avr32: work-in-progress
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
39
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
47
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50                 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52                 int argc, Jim_Obj *const *argv);
53 static int target_register_user_commands(struct command_context *cmd_ctx);
54
55 /* targets */
56 extern struct target_type arm7tdmi_target;
57 extern struct target_type arm720t_target;
58 extern struct target_type arm9tdmi_target;
59 extern struct target_type arm920t_target;
60 extern struct target_type arm966e_target;
61 extern struct target_type arm926ejs_target;
62 extern struct target_type fa526_target;
63 extern struct target_type feroceon_target;
64 extern struct target_type dragonite_target;
65 extern struct target_type xscale_target;
66 extern struct target_type cortexm3_target;
67 extern struct target_type cortexa8_target;
68 extern struct target_type arm11_target;
69 extern struct target_type mips_m4k_target;
70 extern struct target_type avr_target;
71 extern struct target_type dsp563xx_target;
72 extern struct target_type testee_target;
73 extern struct target_type avr32_ap7k_target;
74
75 static struct target_type *target_types[] =
76 {
77         &arm7tdmi_target,
78         &arm9tdmi_target,
79         &arm920t_target,
80         &arm720t_target,
81         &arm966e_target,
82         &arm926ejs_target,
83         &fa526_target,
84         &feroceon_target,
85         &dragonite_target,
86         &xscale_target,
87         &cortexm3_target,
88         &cortexa8_target,
89         &arm11_target,
90         &mips_m4k_target,
91         &avr_target,
92         &dsp563xx_target,
93         &testee_target,
94         &avr32_ap7k_target,
95         NULL,
96 };
97
98 struct target *all_targets = NULL;
99 static struct target_event_callback *target_event_callbacks = NULL;
100 static struct target_timer_callback *target_timer_callbacks = NULL;
101 static const int polling_interval = 100;
102
103 static const Jim_Nvp nvp_assert[] = {
104         { .name = "assert", NVP_ASSERT },
105         { .name = "deassert", NVP_DEASSERT },
106         { .name = "T", NVP_ASSERT },
107         { .name = "F", NVP_DEASSERT },
108         { .name = "t", NVP_ASSERT },
109         { .name = "f", NVP_DEASSERT },
110         { .name = NULL, .value = -1 }
111 };
112
113 static const Jim_Nvp nvp_error_target[] = {
114         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
115         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
116         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
117         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
118         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
119         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
120         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
121         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
122         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
123         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
124         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
125         { .value = -1, .name = NULL }
126 };
127
128 static const char *target_strerror_safe(int err)
129 {
130         const Jim_Nvp *n;
131
132         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
133         if (n->name == NULL) {
134                 return "unknown";
135         } else {
136                 return n->name;
137         }
138 }
139
140 static const Jim_Nvp nvp_target_event[] = {
141         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
142         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
143
144         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
145         { .value = TARGET_EVENT_HALTED, .name = "halted" },
146         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
147         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
148         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
149
150         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
151         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
152
153         /* historical name */
154
155         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
156
157         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
158         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
159         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
160         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
161         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
162         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
163         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
164         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
165         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
166         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
167         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
168
169         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
170         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
171
172         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
173         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
174
175         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
176         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
177
178         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
179         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
180
181         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
182         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
183
184         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
185         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
186         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
187
188         { .name = NULL, .value = -1 }
189 };
190
191 static const Jim_Nvp nvp_target_state[] = {
192         { .name = "unknown", .value = TARGET_UNKNOWN },
193         { .name = "running", .value = TARGET_RUNNING },
194         { .name = "halted",  .value = TARGET_HALTED },
195         { .name = "reset",   .value = TARGET_RESET },
196         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
197         { .name = NULL, .value = -1 },
198 };
199
200 static const Jim_Nvp nvp_target_debug_reason [] = {
201         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
202         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
203         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
204         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
205         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
206         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
207         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
208         { .name = NULL, .value = -1 },
209 };
210
211 static const Jim_Nvp nvp_target_endian[] = {
212         { .name = "big",    .value = TARGET_BIG_ENDIAN },
213         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
214         { .name = "be",     .value = TARGET_BIG_ENDIAN },
215         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
216         { .name = NULL,     .value = -1 },
217 };
218
219 static const Jim_Nvp nvp_reset_modes[] = {
220         { .name = "unknown", .value = RESET_UNKNOWN },
221         { .name = "run"    , .value = RESET_RUN },
222         { .name = "halt"   , .value = RESET_HALT },
223         { .name = "init"   , .value = RESET_INIT },
224         { .name = NULL     , .value = -1 },
225 };
226
227 const char *debug_reason_name(struct target *t)
228 {
229         const char *cp;
230
231         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
232                         t->debug_reason)->name;
233         if (!cp) {
234                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
235                 cp = "(*BUG*unknown*BUG*)";
236         }
237         return cp;
238 }
239
240 const char *
241 target_state_name( struct target *t )
242 {
243         const char *cp;
244         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
245         if( !cp ){
246                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
247                 cp = "(*BUG*unknown*BUG*)";
248         }
249         return cp;
250 }
251
252 /* determine the number of the new target */
253 static int new_target_number(void)
254 {
255         struct target *t;
256         int x;
257
258         /* number is 0 based */
259         x = -1;
260         t = all_targets;
261         while (t) {
262                 if (x < t->target_number) {
263                         x = t->target_number;
264                 }
265                 t = t->next;
266         }
267         return x + 1;
268 }
269
270 /* read a uint32_t from a buffer in target memory endianness */
271 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
272 {
273         if (target->endianness == TARGET_LITTLE_ENDIAN)
274                 return le_to_h_u32(buffer);
275         else
276                 return be_to_h_u32(buffer);
277 }
278
279 /* read a uint16_t from a buffer in target memory endianness */
280 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
281 {
282         if (target->endianness == TARGET_LITTLE_ENDIAN)
283                 return le_to_h_u16(buffer);
284         else
285                 return be_to_h_u16(buffer);
286 }
287
288 /* read a uint8_t from a buffer in target memory endianness */
289 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
290 {
291         return *buffer & 0x0ff;
292 }
293
294 /* write a uint32_t to a buffer in target memory endianness */
295 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
296 {
297         if (target->endianness == TARGET_LITTLE_ENDIAN)
298                 h_u32_to_le(buffer, value);
299         else
300                 h_u32_to_be(buffer, value);
301 }
302
303 /* write a uint16_t to a buffer in target memory endianness */
304 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
305 {
306         if (target->endianness == TARGET_LITTLE_ENDIAN)
307                 h_u16_to_le(buffer, value);
308         else
309                 h_u16_to_be(buffer, value);
310 }
311
312 /* write a uint8_t to a buffer in target memory endianness */
313 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
314 {
315         *buffer = value;
316 }
317
318 /* return a pointer to a configured target; id is name or number */
319 struct target *get_target(const char *id)
320 {
321         struct target *target;
322
323         /* try as tcltarget name */
324         for (target = all_targets; target; target = target->next) {
325                 if (target->cmd_name == NULL)
326                         continue;
327                 if (strcmp(id, target->cmd_name) == 0)
328                         return target;
329         }
330
331         /* It's OK to remove this fallback sometime after August 2010 or so */
332
333         /* no match, try as number */
334         unsigned num;
335         if (parse_uint(id, &num) != ERROR_OK)
336                 return NULL;
337
338         for (target = all_targets; target; target = target->next) {
339                 if (target->target_number == (int)num) {
340                         LOG_WARNING("use '%s' as target identifier, not '%u'",
341                                         target->cmd_name, num);
342                         return target;
343                 }
344         }
345
346         return NULL;
347 }
348
349 /* returns a pointer to the n-th configured target */
350 static struct target *get_target_by_num(int num)
351 {
352         struct target *target = all_targets;
353
354         while (target) {
355                 if (target->target_number == num) {
356                         return target;
357                 }
358                 target = target->next;
359         }
360
361         return NULL;
362 }
363
364 struct target* get_current_target(struct command_context *cmd_ctx)
365 {
366         struct target *target = get_target_by_num(cmd_ctx->current_target);
367
368         if (target == NULL)
369         {
370                 LOG_ERROR("BUG: current_target out of bounds");
371                 exit(-1);
372         }
373
374         return target;
375 }
376
377 int target_poll(struct target *target)
378 {
379         int retval;
380
381         /* We can't poll until after examine */
382         if (!target_was_examined(target))
383         {
384                 /* Fail silently lest we pollute the log */
385                 return ERROR_FAIL;
386         }
387
388         retval = target->type->poll(target);
389         if (retval != ERROR_OK)
390                 return retval;
391
392         if (target->halt_issued)
393         {
394                 if (target->state == TARGET_HALTED)
395                 {
396                         target->halt_issued = false;
397                 } else
398                 {
399                         long long t = timeval_ms() - target->halt_issued_time;
400                         if (t>1000)
401                         {
402                                 target->halt_issued = false;
403                                 LOG_INFO("Halt timed out, wake up GDB.");
404                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
405                         }
406                 }
407         }
408
409         return ERROR_OK;
410 }
411
412 int target_halt(struct target *target)
413 {
414         int retval;
415         /* We can't poll until after examine */
416         if (!target_was_examined(target))
417         {
418                 LOG_ERROR("Target not examined yet");
419                 return ERROR_FAIL;
420         }
421
422         retval = target->type->halt(target);
423         if (retval != ERROR_OK)
424                 return retval;
425
426         target->halt_issued = true;
427         target->halt_issued_time = timeval_ms();
428
429         return ERROR_OK;
430 }
431
432 /**
433  * Make the target (re)start executing using its saved execution
434  * context (possibly with some modifications).
435  *
436  * @param target Which target should start executing.
437  * @param current True to use the target's saved program counter instead
438  *      of the address parameter
439  * @param address Optionally used as the program counter.
440  * @param handle_breakpoints True iff breakpoints at the resumption PC
441  *      should be skipped.  (For example, maybe execution was stopped by
442  *      such a breakpoint, in which case it would be counterprodutive to
443  *      let it re-trigger.
444  * @param debug_execution False if all working areas allocated by OpenOCD
445  *      should be released and/or restored to their original contents.
446  *      (This would for example be true to run some downloaded "helper"
447  *      algorithm code, which resides in one such working buffer and uses
448  *      another for data storage.)
449  *
450  * @todo Resolve the ambiguity about what the "debug_execution" flag
451  * signifies.  For example, Target implementations don't agree on how
452  * it relates to invalidation of the register cache, or to whether
453  * breakpoints and watchpoints should be enabled.  (It would seem wrong
454  * to enable breakpoints when running downloaded "helper" algorithms
455  * (debug_execution true), since the breakpoints would be set to match
456  * target firmware being debugged, not the helper algorithm.... and
457  * enabling them could cause such helpers to malfunction (for example,
458  * by overwriting data with a breakpoint instruction.  On the other
459  * hand the infrastructure for running such helpers might use this
460  * procedure but rely on hardware breakpoint to detect termination.)
461  */
462 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
463 {
464         int retval;
465
466         /* We can't poll until after examine */
467         if (!target_was_examined(target))
468         {
469                 LOG_ERROR("Target not examined yet");
470                 return ERROR_FAIL;
471         }
472
473         /* note that resume *must* be asynchronous. The CPU can halt before
474          * we poll. The CPU can even halt at the current PC as a result of
475          * a software breakpoint being inserted by (a bug?) the application.
476          */
477         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
478                 return retval;
479
480         return retval;
481 }
482
483 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
484 {
485         char buf[100];
486         int retval;
487         Jim_Nvp *n;
488         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
489         if (n->name == NULL) {
490                 LOG_ERROR("invalid reset mode");
491                 return ERROR_FAIL;
492         }
493
494         /* disable polling during reset to make reset event scripts
495          * more predictable, i.e. dr/irscan & pathmove in events will
496          * not have JTAG operations injected into the middle of a sequence.
497          */
498         bool save_poll = jtag_poll_get_enabled();
499
500         jtag_poll_set_enabled(false);
501
502         sprintf(buf, "ocd_process_reset %s", n->name);
503         retval = Jim_Eval(cmd_ctx->interp, buf);
504
505         jtag_poll_set_enabled(save_poll);
506
507         if (retval != JIM_OK) {
508                 Jim_PrintErrorMessage(cmd_ctx->interp);
509                 return ERROR_FAIL;
510         }
511
512         /* We want any events to be processed before the prompt */
513         retval = target_call_timer_callbacks_now();
514
515         struct target *target;
516         for (target = all_targets; target; target = target->next) {
517                 target->type->check_reset(target);
518         }
519
520         return retval;
521 }
522
523 static int identity_virt2phys(struct target *target,
524                 uint32_t virtual, uint32_t *physical)
525 {
526         *physical = virtual;
527         return ERROR_OK;
528 }
529
530 static int no_mmu(struct target *target, int *enabled)
531 {
532         *enabled = 0;
533         return ERROR_OK;
534 }
535
536 static int default_examine(struct target *target)
537 {
538         target_set_examined(target);
539         return ERROR_OK;
540 }
541
542 /* no check by default */
543 static int default_check_reset(struct target *target)
544 {
545         return ERROR_OK;
546 }
547
548 int target_examine_one(struct target *target)
549 {
550         return target->type->examine(target);
551 }
552
553 static int jtag_enable_callback(enum jtag_event event, void *priv)
554 {
555         struct target *target = priv;
556
557         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
558                 return ERROR_OK;
559
560         jtag_unregister_event_callback(jtag_enable_callback, target);
561         return target_examine_one(target);
562 }
563
564
565 /* Targets that correctly implement init + examine, i.e.
566  * no communication with target during init:
567  *
568  * XScale
569  */
570 int target_examine(void)
571 {
572         int retval = ERROR_OK;
573         struct target *target;
574
575         for (target = all_targets; target; target = target->next)
576         {
577                 /* defer examination, but don't skip it */
578                 if (!target->tap->enabled) {
579                         jtag_register_event_callback(jtag_enable_callback,
580                                         target);
581                         continue;
582                 }
583                 if ((retval = target_examine_one(target)) != ERROR_OK)
584                         return retval;
585         }
586         return retval;
587 }
588 const char *target_type_name(struct target *target)
589 {
590         return target->type->name;
591 }
592
593 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
594 {
595         if (!target_was_examined(target))
596         {
597                 LOG_ERROR("Target not examined yet");
598                 return ERROR_FAIL;
599         }
600         return target->type->write_memory_imp(target, address, size, count, buffer);
601 }
602
603 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
604 {
605         if (!target_was_examined(target))
606         {
607                 LOG_ERROR("Target not examined yet");
608                 return ERROR_FAIL;
609         }
610         return target->type->read_memory_imp(target, address, size, count, buffer);
611 }
612
613 static int target_soft_reset_halt_imp(struct target *target)
614 {
615         if (!target_was_examined(target))
616         {
617                 LOG_ERROR("Target not examined yet");
618                 return ERROR_FAIL;
619         }
620         if (!target->type->soft_reset_halt_imp) {
621                 LOG_ERROR("Target %s does not support soft_reset_halt",
622                                 target_name(target));
623                 return ERROR_FAIL;
624         }
625         return target->type->soft_reset_halt_imp(target);
626 }
627
628 /**
629  * Downloads a target-specific native code algorithm to the target,
630  * and executes it.  * Note that some targets may need to set up, enable,
631  * and tear down a breakpoint (hard or * soft) to detect algorithm
632  * termination, while others may support  lower overhead schemes where
633  * soft breakpoints embedded in the algorithm automatically terminate the
634  * algorithm.
635  *
636  * @param target used to run the algorithm
637  * @param arch_info target-specific description of the algorithm.
638  */
639 int target_run_algorithm(struct target *target,
640                 int num_mem_params, struct mem_param *mem_params,
641                 int num_reg_params, struct reg_param *reg_param,
642                 uint32_t entry_point, uint32_t exit_point,
643                 int timeout_ms, void *arch_info)
644 {
645         int retval = ERROR_FAIL;
646
647         if (!target_was_examined(target))
648         {
649                 LOG_ERROR("Target not examined yet");
650                 goto done;
651         }
652         if (!target->type->run_algorithm) {
653                 LOG_ERROR("Target type '%s' does not support %s",
654                                 target_type_name(target), __func__);
655                 goto done;
656         }
657
658         target->running_alg = true;
659         retval = target->type->run_algorithm(target,
660                         num_mem_params, mem_params,
661                         num_reg_params, reg_param,
662                         entry_point, exit_point, timeout_ms, arch_info);
663         target->running_alg = false;
664
665 done:
666         return retval;
667 }
668
669
670 int target_read_memory(struct target *target,
671                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
672 {
673         return target->type->read_memory(target, address, size, count, buffer);
674 }
675
676 static int target_read_phys_memory(struct target *target,
677                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
678 {
679         return target->type->read_phys_memory(target, address, size, count, buffer);
680 }
681
682 int target_write_memory(struct target *target,
683                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
684 {
685         return target->type->write_memory(target, address, size, count, buffer);
686 }
687
688 static int target_write_phys_memory(struct target *target,
689                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
690 {
691         return target->type->write_phys_memory(target, address, size, count, buffer);
692 }
693
694 int target_bulk_write_memory(struct target *target,
695                 uint32_t address, uint32_t count, uint8_t *buffer)
696 {
697         return target->type->bulk_write_memory(target, address, count, buffer);
698 }
699
700 int target_add_breakpoint(struct target *target,
701                 struct breakpoint *breakpoint)
702 {
703         if (target->state != TARGET_HALTED) {
704                 LOG_WARNING("target %s is not halted", target->cmd_name);
705                 return ERROR_TARGET_NOT_HALTED;
706         }
707         return target->type->add_breakpoint(target, breakpoint);
708 }
709 int target_remove_breakpoint(struct target *target,
710                 struct breakpoint *breakpoint)
711 {
712         return target->type->remove_breakpoint(target, breakpoint);
713 }
714
715 int target_add_watchpoint(struct target *target,
716                 struct watchpoint *watchpoint)
717 {
718         if (target->state != TARGET_HALTED) {
719                 LOG_WARNING("target %s is not halted", target->cmd_name);
720                 return ERROR_TARGET_NOT_HALTED;
721         }
722         return target->type->add_watchpoint(target, watchpoint);
723 }
724 int target_remove_watchpoint(struct target *target,
725                 struct watchpoint *watchpoint)
726 {
727         return target->type->remove_watchpoint(target, watchpoint);
728 }
729
730 int target_get_gdb_reg_list(struct target *target,
731                 struct reg **reg_list[], int *reg_list_size)
732 {
733         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
734 }
735 int target_step(struct target *target,
736                 int current, uint32_t address, int handle_breakpoints)
737 {
738         return target->type->step(target, current, address, handle_breakpoints);
739 }
740
741
742 /**
743  * Reset the @c examined flag for the given target.
744  * Pure paranoia -- targets are zeroed on allocation.
745  */
746 static void target_reset_examined(struct target *target)
747 {
748         target->examined = false;
749 }
750
751 static int
752 err_read_phys_memory(struct target *target, uint32_t address,
753                 uint32_t size, uint32_t count, uint8_t *buffer)
754 {
755         LOG_ERROR("Not implemented: %s", __func__);
756         return ERROR_FAIL;
757 }
758
759 static int
760 err_write_phys_memory(struct target *target, uint32_t address,
761                 uint32_t size, uint32_t count, uint8_t *buffer)
762 {
763         LOG_ERROR("Not implemented: %s", __func__);
764         return ERROR_FAIL;
765 }
766
767 static int handle_target(void *priv);
768
769 static int target_init_one(struct command_context *cmd_ctx,
770                 struct target *target)
771 {
772         target_reset_examined(target);
773
774         struct target_type *type = target->type;
775         if (type->examine == NULL)
776                 type->examine = default_examine;
777
778         if (type->check_reset== NULL)
779                 type->check_reset = default_check_reset;
780
781         int retval = type->init_target(cmd_ctx, target);
782         if (ERROR_OK != retval)
783         {
784                 LOG_ERROR("target '%s' init failed", target_name(target));
785                 return retval;
786         }
787
788         /**
789          * @todo get rid of those *memory_imp() methods, now that all
790          * callers are using target_*_memory() accessors ... and make
791          * sure the "physical" paths handle the same issues.
792          */
793         /* a non-invasive way(in terms of patches) to add some code that
794          * runs before the type->write/read_memory implementation
795          */
796         type->write_memory_imp = target->type->write_memory;
797         type->write_memory = target_write_memory_imp;
798
799         type->read_memory_imp = target->type->read_memory;
800         type->read_memory = target_read_memory_imp;
801
802         type->soft_reset_halt_imp = target->type->soft_reset_halt;
803         type->soft_reset_halt = target_soft_reset_halt_imp;
804
805         /* Sanity-check MMU support ... stub in what we must, to help
806          * implement it in stages, but warn if we need to do so.
807          */
808         if (type->mmu)
809         {
810                 if (type->write_phys_memory == NULL)
811                 {
812                         LOG_ERROR("type '%s' is missing write_phys_memory",
813                                         type->name);
814                         type->write_phys_memory = err_write_phys_memory;
815                 }
816                 if (type->read_phys_memory == NULL)
817                 {
818                         LOG_ERROR("type '%s' is missing read_phys_memory",
819                                         type->name);
820                         type->read_phys_memory = err_read_phys_memory;
821                 }
822                 if (type->virt2phys == NULL)
823                 {
824                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
825                         type->virt2phys = identity_virt2phys;
826                 }
827         }
828         else
829         {
830                 /* Make sure no-MMU targets all behave the same:  make no
831                  * distinction between physical and virtual addresses, and
832                  * ensure that virt2phys() is always an identity mapping.
833                  */
834                 if (type->write_phys_memory || type->read_phys_memory
835                                 || type->virt2phys)
836                 {
837                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
838                 }
839
840                 type->mmu = no_mmu;
841                 type->write_phys_memory = type->write_memory;
842                 type->read_phys_memory = type->read_memory;
843                 type->virt2phys = identity_virt2phys;
844         }
845         return ERROR_OK;
846 }
847
848 static int target_init(struct command_context *cmd_ctx)
849 {
850         struct target *target;
851         int retval;
852
853         for (target = all_targets; target; target = target->next)
854         {
855                 retval = target_init_one(cmd_ctx, target);
856                 if (ERROR_OK != retval)
857                         return retval;
858         }
859
860         if (!all_targets)
861                 return ERROR_OK;
862
863         retval = target_register_user_commands(cmd_ctx);
864         if (ERROR_OK != retval)
865                 return retval;
866
867         retval = target_register_timer_callback(&handle_target,
868                         polling_interval, 1, cmd_ctx->interp);
869         if (ERROR_OK != retval)
870                 return retval;
871
872         return ERROR_OK;
873 }
874
875 COMMAND_HANDLER(handle_target_init_command)
876 {
877         if (CMD_ARGC != 0)
878                 return ERROR_COMMAND_SYNTAX_ERROR;
879
880         static bool target_initialized = false;
881         if (target_initialized)
882         {
883                 LOG_INFO("'target init' has already been called");
884                 return ERROR_OK;
885         }
886         target_initialized = true;
887
888         LOG_DEBUG("Initializing targets...");
889         return target_init(CMD_CTX);
890 }
891
892 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
893 {
894         struct target_event_callback **callbacks_p = &target_event_callbacks;
895
896         if (callback == NULL)
897         {
898                 return ERROR_INVALID_ARGUMENTS;
899         }
900
901         if (*callbacks_p)
902         {
903                 while ((*callbacks_p)->next)
904                         callbacks_p = &((*callbacks_p)->next);
905                 callbacks_p = &((*callbacks_p)->next);
906         }
907
908         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
909         (*callbacks_p)->callback = callback;
910         (*callbacks_p)->priv = priv;
911         (*callbacks_p)->next = NULL;
912
913         return ERROR_OK;
914 }
915
916 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
917 {
918         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
919         struct timeval now;
920
921         if (callback == NULL)
922         {
923                 return ERROR_INVALID_ARGUMENTS;
924         }
925
926         if (*callbacks_p)
927         {
928                 while ((*callbacks_p)->next)
929                         callbacks_p = &((*callbacks_p)->next);
930                 callbacks_p = &((*callbacks_p)->next);
931         }
932
933         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
934         (*callbacks_p)->callback = callback;
935         (*callbacks_p)->periodic = periodic;
936         (*callbacks_p)->time_ms = time_ms;
937
938         gettimeofday(&now, NULL);
939         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
940         time_ms -= (time_ms % 1000);
941         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
942         if ((*callbacks_p)->when.tv_usec > 1000000)
943         {
944                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
945                 (*callbacks_p)->when.tv_sec += 1;
946         }
947
948         (*callbacks_p)->priv = priv;
949         (*callbacks_p)->next = NULL;
950
951         return ERROR_OK;
952 }
953
954 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
955 {
956         struct target_event_callback **p = &target_event_callbacks;
957         struct target_event_callback *c = target_event_callbacks;
958
959         if (callback == NULL)
960         {
961                 return ERROR_INVALID_ARGUMENTS;
962         }
963
964         while (c)
965         {
966                 struct target_event_callback *next = c->next;
967                 if ((c->callback == callback) && (c->priv == priv))
968                 {
969                         *p = next;
970                         free(c);
971                         return ERROR_OK;
972                 }
973                 else
974                         p = &(c->next);
975                 c = next;
976         }
977
978         return ERROR_OK;
979 }
980
981 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
982 {
983         struct target_timer_callback **p = &target_timer_callbacks;
984         struct target_timer_callback *c = target_timer_callbacks;
985
986         if (callback == NULL)
987         {
988                 return ERROR_INVALID_ARGUMENTS;
989         }
990
991         while (c)
992         {
993                 struct target_timer_callback *next = c->next;
994                 if ((c->callback == callback) && (c->priv == priv))
995                 {
996                         *p = next;
997                         free(c);
998                         return ERROR_OK;
999                 }
1000                 else
1001                         p = &(c->next);
1002                 c = next;
1003         }
1004
1005         return ERROR_OK;
1006 }
1007
1008 int target_call_event_callbacks(struct target *target, enum target_event event)
1009 {
1010         struct target_event_callback *callback = target_event_callbacks;
1011         struct target_event_callback *next_callback;
1012
1013         if (event == TARGET_EVENT_HALTED)
1014         {
1015                 /* execute early halted first */
1016                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1017         }
1018
1019         LOG_DEBUG("target event %i (%s)",
1020                           event,
1021                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1022
1023         target_handle_event(target, event);
1024
1025         while (callback)
1026         {
1027                 next_callback = callback->next;
1028                 callback->callback(target, event, callback->priv);
1029                 callback = next_callback;
1030         }
1031
1032         return ERROR_OK;
1033 }
1034
1035 static int target_timer_callback_periodic_restart(
1036                 struct target_timer_callback *cb, struct timeval *now)
1037 {
1038         int time_ms = cb->time_ms;
1039         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1040         time_ms -= (time_ms % 1000);
1041         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1042         if (cb->when.tv_usec > 1000000)
1043         {
1044                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1045                 cb->when.tv_sec += 1;
1046         }
1047         return ERROR_OK;
1048 }
1049
1050 static int target_call_timer_callback(struct target_timer_callback *cb,
1051                 struct timeval *now)
1052 {
1053         cb->callback(cb->priv);
1054
1055         if (cb->periodic)
1056                 return target_timer_callback_periodic_restart(cb, now);
1057
1058         return target_unregister_timer_callback(cb->callback, cb->priv);
1059 }
1060
1061 static int target_call_timer_callbacks_check_time(int checktime)
1062 {
1063         keep_alive();
1064
1065         struct timeval now;
1066         gettimeofday(&now, NULL);
1067
1068         struct target_timer_callback *callback = target_timer_callbacks;
1069         while (callback)
1070         {
1071                 // cleaning up may unregister and free this callback
1072                 struct target_timer_callback *next_callback = callback->next;
1073
1074                 bool call_it = callback->callback &&
1075                         ((!checktime && callback->periodic) ||
1076                           now.tv_sec > callback->when.tv_sec ||
1077                          (now.tv_sec == callback->when.tv_sec &&
1078                           now.tv_usec >= callback->when.tv_usec));
1079
1080                 if (call_it)
1081                 {
1082                         int retval = target_call_timer_callback(callback, &now);
1083                         if (retval != ERROR_OK)
1084                                 return retval;
1085                 }
1086
1087                 callback = next_callback;
1088         }
1089
1090         return ERROR_OK;
1091 }
1092
1093 int target_call_timer_callbacks(void)
1094 {
1095         return target_call_timer_callbacks_check_time(1);
1096 }
1097
1098 /* invoke periodic callbacks immediately */
1099 int target_call_timer_callbacks_now(void)
1100 {
1101         return target_call_timer_callbacks_check_time(0);
1102 }
1103
1104 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1105 {
1106         struct working_area *c = target->working_areas;
1107         struct working_area *new_wa = NULL;
1108
1109         /* Reevaluate working area address based on MMU state*/
1110         if (target->working_areas == NULL)
1111         {
1112                 int retval;
1113                 int enabled;
1114
1115                 retval = target->type->mmu(target, &enabled);
1116                 if (retval != ERROR_OK)
1117                 {
1118                         return retval;
1119                 }
1120
1121                 if (!enabled) {
1122                         if (target->working_area_phys_spec) {
1123                                 LOG_DEBUG("MMU disabled, using physical "
1124                                         "address for working memory 0x%08x",
1125                                         (unsigned)target->working_area_phys);
1126                                 target->working_area = target->working_area_phys;
1127                         } else {
1128                                 LOG_ERROR("No working memory available. "
1129                                         "Specify -work-area-phys to target.");
1130                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1131                         }
1132                 } else {
1133                         if (target->working_area_virt_spec) {
1134                                 LOG_DEBUG("MMU enabled, using virtual "
1135                                         "address for working memory 0x%08x",
1136                                         (unsigned)target->working_area_virt);
1137                                 target->working_area = target->working_area_virt;
1138                         } else {
1139                                 LOG_ERROR("No working memory available. "
1140                                         "Specify -work-area-virt to target.");
1141                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1142                         }
1143                 }
1144         }
1145
1146         /* only allocate multiples of 4 byte */
1147         if (size % 4)
1148         {
1149                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1150                 size = (size + 3) & (~3);
1151         }
1152
1153         /* see if there's already a matching working area */
1154         while (c)
1155         {
1156                 if ((c->free) && (c->size == size))
1157                 {
1158                         new_wa = c;
1159                         break;
1160                 }
1161                 c = c->next;
1162         }
1163
1164         /* if not, allocate a new one */
1165         if (!new_wa)
1166         {
1167                 struct working_area **p = &target->working_areas;
1168                 uint32_t first_free = target->working_area;
1169                 uint32_t free_size = target->working_area_size;
1170
1171                 c = target->working_areas;
1172                 while (c)
1173                 {
1174                         first_free += c->size;
1175                         free_size -= c->size;
1176                         p = &c->next;
1177                         c = c->next;
1178                 }
1179
1180                 if (free_size < size)
1181                 {
1182                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1183                 }
1184
1185                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1186
1187                 new_wa = malloc(sizeof(struct working_area));
1188                 new_wa->next = NULL;
1189                 new_wa->size = size;
1190                 new_wa->address = first_free;
1191
1192                 if (target->backup_working_area)
1193                 {
1194                         int retval;
1195                         new_wa->backup = malloc(new_wa->size);
1196                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1197                         {
1198                                 free(new_wa->backup);
1199                                 free(new_wa);
1200                                 return retval;
1201                         }
1202                 }
1203                 else
1204                 {
1205                         new_wa->backup = NULL;
1206                 }
1207
1208                 /* put new entry in list */
1209                 *p = new_wa;
1210         }
1211
1212         /* mark as used, and return the new (reused) area */
1213         new_wa->free = 0;
1214         *area = new_wa;
1215
1216         /* user pointer */
1217         new_wa->user = area;
1218
1219         return ERROR_OK;
1220 }
1221
1222 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1223 {
1224         int retval;
1225
1226         retval = target_alloc_working_area_try(target, size, area);
1227         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1228         {
1229                 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1230         }
1231         return retval;
1232
1233 }
1234
1235 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1236 {
1237         if (area->free)
1238                 return ERROR_OK;
1239
1240         if (restore && target->backup_working_area)
1241         {
1242                 int retval;
1243                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1244                         return retval;
1245         }
1246
1247         area->free = 1;
1248
1249         /* mark user pointer invalid */
1250         *area->user = NULL;
1251         area->user = NULL;
1252
1253         return ERROR_OK;
1254 }
1255
1256 int target_free_working_area(struct target *target, struct working_area *area)
1257 {
1258         return target_free_working_area_restore(target, area, 1);
1259 }
1260
1261 /* free resources and restore memory, if restoring memory fails,
1262  * free up resources anyway
1263  */
1264 static void target_free_all_working_areas_restore(struct target *target, int restore)
1265 {
1266         struct working_area *c = target->working_areas;
1267
1268         while (c)
1269         {
1270                 struct working_area *next = c->next;
1271                 target_free_working_area_restore(target, c, restore);
1272
1273                 if (c->backup)
1274                         free(c->backup);
1275
1276                 free(c);
1277
1278                 c = next;
1279         }
1280
1281         target->working_areas = NULL;
1282 }
1283
1284 void target_free_all_working_areas(struct target *target)
1285 {
1286         target_free_all_working_areas_restore(target, 1);
1287 }
1288
1289 int target_arch_state(struct target *target)
1290 {
1291         int retval;
1292         if (target == NULL)
1293         {
1294                 LOG_USER("No target has been configured");
1295                 return ERROR_OK;
1296         }
1297
1298         LOG_USER("target state: %s", target_state_name( target ));
1299
1300         if (target->state != TARGET_HALTED)
1301                 return ERROR_OK;
1302
1303         retval = target->type->arch_state(target);
1304         return retval;
1305 }
1306
1307 /* Single aligned words are guaranteed to use 16 or 32 bit access
1308  * mode respectively, otherwise data is handled as quickly as
1309  * possible
1310  */
1311 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1312 {
1313         int retval;
1314         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1315                   (int)size, (unsigned)address);
1316
1317         if (!target_was_examined(target))
1318         {
1319                 LOG_ERROR("Target not examined yet");
1320                 return ERROR_FAIL;
1321         }
1322
1323         if (size == 0) {
1324                 return ERROR_OK;
1325         }
1326
1327         if ((address + size - 1) < address)
1328         {
1329                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1330                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1331                                   (unsigned)address,
1332                                   (unsigned)size);
1333                 return ERROR_FAIL;
1334         }
1335
1336         if (((address % 2) == 0) && (size == 2))
1337         {
1338                 return target_write_memory(target, address, 2, 1, buffer);
1339         }
1340
1341         /* handle unaligned head bytes */
1342         if (address % 4)
1343         {
1344                 uint32_t unaligned = 4 - (address % 4);
1345
1346                 if (unaligned > size)
1347                         unaligned = size;
1348
1349                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1350                         return retval;
1351
1352                 buffer += unaligned;
1353                 address += unaligned;
1354                 size -= unaligned;
1355         }
1356
1357         /* handle aligned words */
1358         if (size >= 4)
1359         {
1360                 int aligned = size - (size % 4);
1361
1362                 /* use bulk writes above a certain limit. This may have to be changed */
1363                 if (aligned > 128)
1364                 {
1365                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1366                                 return retval;
1367                 }
1368                 else
1369                 {
1370                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1371                                 return retval;
1372                 }
1373
1374                 buffer += aligned;
1375                 address += aligned;
1376                 size -= aligned;
1377         }
1378
1379         /* handle tail writes of less than 4 bytes */
1380         if (size > 0)
1381         {
1382                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1383                         return retval;
1384         }
1385
1386         return ERROR_OK;
1387 }
1388
1389 /* Single aligned words are guaranteed to use 16 or 32 bit access
1390  * mode respectively, otherwise data is handled as quickly as
1391  * possible
1392  */
1393 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1394 {
1395         int retval;
1396         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1397                           (int)size, (unsigned)address);
1398
1399         if (!target_was_examined(target))
1400         {
1401                 LOG_ERROR("Target not examined yet");
1402                 return ERROR_FAIL;
1403         }
1404
1405         if (size == 0) {
1406                 return ERROR_OK;
1407         }
1408
1409         if ((address + size - 1) < address)
1410         {
1411                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1412                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1413                                   address,
1414                                   size);
1415                 return ERROR_FAIL;
1416         }
1417
1418         if (((address % 2) == 0) && (size == 2))
1419         {
1420                 return target_read_memory(target, address, 2, 1, buffer);
1421         }
1422
1423         /* handle unaligned head bytes */
1424         if (address % 4)
1425         {
1426                 uint32_t unaligned = 4 - (address % 4);
1427
1428                 if (unaligned > size)
1429                         unaligned = size;
1430
1431                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1432                         return retval;
1433
1434                 buffer += unaligned;
1435                 address += unaligned;
1436                 size -= unaligned;
1437         }
1438
1439         /* handle aligned words */
1440         if (size >= 4)
1441         {
1442                 int aligned = size - (size % 4);
1443
1444                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1445                         return retval;
1446
1447                 buffer += aligned;
1448                 address += aligned;
1449                 size -= aligned;
1450         }
1451
1452         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1453         if(size >=2)
1454         {
1455                 int aligned = size - (size%2);
1456                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1457                 if (retval != ERROR_OK)
1458                         return retval;
1459
1460                 buffer += aligned;
1461                 address += aligned;
1462                 size -= aligned;
1463         }
1464         /* handle tail writes of less than 4 bytes */
1465         if (size > 0)
1466         {
1467                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1468                         return retval;
1469         }
1470
1471         return ERROR_OK;
1472 }
1473
1474 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1475 {
1476         uint8_t *buffer;
1477         int retval;
1478         uint32_t i;
1479         uint32_t checksum = 0;
1480         if (!target_was_examined(target))
1481         {
1482                 LOG_ERROR("Target not examined yet");
1483                 return ERROR_FAIL;
1484         }
1485
1486         if ((retval = target->type->checksum_memory(target, address,
1487                 size, &checksum)) != ERROR_OK)
1488         {
1489                 buffer = malloc(size);
1490                 if (buffer == NULL)
1491                 {
1492                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1493                         return ERROR_INVALID_ARGUMENTS;
1494                 }
1495                 retval = target_read_buffer(target, address, size, buffer);
1496                 if (retval != ERROR_OK)
1497                 {
1498                         free(buffer);
1499                         return retval;
1500                 }
1501
1502                 /* convert to target endianess */
1503                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1504                 {
1505                         uint32_t target_data;
1506                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1507                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1508                 }
1509
1510                 retval = image_calculate_checksum(buffer, size, &checksum);
1511                 free(buffer);
1512         }
1513
1514         *crc = checksum;
1515
1516         return retval;
1517 }
1518
1519 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1520 {
1521         int retval;
1522         if (!target_was_examined(target))
1523         {
1524                 LOG_ERROR("Target not examined yet");
1525                 return ERROR_FAIL;
1526         }
1527
1528         if (target->type->blank_check_memory == 0)
1529                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1530
1531         retval = target->type->blank_check_memory(target, address, size, blank);
1532
1533         return retval;
1534 }
1535
1536 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1537 {
1538         uint8_t value_buf[4];
1539         if (!target_was_examined(target))
1540         {
1541                 LOG_ERROR("Target not examined yet");
1542                 return ERROR_FAIL;
1543         }
1544
1545         int retval = target_read_memory(target, address, 4, 1, value_buf);
1546
1547         if (retval == ERROR_OK)
1548         {
1549                 *value = target_buffer_get_u32(target, value_buf);
1550                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1551                                   address,
1552                                   *value);
1553         }
1554         else
1555         {
1556                 *value = 0x0;
1557                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1558                                   address);
1559         }
1560
1561         return retval;
1562 }
1563
1564 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1565 {
1566         uint8_t value_buf[2];
1567         if (!target_was_examined(target))
1568         {
1569                 LOG_ERROR("Target not examined yet");
1570                 return ERROR_FAIL;
1571         }
1572
1573         int retval = target_read_memory(target, address, 2, 1, value_buf);
1574
1575         if (retval == ERROR_OK)
1576         {
1577                 *value = target_buffer_get_u16(target, value_buf);
1578                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1579                                   address,
1580                                   *value);
1581         }
1582         else
1583         {
1584                 *value = 0x0;
1585                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1586                                   address);
1587         }
1588
1589         return retval;
1590 }
1591
1592 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1593 {
1594         int retval = target_read_memory(target, address, 1, 1, value);
1595         if (!target_was_examined(target))
1596         {
1597                 LOG_ERROR("Target not examined yet");
1598                 return ERROR_FAIL;
1599         }
1600
1601         if (retval == ERROR_OK)
1602         {
1603                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1604                                   address,
1605                                   *value);
1606         }
1607         else
1608         {
1609                 *value = 0x0;
1610                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1611                                   address);
1612         }
1613
1614         return retval;
1615 }
1616
1617 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1618 {
1619         int retval;
1620         uint8_t value_buf[4];
1621         if (!target_was_examined(target))
1622         {
1623                 LOG_ERROR("Target not examined yet");
1624                 return ERROR_FAIL;
1625         }
1626
1627         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1628                           address,
1629                           value);
1630
1631         target_buffer_set_u32(target, value_buf, value);
1632         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1633         {
1634                 LOG_DEBUG("failed: %i", retval);
1635         }
1636
1637         return retval;
1638 }
1639
1640 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1641 {
1642         int retval;
1643         uint8_t value_buf[2];
1644         if (!target_was_examined(target))
1645         {
1646                 LOG_ERROR("Target not examined yet");
1647                 return ERROR_FAIL;
1648         }
1649
1650         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1651                           address,
1652                           value);
1653
1654         target_buffer_set_u16(target, value_buf, value);
1655         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1656         {
1657                 LOG_DEBUG("failed: %i", retval);
1658         }
1659
1660         return retval;
1661 }
1662
1663 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1664 {
1665         int retval;
1666         if (!target_was_examined(target))
1667         {
1668                 LOG_ERROR("Target not examined yet");
1669                 return ERROR_FAIL;
1670         }
1671
1672         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1673                           address, value);
1674
1675         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1676         {
1677                 LOG_DEBUG("failed: %i", retval);
1678         }
1679
1680         return retval;
1681 }
1682
1683 COMMAND_HANDLER(handle_targets_command)
1684 {
1685         struct target *target = all_targets;
1686
1687         if (CMD_ARGC == 1)
1688         {
1689                 target = get_target(CMD_ARGV[0]);
1690                 if (target == NULL) {
1691                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1692                         goto DumpTargets;
1693                 }
1694                 if (!target->tap->enabled) {
1695                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1696                                         "can't be the current target\n",
1697                                         target->tap->dotted_name);
1698                         return ERROR_FAIL;
1699                 }
1700
1701                 CMD_CTX->current_target = target->target_number;
1702                 return ERROR_OK;
1703         }
1704 DumpTargets:
1705
1706         target = all_targets;
1707         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1708         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1709         while (target)
1710         {
1711                 const char *state;
1712                 char marker = ' ';
1713
1714                 if (target->tap->enabled)
1715                         state = target_state_name( target );
1716                 else
1717                         state = "tap-disabled";
1718
1719                 if (CMD_CTX->current_target == target->target_number)
1720                         marker = '*';
1721
1722                 /* keep columns lined up to match the headers above */
1723                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1724                                           target->target_number,
1725                                           marker,
1726                                           target_name(target),
1727                                           target_type_name(target),
1728                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1729                                                                 target->endianness)->name,
1730                                           target->tap->dotted_name,
1731                                           state);
1732                 target = target->next;
1733         }
1734
1735         return ERROR_OK;
1736 }
1737
1738 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1739
1740 static int powerDropout;
1741 static int srstAsserted;
1742
1743 static int runPowerRestore;
1744 static int runPowerDropout;
1745 static int runSrstAsserted;
1746 static int runSrstDeasserted;
1747
1748 static int sense_handler(void)
1749 {
1750         static int prevSrstAsserted = 0;
1751         static int prevPowerdropout = 0;
1752
1753         int retval;
1754         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1755                 return retval;
1756
1757         int powerRestored;
1758         powerRestored = prevPowerdropout && !powerDropout;
1759         if (powerRestored)
1760         {
1761                 runPowerRestore = 1;
1762         }
1763
1764         long long current = timeval_ms();
1765         static long long lastPower = 0;
1766         int waitMore = lastPower + 2000 > current;
1767         if (powerDropout && !waitMore)
1768         {
1769                 runPowerDropout = 1;
1770                 lastPower = current;
1771         }
1772
1773         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1774                 return retval;
1775
1776         int srstDeasserted;
1777         srstDeasserted = prevSrstAsserted && !srstAsserted;
1778
1779         static long long lastSrst = 0;
1780         waitMore = lastSrst + 2000 > current;
1781         if (srstDeasserted && !waitMore)
1782         {
1783                 runSrstDeasserted = 1;
1784                 lastSrst = current;
1785         }
1786
1787         if (!prevSrstAsserted && srstAsserted)
1788         {
1789                 runSrstAsserted = 1;
1790         }
1791
1792         prevSrstAsserted = srstAsserted;
1793         prevPowerdropout = powerDropout;
1794
1795         if (srstDeasserted || powerRestored)
1796         {
1797                 /* Other than logging the event we can't do anything here.
1798                  * Issuing a reset is a particularly bad idea as we might
1799                  * be inside a reset already.
1800                  */
1801         }
1802
1803         return ERROR_OK;
1804 }
1805
1806 static int backoff_times = 0;
1807 static int backoff_count = 0;
1808
1809 /* process target state changes */
1810 static int handle_target(void *priv)
1811 {
1812         Jim_Interp *interp = (Jim_Interp *)priv;
1813         int retval = ERROR_OK;
1814
1815         if (!is_jtag_poll_safe())
1816         {
1817                 /* polling is disabled currently */
1818                 return ERROR_OK;
1819         }
1820
1821         /* we do not want to recurse here... */
1822         static int recursive = 0;
1823         if (! recursive)
1824         {
1825                 recursive = 1;
1826                 sense_handler();
1827                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1828                  * We need to avoid an infinite loop/recursion here and we do that by
1829                  * clearing the flags after running these events.
1830                  */
1831                 int did_something = 0;
1832                 if (runSrstAsserted)
1833                 {
1834                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
1835                         Jim_Eval(interp, "srst_asserted");
1836                         did_something = 1;
1837                 }
1838                 if (runSrstDeasserted)
1839                 {
1840                         Jim_Eval(interp, "srst_deasserted");
1841                         did_something = 1;
1842                 }
1843                 if (runPowerDropout)
1844                 {
1845                         LOG_INFO("Power dropout detected, running power_dropout proc.");
1846                         Jim_Eval(interp, "power_dropout");
1847                         did_something = 1;
1848                 }
1849                 if (runPowerRestore)
1850                 {
1851                         Jim_Eval(interp, "power_restore");
1852                         did_something = 1;
1853                 }
1854
1855                 if (did_something)
1856                 {
1857                         /* clear detect flags */
1858                         sense_handler();
1859                 }
1860
1861                 /* clear action flags */
1862
1863                 runSrstAsserted = 0;
1864                 runSrstDeasserted = 0;
1865                 runPowerRestore = 0;
1866                 runPowerDropout = 0;
1867
1868                 recursive = 0;
1869         }
1870
1871         if (backoff_times > backoff_count)
1872         {
1873                 /* do not poll this time as we failed previously */
1874                 backoff_count++;
1875                 return ERROR_OK;
1876         }
1877         backoff_count = 0;
1878
1879         /* Poll targets for state changes unless that's globally disabled.
1880          * Skip targets that are currently disabled.
1881          */
1882         for (struct target *target = all_targets;
1883                         is_jtag_poll_safe() && target;
1884                         target = target->next)
1885         {
1886                 if (!target->tap->enabled)
1887                         continue;
1888
1889                 /* only poll target if we've got power and srst isn't asserted */
1890                 if (!powerDropout && !srstAsserted)
1891                 {
1892                         /* polling may fail silently until the target has been examined */
1893                         if ((retval = target_poll(target)) != ERROR_OK)
1894                         {
1895                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
1896                                 if (backoff_times * polling_interval < 5000)
1897                                 {
1898                                         backoff_times *= 2;
1899                                         backoff_times++;
1900                                 }
1901                                 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);
1902
1903                                 /* Tell GDB to halt the debugger. This allows the user to
1904                                  * run monitor commands to handle the situation.
1905                                  */
1906                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1907                                 return retval;
1908                         }
1909                         /* Since we succeeded, we reset backoff count */
1910                         if (backoff_times > 0)
1911                         {
1912                                 LOG_USER("Polling succeeded again");
1913                         }
1914                         backoff_times = 0;
1915                 }
1916         }
1917
1918         return retval;
1919 }
1920
1921 COMMAND_HANDLER(handle_reg_command)
1922 {
1923         struct target *target;
1924         struct reg *reg = NULL;
1925         unsigned count = 0;
1926         char *value;
1927
1928         LOG_DEBUG("-");
1929
1930         target = get_current_target(CMD_CTX);
1931
1932         /* list all available registers for the current target */
1933         if (CMD_ARGC == 0)
1934         {
1935                 struct reg_cache *cache = target->reg_cache;
1936
1937                 count = 0;
1938                 while (cache)
1939                 {
1940                         unsigned i;
1941
1942                         command_print(CMD_CTX, "===== %s", cache->name);
1943
1944                         for (i = 0, reg = cache->reg_list;
1945                                         i < cache->num_regs;
1946                                         i++, reg++, count++)
1947                         {
1948                                 /* only print cached values if they are valid */
1949                                 if (reg->valid) {
1950                                         value = buf_to_str(reg->value,
1951                                                         reg->size, 16);
1952                                         command_print(CMD_CTX,
1953                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1954                                                         count, reg->name,
1955                                                         reg->size, value,
1956                                                         reg->dirty
1957                                                                 ? " (dirty)"
1958                                                                 : "");
1959                                         free(value);
1960                                 } else {
1961                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1962                                                           count, reg->name,
1963                                                           reg->size) ;
1964                                 }
1965                         }
1966                         cache = cache->next;
1967                 }
1968
1969                 return ERROR_OK;
1970         }
1971
1972         /* access a single register by its ordinal number */
1973         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1974         {
1975                 unsigned num;
1976                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1977
1978                 struct reg_cache *cache = target->reg_cache;
1979                 count = 0;
1980                 while (cache)
1981                 {
1982                         unsigned i;
1983                         for (i = 0; i < cache->num_regs; i++)
1984                         {
1985                                 if (count++ == num)
1986                                 {
1987                                         reg = &cache->reg_list[i];
1988                                         break;
1989                                 }
1990                         }
1991                         if (reg)
1992                                 break;
1993                         cache = cache->next;
1994                 }
1995
1996                 if (!reg)
1997                 {
1998                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1999                         return ERROR_OK;
2000                 }
2001         } else /* access a single register by its name */
2002         {
2003                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2004
2005                 if (!reg)
2006                 {
2007                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2008                         return ERROR_OK;
2009                 }
2010         }
2011
2012         /* display a register */
2013         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2014         {
2015                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2016                         reg->valid = 0;
2017
2018                 if (reg->valid == 0)
2019                 {
2020                         reg->type->get(reg);
2021                 }
2022                 value = buf_to_str(reg->value, reg->size, 16);
2023                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2024                 free(value);
2025                 return ERROR_OK;
2026         }
2027
2028         /* set register value */
2029         if (CMD_ARGC == 2)
2030         {
2031                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2032                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2033
2034                 reg->type->set(reg, buf);
2035
2036                 value = buf_to_str(reg->value, reg->size, 16);
2037                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2038                 free(value);
2039
2040                 free(buf);
2041
2042                 return ERROR_OK;
2043         }
2044
2045         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2046
2047         return ERROR_OK;
2048 }
2049
2050 COMMAND_HANDLER(handle_poll_command)
2051 {
2052         int retval = ERROR_OK;
2053         struct target *target = get_current_target(CMD_CTX);
2054
2055         if (CMD_ARGC == 0)
2056         {
2057                 command_print(CMD_CTX, "background polling: %s",
2058                                 jtag_poll_get_enabled() ? "on" : "off");
2059                 command_print(CMD_CTX, "TAP: %s (%s)",
2060                                 target->tap->dotted_name,
2061                                 target->tap->enabled ? "enabled" : "disabled");
2062                 if (!target->tap->enabled)
2063                         return ERROR_OK;
2064                 if ((retval = target_poll(target)) != ERROR_OK)
2065                         return retval;
2066                 if ((retval = target_arch_state(target)) != ERROR_OK)
2067                         return retval;
2068         }
2069         else if (CMD_ARGC == 1)
2070         {
2071                 bool enable;
2072                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2073                 jtag_poll_set_enabled(enable);
2074         }
2075         else
2076         {
2077                 return ERROR_COMMAND_SYNTAX_ERROR;
2078         }
2079
2080         return retval;
2081 }
2082
2083 COMMAND_HANDLER(handle_wait_halt_command)
2084 {
2085         if (CMD_ARGC > 1)
2086                 return ERROR_COMMAND_SYNTAX_ERROR;
2087
2088         unsigned ms = 5000;
2089         if (1 == CMD_ARGC)
2090         {
2091                 int retval = parse_uint(CMD_ARGV[0], &ms);
2092                 if (ERROR_OK != retval)
2093                 {
2094                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2095                         return ERROR_COMMAND_SYNTAX_ERROR;
2096                 }
2097                 // convert seconds (given) to milliseconds (needed)
2098                 ms *= 1000;
2099         }
2100
2101         struct target *target = get_current_target(CMD_CTX);
2102         return target_wait_state(target, TARGET_HALTED, ms);
2103 }
2104
2105 /* wait for target state to change. The trick here is to have a low
2106  * latency for short waits and not to suck up all the CPU time
2107  * on longer waits.
2108  *
2109  * After 500ms, keep_alive() is invoked
2110  */
2111 int target_wait_state(struct target *target, enum target_state state, int ms)
2112 {
2113         int retval;
2114         long long then = 0, cur;
2115         int once = 1;
2116
2117         for (;;)
2118         {
2119                 if ((retval = target_poll(target)) != ERROR_OK)
2120                         return retval;
2121                 if (target->state == state)
2122                 {
2123                         break;
2124                 }
2125                 cur = timeval_ms();
2126                 if (once)
2127                 {
2128                         once = 0;
2129                         then = timeval_ms();
2130                         LOG_DEBUG("waiting for target %s...",
2131                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2132                 }
2133
2134                 if (cur-then > 500)
2135                 {
2136                         keep_alive();
2137                 }
2138
2139                 if ((cur-then) > ms)
2140                 {
2141                         LOG_ERROR("timed out while waiting for target %s",
2142                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2143                         return ERROR_FAIL;
2144                 }
2145         }
2146
2147         return ERROR_OK;
2148 }
2149
2150 COMMAND_HANDLER(handle_halt_command)
2151 {
2152         LOG_DEBUG("-");
2153
2154         struct target *target = get_current_target(CMD_CTX);
2155         int retval = target_halt(target);
2156         if (ERROR_OK != retval)
2157                 return retval;
2158
2159         if (CMD_ARGC == 1)
2160         {
2161                 unsigned wait_local;
2162                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2163                 if (ERROR_OK != retval)
2164                         return ERROR_COMMAND_SYNTAX_ERROR;
2165                 if (!wait_local)
2166                         return ERROR_OK;
2167         }
2168
2169         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2170 }
2171
2172 COMMAND_HANDLER(handle_soft_reset_halt_command)
2173 {
2174         struct target *target = get_current_target(CMD_CTX);
2175
2176         LOG_USER("requesting target halt and executing a soft reset");
2177
2178         target->type->soft_reset_halt(target);
2179
2180         return ERROR_OK;
2181 }
2182
2183 COMMAND_HANDLER(handle_reset_command)
2184 {
2185         if (CMD_ARGC > 1)
2186                 return ERROR_COMMAND_SYNTAX_ERROR;
2187
2188         enum target_reset_mode reset_mode = RESET_RUN;
2189         if (CMD_ARGC == 1)
2190         {
2191                 const Jim_Nvp *n;
2192                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2193                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2194                         return ERROR_COMMAND_SYNTAX_ERROR;
2195                 }
2196                 reset_mode = n->value;
2197         }
2198
2199         /* reset *all* targets */
2200         return target_process_reset(CMD_CTX, reset_mode);
2201 }
2202
2203
2204 COMMAND_HANDLER(handle_resume_command)
2205 {
2206         int current = 1;
2207         if (CMD_ARGC > 1)
2208                 return ERROR_COMMAND_SYNTAX_ERROR;
2209
2210         struct target *target = get_current_target(CMD_CTX);
2211         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2212
2213         /* with no CMD_ARGV, resume from current pc, addr = 0,
2214          * with one arguments, addr = CMD_ARGV[0],
2215          * handle breakpoints, not debugging */
2216         uint32_t addr = 0;
2217         if (CMD_ARGC == 1)
2218         {
2219                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2220                 current = 0;
2221         }
2222
2223         return target_resume(target, current, addr, 1, 0);
2224 }
2225
2226 COMMAND_HANDLER(handle_step_command)
2227 {
2228         if (CMD_ARGC > 1)
2229                 return ERROR_COMMAND_SYNTAX_ERROR;
2230
2231         LOG_DEBUG("-");
2232
2233         /* with no CMD_ARGV, step from current pc, addr = 0,
2234          * with one argument addr = CMD_ARGV[0],
2235          * handle breakpoints, debugging */
2236         uint32_t addr = 0;
2237         int current_pc = 1;
2238         if (CMD_ARGC == 1)
2239         {
2240                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2241                 current_pc = 0;
2242         }
2243
2244         struct target *target = get_current_target(CMD_CTX);
2245
2246         return target->type->step(target, current_pc, addr, 1);
2247 }
2248
2249 static void handle_md_output(struct command_context *cmd_ctx,
2250                 struct target *target, uint32_t address, unsigned size,
2251                 unsigned count, const uint8_t *buffer)
2252 {
2253         const unsigned line_bytecnt = 32;
2254         unsigned line_modulo = line_bytecnt / size;
2255
2256         char output[line_bytecnt * 4 + 1];
2257         unsigned output_len = 0;
2258
2259         const char *value_fmt;
2260         switch (size) {
2261         case 4: value_fmt = "%8.8x "; break;
2262         case 2: value_fmt = "%4.4x "; break;
2263         case 1: value_fmt = "%2.2x "; break;
2264         default:
2265                 /* "can't happen", caller checked */
2266                 LOG_ERROR("invalid memory read size: %u", size);
2267                 return;
2268         }
2269
2270         for (unsigned i = 0; i < count; i++)
2271         {
2272                 if (i % line_modulo == 0)
2273                 {
2274                         output_len += snprintf(output + output_len,
2275                                         sizeof(output) - output_len,
2276                                         "0x%8.8x: ",
2277                                         (unsigned)(address + (i*size)));
2278                 }
2279
2280                 uint32_t value = 0;
2281                 const uint8_t *value_ptr = buffer + i * size;
2282                 switch (size) {
2283                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2284                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2285                 case 1: value = *value_ptr;
2286                 }
2287                 output_len += snprintf(output + output_len,
2288                                 sizeof(output) - output_len,
2289                                 value_fmt, value);
2290
2291                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2292                 {
2293                         command_print(cmd_ctx, "%s", output);
2294                         output_len = 0;
2295                 }
2296         }
2297 }
2298
2299 COMMAND_HANDLER(handle_md_command)
2300 {
2301         if (CMD_ARGC < 1)
2302                 return ERROR_COMMAND_SYNTAX_ERROR;
2303
2304         unsigned size = 0;
2305         switch (CMD_NAME[2]) {
2306         case 'w': size = 4; break;
2307         case 'h': size = 2; break;
2308         case 'b': size = 1; break;
2309         default: return ERROR_COMMAND_SYNTAX_ERROR;
2310         }
2311
2312         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2313         int (*fn)(struct target *target,
2314                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2315         if (physical)
2316         {
2317                 CMD_ARGC--;
2318                 CMD_ARGV++;
2319                 fn=target_read_phys_memory;
2320         } else
2321         {
2322                 fn=target_read_memory;
2323         }
2324         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2325         {
2326                 return ERROR_COMMAND_SYNTAX_ERROR;
2327         }
2328
2329         uint32_t address;
2330         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2331
2332         unsigned count = 1;
2333         if (CMD_ARGC == 2)
2334                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2335
2336         uint8_t *buffer = calloc(count, size);
2337
2338         struct target *target = get_current_target(CMD_CTX);
2339         int retval = fn(target, address, size, count, buffer);
2340         if (ERROR_OK == retval)
2341                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2342
2343         free(buffer);
2344
2345         return retval;
2346 }
2347
2348 typedef int (*target_write_fn)(struct target *target,
2349                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2350
2351 static int target_write_memory_fast(struct target *target,
2352                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2353 {
2354         return target_write_buffer(target, address, size * count, buffer);
2355 }
2356
2357 static int target_fill_mem(struct target *target,
2358                 uint32_t address,
2359                 target_write_fn fn,
2360                 unsigned data_size,
2361                 /* value */
2362                 uint32_t b,
2363                 /* count */
2364                 unsigned c)
2365 {
2366         /* We have to write in reasonably large chunks to be able
2367          * to fill large memory areas with any sane speed */
2368         const unsigned chunk_size = 16384;
2369         uint8_t *target_buf = malloc(chunk_size * data_size);
2370         if (target_buf == NULL)
2371         {
2372                 LOG_ERROR("Out of memory");
2373                 return ERROR_FAIL;
2374         }
2375
2376         for (unsigned i = 0; i < chunk_size; i ++)
2377         {
2378                 switch (data_size)
2379                 {
2380                 case 4:
2381                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2382                         break;
2383                 case 2:
2384                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2385                         break;
2386                 case 1:
2387                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2388                         break;
2389                 default:
2390                         exit(-1);
2391                 }
2392         }
2393
2394         int retval = ERROR_OK;
2395
2396         for (unsigned x = 0; x < c; x += chunk_size)
2397         {
2398                 unsigned current;
2399                 current = c - x;
2400                 if (current > chunk_size)
2401                 {
2402                         current = chunk_size;
2403                 }
2404                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2405                 if (retval != ERROR_OK)
2406                 {
2407                         break;
2408                 }
2409                 /* avoid GDB timeouts */
2410                 keep_alive();
2411         }
2412         free(target_buf);
2413
2414         return retval;
2415 }
2416
2417
2418 COMMAND_HANDLER(handle_mw_command)
2419 {
2420         if (CMD_ARGC < 2)
2421         {
2422                 return ERROR_COMMAND_SYNTAX_ERROR;
2423         }
2424         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2425         target_write_fn fn;
2426         if (physical)
2427         {
2428                 CMD_ARGC--;
2429                 CMD_ARGV++;
2430                 fn=target_write_phys_memory;
2431         } else
2432         {
2433                 fn = target_write_memory_fast;
2434         }
2435         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2436                 return ERROR_COMMAND_SYNTAX_ERROR;
2437
2438         uint32_t address;
2439         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2440
2441         uint32_t value;
2442         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2443
2444         unsigned count = 1;
2445         if (CMD_ARGC == 3)
2446                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2447
2448         struct target *target = get_current_target(CMD_CTX);
2449         unsigned wordsize;
2450         switch (CMD_NAME[2])
2451         {
2452                 case 'w':
2453                         wordsize = 4;
2454                         break;
2455                 case 'h':
2456                         wordsize = 2;
2457                         break;
2458                 case 'b':
2459                         wordsize = 1;
2460                         break;
2461                 default:
2462                         return ERROR_COMMAND_SYNTAX_ERROR;
2463         }
2464
2465         return target_fill_mem(target, address, fn, wordsize, value, count);
2466 }
2467
2468 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2469                 uint32_t *min_address, uint32_t *max_address)
2470 {
2471         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2472                 return ERROR_COMMAND_SYNTAX_ERROR;
2473
2474         /* a base address isn't always necessary,
2475          * default to 0x0 (i.e. don't relocate) */
2476         if (CMD_ARGC >= 2)
2477         {
2478                 uint32_t addr;
2479                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2480                 image->base_address = addr;
2481                 image->base_address_set = 1;
2482         }
2483         else
2484                 image->base_address_set = 0;
2485
2486         image->start_address_set = 0;
2487
2488         if (CMD_ARGC >= 4)
2489         {
2490                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2491         }
2492         if (CMD_ARGC == 5)
2493         {
2494                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2495                 // use size (given) to find max (required)
2496                 *max_address += *min_address;
2497         }
2498
2499         if (*min_address > *max_address)
2500                 return ERROR_COMMAND_SYNTAX_ERROR;
2501
2502         return ERROR_OK;
2503 }
2504
2505 COMMAND_HANDLER(handle_load_image_command)
2506 {
2507         uint8_t *buffer;
2508         size_t buf_cnt;
2509         uint32_t image_size;
2510         uint32_t min_address = 0;
2511         uint32_t max_address = 0xffffffff;
2512         int i;
2513         struct image image;
2514
2515         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2516                         &image, &min_address, &max_address);
2517         if (ERROR_OK != retval)
2518                 return retval;
2519
2520         struct target *target = get_current_target(CMD_CTX);
2521
2522         struct duration bench;
2523         duration_start(&bench);
2524
2525         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2526         {
2527                 return ERROR_OK;
2528         }
2529
2530         image_size = 0x0;
2531         retval = ERROR_OK;
2532         for (i = 0; i < image.num_sections; i++)
2533         {
2534                 buffer = malloc(image.sections[i].size);
2535                 if (buffer == NULL)
2536                 {
2537                         command_print(CMD_CTX,
2538                                                   "error allocating buffer for section (%d bytes)",
2539                                                   (int)(image.sections[i].size));
2540                         break;
2541                 }
2542
2543                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2544                 {
2545                         free(buffer);
2546                         break;
2547                 }
2548
2549                 uint32_t offset = 0;
2550                 uint32_t length = buf_cnt;
2551
2552                 /* DANGER!!! beware of unsigned comparision here!!! */
2553
2554                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2555                                 (image.sections[i].base_address < max_address))
2556                 {
2557                         if (image.sections[i].base_address < min_address)
2558                         {
2559                                 /* clip addresses below */
2560                                 offset += min_address-image.sections[i].base_address;
2561                                 length -= offset;
2562                         }
2563
2564                         if (image.sections[i].base_address + buf_cnt > max_address)
2565                         {
2566                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2567                         }
2568
2569                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2570                         {
2571                                 free(buffer);
2572                                 break;
2573                         }
2574                         image_size += length;
2575                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2576                                                   (unsigned int)length,
2577                                                   image.sections[i].base_address + offset);
2578                 }
2579
2580                 free(buffer);
2581         }
2582
2583         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2584         {
2585                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2586                                 "in %fs (%0.3f KiB/s)", image_size,
2587                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2588         }
2589
2590         image_close(&image);
2591
2592         return retval;
2593
2594 }
2595
2596 COMMAND_HANDLER(handle_dump_image_command)
2597 {
2598         struct fileio fileio;
2599
2600         uint8_t buffer[560];
2601         int retvaltemp;
2602
2603
2604         struct target *target = get_current_target(CMD_CTX);
2605
2606         if (CMD_ARGC != 3)
2607         {
2608                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2609                 return ERROR_OK;
2610         }
2611
2612         uint32_t address;
2613         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2614         uint32_t size;
2615         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2616
2617         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2618         {
2619                 return ERROR_OK;
2620         }
2621
2622         struct duration bench;
2623         duration_start(&bench);
2624
2625         int retval = ERROR_OK;
2626         while (size > 0)
2627         {
2628                 size_t size_written;
2629                 uint32_t this_run_size = (size > 560) ? 560 : size;
2630                 retval = target_read_buffer(target, address, this_run_size, buffer);
2631                 if (retval != ERROR_OK)
2632                 {
2633                         break;
2634                 }
2635
2636                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2637                 if (retval != ERROR_OK)
2638                 {
2639                         break;
2640                 }
2641
2642                 size -= this_run_size;
2643                 address += this_run_size;
2644         }
2645
2646         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2647                 return retvaltemp;
2648
2649         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2650         {
2651                 command_print(CMD_CTX,
2652                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)fileio.size,
2653                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2654         }
2655
2656         return retval;
2657 }
2658
2659 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2660 {
2661         uint8_t *buffer;
2662         size_t buf_cnt;
2663         uint32_t image_size;
2664         int i;
2665         int retval;
2666         uint32_t checksum = 0;
2667         uint32_t mem_checksum = 0;
2668
2669         struct image image;
2670
2671         struct target *target = get_current_target(CMD_CTX);
2672
2673         if (CMD_ARGC < 1)
2674         {
2675                 return ERROR_COMMAND_SYNTAX_ERROR;
2676         }
2677
2678         if (!target)
2679         {
2680                 LOG_ERROR("no target selected");
2681                 return ERROR_FAIL;
2682         }
2683
2684         struct duration bench;
2685         duration_start(&bench);
2686
2687         if (CMD_ARGC >= 2)
2688         {
2689                 uint32_t addr;
2690                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2691                 image.base_address = addr;
2692                 image.base_address_set = 1;
2693         }
2694         else
2695         {
2696                 image.base_address_set = 0;
2697                 image.base_address = 0x0;
2698         }
2699
2700         image.start_address_set = 0;
2701
2702         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2703         {
2704                 return retval;
2705         }
2706
2707         image_size = 0x0;
2708         int diffs = 0;
2709         retval = ERROR_OK;
2710         for (i = 0; i < image.num_sections; i++)
2711         {
2712                 buffer = malloc(image.sections[i].size);
2713                 if (buffer == NULL)
2714                 {
2715                         command_print(CMD_CTX,
2716                                                   "error allocating buffer for section (%d bytes)",
2717                                                   (int)(image.sections[i].size));
2718                         break;
2719                 }
2720                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2721                 {
2722                         free(buffer);
2723                         break;
2724                 }
2725
2726                 if (verify)
2727                 {
2728                         /* calculate checksum of image */
2729                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2730                         if (retval != ERROR_OK)
2731                         {
2732                                 free(buffer);
2733                                 break;
2734                         }
2735
2736                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2737                         if (retval != ERROR_OK)
2738                         {
2739                                 free(buffer);
2740                                 break;
2741                         }
2742
2743                         if (checksum != mem_checksum)
2744                         {
2745                                 /* failed crc checksum, fall back to a binary compare */
2746                                 uint8_t *data;
2747
2748                                 if (diffs == 0)
2749                                 {
2750                                         LOG_ERROR("checksum mismatch - attempting binary compare");
2751                                 }
2752
2753                                 data = (uint8_t*)malloc(buf_cnt);
2754
2755                                 /* Can we use 32bit word accesses? */
2756                                 int size = 1;
2757                                 int count = buf_cnt;
2758                                 if ((count % 4) == 0)
2759                                 {
2760                                         size *= 4;
2761                                         count /= 4;
2762                                 }
2763                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2764                                 if (retval == ERROR_OK)
2765                                 {
2766                                         uint32_t t;
2767                                         for (t = 0; t < buf_cnt; t++)
2768                                         {
2769                                                 if (data[t] != buffer[t])
2770                                                 {
2771                                                         command_print(CMD_CTX,
2772                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2773                                                                                   diffs,
2774                                                                                   (unsigned)(t + image.sections[i].base_address),
2775                                                                                   data[t],
2776                                                                                   buffer[t]);
2777                                                         if (diffs++ >= 127)
2778                                                         {
2779                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2780                                                                 free(data);
2781                                                                 free(buffer);
2782                                                                 goto done;
2783                                                         }
2784                                                 }
2785                                                 keep_alive();
2786                                         }
2787                                 }
2788                                 free(data);
2789                         }
2790                 } else
2791                 {
2792                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2793                                                   image.sections[i].base_address,
2794                                                   buf_cnt);
2795                 }
2796
2797                 free(buffer);
2798                 image_size += buf_cnt;
2799         }
2800         if (diffs > 0)
2801         {
2802                 command_print(CMD_CTX, "No more differences found.");
2803         }
2804 done:
2805         if (diffs > 0)
2806         {
2807                 retval = ERROR_FAIL;
2808         }
2809         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2810         {
2811                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2812                                 "in %fs (%0.3f KiB/s)", image_size,
2813                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2814         }
2815
2816         image_close(&image);
2817
2818         return retval;
2819 }
2820
2821 COMMAND_HANDLER(handle_verify_image_command)
2822 {
2823         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2824 }
2825
2826 COMMAND_HANDLER(handle_test_image_command)
2827 {
2828         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2829 }
2830
2831 static int handle_bp_command_list(struct command_context *cmd_ctx)
2832 {
2833         struct target *target = get_current_target(cmd_ctx);
2834         struct breakpoint *breakpoint = target->breakpoints;
2835         while (breakpoint)
2836         {
2837                 if (breakpoint->type == BKPT_SOFT)
2838                 {
2839                         char* buf = buf_to_str(breakpoint->orig_instr,
2840                                         breakpoint->length, 16);
2841                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2842                                         breakpoint->address,
2843                                         breakpoint->length,
2844                                         breakpoint->set, buf);
2845                         free(buf);
2846                 }
2847                 else
2848                 {
2849                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2850                                                   breakpoint->address,
2851                                                   breakpoint->length, breakpoint->set);
2852                 }
2853
2854                 breakpoint = breakpoint->next;
2855         }
2856         return ERROR_OK;
2857 }
2858
2859 static int handle_bp_command_set(struct command_context *cmd_ctx,
2860                 uint32_t addr, uint32_t length, int hw)
2861 {
2862         struct target *target = get_current_target(cmd_ctx);
2863         int retval = breakpoint_add(target, addr, length, hw);
2864         if (ERROR_OK == retval)
2865                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2866         else
2867                 LOG_ERROR("Failure setting breakpoint");
2868         return retval;
2869 }
2870
2871 COMMAND_HANDLER(handle_bp_command)
2872 {
2873         if (CMD_ARGC == 0)
2874                 return handle_bp_command_list(CMD_CTX);
2875
2876         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2877         {
2878                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2879                 return ERROR_COMMAND_SYNTAX_ERROR;
2880         }
2881
2882         uint32_t addr;
2883         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2884         uint32_t length;
2885         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2886
2887         int hw = BKPT_SOFT;
2888         if (CMD_ARGC == 3)
2889         {
2890                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2891                         hw = BKPT_HARD;
2892                 else
2893                         return ERROR_COMMAND_SYNTAX_ERROR;
2894         }
2895
2896         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2897 }
2898
2899 COMMAND_HANDLER(handle_rbp_command)
2900 {
2901         if (CMD_ARGC != 1)
2902                 return ERROR_COMMAND_SYNTAX_ERROR;
2903
2904         uint32_t addr;
2905         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2906
2907         struct target *target = get_current_target(CMD_CTX);
2908         breakpoint_remove(target, addr);
2909
2910         return ERROR_OK;
2911 }
2912
2913 COMMAND_HANDLER(handle_wp_command)
2914 {
2915         struct target *target = get_current_target(CMD_CTX);
2916
2917         if (CMD_ARGC == 0)
2918         {
2919                 struct watchpoint *watchpoint = target->watchpoints;
2920
2921                 while (watchpoint)
2922                 {
2923                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2924                                         ", len: 0x%8.8" PRIx32
2925                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2926                                         ", mask: 0x%8.8" PRIx32,
2927                                         watchpoint->address,
2928                                         watchpoint->length,
2929                                         (int)watchpoint->rw,
2930                                         watchpoint->value,
2931                                         watchpoint->mask);
2932                         watchpoint = watchpoint->next;
2933                 }
2934                 return ERROR_OK;
2935         }
2936
2937         enum watchpoint_rw type = WPT_ACCESS;
2938         uint32_t addr = 0;
2939         uint32_t length = 0;
2940         uint32_t data_value = 0x0;
2941         uint32_t data_mask = 0xffffffff;
2942
2943         switch (CMD_ARGC)
2944         {
2945         case 5:
2946                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2947                 // fall through
2948         case 4:
2949                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2950                 // fall through
2951         case 3:
2952                 switch (CMD_ARGV[2][0])
2953                 {
2954                 case 'r':
2955                         type = WPT_READ;
2956                         break;
2957                 case 'w':
2958                         type = WPT_WRITE;
2959                         break;
2960                 case 'a':
2961                         type = WPT_ACCESS;
2962                         break;
2963                 default:
2964                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2965                         return ERROR_COMMAND_SYNTAX_ERROR;
2966                 }
2967                 // fall through
2968         case 2:
2969                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2970                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2971                 break;
2972
2973         default:
2974                 command_print(CMD_CTX, "usage: wp [address length "
2975                                 "[(r|w|a) [value [mask]]]]");
2976                 return ERROR_COMMAND_SYNTAX_ERROR;
2977         }
2978
2979         int retval = watchpoint_add(target, addr, length, type,
2980                         data_value, data_mask);
2981         if (ERROR_OK != retval)
2982                 LOG_ERROR("Failure setting watchpoints");
2983
2984         return retval;
2985 }
2986
2987 COMMAND_HANDLER(handle_rwp_command)
2988 {
2989         if (CMD_ARGC != 1)
2990                 return ERROR_COMMAND_SYNTAX_ERROR;
2991
2992         uint32_t addr;
2993         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2994
2995         struct target *target = get_current_target(CMD_CTX);
2996         watchpoint_remove(target, addr);
2997
2998         return ERROR_OK;
2999 }
3000
3001
3002 /**
3003  * Translate a virtual address to a physical address.
3004  *
3005  * The low-level target implementation must have logged a detailed error
3006  * which is forwarded to telnet/GDB session.
3007  */
3008 COMMAND_HANDLER(handle_virt2phys_command)
3009 {
3010         if (CMD_ARGC != 1)
3011                 return ERROR_COMMAND_SYNTAX_ERROR;
3012
3013         uint32_t va;
3014         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3015         uint32_t pa;
3016
3017         struct target *target = get_current_target(CMD_CTX);
3018         int retval = target->type->virt2phys(target, va, &pa);
3019         if (retval == ERROR_OK)
3020                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3021
3022         return retval;
3023 }
3024
3025 static void writeData(FILE *f, const void *data, size_t len)
3026 {
3027         size_t written = fwrite(data, 1, len, f);
3028         if (written != len)
3029                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3030 }
3031
3032 static void writeLong(FILE *f, int l)
3033 {
3034         int i;
3035         for (i = 0; i < 4; i++)
3036         {
3037                 char c = (l >> (i*8))&0xff;
3038                 writeData(f, &c, 1);
3039         }
3040
3041 }
3042
3043 static void writeString(FILE *f, char *s)
3044 {
3045         writeData(f, s, strlen(s));
3046 }
3047
3048 /* Dump a gmon.out histogram file. */
3049 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3050 {
3051         uint32_t i;
3052         FILE *f = fopen(filename, "w");
3053         if (f == NULL)
3054                 return;
3055         writeString(f, "gmon");
3056         writeLong(f, 0x00000001); /* Version */
3057         writeLong(f, 0); /* padding */
3058         writeLong(f, 0); /* padding */
3059         writeLong(f, 0); /* padding */
3060
3061         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3062         writeData(f, &zero, 1);
3063
3064         /* figure out bucket size */
3065         uint32_t min = samples[0];
3066         uint32_t max = samples[0];
3067         for (i = 0; i < sampleNum; i++)
3068         {
3069                 if (min > samples[i])
3070                 {
3071                         min = samples[i];
3072                 }
3073                 if (max < samples[i])
3074                 {
3075                         max = samples[i];
3076                 }
3077         }
3078
3079         int addressSpace = (max-min + 1);
3080
3081         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3082         uint32_t length = addressSpace;
3083         if (length > maxBuckets)
3084         {
3085                 length = maxBuckets;
3086         }
3087         int *buckets = malloc(sizeof(int)*length);
3088         if (buckets == NULL)
3089         {
3090                 fclose(f);
3091                 return;
3092         }
3093         memset(buckets, 0, sizeof(int)*length);
3094         for (i = 0; i < sampleNum;i++)
3095         {
3096                 uint32_t address = samples[i];
3097                 long long a = address-min;
3098                 long long b = length-1;
3099                 long long c = addressSpace-1;
3100                 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3101                 buckets[index_t]++;
3102         }
3103
3104         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3105         writeLong(f, min);                      /* low_pc */
3106         writeLong(f, max);                      /* high_pc */
3107         writeLong(f, length);           /* # of samples */
3108         writeLong(f, 64000000);         /* 64MHz */
3109         writeString(f, "seconds");
3110         for (i = 0; i < (15-strlen("seconds")); i++)
3111                 writeData(f, &zero, 1);
3112         writeString(f, "s");
3113
3114         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3115
3116         char *data = malloc(2*length);
3117         if (data != NULL)
3118         {
3119                 for (i = 0; i < length;i++)
3120                 {
3121                         int val;
3122                         val = buckets[i];
3123                         if (val > 65535)
3124                         {
3125                                 val = 65535;
3126                         }
3127                         data[i*2]=val&0xff;
3128                         data[i*2 + 1]=(val >> 8)&0xff;
3129                 }
3130                 free(buckets);
3131                 writeData(f, data, length * 2);
3132                 free(data);
3133         } else
3134         {
3135                 free(buckets);
3136         }
3137
3138         fclose(f);
3139 }
3140
3141 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3142  * which will be used as a random sampling of PC */
3143 COMMAND_HANDLER(handle_profile_command)
3144 {
3145         struct target *target = get_current_target(CMD_CTX);
3146         struct timeval timeout, now;
3147
3148         gettimeofday(&timeout, NULL);
3149         if (CMD_ARGC != 2)
3150         {
3151                 return ERROR_COMMAND_SYNTAX_ERROR;
3152         }
3153         unsigned offset;
3154         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3155
3156         timeval_add_time(&timeout, offset, 0);
3157
3158         /**
3159          * @todo: Some cores let us sample the PC without the
3160          * annoying halt/resume step; for example, ARMv7 PCSR.
3161          * Provide a way to use that more efficient mechanism.
3162          */
3163
3164         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3165
3166         static const int maxSample = 10000;
3167         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3168         if (samples == NULL)
3169                 return ERROR_OK;
3170
3171         int numSamples = 0;
3172         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3173         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3174
3175         for (;;)
3176         {
3177                 int retval;
3178                 target_poll(target);
3179                 if (target->state == TARGET_HALTED)
3180                 {
3181                         uint32_t t=*((uint32_t *)reg->value);
3182                         samples[numSamples++]=t;
3183                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3184                         target_poll(target);
3185                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3186                 } else if (target->state == TARGET_RUNNING)
3187                 {
3188                         /* We want to quickly sample the PC. */
3189                         if ((retval = target_halt(target)) != ERROR_OK)
3190                         {
3191                                 free(samples);
3192                                 return retval;
3193                         }
3194                 } else
3195                 {
3196                         command_print(CMD_CTX, "Target not halted or running");
3197                         retval = ERROR_OK;
3198                         break;
3199                 }
3200                 if (retval != ERROR_OK)
3201                 {
3202                         break;
3203                 }
3204
3205                 gettimeofday(&now, NULL);
3206                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3207                 {
3208                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3209                         if ((retval = target_poll(target)) != ERROR_OK)
3210                         {
3211                                 free(samples);
3212                                 return retval;
3213                         }
3214                         if (target->state == TARGET_HALTED)
3215                         {
3216                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3217                         }
3218                         if ((retval = target_poll(target)) != ERROR_OK)
3219                         {
3220                                 free(samples);
3221                                 return retval;
3222                         }
3223                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3224                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3225                         break;
3226                 }
3227         }
3228         free(samples);
3229
3230         return ERROR_OK;
3231 }
3232
3233 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3234 {
3235         char *namebuf;
3236         Jim_Obj *nameObjPtr, *valObjPtr;
3237         int result;
3238
3239         namebuf = alloc_printf("%s(%d)", varname, idx);
3240         if (!namebuf)
3241                 return JIM_ERR;
3242
3243         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3244         valObjPtr = Jim_NewIntObj(interp, val);
3245         if (!nameObjPtr || !valObjPtr)
3246         {
3247                 free(namebuf);
3248                 return JIM_ERR;
3249         }
3250
3251         Jim_IncrRefCount(nameObjPtr);
3252         Jim_IncrRefCount(valObjPtr);
3253         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3254         Jim_DecrRefCount(interp, nameObjPtr);
3255         Jim_DecrRefCount(interp, valObjPtr);
3256         free(namebuf);
3257         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3258         return result;
3259 }
3260
3261 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3262 {
3263         struct command_context *context;
3264         struct target *target;
3265
3266         context = current_command_context(interp);
3267         assert (context != NULL);
3268
3269         target = get_current_target(context);
3270         if (target == NULL)
3271         {
3272                 LOG_ERROR("mem2array: no current target");
3273                 return JIM_ERR;
3274         }
3275
3276         return  target_mem2array(interp, target, argc-1, argv + 1);
3277 }
3278
3279 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3280 {
3281         long l;
3282         uint32_t width;
3283         int len;
3284         uint32_t addr;
3285         uint32_t count;
3286         uint32_t v;
3287         const char *varname;
3288         int  n, e, retval;
3289         uint32_t i;
3290
3291         /* argv[1] = name of array to receive the data
3292          * argv[2] = desired width
3293          * argv[3] = memory address
3294          * argv[4] = count of times to read
3295          */
3296         if (argc != 4) {
3297                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3298                 return JIM_ERR;
3299         }
3300         varname = Jim_GetString(argv[0], &len);
3301         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3302
3303         e = Jim_GetLong(interp, argv[1], &l);
3304         width = l;
3305         if (e != JIM_OK) {
3306                 return e;
3307         }
3308
3309         e = Jim_GetLong(interp, argv[2], &l);
3310         addr = l;
3311         if (e != JIM_OK) {
3312                 return e;
3313         }
3314         e = Jim_GetLong(interp, argv[3], &l);
3315         len = l;
3316         if (e != JIM_OK) {
3317                 return e;
3318         }
3319         switch (width) {
3320                 case 8:
3321                         width = 1;
3322                         break;
3323                 case 16:
3324                         width = 2;
3325                         break;
3326                 case 32:
3327                         width = 4;
3328                         break;
3329                 default:
3330                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3331                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3332                         return JIM_ERR;
3333         }
3334         if (len == 0) {
3335                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3336                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3337                 return JIM_ERR;
3338         }
3339         if ((addr + (len * width)) < addr) {
3340                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3341                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3342                 return JIM_ERR;
3343         }
3344         /* absurd transfer size? */
3345         if (len > 65536) {
3346                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3347                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3348                 return JIM_ERR;
3349         }
3350
3351         if ((width == 1) ||
3352                 ((width == 2) && ((addr & 1) == 0)) ||
3353                 ((width == 4) && ((addr & 3) == 0))) {
3354                 /* all is well */
3355         } else {
3356                 char buf[100];
3357                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3358                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3359                                 addr,
3360                                 width);
3361                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3362                 return JIM_ERR;
3363         }
3364
3365         /* Transfer loop */
3366
3367         /* index counter */
3368         n = 0;
3369
3370         size_t buffersize = 4096;
3371         uint8_t *buffer = malloc(buffersize);
3372         if (buffer == NULL)
3373                 return JIM_ERR;
3374
3375         /* assume ok */
3376         e = JIM_OK;
3377         while (len) {
3378                 /* Slurp... in buffer size chunks */
3379
3380                 count = len; /* in objects.. */
3381                 if (count > (buffersize/width)) {
3382                         count = (buffersize/width);
3383                 }
3384
3385                 retval = target_read_memory(target, addr, width, count, buffer);
3386                 if (retval != ERROR_OK) {
3387                         /* BOO !*/
3388                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3389                                           (unsigned int)addr,
3390                                           (int)width,
3391                                           (int)count);
3392                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3393                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3394                         e = JIM_ERR;
3395                         len = 0;
3396                 } else {
3397                         v = 0; /* shut up gcc */
3398                         for (i = 0 ;i < count ;i++, n++) {
3399                                 switch (width) {
3400                                         case 4:
3401                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3402                                                 break;
3403                                         case 2:
3404                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3405                                                 break;
3406                                         case 1:
3407                                                 v = buffer[i] & 0x0ff;
3408                                                 break;
3409                                 }
3410                                 new_int_array_element(interp, varname, n, v);
3411                         }
3412                         len -= count;
3413                 }
3414         }
3415
3416         free(buffer);
3417
3418         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3419
3420         return JIM_OK;
3421 }
3422
3423 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3424 {
3425         char *namebuf;
3426         Jim_Obj *nameObjPtr, *valObjPtr;
3427         int result;
3428         long l;
3429
3430         namebuf = alloc_printf("%s(%d)", varname, idx);
3431         if (!namebuf)
3432                 return JIM_ERR;
3433
3434         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3435         if (!nameObjPtr)
3436         {
3437                 free(namebuf);
3438                 return JIM_ERR;
3439         }
3440
3441         Jim_IncrRefCount(nameObjPtr);
3442         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3443         Jim_DecrRefCount(interp, nameObjPtr);
3444         free(namebuf);
3445         if (valObjPtr == NULL)
3446                 return JIM_ERR;
3447
3448         result = Jim_GetLong(interp, valObjPtr, &l);
3449         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3450         *val = l;
3451         return result;
3452 }
3453
3454 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3455 {
3456         struct command_context *context;
3457         struct target *target;
3458
3459         context = current_command_context(interp);
3460         assert (context != NULL);
3461
3462         target = get_current_target(context);
3463         if (target == NULL) {
3464                 LOG_ERROR("array2mem: no current target");
3465                 return JIM_ERR;
3466         }
3467
3468         return target_array2mem(interp,target, argc-1, argv + 1);
3469 }
3470
3471 static int target_array2mem(Jim_Interp *interp, struct target *target,
3472                 int argc, Jim_Obj *const *argv)
3473 {
3474         long l;
3475         uint32_t width;
3476         int len;
3477         uint32_t addr;
3478         uint32_t count;
3479         uint32_t v;
3480         const char *varname;
3481         int  n, e, retval;
3482         uint32_t i;
3483
3484         /* argv[1] = name of array to get the data
3485          * argv[2] = desired width
3486          * argv[3] = memory address
3487          * argv[4] = count to write
3488          */
3489         if (argc != 4) {
3490                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3491                 return JIM_ERR;
3492         }
3493         varname = Jim_GetString(argv[0], &len);
3494         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3495
3496         e = Jim_GetLong(interp, argv[1], &l);
3497         width = l;
3498         if (e != JIM_OK) {
3499                 return e;
3500         }
3501
3502         e = Jim_GetLong(interp, argv[2], &l);
3503         addr = l;
3504         if (e != JIM_OK) {
3505                 return e;
3506         }
3507         e = Jim_GetLong(interp, argv[3], &l);
3508         len = l;
3509         if (e != JIM_OK) {
3510                 return e;
3511         }
3512         switch (width) {
3513                 case 8:
3514                         width = 1;
3515                         break;
3516                 case 16:
3517                         width = 2;
3518                         break;
3519                 case 32:
3520                         width = 4;
3521                         break;
3522                 default:
3523                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3524                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3525                         return JIM_ERR;
3526         }
3527         if (len == 0) {
3528                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3529                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3530                 return JIM_ERR;
3531         }
3532         if ((addr + (len * width)) < addr) {
3533                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3534                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3535                 return JIM_ERR;
3536         }
3537         /* absurd transfer size? */
3538         if (len > 65536) {
3539                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3540                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3541                 return JIM_ERR;
3542         }
3543
3544         if ((width == 1) ||
3545                 ((width == 2) && ((addr & 1) == 0)) ||
3546                 ((width == 4) && ((addr & 3) == 0))) {
3547                 /* all is well */
3548         } else {
3549                 char buf[100];
3550                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3551                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3552                                 (unsigned int)addr,
3553                                 (int)width);
3554                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3555                 return JIM_ERR;
3556         }
3557
3558         /* Transfer loop */
3559
3560         /* index counter */
3561         n = 0;
3562         /* assume ok */
3563         e = JIM_OK;
3564
3565         size_t buffersize = 4096;
3566         uint8_t *buffer = malloc(buffersize);
3567         if (buffer == NULL)
3568                 return JIM_ERR;
3569
3570         while (len) {
3571                 /* Slurp... in buffer size chunks */
3572
3573                 count = len; /* in objects.. */
3574                 if (count > (buffersize/width)) {
3575                         count = (buffersize/width);
3576                 }
3577
3578                 v = 0; /* shut up gcc */
3579                 for (i = 0 ;i < count ;i++, n++) {
3580                         get_int_array_element(interp, varname, n, &v);
3581                         switch (width) {
3582                         case 4:
3583                                 target_buffer_set_u32(target, &buffer[i*width], v);
3584                                 break;
3585                         case 2:
3586                                 target_buffer_set_u16(target, &buffer[i*width], v);
3587                                 break;
3588                         case 1:
3589                                 buffer[i] = v & 0x0ff;
3590                                 break;
3591                         }
3592                 }
3593                 len -= count;
3594
3595                 retval = target_write_memory(target, addr, width, count, buffer);
3596                 if (retval != ERROR_OK) {
3597                         /* BOO !*/
3598                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3599                                           (unsigned int)addr,
3600                                           (int)width,
3601                                           (int)count);
3602                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3603                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3604                         e = JIM_ERR;
3605                         len = 0;
3606                 }
3607         }
3608
3609         free(buffer);
3610
3611         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3612
3613         return JIM_OK;
3614 }
3615
3616 /* FIX? should we propagate errors here rather than printing them
3617  * and continuing?
3618  */
3619 void target_handle_event(struct target *target, enum target_event e)
3620 {
3621         struct target_event_action *teap;
3622
3623         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3624                 if (teap->event == e) {
3625                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3626                                            target->target_number,
3627                                            target_name(target),
3628                                            target_type_name(target),
3629                                            e,
3630                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3631                                            Jim_GetString(teap->body, NULL));
3632                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3633                         {
3634                                 Jim_PrintErrorMessage(teap->interp);
3635                         }
3636                 }
3637         }
3638 }
3639
3640 /**
3641  * Returns true only if the target has a handler for the specified event.
3642  */
3643 bool target_has_event_action(struct target *target, enum target_event event)
3644 {
3645         struct target_event_action *teap;
3646
3647         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3648                 if (teap->event == event)
3649                         return true;
3650         }
3651         return false;
3652 }
3653
3654 enum target_cfg_param {
3655         TCFG_TYPE,
3656         TCFG_EVENT,
3657         TCFG_WORK_AREA_VIRT,
3658         TCFG_WORK_AREA_PHYS,
3659         TCFG_WORK_AREA_SIZE,
3660         TCFG_WORK_AREA_BACKUP,
3661         TCFG_ENDIAN,
3662         TCFG_VARIANT,
3663         TCFG_CHAIN_POSITION,
3664 };
3665
3666 static Jim_Nvp nvp_config_opts[] = {
3667         { .name = "-type",             .value = TCFG_TYPE },
3668         { .name = "-event",            .value = TCFG_EVENT },
3669         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3670         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3671         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3672         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3673         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3674         { .name = "-variant",          .value = TCFG_VARIANT },
3675         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3676
3677         { .name = NULL, .value = -1 }
3678 };
3679
3680 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3681 {
3682         Jim_Nvp *n;
3683         Jim_Obj *o;
3684         jim_wide w;
3685         char *cp;
3686         int e;
3687
3688         /* parse config or cget options ... */
3689         while (goi->argc > 0) {
3690                 Jim_SetEmptyResult(goi->interp);
3691                 /* Jim_GetOpt_Debug(goi); */
3692
3693                 if (target->type->target_jim_configure) {
3694                         /* target defines a configure function */
3695                         /* target gets first dibs on parameters */
3696                         e = (*(target->type->target_jim_configure))(target, goi);
3697                         if (e == JIM_OK) {
3698                                 /* more? */
3699                                 continue;
3700                         }
3701                         if (e == JIM_ERR) {
3702                                 /* An error */
3703                                 return e;
3704                         }
3705                         /* otherwise we 'continue' below */
3706                 }
3707                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3708                 if (e != JIM_OK) {
3709                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3710                         return e;
3711                 }
3712                 switch (n->value) {
3713                 case TCFG_TYPE:
3714                         /* not setable */
3715                         if (goi->isconfigure) {
3716                                 Jim_SetResult_sprintf(goi->interp,
3717                                                 "not settable: %s", n->name);
3718                                 return JIM_ERR;
3719                         } else {
3720                         no_params:
3721                                 if (goi->argc != 0) {
3722                                         Jim_WrongNumArgs(goi->interp,
3723                                                         goi->argc, goi->argv,
3724                                                         "NO PARAMS");
3725                                         return JIM_ERR;
3726                                 }
3727                         }
3728                         Jim_SetResultString(goi->interp,
3729                                         target_type_name(target), -1);
3730                         /* loop for more */
3731                         break;
3732                 case TCFG_EVENT:
3733                         if (goi->argc == 0) {
3734                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3735                                 return JIM_ERR;
3736                         }
3737
3738                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3739                         if (e != JIM_OK) {
3740                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3741                                 return e;
3742                         }
3743
3744                         if (goi->isconfigure) {
3745                                 if (goi->argc != 1) {
3746                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3747                                         return JIM_ERR;
3748                                 }
3749                         } else {
3750                                 if (goi->argc != 0) {
3751                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3752                                         return JIM_ERR;
3753                                 }
3754                         }
3755
3756                         {
3757                                 struct target_event_action *teap;
3758
3759                                 teap = target->event_action;
3760                                 /* replace existing? */
3761                                 while (teap) {
3762                                         if (teap->event == (enum target_event)n->value) {
3763                                                 break;
3764                                         }
3765                                         teap = teap->next;
3766                                 }
3767
3768                                 if (goi->isconfigure) {
3769                                         bool replace = true;
3770                                         if (teap == NULL) {
3771                                                 /* create new */
3772                                                 teap = calloc(1, sizeof(*teap));
3773                                                 replace = false;
3774                                         }
3775                                         teap->event = n->value;
3776                                         teap->interp = goi->interp;
3777                                         Jim_GetOpt_Obj(goi, &o);
3778                                         if (teap->body) {
3779                                                 Jim_DecrRefCount(teap->interp, teap->body);
3780                                         }
3781                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3782                                         /*
3783                                          * FIXME:
3784                                          *     Tcl/TK - "tk events" have a nice feature.
3785                                          *     See the "BIND" command.
3786                                          *    We should support that here.
3787                                          *     You can specify %X and %Y in the event code.
3788                                          *     The idea is: %T - target name.
3789                                          *     The idea is: %N - target number
3790                                          *     The idea is: %E - event name.
3791                                          */
3792                                         Jim_IncrRefCount(teap->body);
3793
3794                                         if (!replace)
3795                                         {
3796                                                 /* add to head of event list */
3797                                                 teap->next = target->event_action;
3798                                                 target->event_action = teap;
3799                                         }
3800                                         Jim_SetEmptyResult(goi->interp);
3801                                 } else {
3802                                         /* get */
3803                                         if (teap == NULL) {
3804                                                 Jim_SetEmptyResult(goi->interp);
3805                                         } else {
3806                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3807                                         }
3808                                 }
3809                         }
3810                         /* loop for more */
3811                         break;
3812
3813                 case TCFG_WORK_AREA_VIRT:
3814                         if (goi->isconfigure) {
3815                                 target_free_all_working_areas(target);
3816                                 e = Jim_GetOpt_Wide(goi, &w);
3817                                 if (e != JIM_OK) {
3818                                         return e;
3819                                 }
3820                                 target->working_area_virt = w;
3821                                 target->working_area_virt_spec = true;
3822                         } else {
3823                                 if (goi->argc != 0) {
3824                                         goto no_params;
3825                                 }
3826                         }
3827                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3828                         /* loop for more */
3829                         break;
3830
3831                 case TCFG_WORK_AREA_PHYS:
3832                         if (goi->isconfigure) {
3833                                 target_free_all_working_areas(target);
3834                                 e = Jim_GetOpt_Wide(goi, &w);
3835                                 if (e != JIM_OK) {
3836                                         return e;
3837                                 }
3838                                 target->working_area_phys = w;
3839                                 target->working_area_phys_spec = true;
3840                         } else {
3841                                 if (goi->argc != 0) {
3842                                         goto no_params;
3843                                 }
3844                         }
3845                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3846                         /* loop for more */
3847                         break;
3848
3849                 case TCFG_WORK_AREA_SIZE:
3850                         if (goi->isconfigure) {
3851                                 target_free_all_working_areas(target);
3852                                 e = Jim_GetOpt_Wide(goi, &w);
3853                                 if (e != JIM_OK) {
3854                                         return e;
3855                                 }
3856                                 target->working_area_size = w;
3857                         } else {
3858                                 if (goi->argc != 0) {
3859                                         goto no_params;
3860                                 }
3861                         }
3862                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3863                         /* loop for more */
3864                         break;
3865
3866                 case TCFG_WORK_AREA_BACKUP:
3867                         if (goi->isconfigure) {
3868                                 target_free_all_working_areas(target);
3869                                 e = Jim_GetOpt_Wide(goi, &w);
3870                                 if (e != JIM_OK) {
3871                                         return e;
3872                                 }
3873                                 /* make this exactly 1 or 0 */
3874                                 target->backup_working_area = (!!w);
3875                         } else {
3876                                 if (goi->argc != 0) {
3877                                         goto no_params;
3878                                 }
3879                         }
3880                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3881                         /* loop for more e*/
3882                         break;
3883
3884                 case TCFG_ENDIAN:
3885                         if (goi->isconfigure) {
3886                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3887                                 if (e != JIM_OK) {
3888                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3889                                         return e;
3890                                 }
3891                                 target->endianness = n->value;
3892                         } else {
3893                                 if (goi->argc != 0) {
3894                                         goto no_params;
3895                                 }
3896                         }
3897                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3898                         if (n->name == NULL) {
3899                                 target->endianness = TARGET_LITTLE_ENDIAN;
3900                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3901                         }
3902                         Jim_SetResultString(goi->interp, n->name, -1);
3903                         /* loop for more */
3904                         break;
3905
3906                 case TCFG_VARIANT:
3907                         if (goi->isconfigure) {
3908                                 if (goi->argc < 1) {
3909                                         Jim_SetResult_sprintf(goi->interp,
3910                                                                                    "%s ?STRING?",
3911                                                                                    n->name);
3912                                         return JIM_ERR;
3913                                 }
3914                                 if (target->variant) {
3915                                         free((void *)(target->variant));
3916                                 }
3917                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3918                                 target->variant = strdup(cp);
3919                         } else {
3920                                 if (goi->argc != 0) {
3921                                         goto no_params;
3922                                 }
3923                         }
3924                         Jim_SetResultString(goi->interp, target->variant,-1);
3925                         /* loop for more */
3926                         break;
3927                 case TCFG_CHAIN_POSITION:
3928                         if (goi->isconfigure) {
3929                                 Jim_Obj *o_t;
3930                                 struct jtag_tap *tap;
3931                                 target_free_all_working_areas(target);
3932                                 e = Jim_GetOpt_Obj(goi, &o_t);
3933                                 if (e != JIM_OK) {
3934                                         return e;
3935                                 }
3936                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
3937                                 if (tap == NULL) {
3938                                         return JIM_ERR;
3939                                 }
3940                                 /* make this exactly 1 or 0 */
3941                                 target->tap = tap;
3942                         } else {
3943                                 if (goi->argc != 0) {
3944                                         goto no_params;
3945                                 }
3946                         }
3947                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3948                         /* loop for more e*/
3949                         break;
3950                 }
3951         } /* while (goi->argc) */
3952
3953
3954                 /* done - we return */
3955         return JIM_OK;
3956 }
3957
3958 static int
3959 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3960 {
3961         Jim_GetOptInfo goi;
3962
3963         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3964         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3965         int need_args = 1 + goi.isconfigure;
3966         if (goi.argc < need_args)
3967         {
3968                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3969                         goi.isconfigure
3970                                 ? "missing: -option VALUE ..."
3971                                 : "missing: -option ...");
3972                 return JIM_ERR;
3973         }
3974         struct target *target = Jim_CmdPrivData(goi.interp);
3975         return target_configure(&goi, target);
3976 }
3977
3978 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3979 {
3980         const char *cmd_name = Jim_GetString(argv[0], NULL);
3981
3982         Jim_GetOptInfo goi;
3983         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3984
3985         if (goi.argc < 2 || goi.argc > 4)
3986         {
3987                 Jim_SetResult_sprintf(goi.interp,
3988                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
3989                 return JIM_ERR;
3990         }
3991
3992         target_write_fn fn;
3993         fn = target_write_memory_fast;
3994
3995         int e;
3996         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
3997         {
3998                 /* consume it */
3999                 struct Jim_Obj *obj;
4000                 e = Jim_GetOpt_Obj(&goi, &obj);
4001                 if (e != JIM_OK)
4002                         return e;
4003
4004                 fn = target_write_phys_memory;
4005         }
4006
4007         jim_wide a;
4008         e = Jim_GetOpt_Wide(&goi, &a);
4009         if (e != JIM_OK)
4010                 return e;
4011
4012         jim_wide b;
4013         e = Jim_GetOpt_Wide(&goi, &b);
4014         if (e != JIM_OK)
4015                 return e;
4016
4017         jim_wide c = 1;
4018         if (goi.argc == 1)
4019         {
4020                 e = Jim_GetOpt_Wide(&goi, &c);
4021                 if (e != JIM_OK)
4022                         return e;
4023         }
4024
4025         /* all args must be consumed */
4026         if (goi.argc != 0)
4027         {
4028                 return JIM_ERR;
4029         }
4030
4031         struct target *target = Jim_CmdPrivData(goi.interp);
4032         unsigned data_size;
4033         if (strcasecmp(cmd_name, "mww") == 0) {
4034                 data_size = 4;
4035         }
4036         else if (strcasecmp(cmd_name, "mwh") == 0) {
4037                 data_size = 2;
4038         }
4039         else if (strcasecmp(cmd_name, "mwb") == 0) {
4040                 data_size = 1;
4041         } else {
4042                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4043                 return JIM_ERR;
4044         }
4045
4046         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4047 }
4048
4049 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4050 {
4051         const char *cmd_name = Jim_GetString(argv[0], NULL);
4052
4053         Jim_GetOptInfo goi;
4054         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4055
4056         if ((goi.argc < 1) || (goi.argc > 3))
4057         {
4058                 Jim_SetResult_sprintf(goi.interp,
4059                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4060                 return JIM_ERR;
4061         }
4062
4063         int (*fn)(struct target *target,
4064                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4065         fn=target_read_memory;
4066
4067         int e;
4068         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4069         {
4070                 /* consume it */
4071                 struct Jim_Obj *obj;
4072                 e = Jim_GetOpt_Obj(&goi, &obj);
4073                 if (e != JIM_OK)
4074                         return e;
4075
4076                 fn=target_read_phys_memory;
4077         }
4078
4079         jim_wide a;
4080         e = Jim_GetOpt_Wide(&goi, &a);
4081         if (e != JIM_OK) {
4082                 return JIM_ERR;
4083         }
4084         jim_wide c;
4085         if (goi.argc == 1) {
4086                 e = Jim_GetOpt_Wide(&goi, &c);
4087                 if (e != JIM_OK) {
4088                         return JIM_ERR;
4089                 }
4090         } else {
4091                 c = 1;
4092         }
4093
4094         /* all args must be consumed */
4095         if (goi.argc != 0)
4096         {
4097                 return JIM_ERR;
4098         }
4099
4100         jim_wide b = 1; /* shut up gcc */
4101         if (strcasecmp(cmd_name, "mdw") == 0)
4102                 b = 4;
4103         else if (strcasecmp(cmd_name, "mdh") == 0)
4104                 b = 2;
4105         else if (strcasecmp(cmd_name, "mdb") == 0)
4106                 b = 1;
4107         else {
4108                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4109                 return JIM_ERR;
4110         }
4111
4112         /* convert count to "bytes" */
4113         c = c * b;
4114
4115         struct target *target = Jim_CmdPrivData(goi.interp);
4116         uint8_t  target_buf[32];
4117         jim_wide x, y, z;
4118         while (c > 0) {
4119                 y = c;
4120                 if (y > 16) {
4121                         y = 16;
4122                 }
4123                 e = fn(target, a, b, y / b, target_buf);
4124                 if (e != ERROR_OK) {
4125                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4126                         return JIM_ERR;
4127                 }
4128
4129                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4130                 switch (b) {
4131                 case 4:
4132                         for (x = 0; x < 16 && x < y; x += 4)
4133                         {
4134                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4135                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4136                         }
4137                         for (; (x < 16) ; x += 4) {
4138                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
4139                         }
4140                         break;
4141                 case 2:
4142                         for (x = 0; x < 16 && x < y; x += 2)
4143                         {
4144                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4145                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4146                         }
4147                         for (; (x < 16) ; x += 2) {
4148                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
4149                         }
4150                         break;
4151                 case 1:
4152                 default:
4153                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4154                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4155                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4156                         }
4157                         for (; (x < 16) ; x += 1) {
4158                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
4159                         }
4160                         break;
4161                 }
4162                 /* ascii-ify the bytes */
4163                 for (x = 0 ; x < y ; x++) {
4164                         if ((target_buf[x] >= 0x20) &&
4165                                 (target_buf[x] <= 0x7e)) {
4166                                 /* good */
4167                         } else {
4168                                 /* smack it */
4169                                 target_buf[x] = '.';
4170                         }
4171                 }
4172                 /* space pad  */
4173                 while (x < 16) {
4174                         target_buf[x] = ' ';
4175                         x++;
4176                 }
4177                 /* terminate */
4178                 target_buf[16] = 0;
4179                 /* print - with a newline */
4180                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4181                 /* NEXT... */
4182                 c -= 16;
4183                 a += 16;
4184         }
4185         return JIM_OK;
4186 }
4187
4188 static int jim_target_mem2array(Jim_Interp *interp,
4189                 int argc, Jim_Obj *const *argv)
4190 {
4191         struct target *target = Jim_CmdPrivData(interp);
4192         return target_mem2array(interp, target, argc - 1, argv + 1);
4193 }
4194
4195 static int jim_target_array2mem(Jim_Interp *interp,
4196                 int argc, Jim_Obj *const *argv)
4197 {
4198         struct target *target = Jim_CmdPrivData(interp);
4199         return target_array2mem(interp, target, argc - 1, argv + 1);
4200 }
4201
4202 static int jim_target_tap_disabled(Jim_Interp *interp)
4203 {
4204         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4205         return JIM_ERR;
4206 }
4207
4208 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4209 {
4210         if (argc != 1)
4211         {
4212                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4213                 return JIM_ERR;
4214         }
4215         struct target *target = Jim_CmdPrivData(interp);
4216         if (!target->tap->enabled)
4217                 return jim_target_tap_disabled(interp);
4218
4219         int e = target->type->examine(target);
4220         if (e != ERROR_OK)
4221         {
4222                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4223                 return JIM_ERR;
4224         }
4225         return JIM_OK;
4226 }
4227
4228 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4229 {
4230         if (argc != 1)
4231         {
4232                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4233                 return JIM_ERR;
4234         }
4235         struct target *target = Jim_CmdPrivData(interp);
4236
4237         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4238                 return JIM_ERR;
4239
4240         return JIM_OK;
4241 }
4242
4243 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4244 {
4245         if (argc != 1)
4246         {
4247                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4248                 return JIM_ERR;
4249         }
4250         struct target *target = Jim_CmdPrivData(interp);
4251         if (!target->tap->enabled)
4252                 return jim_target_tap_disabled(interp);
4253
4254         int e;
4255         if (!(target_was_examined(target))) {
4256                 e = ERROR_TARGET_NOT_EXAMINED;
4257         } else {
4258                 e = target->type->poll(target);
4259         }
4260         if (e != ERROR_OK)
4261         {
4262                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4263                 return JIM_ERR;
4264         }
4265         return JIM_OK;
4266 }
4267
4268 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4269 {
4270         Jim_GetOptInfo goi;
4271         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4272
4273         if (goi.argc != 2)
4274         {
4275                 Jim_WrongNumArgs(interp, 0, argv,
4276                                 "([tT]|[fF]|assert|deassert) BOOL");
4277                 return JIM_ERR;
4278         }
4279
4280         Jim_Nvp *n;
4281         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4282         if (e != JIM_OK)
4283         {
4284                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4285                 return e;
4286         }
4287         /* the halt or not param */
4288         jim_wide a;
4289         e = Jim_GetOpt_Wide(&goi, &a);
4290         if (e != JIM_OK)
4291                 return e;
4292
4293         struct target *target = Jim_CmdPrivData(goi.interp);
4294         if (!target->tap->enabled)
4295                 return jim_target_tap_disabled(interp);
4296         if (!(target_was_examined(target)))
4297         {
4298                 LOG_ERROR("Target not examined yet");
4299                 return ERROR_TARGET_NOT_EXAMINED;
4300         }
4301         if (!target->type->assert_reset || !target->type->deassert_reset)
4302         {
4303                 Jim_SetResult_sprintf(interp,
4304                                 "No target-specific reset for %s",
4305                                 target_name(target));
4306                 return JIM_ERR;
4307         }
4308         /* determine if we should halt or not. */
4309         target->reset_halt = !!a;
4310         /* When this happens - all workareas are invalid. */
4311         target_free_all_working_areas_restore(target, 0);
4312
4313         /* do the assert */
4314         if (n->value == NVP_ASSERT) {
4315                 e = target->type->assert_reset(target);
4316         } else {
4317                 e = target->type->deassert_reset(target);
4318         }
4319         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4320 }
4321
4322 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4323 {
4324         if (argc != 1) {
4325                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4326                 return JIM_ERR;
4327         }
4328         struct target *target = Jim_CmdPrivData(interp);
4329         if (!target->tap->enabled)
4330                 return jim_target_tap_disabled(interp);
4331         int e = target->type->halt(target);
4332         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4333 }
4334
4335 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4336 {
4337         Jim_GetOptInfo goi;
4338         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4339
4340         /* params:  <name>  statename timeoutmsecs */
4341         if (goi.argc != 2)
4342         {
4343                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4344                 Jim_SetResult_sprintf(goi.interp,
4345                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4346                 return JIM_ERR;
4347         }
4348
4349         Jim_Nvp *n;
4350         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4351         if (e != JIM_OK) {
4352                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4353                 return e;
4354         }
4355         jim_wide a;
4356         e = Jim_GetOpt_Wide(&goi, &a);
4357         if (e != JIM_OK) {
4358                 return e;
4359         }
4360         struct target *target = Jim_CmdPrivData(interp);
4361         if (!target->tap->enabled)
4362                 return jim_target_tap_disabled(interp);
4363
4364         e = target_wait_state(target, n->value, a);
4365         if (e != ERROR_OK)
4366         {
4367                 Jim_SetResult_sprintf(goi.interp,
4368                                 "target: %s wait %s fails (%d) %s",
4369                                 target_name(target), n->name,
4370                                 e, target_strerror_safe(e));
4371                 return JIM_ERR;
4372         }
4373         return JIM_OK;
4374 }
4375 /* List for human, Events defined for this target.
4376  * scripts/programs should use 'name cget -event NAME'
4377  */
4378 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4379 {
4380         struct command_context *cmd_ctx = current_command_context(interp);
4381         assert (cmd_ctx != NULL);
4382
4383         struct target *target = Jim_CmdPrivData(interp);
4384         struct target_event_action *teap = target->event_action;
4385         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4386                                    target->target_number,
4387                                    target_name(target));
4388         command_print(cmd_ctx, "%-25s | Body", "Event");
4389         command_print(cmd_ctx, "------------------------- | "
4390                         "----------------------------------------");
4391         while (teap)
4392         {
4393                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4394                 command_print(cmd_ctx, "%-25s | %s",
4395                                 opt->name, Jim_GetString(teap->body, NULL));
4396                 teap = teap->next;
4397         }
4398         command_print(cmd_ctx, "***END***");
4399         return JIM_OK;
4400 }
4401 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4402 {
4403         if (argc != 1)
4404         {
4405                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4406                 return JIM_ERR;
4407         }
4408         struct target *target = Jim_CmdPrivData(interp);
4409         Jim_SetResultString(interp, target_state_name(target), -1);
4410         return JIM_OK;
4411 }
4412 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4413 {
4414         Jim_GetOptInfo goi;
4415         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4416         if (goi.argc != 1)
4417         {
4418                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4419                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4420                 return JIM_ERR;
4421         }
4422         Jim_Nvp *n;
4423         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4424         if (e != JIM_OK)
4425         {
4426                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4427                 return e;
4428         }
4429         struct target *target = Jim_CmdPrivData(interp);
4430         target_handle_event(target, n->value);
4431         return JIM_OK;
4432 }
4433
4434 static const struct command_registration target_instance_command_handlers[] = {
4435         {
4436                 .name = "configure",
4437                 .mode = COMMAND_CONFIG,
4438                 .jim_handler = jim_target_configure,
4439                 .help  = "configure a new target for use",
4440                 .usage = "[target_attribute ...]",
4441         },
4442         {
4443                 .name = "cget",
4444                 .mode = COMMAND_ANY,
4445                 .jim_handler = jim_target_configure,
4446                 .help  = "returns the specified target attribute",
4447                 .usage = "target_attribute",
4448         },
4449         {
4450                 .name = "mww",
4451                 .mode = COMMAND_EXEC,
4452                 .jim_handler = jim_target_mw,
4453                 .help = "Write 32-bit word(s) to target memory",
4454                 .usage = "address data [count]",
4455         },
4456         {
4457                 .name = "mwh",
4458                 .mode = COMMAND_EXEC,
4459                 .jim_handler = jim_target_mw,
4460                 .help = "Write 16-bit half-word(s) to target memory",
4461                 .usage = "address data [count]",
4462         },
4463         {
4464                 .name = "mwb",
4465                 .mode = COMMAND_EXEC,
4466                 .jim_handler = jim_target_mw,
4467                 .help = "Write byte(s) to target memory",
4468                 .usage = "address data [count]",
4469         },
4470         {
4471                 .name = "mdw",
4472                 .mode = COMMAND_EXEC,
4473                 .jim_handler = jim_target_md,
4474                 .help = "Display target memory as 32-bit words",
4475                 .usage = "address [count]",
4476         },
4477         {
4478                 .name = "mdh",
4479                 .mode = COMMAND_EXEC,
4480                 .jim_handler = jim_target_md,
4481                 .help = "Display target memory as 16-bit half-words",
4482                 .usage = "address [count]",
4483         },
4484         {
4485                 .name = "mdb",
4486                 .mode = COMMAND_EXEC,
4487                 .jim_handler = jim_target_md,
4488                 .help = "Display target memory as 8-bit bytes",
4489                 .usage = "address [count]",
4490         },
4491         {
4492                 .name = "array2mem",
4493                 .mode = COMMAND_EXEC,
4494                 .jim_handler = jim_target_array2mem,
4495                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4496                         "to target memory",
4497                 .usage = "arrayname bitwidth address count",
4498         },
4499         {
4500                 .name = "mem2array",
4501                 .mode = COMMAND_EXEC,
4502                 .jim_handler = jim_target_mem2array,
4503                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4504                         "from target memory",
4505                 .usage = "arrayname bitwidth address count",
4506         },
4507         {
4508                 .name = "eventlist",
4509                 .mode = COMMAND_EXEC,
4510                 .jim_handler = jim_target_event_list,
4511                 .help = "displays a table of events defined for this target",
4512         },
4513         {
4514                 .name = "curstate",
4515                 .mode = COMMAND_EXEC,
4516                 .jim_handler = jim_target_current_state,
4517                 .help = "displays the current state of this target",
4518         },
4519         {
4520                 .name = "arp_examine",
4521                 .mode = COMMAND_EXEC,
4522                 .jim_handler = jim_target_examine,
4523                 .help = "used internally for reset processing",
4524         },
4525         {
4526                 .name = "arp_halt_gdb",
4527                 .mode = COMMAND_EXEC,
4528                 .jim_handler = jim_target_halt_gdb,
4529                 .help = "used internally for reset processing to halt GDB",
4530         },
4531         {
4532                 .name = "arp_poll",
4533                 .mode = COMMAND_EXEC,
4534                 .jim_handler = jim_target_poll,
4535                 .help = "used internally for reset processing",
4536         },
4537         {
4538                 .name = "arp_reset",
4539                 .mode = COMMAND_EXEC,
4540                 .jim_handler = jim_target_reset,
4541                 .help = "used internally for reset processing",
4542         },
4543         {
4544                 .name = "arp_halt",
4545                 .mode = COMMAND_EXEC,
4546                 .jim_handler = jim_target_halt,
4547                 .help = "used internally for reset processing",
4548         },
4549         {
4550                 .name = "arp_waitstate",
4551                 .mode = COMMAND_EXEC,
4552                 .jim_handler = jim_target_wait_state,
4553                 .help = "used internally for reset processing",
4554         },
4555         {
4556                 .name = "invoke-event",
4557                 .mode = COMMAND_EXEC,
4558                 .jim_handler = jim_target_invoke_event,
4559                 .help = "invoke handler for specified event",
4560                 .usage = "event_name",
4561         },
4562         COMMAND_REGISTRATION_DONE
4563 };
4564
4565 static int target_create(Jim_GetOptInfo *goi)
4566 {
4567         Jim_Obj *new_cmd;
4568         Jim_Cmd *cmd;
4569         const char *cp;
4570         char *cp2;
4571         int e;
4572         int x;
4573         struct target *target;
4574         struct command_context *cmd_ctx;
4575
4576         cmd_ctx = current_command_context(goi->interp);
4577         assert (cmd_ctx != NULL);
4578
4579         if (goi->argc < 3) {
4580                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4581                 return JIM_ERR;
4582         }
4583
4584         /* COMMAND */
4585         Jim_GetOpt_Obj(goi, &new_cmd);
4586         /* does this command exist? */
4587         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4588         if (cmd) {
4589                 cp = Jim_GetString(new_cmd, NULL);
4590                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4591                 return JIM_ERR;
4592         }
4593
4594         /* TYPE */
4595         e = Jim_GetOpt_String(goi, &cp2, NULL);
4596         cp = cp2;
4597         /* now does target type exist */
4598         for (x = 0 ; target_types[x] ; x++) {
4599                 if (0 == strcmp(cp, target_types[x]->name)) {
4600                         /* found */
4601                         break;
4602                 }
4603         }
4604         if (target_types[x] == NULL) {
4605                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4606                 for (x = 0 ; target_types[x] ; x++) {
4607                         if (target_types[x + 1]) {
4608                                 Jim_AppendStrings(goi->interp,
4609                                                                    Jim_GetResult(goi->interp),
4610                                                                    target_types[x]->name,
4611                                                                    ", ", NULL);
4612                         } else {
4613                                 Jim_AppendStrings(goi->interp,
4614                                                                    Jim_GetResult(goi->interp),
4615                                                                    " or ",
4616                                                                    target_types[x]->name,NULL);
4617                         }
4618                 }
4619                 return JIM_ERR;
4620         }
4621
4622         /* Create it */
4623         target = calloc(1,sizeof(struct target));
4624         /* set target number */
4625         target->target_number = new_target_number();
4626
4627         /* allocate memory for each unique target type */
4628         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4629
4630         memcpy(target->type, target_types[x], sizeof(struct target_type));
4631
4632         /* will be set by "-endian" */
4633         target->endianness = TARGET_ENDIAN_UNKNOWN;
4634
4635         target->working_area        = 0x0;
4636         target->working_area_size   = 0x0;
4637         target->working_areas       = NULL;
4638         target->backup_working_area = 0;
4639
4640         target->state               = TARGET_UNKNOWN;
4641         target->debug_reason        = DBG_REASON_UNDEFINED;
4642         target->reg_cache           = NULL;
4643         target->breakpoints         = NULL;
4644         target->watchpoints         = NULL;
4645         target->next                = NULL;
4646         target->arch_info           = NULL;
4647
4648         target->display             = 1;
4649
4650         target->halt_issued                     = false;
4651
4652         /* initialize trace information */
4653         target->trace_info = malloc(sizeof(struct trace));
4654         target->trace_info->num_trace_points         = 0;
4655         target->trace_info->trace_points_size        = 0;
4656         target->trace_info->trace_points             = NULL;
4657         target->trace_info->trace_history_size       = 0;
4658         target->trace_info->trace_history            = NULL;
4659         target->trace_info->trace_history_pos        = 0;
4660         target->trace_info->trace_history_overflowed = 0;
4661
4662         target->dbgmsg          = NULL;
4663         target->dbg_msg_enabled = 0;
4664
4665         target->endianness = TARGET_ENDIAN_UNKNOWN;
4666
4667         /* Do the rest as "configure" options */
4668         goi->isconfigure = 1;
4669         e = target_configure(goi, target);
4670
4671         if (target->tap == NULL)
4672         {
4673                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4674                 e = JIM_ERR;
4675         }
4676
4677         if (e != JIM_OK) {
4678                 free(target->type);
4679                 free(target);
4680                 return e;
4681         }
4682
4683         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4684                 /* default endian to little if not specified */
4685                 target->endianness = TARGET_LITTLE_ENDIAN;
4686         }
4687
4688         /* incase variant is not set */
4689         if (!target->variant)
4690                 target->variant = strdup("");
4691
4692         cp = Jim_GetString(new_cmd, NULL);
4693         target->cmd_name = strdup(cp);
4694
4695         /* create the target specific commands */
4696         if (target->type->commands) {
4697                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4698                 if (ERROR_OK != e)
4699                         LOG_ERROR("unable to register '%s' commands", cp);
4700         }
4701         if (target->type->target_create) {
4702                 (*(target->type->target_create))(target, goi->interp);
4703         }
4704
4705         /* append to end of list */
4706         {
4707                 struct target **tpp;
4708                 tpp = &(all_targets);
4709                 while (*tpp) {
4710                         tpp = &((*tpp)->next);
4711                 }
4712                 *tpp = target;
4713         }
4714
4715         /* now - create the new target name command */
4716         const const struct command_registration target_subcommands[] = {
4717                 {
4718                         .chain = target_instance_command_handlers,
4719                 },
4720                 {
4721                         .chain = target->type->commands,
4722                 },
4723                 COMMAND_REGISTRATION_DONE
4724         };
4725         const const struct command_registration target_commands[] = {
4726                 {
4727                         .name = cp,
4728                         .mode = COMMAND_ANY,
4729                         .help = "target command group",
4730                         .chain = target_subcommands,
4731                 },
4732                 COMMAND_REGISTRATION_DONE
4733         };
4734         e = register_commands(cmd_ctx, NULL, target_commands);
4735         if (ERROR_OK != e)
4736                 return JIM_ERR;
4737
4738         struct command *c = command_find_in_context(cmd_ctx, cp);
4739         assert(c);
4740         command_set_handler_data(c, target);
4741
4742         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4743 }
4744
4745 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4746 {
4747         if (argc != 1)
4748         {
4749                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4750                 return JIM_ERR;
4751         }
4752         struct command_context *cmd_ctx = current_command_context(interp);
4753         assert (cmd_ctx != NULL);
4754
4755         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4756         return JIM_OK;
4757 }
4758
4759 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4760 {
4761         if (argc != 1)
4762         {
4763                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4764                 return JIM_ERR;
4765         }
4766         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4767         for (unsigned x = 0; NULL != target_types[x]; x++)
4768         {
4769                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4770                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4771         }
4772         return JIM_OK;
4773 }
4774
4775 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4776 {
4777         if (argc != 1)
4778         {
4779                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4780                 return JIM_ERR;
4781         }
4782         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4783         struct target *target = all_targets;
4784         while (target)
4785         {
4786                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4787                         Jim_NewStringObj(interp, target_name(target), -1));
4788                 target = target->next;
4789         }
4790         return JIM_OK;
4791 }
4792
4793 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4794 {
4795         Jim_GetOptInfo goi;
4796         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4797         if (goi.argc < 3)
4798         {
4799                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4800                         "<name> <target_type> [<target_options> ...]");
4801                 return JIM_ERR;
4802         }
4803         return target_create(&goi);
4804 }
4805
4806 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4807 {
4808         Jim_GetOptInfo goi;
4809         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4810
4811         /* It's OK to remove this mechanism sometime after August 2010 or so */
4812         LOG_WARNING("don't use numbers as target identifiers; use names");
4813         if (goi.argc != 1)
4814         {
4815                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4816                 return JIM_ERR;
4817         }
4818         jim_wide w;
4819         int e = Jim_GetOpt_Wide(&goi, &w);
4820         if (e != JIM_OK)
4821                 return JIM_ERR;
4822
4823         struct target *target;
4824         for (target = all_targets; NULL != target; target = target->next)
4825         {
4826                 if (target->target_number != w)
4827                         continue;
4828
4829                 Jim_SetResultString(goi.interp, target_name(target), -1);
4830                 return JIM_OK;
4831         }
4832         Jim_SetResult_sprintf(goi.interp,
4833                         "Target: number %d does not exist", (int)(w));
4834         return JIM_ERR;
4835 }
4836
4837 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4838 {
4839         if (argc != 1)
4840         {
4841                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4842                 return JIM_ERR;
4843         }
4844         unsigned count = 0;
4845         struct target *target = all_targets;
4846         while (NULL != target)
4847         {
4848                 target = target->next;
4849                 count++;
4850         }
4851         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4852         return JIM_OK;
4853 }
4854
4855 static const struct command_registration target_subcommand_handlers[] = {
4856         {
4857                 .name = "init",
4858                 .mode = COMMAND_CONFIG,
4859                 .handler = handle_target_init_command,
4860                 .help = "initialize targets",
4861         },
4862         {
4863                 .name = "create",
4864                 /* REVISIT this should be COMMAND_CONFIG ... */
4865                 .mode = COMMAND_ANY,
4866                 .jim_handler = jim_target_create,
4867                 .usage = "name type '-chain-position' name [options ...]",
4868                 .help = "Creates and selects a new target",
4869         },
4870         {
4871                 .name = "current",
4872                 .mode = COMMAND_ANY,
4873                 .jim_handler = jim_target_current,
4874                 .help = "Returns the currently selected target",
4875         },
4876         {
4877                 .name = "types",
4878                 .mode = COMMAND_ANY,
4879                 .jim_handler = jim_target_types,
4880                 .help = "Returns the available target types as "
4881                                 "a list of strings",
4882         },
4883         {
4884                 .name = "names",
4885                 .mode = COMMAND_ANY,
4886                 .jim_handler = jim_target_names,
4887                 .help = "Returns the names of all targets as a list of strings",
4888         },
4889         {
4890                 .name = "number",
4891                 .mode = COMMAND_ANY,
4892                 .jim_handler = jim_target_number,
4893                 .usage = "number",
4894                 .help = "Returns the name of the numbered target "
4895                         "(DEPRECATED)",
4896         },
4897         {
4898                 .name = "count",
4899                 .mode = COMMAND_ANY,
4900                 .jim_handler = jim_target_count,
4901                 .help = "Returns the number of targets as an integer "
4902                         "(DEPRECATED)",
4903         },
4904         COMMAND_REGISTRATION_DONE
4905 };
4906
4907 struct FastLoad
4908 {
4909         uint32_t address;
4910         uint8_t *data;
4911         int length;
4912
4913 };
4914
4915 static int fastload_num;
4916 static struct FastLoad *fastload;
4917
4918 static void free_fastload(void)
4919 {
4920         if (fastload != NULL)
4921         {
4922                 int i;
4923                 for (i = 0; i < fastload_num; i++)
4924                 {
4925                         if (fastload[i].data)
4926                                 free(fastload[i].data);
4927                 }
4928                 free(fastload);
4929                 fastload = NULL;
4930         }
4931 }
4932
4933
4934
4935
4936 COMMAND_HANDLER(handle_fast_load_image_command)
4937 {
4938         uint8_t *buffer;
4939         size_t buf_cnt;
4940         uint32_t image_size;
4941         uint32_t min_address = 0;
4942         uint32_t max_address = 0xffffffff;
4943         int i;
4944
4945         struct image image;
4946
4947         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4948                         &image, &min_address, &max_address);
4949         if (ERROR_OK != retval)
4950                 return retval;
4951
4952         struct duration bench;
4953         duration_start(&bench);
4954
4955         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4956         {
4957                 return ERROR_OK;
4958         }
4959
4960         image_size = 0x0;
4961         retval = ERROR_OK;
4962         fastload_num = image.num_sections;
4963         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4964         if (fastload == NULL)
4965         {
4966                 image_close(&image);
4967                 return ERROR_FAIL;
4968         }
4969         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4970         for (i = 0; i < image.num_sections; i++)
4971         {
4972                 buffer = malloc(image.sections[i].size);
4973                 if (buffer == NULL)
4974                 {
4975                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4976                                                   (int)(image.sections[i].size));
4977                         break;
4978                 }
4979
4980                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4981                 {
4982                         free(buffer);
4983                         break;
4984                 }
4985
4986                 uint32_t offset = 0;
4987                 uint32_t length = buf_cnt;
4988
4989
4990                 /* DANGER!!! beware of unsigned comparision here!!! */
4991
4992                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4993                                 (image.sections[i].base_address < max_address))
4994                 {
4995                         if (image.sections[i].base_address < min_address)
4996                         {
4997                                 /* clip addresses below */
4998                                 offset += min_address-image.sections[i].base_address;
4999                                 length -= offset;
5000                         }
5001
5002                         if (image.sections[i].base_address + buf_cnt > max_address)
5003                         {
5004                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5005                         }
5006
5007                         fastload[i].address = image.sections[i].base_address + offset;
5008                         fastload[i].data = malloc(length);
5009                         if (fastload[i].data == NULL)
5010                         {
5011                                 free(buffer);
5012                                 break;
5013                         }
5014                         memcpy(fastload[i].data, buffer + offset, length);
5015                         fastload[i].length = length;
5016
5017                         image_size += length;
5018                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5019                                                   (unsigned int)length,
5020                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5021                 }
5022
5023                 free(buffer);
5024         }
5025
5026         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
5027         {
5028                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5029                                 "in %fs (%0.3f KiB/s)", image_size,
5030                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5031
5032                 command_print(CMD_CTX,
5033                                 "WARNING: image has not been loaded to target!"
5034                                 "You can issue a 'fast_load' to finish loading.");
5035         }
5036
5037         image_close(&image);
5038
5039         if (retval != ERROR_OK)
5040         {
5041                 free_fastload();
5042         }
5043
5044         return retval;
5045 }
5046
5047 COMMAND_HANDLER(handle_fast_load_command)
5048 {
5049         if (CMD_ARGC > 0)
5050                 return ERROR_COMMAND_SYNTAX_ERROR;
5051         if (fastload == NULL)
5052         {
5053                 LOG_ERROR("No image in memory");
5054                 return ERROR_FAIL;
5055         }
5056         int i;
5057         int ms = timeval_ms();
5058         int size = 0;
5059         int retval = ERROR_OK;
5060         for (i = 0; i < fastload_num;i++)
5061         {
5062                 struct target *target = get_current_target(CMD_CTX);
5063                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5064                                           (unsigned int)(fastload[i].address),
5065                                           (unsigned int)(fastload[i].length));
5066                 if (retval == ERROR_OK)
5067                 {
5068                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5069                 }
5070                 size += fastload[i].length;
5071         }
5072         int after = timeval_ms();
5073         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5074         return retval;
5075 }
5076
5077 static const struct command_registration target_command_handlers[] = {
5078         {
5079                 .name = "targets",
5080                 .handler = handle_targets_command,
5081                 .mode = COMMAND_ANY,
5082                 .help = "change current default target (one parameter) "
5083                         "or prints table of all targets (no parameters)",
5084                 .usage = "[target]",
5085         },
5086         {
5087                 .name = "target",
5088                 .mode = COMMAND_CONFIG,
5089                 .help = "configure target",
5090
5091                 .chain = target_subcommand_handlers,
5092         },
5093         COMMAND_REGISTRATION_DONE
5094 };
5095
5096 int target_register_commands(struct command_context *cmd_ctx)
5097 {
5098         return register_commands(cmd_ctx, NULL, target_command_handlers);
5099 }
5100
5101 static bool target_reset_nag = true;
5102
5103 bool get_target_reset_nag(void)
5104 {
5105         return target_reset_nag;
5106 }
5107
5108 COMMAND_HANDLER(handle_target_reset_nag)
5109 {
5110         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5111                         &target_reset_nag, "Nag after each reset about options to improve "
5112                         "performance");
5113 }
5114
5115 static const struct command_registration target_exec_command_handlers[] = {
5116         {
5117                 .name = "fast_load_image",
5118                 .handler = handle_fast_load_image_command,
5119                 .mode = COMMAND_ANY,
5120                 .help = "Load image into server memory for later use by "
5121                         "fast_load; primarily for profiling",
5122                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5123                         "[min_address [max_length]]",
5124         },
5125         {
5126                 .name = "fast_load",
5127                 .handler = handle_fast_load_command,
5128                 .mode = COMMAND_EXEC,
5129                 .help = "loads active fast load image to current target "
5130                         "- mainly for profiling purposes",
5131         },
5132         {
5133                 .name = "profile",
5134                 .handler = handle_profile_command,
5135                 .mode = COMMAND_EXEC,
5136                 .help = "profiling samples the CPU PC",
5137         },
5138         /** @todo don't register virt2phys() unless target supports it */
5139         {
5140                 .name = "virt2phys",
5141                 .handler = handle_virt2phys_command,
5142                 .mode = COMMAND_ANY,
5143                 .help = "translate a virtual address into a physical address",
5144                 .usage = "virtual_address",
5145         },
5146         {
5147                 .name = "reg",
5148                 .handler = handle_reg_command,
5149                 .mode = COMMAND_EXEC,
5150                 .help = "display or set a register; with no arguments, "
5151                         "displays all registers and their values",
5152                 .usage = "[(register_name|register_number) [value]]",
5153         },
5154         {
5155                 .name = "poll",
5156                 .handler = handle_poll_command,
5157                 .mode = COMMAND_EXEC,
5158                 .help = "poll target state; or reconfigure background polling",
5159                 .usage = "['on'|'off']",
5160         },
5161         {
5162                 .name = "wait_halt",
5163                 .handler = handle_wait_halt_command,
5164                 .mode = COMMAND_EXEC,
5165                 .help = "wait up to the specified number of milliseconds "
5166                         "(default 5) for a previously requested halt",
5167                 .usage = "[milliseconds]",
5168         },
5169         {
5170                 .name = "halt",
5171                 .handler = handle_halt_command,
5172                 .mode = COMMAND_EXEC,
5173                 .help = "request target to halt, then wait up to the specified"
5174                         "number of milliseconds (default 5) for it to complete",
5175                 .usage = "[milliseconds]",
5176         },
5177         {
5178                 .name = "resume",
5179                 .handler = handle_resume_command,
5180                 .mode = COMMAND_EXEC,
5181                 .help = "resume target execution from current PC or address",
5182                 .usage = "[address]",
5183         },
5184         {
5185                 .name = "reset",
5186                 .handler = handle_reset_command,
5187                 .mode = COMMAND_EXEC,
5188                 .usage = "[run|halt|init]",
5189                 .help = "Reset all targets into the specified mode."
5190                         "Default reset mode is run, if not given.",
5191         },
5192         {
5193                 .name = "soft_reset_halt",
5194                 .handler = handle_soft_reset_halt_command,
5195                 .mode = COMMAND_EXEC,
5196                 .help = "halt the target and do a soft reset",
5197         },
5198         {
5199                 .name = "step",
5200                 .handler = handle_step_command,
5201                 .mode = COMMAND_EXEC,
5202                 .help = "step one instruction from current PC or address",
5203                 .usage = "[address]",
5204         },
5205         {
5206                 .name = "mdw",
5207                 .handler = handle_md_command,
5208                 .mode = COMMAND_EXEC,
5209                 .help = "display memory words",
5210                 .usage = "['phys'] address [count]",
5211         },
5212         {
5213                 .name = "mdh",
5214                 .handler = handle_md_command,
5215                 .mode = COMMAND_EXEC,
5216                 .help = "display memory half-words",
5217                 .usage = "['phys'] address [count]",
5218         },
5219         {
5220                 .name = "mdb",
5221                 .handler = handle_md_command,
5222                 .mode = COMMAND_EXEC,
5223                 .help = "display memory bytes",
5224                 .usage = "['phys'] address [count]",
5225         },
5226         {
5227                 .name = "mww",
5228                 .handler = handle_mw_command,
5229                 .mode = COMMAND_EXEC,
5230                 .help = "write memory word",
5231                 .usage = "['phys'] address value [count]",
5232         },
5233         {
5234                 .name = "mwh",
5235                 .handler = handle_mw_command,
5236                 .mode = COMMAND_EXEC,
5237                 .help = "write memory half-word",
5238                 .usage = "['phys'] address value [count]",
5239         },
5240         {
5241                 .name = "mwb",
5242                 .handler = handle_mw_command,
5243                 .mode = COMMAND_EXEC,
5244                 .help = "write memory byte",
5245                 .usage = "['phys'] address value [count]",
5246         },
5247         {
5248                 .name = "bp",
5249                 .handler = handle_bp_command,
5250                 .mode = COMMAND_EXEC,
5251                 .help = "list or set hardware or software breakpoint",
5252                 .usage = "[address length ['hw']]",
5253         },
5254         {
5255                 .name = "rbp",
5256                 .handler = handle_rbp_command,
5257                 .mode = COMMAND_EXEC,
5258                 .help = "remove breakpoint",
5259                 .usage = "address",
5260         },
5261         {
5262                 .name = "wp",
5263                 .handler = handle_wp_command,
5264                 .mode = COMMAND_EXEC,
5265                 .help = "list (no params) or create watchpoints",
5266                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5267         },
5268         {
5269                 .name = "rwp",
5270                 .handler = handle_rwp_command,
5271                 .mode = COMMAND_EXEC,
5272                 .help = "remove watchpoint",
5273                 .usage = "address",
5274         },
5275         {
5276                 .name = "load_image",
5277                 .handler = handle_load_image_command,
5278                 .mode = COMMAND_EXEC,
5279                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5280                         "[min_address] [max_length]",
5281         },
5282         {
5283                 .name = "dump_image",
5284                 .handler = handle_dump_image_command,
5285                 .mode = COMMAND_EXEC,
5286                 .usage = "filename address size",
5287         },
5288         {
5289                 .name = "verify_image",
5290                 .handler = handle_verify_image_command,
5291                 .mode = COMMAND_EXEC,
5292                 .usage = "filename [offset [type]]",
5293         },
5294         {
5295                 .name = "test_image",
5296                 .handler = handle_test_image_command,
5297                 .mode = COMMAND_EXEC,
5298                 .usage = "filename [offset [type]]",
5299         },
5300         {
5301                 .name = "mem2array",
5302                 .mode = COMMAND_EXEC,
5303                 .jim_handler = jim_mem2array,
5304                 .help = "read 8/16/32 bit memory and return as a TCL array "
5305                         "for script processing",
5306                 .usage = "arrayname bitwidth address count",
5307         },
5308         {
5309                 .name = "array2mem",
5310                 .mode = COMMAND_EXEC,
5311                 .jim_handler = jim_array2mem,
5312                 .help = "convert a TCL array to memory locations "
5313                         "and write the 8/16/32 bit values",
5314                 .usage = "arrayname bitwidth address count",
5315         },
5316         {
5317                 .name = "reset_nag",
5318                 .handler = handle_target_reset_nag,
5319                 .mode = COMMAND_ANY,
5320                 .help = "Nag after each reset about options that could have been "
5321                                 "enabled to improve performance. ",
5322                 .usage = "['enable'|'disable']",
5323         },
5324         COMMAND_REGISTRATION_DONE
5325 };
5326 static int target_register_user_commands(struct command_context *cmd_ctx)
5327 {
5328         int retval = ERROR_OK;
5329         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5330                 return retval;
5331
5332         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5333                 return retval;
5334
5335
5336         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5337 }