX,
2740                                                   "error allocating buffer for section (%d bytes)",
2741                                                   (int)(image.sections[i].size));
2742                         break;
2743                 }
2744
2745                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2746                 {
2747                         free(buffer);
2748                         break;
2749                 }
2750
2751                 uint32_t offset = 0;
2752                 uint32_t length = buf_cnt;
2753
2754                 /* DANGER!!! beware of unsigned comparision here!!! */
2755
2756                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2757                                 (image.sections[i].base_address < max_address))
2758                 {
2759                         if (image.sections[i].base_address < min_address)
2760                         {
2761                                 /* clip addresses below */
2762                                 offset += min_address-image.sections[i].base_address;
2763                                 length -= offset;
2764                         }
2765
2766                         if (image.sections[i].base_address + buf_cnt > max_address)
2767                         {
2768                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2769                         }
2770
2771                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2772                         {
2773                                 free(buffer);
2774                                 break;
2775                         }
2776                         image_size += length;
2777                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2778                                                   (unsigned int)length,
2779                                                   image.sections[i].base_address + offset);
2780                 }
2781
2782                 free(buffer);
2783         }
2784
2785         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2786         {
2787                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2788                                 "in %fs (%0.3f KiB/s)", image_size,
2789                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2790         }
2791
2792         image_close(&image);
2793
2794         return retval;
2795
2796 }
2797
2798 COMMAND_HANDLER(handle_dump_image_command)
2799 {
2800         struct fileio fileio;
2801         uint8_t buffer[560];
2802         int retval, retvaltemp;
2803         uint32_t address, size;
2804         struct duration bench;
2805         struct target *target = get_current_target(CMD_CTX);
2806
2807         if (CMD_ARGC != 3)
2808                 return ERROR_COMMAND_SYNTAX_ERROR;
2809
2810         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2811         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2812
2813         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2814         if (retval != ERROR_OK)
2815                 return retval;
2816
2817         duration_start(&bench);
2818
2819         retval = ERROR_OK;
2820         while (size > 0)
2821         {
2822                 size_t size_written;
2823                 uint32_t this_run_size = (size > 560) ? 560 : size;
2824                 retval = target_read_buffer(target, address, this_run_size, buffer);
2825                 if (retval != ERROR_OK)
2826                 {
2827                         break;
2828                 }
2829
2830                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2831                 if (retval != ERROR_OK)
2832                 {
2833                         break;
2834                 }
2835
2836                 size -= this_run_size;
2837                 address += this_run_size;
2838         }
2839
2840         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2841         {
2842                 int filesize;
2843                 retval = fileio_size(&fileio, &filesize);
2844                 if (retval != ERROR_OK)
2845                         return retval;
2846                 command_print(CMD_CTX,
2847                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2848                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2849         }
2850
2851         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2852                 return retvaltemp;
2853
2854         return retval;
2855 }
2856
2857 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2858 {
2859         uint8_t *buffer;
2860         size_t buf_cnt;
2861         uint32_t image_size;
2862         int i;
2863         int retval;
2864         uint32_t checksum = 0;
2865         uint32_t mem_checksum = 0;
2866
2867         struct image image;
2868
2869         struct target *target = get_current_target(CMD_CTX);
2870
2871         if (CMD_ARGC < 1)
2872         {
2873                 return ERROR_COMMAND_SYNTAX_ERROR;
2874         }
2875
2876         if (!target)
2877         {
2878                 LOG_ERROR("no target selected");
2879                 return ERROR_FAIL;
2880         }
2881
2882         struct duration bench;
2883         duration_start(&bench);
2884
2885         if (CMD_ARGC >= 2)
2886         {
2887                 uint32_t addr;
2888                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2889                 image.base_address = addr;
2890                 image.base_address_set = 1;
2891         }
2892         else
2893         {
2894                 image.base_address_set = 0;
2895                 image.base_address = 0x0;
2896         }
2897
2898         image.start_address_set = 0;
2899
2900         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2901         {
2902                 return retval;
2903         }
2904
2905         image_size = 0x0;
2906         int diffs = 0;
2907         retval = ERROR_OK;
2908         for (i = 0; i < image.num_sections; i++)
2909         {
2910                 buffer = malloc(image.sections[i].size);
2911                 if (buffer == NULL)
2912                 {
2913                         command_print(CMD_CTX,
2914                                                   "error allocating buffer for section (%d bytes)",
2915                                                   (int)(image.sections[i].size));
2916                         break;
2917                 }
2918                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2919                 {
2920                         free(buffer);
2921                         break;
2922                 }
2923
2924                 if (verify)
2925                 {
2926                         /* calculate checksum of image */
2927                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2928                         if (retval != ERROR_OK)
2929                         {
2930                                 free(buffer);
2931                                 break;
2932                         }
2933
2934                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2935                         if (retval != ERROR_OK)
2936                         {
2937                                 free(buffer);
2938                                 break;
2939                         }
2940
2941                         if (checksum != mem_checksum)
2942                         {
2943                                 /* failed crc checksum, fall back to a binary compare */
2944                                 uint8_t *data;
2945
2946                                 if (diffs == 0)
2947                                 {
2948                                         LOG_ERROR("checksum mismatch - attempting binary compare");
2949                                 }
2950
2951                                 data = (uint8_t*)malloc(buf_cnt);
2952
2953                                 /* Can we use 32bit word accesses? */
2954                                 int size = 1;
2955                                 int count = buf_cnt;
2956                                 if ((count % 4) == 0)
2957                                 {
2958                                         size *= 4;
2959                                         count /= 4;
2960                                 }
2961                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2962                                 if (retval == ERROR_OK)
2963                                 {
2964                                         uint32_t t;
2965                                         for (t = 0; t < buf_cnt; t++)
2966                                         {
2967                                                 if (data[t] != buffer[t])
2968                                                 {
2969                                                         command_print(CMD_CTX,
2970                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2971                                                                                   diffs,
2972                                                                                   (unsigned)(t + image.sections[i].base_address),
2973                                                                                   data[t],
2974                                                                                   buffer[t]);
2975                                                         if (diffs++ >= 127)
2976                                                         {
2977                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2978                                                                 free(data);
2979                                                                 free(buffer);
2980                                                                 goto done;
2981                                                         }
2982                                                 }
2983                                                 keep_alive();
2984                                         }
2985                                 }
2986                                 free(data);
2987                         }
2988                 } else
2989                 {
2990                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2991                                                   image.sections[i].base_address,
2992                                                   buf_cnt);
2993                 }
2994
2995                 free(buffer);
2996                 image_size += buf_cnt;
2997         }
2998         if (diffs > 0)
2999         {
3000                 command_print(CMD_CTX, "No more differences found.");
3001         }
3002 done:
3003         if (diffs > 0)
3004         {
3005                 retval = ERROR_FAIL;
3006         }
3007         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
3008         {
3009                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3010                                 "in %fs (%0.3f KiB/s)", image_size,
3011                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3012         }
3013
3014         image_close(&image);
3015
3016         return retval;
3017 }
3018
3019 COMMAND_HANDLER(handle_verify_image_command)
3020 {
3021         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3022 }
3023
3024 COMMAND_HANDLER(handle_test_image_command)
3025 {
3026         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3027 }
3028
3029 static int handle_bp_command_list(struct command_context *cmd_ctx)
3030 {
3031         struct target *target = get_current_target(cmd_ctx);
3032         struct breakpoint *breakpoint = target->breakpoints;
3033         while (breakpoint)
3034         {
3035                 if (breakpoint->type == BKPT_SOFT)
3036                 {
3037                         char* buf = buf_to_str(breakpoint->orig_instr,
3038                                         breakpoint->length, 16);
3039                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3040                                         breakpoint->address,
3041                                         breakpoint->length,
3042                                         breakpoint->set, buf);
3043                         free(buf);
3044                 }
3045                 else
3046                 {
3047                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3048                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3049                                                         breakpoint->asid,
3050                                                         breakpoint->length, breakpoint->set);
3051                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0))
3052                         {
3053                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3054                                                         breakpoint->address,
3055                                                         breakpoint->length, breakpoint->set);
3056                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3057                                                         breakpoint->asid);
3058                         }
3059                         else
3060                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3061                                                         breakpoint->address,
3062                                                         breakpoint->length, breakpoint->set);
3063                 }
3064
3065                 breakpoint = breakpoint->next;
3066         }
3067         return ERROR_OK;
3068 }
3069
3070 static int handle_bp_command_set(struct command_context *cmd_ctx,
3071                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3072 {
3073         struct target *target = get_current_target(cmd_ctx);
3074
3075         if (asid == 0)
3076         {
3077                 int retval = breakpoint_add(target, addr, length, hw);
3078                 if (ERROR_OK == retval)
3079                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3080                 else
3081                 {
3082                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3083                         return retval;
3084                 }
3085         }
3086         else if (addr == 0)
3087         {
3088                 int retval = context_breakpoint_add(target, asid, length, hw);
3089                 if (ERROR_OK == retval)
3090                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3091                 else
3092                 {
3093                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3094                         return retval;
3095                 }
3096         }
3097         else
3098         {
3099                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3100                 if(ERROR_OK == retval)
3101                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3102                 else
3103                 {
3104                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3105                         return retval;
3106                 }
3107         }
3108         return ERROR_OK;
3109 }
3110
3111 COMMAND_HANDLER(handle_bp_command)
3112 {
3113         uint32_t addr;
3114         uint32_t asid;
3115         uint32_t length;
3116         int hw = BKPT_SOFT;
3117         switch(CMD_ARGC)
3118         {
3119                 case 0:
3120                         return handle_bp_command_list(CMD_CTX);
3121
3122                 case 2:
3123                         asid = 0;
3124                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3125                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3126                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3127
3128                 case 3:
3129                         if(strcmp(CMD_ARGV[2], "hw") == 0)
3130                         {
3131                                 hw = BKPT_HARD;
3132                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3133
3134                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3135
3136                                 asid = 0;
3137                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3138                         }
3139                         else if(strcmp(CMD_ARGV[2], "hw_ctx") == 0)
3140                         {
3141                                 hw = BKPT_HARD;
3142                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3143                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3144                                 addr = 0;
3145                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3146                         }
3147
3148                 case 4:
3149                         hw = BKPT_HARD;
3150                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3151                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3152                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3153                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3154
3155                 default:
3156                         command_print(CMD_CTX, "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']");
3157                         return ERROR_COMMAND_SYNTAX_ERROR;
3158         }
3159 }
3160
3161 COMMAND_HANDLER(handle_rbp_command)
3162 {
3163         if (CMD_ARGC != 1)
3164                 return ERROR_COMMAND_SYNTAX_ERROR;
3165
3166         uint32_t addr;
3167         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3168
3169         struct target *target = get_current_target(CMD_CTX);
3170         breakpoint_remove(target, addr);
3171
3172         return ERROR_OK;
3173 }
3174
3175 COMMAND_HANDLER(handle_wp_command)
3176 {
3177         struct target *target = get_current_target(CMD_CTX);
3178
3179         if (CMD_ARGC == 0)
3180         {
3181                 struct watchpoint *watchpoint = target->watchpoints;
3182
3183                 while (watchpoint)
3184                 {
3185                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3186                                         ", len: 0x%8.8" PRIx32
3187                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3188                                         ", mask: 0x%8.8" PRIx32,
3189                                         watchpoint->address,
3190                                         watchpoint->length,
3191                                         (int)watchpoint->rw,
3192                                         watchpoint->value,
3193                                         watchpoint->mask);
3194                         watchpoint = watchpoint->next;
3195                 }
3196                 return ERROR_OK;
3197         }
3198
3199         enum watchpoint_rw type = WPT_ACCESS;
3200         uint32_t addr = 0;
3201         uint32_t length = 0;
3202         uint32_t data_value = 0x0;
3203         uint32_t data_mask = 0xffffffff;
3204
3205         switch (CMD_ARGC)
3206         {
3207         case 5:
3208                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3209                 // fall through
3210         case 4:
3211                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3212                 // fall through
3213         case 3:
3214                 switch (CMD_ARGV[2][0])
3215                 {
3216                 case 'r':
3217                         type = WPT_READ;
3218                         break;
3219                 case 'w':
3220                         type = WPT_WRITE;
3221                         break;
3222                 case 'a':
3223                         type = WPT_ACCESS;
3224                         break;
3225                 default:
3226                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3227                         return ERROR_COMMAND_SYNTAX_ERROR;
3228                 }
3229                 // fall through
3230         case 2:
3231                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3232                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3233                 break;
3234
3235         default:
3236                 command_print(CMD_CTX, "usage: wp [address length "
3237                                 "[(r|w|a) [value [mask]]]]");
3238                 return ERROR_COMMAND_SYNTAX_ERROR;
3239         }
3240
3241         int retval = watchpoint_add(target, addr, length, type,
3242                         data_value, data_mask);
3243         if (ERROR_OK != retval)
3244                 LOG_ERROR("Failure setting watchpoints");
3245
3246         return retval;
3247 }
3248
3249 COMMAND_HANDLER(handle_rwp_command)
3250 {
3251         if (CMD_ARGC != 1)
3252                 return ERROR_COMMAND_SYNTAX_ERROR;
3253
3254         uint32_t addr;
3255         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3256
3257         struct target *target = get_current_target(CMD_CTX);
3258         watchpoint_remove(target, addr);
3259
3260         return ERROR_OK;
3261 }
3262
3263
3264 /**
3265  * Translate a virtual address to a physical address.
3266  *
3267  * The low-level target implementation must have logged a detailed error
3268  * which is forwarded to telnet/GDB session.
3269  */
3270 COMMAND_HANDLER(handle_virt2phys_command)
3271 {
3272         if (CMD_ARGC != 1)
3273                 return ERROR_COMMAND_SYNTAX_ERROR;
3274
3275         uint32_t va;
3276         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3277         uint32_t pa;
3278
3279         struct target *target = get_current_target(CMD_CTX);
3280         int retval = target->type->virt2phys(target, va, &pa);
3281         if (retval == ERROR_OK)
3282                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3283
3284         return retval;
3285 }
3286
3287 static void writeData(FILE *f, const void *data, size_t len)
3288 {
3289         size_t written = fwrite(data, 1, len, f);
3290         if (written != len)
3291                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3292 }
3293
3294 static void writeLong(FILE *f, int l)
3295 {
3296         int i;
3297         for (i = 0; i < 4; i++)
3298         {
3299                 char c = (l >> (i*8))&0xff;
3300                 writeData(f, &c, 1);
3301         }
3302
3303 }
3304
3305 static void writeString(FILE *f, char *s)
3306 {
3307         writeData(f, s, strlen(s));
3308 }
3309
3310 /* Dump a gmon.out histogram file. */
3311 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3312 {
3313         uint32_t i;
3314         FILE *f = fopen(filename, "w");
3315         if (f == NULL)
3316                 return;
3317         writeString(f, "gmon");
3318         writeLong(f, 0x00000001); /* Version */
3319         writeLong(f, 0); /* padding */
3320         writeLong(f, 0); /* padding */
3321         writeLong(f, 0); /* padding */
3322
3323         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3324         writeData(f, &zero, 1);
3325
3326         /* figure out bucket size */
3327         uint32_t min = samples[0];
3328         uint32_t max = samples[0];
3329         for (i = 0; i < sampleNum; i++)
3330         {
3331                 if (min > samples[i])
3332                 {
3333                         min = samples[i];
3334                 }
3335                 if (max < samples[i])
3336                 {
3337                         max = samples[i];
3338                 }
3339         }
3340
3341         int addressSpace = (max - min + 1);
3342         assert(addressSpace >= 2);
3343
3344         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3345         uint32_t length = addressSpace;
3346         if (length > maxBuckets)
3347         {
3348                 length = maxBuckets;
3349         }
3350         int *buckets = malloc(sizeof(int)*length);
3351         if (buckets == NULL)
3352         {
3353                 fclose(f);
3354                 return;
3355         }
3356         memset(buckets, 0, sizeof(int)*length);
3357         for (i = 0; i < sampleNum;i++)
3358         {
3359                 uint32_t address = samples[i];
3360                 long long a = address-min;
3361                 long long b = length-1;
3362                 long long c = addressSpace-1;
3363                 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3364                 buckets[index_t]++;
3365         }
3366
3367         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3368         writeLong(f, min);                      /* low_pc */
3369         writeLong(f, max);                      /* high_pc */
3370         writeLong(f, length);           /* # of samples */
3371         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3372         writeString(f, "seconds");
3373         for (i = 0; i < (15-strlen("seconds")); i++)
3374                 writeData(f, &zero, 1);
3375         writeString(f, "s");
3376
3377         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3378
3379         char *data = malloc(2*length);
3380         if (data != NULL)
3381         {
3382                 for (i = 0; i < length;i++)
3383                 {
3384                         int val;
3385                         val = buckets[i];
3386                         if (val > 65535)
3387                         {
3388                                 val = 65535;
3389                         }
3390                         data[i*2]=val&0xff;
3391                         data[i*2 + 1]=(val >> 8)&0xff;
3392                 }
3393                 free(buckets);
3394                 writeData(f, data, length * 2);
3395                 free(data);
3396         } else
3397         {
3398                 free(buckets);
3399         }
3400
3401         fclose(f);
3402 }
3403
3404 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3405  * which will be used as a random sampling of PC */
3406 COMMAND_HANDLER(handle_profile_command)
3407 {
3408         struct target *target = get_current_target(CMD_CTX);
3409         struct timeval timeout, now;
3410
3411         gettimeofday(&timeout, NULL);
3412         if (CMD_ARGC != 2)
3413         {
3414                 return ERROR_COMMAND_SYNTAX_ERROR;
3415         }
3416         unsigned offset;
3417         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3418
3419         timeval_add_time(&timeout, offset, 0);
3420
3421         /**
3422          * @todo: Some cores let us sample the PC without the
3423          * annoying halt/resume step; for example, ARMv7 PCSR.
3424          * Provide a way to use that more efficient mechanism.
3425          */
3426
3427         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3428
3429         static const int maxSample = 10000;
3430         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3431         if (samples == NULL)
3432                 return ERROR_OK;
3433
3434         int numSamples = 0;
3435         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3436         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3437
3438         int retval = ERROR_OK;
3439         for (;;)
3440         {
3441                 target_poll(target);
3442                 if (target->state == TARGET_HALTED)
3443                 {
3444                         uint32_t t=*((uint32_t *)reg->value);
3445                         samples[numSamples++]=t;
3446                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3447                         target_poll(target);
3448                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3449                 } else if (target->state == TARGET_RUNNING)
3450                 {
3451                         /* We want to quickly sample the PC. */
3452                         if ((retval = target_halt(target)) != ERROR_OK)
3453                         {
3454                                 free(samples);
3455                                 return retval;
3456                         }
3457                 } else
3458                 {
3459                         command_print(CMD_CTX, "Target not halted or running");
3460                         retval = ERROR_OK;
3461                         break;
3462                 }
3463                 if (retval != ERROR_OK)
3464                 {
3465                         break;
3466                 }
3467
3468                 gettimeofday(&now, NULL);
3469                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3470                 {
3471                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3472                         if ((retval = target_poll(target)) != ERROR_OK)
3473                         {
3474                                 free(samples);
3475                                 return retval;
3476                         }
3477                         if (target->state == TARGET_HALTED)
3478                         {
3479                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3480                         }
3481                         if ((retval = target_poll(target)) != ERROR_OK)
3482                         {
3483                                 free(samples);
3484                                 return retval;
3485                         }
3486                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3487                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3488                         break;
3489                 }
3490         }
3491         free(samples);
3492
3493         return retval;
3494 }
3495
3496 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3497 {
3498         char *namebuf;
3499         Jim_Obj *nameObjPtr, *valObjPtr;
3500         int result;
3501
3502         namebuf = alloc_printf("%s(%d)", varname, idx);
3503         if (!namebuf)
3504                 return JIM_ERR;
3505
3506         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3507         valObjPtr = Jim_NewIntObj(interp, val);
3508         if (!nameObjPtr || !valObjPtr)
3509         {
3510                 free(namebuf);
3511                 return JIM_ERR;
3512         }
3513
3514         Jim_IncrRefCount(nameObjPtr);
3515         Jim_IncrRefCount(valObjPtr);
3516         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3517         Jim_DecrRefCount(interp, nameObjPtr);
3518         Jim_DecrRefCount(interp, valObjPtr);
3519         free(namebuf);
3520         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3521         return result;
3522 }
3523
3524 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3525 {
3526         struct command_context *context;
3527         struct target *target;
3528
3529         context = current_command_context(interp);
3530         assert (context != NULL);
3531
3532         target = get_current_target(context);
3533         if (target == NULL)
3534         {
3535                 LOG_ERROR("mem2array: no current target");
3536                 return JIM_ERR;
3537         }
3538
3539         return  target_mem2array(interp, target, argc-1, argv + 1);
3540 }
3541
3542 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3543 {
3544         long l;
3545         uint32_t width;
3546         int len;
3547         uint32_t addr;
3548         uint32_t count;
3549         uint32_t v;
3550         const char *varname;
3551         int  n, e, retval;
3552         uint32_t i;
3553
3554         /* argv[1] = name of array to receive the data
3555          * argv[2] = desired width
3556          * argv[3] = memory address
3557          * argv[4] = count of times to read
3558          */
3559         if (argc != 4) {
3560                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3561                 return JIM_ERR;
3562         }
3563         varname = Jim_GetString(argv[0], &len);
3564         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3565
3566         e = Jim_GetLong(interp, argv[1], &l);
3567         width = l;
3568         if (e != JIM_OK) {
3569                 return e;
3570         }
3571
3572         e = Jim_GetLong(interp, argv[2], &l);
3573         addr = l;
3574         if (e != JIM_OK) {
3575                 return e;
3576         }
3577         e = Jim_GetLong(interp, argv[3], &l);
3578         len = l;
3579         if (e != JIM_OK) {
3580                 return e;
3581         }
3582         switch (width) {
3583                 case 8:
3584                         width = 1;
3585                         break;
3586                 case 16:
3587                         width = 2;
3588                         break;
3589                 case 32:
3590                         width = 4;
3591                         break;
3592                 default:
3593                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3594                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3595                         return JIM_ERR;
3596         }
3597         if (len == 0) {
3598                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3599                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3600                 return JIM_ERR;
3601         }
3602         if ((addr + (len * width)) < addr) {
3603                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3604                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3605                 return JIM_ERR;
3606         }
3607         /* absurd transfer size? */
3608         if (len > 65536) {
3609                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3610                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3611                 return JIM_ERR;
3612         }
3613
3614         if ((width == 1) ||
3615                 ((width == 2) && ((addr & 1) == 0)) ||
3616                 ((width == 4) && ((addr & 3) == 0))) {
3617                 /* all is well */
3618         } else {
3619                 char buf[100];
3620                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3621                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3622                                 addr,
3623                                 width);
3624                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3625                 return JIM_ERR;
3626         }
3627
3628         /* Transfer loop */
3629
3630         /* index counter */
3631         n = 0;
3632
3633         size_t buffersize = 4096;
3634         uint8_t *buffer = malloc(buffersize);
3635         if (buffer == NULL)
3636                 return JIM_ERR;
3637
3638         /* assume ok */
3639         e = JIM_OK;
3640         while (len) {
3641                 /* Slurp... in buffer size chunks */
3642
3643                 count = len; /* in objects.. */
3644                 if (count > (buffersize/width)) {
3645                         count = (buffersize/width);
3646                 }
3647
3648                 retval = target_read_memory(target, addr, width, count, buffer);
3649                 if (retval != ERROR_OK) {
3650                         /* BOO !*/
3651                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3652                                           (unsigned int)addr,
3653                                           (int)width,
3654                                           (int)count);
3655                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3656                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3657                         e = JIM_ERR;
3658                         break;
3659                 } else {
3660                         v = 0; /* shut up gcc */
3661                         for (i = 0 ;i < count ;i++, n++) {
3662                                 switch (width) {
3663                                         case 4:
3664                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3665                                                 break;
3666                                         case 2:
3667                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3668                                                 break;
3669                                         case 1:
3670                                                 v = buffer[i] & 0x0ff;
3671                                                 break;
3672                                 }
3673                                 new_int_array_element(interp, varname, n, v);
3674                         }
3675                         len -= count;
3676                 }
3677         }
3678
3679         free(buffer);
3680
3681         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3682
3683         return e;
3684 }
3685
3686 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3687 {
3688         char *namebuf;
3689         Jim_Obj *nameObjPtr, *valObjPtr;
3690         int result;
3691         long l;
3692
3693         namebuf = alloc_printf("%s(%d)", varname, idx);
3694         if (!namebuf)
3695                 return JIM_ERR;
3696
3697         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3698         if (!nameObjPtr)
3699         {
3700                 free(namebuf);
3701                 return JIM_ERR;
3702         }
3703
3704         Jim_IncrRefCount(nameObjPtr);
3705         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3706         Jim_DecrRefCount(interp, nameObjPtr);
3707         free(namebuf);
3708         if (valObjPtr == NULL)
3709                 return JIM_ERR;
3710
3711         result = Jim_GetLong(interp, valObjPtr, &l);
3712         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3713         *val = l;
3714         return result;
3715 }
3716
3717 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3718 {
3719         struct command_context *context;
3720         struct target *target;
3721
3722         context = current_command_context(interp);
3723         assert (context != NULL);
3724
3725         target = get_current_target(context);
3726         if (target == NULL) {
3727                 LOG_ERROR("array2mem: no current target");
3728                 return JIM_ERR;
3729         }
3730
3731         return target_array2mem(interp,target, argc-1, argv + 1);
3732 }
3733
3734 static int target_array2mem(Jim_Interp *interp, struct target *target,
3735                 int argc, Jim_Obj *const *argv)
3736 {
3737         long l;
3738         uint32_t width;
3739         int len;
3740         uint32_t addr;
3741         uint32_t count;
3742         uint32_t v;
3743         const char *varname;
3744         int  n, e, retval;
3745         uint32_t i;
3746
3747         /* argv[1] = name of array to get the data
3748          * argv[2] = desired width
3749          * argv[3] = memory address
3750          * argv[4] = count to write
3751          */
3752         if (argc != 4) {
3753                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3754                 return JIM_ERR;
3755         }
3756         varname = Jim_GetString(argv[0], &len);
3757         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3758
3759         e = Jim_GetLong(interp, argv[1], &l);
3760         width = l;
3761         if (e != JIM_OK) {
3762                 return e;
3763         }
3764
3765         e = Jim_GetLong(interp, argv[2], &l);
3766         addr = l;
3767         if (e != JIM_OK) {
3768                 return e;
3769         }
3770         e = Jim_GetLong(interp, argv[3], &l);
3771         len = l;
3772         if (e != JIM_OK) {
3773                 return e;
3774         }
3775         switch (width) {
3776                 case 8:
3777                         width = 1;
3778                         break;
3779                 case 16:
3780                         width = 2;
3781                         break;
3782                 case 32:
3783                         width = 4;
3784                         break;
3785                 default:
3786                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3787                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3788                         return JIM_ERR;
3789         }
3790         if (len == 0) {
3791                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3792                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3793                 return JIM_ERR;
3794         }
3795         if ((addr + (len * width)) < addr) {
3796                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3797                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3798                 return JIM_ERR;
3799         }
3800         /* absurd transfer size? */
3801         if (len > 65536) {
3802                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3803                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3804                 return JIM_ERR;
3805         }
3806
3807         if ((width == 1) ||
3808                 ((width == 2) && ((addr & 1) == 0)) ||
3809                 ((width == 4) && ((addr & 3) == 0))) {
3810                 /* all is well */
3811         } else {
3812                 char buf[100];
3813                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3814                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3815                                 (unsigned int)addr,
3816                                 (int)width);
3817                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3818                 return JIM_ERR;
3819         }
3820
3821         /* Transfer loop */
3822
3823         /* index counter */
3824         n = 0;
3825         /* assume ok */
3826         e = JIM_OK;
3827
3828         size_t buffersize = 4096;
3829         uint8_t *buffer = malloc(buffersize);
3830         if (buffer == NULL)
3831                 return JIM_ERR;
3832
3833         while (len) {
3834                 /* Slurp... in buffer size chunks */
3835
3836                 count = len; /* in objects.. */
3837                 if (count > (buffersize/width)) {
3838                         count = (buffersize/width);
3839                 }
3840
3841                 v = 0; /* shut up gcc */
3842                 for (i = 0 ;i < count ;i++, n++) {
3843                         get_int_array_element(interp, varname, n, &v);
3844                         switch (width) {
3845                         case 4:
3846                                 target_buffer_set_u32(target, &buffer[i*width], v);
3847                                 break;
3848                         case 2:
3849                                 target_buffer_set_u16(target, &buffer[i*width], v);
3850                                 break;
3851                         case 1:
3852                                 buffer[i] = v & 0x0ff;
3853                                 break;
3854                         }
3855                 }
3856                 len -= count;
3857
3858                 retval = target_write_memory(target, addr, width, count, buffer);
3859                 if (retval != ERROR_OK) {
3860                         /* BOO !*/
3861                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3862                                           (unsigned int)addr,
3863                                           (int)width,
3864                                           (int)count);
3865                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3866                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3867                         e = JIM_ERR;
3868                         break;
3869                 }
3870         }
3871
3872         free(buffer);
3873
3874         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3875
3876         return e;
3877 }
3878
3879 /* FIX? should we propagate errors here rather than printing them
3880  * and continuing?
3881  */
3882 void target_handle_event(struct target *target, enum target_event e)
3883 {
3884         struct target_event_action *teap;
3885
3886         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3887                 if (teap->event == e) {
3888                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3889                                            target->target_number,
3890                                            target_name(target),
3891                                            target_type_name(target),
3892                                            e,
3893                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3894                                            Jim_GetString(teap->body, NULL));
3895                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3896                         {
3897                                 Jim_MakeErrorMessage(teap->interp);
3898                                 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3899                         }
3900                 }
3901         }
3902 }
3903
3904 /**
3905  * Returns true only if the target has a handler for the specified event.
3906  */
3907 bool target_has_event_action(struct target *target, enum target_event event)
3908 {
3909         struct target_event_action *teap;
3910
3911         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3912                 if (teap->event == event)
3913                         return true;
3914         }
3915         return false;
3916 }
3917
3918 enum target_cfg_param {
3919         TCFG_TYPE,
3920         TCFG_EVENT,
3921         TCFG_WORK_AREA_VIRT,
3922         TCFG_WORK_AREA_PHYS,
3923         TCFG_WORK_AREA_SIZE,
3924         TCFG_WORK_AREA_BACKUP,
3925         TCFG_ENDIAN,
3926         TCFG_VARIANT,
3927         TCFG_COREID,
3928         TCFG_CHAIN_POSITION,
3929         TCFG_DBGBASE,
3930         TCFG_RTOS,
3931 };
3932
3933 static Jim_Nvp nvp_config_opts[] = {
3934         { .name = "-type",             .value = TCFG_TYPE },
3935         { .name = "-event",            .value = TCFG_EVENT },
3936         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3937         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3938         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3939         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3940         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3941         { .name = "-variant",          .value = TCFG_VARIANT },
3942         { .name = "-coreid",           .value = TCFG_COREID },
3943         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3944         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
3945         { .name = "-rtos",             .value = TCFG_RTOS },
3946         { .name = NULL, .value = -1 }
3947 };
3948
3949 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3950 {
3951         Jim_Nvp *n;
3952         Jim_Obj *o;
3953         jim_wide w;
3954         char *cp;
3955         int e;
3956
3957         /* parse config or cget options ... */
3958         while (goi->argc > 0) {
3959                 Jim_SetEmptyResult(goi->interp);
3960                 /* Jim_GetOpt_Debug(goi); */
3961
3962                 if (target->type->target_jim_configure) {
3963                         /* target defines a configure function */
3964                         /* target gets first dibs on parameters */
3965                         e = (*(target->type->target_jim_configure))(target, goi);
3966                         if (e == JIM_OK) {
3967                                 /* more? */
3968                                 continue;
3969                         }
3970                         if (e == JIM_ERR) {
3971                                 /* An error */
3972                                 return e;
3973                         }
3974                         /* otherwise we 'continue' below */
3975                 }
3976                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3977                 if (e != JIM_OK) {
3978                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3979                         return e;
3980                 }
3981                 switch (n->value) {
3982                 case TCFG_TYPE:
3983                         /* not setable */
3984                         if (goi->isconfigure) {
3985                                 Jim_SetResultFormatted(goi->interp,
3986                                                 "not settable: %s", n->name);
3987                                 return JIM_ERR;
3988                         } else {
3989                         no_params:
3990                                 if (goi->argc != 0) {
3991                                         Jim_WrongNumArgs(goi->interp,
3992                                                         goi->argc, goi->argv,
3993                                                         "NO PARAMS");
3994                                         return JIM_ERR;
3995                                 }
3996                         }
3997                         Jim_SetResultString(goi->interp,
3998                                         target_type_name(target), -1);
3999                         /* loop for more */
4000                         break;
4001                 case TCFG_EVENT:
4002                         if (goi->argc == 0) {
4003                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4004                                 return JIM_ERR;
4005                         }
4006
4007                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4008                         if (e != JIM_OK) {
4009                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4010                                 return e;
4011                         }
4012
4013                         if (goi->isconfigure) {
4014                                 if (goi->argc != 1) {
4015                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4016                                         return JIM_ERR;
4017                                 }
4018                         } else {
4019                                 if (goi->argc != 0) {
4020                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4021                                         return JIM_ERR;
4022                                 }
4023                         }
4024
4025                         {
4026                                 struct target_event_action *teap;
4027
4028                                 teap = target->event_action;
4029                                 /* replace existing? */
4030                                 while (teap) {
4031                                         if (teap->event == (enum target_event)n->value) {
4032                                                 break;
4033                                         }
4034                                         teap = teap->next;
4035                                 }
4036
4037                                 if (goi->isconfigure) {
4038                                         bool replace = true;
4039                                         if (teap == NULL) {
4040                                                 /* create new */
4041                                                 teap = calloc(1, sizeof(*teap));
4042                                                 replace = false;
4043                                         }
4044                                         teap->event = n->value;
4045                                         teap->interp = goi->interp;
4046                                         Jim_GetOpt_Obj(goi, &o);
4047                                         if (teap->body) {
4048                                                 Jim_DecrRefCount(teap->interp, teap->body);
4049                                         }
4050                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4051                                         /*
4052                                          * FIXME:
4053                                          *     Tcl/TK - "tk events" have a nice feature.
4054                                          *     See the "BIND" command.
4055                                          *    We should support that here.
4056                                          *     You can specify %X and %Y in the event code.
4057                                          *     The idea is: %T - target name.
4058                                          *     The idea is: %N - target number
4059                                          *     The idea is: %E - event name.
4060                                          */
4061                                         Jim_IncrRefCount(teap->body);
4062
4063                                         if (!replace)
4064                                         {
4065                                                 /* add to head of event list */
4066                                                 teap->next = target->event_action;
4067                                                 target->event_action = teap;
4068                                         }
4069                                         Jim_SetEmptyResult(goi->interp);
4070                                 } else {
4071                                         /* get */
4072                                         if (teap == NULL) {
4073                                                 Jim_SetEmptyResult(goi->interp);
4074                                         } else {
4075                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4076                                         }
4077                                 }
4078                         }
4079                         /* loop for more */
4080                         break;
4081
4082                 case TCFG_WORK_AREA_VIRT:
4083                         if (goi->isconfigure) {
4084                                 target_free_all_working_areas(target);
4085                                 e = Jim_GetOpt_Wide(goi, &w);
4086                                 if (e != JIM_OK) {
4087                                         return e;
4088                                 }
4089                                 target->working_area_virt = w;
4090                                 target->working_area_virt_spec = true;
4091                         } else {
4092                                 if (goi->argc != 0) {
4093                                         goto no_params;
4094                                 }
4095                         }
4096                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4097                         /* loop for more */
4098                         break;
4099
4100                 case TCFG_WORK_AREA_PHYS:
4101                         if (goi->isconfigure) {
4102                                 target_free_all_working_areas(target);
4103                                 e = Jim_GetOpt_Wide(goi, &w);
4104                                 if (e != JIM_OK) {
4105                                         return e;
4106                                 }
4107                                 target->working_area_phys = w;
4108                                 target->working_area_phys_spec = true;
4109                         } else {
4110                                 if (goi->argc != 0) {
4111                                         goto no_params;
4112                                 }
4113                         }
4114                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4115                         /* loop for more */
4116                         break;
4117
4118                 case TCFG_WORK_AREA_SIZE:
4119                         if (goi->isconfigure) {
4120                                 target_free_all_working_areas(target);
4121                                 e = Jim_GetOpt_Wide(goi, &w);
4122                                 if (e != JIM_OK) {
4123                                         return e;
4124                                 }
4125                                 target->working_area_size = w;
4126                         } else {
4127                                 if (goi->argc != 0) {
4128                                         goto no_params;
4129                                 }
4130                         }
4131                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4132                         /* loop for more */
4133                         break;
4134
4135                 case TCFG_WORK_AREA_BACKUP:
4136                         if (goi->isconfigure) {
4137                                 target_free_all_working_areas(target);
4138                                 e = Jim_GetOpt_Wide(goi, &w);
4139                                 if (e != JIM_OK) {
4140                                         return e;
4141                                 }
4142                                 /* make this exactly 1 or 0 */
4143                                 target->backup_working_area = (!!w);
4144                         } else {
4145                                 if (goi->argc != 0) {
4146                                         goto no_params;
4147                                 }
4148                         }
4149                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4150                         /* loop for more e*/
4151                         break;
4152
4153
4154                 case TCFG_ENDIAN:
4155                         if (goi->isconfigure) {
4156                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4157                                 if (e != JIM_OK) {
4158                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4159                                         return e;
4160                                 }
4161                                 target->endianness = n->value;
4162                         } else {
4163                                 if (goi->argc != 0) {
4164                                         goto no_params;
4165                                 }
4166                         }
4167                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4168                         if (n->name == NULL) {
4169                                 target->endianness = TARGET_LITTLE_ENDIAN;
4170                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4171                         }
4172                         Jim_SetResultString(goi->interp, n->name, -1);
4173                         /* loop for more */
4174                         break;
4175
4176                 case TCFG_VARIANT:
4177                         if (goi->isconfigure) {
4178                                 if (goi->argc < 1) {
4179                                         Jim_SetResultFormatted(goi->interp,
4180                                                                                    "%s ?STRING?",
4181                                                                                    n->name);
4182                                         return JIM_ERR;
4183                                 }
4184                                 if (target->variant) {
4185                                         free((void *)(target->variant));
4186                                 }
4187                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4188                                 if (e != JIM_OK)
4189                                         return e;
4190                                 target->variant = strdup(cp);
4191                         } else {
4192                                 if (goi->argc != 0) {
4193                                         goto no_params;
4194                                 }
4195                         }
4196                         Jim_SetResultString(goi->interp, target->variant,-1);
4197                         /* loop for more */
4198                         break;
4199
4200                 case TCFG_COREID:
4201                         if (goi->isconfigure) {
4202                                 e = Jim_GetOpt_Wide(goi, &w);
4203                                 if (e != JIM_OK) {
4204                                         return e;
4205                                 }
4206                                 target->coreid = (int32_t)w;
4207                         } else {
4208                                 if (goi->argc != 0) {
4209                                         goto no_params;
4210                                 }
4211                         }
4212                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4213                         /* loop for more */
4214                         break;
4215
4216                 case TCFG_CHAIN_POSITION:
4217                         if (goi->isconfigure) {
4218                                 Jim_Obj *o_t;
4219                                 struct jtag_tap *tap;
4220                                 target_free_all_working_areas(target);
4221                                 e = Jim_GetOpt_Obj(goi, &o_t);
4222                                 if (e != JIM_OK) {
4223                                         return e;
4224                                 }
4225                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4226                                 if (tap == NULL) {
4227                                         return JIM_ERR;
4228                                 }
4229                                 /* make this exactly 1 or 0 */
4230                                 target->tap = tap;
4231                         } else {
4232                                 if (goi->argc != 0) {
4233                                         goto no_params;
4234                                 }
4235                         }
4236                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4237                         /* loop for more e*/
4238                         break;
4239                 case TCFG_DBGBASE:
4240                         if (goi->isconfigure) {
4241                                 e = Jim_GetOpt_Wide(goi, &w);
4242                                 if (e != JIM_OK) {
4243                                         return e;
4244                                 }
4245                                 target->dbgbase = (uint32_t)w;
4246                                 target->dbgbase_set = true;
4247                         } else {
4248                                 if (goi->argc != 0) {
4249                                         goto no_params;
4250                                 }
4251                         }
4252                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4253                         /* loop for more */
4254                         break;
4255
4256                 case TCFG_RTOS:
4257                         /* RTOS */
4258                         {
4259                                 int result = rtos_create( goi, target );
4260                                 if ( result != JIM_OK )
4261                                 {
4262                                         return result;
4263                                 }
4264                         }
4265                         /* loop for more */
4266                         break;
4267                 }
4268         } /* while (goi->argc) */
4269
4270
4271                 /* done - we return */
4272         return JIM_OK;
4273 }
4274
4275 static int
4276 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4277 {
4278         Jim_GetOptInfo goi;
4279
4280         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4281         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4282         int need_args = 1 + goi.isconfigure;
4283         if (goi.argc < need_args)
4284         {
4285                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4286                         goi.isconfigure
4287                                 ? "missing: -option VALUE ..."
4288                                 : "missing: -option ...");
4289                 return JIM_ERR;
4290         }
4291         struct target *target = Jim_CmdPrivData(goi.interp);
4292         return target_configure(&goi, target);
4293 }
4294
4295 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4296 {
4297         const char *cmd_name = Jim_GetString(argv[0], NULL);
4298
4299         Jim_GetOptInfo goi;
4300         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4301
4302         if (goi.argc < 2 || goi.argc > 4)
4303         {
4304                 Jim_SetResultFormatted(goi.interp,
4305                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4306                 return JIM_ERR;
4307         }
4308
4309         target_write_fn fn;
4310         fn = target_write_memory_fast;
4311
4312         int e;
4313         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4314         {
4315                 /* consume it */
4316                 struct Jim_Obj *obj;
4317                 e = Jim_GetOpt_Obj(&goi, &obj);
4318                 if (e != JIM_OK)
4319                         return e;
4320
4321                 fn = target_write_phys_memory;
4322         }
4323
4324         jim_wide a;
4325         e = Jim_GetOpt_Wide(&goi, &a);
4326         if (e != JIM_OK)
4327                 return e;
4328
4329         jim_wide b;
4330         e = Jim_GetOpt_Wide(&goi, &b);
4331         if (e != JIM_OK)
4332                 return e;
4333
4334         jim_wide c = 1;
4335         if (goi.argc == 1)
4336         {
4337                 e = Jim_GetOpt_Wide(&goi, &c);
4338                 if (e != JIM_OK)
4339                         return e;
4340         }
4341
4342         /* all args must be consumed */
4343         if (goi.argc != 0)
4344         {
4345                 return JIM_ERR;
4346         }
4347
4348         struct target *target = Jim_CmdPrivData(goi.interp);
4349         unsigned data_size;
4350         if (strcasecmp(cmd_name, "mww") == 0) {
4351                 data_size = 4;
4352         }
4353         else if (strcasecmp(cmd_name, "mwh") == 0) {
4354                 data_size = 2;
4355         }
4356         else if (strcasecmp(cmd_name, "mwb") == 0) {
4357                 data_size = 1;
4358         } else {
4359                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4360                 return JIM_ERR;
4361         }
4362
4363         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4364 }
4365
4366 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4367 {
4368         const char *cmd_name = Jim_GetString(argv[0], NULL);
4369
4370         Jim_GetOptInfo goi;
4371         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4372
4373         if ((goi.argc < 1) || (goi.argc > 3))
4374         {
4375                 Jim_SetResultFormatted(goi.interp,
4376                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4377                 return JIM_ERR;
4378         }
4379
4380         int (*fn)(struct target *target,
4381                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4382         fn=target_read_memory;
4383
4384         int e;
4385         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4386         {
4387                 /* consume it */
4388                 struct Jim_Obj *obj;
4389                 e = Jim_GetOpt_Obj(&goi, &obj);
4390                 if (e != JIM_OK)
4391                         return e;
4392
4393                 fn=target_read_phys_memory;
4394         }
4395
4396         jim_wide a;
4397         e = Jim_GetOpt_Wide(&goi, &a);
4398         if (e != JIM_OK) {
4399                 return JIM_ERR;
4400         }
4401         jim_wide c;
4402         if (goi.argc == 1) {
4403                 e = Jim_GetOpt_Wide(&goi, &c);
4404                 if (e != JIM_OK) {
4405                         return JIM_ERR;
4406                 }
4407         } else {
4408                 c = 1;
4409         }
4410
4411         /* all args must be consumed */
4412         if (goi.argc != 0)
4413         {
4414                 return JIM_ERR;
4415         }
4416
4417         jim_wide b = 1; /* shut up gcc */
4418         if (strcasecmp(cmd_name, "mdw") == 0)
4419                 b = 4;
4420         else if (strcasecmp(cmd_name, "mdh") == 0)
4421                 b = 2;
4422         else if (strcasecmp(cmd_name, "mdb") == 0)
4423                 b = 1;
4424         else {
4425                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4426                 return JIM_ERR;
4427         }
4428
4429         /* convert count to "bytes" */
4430         c = c * b;
4431
4432         struct target *target = Jim_CmdPrivData(goi.interp);
4433         uint8_t  target_buf[32];
4434         jim_wide x, y, z;
4435         while (c > 0) {
4436                 y = c;
4437                 if (y > 16) {
4438                         y = 16;
4439                 }
4440                 e = fn(target, a, b, y / b, target_buf);
4441                 if (e != ERROR_OK) {
4442                         char tmp[10];
4443                         snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
4444                         Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
4445                         return JIM_ERR;
4446                 }
4447
4448                 command_print(NULL, "0x%08x ", (int)(a));
4449                 switch (b) {
4450                 case 4:
4451                         for (x = 0; x < 16 && x < y; x += 4)
4452                         {
4453                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4454                                 command_print(NULL, "%08x ", (int)(z));
4455                         }
4456                         for (; (x < 16) ; x += 4) {
4457                                 command_print(NULL, "         ");
4458                         }
4459                         break;
4460                 case 2:
4461                         for (x = 0; x < 16 && x < y; x += 2)
4462                         {
4463                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4464                                 command_print(NULL, "%04x ", (int)(z));
4465                         }
4466                         for (; (x < 16) ; x += 2) {
4467                                 command_print(NULL, "     ");
4468                         }
4469                         break;
4470                 case 1:
4471                 default:
4472                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4473                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4474                                 command_print(NULL, "%02x ", (int)(z));
4475                         }
4476                         for (; (x < 16) ; x += 1) {
4477                                 command_print(NULL, "   ");
4478                         }
4479                         break;
4480                 }
4481                 /* ascii-ify the bytes */
4482                 for (x = 0 ; x < y ; x++) {
4483                         if ((target_buf[x] >= 0x20) &&
4484                                 (target_buf[x] <= 0x7e)) {
4485                                 /* good */
4486                         } else {
4487                                 /* smack it */
4488                                 target_buf[x] = '.';
4489                         }
4490                 }
4491                 /* space pad  */
4492                 while (x < 16) {
4493                         target_buf[x] = ' ';
4494                         x++;
4495                 }
4496                 /* terminate */
4497                 target_buf[16] = 0;
4498                 /* print - with a newline */
4499                 command_print(NULL, "%s\n", target_buf);
4500                 /* NEXT... */
4501                 c -= 16;
4502                 a += 16;
4503         }
4504         return JIM_OK;
4505 }
4506
4507 static int jim_target_mem2array(Jim_Interp *interp,
4508                 int argc, Jim_Obj *const *argv)
4509 {
4510         struct target *target = Jim_CmdPrivData(interp);
4511         return target_mem2array(interp, target, argc - 1, argv + 1);
4512 }
4513
4514 static int jim_target_array2mem(Jim_Interp *interp,
4515                 int argc, Jim_Obj *const *argv)
4516 {
4517         struct target *target = Jim_CmdPrivData(interp);
4518         return target_array2mem(interp, target, argc - 1, argv + 1);
4519 }
4520
4521 static int jim_target_tap_disabled(Jim_Interp *interp)
4522 {
4523         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4524         return JIM_ERR;
4525 }
4526
4527 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4528 {
4529         if (argc != 1)
4530         {
4531                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4532                 return JIM_ERR;
4533         }
4534         struct target *target = Jim_CmdPrivData(interp);
4535         if (!target->tap->enabled)
4536                 return jim_target_tap_disabled(interp);
4537
4538         int e = target->type->examine(target);
4539         if (e != ERROR_OK)
4540         {
4541                 return JIM_ERR;
4542         }
4543         return JIM_OK;
4544 }
4545
4546 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4547 {
4548         if (argc != 1)
4549         {
4550                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4551                 return JIM_ERR;
4552         }
4553         struct target *target = Jim_CmdPrivData(interp);
4554
4555         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4556                 return JIM_ERR;
4557
4558         return JIM_OK;
4559 }
4560
4561 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4562 {
4563         if (argc != 1)
4564         {
4565                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4566                 return JIM_ERR;
4567         }
4568         struct target *target = Jim_CmdPrivData(interp);
4569         if (!target->tap->enabled)
4570                 return jim_target_tap_disabled(interp);
4571
4572         int e;
4573         if (!(target_was_examined(target))) {
4574                 e = ERROR_TARGET_NOT_EXAMINED;
4575         } else {
4576                 e = target->type->poll(target);
4577         }
4578         if (e != ERROR_OK)
4579         {
4580                 return JIM_ERR;
4581         }
4582         return JIM_OK;
4583 }
4584
4585 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4586 {
4587         Jim_GetOptInfo goi;
4588         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4589
4590         if (goi.argc != 2)
4591         {
4592                 Jim_WrongNumArgs(interp, 0, argv,
4593                                 "([tT]|[fF]|assert|deassert) BOOL");
4594                 return JIM_ERR;
4595         }
4596
4597         Jim_Nvp *n;
4598         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4599         if (e != JIM_OK)
4600         {
4601                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4602                 return e;
4603         }
4604         /* the halt or not param */
4605         jim_wide a;
4606         e = Jim_GetOpt_Wide(&goi, &a);
4607         if (e != JIM_OK)
4608                 return e;
4609
4610         struct target *target = Jim_CmdPrivData(goi.interp);
4611         if (!target->tap->enabled)
4612                 return jim_target_tap_disabled(interp);
4613         if (!(target_was_examined(target)))
4614         {
4615                 LOG_ERROR("Target not examined yet");
4616                 return ERROR_TARGET_NOT_EXAMINED;
4617         }
4618         if (!target->type->assert_reset || !target->type->deassert_reset)
4619         {
4620                 Jim_SetResultFormatted(interp,
4621                                 "No target-specific reset for %s",
4622                                 target_name(target));
4623                 return JIM_ERR;
4624         }
4625         /* determine if we should halt or not. */
4626         target->reset_halt = !!a;
4627         /* When this happens - all workareas are invalid. */
4628         target_free_all_working_areas_restore(target, 0);
4629
4630         /* do the assert */
4631         if (n->value == NVP_ASSERT) {
4632                 e = target->type->assert_reset(target);
4633         } else {
4634                 e = target->type->deassert_reset(target);
4635         }
4636         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4637 }
4638
4639 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4640 {
4641         if (argc != 1) {
4642                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4643                 return JIM_ERR;
4644         }
4645         struct target *target = Jim_CmdPrivData(interp);
4646         if (!target->tap->enabled)
4647                 return jim_target_tap_disabled(interp);
4648         int e = target->type->halt(target);
4649         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4650 }
4651
4652 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4653 {
4654         Jim_GetOptInfo goi;
4655         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4656
4657         /* params:  <name>  statename timeoutmsecs */
4658         if (goi.argc != 2)
4659         {
4660                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4661                 Jim_SetResultFormatted(goi.interp,
4662                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4663                 return JIM_ERR;
4664         }
4665
4666         Jim_Nvp *n;
4667         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4668         if (e != JIM_OK) {
4669                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4670                 return e;
4671         }
4672         jim_wide a;
4673         e = Jim_GetOpt_Wide(&goi, &a);
4674         if (e != JIM_OK) {
4675                 return e;
4676         }
4677         struct target *target = Jim_CmdPrivData(interp);
4678         if (!target->tap->enabled)
4679                 return jim_target_tap_disabled(interp);
4680
4681         e = target_wait_state(target, n->value, a);
4682         if (e != ERROR_OK)
4683         {
4684                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4685                 Jim_SetResultFormatted(goi.interp,
4686                                 "target: %s wait %s fails (%#s) %s",
4687                                 target_name(target), n->name,
4688                                 eObj, target_strerror_safe(e));
4689                 Jim_FreeNewObj(interp, eObj);
4690                 return JIM_ERR;
4691         }
4692         return JIM_OK;
4693 }
4694 /* List for human, Events defined for this target.
4695  * scripts/programs should use 'name cget -event NAME'
4696  */
4697 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4698 {
4699         struct command_context *cmd_ctx = current_command_context(interp);
4700         assert (cmd_ctx != NULL);
4701
4702         struct target *target = Jim_CmdPrivData(interp);
4703         struct target_event_action *teap = target->event_action;
4704         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4705                                    target->target_number,
4706                                    target_name(target));
4707         command_print(cmd_ctx, "%-25s | Body", "Event");
4708         command_print(cmd_ctx, "------------------------- | "
4709                         "----------------------------------------");
4710         while (teap)
4711         {
4712                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4713                 command_print(cmd_ctx, "%-25s | %s",
4714                                 opt->name, Jim_GetString(teap->body, NULL));
4715                 teap = teap->next;
4716         }
4717         command_print(cmd_ctx, "***END***");
4718         return JIM_OK;
4719 }
4720 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4721 {
4722         if (argc != 1)
4723         {
4724                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4725                 return JIM_ERR;
4726         }
4727         struct target *target = Jim_CmdPrivData(interp);
4728         Jim_SetResultString(interp, target_state_name(target), -1);
4729         return JIM_OK;
4730 }
4731 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4732 {
4733         Jim_GetOptInfo goi;
4734         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4735         if (goi.argc != 1)
4736         {
4737                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4738                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4739                 return JIM_ERR;
4740         }
4741         Jim_Nvp *n;
4742         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4743         if (e != JIM_OK)
4744         {
4745                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4746                 return e;
4747         }
4748         struct target *target = Jim_CmdPrivData(interp);
4749         target_handle_event(target, n->value);
4750         return JIM_OK;
4751 }
4752
4753 static const struct command_registration target_instance_command_handlers[] = {
4754         {
4755                 .name = "configure",
4756                 .mode = COMMAND_CONFIG,
4757                 .jim_handler = jim_target_configure,
4758                 .help  = "configure a new target for use",
4759                 .usage = "[target_attribute ...]",
4760         },
4761         {
4762                 .name = "cget",
4763                 .mode = COMMAND_ANY,
4764                 .jim_handler = jim_target_configure,
4765                 .help  = "returns the specified target attribute",
4766                 .usage = "target_attribute",
4767         },
4768         {
4769                 .name = "mww",
4770                 .mode = COMMAND_EXEC,
4771                 .jim_handler = jim_target_mw,
4772                 .help = "Write 32-bit word(s) to target memory",
4773                 .usage = "address data [count]",
4774         },
4775         {
4776                 .name = "mwh",
4777                 .mode = COMMAND_EXEC,
4778                 .jim_handler = jim_target_mw,
4779                 .help = "Write 16-bit half-word(s) to target memory",
4780                 .usage = "address data [count]",
4781         },
4782         {
4783                 .name = "mwb",
4784                 .mode = COMMAND_EXEC,
4785                 .jim_handler = jim_target_mw,
4786                 .help = "Write byte(s) to target memory",
4787                 .usage = "address data [count]",
4788         },
4789         {
4790                 .name = "mdw",
4791                 .mode = COMMAND_EXEC,
4792                 .jim_handler = jim_target_md,
4793                 .help = "Display target memory as 32-bit words",
4794                 .usage = "address [count]",
4795         },
4796         {
4797                 .name = "mdh",
4798                 .mode = COMMAND_EXEC,
4799                 .jim_handler = jim_target_md,
4800                 .help = "Display target memory as 16-bit half-words",
4801                 .usage = "address [count]",
4802         },
4803         {
4804                 .name = "mdb",
4805                 .mode = COMMAND_EXEC,
4806                 .jim_handler = jim_target_md,
4807                 .help = "Display target memory as 8-bit bytes",
4808                 .usage = "address [count]",
4809         },
4810         {
4811                 .name = "array2mem",
4812                 .mode = COMMAND_EXEC,
4813                 .jim_handler = jim_target_array2mem,
4814                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4815                         "to target memory",
4816                 .usage = "arrayname bitwidth address count",
4817         },
4818         {
4819                 .name = "mem2array",
4820                 .mode = COMMAND_EXEC,
4821                 .jim_handler = jim_target_mem2array,
4822                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4823                         "from target memory",
4824                 .usage = "arrayname bitwidth address count",
4825         },
4826         {
4827                 .name = "eventlist",
4828                 .mode = COMMAND_EXEC,
4829                 .jim_handler = jim_target_event_list,
4830                 .help = "displays a table of events defined for this target",
4831         },
4832         {
4833                 .name = "curstate",
4834                 .mode = COMMAND_EXEC,
4835                 .jim_handler = jim_target_current_state,
4836                 .help = "displays the current state of this target",
4837         },
4838         {
4839                 .name = "arp_examine",
4840                 .mode = COMMAND_EXEC,
4841                 .jim_handler = jim_target_examine,
4842                 .help = "used internally for reset processing",
4843         },
4844         {
4845                 .name = "arp_halt_gdb",
4846                 .mode = COMMAND_EXEC,
4847                 .jim_handler = jim_target_halt_gdb,
4848                 .help = "used internally for reset processing to halt GDB",
4849         },
4850         {
4851                 .name = "arp_poll",
4852                 .mode = COMMAND_EXEC,
4853                 .jim_handler = jim_target_poll,
4854                 .help = "used internally for reset processing",
4855         },
4856         {
4857                 .name = "arp_reset",
4858                 .mode = COMMAND_EXEC,
4859                 .jim_handler = jim_target_reset,
4860                 .help = "used internally for reset processing",
4861         },
4862         {
4863                 .name = "arp_halt",
4864                 .mode = COMMAND_EXEC,
4865                 .jim_handler = jim_target_halt,
4866                 .help = "used internally for reset processing",
4867         },
4868         {
4869                 .name = "arp_waitstate",
4870                 .mode = COMMAND_EXEC,
4871                 .jim_handler = jim_target_wait_state,
4872                 .help = "used internally for reset processing",
4873         },
4874         {
4875                 .name = "invoke-event",
4876                 .mode = COMMAND_EXEC,
4877                 .jim_handler = jim_target_invoke_event,
4878                 .help = "invoke handler for specified event",
4879                 .usage = "event_name",
4880         },
4881         COMMAND_REGISTRATION_DONE
4882 };
4883
4884 static int target_create(Jim_GetOptInfo *goi)
4885 {
4886         Jim_Obj *new_cmd;
4887         Jim_Cmd *cmd;
4888         const char *cp;
4889         char *cp2;
4890         int e;
4891         int x;
4892         struct target *target;
4893         struct command_context *cmd_ctx;
4894
4895         cmd_ctx = current_command_context(goi->interp);
4896         assert (cmd_ctx != NULL);
4897
4898         if (goi->argc < 3) {
4899                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4900                 return JIM_ERR;
4901         }
4902
4903         /* COMMAND */
4904         Jim_GetOpt_Obj(goi, &new_cmd);
4905         /* does this command exist? */
4906         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4907         if (cmd) {
4908                 cp = Jim_GetString(new_cmd, NULL);
4909                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4910                 return JIM_ERR;
4911         }
4912
4913         /* TYPE */
4914         e = Jim_GetOpt_String(goi, &cp2, NULL);
4915         if (e != JIM_OK)
4916                 return e;
4917         cp = cp2;
4918         /* now does target type exist */
4919         for (x = 0 ; target_types[x] ; x++) {
4920                 if (0 == strcmp(cp, target_types[x]->name)) {
4921                         /* found */
4922                         break;
4923                 }
4924         }
4925         if (target_types[x] == NULL) {
4926                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4927                 for (x = 0 ; target_types[x] ; x++) {
4928                         if (target_types[x + 1]) {
4929                                 Jim_AppendStrings(goi->interp,
4930                                                                    Jim_GetResult(goi->interp),
4931                                                                    target_types[x]->name,
4932                                                                    ", ", NULL);
4933                         } else {
4934                                 Jim_AppendStrings(goi->interp,
4935                                                                    Jim_GetResult(goi->interp),
4936                                                                    " or ",
4937                                                                    target_types[x]->name,NULL);
4938                         }
4939                 }
4940                 return JIM_ERR;
4941         }
4942
4943         /* Create it */
4944         target = calloc(1,sizeof(struct target));
4945         /* set target number */
4946         target->target_number = new_target_number();
4947
4948         /* allocate memory for each unique target type */
4949         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4950
4951         memcpy(target->type, target_types[x], sizeof(struct target_type));
4952
4953         /* will be set by "-endian" */
4954         target->endianness = TARGET_ENDIAN_UNKNOWN;
4955
4956         /* default to first core, override with -coreid */
4957         target->coreid = 0;
4958
4959         target->working_area        = 0x0;
4960         target->working_area_size   = 0x0;
4961         target->working_areas       = NULL;
4962         target->backup_working_area = 0;
4963
4964         target->state               = TARGET_UNKNOWN;
4965         target->debug_reason        = DBG_REASON_UNDEFINED;
4966         target->reg_cache           = NULL;
4967         target->breakpoints         = NULL;
4968         target->watchpoints         = NULL;
4969         target->next                = NULL;
4970         target->arch_info           = NULL;
4971
4972         target->display             = 1;
4973
4974         target->halt_issued                     = false;
4975
4976         /* initialize trace information */
4977         target->trace_info = malloc(sizeof(struct trace));
4978         target->trace_info->num_trace_points         = 0;
4979         target->trace_info->trace_points_size        = 0;
4980         target->trace_info->trace_points             = NULL;
4981         target->trace_info->trace_history_size       = 0;
4982         target->trace_info->trace_history            = NULL;
4983         target->trace_info->trace_history_pos        = 0;
4984         target->trace_info->trace_history_overflowed = 0;
4985
4986         target->dbgmsg          = NULL;
4987         target->dbg_msg_enabled = 0;
4988
4989         target->endianness = TARGET_ENDIAN_UNKNOWN;
4990
4991         target->rtos = NULL;
4992         target->rtos_auto_detect = false;
4993
4994         /* Do the rest as "configure" options */
4995         goi->isconfigure = 1;
4996         e = target_configure(goi, target);
4997
4998         if (target->tap == NULL)
4999         {
5000                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5001                 e = JIM_ERR;
5002         }
5003
5004         if (e != JIM_OK) {
5005                 free(target->type);
5006                 free(target);
5007                 return e;
5008         }
5009
5010         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5011                 /* default endian to little if not specified */
5012                 target->endianness = TARGET_LITTLE_ENDIAN;
5013         }
5014
5015         /* incase variant is not set */
5016         if (!target->variant)
5017                 target->variant = strdup("");
5018
5019         cp = Jim_GetString(new_cmd, NULL);
5020         target->cmd_name = strdup(cp);
5021
5022         /* create the target specific commands */
5023         if (target->type->commands) {
5024                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5025                 if (ERROR_OK != e)
5026                         LOG_ERROR("unable to register '%s' commands", cp);
5027         }
5028         if (target->type->target_create) {
5029                 (*(target->type->target_create))(target, goi->interp);
5030         }
5031
5032         /* append to end of list */
5033         {
5034                 struct target **tpp;
5035                 tpp = &(all_targets);
5036                 while (*tpp) {
5037                         tpp = &((*tpp)->next);
5038                 }
5039                 *tpp = target;
5040         }
5041
5042         /* now - create the new target name command */
5043         const const struct command_registration target_subcommands[] = {
5044                 {
5045                         .chain = target_instance_command_handlers,
5046                 },
5047                 {
5048                         .chain = target->type->commands,
5049                 },
5050                 COMMAND_REGISTRATION_DONE
5051         };
5052         const const struct command_registration target_commands[] = {
5053                 {
5054                         .name = cp,
5055                         .mode = COMMAND_ANY,
5056                         .help = "target command group",
5057                         .chain = target_subcommands,
5058                 },
5059                 COMMAND_REGISTRATION_DONE
5060         };
5061         e = register_commands(cmd_ctx, NULL, target_commands);
5062         if (ERROR_OK != e)
5063                 return JIM_ERR;
5064
5065         struct command *c = command_find_in_context(cmd_ctx, cp);
5066         assert(c);
5067         command_set_handler_data(c, target);
5068
5069         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5070 }
5071
5072 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5073 {
5074         if (argc != 1)
5075         {
5076                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5077                 return JIM_ERR;
5078         }
5079         struct command_context *cmd_ctx = current_command_context(interp);
5080         assert (cmd_ctx != NULL);
5081
5082         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
5083         return JIM_OK;
5084 }
5085
5086 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5087 {
5088         if (argc != 1)
5089         {
5090                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5091                 return JIM_ERR;
5092         }
5093         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5094         for (unsigned x = 0; NULL != target_types[x]; x++)
5095         {
5096                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5097                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5098         }
5099         return JIM_OK;
5100 }
5101
5102 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5103 {
5104         if (argc != 1)
5105         {
5106                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5107                 return JIM_ERR;
5108         }
5109         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5110         struct target *target = all_targets;
5111         while (target)
5112         {
5113                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5114                         Jim_NewStringObj(interp, target_name(target), -1));
5115                 target = target->next;
5116         }
5117         return JIM_OK;
5118 }
5119
5120 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5121 {
5122         int i;
5123         const char *targetname;
5124         int retval,len;
5125         struct target *target;
5126         struct target_list *head, *curr;
5127     curr = (struct target_list*) NULL;
5128         head = (struct target_list*) NULL;
5129         
5130         retval = 0;
5131         LOG_DEBUG("%d",argc);
5132         /* argv[1] = target to associate in smp
5133          * argv[2] = target to assoicate in smp
5134          * argv[3] ...
5135          */
5136
5137         for(i=1;i<argc;i++)
5138         {
5139
5140                 targetname = Jim_GetString(argv[i], &len);
5141                 target = get_target(targetname);
5142                 LOG_DEBUG("%s ",targetname);
5143                 if (target)
5144                 {
5145                         struct target_list *new;
5146                         new=malloc(sizeof(struct target_list));
5147                         new->target = target;
5148                         new->next = (struct target_list*)NULL;
5149                         if (head == (struct target_list*)NULL)
5150                         {
5151                                 head = new;
5152                                 curr = head;
5153                         }
5154                         else
5155                         {
5156                                 curr->next = new;
5157                                 curr = new;
5158                         }
5159                 }
5160         }
5161     /*  now parse the list of cpu and put the target in smp mode*/
5162         curr=head;
5163
5164     while(curr!=(struct target_list *)NULL)
5165         {
5166     target=curr->target;
5167         target->smp = 1;
5168         target->head = head;
5169         curr=curr->next;
5170         }
5171         return retval;
5172 }
5173
5174
5175 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5176 {
5177         Jim_GetOptInfo goi;
5178         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5179         if (goi.argc < 3)
5180         {
5181                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5182                         "<name> <target_type> [<target_options> ...]");
5183                 return JIM_ERR;
5184         }
5185         return target_create(&goi);
5186 }
5187
5188 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5189 {
5190         Jim_GetOptInfo goi;
5191         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5192
5193         /* It's OK to remove this mechanism sometime after August 2010 or so */
5194         LOG_WARNING("don't use numbers as target identifiers; use names");
5195         if (goi.argc != 1)
5196         {
5197                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5198                 return JIM_ERR;
5199         }
5200         jim_wide w;
5201         int e = Jim_GetOpt_Wide(&goi, &w);
5202         if (e != JIM_OK)
5203                 return JIM_ERR;
5204
5205         struct target *target;
5206         for (target = all_targets; NULL != target; target = target->next)
5207         {
5208                 if (target->target_number != w)
5209                         continue;
5210
5211                 Jim_SetResultString(goi.interp, target_name(target), -1);
5212                 return JIM_OK;
5213         }
5214         {
5215                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5216                 Jim_SetResultFormatted(goi.interp,
5217                         "Target: number %#s does not exist", wObj);
5218                 Jim_FreeNewObj(interp, wObj);
5219         }
5220         return JIM_ERR;
5221 }
5222
5223 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5224 {
5225         if (argc != 1)
5226         {
5227                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5228                 return JIM_ERR;
5229         }
5230         unsigned count = 0;
5231         struct target *target = all_targets;
5232         while (NULL != target)
5233         {
5234                 target = target->next;
5235                 count++;
5236         }
5237         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5238         return JIM_OK;
5239 }
5240
5241 static const struct command_registration target_subcommand_handlers[] = {
5242         {
5243                 .name = "init",
5244                 .mode = COMMAND_CONFIG,
5245                 .handler = handle_target_init_command,
5246                 .help = "initialize targets",
5247         },
5248         {
5249                 .name = "create",
5250                 /* REVISIT this should be COMMAND_CONFIG ... */
5251                 .mode = COMMAND_ANY,
5252                 .jim_handler = jim_target_create,
5253                 .usage = "name type '-chain-position' name [options ...]",
5254                 .help = "Creates and selects a new target",
5255         },
5256         {
5257                 .name = "current",
5258                 .mode = COMMAND_ANY,
5259                 .jim_handler = jim_target_current,
5260                 .help = "Returns the currently selected target",
5261         },
5262         {
5263                 .name = "types",
5264                 .mode = COMMAND_ANY,
5265                 .jim_handler = jim_target_types,
5266                 .help = "Returns the available target types as "
5267                                 "a list of strings",
5268         },
5269         {
5270                 .name = "names",
5271                 .mode = COMMAND_ANY,
5272                 .jim_handler = jim_target_names,
5273                 .help = "Returns the names of all targets as a list of strings",
5274         },
5275         {
5276                 .name = "number",
5277                 .mode = COMMAND_ANY,
5278                 .jim_handler = jim_target_number,
5279                 .usage = "number",
5280                 .help = "Returns the name of the numbered target "
5281                         "(DEPRECATED)",
5282         },
5283         {
5284                 .name = "count",
5285                 .mode = COMMAND_ANY,
5286                 .jim_handler = jim_target_count,
5287                 .help = "Returns the number of targets as an integer "
5288                         "(DEPRECATED)",
5289         },
5290         {
5291                 .name = "smp",
5292                 .mode = COMMAND_ANY,
5293                 .jim_handler = jim_target_smp,
5294                 .usage = "targetname1 targetname2 ...",
5295                 .help = "gather several target in a smp list"
5296         },
5297
5298         COMMAND_REGISTRATION_DONE
5299 };
5300
5301 struct FastLoad
5302 {
5303         uint32_t address;
5304         uint8_t *data;
5305         int length;
5306
5307 };
5308
5309 static int fastload_num;
5310 static struct FastLoad *fastload;
5311
5312 static void free_fastload(void)
5313 {
5314         if (fastload != NULL)
5315         {
5316                 int i;
5317                 for (i = 0; i < fastload_num; i++)
5318                 {
5319                         if (fastload[i].data)
5320                                 free(fastload[i].data);
5321                 }
5322                 free(fastload);
5323                 fastload = NULL;
5324         }
5325 }
5326
5327
5328
5329
5330 COMMAND_HANDLER(handle_fast_load_image_command)
5331 {
5332         uint8_t *buffer;
5333         size_t buf_cnt;
5334         uint32_t image_size;
5335         uint32_t min_address = 0;
5336         uint32_t max_address = 0xffffffff;
5337         int i;
5338
5339         struct image image;
5340
5341         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5342                         &image, &min_address, &max_address);
5343         if (ERROR_OK != retval)
5344                 return retval;
5345
5346         struct duration bench;
5347         duration_start(&bench);
5348
5349         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5350         if (retval != ERROR_OK)
5351         {
5352                 return retval;
5353         }
5354
5355         image_size = 0x0;
5356         retval = ERROR_OK;
5357         fastload_num = image.num_sections;
5358         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5359         if (fastload == NULL)
5360         {
5361                 command_print(CMD_CTX, "out of memory");
5362                 image_close(&image);
5363                 return ERROR_FAIL;
5364         }
5365         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5366         for (i = 0; i < image.num_sections; i++)
5367         {
5368                 buffer = malloc(image.sections[i].size);
5369                 if (buffer == NULL)
5370                 {
5371                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5372                                                   (int)(image.sections[i].size));
5373                         retval = ERROR_FAIL;
5374                         break;
5375                 }
5376
5377                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
5378                 {
5379                         free(buffer);
5380                         break;
5381                 }
5382
5383                 uint32_t offset = 0;
5384                 uint32_t length = buf_cnt;
5385
5386
5387                 /* DANGER!!! beware of unsigned comparision here!!! */
5388
5389                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
5390                                 (image.sections[i].base_address < max_address))
5391                 {
5392                         if (image.sections[i].base_address < min_address)
5393                         {
5394                                 /* clip addresses below */
5395                                 offset += min_address-image.sections[i].base_address;
5396                                 length -= offset;
5397                         }
5398
5399                         if (image.sections[i].base_address + buf_cnt > max_address)
5400                         {
5401                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5402                         }
5403
5404                         fastload[i].address = image.sections[i].base_address + offset;
5405                         fastload[i].data = malloc(length);
5406                         if (fastload[i].data == NULL)
5407                         {
5408                                 free(buffer);
5409                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5410                                                           length);
5411                                 retval = ERROR_FAIL;
5412                                 break;
5413                         }
5414                         memcpy(fastload[i].data, buffer + offset, length);
5415                         fastload[i].length = length;
5416
5417                         image_size += length;
5418                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5419                                                   (unsigned int)length,
5420                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5421                 }
5422
5423                 free(buffer);
5424         }
5425
5426         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
5427         {
5428                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5429                                 "in %fs (%0.3f KiB/s)", image_size,
5430                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5431
5432                 command_print(CMD_CTX,
5433                                 "WARNING: image has not been loaded to target!"
5434                                 "You can issue a 'fast_load' to finish loading.");
5435         }
5436
5437         image_close(&image);
5438
5439         if (retval != ERROR_OK)
5440         {
5441                 free_fastload();
5442         }
5443
5444         return retval;
5445 }
5446
5447 COMMAND_HANDLER(handle_fast_load_command)
5448 {
5449         if (CMD_ARGC > 0)
5450                 return ERROR_COMMAND_SYNTAX_ERROR;
5451         if (fastload == NULL)
5452         {
5453                 LOG_ERROR("No image in memory");
5454                 return ERROR_FAIL;
5455         }
5456         int i;
5457         int ms = timeval_ms();
5458         int size = 0;
5459         int retval = ERROR_OK;
5460         for (i = 0; i < fastload_num;i++)
5461         {
5462                 struct target *target = get_current_target(CMD_CTX);
5463                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5464                                           (unsigned int)(fastload[i].address),
5465                                           (unsigned int)(fastload[i].length));
5466                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5467                 if (retval != ERROR_OK)
5468                 {
5469                         break;
5470                 }
5471                 size += fastload[i].length;
5472         }
5473         if (retval == ERROR_OK)
5474         {
5475                 int after = timeval_ms();
5476                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5477         }
5478         return retval;
5479 }
5480
5481 static const struct command_registration target_command_handlers[] = {
5482         {
5483                 .name = "targets",
5484                 .handler = handle_targets_command,
5485                 .mode = COMMAND_ANY,
5486                 .help = "change current default target (one parameter) "
5487                         "or prints table of all targets (no parameters)",
5488                 .usage = "[target]",
5489         },
5490         {
5491                 .name = "target",
5492                 .mode = COMMAND_CONFIG,
5493                 .help = "configure target",
5494
5495                 .chain = target_subcommand_handlers,
5496         },
5497         COMMAND_REGISTRATION_DONE
5498 };
5499
5500 int target_register_commands(struct command_context *cmd_ctx)
5501 {
5502         return register_commands(cmd_ctx, NULL, target_command_handlers);
5503 }
5504
5505 static bool target_reset_nag = true;
5506
5507 bool get_target_reset_nag(void)
5508 {
5509         return target_reset_nag;
5510 }
5511
5512 COMMAND_HANDLER(handle_target_reset_nag)
5513 {
5514         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5515                         &target_reset_nag, "Nag after each reset about options to improve "
5516                         "performance");
5517 }
5518
5519 static const struct command_registration target_exec_command_handlers[] = {
5520         {
5521                 .name = "fast_load_image",
5522                 .handler = handle_fast_load_image_command,
5523                 .mode = COMMAND_ANY,
5524                 .help = "Load image into server memory for later use by "
5525                         "fast_load; primarily for profiling",
5526                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5527                         "[min_address [max_length]]",
5528         },
5529         {
5530                 .name = "fast_load",
5531                 .handler = handle_fast_load_command,
5532                 .mode = COMMAND_EXEC,
5533                 .help = "loads active fast load image to current target "
5534                         "- mainly for profiling purposes",
5535         },
5536         {
5537                 .name = "profile",
5538                 .handler = handle_profile_command,
5539                 .mode = COMMAND_EXEC,
5540                 .help = "profiling samples the CPU PC",
5541         },
5542         /** @todo don't register virt2phys() unless target supports it */
5543         {
5544                 .name = "virt2phys",
5545                 .handler = handle_virt2phys_command,
5546                 .mode = COMMAND_ANY,
5547                 .help = "translate a virtual address into a physical address",
5548                 .usage = "virtual_address",
5549         },
5550         {
5551                 .name = "reg",
5552                 .handler = handle_reg_command,
5553                 .mode = COMMAND_EXEC,
5554                 .help = "display or set a register; with no arguments, "
5555                         "displays all registers and their values",
5556                 .usage = "[(register_name|register_number) [value]]",
5557         },
5558         {
5559                 .name = "poll",
5560                 .handler = handle_poll_command,
5561                 .mode = COMMAND_EXEC,
5562                 .help = "poll target state; or reconfigure background polling",
5563                 .usage = "['on'|'off']",
5564         },
5565         {
5566                 .name = "wait_halt",
5567                 .handler = handle_wait_halt_command,
5568                 .mode = COMMAND_EXEC,
5569                 .help = "wait up to the specified number of milliseconds "
5570                         "(default 5) for a previously requested halt",
5571                 .usage = "[milliseconds]",
5572         },
5573         {
5574                 .name = "halt",
5575                 .handler = handle_halt_command,
5576                 .mode = COMMAND_EXEC,
5577                 .help = "request target to halt, then wait up to the specified"
5578                         "number of milliseconds (default 5) for it to complete",
5579                 .usage = "[milliseconds]",
5580         },
5581         {
5582                 .name = "resume",
5583                 .handler = handle_resume_command,
5584                 .mode = COMMAND_EXEC,
5585                 .help = "resume target execution from current PC or address",
5586                 .usage = "[address]",
5587         },
5588         {
5589                 .name = "reset",
5590                 .handler = handle_reset_command,
5591                 .mode = COMMAND_EXEC,
5592                 .usage = "[run|halt|init]",
5593                 .help = "Reset all targets into the specified mode."
5594                         "Default reset mode is run, if not given.",
5595         },
5596         {
5597                 .name = "soft_reset_halt",
5598                 .handler = handle_soft_reset_halt_command,
5599                 .mode = COMMAND_EXEC,
5600                 .help = "halt the target and do a soft reset",
5601         },
5602         {
5603                 .name = "step",
5604                 .handler = handle_step_command,
5605                 .mode = COMMAND_EXEC,
5606                 .help = "step one instruction from current PC or address",
5607                 .usage = "[address]",
5608         },
5609         {
5610                 .name = "mdw",
5611                 .handler = handle_md_command,
5612                 .mode = COMMAND_EXEC,
5613                 .help = "display memory words",
5614                 .usage = "['phys'] address [count]",
5615         },
5616         {
5617                 .name = "mdh",
5618                 .handler = handle_md_command,
5619                 .mode = COMMAND_EXEC,
5620                 .help = "display memory half-words",
5621                 .usage = "['phys'] address [count]",
5622         },
5623         {
5624                 .name = "mdb",
5625                 .handler = handle_md_command,
5626                 .mode = COMMAND_EXEC,
5627                 .help = "display memory bytes",
5628                 .usage = "['phys'] address [count]",
5629         },
5630         {
5631                 .name = "mww",
5632                 .handler = handle_mw_command,
5633                 .mode = COMMAND_EXEC,
5634                 .help = "write memory word",
5635                 .usage = "['phys'] address value [count]",
5636         },
5637         {
5638                 .name = "mwh",
5639                 .handler = handle_mw_command,
5640                 .mode = COMMAND_EXEC,
5641                 .help = "write memory half-word",
5642                 .usage = "['phys'] address value [count]",
5643         },
5644         {
5645                 .name = "mwb",
5646                 .handler = handle_mw_command,
5647                 .mode = COMMAND_EXEC,
5648                 .help = "write memory byte",
5649                 .usage = "['phys'] address value [count]",
5650         },
5651         {
5652                 .name = "bp",
5653                 .handler = handle_bp_command,
5654                 .mode = COMMAND_EXEC,
5655                 .help = "list or set hardware or software breakpoint",
5656                 .usage = "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']",
5657         },
5658         {
5659                 .name = "rbp",
5660                 .handler = handle_rbp_command,
5661                 .mode = COMMAND_EXEC,
5662                 .help = "remove breakpoint",
5663                 .usage = "address",
5664         },
5665         {
5666                 .name = "wp",
5667                 .handler = handle_wp_command,
5668                 .mode = COMMAND_EXEC,
5669                 .help = "list (no params) or create watchpoints",
5670                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5671         },
5672         {
5673                 .name = "rwp",
5674                 .handler = handle_rwp_command,
5675                 .mode = COMMAND_EXEC,
5676                 .help = "remove watchpoint",
5677                 .usage = "address",
5678         },
5679         {
5680                 .name = "load_image",
5681                 .handler = handle_load_image_command,
5682                 .mode = COMMAND_EXEC,
5683                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5684                         "[min_address] [max_length]",
5685         },
5686         {
5687                 .name = "dump_image",
5688                 .handler = handle_dump_image_command,
5689                 .mode = COMMAND_EXEC,
5690                 .usage = "filename address size",
5691         },
5692         {
5693                 .name = "verify_image",
5694                 .handler = handle_verify_image_command,
5695                 .mode = COMMAND_EXEC,
5696                 .usage = "filename [offset [type]]",
5697         },
5698         {
5699                 .name = "test_image",
5700                 .handler = handle_test_image_command,
5701                 .mode = COMMAND_EXEC,
5702                 .usage = "filename [offset [type]]",
5703         },
5704         {
5705                 .name = "mem2array",
5706                 .mode = COMMAND_EXEC,
5707                 .jim_handler = jim_mem2array,
5708                 .help = "read 8/16/32 bit memory and return as a TCL array "
5709                         "for script processing",
5710                 .usage = "arrayname bitwidth address count",
5711         },
5712         {
5713                 .name = "array2mem",
5714                 .mode = COMMAND_EXEC,
5715                 .jim_handler = jim_array2mem,
5716                 .help = "convert a TCL array to memory locations "
5717                         "and write the 8/16/32 bit values",
5718                 .usage = "arrayname bitwidth address count",
5719         },
5720         {
5721                 .name = "reset_nag",
5722                 .handler = handle_target_reset_nag,
5723                 .mode = COMMAND_ANY,
5724                 .help = "Nag after each reset about options that could have been "
5725                                 "enabled to improve performance. ",
5726                 .usage = "['enable'|'disable']",
5727         },
5728         COMMAND_REGISTRATION_DONE
5729 };
5730 static int target_register_user_commands(struct command_context *cmd_ctx)
5731 {
5732         int retval = ERROR_OK;
5733         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5734                 return retval;
5735
5736         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5737                 return retval;
5738
5739
5740         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5741 }