cortex_a9: add source files for Cortex A9 support.
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
39
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
47
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50                 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52                 int argc, Jim_Obj *const *argv);
53 static int target_register_user_commands(struct command_context *cmd_ctx);
54
55 /* targets */
56 extern struct target_type arm7tdmi_target;
57 extern struct target_type arm720t_target;
58 extern struct target_type arm9tdmi_target;
59 extern struct target_type arm920t_target;
60 extern struct target_type arm966e_target;
61 extern struct target_type arm946e_target;
62 extern struct target_type arm926ejs_target;
63 extern struct target_type fa526_target;
64 extern struct target_type feroceon_target;
65 extern struct target_type dragonite_target;
66 extern struct target_type xscale_target;
67 extern struct target_type cortexm3_target;
68 extern struct target_type cortexa8_target;
69 extern struct target_type cortexa9_target;
70 extern struct target_type arm11_target;
71 extern struct target_type mips_m4k_target;
72 extern struct target_type avr_target;
73 extern struct target_type dsp563xx_target;
74 extern struct target_type testee_target;
75 extern struct target_type avr32_ap7k_target;
76
77 static struct target_type *target_types[] =
78 {
79         &arm7tdmi_target,
80         &arm9tdmi_target,
81         &arm920t_target,
82         &arm720t_target,
83         &arm966e_target,
84         &arm946e_target,
85         &arm926ejs_target,
86         &fa526_target,
87         &feroceon_target,
88         &dragonite_target,
89         &xscale_target,
90         &cortexm3_target,
91         &cortexa8_target,
92         &cortexa9_target,
93         &arm11_target,
94         &mips_m4k_target,
95         &avr_target,
96         &dsp563xx_target,
97         &testee_target,
98         &avr32_ap7k_target,
99         NULL,
100 };
101
102 struct target *all_targets = NULL;
103 static struct target_event_callback *target_event_callbacks = NULL;
104 static struct target_timer_callback *target_timer_callbacks = NULL;
105 static const int polling_interval = 100;
106
107 static const Jim_Nvp nvp_assert[] = {
108         { .name = "assert", NVP_ASSERT },
109         { .name = "deassert", NVP_DEASSERT },
110         { .name = "T", NVP_ASSERT },
111         { .name = "F", NVP_DEASSERT },
112         { .name = "t", NVP_ASSERT },
113         { .name = "f", NVP_DEASSERT },
114         { .name = NULL, .value = -1 }
115 };
116
117 static const Jim_Nvp nvp_error_target[] = {
118         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
119         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
120         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
121         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
122         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
123         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
124         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
125         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
126         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
127         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
128         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
129         { .value = -1, .name = NULL }
130 };
131
132 static const char *target_strerror_safe(int err)
133 {
134         const Jim_Nvp *n;
135
136         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
137         if (n->name == NULL) {
138                 return "unknown";
139         } else {
140                 return n->name;
141         }
142 }
143
144 static const Jim_Nvp nvp_target_event[] = {
145         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
146         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
147
148         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
149         { .value = TARGET_EVENT_HALTED, .name = "halted" },
150         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
151         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
152         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
153
154         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
155         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
156
157         /* historical name */
158
159         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
160
161         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
162         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
163         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
164         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
165         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
166         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
167         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
168         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
169         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
170         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
171         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
172
173         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
174         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
175
176         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
177         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
178
179         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
180         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
181
182         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
183         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
184
185         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
186         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
187
188         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
189         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
190         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
191
192         { .name = NULL, .value = -1 }
193 };
194
195 static const Jim_Nvp nvp_target_state[] = {
196         { .name = "unknown", .value = TARGET_UNKNOWN },
197         { .name = "running", .value = TARGET_RUNNING },
198         { .name = "halted",  .value = TARGET_HALTED },
199         { .name = "reset",   .value = TARGET_RESET },
200         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
201         { .name = NULL, .value = -1 },
202 };
203
204 static const Jim_Nvp nvp_target_debug_reason [] = {
205         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
206         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
207         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
208         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
209         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
210         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
211         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
212         { .name = NULL, .value = -1 },
213 };
214
215 static const Jim_Nvp nvp_target_endian[] = {
216         { .name = "big",    .value = TARGET_BIG_ENDIAN },
217         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
218         { .name = "be",     .value = TARGET_BIG_ENDIAN },
219         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
220         { .name = NULL,     .value = -1 },
221 };
222
223 static const Jim_Nvp nvp_reset_modes[] = {
224         { .name = "unknown", .value = RESET_UNKNOWN },
225         { .name = "run"    , .value = RESET_RUN },
226         { .name = "halt"   , .value = RESET_HALT },
227         { .name = "init"   , .value = RESET_INIT },
228         { .name = NULL     , .value = -1 },
229 };
230
231 const char *debug_reason_name(struct target *t)
232 {
233         const char *cp;
234
235         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
236                         t->debug_reason)->name;
237         if (!cp) {
238                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
239                 cp = "(*BUG*unknown*BUG*)";
240         }
241         return cp;
242 }
243
244 const char *
245 target_state_name( struct target *t )
246 {
247         const char *cp;
248         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
249         if( !cp ){
250                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
251                 cp = "(*BUG*unknown*BUG*)";
252         }
253         return cp;
254 }
255
256 /* determine the number of the new target */
257 static int new_target_number(void)
258 {
259         struct target *t;
260         int x;
261
262         /* number is 0 based */
263         x = -1;
264         t = all_targets;
265         while (t) {
266                 if (x < t->target_number) {
267                         x = t->target_number;
268                 }
269                 t = t->next;
270         }
271         return x + 1;
272 }
273
274 /* read a uint32_t from a buffer in target memory endianness */
275 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
276 {
277         if (target->endianness == TARGET_LITTLE_ENDIAN)
278                 return le_to_h_u32(buffer);
279         else
280                 return be_to_h_u32(buffer);
281 }
282
283 /* read a uint16_t from a buffer in target memory endianness */
284 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
285 {
286         if (target->endianness == TARGET_LITTLE_ENDIAN)
287                 return le_to_h_u16(buffer);
288         else
289                 return be_to_h_u16(buffer);
290 }
291
292 /* read a uint8_t from a buffer in target memory endianness */
293 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
294 {
295         return *buffer & 0x0ff;
296 }
297
298 /* write a uint32_t to a buffer in target memory endianness */
299 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
300 {
301         if (target->endianness == TARGET_LITTLE_ENDIAN)
302                 h_u32_to_le(buffer, value);
303         else
304                 h_u32_to_be(buffer, value);
305 }
306
307 /* write a uint16_t to a buffer in target memory endianness */
308 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
309 {
310         if (target->endianness == TARGET_LITTLE_ENDIAN)
311                 h_u16_to_le(buffer, value);
312         else
313                 h_u16_to_be(buffer, value);
314 }
315
316 /* write a uint8_t to a buffer in target memory endianness */
317 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
318 {
319         *buffer = value;
320 }
321
322 /* return a pointer to a configured target; id is name or number */
323 struct target *get_target(const char *id)
324 {
325         struct target *target;
326
327         /* try as tcltarget name */
328         for (target = all_targets; target; target = target->next) {
329                 if (target->cmd_name == NULL)
330                         continue;
331                 if (strcmp(id, target->cmd_name) == 0)
332                         return target;
333         }
334
335         /* It's OK to remove this fallback sometime after August 2010 or so */
336
337         /* no match, try as number */
338         unsigned num;
339         if (parse_uint(id, &num) != ERROR_OK)
340                 return NULL;
341
342         for (target = all_targets; target; target = target->next) {
343                 if (target->target_number == (int)num) {
344                         LOG_WARNING("use '%s' as target identifier, not '%u'",
345                                         target->cmd_name, num);
346                         return target;
347                 }
348         }
349
350         return NULL;
351 }
352
353 /* returns a pointer to the n-th configured target */
354 static struct target *get_target_by_num(int num)
355 {
356         struct target *target = all_targets;
357
358         while (target) {
359                 if (target->target_number == num) {
360                         return target;
361                 }
362                 target = target->next;
363         }
364
365         return NULL;
366 }
367
368 struct target* get_current_target(struct command_context *cmd_ctx)
369 {
370         struct target *target = get_target_by_num(cmd_ctx->current_target);
371
372         if (target == NULL)
373         {
374                 LOG_ERROR("BUG: current_target out of bounds");
375                 exit(-1);
376         }
377
378         return target;
379 }
380
381 int target_poll(struct target *target)
382 {
383         int retval;
384
385         /* We can't poll until after examine */
386         if (!target_was_examined(target))
387         {
388                 /* Fail silently lest we pollute the log */
389                 return ERROR_FAIL;
390         }
391
392         retval = target->type->poll(target);
393         if (retval != ERROR_OK)
394                 return retval;
395
396         if (target->halt_issued)
397         {
398                 if (target->state == TARGET_HALTED)
399                 {
400                         target->halt_issued = false;
401                 } else
402                 {
403                         long long t = timeval_ms() - target->halt_issued_time;
404                         if (t>1000)
405                         {
406                                 target->halt_issued = false;
407                                 LOG_INFO("Halt timed out, wake up GDB.");
408                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
409                         }
410                 }
411         }
412
413         return ERROR_OK;
414 }
415
416 int target_halt(struct target *target)
417 {
418         int retval;
419         /* We can't poll until after examine */
420         if (!target_was_examined(target))
421         {
422                 LOG_ERROR("Target not examined yet");
423                 return ERROR_FAIL;
424         }
425
426         retval = target->type->halt(target);
427         if (retval != ERROR_OK)
428                 return retval;
429
430         target->halt_issued = true;
431         target->halt_issued_time = timeval_ms();
432
433         return ERROR_OK;
434 }
435
436 /**
437  * Make the target (re)start executing using its saved execution
438  * context (possibly with some modifications).
439  *
440  * @param target Which target should start executing.
441  * @param current True to use the target's saved program counter instead
442  *      of the address parameter
443  * @param address Optionally used as the program counter.
444  * @param handle_breakpoints True iff breakpoints at the resumption PC
445  *      should be skipped.  (For example, maybe execution was stopped by
446  *      such a breakpoint, in which case it would be counterprodutive to
447  *      let it re-trigger.
448  * @param debug_execution False if all working areas allocated by OpenOCD
449  *      should be released and/or restored to their original contents.
450  *      (This would for example be true to run some downloaded "helper"
451  *      algorithm code, which resides in one such working buffer and uses
452  *      another for data storage.)
453  *
454  * @todo Resolve the ambiguity about what the "debug_execution" flag
455  * signifies.  For example, Target implementations don't agree on how
456  * it relates to invalidation of the register cache, or to whether
457  * breakpoints and watchpoints should be enabled.  (It would seem wrong
458  * to enable breakpoints when running downloaded "helper" algorithms
459  * (debug_execution true), since the breakpoints would be set to match
460  * target firmware being debugged, not the helper algorithm.... and
461  * enabling them could cause such helpers to malfunction (for example,
462  * by overwriting data with a breakpoint instruction.  On the other
463  * hand the infrastructure for running such helpers might use this
464  * procedure but rely on hardware breakpoint to detect termination.)
465  */
466 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
467 {
468         int retval;
469
470         /* We can't poll until after examine */
471         if (!target_was_examined(target))
472         {
473                 LOG_ERROR("Target not examined yet");
474                 return ERROR_FAIL;
475         }
476
477         /* note that resume *must* be asynchronous. The CPU can halt before
478          * we poll. The CPU can even halt at the current PC as a result of
479          * a software breakpoint being inserted by (a bug?) the application.
480          */
481         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
482                 return retval;
483
484         return retval;
485 }
486
487 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
488 {
489         char buf[100];
490         int retval;
491         Jim_Nvp *n;
492         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
493         if (n->name == NULL) {
494                 LOG_ERROR("invalid reset mode");
495                 return ERROR_FAIL;
496         }
497
498         /* disable polling during reset to make reset event scripts
499          * more predictable, i.e. dr/irscan & pathmove in events will
500          * not have JTAG operations injected into the middle of a sequence.
501          */
502         bool save_poll = jtag_poll_get_enabled();
503
504         jtag_poll_set_enabled(false);
505
506         sprintf(buf, "ocd_process_reset %s", n->name);
507         retval = Jim_Eval(cmd_ctx->interp, buf);
508
509         jtag_poll_set_enabled(save_poll);
510
511         if (retval != JIM_OK) {
512                 Jim_MakeErrorMessage(cmd_ctx->interp);
513                 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
514                 return ERROR_FAIL;
515         }
516
517         /* We want any events to be processed before the prompt */
518         retval = target_call_timer_callbacks_now();
519
520         struct target *target;
521         for (target = all_targets; target; target = target->next) {
522                 target->type->check_reset(target);
523         }
524
525         return retval;
526 }
527
528 static int identity_virt2phys(struct target *target,
529                 uint32_t virtual, uint32_t *physical)
530 {
531         *physical = virtual;
532         return ERROR_OK;
533 }
534
535 static int no_mmu(struct target *target, int *enabled)
536 {
537         *enabled = 0;
538         return ERROR_OK;
539 }
540
541 static int default_examine(struct target *target)
542 {
543         target_set_examined(target);
544         return ERROR_OK;
545 }
546
547 /* no check by default */
548 static int default_check_reset(struct target *target)
549 {
550         return ERROR_OK;
551 }
552
553 int target_examine_one(struct target *target)
554 {
555         return target->type->examine(target);
556 }
557
558 static int jtag_enable_callback(enum jtag_event event, void *priv)
559 {
560         struct target *target = priv;
561
562         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
563                 return ERROR_OK;
564
565         jtag_unregister_event_callback(jtag_enable_callback, target);
566         return target_examine_one(target);
567 }
568
569
570 /* Targets that correctly implement init + examine, i.e.
571  * no communication with target during init:
572  *
573  * XScale
574  */
575 int target_examine(void)
576 {
577         int retval = ERROR_OK;
578         struct target *target;
579
580         for (target = all_targets; target; target = target->next)
581         {
582                 /* defer examination, but don't skip it */
583                 if (!target->tap->enabled) {
584                         jtag_register_event_callback(jtag_enable_callback,
585                                         target);
586                         continue;
587                 }
588                 if ((retval = target_examine_one(target)) != ERROR_OK)
589                         return retval;
590         }
591         return retval;
592 }
593 const char *target_type_name(struct target *target)
594 {
595         return target->type->name;
596 }
597
598 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
599 {
600         if (!target_was_examined(target))
601         {
602                 LOG_ERROR("Target not examined yet");
603                 return ERROR_FAIL;
604         }
605         return target->type->write_memory_imp(target, address, size, count, buffer);
606 }
607
608 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
609 {
610         if (!target_was_examined(target))
611         {
612                 LOG_ERROR("Target not examined yet");
613                 return ERROR_FAIL;
614         }
615         return target->type->read_memory_imp(target, address, size, count, buffer);
616 }
617
618 static int target_soft_reset_halt_imp(struct target *target)
619 {
620         if (!target_was_examined(target))
621         {
622                 LOG_ERROR("Target not examined yet");
623                 return ERROR_FAIL;
624         }
625         if (!target->type->soft_reset_halt_imp) {
626                 LOG_ERROR("Target %s does not support soft_reset_halt",
627                                 target_name(target));
628                 return ERROR_FAIL;
629         }
630         return target->type->soft_reset_halt_imp(target);
631 }
632
633 /**
634  * Downloads a target-specific native code algorithm to the target,
635  * and executes it.  * Note that some targets may need to set up, enable,
636  * and tear down a breakpoint (hard or * soft) to detect algorithm
637  * termination, while others may support  lower overhead schemes where
638  * soft breakpoints embedded in the algorithm automatically terminate the
639  * algorithm.
640  *
641  * @param target used to run the algorithm
642  * @param arch_info target-specific description of the algorithm.
643  */
644 int target_run_algorithm(struct target *target,
645                 int num_mem_params, struct mem_param *mem_params,
646                 int num_reg_params, struct reg_param *reg_param,
647                 uint32_t entry_point, uint32_t exit_point,
648                 int timeout_ms, void *arch_info)
649 {
650         int retval = ERROR_FAIL;
651
652         if (!target_was_examined(target))
653         {
654                 LOG_ERROR("Target not examined yet");
655                 goto done;
656         }
657         if (!target->type->run_algorithm) {
658                 LOG_ERROR("Target type '%s' does not support %s",
659                                 target_type_name(target), __func__);
660                 goto done;
661         }
662
663         target->running_alg = true;
664         retval = target->type->run_algorithm(target,
665                         num_mem_params, mem_params,
666                         num_reg_params, reg_param,
667                         entry_point, exit_point, timeout_ms, arch_info);
668         target->running_alg = false;
669
670 done:
671         return retval;
672 }
673
674
675 int target_read_memory(struct target *target,
676                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
677 {
678         return target->type->read_memory(target, address, size, count, buffer);
679 }
680
681 static int target_read_phys_memory(struct target *target,
682                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
683 {
684         return target->type->read_phys_memory(target, address, size, count, buffer);
685 }
686
687 int target_write_memory(struct target *target,
688                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
689 {
690         return target->type->write_memory(target, address, size, count, buffer);
691 }
692
693 static int target_write_phys_memory(struct target *target,
694                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
695 {
696         return target->type->write_phys_memory(target, address, size, count, buffer);
697 }
698
699 int target_bulk_write_memory(struct target *target,
700                 uint32_t address, uint32_t count, uint8_t *buffer)
701 {
702         return target->type->bulk_write_memory(target, address, count, buffer);
703 }
704
705 int target_add_breakpoint(struct target *target,
706                 struct breakpoint *breakpoint)
707 {
708         if (target->state != TARGET_HALTED) {
709                 LOG_WARNING("target %s is not halted", target->cmd_name);
710                 return ERROR_TARGET_NOT_HALTED;
711         }
712         return target->type->add_breakpoint(target, breakpoint);
713 }
714 int target_remove_breakpoint(struct target *target,
715                 struct breakpoint *breakpoint)
716 {
717         return target->type->remove_breakpoint(target, breakpoint);
718 }
719
720 int target_add_watchpoint(struct target *target,
721                 struct watchpoint *watchpoint)
722 {
723         if (target->state != TARGET_HALTED) {
724                 LOG_WARNING("target %s is not halted", target->cmd_name);
725                 return ERROR_TARGET_NOT_HALTED;
726         }
727         return target->type->add_watchpoint(target, watchpoint);
728 }
729 int target_remove_watchpoint(struct target *target,
730                 struct watchpoint *watchpoint)
731 {
732         return target->type->remove_watchpoint(target, watchpoint);
733 }
734
735 int target_get_gdb_reg_list(struct target *target,
736                 struct reg **reg_list[], int *reg_list_size)
737 {
738         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
739 }
740 int target_step(struct target *target,
741                 int current, uint32_t address, int handle_breakpoints)
742 {
743         return target->type->step(target, current, address, handle_breakpoints);
744 }
745
746
747 /**
748  * Reset the @c examined flag for the given target.
749  * Pure paranoia -- targets are zeroed on allocation.
750  */
751 static void target_reset_examined(struct target *target)
752 {
753         target->examined = false;
754 }
755
756 static int
757 err_read_phys_memory(struct target *target, uint32_t address,
758                 uint32_t size, uint32_t count, uint8_t *buffer)
759 {
760         LOG_ERROR("Not implemented: %s", __func__);
761         return ERROR_FAIL;
762 }
763
764 static int
765 err_write_phys_memory(struct target *target, uint32_t address,
766                 uint32_t size, uint32_t count, uint8_t *buffer)
767 {
768         LOG_ERROR("Not implemented: %s", __func__);
769         return ERROR_FAIL;
770 }
771
772 static int handle_target(void *priv);
773
774 static int target_init_one(struct command_context *cmd_ctx,
775                 struct target *target)
776 {
777         target_reset_examined(target);
778
779         struct target_type *type = target->type;
780         if (type->examine == NULL)
781                 type->examine = default_examine;
782
783         if (type->check_reset== NULL)
784                 type->check_reset = default_check_reset;
785
786         int retval = type->init_target(cmd_ctx, target);
787         if (ERROR_OK != retval)
788         {
789                 LOG_ERROR("target '%s' init failed", target_name(target));
790                 return retval;
791         }
792
793         /**
794          * @todo get rid of those *memory_imp() methods, now that all
795          * callers are using target_*_memory() accessors ... and make
796          * sure the "physical" paths handle the same issues.
797          */
798         /* a non-invasive way(in terms of patches) to add some code that
799          * runs before the type->write/read_memory implementation
800          */
801         type->write_memory_imp = target->type->write_memory;
802         type->write_memory = target_write_memory_imp;
803
804         type->read_memory_imp = target->type->read_memory;
805         type->read_memory = target_read_memory_imp;
806
807         type->soft_reset_halt_imp = target->type->soft_reset_halt;
808         type->soft_reset_halt = target_soft_reset_halt_imp;
809
810         /* Sanity-check MMU support ... stub in what we must, to help
811          * implement it in stages, but warn if we need to do so.
812          */
813         if (type->mmu)
814         {
815                 if (type->write_phys_memory == NULL)
816                 {
817                         LOG_ERROR("type '%s' is missing write_phys_memory",
818                                         type->name);
819                         type->write_phys_memory = err_write_phys_memory;
820                 }
821                 if (type->read_phys_memory == NULL)
822                 {
823                         LOG_ERROR("type '%s' is missing read_phys_memory",
824                                         type->name);
825                         type->read_phys_memory = err_read_phys_memory;
826                 }
827                 if (type->virt2phys == NULL)
828                 {
829                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
830                         type->virt2phys = identity_virt2phys;
831                 }
832         }
833         else
834         {
835                 /* Make sure no-MMU targets all behave the same:  make no
836                  * distinction between physical and virtual addresses, and
837                  * ensure that virt2phys() is always an identity mapping.
838                  */
839                 if (type->write_phys_memory || type->read_phys_memory
840                                 || type->virt2phys)
841                 {
842                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
843                 }
844
845                 type->mmu = no_mmu;
846                 type->write_phys_memory = type->write_memory;
847                 type->read_phys_memory = type->read_memory;
848                 type->virt2phys = identity_virt2phys;
849         }
850         return ERROR_OK;
851 }
852
853 static int target_init(struct command_context *cmd_ctx)
854 {
855         struct target *target;
856         int retval;
857
858         for (target = all_targets; target; target = target->next)
859         {
860                 retval = target_init_one(cmd_ctx, target);
861                 if (ERROR_OK != retval)
862                         return retval;
863         }
864
865         if (!all_targets)
866                 return ERROR_OK;
867
868         retval = target_register_user_commands(cmd_ctx);
869         if (ERROR_OK != retval)
870                 return retval;
871
872         retval = target_register_timer_callback(&handle_target,
873                         polling_interval, 1, cmd_ctx->interp);
874         if (ERROR_OK != retval)
875                 return retval;
876
877         return ERROR_OK;
878 }
879
880 COMMAND_HANDLER(handle_target_init_command)
881 {
882         if (CMD_ARGC != 0)
883                 return ERROR_COMMAND_SYNTAX_ERROR;
884
885         static bool target_initialized = false;
886         if (target_initialized)
887         {
888                 LOG_INFO("'target init' has already been called");
889                 return ERROR_OK;
890         }
891         target_initialized = true;
892
893         LOG_DEBUG("Initializing targets...");
894         return target_init(CMD_CTX);
895 }
896
897 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
898 {
899         struct target_event_callback **callbacks_p = &target_event_callbacks;
900
901         if (callback == NULL)
902         {
903                 return ERROR_INVALID_ARGUMENTS;
904         }
905
906         if (*callbacks_p)
907         {
908                 while ((*callbacks_p)->next)
909                         callbacks_p = &((*callbacks_p)->next);
910                 callbacks_p = &((*callbacks_p)->next);
911         }
912
913         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
914         (*callbacks_p)->callback = callback;
915         (*callbacks_p)->priv = priv;
916         (*callbacks_p)->next = NULL;
917
918         return ERROR_OK;
919 }
920
921 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
922 {
923         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
924         struct timeval now;
925
926         if (callback == NULL)
927         {
928                 return ERROR_INVALID_ARGUMENTS;
929         }
930
931         if (*callbacks_p)
932         {
933                 while ((*callbacks_p)->next)
934                         callbacks_p = &((*callbacks_p)->next);
935                 callbacks_p = &((*callbacks_p)->next);
936         }
937
938         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
939         (*callbacks_p)->callback = callback;
940         (*callbacks_p)->periodic = periodic;
941         (*callbacks_p)->time_ms = time_ms;
942
943         gettimeofday(&now, NULL);
944         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
945         time_ms -= (time_ms % 1000);
946         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
947         if ((*callbacks_p)->when.tv_usec > 1000000)
948         {
949                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
950                 (*callbacks_p)->when.tv_sec += 1;
951         }
952
953         (*callbacks_p)->priv = priv;
954         (*callbacks_p)->next = NULL;
955
956         return ERROR_OK;
957 }
958
959 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
960 {
961         struct target_event_callback **p = &target_event_callbacks;
962         struct target_event_callback *c = target_event_callbacks;
963
964         if (callback == NULL)
965         {
966                 return ERROR_INVALID_ARGUMENTS;
967         }
968
969         while (c)
970         {
971                 struct target_event_callback *next = c->next;
972                 if ((c->callback == callback) && (c->priv == priv))
973                 {
974                         *p = next;
975                         free(c);
976                         return ERROR_OK;
977                 }
978                 else
979                         p = &(c->next);
980                 c = next;
981         }
982
983         return ERROR_OK;
984 }
985
986 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
987 {
988         struct target_timer_callback **p = &target_timer_callbacks;
989         struct target_timer_callback *c = target_timer_callbacks;
990
991         if (callback == NULL)
992         {
993                 return ERROR_INVALID_ARGUMENTS;
994         }
995
996         while (c)
997         {
998                 struct target_timer_callback *next = c->next;
999                 if ((c->callback == callback) && (c->priv == priv))
1000                 {
1001                         *p = next;
1002                         free(c);
1003                         return ERROR_OK;
1004                 }
1005                 else
1006                         p = &(c->next);
1007                 c = next;
1008         }
1009
1010         return ERROR_OK;
1011 }
1012
1013 int target_call_event_callbacks(struct target *target, enum target_event event)
1014 {
1015         struct target_event_callback *callback = target_event_callbacks;
1016         struct target_event_callback *next_callback;
1017
1018         if (event == TARGET_EVENT_HALTED)
1019         {
1020                 /* execute early halted first */
1021                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1022         }
1023
1024         LOG_DEBUG("target event %i (%s)",
1025                           event,
1026                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1027
1028         target_handle_event(target, event);
1029
1030         while (callback)
1031         {
1032                 next_callback = callback->next;
1033                 callback->callback(target, event, callback->priv);
1034                 callback = next_callback;
1035         }
1036
1037         return ERROR_OK;
1038 }
1039
1040 static int target_timer_callback_periodic_restart(
1041                 struct target_timer_callback *cb, struct timeval *now)
1042 {
1043         int time_ms = cb->time_ms;
1044         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1045         time_ms -= (time_ms % 1000);
1046         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1047         if (cb->when.tv_usec > 1000000)
1048         {
1049                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1050                 cb->when.tv_sec += 1;
1051         }
1052         return ERROR_OK;
1053 }
1054
1055 static int target_call_timer_callback(struct target_timer_callback *cb,
1056                 struct timeval *now)
1057 {
1058         cb->callback(cb->priv);
1059
1060         if (cb->periodic)
1061                 return target_timer_callback_periodic_restart(cb, now);
1062
1063         return target_unregister_timer_callback(cb->callback, cb->priv);
1064 }
1065
1066 static int target_call_timer_callbacks_check_time(int checktime)
1067 {
1068         keep_alive();
1069
1070         struct timeval now;
1071         gettimeofday(&now, NULL);
1072
1073         struct target_timer_callback *callback = target_timer_callbacks;
1074         while (callback)
1075         {
1076                 // cleaning up may unregister and free this callback
1077                 struct target_timer_callback *next_callback = callback->next;
1078
1079                 bool call_it = callback->callback &&
1080                         ((!checktime && callback->periodic) ||
1081                           now.tv_sec > callback->when.tv_sec ||
1082                          (now.tv_sec == callback->when.tv_sec &&
1083                           now.tv_usec >= callback->when.tv_usec));
1084
1085                 if (call_it)
1086                 {
1087                         int retval = target_call_timer_callback(callback, &now);
1088                         if (retval != ERROR_OK)
1089                                 return retval;
1090                 }
1091
1092                 callback = next_callback;
1093         }
1094
1095         return ERROR_OK;
1096 }
1097
1098 int target_call_timer_callbacks(void)
1099 {
1100         return target_call_timer_callbacks_check_time(1);
1101 }
1102
1103 /* invoke periodic callbacks immediately */
1104 int target_call_timer_callbacks_now(void)
1105 {
1106         return target_call_timer_callbacks_check_time(0);
1107 }
1108
1109 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1110 {
1111         struct working_area *c = target->working_areas;
1112         struct working_area *new_wa = NULL;
1113
1114         /* Reevaluate working area address based on MMU state*/
1115         if (target->working_areas == NULL)
1116         {
1117                 int retval;
1118                 int enabled;
1119
1120                 retval = target->type->mmu(target, &enabled);
1121                 if (retval != ERROR_OK)
1122                 {
1123                         return retval;
1124                 }
1125
1126                 if (!enabled) {
1127                         if (target->working_area_phys_spec) {
1128                                 LOG_DEBUG("MMU disabled, using physical "
1129                                         "address for working memory 0x%08x",
1130                                         (unsigned)target->working_area_phys);
1131                                 target->working_area = target->working_area_phys;
1132                         } else {
1133                                 LOG_ERROR("No working memory available. "
1134                                         "Specify -work-area-phys to target.");
1135                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1136                         }
1137                 } else {
1138                         if (target->working_area_virt_spec) {
1139                                 LOG_DEBUG("MMU enabled, using virtual "
1140                                         "address for working memory 0x%08x",
1141                                         (unsigned)target->working_area_virt);
1142                                 target->working_area = target->working_area_virt;
1143                         } else {
1144                                 LOG_ERROR("No working memory available. "
1145                                         "Specify -work-area-virt to target.");
1146                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1147                         }
1148                 }
1149         }
1150
1151         /* only allocate multiples of 4 byte */
1152         if (size % 4)
1153         {
1154                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1155                 size = (size + 3) & (~3);
1156         }
1157
1158         /* see if there's already a matching working area */
1159         while (c)
1160         {
1161                 if ((c->free) && (c->size == size))
1162                 {
1163                         new_wa = c;
1164                         break;
1165                 }
1166                 c = c->next;
1167         }
1168
1169         /* if not, allocate a new one */
1170         if (!new_wa)
1171         {
1172                 struct working_area **p = &target->working_areas;
1173                 uint32_t first_free = target->working_area;
1174                 uint32_t free_size = target->working_area_size;
1175
1176                 c = target->working_areas;
1177                 while (c)
1178                 {
1179                         first_free += c->size;
1180                         free_size -= c->size;
1181                         p = &c->next;
1182                         c = c->next;
1183                 }
1184
1185                 if (free_size < size)
1186                 {
1187                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1188                 }
1189
1190                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1191
1192                 new_wa = malloc(sizeof(struct working_area));
1193                 new_wa->next = NULL;
1194                 new_wa->size = size;
1195                 new_wa->address = first_free;
1196
1197                 if (target->backup_working_area)
1198                 {
1199                         int retval;
1200                         new_wa->backup = malloc(new_wa->size);
1201                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1202                         {
1203                                 free(new_wa->backup);
1204                                 free(new_wa);
1205                                 return retval;
1206                         }
1207                 }
1208                 else
1209                 {
1210                         new_wa->backup = NULL;
1211                 }
1212
1213                 /* put new entry in list */
1214                 *p = new_wa;
1215         }
1216
1217         /* mark as used, and return the new (reused) area */
1218         new_wa->free = false;
1219         *area = new_wa;
1220
1221         /* user pointer */
1222         new_wa->user = area;
1223
1224         return ERROR_OK;
1225 }
1226
1227 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1228 {
1229         int retval;
1230
1231         retval = target_alloc_working_area_try(target, size, area);
1232         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1233         {
1234                 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1235         }
1236         return retval;
1237
1238 }
1239
1240 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1241 {
1242         if (area->free)
1243                 return ERROR_OK;
1244
1245         if (restore && target->backup_working_area)
1246         {
1247                 int retval;
1248                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1249                         return retval;
1250         }
1251
1252         area->free = true;
1253
1254         /* mark user pointer invalid */
1255         *area->user = NULL;
1256         area->user = NULL;
1257
1258         return ERROR_OK;
1259 }
1260
1261 int target_free_working_area(struct target *target, struct working_area *area)
1262 {
1263         return target_free_working_area_restore(target, area, 1);
1264 }
1265
1266 /* free resources and restore memory, if restoring memory fails,
1267  * free up resources anyway
1268  */
1269 static void target_free_all_working_areas_restore(struct target *target, int restore)
1270 {
1271         struct working_area *c = target->working_areas;
1272
1273         while (c)
1274         {
1275                 struct working_area *next = c->next;
1276                 target_free_working_area_restore(target, c, restore);
1277
1278                 if (c->backup)
1279                         free(c->backup);
1280
1281                 free(c);
1282
1283                 c = next;
1284         }
1285
1286         target->working_areas = NULL;
1287 }
1288
1289 void target_free_all_working_areas(struct target *target)
1290 {
1291         target_free_all_working_areas_restore(target, 1);
1292 }
1293
1294 int target_arch_state(struct target *target)
1295 {
1296         int retval;
1297         if (target == NULL)
1298         {
1299                 LOG_USER("No target has been configured");
1300                 return ERROR_OK;
1301         }
1302
1303         LOG_USER("target state: %s", target_state_name( target ));
1304
1305         if (target->state != TARGET_HALTED)
1306                 return ERROR_OK;
1307
1308         retval = target->type->arch_state(target);
1309         return retval;
1310 }
1311
1312 /* Single aligned words are guaranteed to use 16 or 32 bit access
1313  * mode respectively, otherwise data is handled as quickly as
1314  * possible
1315  */
1316 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1317 {
1318         int retval;
1319         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1320                   (int)size, (unsigned)address);
1321
1322         if (!target_was_examined(target))
1323         {
1324                 LOG_ERROR("Target not examined yet");
1325                 return ERROR_FAIL;
1326         }
1327
1328         if (size == 0) {
1329                 return ERROR_OK;
1330         }
1331
1332         if ((address + size - 1) < address)
1333         {
1334                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1335                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1336                                   (unsigned)address,
1337                                   (unsigned)size);
1338                 return ERROR_FAIL;
1339         }
1340
1341         if (((address % 2) == 0) && (size == 2))
1342         {
1343                 return target_write_memory(target, address, 2, 1, buffer);
1344         }
1345
1346         /* handle unaligned head bytes */
1347         if (address % 4)
1348         {
1349                 uint32_t unaligned = 4 - (address % 4);
1350
1351                 if (unaligned > size)
1352                         unaligned = size;
1353
1354                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1355                         return retval;
1356
1357                 buffer += unaligned;
1358                 address += unaligned;
1359                 size -= unaligned;
1360         }
1361
1362         /* handle aligned words */
1363         if (size >= 4)
1364         {
1365                 int aligned = size - (size % 4);
1366
1367                 /* use bulk writes above a certain limit. This may have to be changed */
1368                 if (aligned > 128)
1369                 {
1370                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1371                                 return retval;
1372                 }
1373                 else
1374                 {
1375                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1376                                 return retval;
1377                 }
1378
1379                 buffer += aligned;
1380                 address += aligned;
1381                 size -= aligned;
1382         }
1383
1384         /* handle tail writes of less than 4 bytes */
1385         if (size > 0)
1386         {
1387                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1388                         return retval;
1389         }
1390
1391         return ERROR_OK;
1392 }
1393
1394 /* Single aligned words are guaranteed to use 16 or 32 bit access
1395  * mode respectively, otherwise data is handled as quickly as
1396  * possible
1397  */
1398 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1399 {
1400         int retval;
1401         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1402                           (int)size, (unsigned)address);
1403
1404         if (!target_was_examined(target))
1405         {
1406                 LOG_ERROR("Target not examined yet");
1407                 return ERROR_FAIL;
1408         }
1409
1410         if (size == 0) {
1411                 return ERROR_OK;
1412         }
1413
1414         if ((address + size - 1) < address)
1415         {
1416                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1417                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1418                                   address,
1419                                   size);
1420                 return ERROR_FAIL;
1421         }
1422
1423         if (((address % 2) == 0) && (size == 2))
1424         {
1425                 return target_read_memory(target, address, 2, 1, buffer);
1426         }
1427
1428         /* handle unaligned head bytes */
1429         if (address % 4)
1430         {
1431                 uint32_t unaligned = 4 - (address % 4);
1432
1433                 if (unaligned > size)
1434                         unaligned = size;
1435
1436                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1437                         return retval;
1438
1439                 buffer += unaligned;
1440                 address += unaligned;
1441                 size -= unaligned;
1442         }
1443
1444         /* handle aligned words */
1445         if (size >= 4)
1446         {
1447                 int aligned = size - (size % 4);
1448
1449                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1450                         return retval;
1451
1452                 buffer += aligned;
1453                 address += aligned;
1454                 size -= aligned;
1455         }
1456
1457         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1458         if(size >=2)
1459         {
1460                 int aligned = size - (size%2);
1461                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1462                 if (retval != ERROR_OK)
1463                         return retval;
1464
1465                 buffer += aligned;
1466                 address += aligned;
1467                 size -= aligned;
1468         }
1469         /* handle tail writes of less than 4 bytes */
1470         if (size > 0)
1471         {
1472                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1473                         return retval;
1474         }
1475
1476         return ERROR_OK;
1477 }
1478
1479 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1480 {
1481         uint8_t *buffer;
1482         int retval;
1483         uint32_t i;
1484         uint32_t checksum = 0;
1485         if (!target_was_examined(target))
1486         {
1487                 LOG_ERROR("Target not examined yet");
1488                 return ERROR_FAIL;
1489         }
1490
1491         if ((retval = target->type->checksum_memory(target, address,
1492                 size, &checksum)) != ERROR_OK)
1493         {
1494                 buffer = malloc(size);
1495                 if (buffer == NULL)
1496                 {
1497                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1498                         return ERROR_INVALID_ARGUMENTS;
1499                 }
1500                 retval = target_read_buffer(target, address, size, buffer);
1501                 if (retval != ERROR_OK)
1502                 {
1503                         free(buffer);
1504                         return retval;
1505                 }
1506
1507                 /* convert to target endianess */
1508                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1509                 {
1510                         uint32_t target_data;
1511                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1512                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1513                 }
1514
1515                 retval = image_calculate_checksum(buffer, size, &checksum);
1516                 free(buffer);
1517         }
1518
1519         *crc = checksum;
1520
1521         return retval;
1522 }
1523
1524 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1525 {
1526         int retval;
1527         if (!target_was_examined(target))
1528         {
1529                 LOG_ERROR("Target not examined yet");
1530                 return ERROR_FAIL;
1531         }
1532
1533         if (target->type->blank_check_memory == 0)
1534                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1535
1536         retval = target->type->blank_check_memory(target, address, size, blank);
1537
1538         return retval;
1539 }
1540
1541 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1542 {
1543         uint8_t value_buf[4];
1544         if (!target_was_examined(target))
1545         {
1546                 LOG_ERROR("Target not examined yet");
1547                 return ERROR_FAIL;
1548         }
1549
1550         int retval = target_read_memory(target, address, 4, 1, value_buf);
1551
1552         if (retval == ERROR_OK)
1553         {
1554                 *value = target_buffer_get_u32(target, value_buf);
1555                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1556                                   address,
1557                                   *value);
1558         }
1559         else
1560         {
1561                 *value = 0x0;
1562                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1563                                   address);
1564         }
1565
1566         return retval;
1567 }
1568
1569 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1570 {
1571         uint8_t value_buf[2];
1572         if (!target_was_examined(target))
1573         {
1574                 LOG_ERROR("Target not examined yet");
1575                 return ERROR_FAIL;
1576         }
1577
1578         int retval = target_read_memory(target, address, 2, 1, value_buf);
1579
1580         if (retval == ERROR_OK)
1581         {
1582                 *value = target_buffer_get_u16(target, value_buf);
1583                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1584                                   address,
1585                                   *value);
1586         }
1587         else
1588         {
1589                 *value = 0x0;
1590                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1591                                   address);
1592         }
1593
1594         return retval;
1595 }
1596
1597 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1598 {
1599         int retval = target_read_memory(target, address, 1, 1, value);
1600         if (!target_was_examined(target))
1601         {
1602                 LOG_ERROR("Target not examined yet");
1603                 return ERROR_FAIL;
1604         }
1605
1606         if (retval == ERROR_OK)
1607         {
1608                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1609                                   address,
1610                                   *value);
1611         }
1612         else
1613         {
1614                 *value = 0x0;
1615                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1616                                   address);
1617         }
1618
1619         return retval;
1620 }
1621
1622 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1623 {
1624         int retval;
1625         uint8_t value_buf[4];
1626         if (!target_was_examined(target))
1627         {
1628                 LOG_ERROR("Target not examined yet");
1629                 return ERROR_FAIL;
1630         }
1631
1632         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1633                           address,
1634                           value);
1635
1636         target_buffer_set_u32(target, value_buf, value);
1637         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1638         {
1639                 LOG_DEBUG("failed: %i", retval);
1640         }
1641
1642         return retval;
1643 }
1644
1645 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1646 {
1647         int retval;
1648         uint8_t value_buf[2];
1649         if (!target_was_examined(target))
1650         {
1651                 LOG_ERROR("Target not examined yet");
1652                 return ERROR_FAIL;
1653         }
1654
1655         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1656                           address,
1657                           value);
1658
1659         target_buffer_set_u16(target, value_buf, value);
1660         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1661         {
1662                 LOG_DEBUG("failed: %i", retval);
1663         }
1664
1665         return retval;
1666 }
1667
1668 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1669 {
1670         int retval;
1671         if (!target_was_examined(target))
1672         {
1673                 LOG_ERROR("Target not examined yet");
1674                 return ERROR_FAIL;
1675         }
1676
1677         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1678                           address, value);
1679
1680         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1681         {
1682                 LOG_DEBUG("failed: %i", retval);
1683         }
1684
1685         return retval;
1686 }
1687
1688 COMMAND_HANDLER(handle_targets_command)
1689 {
1690         struct target *target = all_targets;
1691
1692         if (CMD_ARGC == 1)
1693         {
1694                 target = get_target(CMD_ARGV[0]);
1695                 if (target == NULL) {
1696                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1697                         goto DumpTargets;
1698                 }
1699                 if (!target->tap->enabled) {
1700                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1701                                         "can't be the current target\n",
1702                                         target->tap->dotted_name);
1703                         return ERROR_FAIL;
1704                 }
1705
1706                 CMD_CTX->current_target = target->target_number;
1707                 return ERROR_OK;
1708         }
1709 DumpTargets:
1710
1711         target = all_targets;
1712         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1713         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1714         while (target)
1715         {
1716                 const char *state;
1717                 char marker = ' ';
1718
1719                 if (target->tap->enabled)
1720                         state = target_state_name( target );
1721                 else
1722                         state = "tap-disabled";
1723
1724                 if (CMD_CTX->current_target == target->target_number)
1725                         marker = '*';
1726
1727                 /* keep columns lined up to match the headers above */
1728                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1729                                           target->target_number,
1730                                           marker,
1731                                           target_name(target),
1732                                           target_type_name(target),
1733                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1734                                                                 target->endianness)->name,
1735                                           target->tap->dotted_name,
1736                                           state);
1737                 target = target->next;
1738         }
1739
1740         return ERROR_OK;
1741 }
1742
1743 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1744
1745 static int powerDropout;
1746 static int srstAsserted;
1747
1748 static int runPowerRestore;
1749 static int runPowerDropout;
1750 static int runSrstAsserted;
1751 static int runSrstDeasserted;
1752
1753 static int sense_handler(void)
1754 {
1755         static int prevSrstAsserted = 0;
1756         static int prevPowerdropout = 0;
1757
1758         int retval;
1759         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1760                 return retval;
1761
1762         int powerRestored;
1763         powerRestored = prevPowerdropout && !powerDropout;
1764         if (powerRestored)
1765         {
1766                 runPowerRestore = 1;
1767         }
1768
1769         long long current = timeval_ms();
1770         static long long lastPower = 0;
1771         int waitMore = lastPower + 2000 > current;
1772         if (powerDropout && !waitMore)
1773         {
1774                 runPowerDropout = 1;
1775                 lastPower = current;
1776         }
1777
1778         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1779                 return retval;
1780
1781         int srstDeasserted;
1782         srstDeasserted = prevSrstAsserted && !srstAsserted;
1783
1784         static long long lastSrst = 0;
1785         waitMore = lastSrst + 2000 > current;
1786         if (srstDeasserted && !waitMore)
1787         {
1788                 runSrstDeasserted = 1;
1789                 lastSrst = current;
1790         }
1791
1792         if (!prevSrstAsserted && srstAsserted)
1793         {
1794                 runSrstAsserted = 1;
1795         }
1796
1797         prevSrstAsserted = srstAsserted;
1798         prevPowerdropout = powerDropout;
1799
1800         if (srstDeasserted || powerRestored)
1801         {
1802                 /* Other than logging the event we can't do anything here.
1803                  * Issuing a reset is a particularly bad idea as we might
1804                  * be inside a reset already.
1805                  */
1806         }
1807
1808         return ERROR_OK;
1809 }
1810
1811 static int backoff_times = 0;
1812 static int backoff_count = 0;
1813
1814 /* process target state changes */
1815 static int handle_target(void *priv)
1816 {
1817         Jim_Interp *interp = (Jim_Interp *)priv;
1818         int retval = ERROR_OK;
1819
1820         if (!is_jtag_poll_safe())
1821         {
1822                 /* polling is disabled currently */
1823                 return ERROR_OK;
1824         }
1825
1826         /* we do not want to recurse here... */
1827         static int recursive = 0;
1828         if (! recursive)
1829         {
1830                 recursive = 1;
1831                 sense_handler();
1832                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1833                  * We need to avoid an infinite loop/recursion here and we do that by
1834                  * clearing the flags after running these events.
1835                  */
1836                 int did_something = 0;
1837                 if (runSrstAsserted)
1838                 {
1839                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
1840                         Jim_Eval(interp, "srst_asserted");
1841                         did_something = 1;
1842                 }
1843                 if (runSrstDeasserted)
1844                 {
1845                         Jim_Eval(interp, "srst_deasserted");
1846                         did_something = 1;
1847                 }
1848                 if (runPowerDropout)
1849                 {
1850                         LOG_INFO("Power dropout detected, running power_dropout proc.");
1851                         Jim_Eval(interp, "power_dropout");
1852                         did_something = 1;
1853                 }
1854                 if (runPowerRestore)
1855                 {
1856                         Jim_Eval(interp, "power_restore");
1857                         did_something = 1;
1858                 }
1859
1860                 if (did_something)
1861                 {
1862                         /* clear detect flags */
1863                         sense_handler();
1864                 }
1865
1866                 /* clear action flags */
1867
1868                 runSrstAsserted = 0;
1869                 runSrstDeasserted = 0;
1870                 runPowerRestore = 0;
1871                 runPowerDropout = 0;
1872
1873                 recursive = 0;
1874         }
1875
1876         if (backoff_times > backoff_count)
1877         {
1878                 /* do not poll this time as we failed previously */
1879                 backoff_count++;
1880                 return ERROR_OK;
1881         }
1882         backoff_count = 0;
1883
1884         /* Poll targets for state changes unless that's globally disabled.
1885          * Skip targets that are currently disabled.
1886          */
1887         for (struct target *target = all_targets;
1888                         is_jtag_poll_safe() && target;
1889                         target = target->next)
1890         {
1891                 if (!target->tap->enabled)
1892                         continue;
1893
1894                 /* only poll target if we've got power and srst isn't asserted */
1895                 if (!powerDropout && !srstAsserted)
1896                 {
1897                         /* polling may fail silently until the target has been examined */
1898                         if ((retval = target_poll(target)) != ERROR_OK)
1899                         {
1900                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
1901                                 if (backoff_times * polling_interval < 5000)
1902                                 {
1903                                         backoff_times *= 2;
1904                                         backoff_times++;
1905                                 }
1906                                 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);
1907
1908                                 /* Tell GDB to halt the debugger. This allows the user to
1909                                  * run monitor commands to handle the situation.
1910                                  */
1911                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1912                                 return retval;
1913                         }
1914                         /* Since we succeeded, we reset backoff count */
1915                         if (backoff_times > 0)
1916                         {
1917                                 LOG_USER("Polling succeeded again");
1918                         }
1919                         backoff_times = 0;
1920                 }
1921         }
1922
1923         return retval;
1924 }
1925
1926 COMMAND_HANDLER(handle_reg_command)
1927 {
1928         struct target *target;
1929         struct reg *reg = NULL;
1930         unsigned count = 0;
1931         char *value;
1932
1933         LOG_DEBUG("-");
1934
1935         target = get_current_target(CMD_CTX);
1936
1937         /* list all available registers for the current target */
1938         if (CMD_ARGC == 0)
1939         {
1940                 struct reg_cache *cache = target->reg_cache;
1941
1942                 count = 0;
1943                 while (cache)
1944                 {
1945                         unsigned i;
1946
1947                         command_print(CMD_CTX, "===== %s", cache->name);
1948
1949                         for (i = 0, reg = cache->reg_list;
1950                                         i < cache->num_regs;
1951                                         i++, reg++, count++)
1952                         {
1953                                 /* only print cached values if they are valid */
1954                                 if (reg->valid) {
1955                                         value = buf_to_str(reg->value,
1956                                                         reg->size, 16);
1957                                         command_print(CMD_CTX,
1958                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1959                                                         count, reg->name,
1960                                                         reg->size, value,
1961                                                         reg->dirty
1962                                                                 ? " (dirty)"
1963                                                                 : "");
1964                                         free(value);
1965                                 } else {
1966                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1967                                                           count, reg->name,
1968                                                           reg->size) ;
1969                                 }
1970                         }
1971                         cache = cache->next;
1972                 }
1973
1974                 return ERROR_OK;
1975         }
1976
1977         /* access a single register by its ordinal number */
1978         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1979         {
1980                 unsigned num;
1981                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1982
1983                 struct reg_cache *cache = target->reg_cache;
1984                 count = 0;
1985                 while (cache)
1986                 {
1987                         unsigned i;
1988                         for (i = 0; i < cache->num_regs; i++)
1989                         {
1990                                 if (count++ == num)
1991                                 {
1992                                         reg = &cache->reg_list[i];
1993                                         break;
1994                                 }
1995                         }
1996                         if (reg)
1997                                 break;
1998                         cache = cache->next;
1999                 }
2000
2001                 if (!reg)
2002                 {
2003                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
2004                         return ERROR_OK;
2005                 }
2006         } else /* access a single register by its name */
2007         {
2008                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2009
2010                 if (!reg)
2011                 {
2012                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2013                         return ERROR_OK;
2014                 }
2015         }
2016
2017         /* display a register */
2018         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2019         {
2020                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2021                         reg->valid = 0;
2022
2023                 if (reg->valid == 0)
2024                 {
2025                         reg->type->get(reg);
2026                 }
2027                 value = buf_to_str(reg->value, reg->size, 16);
2028                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2029                 free(value);
2030                 return ERROR_OK;
2031         }
2032
2033         /* set register value */
2034         if (CMD_ARGC == 2)
2035         {
2036                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2037                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2038
2039                 reg->type->set(reg, buf);
2040
2041                 value = buf_to_str(reg->value, reg->size, 16);
2042                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2043                 free(value);
2044
2045                 free(buf);
2046
2047                 return ERROR_OK;
2048         }
2049
2050         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2051
2052         return ERROR_OK;
2053 }
2054
2055 COMMAND_HANDLER(handle_poll_command)
2056 {
2057         int retval = ERROR_OK;
2058         struct target *target = get_current_target(CMD_CTX);
2059
2060         if (CMD_ARGC == 0)
2061         {
2062                 command_print(CMD_CTX, "background polling: %s",
2063                                 jtag_poll_get_enabled() ? "on" : "off");
2064                 command_print(CMD_CTX, "TAP: %s (%s)",
2065                                 target->tap->dotted_name,
2066                                 target->tap->enabled ? "enabled" : "disabled");
2067                 if (!target->tap->enabled)
2068                         return ERROR_OK;
2069                 if ((retval = target_poll(target)) != ERROR_OK)
2070                         return retval;
2071                 if ((retval = target_arch_state(target)) != ERROR_OK)
2072                         return retval;
2073         }
2074         else if (CMD_ARGC == 1)
2075         {
2076                 bool enable;
2077                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2078                 jtag_poll_set_enabled(enable);
2079         }
2080         else
2081         {
2082                 return ERROR_COMMAND_SYNTAX_ERROR;
2083         }
2084
2085         return retval;
2086 }
2087
2088 COMMAND_HANDLER(handle_wait_halt_command)
2089 {
2090         if (CMD_ARGC > 1)
2091                 return ERROR_COMMAND_SYNTAX_ERROR;
2092
2093         unsigned ms = 5000;
2094         if (1 == CMD_ARGC)
2095         {
2096                 int retval = parse_uint(CMD_ARGV[0], &ms);
2097                 if (ERROR_OK != retval)
2098                 {
2099                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2100                         return ERROR_COMMAND_SYNTAX_ERROR;
2101                 }
2102                 // convert seconds (given) to milliseconds (needed)
2103                 ms *= 1000;
2104         }
2105
2106         struct target *target = get_current_target(CMD_CTX);
2107         return target_wait_state(target, TARGET_HALTED, ms);
2108 }
2109
2110 /* wait for target state to change. The trick here is to have a low
2111  * latency for short waits and not to suck up all the CPU time
2112  * on longer waits.
2113  *
2114  * After 500ms, keep_alive() is invoked
2115  */
2116 int target_wait_state(struct target *target, enum target_state state, int ms)
2117 {
2118         int retval;
2119         long long then = 0, cur;
2120         int once = 1;
2121
2122         for (;;)
2123         {
2124                 if ((retval = target_poll(target)) != ERROR_OK)
2125                         return retval;
2126                 if (target->state == state)
2127                 {
2128                         break;
2129                 }
2130                 cur = timeval_ms();
2131                 if (once)
2132                 {
2133                         once = 0;
2134                         then = timeval_ms();
2135                         LOG_DEBUG("waiting for target %s...",
2136                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2137                 }
2138
2139                 if (cur-then > 500)
2140                 {
2141                         keep_alive();
2142                 }
2143
2144                 if ((cur-then) > ms)
2145                 {
2146                         LOG_ERROR("timed out while waiting for target %s",
2147                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2148                         return ERROR_FAIL;
2149                 }
2150         }
2151
2152         return ERROR_OK;
2153 }
2154
2155 COMMAND_HANDLER(handle_halt_command)
2156 {
2157         LOG_DEBUG("-");
2158
2159         struct target *target = get_current_target(CMD_CTX);
2160         int retval = target_halt(target);
2161         if (ERROR_OK != retval)
2162                 return retval;
2163
2164         if (CMD_ARGC == 1)
2165         {
2166                 unsigned wait_local;
2167                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2168                 if (ERROR_OK != retval)
2169                         return ERROR_COMMAND_SYNTAX_ERROR;
2170                 if (!wait_local)
2171                         return ERROR_OK;
2172         }
2173
2174         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2175 }
2176
2177 COMMAND_HANDLER(handle_soft_reset_halt_command)
2178 {
2179         struct target *target = get_current_target(CMD_CTX);
2180
2181         LOG_USER("requesting target halt and executing a soft reset");
2182
2183         target->type->soft_reset_halt(target);
2184
2185         return ERROR_OK;
2186 }
2187
2188 COMMAND_HANDLER(handle_reset_command)
2189 {
2190         if (CMD_ARGC > 1)
2191                 return ERROR_COMMAND_SYNTAX_ERROR;
2192
2193         enum target_reset_mode reset_mode = RESET_RUN;
2194         if (CMD_ARGC == 1)
2195         {
2196                 const Jim_Nvp *n;
2197                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2198                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2199                         return ERROR_COMMAND_SYNTAX_ERROR;
2200                 }
2201                 reset_mode = n->value;
2202         }
2203
2204         /* reset *all* targets */
2205         return target_process_reset(CMD_CTX, reset_mode);
2206 }
2207
2208
2209 COMMAND_HANDLER(handle_resume_command)
2210 {
2211         int current = 1;
2212         if (CMD_ARGC > 1)
2213                 return ERROR_COMMAND_SYNTAX_ERROR;
2214
2215         struct target *target = get_current_target(CMD_CTX);
2216         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2217
2218         /* with no CMD_ARGV, resume from current pc, addr = 0,
2219          * with one arguments, addr = CMD_ARGV[0],
2220          * handle breakpoints, not debugging */
2221         uint32_t addr = 0;
2222         if (CMD_ARGC == 1)
2223         {
2224                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2225                 current = 0;
2226         }
2227
2228         return target_resume(target, current, addr, 1, 0);
2229 }
2230
2231 COMMAND_HANDLER(handle_step_command)
2232 {
2233         if (CMD_ARGC > 1)
2234                 return ERROR_COMMAND_SYNTAX_ERROR;
2235
2236         LOG_DEBUG("-");
2237
2238         /* with no CMD_ARGV, step from current pc, addr = 0,
2239          * with one argument addr = CMD_ARGV[0],
2240          * handle breakpoints, debugging */
2241         uint32_t addr = 0;
2242         int current_pc = 1;
2243         if (CMD_ARGC == 1)
2244         {
2245                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2246                 current_pc = 0;
2247         }
2248
2249         struct target *target = get_current_target(CMD_CTX);
2250
2251         return target->type->step(target, current_pc, addr, 1);
2252 }
2253
2254 static void handle_md_output(struct command_context *cmd_ctx,
2255                 struct target *target, uint32_t address, unsigned size,
2256                 unsigned count, const uint8_t *buffer)
2257 {
2258         const unsigned line_bytecnt = 32;
2259         unsigned line_modulo = line_bytecnt / size;
2260
2261         char output[line_bytecnt * 4 + 1];
2262         unsigned output_len = 0;
2263
2264         const char *value_fmt;
2265         switch (size) {
2266         case 4: value_fmt = "%8.8x "; break;
2267         case 2: value_fmt = "%4.4x "; break;
2268         case 1: value_fmt = "%2.2x "; break;
2269         default:
2270                 /* "can't happen", caller checked */
2271                 LOG_ERROR("invalid memory read size: %u", size);
2272                 return;
2273         }
2274
2275         for (unsigned i = 0; i < count; i++)
2276         {
2277                 if (i % line_modulo == 0)
2278                 {
2279                         output_len += snprintf(output + output_len,
2280                                         sizeof(output) - output_len,
2281                                         "0x%8.8x: ",
2282                                         (unsigned)(address + (i*size)));
2283                 }
2284
2285                 uint32_t value = 0;
2286                 const uint8_t *value_ptr = buffer + i * size;
2287                 switch (size) {
2288                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2289                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2290                 case 1: value = *value_ptr;
2291                 }
2292                 output_len += snprintf(output + output_len,
2293                                 sizeof(output) - output_len,
2294                                 value_fmt, value);
2295
2296                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2297                 {
2298                         command_print(cmd_ctx, "%s", output);
2299                         output_len = 0;
2300                 }
2301         }
2302 }
2303
2304 COMMAND_HANDLER(handle_md_command)
2305 {
2306         if (CMD_ARGC < 1)
2307                 return ERROR_COMMAND_SYNTAX_ERROR;
2308
2309         unsigned size = 0;
2310         switch (CMD_NAME[2]) {
2311         case 'w': size = 4; break;
2312         case 'h': size = 2; break;
2313         case 'b': size = 1; break;
2314         default: return ERROR_COMMAND_SYNTAX_ERROR;
2315         }
2316
2317         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2318         int (*fn)(struct target *target,
2319                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2320         if (physical)
2321         {
2322                 CMD_ARGC--;
2323                 CMD_ARGV++;
2324                 fn=target_read_phys_memory;
2325         } else
2326         {
2327                 fn=target_read_memory;
2328         }
2329         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2330         {
2331                 return ERROR_COMMAND_SYNTAX_ERROR;
2332         }
2333
2334         uint32_t address;
2335         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2336
2337         unsigned count = 1;
2338         if (CMD_ARGC == 2)
2339                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2340
2341         uint8_t *buffer = calloc(count, size);
2342
2343         struct target *target = get_current_target(CMD_CTX);
2344         int retval = fn(target, address, size, count, buffer);
2345         if (ERROR_OK == retval)
2346                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2347
2348         free(buffer);
2349
2350         return retval;
2351 }
2352
2353 typedef int (*target_write_fn)(struct target *target,
2354                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2355
2356 static int target_write_memory_fast(struct target *target,
2357                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2358 {
2359         return target_write_buffer(target, address, size * count, buffer);
2360 }
2361
2362 static int target_fill_mem(struct target *target,
2363                 uint32_t address,
2364                 target_write_fn fn,
2365                 unsigned data_size,
2366                 /* value */
2367                 uint32_t b,
2368                 /* count */
2369                 unsigned c)
2370 {
2371         /* We have to write in reasonably large chunks to be able
2372          * to fill large memory areas with any sane speed */
2373         const unsigned chunk_size = 16384;
2374         uint8_t *target_buf = malloc(chunk_size * data_size);
2375         if (target_buf == NULL)
2376         {
2377                 LOG_ERROR("Out of memory");
2378                 return ERROR_FAIL;
2379         }
2380
2381         for (unsigned i = 0; i < chunk_size; i ++)
2382         {
2383                 switch (data_size)
2384                 {
2385                 case 4:
2386                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2387                         break;
2388                 case 2:
2389                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2390                         break;
2391                 case 1:
2392                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2393                         break;
2394                 default:
2395                         exit(-1);
2396                 }
2397         }
2398
2399         int retval = ERROR_OK;
2400
2401         for (unsigned x = 0; x < c; x += chunk_size)
2402         {
2403                 unsigned current;
2404                 current = c - x;
2405                 if (current > chunk_size)
2406                 {
2407                         current = chunk_size;
2408                 }
2409                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2410                 if (retval != ERROR_OK)
2411                 {
2412                         break;
2413                 }
2414                 /* avoid GDB timeouts */
2415                 keep_alive();
2416         }
2417         free(target_buf);
2418
2419         return retval;
2420 }
2421
2422
2423 COMMAND_HANDLER(handle_mw_command)
2424 {
2425         if (CMD_ARGC < 2)
2426         {
2427                 return ERROR_COMMAND_SYNTAX_ERROR;
2428         }
2429         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2430         target_write_fn fn;
2431         if (physical)
2432         {
2433                 CMD_ARGC--;
2434                 CMD_ARGV++;
2435                 fn=target_write_phys_memory;
2436         } else
2437         {
2438                 fn = target_write_memory_fast;
2439         }
2440         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2441                 return ERROR_COMMAND_SYNTAX_ERROR;
2442
2443         uint32_t address;
2444         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2445
2446         uint32_t value;
2447         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2448
2449         unsigned count = 1;
2450         if (CMD_ARGC == 3)
2451                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2452
2453         struct target *target = get_current_target(CMD_CTX);
2454         unsigned wordsize;
2455         switch (CMD_NAME[2])
2456         {
2457                 case 'w':
2458                         wordsize = 4;
2459                         break;
2460                 case 'h':
2461                         wordsize = 2;
2462                         break;
2463                 case 'b':
2464                         wordsize = 1;
2465                         break;
2466                 default:
2467                         return ERROR_COMMAND_SYNTAX_ERROR;
2468         }
2469
2470         return target_fill_mem(target, address, fn, wordsize, value, count);
2471 }
2472
2473 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2474                 uint32_t *min_address, uint32_t *max_address)
2475 {
2476         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2477                 return ERROR_COMMAND_SYNTAX_ERROR;
2478
2479         /* a base address isn't always necessary,
2480          * default to 0x0 (i.e. don't relocate) */
2481         if (CMD_ARGC >= 2)
2482         {
2483                 uint32_t addr;
2484                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2485                 image->base_address = addr;
2486                 image->base_address_set = 1;
2487         }
2488         else
2489                 image->base_address_set = 0;
2490
2491         image->start_address_set = 0;
2492
2493         if (CMD_ARGC >= 4)
2494         {
2495                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2496         }
2497         if (CMD_ARGC == 5)
2498         {
2499                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2500                 // use size (given) to find max (required)
2501                 *max_address += *min_address;
2502         }
2503
2504         if (*min_address > *max_address)
2505                 return ERROR_COMMAND_SYNTAX_ERROR;
2506
2507         return ERROR_OK;
2508 }
2509
2510 COMMAND_HANDLER(handle_load_image_command)
2511 {
2512         uint8_t *buffer;
2513         size_t buf_cnt;
2514         uint32_t image_size;
2515         uint32_t min_address = 0;
2516         uint32_t max_address = 0xffffffff;
2517         int i;
2518         struct image image;
2519
2520         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2521                         &image, &min_address, &max_address);
2522         if (ERROR_OK != retval)
2523                 return retval;
2524
2525         struct target *target = get_current_target(CMD_CTX);
2526
2527         struct duration bench;
2528         duration_start(&bench);
2529
2530         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2531         {
2532                 return ERROR_OK;
2533         }
2534
2535         image_size = 0x0;
2536         retval = ERROR_OK;
2537         for (i = 0; i < image.num_sections; i++)
2538         {
2539                 buffer = malloc(image.sections[i].size);
2540                 if (buffer == NULL)
2541                 {
2542                         command_print(CMD_CTX,
2543                                                   "error allocating buffer for section (%d bytes)",
2544                                                   (int)(image.sections[i].size));
2545                         break;
2546                 }
2547
2548                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2549                 {
2550                         free(buffer);
2551                         break;
2552                 }
2553
2554                 uint32_t offset = 0;
2555                 uint32_t length = buf_cnt;
2556
2557                 /* DANGER!!! beware of unsigned comparision here!!! */
2558
2559                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2560                                 (image.sections[i].base_address < max_address))
2561                 {
2562                         if (image.sections[i].base_address < min_address)
2563                         {
2564                                 /* clip addresses below */
2565                                 offset += min_address-image.sections[i].base_address;
2566                                 length -= offset;
2567                         }
2568
2569                         if (image.sections[i].base_address + buf_cnt > max_address)
2570                         {
2571                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2572                         }
2573
2574                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2575                         {
2576                                 free(buffer);
2577                                 break;
2578                         }
2579                         image_size += length;
2580                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2581                                                   (unsigned int)length,
2582                                                   image.sections[i].base_address + offset);
2583                 }
2584
2585                 free(buffer);
2586         }
2587
2588         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2589         {
2590                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2591                                 "in %fs (%0.3f KiB/s)", image_size,
2592                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2593         }
2594
2595         image_close(&image);
2596
2597         return retval;
2598
2599 }
2600
2601 COMMAND_HANDLER(handle_dump_image_command)
2602 {
2603         struct fileio fileio;
2604         uint8_t buffer[560];
2605         int retval, retvaltemp;
2606         uint32_t address, size;
2607         struct duration bench;
2608         struct target *target = get_current_target(CMD_CTX);
2609
2610         if (CMD_ARGC != 3)
2611                 return ERROR_COMMAND_SYNTAX_ERROR;
2612
2613         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2614         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2615
2616         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2617         if (retval != ERROR_OK)
2618                 return retval;
2619
2620         duration_start(&bench);
2621
2622         retval = ERROR_OK;
2623         while (size > 0)
2624         {
2625                 size_t size_written;
2626                 uint32_t this_run_size = (size > 560) ? 560 : size;
2627                 retval = target_read_buffer(target, address, this_run_size, buffer);
2628                 if (retval != ERROR_OK)
2629                 {
2630                         break;
2631                 }
2632
2633                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2634                 if (retval != ERROR_OK)
2635                 {
2636                         break;
2637                 }
2638
2639                 size -= this_run_size;
2640                 address += this_run_size;
2641         }
2642
2643         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2644         {
2645                 int filesize;
2646                 retval = fileio_size(&fileio, &filesize);
2647                 if (retval != ERROR_OK)
2648                         return retval;
2649                 command_print(CMD_CTX,
2650                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2651                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2652         }
2653
2654         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2655                 return retvaltemp;
2656
2657         return retval;
2658 }
2659
2660 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2661 {
2662         uint8_t *buffer;
2663         size_t buf_cnt;
2664         uint32_t image_size;
2665         int i;
2666         int retval;
2667         uint32_t checksum = 0;
2668         uint32_t mem_checksum = 0;
2669
2670         struct image image;
2671
2672         struct target *target = get_current_target(CMD_CTX);
2673
2674         if (CMD_ARGC < 1)
2675         {
2676                 return ERROR_COMMAND_SYNTAX_ERROR;
2677         }
2678
2679         if (!target)
2680         {
2681                 LOG_ERROR("no target selected");
2682                 return ERROR_FAIL;
2683         }
2684
2685         struct duration bench;
2686         duration_start(&bench);
2687
2688         if (CMD_ARGC >= 2)
2689         {
2690                 uint32_t addr;
2691                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2692                 image.base_address = addr;
2693                 image.base_address_set = 1;
2694         }
2695         else
2696         {
2697                 image.base_address_set = 0;
2698                 image.base_address = 0x0;
2699         }
2700
2701         image.start_address_set = 0;
2702
2703         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2704         {
2705                 return retval;
2706         }
2707
2708         image_size = 0x0;
2709         int diffs = 0;
2710         retval = ERROR_OK;
2711         for (i = 0; i < image.num_sections; i++)
2712         {
2713                 buffer = malloc(image.sections[i].size);
2714                 if (buffer == NULL)
2715                 {
2716                         command_print(CMD_CTX,
2717                                                   "error allocating buffer for section (%d bytes)",
2718                                                   (int)(image.sections[i].size));
2719                         break;
2720                 }
2721                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2722                 {
2723                         free(buffer);
2724                         break;
2725                 }
2726
2727                 if (verify)
2728                 {
2729                         /* calculate checksum of image */
2730                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2731                         if (retval != ERROR_OK)
2732                         {
2733                                 free(buffer);
2734                                 break;
2735                         }
2736
2737                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2738                         if (retval != ERROR_OK)
2739                         {
2740                                 free(buffer);
2741                                 break;
2742                         }
2743
2744                         if (checksum != mem_checksum)
2745                         {
2746                                 /* failed crc checksum, fall back to a binary compare */
2747                                 uint8_t *data;
2748
2749                                 if (diffs == 0)
2750                                 {
2751                                         LOG_ERROR("checksum mismatch - attempting binary compare");
2752                                 }
2753
2754                                 data = (uint8_t*)malloc(buf_cnt);
2755
2756                                 /* Can we use 32bit word accesses? */
2757                                 int size = 1;
2758                                 int count = buf_cnt;
2759                                 if ((count % 4) == 0)
2760                                 {
2761                                         size *= 4;
2762                                         count /= 4;
2763                                 }
2764                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2765                                 if (retval == ERROR_OK)
2766                                 {
2767                                         uint32_t t;
2768                                         for (t = 0; t < buf_cnt; t++)
2769                                         {
2770                                                 if (data[t] != buffer[t])
2771                                                 {
2772                                                         command_print(CMD_CTX,
2773                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2774                                                                                   diffs,
2775                                                                                   (unsigned)(t + image.sections[i].base_address),
2776                                                                                   data[t],
2777                                                                                   buffer[t]);
2778                                                         if (diffs++ >= 127)
2779                                                         {
2780                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2781                                                                 free(data);
2782                                                                 free(buffer);
2783                                                                 goto done;
2784                                                         }
2785                                                 }
2786                                                 keep_alive();
2787                                         }
2788                                 }
2789                                 free(data);
2790                         }
2791                 } else
2792                 {
2793                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2794                                                   image.sections[i].base_address,
2795                                                   buf_cnt);
2796                 }
2797
2798                 free(buffer);
2799                 image_size += buf_cnt;
2800         }
2801         if (diffs > 0)
2802         {
2803                 command_print(CMD_CTX, "No more differences found.");
2804         }
2805 done:
2806         if (diffs > 0)
2807         {
2808                 retval = ERROR_FAIL;
2809         }
2810         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2811         {
2812                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2813                                 "in %fs (%0.3f KiB/s)", image_size,
2814                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2815         }
2816
2817         image_close(&image);
2818
2819         return retval;
2820 }
2821
2822 COMMAND_HANDLER(handle_verify_image_command)
2823 {
2824         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2825 }
2826
2827 COMMAND_HANDLER(handle_test_image_command)
2828 {
2829         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2830 }
2831
2832 static int handle_bp_command_list(struct command_context *cmd_ctx)
2833 {
2834         struct target *target = get_current_target(cmd_ctx);
2835         struct breakpoint *breakpoint = target->breakpoints;
2836         while (breakpoint)
2837         {
2838                 if (breakpoint->type == BKPT_SOFT)
2839                 {
2840                         char* buf = buf_to_str(breakpoint->orig_instr,
2841                                         breakpoint->length, 16);
2842                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2843                                         breakpoint->address,
2844                                         breakpoint->length,
2845                                         breakpoint->set, buf);
2846                         free(buf);
2847                 }
2848                 else
2849                 {
2850                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2851                                                   breakpoint->address,
2852                                                   breakpoint->length, breakpoint->set);
2853                 }
2854
2855                 breakpoint = breakpoint->next;
2856         }
2857         return ERROR_OK;
2858 }
2859
2860 static int handle_bp_command_set(struct command_context *cmd_ctx,
2861                 uint32_t addr, uint32_t length, int hw)
2862 {
2863         struct target *target = get_current_target(cmd_ctx);
2864         int retval = breakpoint_add(target, addr, length, hw);
2865         if (ERROR_OK == retval)
2866                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2867         else
2868                 LOG_ERROR("Failure setting breakpoint");
2869         return retval;
2870 }
2871
2872 COMMAND_HANDLER(handle_bp_command)
2873 {
2874         if (CMD_ARGC == 0)
2875                 return handle_bp_command_list(CMD_CTX);
2876
2877         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2878         {
2879                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2880                 return ERROR_COMMAND_SYNTAX_ERROR;
2881         }
2882
2883         uint32_t addr;
2884         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2885         uint32_t length;
2886         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2887
2888         int hw = BKPT_SOFT;
2889         if (CMD_ARGC == 3)
2890         {
2891                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2892                         hw = BKPT_HARD;
2893                 else
2894                         return ERROR_COMMAND_SYNTAX_ERROR;
2895         }
2896
2897         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2898 }
2899
2900 COMMAND_HANDLER(handle_rbp_command)
2901 {
2902         if (CMD_ARGC != 1)
2903                 return ERROR_COMMAND_SYNTAX_ERROR;
2904
2905         uint32_t addr;
2906         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2907
2908         struct target *target = get_current_target(CMD_CTX);
2909         breakpoint_remove(target, addr);
2910
2911         return ERROR_OK;
2912 }
2913
2914 COMMAND_HANDLER(handle_wp_command)
2915 {
2916         struct target *target = get_current_target(CMD_CTX);
2917
2918         if (CMD_ARGC == 0)
2919         {
2920                 struct watchpoint *watchpoint = target->watchpoints;
2921
2922                 while (watchpoint)
2923                 {
2924                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2925                                         ", len: 0x%8.8" PRIx32
2926                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2927                                         ", mask: 0x%8.8" PRIx32,
2928                                         watchpoint->address,
2929                                         watchpoint->length,
2930                                         (int)watchpoint->rw,
2931                                         watchpoint->value,
2932                                         watchpoint->mask);
2933                         watchpoint = watchpoint->next;
2934                 }
2935                 return ERROR_OK;
2936         }
2937
2938         enum watchpoint_rw type = WPT_ACCESS;
2939         uint32_t addr = 0;
2940         uint32_t length = 0;
2941         uint32_t data_value = 0x0;
2942         uint32_t data_mask = 0xffffffff;
2943
2944         switch (CMD_ARGC)
2945         {
2946         case 5:
2947                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2948                 // fall through
2949         case 4:
2950                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2951                 // fall through
2952         case 3:
2953                 switch (CMD_ARGV[2][0])
2954                 {
2955                 case 'r':
2956                         type = WPT_READ;
2957                         break;
2958                 case 'w':
2959                         type = WPT_WRITE;
2960                         break;
2961                 case 'a':
2962                         type = WPT_ACCESS;
2963                         break;
2964                 default:
2965                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2966                         return ERROR_COMMAND_SYNTAX_ERROR;
2967                 }
2968                 // fall through
2969         case 2:
2970                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2971                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2972                 break;
2973
2974         default:
2975                 command_print(CMD_CTX, "usage: wp [address length "
2976                                 "[(r|w|a) [value [mask]]]]");
2977                 return ERROR_COMMAND_SYNTAX_ERROR;
2978         }
2979
2980         int retval = watchpoint_add(target, addr, length, type,
2981                         data_value, data_mask);
2982         if (ERROR_OK != retval)
2983                 LOG_ERROR("Failure setting watchpoints");
2984
2985         return retval;
2986 }
2987
2988 COMMAND_HANDLER(handle_rwp_command)
2989 {
2990         if (CMD_ARGC != 1)
2991                 return ERROR_COMMAND_SYNTAX_ERROR;
2992
2993         uint32_t addr;
2994         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2995
2996         struct target *target = get_current_target(CMD_CTX);
2997         watchpoint_remove(target, addr);
2998
2999         return ERROR_OK;
3000 }
3001
3002
3003 /**
3004  * Translate a virtual address to a physical address.
3005  *
3006  * The low-level target implementation must have logged a detailed error
3007  * which is forwarded to telnet/GDB session.
3008  */
3009 COMMAND_HANDLER(handle_virt2phys_command)
3010 {
3011         if (CMD_ARGC != 1)
3012                 return ERROR_COMMAND_SYNTAX_ERROR;
3013
3014         uint32_t va;
3015         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3016         uint32_t pa;
3017
3018         struct target *target = get_current_target(CMD_CTX);
3019         int retval = target->type->virt2phys(target, va, &pa);
3020         if (retval == ERROR_OK)
3021                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3022
3023         return retval;
3024 }
3025
3026 static void writeData(FILE *f, const void *data, size_t len)
3027 {
3028         size_t written = fwrite(data, 1, len, f);
3029         if (written != len)
3030                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3031 }
3032
3033 static void writeLong(FILE *f, int l)
3034 {
3035         int i;
3036         for (i = 0; i < 4; i++)
3037         {
3038                 char c = (l >> (i*8))&0xff;
3039                 writeData(f, &c, 1);
3040         }
3041
3042 }
3043
3044 static void writeString(FILE *f, char *s)
3045 {
3046         writeData(f, s, strlen(s));
3047 }
3048
3049 /* Dump a gmon.out histogram file. */
3050 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3051 {
3052         uint32_t i;
3053         FILE *f = fopen(filename, "w");
3054         if (f == NULL)
3055                 return;
3056         writeString(f, "gmon");
3057         writeLong(f, 0x00000001); /* Version */
3058         writeLong(f, 0); /* padding */
3059         writeLong(f, 0); /* padding */
3060         writeLong(f, 0); /* padding */
3061
3062         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3063         writeData(f, &zero, 1);
3064
3065         /* figure out bucket size */
3066         uint32_t min = samples[0];
3067         uint32_t max = samples[0];
3068         for (i = 0; i < sampleNum; i++)
3069         {
3070                 if (min > samples[i])
3071                 {
3072                         min = samples[i];
3073                 }
3074                 if (max < samples[i])
3075                 {
3076                         max = samples[i];
3077                 }
3078         }
3079
3080         int addressSpace = (max-min + 1);
3081
3082         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3083         uint32_t length = addressSpace;
3084         if (length > maxBuckets)
3085         {
3086                 length = maxBuckets;
3087         }
3088         int *buckets = malloc(sizeof(int)*length);
3089         if (buckets == NULL)
3090         {
3091                 fclose(f);
3092                 return;
3093         }
3094         memset(buckets, 0, sizeof(int)*length);
3095         for (i = 0; i < sampleNum;i++)
3096         {
3097                 uint32_t address = samples[i];
3098                 long long a = address-min;
3099                 long long b = length-1;
3100                 long long c = addressSpace-1;
3101                 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3102                 buckets[index_t]++;
3103         }
3104
3105         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3106         writeLong(f, min);                      /* low_pc */
3107         writeLong(f, max);                      /* high_pc */
3108         writeLong(f, length);           /* # of samples */
3109         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3110         writeString(f, "seconds");
3111         for (i = 0; i < (15-strlen("seconds")); i++)
3112                 writeData(f, &zero, 1);
3113         writeString(f, "s");
3114
3115         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3116
3117         char *data = malloc(2*length);
3118         if (data != NULL)
3119         {
3120                 for (i = 0; i < length;i++)
3121                 {
3122                         int val;
3123                         val = buckets[i];
3124                         if (val > 65535)
3125                         {
3126                                 val = 65535;
3127                         }
3128                         data[i*2]=val&0xff;
3129                         data[i*2 + 1]=(val >> 8)&0xff;
3130                 }
3131                 free(buckets);
3132                 writeData(f, data, length * 2);
3133                 free(data);
3134         } else
3135         {
3136                 free(buckets);
3137         }
3138
3139         fclose(f);
3140 }
3141
3142 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3143  * which will be used as a random sampling of PC */
3144 COMMAND_HANDLER(handle_profile_command)
3145 {
3146         struct target *target = get_current_target(CMD_CTX);
3147         struct timeval timeout, now;
3148
3149         gettimeofday(&timeout, NULL);
3150         if (CMD_ARGC != 2)
3151         {
3152                 return ERROR_COMMAND_SYNTAX_ERROR;
3153         }
3154         unsigned offset;
3155         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3156
3157         timeval_add_time(&timeout, offset, 0);
3158
3159         /**
3160          * @todo: Some cores let us sample the PC without the
3161          * annoying halt/resume step; for example, ARMv7 PCSR.
3162          * Provide a way to use that more efficient mechanism.
3163          */
3164
3165         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3166
3167         static const int maxSample = 10000;
3168         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3169         if (samples == NULL)
3170                 return ERROR_OK;
3171
3172         int numSamples = 0;
3173         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3174         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3175
3176         for (;;)
3177         {
3178                 int retval;
3179                 target_poll(target);
3180                 if (target->state == TARGET_HALTED)
3181                 {
3182                         uint32_t t=*((uint32_t *)reg->value);
3183                         samples[numSamples++]=t;
3184                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3185                         target_poll(target);
3186                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3187                 } else if (target->state == TARGET_RUNNING)
3188                 {
3189                         /* We want to quickly sample the PC. */
3190                         if ((retval = target_halt(target)) != ERROR_OK)
3191                         {
3192                                 free(samples);
3193                                 return retval;
3194                         }
3195                 } else
3196                 {
3197                         command_print(CMD_CTX, "Target not halted or running");
3198                         retval = ERROR_OK;
3199                         break;
3200                 }
3201                 if (retval != ERROR_OK)
3202                 {
3203                         break;
3204                 }
3205
3206                 gettimeofday(&now, NULL);
3207                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3208                 {
3209                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3210                         if ((retval = target_poll(target)) != ERROR_OK)
3211                         {
3212                                 free(samples);
3213                                 return retval;
3214                         }
3215                         if (target->state == TARGET_HALTED)
3216                         {
3217                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3218                         }
3219                         if ((retval = target_poll(target)) != ERROR_OK)
3220                         {
3221                                 free(samples);
3222                                 return retval;
3223                         }
3224                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3225                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3226                         break;
3227                 }
3228         }
3229         free(samples);
3230
3231         return ERROR_OK;
3232 }
3233
3234 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3235 {
3236         char *namebuf;
3237         Jim_Obj *nameObjPtr, *valObjPtr;
3238         int result;
3239
3240         namebuf = alloc_printf("%s(%d)", varname, idx);
3241         if (!namebuf)
3242                 return JIM_ERR;
3243
3244         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3245         valObjPtr = Jim_NewIntObj(interp, val);
3246         if (!nameObjPtr || !valObjPtr)
3247         {
3248                 free(namebuf);
3249                 return JIM_ERR;
3250         }
3251
3252         Jim_IncrRefCount(nameObjPtr);
3253         Jim_IncrRefCount(valObjPtr);
3254         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3255         Jim_DecrRefCount(interp, nameObjPtr);
3256         Jim_DecrRefCount(interp, valObjPtr);
3257         free(namebuf);
3258         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3259         return result;
3260 }
3261
3262 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3263 {
3264         struct command_context *context;
3265         struct target *target;
3266
3267         context = current_command_context(interp);
3268         assert (context != NULL);
3269
3270         target = get_current_target(context);
3271         if (target == NULL)
3272         {
3273                 LOG_ERROR("mem2array: no current target");
3274                 return JIM_ERR;
3275         }
3276
3277         return  target_mem2array(interp, target, argc-1, argv + 1);
3278 }
3279
3280 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3281 {
3282         long l;
3283         uint32_t width;
3284         int len;
3285         uint32_t addr;
3286         uint32_t count;
3287         uint32_t v;
3288         const char *varname;
3289         int  n, e, retval;
3290         uint32_t i;
3291
3292         /* argv[1] = name of array to receive the data
3293          * argv[2] = desired width
3294          * argv[3] = memory address
3295          * argv[4] = count of times to read
3296          */
3297         if (argc != 4) {
3298                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3299                 return JIM_ERR;
3300         }
3301         varname = Jim_GetString(argv[0], &len);
3302         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3303
3304         e = Jim_GetLong(interp, argv[1], &l);
3305         width = l;
3306         if (e != JIM_OK) {
3307                 return e;
3308         }
3309
3310         e = Jim_GetLong(interp, argv[2], &l);
3311         addr = l;
3312         if (e != JIM_OK) {
3313                 return e;
3314         }
3315         e = Jim_GetLong(interp, argv[3], &l);
3316         len = l;
3317         if (e != JIM_OK) {
3318                 return e;
3319         }
3320         switch (width) {
3321                 case 8:
3322                         width = 1;
3323                         break;
3324                 case 16:
3325                         width = 2;
3326                         break;
3327                 case 32:
3328                         width = 4;
3329                         break;
3330                 default:
3331                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3332                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3333                         return JIM_ERR;
3334         }
3335         if (len == 0) {
3336                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3337                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3338                 return JIM_ERR;
3339         }
3340         if ((addr + (len * width)) < addr) {
3341                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3342                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3343                 return JIM_ERR;
3344         }
3345         /* absurd transfer size? */
3346         if (len > 65536) {
3347                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3348                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3349                 return JIM_ERR;
3350         }
3351
3352         if ((width == 1) ||
3353                 ((width == 2) && ((addr & 1) == 0)) ||
3354                 ((width == 4) && ((addr & 3) == 0))) {
3355                 /* all is well */
3356         } else {
3357                 char buf[100];
3358                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3359                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3360                                 addr,
3361                                 width);
3362                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3363                 return JIM_ERR;
3364         }
3365
3366         /* Transfer loop */
3367
3368         /* index counter */
3369         n = 0;
3370
3371         size_t buffersize = 4096;
3372         uint8_t *buffer = malloc(buffersize);
3373         if (buffer == NULL)
3374                 return JIM_ERR;
3375
3376         /* assume ok */
3377         e = JIM_OK;
3378         while (len) {
3379                 /* Slurp... in buffer size chunks */
3380
3381                 count = len; /* in objects.. */
3382                 if (count > (buffersize/width)) {
3383                         count = (buffersize/width);
3384                 }
3385
3386                 retval = target_read_memory(target, addr, width, count, buffer);
3387                 if (retval != ERROR_OK) {
3388                         /* BOO !*/
3389                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3390                                           (unsigned int)addr,
3391                                           (int)width,
3392                                           (int)count);
3393                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3394                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3395                         e = JIM_ERR;
3396                         len = 0;
3397                 } else {
3398                         v = 0; /* shut up gcc */
3399                         for (i = 0 ;i < count ;i++, n++) {
3400                                 switch (width) {
3401                                         case 4:
3402                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3403                                                 break;
3404                                         case 2:
3405                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3406                                                 break;
3407                                         case 1:
3408                                                 v = buffer[i] & 0x0ff;
3409                                                 break;
3410                                 }
3411                                 new_int_array_element(interp, varname, n, v);
3412                         }
3413                         len -= count;
3414                 }
3415         }
3416
3417         free(buffer);
3418
3419         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3420
3421         return JIM_OK;
3422 }
3423
3424 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3425 {
3426         char *namebuf;
3427         Jim_Obj *nameObjPtr, *valObjPtr;
3428         int result;
3429         long l;
3430
3431         namebuf = alloc_printf("%s(%d)", varname, idx);
3432         if (!namebuf)
3433                 return JIM_ERR;
3434
3435         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3436         if (!nameObjPtr)
3437         {
3438                 free(namebuf);
3439                 return JIM_ERR;
3440         }
3441
3442         Jim_IncrRefCount(nameObjPtr);
3443         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3444         Jim_DecrRefCount(interp, nameObjPtr);
3445         free(namebuf);
3446         if (valObjPtr == NULL)
3447                 return JIM_ERR;
3448
3449         result = Jim_GetLong(interp, valObjPtr, &l);
3450         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3451         *val = l;
3452         return result;
3453 }
3454
3455 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3456 {
3457         struct command_context *context;
3458         struct target *target;
3459
3460         context = current_command_context(interp);
3461         assert (context != NULL);
3462
3463         target = get_current_target(context);
3464         if (target == NULL) {
3465                 LOG_ERROR("array2mem: no current target");
3466                 return JIM_ERR;
3467         }
3468
3469         return target_array2mem(interp,target, argc-1, argv + 1);
3470 }
3471
3472 static int target_array2mem(Jim_Interp *interp, struct target *target,
3473                 int argc, Jim_Obj *const *argv)
3474 {
3475         long l;
3476         uint32_t width;
3477         int len;
3478         uint32_t addr;
3479         uint32_t count;
3480         uint32_t v;
3481         const char *varname;
3482         int  n, e, retval;
3483         uint32_t i;
3484
3485         /* argv[1] = name of array to get the data
3486          * argv[2] = desired width
3487          * argv[3] = memory address
3488          * argv[4] = count to write
3489          */
3490         if (argc != 4) {
3491                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3492                 return JIM_ERR;
3493         }
3494         varname = Jim_GetString(argv[0], &len);
3495         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3496
3497         e = Jim_GetLong(interp, argv[1], &l);
3498         width = l;
3499         if (e != JIM_OK) {
3500                 return e;
3501         }
3502
3503         e = Jim_GetLong(interp, argv[2], &l);
3504         addr = l;
3505         if (e != JIM_OK) {
3506                 return e;
3507         }
3508         e = Jim_GetLong(interp, argv[3], &l);
3509         len = l;
3510         if (e != JIM_OK) {
3511                 return e;
3512         }
3513         switch (width) {
3514                 case 8:
3515                         width = 1;
3516                         break;
3517                 case 16:
3518                         width = 2;
3519                         break;
3520                 case 32:
3521                         width = 4;
3522                         break;
3523                 default:
3524                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3525                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3526                         return JIM_ERR;
3527         }
3528         if (len == 0) {
3529                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3530                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3531                 return JIM_ERR;
3532         }
3533         if ((addr + (len * width)) < addr) {
3534                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3535                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3536                 return JIM_ERR;
3537         }
3538         /* absurd transfer size? */
3539         if (len > 65536) {
3540                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3541                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3542                 return JIM_ERR;
3543         }
3544
3545         if ((width == 1) ||
3546                 ((width == 2) && ((addr & 1) == 0)) ||
3547                 ((width == 4) && ((addr & 3) == 0))) {
3548                 /* all is well */
3549         } else {
3550                 char buf[100];
3551                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3552                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3553                                 (unsigned int)addr,
3554                                 (int)width);
3555                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3556                 return JIM_ERR;
3557         }
3558
3559         /* Transfer loop */
3560
3561         /* index counter */
3562         n = 0;
3563         /* assume ok */
3564         e = JIM_OK;
3565
3566         size_t buffersize = 4096;
3567         uint8_t *buffer = malloc(buffersize);
3568         if (buffer == NULL)
3569                 return JIM_ERR;
3570
3571         while (len) {
3572                 /* Slurp... in buffer size chunks */
3573
3574                 count = len; /* in objects.. */
3575                 if (count > (buffersize/width)) {
3576                         count = (buffersize/width);
3577                 }
3578
3579                 v = 0; /* shut up gcc */
3580                 for (i = 0 ;i < count ;i++, n++) {
3581                         get_int_array_element(interp, varname, n, &v);
3582                         switch (width) {
3583                         case 4:
3584                                 target_buffer_set_u32(target, &buffer[i*width], v);
3585                                 break;
3586                         case 2:
3587                                 target_buffer_set_u16(target, &buffer[i*width], v);
3588                                 break;
3589                         case 1:
3590                                 buffer[i] = v & 0x0ff;
3591                                 break;
3592                         }
3593                 }
3594                 len -= count;
3595
3596                 retval = target_write_memory(target, addr, width, count, buffer);
3597                 if (retval != ERROR_OK) {
3598                         /* BOO !*/
3599                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3600                                           (unsigned int)addr,
3601                                           (int)width,
3602                                           (int)count);
3603                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3604                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3605                         e = JIM_ERR;
3606                         len = 0;
3607                 }
3608         }
3609
3610         free(buffer);
3611
3612         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3613
3614         return JIM_OK;
3615 }
3616
3617 /* FIX? should we propagate errors here rather than printing them
3618  * and continuing?
3619  */
3620 void target_handle_event(struct target *target, enum target_event e)
3621 {
3622         struct target_event_action *teap;
3623
3624         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3625                 if (teap->event == e) {
3626                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3627                                            target->target_number,
3628                                            target_name(target),
3629                                            target_type_name(target),
3630                                            e,
3631                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3632                                            Jim_GetString(teap->body, NULL));
3633                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3634                         {
3635                                 Jim_MakeErrorMessage(teap->interp);
3636                                 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3637                         }
3638                 }
3639         }
3640 }
3641
3642 /**
3643  * Returns true only if the target has a handler for the specified event.
3644  */
3645 bool target_has_event_action(struct target *target, enum target_event event)
3646 {
3647         struct target_event_action *teap;
3648
3649         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3650                 if (teap->event == event)
3651                         return true;
3652         }
3653         return false;
3654 }
3655
3656 enum target_cfg_param {
3657         TCFG_TYPE,
3658         TCFG_EVENT,
3659         TCFG_WORK_AREA_VIRT,
3660         TCFG_WORK_AREA_PHYS,
3661         TCFG_WORK_AREA_SIZE,
3662         TCFG_WORK_AREA_BACKUP,
3663         TCFG_ENDIAN,
3664         TCFG_VARIANT,
3665         TCFG_COREID,
3666         TCFG_CHAIN_POSITION,
3667 };
3668
3669 static Jim_Nvp nvp_config_opts[] = {
3670         { .name = "-type",             .value = TCFG_TYPE },
3671         { .name = "-event",            .value = TCFG_EVENT },
3672         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3673         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3674         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3675         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3676         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3677         { .name = "-variant",          .value = TCFG_VARIANT },
3678         { .name = "-coreid",           .value = TCFG_COREID },
3679         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3680
3681         { .name = NULL, .value = -1 }
3682 };
3683
3684 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3685 {
3686         Jim_Nvp *n;
3687         Jim_Obj *o;
3688         jim_wide w;
3689         char *cp;
3690         int e;
3691
3692         /* parse config or cget options ... */
3693         while (goi->argc > 0) {
3694                 Jim_SetEmptyResult(goi->interp);
3695                 /* Jim_GetOpt_Debug(goi); */
3696
3697                 if (target->type->target_jim_configure) {
3698                         /* target defines a configure function */
3699                         /* target gets first dibs on parameters */
3700                         e = (*(target->type->target_jim_configure))(target, goi);
3701                         if (e == JIM_OK) {
3702                                 /* more? */
3703                                 continue;
3704                         }
3705                         if (e == JIM_ERR) {
3706                                 /* An error */
3707                                 return e;
3708                         }
3709                         /* otherwise we 'continue' below */
3710                 }
3711                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3712                 if (e != JIM_OK) {
3713                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3714                         return e;
3715                 }
3716                 switch (n->value) {
3717                 case TCFG_TYPE:
3718                         /* not setable */
3719                         if (goi->isconfigure) {
3720                                 Jim_SetResultFormatted(goi->interp,
3721                                                 "not settable: %s", n->name);
3722                                 return JIM_ERR;
3723                         } else {
3724                         no_params:
3725                                 if (goi->argc != 0) {
3726                                         Jim_WrongNumArgs(goi->interp,
3727                                                         goi->argc, goi->argv,
3728                                                         "NO PARAMS");
3729                                         return JIM_ERR;
3730                                 }
3731                         }
3732                         Jim_SetResultString(goi->interp,
3733                                         target_type_name(target), -1);
3734                         /* loop for more */
3735                         break;
3736                 case TCFG_EVENT:
3737                         if (goi->argc == 0) {
3738                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3739                                 return JIM_ERR;
3740                         }
3741
3742                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3743                         if (e != JIM_OK) {
3744                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3745                                 return e;
3746                         }
3747
3748                         if (goi->isconfigure) {
3749                                 if (goi->argc != 1) {
3750                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3751                                         return JIM_ERR;
3752                                 }
3753                         } else {
3754                                 if (goi->argc != 0) {
3755                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3756                                         return JIM_ERR;
3757                                 }
3758                         }
3759
3760                         {
3761                                 struct target_event_action *teap;
3762
3763                                 teap = target->event_action;
3764                                 /* replace existing? */
3765                                 while (teap) {
3766                                         if (teap->event == (enum target_event)n->value) {
3767                                                 break;
3768                                         }
3769                                         teap = teap->next;
3770                                 }
3771
3772                                 if (goi->isconfigure) {
3773                                         bool replace = true;
3774                                         if (teap == NULL) {
3775                                                 /* create new */
3776                                                 teap = calloc(1, sizeof(*teap));
3777                                                 replace = false;
3778                                         }
3779                                         teap->event = n->value;
3780                                         teap->interp = goi->interp;
3781                                         Jim_GetOpt_Obj(goi, &o);
3782                                         if (teap->body) {
3783                                                 Jim_DecrRefCount(teap->interp, teap->body);
3784                                         }
3785                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3786                                         /*
3787                                          * FIXME:
3788                                          *     Tcl/TK - "tk events" have a nice feature.
3789                                          *     See the "BIND" command.
3790                                          *    We should support that here.
3791                                          *     You can specify %X and %Y in the event code.
3792                                          *     The idea is: %T - target name.
3793                                          *     The idea is: %N - target number
3794                                          *     The idea is: %E - event name.
3795                                          */
3796                                         Jim_IncrRefCount(teap->body);
3797
3798                                         if (!replace)
3799                                         {
3800                                                 /* add to head of event list */
3801                                                 teap->next = target->event_action;
3802                                                 target->event_action = teap;
3803                                         }
3804                                         Jim_SetEmptyResult(goi->interp);
3805                                 } else {
3806                                         /* get */
3807                                         if (teap == NULL) {
3808                                                 Jim_SetEmptyResult(goi->interp);
3809                                         } else {
3810                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3811                                         }
3812                                 }
3813                         }
3814                         /* loop for more */
3815                         break;
3816
3817                 case TCFG_WORK_AREA_VIRT:
3818                         if (goi->isconfigure) {
3819                                 target_free_all_working_areas(target);
3820                                 e = Jim_GetOpt_Wide(goi, &w);
3821                                 if (e != JIM_OK) {
3822                                         return e;
3823                                 }
3824                                 target->working_area_virt = w;
3825                                 target->working_area_virt_spec = true;
3826                         } else {
3827                                 if (goi->argc != 0) {
3828                                         goto no_params;
3829                                 }
3830                         }
3831                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3832                         /* loop for more */
3833                         break;
3834
3835                 case TCFG_WORK_AREA_PHYS:
3836                         if (goi->isconfigure) {
3837                                 target_free_all_working_areas(target);
3838                                 e = Jim_GetOpt_Wide(goi, &w);
3839                                 if (e != JIM_OK) {
3840                                         return e;
3841                                 }
3842                                 target->working_area_phys = w;
3843                                 target->working_area_phys_spec = true;
3844                         } else {
3845                                 if (goi->argc != 0) {
3846                                         goto no_params;
3847                                 }
3848                         }
3849                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3850                         /* loop for more */
3851                         break;
3852
3853                 case TCFG_WORK_AREA_SIZE:
3854                         if (goi->isconfigure) {
3855                                 target_free_all_working_areas(target);
3856                                 e = Jim_GetOpt_Wide(goi, &w);
3857                                 if (e != JIM_OK) {
3858                                         return e;
3859                                 }
3860                                 target->working_area_size = w;
3861                         } else {
3862                                 if (goi->argc != 0) {
3863                                         goto no_params;
3864                                 }
3865                         }
3866                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3867                         /* loop for more */
3868                         break;
3869
3870                 case TCFG_WORK_AREA_BACKUP:
3871                         if (goi->isconfigure) {
3872                                 target_free_all_working_areas(target);
3873                                 e = Jim_GetOpt_Wide(goi, &w);
3874                                 if (e != JIM_OK) {
3875                                         return e;
3876                                 }
3877                                 /* make this exactly 1 or 0 */
3878                                 target->backup_working_area = (!!w);
3879                         } else {
3880                                 if (goi->argc != 0) {
3881                                         goto no_params;
3882                                 }
3883                         }
3884                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3885                         /* loop for more e*/
3886                         break;
3887
3888                 case TCFG_ENDIAN:
3889                         if (goi->isconfigure) {
3890                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3891                                 if (e != JIM_OK) {
3892                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3893                                         return e;
3894                                 }
3895                                 target->endianness = n->value;
3896                         } else {
3897                                 if (goi->argc != 0) {
3898                                         goto no_params;
3899                                 }
3900                         }
3901                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3902                         if (n->name == NULL) {
3903                                 target->endianness = TARGET_LITTLE_ENDIAN;
3904                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3905                         }
3906                         Jim_SetResultString(goi->interp, n->name, -1);
3907                         /* loop for more */
3908                         break;
3909
3910                 case TCFG_VARIANT:
3911                         if (goi->isconfigure) {
3912                                 if (goi->argc < 1) {
3913                                         Jim_SetResultFormatted(goi->interp,
3914                                                                                    "%s ?STRING?",
3915                                                                                    n->name);
3916                                         return JIM_ERR;
3917                                 }
3918                                 if (target->variant) {
3919                                         free((void *)(target->variant));
3920                                 }
3921                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3922                                 target->variant = strdup(cp);
3923                         } else {
3924                                 if (goi->argc != 0) {
3925                                         goto no_params;
3926                                 }
3927                         }
3928                         Jim_SetResultString(goi->interp, target->variant,-1);
3929                         /* loop for more */
3930                         break;
3931
3932                 case TCFG_COREID:
3933                         if (goi->isconfigure) {
3934                                 e = Jim_GetOpt_Wide(goi, &w);
3935                                 if (e != JIM_OK) {
3936                                         return e;
3937                                 }
3938                                 target->coreid = (int)w;
3939                         } else {
3940                                 if (goi->argc != 0) {
3941                                         goto no_params;
3942                                 }
3943                         }
3944                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3945                         /* loop for more */
3946                         break;
3947
3948                 case TCFG_CHAIN_POSITION:
3949                         if (goi->isconfigure) {
3950                                 Jim_Obj *o_t;
3951                                 struct jtag_tap *tap;
3952                                 target_free_all_working_areas(target);
3953                                 e = Jim_GetOpt_Obj(goi, &o_t);
3954                                 if (e != JIM_OK) {
3955                                         return e;
3956                                 }
3957                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
3958                                 if (tap == NULL) {
3959                                         return JIM_ERR;
3960                                 }
3961                                 /* make this exactly 1 or 0 */
3962                                 target->tap = tap;
3963                         } else {
3964                                 if (goi->argc != 0) {
3965                                         goto no_params;
3966                                 }
3967                         }
3968                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3969                         /* loop for more e*/
3970                         break;
3971                 }
3972         } /* while (goi->argc) */
3973
3974
3975                 /* done - we return */
3976         return JIM_OK;
3977 }
3978
3979 static int
3980 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3981 {
3982         Jim_GetOptInfo goi;
3983
3984         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3985         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3986         int need_args = 1 + goi.isconfigure;
3987         if (goi.argc < need_args)
3988         {
3989                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3990                         goi.isconfigure
3991                                 ? "missing: -option VALUE ..."
3992                                 : "missing: -option ...");
3993                 return JIM_ERR;
3994         }
3995         struct target *target = Jim_CmdPrivData(goi.interp);
3996         return target_configure(&goi, target);
3997 }
3998
3999 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4000 {
4001         const char *cmd_name = Jim_GetString(argv[0], NULL);
4002
4003         Jim_GetOptInfo goi;
4004         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4005
4006         if (goi.argc < 2 || goi.argc > 4)
4007         {
4008                 Jim_SetResultFormatted(goi.interp,
4009                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4010                 return JIM_ERR;
4011         }
4012
4013         target_write_fn fn;
4014         fn = target_write_memory_fast;
4015
4016         int e;
4017         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4018         {
4019                 /* consume it */
4020                 struct Jim_Obj *obj;
4021                 e = Jim_GetOpt_Obj(&goi, &obj);
4022                 if (e != JIM_OK)
4023                         return e;
4024
4025                 fn = target_write_phys_memory;
4026         }
4027
4028         jim_wide a;
4029         e = Jim_GetOpt_Wide(&goi, &a);
4030         if (e != JIM_OK)
4031                 return e;
4032
4033         jim_wide b;
4034         e = Jim_GetOpt_Wide(&goi, &b);
4035         if (e != JIM_OK)
4036                 return e;
4037
4038         jim_wide c = 1;
4039         if (goi.argc == 1)
4040         {
4041                 e = Jim_GetOpt_Wide(&goi, &c);
4042                 if (e != JIM_OK)
4043                         return e;
4044         }
4045
4046         /* all args must be consumed */
4047         if (goi.argc != 0)
4048         {
4049                 return JIM_ERR;
4050         }
4051
4052         struct target *target = Jim_CmdPrivData(goi.interp);
4053         unsigned data_size;
4054         if (strcasecmp(cmd_name, "mww") == 0) {
4055                 data_size = 4;
4056         }
4057         else if (strcasecmp(cmd_name, "mwh") == 0) {
4058                 data_size = 2;
4059         }
4060         else if (strcasecmp(cmd_name, "mwb") == 0) {
4061                 data_size = 1;
4062         } else {
4063                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4064                 return JIM_ERR;
4065         }
4066
4067         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4068 }
4069
4070 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4071 {
4072         const char *cmd_name = Jim_GetString(argv[0], NULL);
4073
4074         Jim_GetOptInfo goi;
4075         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4076
4077         if ((goi.argc < 1) || (goi.argc > 3))
4078         {
4079                 Jim_SetResultFormatted(goi.interp,
4080                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4081                 return JIM_ERR;
4082         }
4083
4084         int (*fn)(struct target *target,
4085                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4086         fn=target_read_memory;
4087
4088         int e;
4089         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4090         {
4091                 /* consume it */
4092                 struct Jim_Obj *obj;
4093                 e = Jim_GetOpt_Obj(&goi, &obj);
4094                 if (e != JIM_OK)
4095                         return e;
4096
4097                 fn=target_read_phys_memory;
4098         }
4099
4100         jim_wide a;
4101         e = Jim_GetOpt_Wide(&goi, &a);
4102         if (e != JIM_OK) {
4103                 return JIM_ERR;
4104         }
4105         jim_wide c;
4106         if (goi.argc == 1) {
4107                 e = Jim_GetOpt_Wide(&goi, &c);
4108                 if (e != JIM_OK) {
4109                         return JIM_ERR;
4110                 }
4111         } else {
4112                 c = 1;
4113         }
4114
4115         /* all args must be consumed */
4116         if (goi.argc != 0)
4117         {
4118                 return JIM_ERR;
4119         }
4120
4121         jim_wide b = 1; /* shut up gcc */
4122         if (strcasecmp(cmd_name, "mdw") == 0)
4123                 b = 4;
4124         else if (strcasecmp(cmd_name, "mdh") == 0)
4125                 b = 2;
4126         else if (strcasecmp(cmd_name, "mdb") == 0)
4127                 b = 1;
4128         else {
4129                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4130                 return JIM_ERR;
4131         }
4132
4133         /* convert count to "bytes" */
4134         c = c * b;
4135
4136         struct target *target = Jim_CmdPrivData(goi.interp);
4137         uint8_t  target_buf[32];
4138         jim_wide x, y, z;
4139         while (c > 0) {
4140                 y = c;
4141                 if (y > 16) {
4142                         y = 16;
4143                 }
4144                 e = fn(target, a, b, y / b, target_buf);
4145                 if (e != ERROR_OK) {
4146                         char tmp[10];
4147                         snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
4148                         Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
4149                         return JIM_ERR;
4150                 }
4151
4152                 command_print(NULL, "0x%08x ", (int)(a));
4153                 switch (b) {
4154                 case 4:
4155                         for (x = 0; x < 16 && x < y; x += 4)
4156                         {
4157                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4158                                 command_print(NULL, "%08x ", (int)(z));
4159                         }
4160                         for (; (x < 16) ; x += 4) {
4161                                 command_print(NULL, "         ");
4162                         }
4163                         break;
4164                 case 2:
4165                         for (x = 0; x < 16 && x < y; x += 2)
4166                         {
4167                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4168                                 command_print(NULL, "%04x ", (int)(z));
4169                         }
4170                         for (; (x < 16) ; x += 2) {
4171                                 command_print(NULL, "     ");
4172                         }
4173                         break;
4174                 case 1:
4175                 default:
4176                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4177                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4178                                 command_print(NULL, "%02x ", (int)(z));
4179                         }
4180                         for (; (x < 16) ; x += 1) {
4181                                 command_print(NULL, "   ");
4182                         }
4183                         break;
4184                 }
4185                 /* ascii-ify the bytes */
4186                 for (x = 0 ; x < y ; x++) {
4187                         if ((target_buf[x] >= 0x20) &&
4188                                 (target_buf[x] <= 0x7e)) {
4189                                 /* good */
4190                         } else {
4191                                 /* smack it */
4192                                 target_buf[x] = '.';
4193                         }
4194                 }
4195                 /* space pad  */
4196                 while (x < 16) {
4197                         target_buf[x] = ' ';
4198                         x++;
4199                 }
4200                 /* terminate */
4201                 target_buf[16] = 0;
4202                 /* print - with a newline */
4203                 command_print(NULL, "%s\n", target_buf);
4204                 /* NEXT... */
4205                 c -= 16;
4206                 a += 16;
4207         }
4208         return JIM_OK;
4209 }
4210
4211 static int jim_target_mem2array(Jim_Interp *interp,
4212                 int argc, Jim_Obj *const *argv)
4213 {
4214         struct target *target = Jim_CmdPrivData(interp);
4215         return target_mem2array(interp, target, argc - 1, argv + 1);
4216 }
4217
4218 static int jim_target_array2mem(Jim_Interp *interp,
4219                 int argc, Jim_Obj *const *argv)
4220 {
4221         struct target *target = Jim_CmdPrivData(interp);
4222         return target_array2mem(interp, target, argc - 1, argv + 1);
4223 }
4224
4225 static int jim_target_tap_disabled(Jim_Interp *interp)
4226 {
4227         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4228         return JIM_ERR;
4229 }
4230
4231 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4232 {
4233         if (argc != 1)
4234         {
4235                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4236                 return JIM_ERR;
4237         }
4238         struct target *target = Jim_CmdPrivData(interp);
4239         if (!target->tap->enabled)
4240                 return jim_target_tap_disabled(interp);
4241
4242         int e = target->type->examine(target);
4243         if (e != ERROR_OK)
4244         {
4245                 return JIM_ERR;
4246         }
4247         return JIM_OK;
4248 }
4249
4250 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4251 {
4252         if (argc != 1)
4253         {
4254                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4255                 return JIM_ERR;
4256         }
4257         struct target *target = Jim_CmdPrivData(interp);
4258
4259         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4260                 return JIM_ERR;
4261
4262         return JIM_OK;
4263 }
4264
4265 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4266 {
4267         if (argc != 1)
4268         {
4269                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4270                 return JIM_ERR;
4271         }
4272         struct target *target = Jim_CmdPrivData(interp);
4273         if (!target->tap->enabled)
4274                 return jim_target_tap_disabled(interp);
4275
4276         int e;
4277         if (!(target_was_examined(target))) {
4278                 e = ERROR_TARGET_NOT_EXAMINED;
4279         } else {
4280                 e = target->type->poll(target);
4281         }
4282         if (e != ERROR_OK)
4283         {
4284                 return JIM_ERR;
4285         }
4286         return JIM_OK;
4287 }
4288
4289 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4290 {
4291         Jim_GetOptInfo goi;
4292         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4293
4294         if (goi.argc != 2)
4295         {
4296                 Jim_WrongNumArgs(interp, 0, argv,
4297                                 "([tT]|[fF]|assert|deassert) BOOL");
4298                 return JIM_ERR;
4299         }
4300
4301         Jim_Nvp *n;
4302         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4303         if (e != JIM_OK)
4304         {
4305                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4306                 return e;
4307         }
4308         /* the halt or not param */
4309         jim_wide a;
4310         e = Jim_GetOpt_Wide(&goi, &a);
4311         if (e != JIM_OK)
4312                 return e;
4313
4314         struct target *target = Jim_CmdPrivData(goi.interp);
4315         if (!target->tap->enabled)
4316                 return jim_target_tap_disabled(interp);
4317         if (!(target_was_examined(target)))
4318         {
4319                 LOG_ERROR("Target not examined yet");
4320                 return ERROR_TARGET_NOT_EXAMINED;
4321         }
4322         if (!target->type->assert_reset || !target->type->deassert_reset)
4323         {
4324                 Jim_SetResultFormatted(interp,
4325                                 "No target-specific reset for %s",
4326                                 target_name(target));
4327                 return JIM_ERR;
4328         }
4329         /* determine if we should halt or not. */
4330         target->reset_halt = !!a;
4331         /* When this happens - all workareas are invalid. */
4332         target_free_all_working_areas_restore(target, 0);
4333
4334         /* do the assert */
4335         if (n->value == NVP_ASSERT) {
4336                 e = target->type->assert_reset(target);
4337         } else {
4338                 e = target->type->deassert_reset(target);
4339         }
4340         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4341 }
4342
4343 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4344 {
4345         if (argc != 1) {
4346                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4347                 return JIM_ERR;
4348         }
4349         struct target *target = Jim_CmdPrivData(interp);
4350         if (!target->tap->enabled)
4351                 return jim_target_tap_disabled(interp);
4352         int e = target->type->halt(target);
4353         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4354 }
4355
4356 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4357 {
4358         Jim_GetOptInfo goi;
4359         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4360
4361         /* params:  <name>  statename timeoutmsecs */
4362         if (goi.argc != 2)
4363         {
4364                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4365                 Jim_SetResultFormatted(goi.interp,
4366                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4367                 return JIM_ERR;
4368         }
4369
4370         Jim_Nvp *n;
4371         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4372         if (e != JIM_OK) {
4373                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4374                 return e;
4375         }
4376         jim_wide a;
4377         e = Jim_GetOpt_Wide(&goi, &a);
4378         if (e != JIM_OK) {
4379                 return e;
4380         }
4381         struct target *target = Jim_CmdPrivData(interp);
4382         if (!target->tap->enabled)
4383                 return jim_target_tap_disabled(interp);
4384
4385         e = target_wait_state(target, n->value, a);
4386         if (e != ERROR_OK)
4387         {
4388                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4389                 Jim_SetResultFormatted(goi.interp,
4390                                 "target: %s wait %s fails (%#s) %s",
4391                                 target_name(target), n->name,
4392                                 eObj, target_strerror_safe(e));
4393                 Jim_FreeNewObj(interp, eObj);
4394                 return JIM_ERR;
4395         }
4396         return JIM_OK;
4397 }
4398 /* List for human, Events defined for this target.
4399  * scripts/programs should use 'name cget -event NAME'
4400  */
4401 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4402 {
4403         struct command_context *cmd_ctx = current_command_context(interp);
4404         assert (cmd_ctx != NULL);
4405
4406         struct target *target = Jim_CmdPrivData(interp);
4407         struct target_event_action *teap = target->event_action;
4408         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4409                                    target->target_number,
4410                                    target_name(target));
4411         command_print(cmd_ctx, "%-25s | Body", "Event");
4412         command_print(cmd_ctx, "------------------------- | "
4413                         "----------------------------------------");
4414         while (teap)
4415         {
4416                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4417                 command_print(cmd_ctx, "%-25s | %s",
4418                                 opt->name, Jim_GetString(teap->body, NULL));
4419                 teap = teap->next;
4420         }
4421         command_print(cmd_ctx, "***END***");
4422         return JIM_OK;
4423 }
4424 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4425 {
4426         if (argc != 1)
4427         {
4428                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4429                 return JIM_ERR;
4430         }
4431         struct target *target = Jim_CmdPrivData(interp);
4432         Jim_SetResultString(interp, target_state_name(target), -1);
4433         return JIM_OK;
4434 }
4435 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4436 {
4437         Jim_GetOptInfo goi;
4438         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4439         if (goi.argc != 1)
4440         {
4441                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4442                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4443                 return JIM_ERR;
4444         }
4445         Jim_Nvp *n;
4446         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4447         if (e != JIM_OK)
4448         {
4449                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4450                 return e;
4451         }
4452         struct target *target = Jim_CmdPrivData(interp);
4453         target_handle_event(target, n->value);
4454         return JIM_OK;
4455 }
4456
4457 static const struct command_registration target_instance_command_handlers[] = {
4458         {
4459                 .name = "configure",
4460                 .mode = COMMAND_CONFIG,
4461                 .jim_handler = jim_target_configure,
4462                 .help  = "configure a new target for use",
4463                 .usage = "[target_attribute ...]",
4464         },
4465         {
4466                 .name = "cget",
4467                 .mode = COMMAND_ANY,
4468                 .jim_handler = jim_target_configure,
4469                 .help  = "returns the specified target attribute",
4470                 .usage = "target_attribute",
4471         },
4472         {
4473                 .name = "mww",
4474                 .mode = COMMAND_EXEC,
4475                 .jim_handler = jim_target_mw,
4476                 .help = "Write 32-bit word(s) to target memory",
4477                 .usage = "address data [count]",
4478         },
4479         {
4480                 .name = "mwh",
4481                 .mode = COMMAND_EXEC,
4482                 .jim_handler = jim_target_mw,
4483                 .help = "Write 16-bit half-word(s) to target memory",
4484                 .usage = "address data [count]",
4485         },
4486         {
4487                 .name = "mwb",
4488                 .mode = COMMAND_EXEC,
4489                 .jim_handler = jim_target_mw,
4490                 .help = "Write byte(s) to target memory",
4491                 .usage = "address data [count]",
4492         },
4493         {
4494                 .name = "mdw",
4495                 .mode = COMMAND_EXEC,
4496                 .jim_handler = jim_target_md,
4497                 .help = "Display target memory as 32-bit words",
4498                 .usage = "address [count]",
4499         },
4500         {
4501                 .name = "mdh",
4502                 .mode = COMMAND_EXEC,
4503                 .jim_handler = jim_target_md,
4504                 .help = "Display target memory as 16-bit half-words",
4505                 .usage = "address [count]",
4506         },
4507         {
4508                 .name = "mdb",
4509                 .mode = COMMAND_EXEC,
4510                 .jim_handler = jim_target_md,
4511                 .help = "Display target memory as 8-bit bytes",
4512                 .usage = "address [count]",
4513         },
4514         {
4515                 .name = "array2mem",
4516                 .mode = COMMAND_EXEC,
4517                 .jim_handler = jim_target_array2mem,
4518                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4519                         "to target memory",
4520                 .usage = "arrayname bitwidth address count",
4521         },
4522         {
4523                 .name = "mem2array",
4524                 .mode = COMMAND_EXEC,
4525                 .jim_handler = jim_target_mem2array,
4526                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4527                         "from target memory",
4528                 .usage = "arrayname bitwidth address count",
4529         },
4530         {
4531                 .name = "eventlist",
4532                 .mode = COMMAND_EXEC,
4533                 .jim_handler = jim_target_event_list,
4534                 .help = "displays a table of events defined for this target",
4535         },
4536         {
4537                 .name = "curstate",
4538                 .mode = COMMAND_EXEC,
4539                 .jim_handler = jim_target_current_state,
4540                 .help = "displays the current state of this target",
4541         },
4542         {
4543                 .name = "arp_examine",
4544                 .mode = COMMAND_EXEC,
4545                 .jim_handler = jim_target_examine,
4546                 .help = "used internally for reset processing",
4547         },
4548         {
4549                 .name = "arp_halt_gdb",
4550                 .mode = COMMAND_EXEC,
4551                 .jim_handler = jim_target_halt_gdb,
4552                 .help = "used internally for reset processing to halt GDB",
4553         },
4554         {
4555                 .name = "arp_poll",
4556                 .mode = COMMAND_EXEC,
4557                 .jim_handler = jim_target_poll,
4558                 .help = "used internally for reset processing",
4559         },
4560         {
4561                 .name = "arp_reset",
4562                 .mode = COMMAND_EXEC,
4563                 .jim_handler = jim_target_reset,
4564                 .help = "used internally for reset processing",
4565         },
4566         {
4567                 .name = "arp_halt",
4568                 .mode = COMMAND_EXEC,
4569                 .jim_handler = jim_target_halt,
4570                 .help = "used internally for reset processing",
4571         },
4572         {
4573                 .name = "arp_waitstate",
4574                 .mode = COMMAND_EXEC,
4575                 .jim_handler = jim_target_wait_state,
4576                 .help = "used internally for reset processing",
4577         },
4578         {
4579                 .name = "invoke-event",
4580                 .mode = COMMAND_EXEC,
4581                 .jim_handler = jim_target_invoke_event,
4582                 .help = "invoke handler for specified event",
4583                 .usage = "event_name",
4584         },
4585         COMMAND_REGISTRATION_DONE
4586 };
4587
4588 static int target_create(Jim_GetOptInfo *goi)
4589 {
4590         Jim_Obj *new_cmd;
4591         Jim_Cmd *cmd;
4592         const char *cp;
4593         char *cp2;
4594         int e;
4595         int x;
4596         struct target *target;
4597         struct command_context *cmd_ctx;
4598
4599         cmd_ctx = current_command_context(goi->interp);
4600         assert (cmd_ctx != NULL);
4601
4602         if (goi->argc < 3) {
4603                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4604                 return JIM_ERR;
4605         }
4606
4607         /* COMMAND */
4608         Jim_GetOpt_Obj(goi, &new_cmd);
4609         /* does this command exist? */
4610         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4611         if (cmd) {
4612                 cp = Jim_GetString(new_cmd, NULL);
4613                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4614                 return JIM_ERR;
4615         }
4616
4617         /* TYPE */
4618         e = Jim_GetOpt_String(goi, &cp2, NULL);
4619         cp = cp2;
4620         /* now does target type exist */
4621         for (x = 0 ; target_types[x] ; x++) {
4622                 if (0 == strcmp(cp, target_types[x]->name)) {
4623                         /* found */
4624                         break;
4625                 }
4626         }
4627         if (target_types[x] == NULL) {
4628                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4629                 for (x = 0 ; target_types[x] ; x++) {
4630                         if (target_types[x + 1]) {
4631                                 Jim_AppendStrings(goi->interp,
4632                                                                    Jim_GetResult(goi->interp),
4633                                                                    target_types[x]->name,
4634                                                                    ", ", NULL);
4635                         } else {
4636                                 Jim_AppendStrings(goi->interp,
4637                                                                    Jim_GetResult(goi->interp),
4638                                                                    " or ",
4639                                                                    target_types[x]->name,NULL);
4640                         }
4641                 }
4642                 return JIM_ERR;
4643         }
4644
4645         /* Create it */
4646         target = calloc(1,sizeof(struct target));
4647         /* set target number */
4648         target->target_number = new_target_number();
4649
4650         /* allocate memory for each unique target type */
4651         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4652
4653         memcpy(target->type, target_types[x], sizeof(struct target_type));
4654
4655         /* will be set by "-endian" */
4656         target->endianness = TARGET_ENDIAN_UNKNOWN;
4657
4658         /* default to first core, override with -coreid */
4659         target->coreid = 0;
4660
4661         target->working_area        = 0x0;
4662         target->working_area_size   = 0x0;
4663         target->working_areas       = NULL;
4664         target->backup_working_area = 0;
4665
4666         target->state               = TARGET_UNKNOWN;
4667         target->debug_reason        = DBG_REASON_UNDEFINED;
4668         target->reg_cache           = NULL;
4669         target->breakpoints         = NULL;
4670         target->watchpoints         = NULL;
4671         target->next                = NULL;
4672         target->arch_info           = NULL;
4673
4674         target->display             = 1;
4675
4676         target->halt_issued                     = false;
4677
4678         /* initialize trace information */
4679         target->trace_info = malloc(sizeof(struct trace));
4680         target->trace_info->num_trace_points         = 0;
4681         target->trace_info->trace_points_size        = 0;
4682         target->trace_info->trace_points             = NULL;
4683         target->trace_info->trace_history_size       = 0;
4684         target->trace_info->trace_history            = NULL;
4685         target->trace_info->trace_history_pos        = 0;
4686         target->trace_info->trace_history_overflowed = 0;
4687
4688         target->dbgmsg          = NULL;
4689         target->dbg_msg_enabled = 0;
4690
4691         target->endianness = TARGET_ENDIAN_UNKNOWN;
4692
4693         /* Do the rest as "configure" options */
4694         goi->isconfigure = 1;
4695         e = target_configure(goi, target);
4696
4697         if (target->tap == NULL)
4698         {
4699                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4700                 e = JIM_ERR;
4701         }
4702
4703         if (e != JIM_OK) {
4704                 free(target->type);
4705                 free(target);
4706                 return e;
4707         }
4708
4709         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4710                 /* default endian to little if not specified */
4711                 target->endianness = TARGET_LITTLE_ENDIAN;
4712         }
4713
4714         /* incase variant is not set */
4715         if (!target->variant)
4716                 target->variant = strdup("");
4717
4718         cp = Jim_GetString(new_cmd, NULL);
4719         target->cmd_name = strdup(cp);
4720
4721         /* create the target specific commands */
4722         if (target->type->commands) {
4723                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4724                 if (ERROR_OK != e)
4725                         LOG_ERROR("unable to register '%s' commands", cp);
4726         }
4727         if (target->type->target_create) {
4728                 (*(target->type->target_create))(target, goi->interp);
4729         }
4730
4731         /* append to end of list */
4732         {
4733                 struct target **tpp;
4734                 tpp = &(all_targets);
4735                 while (*tpp) {
4736                         tpp = &((*tpp)->next);
4737                 }
4738                 *tpp = target;
4739         }
4740
4741         /* now - create the new target name command */
4742         const const struct command_registration target_subcommands[] = {
4743                 {
4744                         .chain = target_instance_command_handlers,
4745                 },
4746                 {
4747                         .chain = target->type->commands,
4748                 },
4749                 COMMAND_REGISTRATION_DONE
4750         };
4751         const const struct command_registration target_commands[] = {
4752                 {
4753                         .name = cp,
4754                         .mode = COMMAND_ANY,
4755                         .help = "target command group",
4756                         .chain = target_subcommands,
4757                 },
4758                 COMMAND_REGISTRATION_DONE
4759         };
4760         e = register_commands(cmd_ctx, NULL, target_commands);
4761         if (ERROR_OK != e)
4762                 return JIM_ERR;
4763
4764         struct command *c = command_find_in_context(cmd_ctx, cp);
4765         assert(c);
4766         command_set_handler_data(c, target);
4767
4768         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4769 }
4770
4771 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4772 {
4773         if (argc != 1)
4774         {
4775                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4776                 return JIM_ERR;
4777         }
4778         struct command_context *cmd_ctx = current_command_context(interp);
4779         assert (cmd_ctx != NULL);
4780
4781         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4782         return JIM_OK;
4783 }
4784
4785 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4786 {
4787         if (argc != 1)
4788         {
4789                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4790                 return JIM_ERR;
4791         }
4792         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4793         for (unsigned x = 0; NULL != target_types[x]; x++)
4794         {
4795                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4796                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4797         }
4798         return JIM_OK;
4799 }
4800
4801 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4802 {
4803         if (argc != 1)
4804         {
4805                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4806                 return JIM_ERR;
4807         }
4808         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4809         struct target *target = all_targets;
4810         while (target)
4811         {
4812                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4813                         Jim_NewStringObj(interp, target_name(target), -1));
4814                 target = target->next;
4815         }
4816         return JIM_OK;
4817 }
4818
4819 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4820 {
4821         Jim_GetOptInfo goi;
4822         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4823         if (goi.argc < 3)
4824         {
4825                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4826                         "<name> <target_type> [<target_options> ...]");
4827                 return JIM_ERR;
4828         }
4829         return target_create(&goi);
4830 }
4831
4832 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4833 {
4834         Jim_GetOptInfo goi;
4835         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4836
4837         /* It's OK to remove this mechanism sometime after August 2010 or so */
4838         LOG_WARNING("don't use numbers as target identifiers; use names");
4839         if (goi.argc != 1)
4840         {
4841                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
4842                 return JIM_ERR;
4843         }
4844         jim_wide w;
4845         int e = Jim_GetOpt_Wide(&goi, &w);
4846         if (e != JIM_OK)
4847                 return JIM_ERR;
4848
4849         struct target *target;
4850         for (target = all_targets; NULL != target; target = target->next)
4851         {
4852                 if (target->target_number != w)
4853                         continue;
4854
4855                 Jim_SetResultString(goi.interp, target_name(target), -1);
4856                 return JIM_OK;
4857         }
4858         {
4859                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
4860                 Jim_SetResultFormatted(goi.interp,
4861                         "Target: number %#s does not exist", wObj);
4862                 Jim_FreeNewObj(interp, wObj);
4863         }
4864         return JIM_ERR;
4865 }
4866
4867 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4868 {
4869         if (argc != 1)
4870         {
4871                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4872                 return JIM_ERR;
4873         }
4874         unsigned count = 0;
4875         struct target *target = all_targets;
4876         while (NULL != target)
4877         {
4878                 target = target->next;
4879                 count++;
4880         }
4881         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4882         return JIM_OK;
4883 }
4884
4885 static const struct command_registration target_subcommand_handlers[] = {
4886         {
4887                 .name = "init",
4888                 .mode = COMMAND_CONFIG,
4889                 .handler = handle_target_init_command,
4890                 .help = "initialize targets",
4891         },
4892         {
4893                 .name = "create",
4894                 /* REVISIT this should be COMMAND_CONFIG ... */
4895                 .mode = COMMAND_ANY,
4896                 .jim_handler = jim_target_create,
4897                 .usage = "name type '-chain-position' name [options ...]",
4898                 .help = "Creates and selects a new target",
4899         },
4900         {
4901                 .name = "current",
4902                 .mode = COMMAND_ANY,
4903                 .jim_handler = jim_target_current,
4904                 .help = "Returns the currently selected target",
4905         },
4906         {
4907                 .name = "types",
4908                 .mode = COMMAND_ANY,
4909                 .jim_handler = jim_target_types,
4910                 .help = "Returns the available target types as "
4911                                 "a list of strings",
4912         },
4913         {
4914                 .name = "names",
4915                 .mode = COMMAND_ANY,
4916                 .jim_handler = jim_target_names,
4917                 .help = "Returns the names of all targets as a list of strings",
4918         },
4919         {
4920                 .name = "number",
4921                 .mode = COMMAND_ANY,
4922                 .jim_handler = jim_target_number,
4923                 .usage = "number",
4924                 .help = "Returns the name of the numbered target "
4925                         "(DEPRECATED)",
4926         },
4927         {
4928                 .name = "count",
4929                 .mode = COMMAND_ANY,
4930                 .jim_handler = jim_target_count,
4931                 .help = "Returns the number of targets as an integer "
4932                         "(DEPRECATED)",
4933         },
4934         COMMAND_REGISTRATION_DONE
4935 };
4936
4937 struct FastLoad
4938 {
4939         uint32_t address;
4940         uint8_t *data;
4941         int length;
4942
4943 };
4944
4945 static int fastload_num;
4946 static struct FastLoad *fastload;
4947
4948 static void free_fastload(void)
4949 {
4950         if (fastload != NULL)
4951         {
4952                 int i;
4953                 for (i = 0; i < fastload_num; i++)
4954                 {
4955                         if (fastload[i].data)
4956                                 free(fastload[i].data);
4957                 }
4958                 free(fastload);
4959                 fastload = NULL;
4960         }
4961 }
4962
4963
4964
4965
4966 COMMAND_HANDLER(handle_fast_load_image_command)
4967 {
4968         uint8_t *buffer;
4969         size_t buf_cnt;
4970         uint32_t image_size;
4971         uint32_t min_address = 0;
4972         uint32_t max_address = 0xffffffff;
4973         int i;
4974
4975         struct image image;
4976
4977         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4978                         &image, &min_address, &max_address);
4979         if (ERROR_OK != retval)
4980                 return retval;
4981
4982         struct duration bench;
4983         duration_start(&bench);
4984
4985         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
4986         if (retval != ERROR_OK)
4987         {
4988                 return retval;
4989         }
4990
4991         image_size = 0x0;
4992         retval = ERROR_OK;
4993         fastload_num = image.num_sections;
4994         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4995         if (fastload == NULL)
4996         {
4997                 command_print(CMD_CTX, "out of memory");
4998                 image_close(&image);
4999                 return ERROR_FAIL;
5000         }
5001         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5002         for (i = 0; i < image.num_sections; i++)
5003         {
5004                 buffer = malloc(image.sections[i].size);
5005                 if (buffer == NULL)
5006                 {
5007                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5008                                                   (int)(image.sections[i].size));
5009                         retval = ERROR_FAIL;
5010                         break;
5011                 }
5012
5013                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
5014                 {
5015                         free(buffer);
5016                         break;
5017                 }
5018
5019                 uint32_t offset = 0;
5020                 uint32_t length = buf_cnt;
5021
5022
5023                 /* DANGER!!! beware of unsigned comparision here!!! */
5024
5025                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
5026                                 (image.sections[i].base_address < max_address))
5027                 {
5028                         if (image.sections[i].base_address < min_address)
5029                         {
5030                                 /* clip addresses below */
5031                                 offset += min_address-image.sections[i].base_address;
5032                                 length -= offset;
5033                         }
5034
5035                         if (image.sections[i].base_address + buf_cnt > max_address)
5036                         {
5037                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5038                         }
5039
5040                         fastload[i].address = image.sections[i].base_address + offset;
5041                         fastload[i].data = malloc(length);
5042                         if (fastload[i].data == NULL)
5043                         {
5044                                 free(buffer);
5045                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5046                                                           length);
5047                                 retval = ERROR_FAIL;
5048                                 break;
5049                         }
5050                         memcpy(fastload[i].data, buffer + offset, length);
5051                         fastload[i].length = length;
5052
5053                         image_size += length;
5054                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5055                                                   (unsigned int)length,
5056                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5057                 }
5058
5059                 free(buffer);
5060         }
5061
5062         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
5063         {
5064                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5065                                 "in %fs (%0.3f KiB/s)", image_size,
5066                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5067
5068                 command_print(CMD_CTX,
5069                                 "WARNING: image has not been loaded to target!"
5070                                 "You can issue a 'fast_load' to finish loading.");
5071         }
5072
5073         image_close(&image);
5074
5075         if (retval != ERROR_OK)
5076         {
5077                 free_fastload();
5078         }
5079
5080         return retval;
5081 }
5082
5083 COMMAND_HANDLER(handle_fast_load_command)
5084 {
5085         if (CMD_ARGC > 0)
5086                 return ERROR_COMMAND_SYNTAX_ERROR;
5087         if (fastload == NULL)
5088         {
5089                 LOG_ERROR("No image in memory");
5090                 return ERROR_FAIL;
5091         }
5092         int i;
5093         int ms = timeval_ms();
5094         int size = 0;
5095         int retval = ERROR_OK;
5096         for (i = 0; i < fastload_num;i++)
5097         {
5098                 struct target *target = get_current_target(CMD_CTX);
5099                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5100                                           (unsigned int)(fastload[i].address),
5101                                           (unsigned int)(fastload[i].length));
5102                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5103                 if (retval != ERROR_OK)
5104                 {
5105                         break;
5106                 }
5107                 size += fastload[i].length;
5108         }
5109         if (retval == ERROR_OK)
5110         {
5111                 int after = timeval_ms();
5112                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5113         }
5114         return retval;
5115 }
5116
5117 static const struct command_registration target_command_handlers[] = {
5118         {
5119                 .name = "targets",
5120                 .handler = handle_targets_command,
5121                 .mode = COMMAND_ANY,
5122                 .help = "change current default target (one parameter) "
5123                         "or prints table of all targets (no parameters)",
5124                 .usage = "[target]",
5125         },
5126         {
5127                 .name = "target",
5128                 .mode = COMMAND_CONFIG,
5129                 .help = "configure target",
5130
5131                 .chain = target_subcommand_handlers,
5132         },
5133         COMMAND_REGISTRATION_DONE
5134 };
5135
5136 int target_register_commands(struct command_context *cmd_ctx)
5137 {
5138         return register_commands(cmd_ctx, NULL, target_command_handlers);
5139 }
5140
5141 static bool target_reset_nag = true;
5142
5143 bool get_target_reset_nag(void)
5144 {
5145         return target_reset_nag;
5146 }
5147
5148 COMMAND_HANDLER(handle_target_reset_nag)
5149 {
5150         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5151                         &target_reset_nag, "Nag after each reset about options to improve "
5152                         "performance");
5153 }
5154
5155 static const struct command_registration target_exec_command_handlers[] = {
5156         {
5157                 .name = "fast_load_image",
5158                 .handler = handle_fast_load_image_command,
5159                 .mode = COMMAND_ANY,
5160                 .help = "Load image into server memory for later use by "
5161                         "fast_load; primarily for profiling",
5162                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5163                         "[min_address [max_length]]",
5164         },
5165         {
5166                 .name = "fast_load",
5167                 .handler = handle_fast_load_command,
5168                 .mode = COMMAND_EXEC,
5169                 .help = "loads active fast load image to current target "
5170                         "- mainly for profiling purposes",
5171         },
5172         {
5173                 .name = "profile",
5174                 .handler = handle_profile_command,
5175                 .mode = COMMAND_EXEC,
5176                 .help = "profiling samples the CPU PC",
5177         },
5178         /** @todo don't register virt2phys() unless target supports it */
5179         {
5180                 .name = "virt2phys",
5181                 .handler = handle_virt2phys_command,
5182                 .mode = COMMAND_ANY,
5183                 .help = "translate a virtual address into a physical address",
5184                 .usage = "virtual_address",
5185         },
5186         {
5187                 .name = "reg",
5188                 .handler = handle_reg_command,
5189                 .mode = COMMAND_EXEC,
5190                 .help = "display or set a register; with no arguments, "
5191                         "displays all registers and their values",
5192                 .usage = "[(register_name|register_number) [value]]",
5193         },
5194         {
5195                 .name = "poll",
5196                 .handler = handle_poll_command,
5197                 .mode = COMMAND_EXEC,
5198                 .help = "poll target state; or reconfigure background polling",
5199                 .usage = "['on'|'off']",
5200         },
5201         {
5202                 .name = "wait_halt",
5203                 .handler = handle_wait_halt_command,
5204                 .mode = COMMAND_EXEC,
5205                 .help = "wait up to the specified number of milliseconds "
5206                         "(default 5) for a previously requested halt",
5207                 .usage = "[milliseconds]",
5208         },
5209         {
5210                 .name = "halt",
5211                 .handler = handle_halt_command,
5212                 .mode = COMMAND_EXEC,
5213                 .help = "request target to halt, then wait up to the specified"
5214                         "number of milliseconds (default 5) for it to complete",
5215                 .usage = "[milliseconds]",
5216         },
5217         {
5218                 .name = "resume",
5219                 .handler = handle_resume_command,
5220                 .mode = COMMAND_EXEC,
5221                 .help = "resume target execution from current PC or address",
5222                 .usage = "[address]",
5223         },
5224         {
5225                 .name = "reset",
5226                 .handler = handle_reset_command,
5227                 .mode = COMMAND_EXEC,
5228                 .usage = "[run|halt|init]",
5229                 .help = "Reset all targets into the specified mode."
5230                         "Default reset mode is run, if not given.",
5231         },
5232         {
5233                 .name = "soft_reset_halt",
5234                 .handler = handle_soft_reset_halt_command,
5235                 .mode = COMMAND_EXEC,
5236                 .help = "halt the target and do a soft reset",
5237         },
5238         {
5239                 .name = "step",
5240                 .handler = handle_step_command,
5241                 .mode = COMMAND_EXEC,
5242                 .help = "step one instruction from current PC or address",
5243                 .usage = "[address]",
5244         },
5245         {
5246                 .name = "mdw",
5247                 .handler = handle_md_command,
5248                 .mode = COMMAND_EXEC,
5249                 .help = "display memory words",
5250                 .usage = "['phys'] address [count]",
5251         },
5252         {
5253                 .name = "mdh",
5254                 .handler = handle_md_command,
5255                 .mode = COMMAND_EXEC,
5256                 .help = "display memory half-words",
5257                 .usage = "['phys'] address [count]",
5258         },
5259         {
5260                 .name = "mdb",
5261                 .handler = handle_md_command,
5262                 .mode = COMMAND_EXEC,
5263                 .help = "display memory bytes",
5264                 .usage = "['phys'] address [count]",
5265         },
5266         {
5267                 .name = "mww",
5268                 .handler = handle_mw_command,
5269                 .mode = COMMAND_EXEC,
5270                 .help = "write memory word",
5271                 .usage = "['phys'] address value [count]",
5272         },
5273         {
5274                 .name = "mwh",
5275                 .handler = handle_mw_command,
5276                 .mode = COMMAND_EXEC,
5277                 .help = "write memory half-word",
5278                 .usage = "['phys'] address value [count]",
5279         },
5280         {
5281                 .name = "mwb",
5282                 .handler = handle_mw_command,
5283                 .mode = COMMAND_EXEC,
5284                 .help = "write memory byte",
5285                 .usage = "['phys'] address value [count]",
5286         },
5287         {
5288                 .name = "bp",
5289                 .handler = handle_bp_command,
5290                 .mode = COMMAND_EXEC,
5291                 .help = "list or set hardware or software breakpoint",
5292                 .usage = "[address length ['hw']]",
5293         },
5294         {
5295                 .name = "rbp",
5296                 .handler = handle_rbp_command,
5297                 .mode = COMMAND_EXEC,
5298                 .help = "remove breakpoint",
5299                 .usage = "address",
5300         },
5301         {
5302                 .name = "wp",
5303                 .handler = handle_wp_command,
5304                 .mode = COMMAND_EXEC,
5305                 .help = "list (no params) or create watchpoints",
5306                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5307         },
5308         {
5309                 .name = "rwp",
5310                 .handler = handle_rwp_command,
5311                 .mode = COMMAND_EXEC,
5312                 .help = "remove watchpoint",
5313                 .usage = "address",
5314         },
5315         {
5316                 .name = "load_image",
5317                 .handler = handle_load_image_command,
5318                 .mode = COMMAND_EXEC,
5319                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5320                         "[min_address] [max_length]",
5321         },
5322         {
5323                 .name = "dump_image",
5324                 .handler = handle_dump_image_command,
5325                 .mode = COMMAND_EXEC,
5326                 .usage = "filename address size",
5327         },
5328         {
5329                 .name = "verify_image",
5330                 .handler = handle_verify_image_command,
5331                 .mode = COMMAND_EXEC,
5332                 .usage = "filename [offset [type]]",
5333         },
5334         {
5335                 .name = "test_image",
5336                 .handler = handle_test_image_command,
5337                 .mode = COMMAND_EXEC,
5338                 .usage = "filename [offset [type]]",
5339         },
5340         {
5341                 .name = "mem2array",
5342                 .mode = COMMAND_EXEC,
5343                 .jim_handler = jim_mem2array,
5344                 .help = "read 8/16/32 bit memory and return as a TCL array "
5345                         "for script processing",
5346                 .usage = "arrayname bitwidth address count",
5347         },
5348         {
5349                 .name = "array2mem",
5350                 .mode = COMMAND_EXEC,
5351                 .jim_handler = jim_array2mem,
5352                 .help = "convert a TCL array to memory locations "
5353                         "and write the 8/16/32 bit values",
5354                 .usage = "arrayname bitwidth address count",
5355         },
5356         {
5357                 .name = "reset_nag",
5358                 .handler = handle_target_reset_nag,
5359                 .mode = COMMAND_ANY,
5360                 .help = "Nag after each reset about options that could have been "
5361                                 "enabled to improve performance. ",
5362                 .usage = "['enable'|'disable']",
5363         },
5364         COMMAND_REGISTRATION_DONE
5365 };
5366 static int target_register_user_commands(struct command_context *cmd_ctx)
5367 {
5368         int retval = ERROR_OK;
5369         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5370                 return retval;
5371
5372         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5373                 return retval;
5374
5375
5376         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5377 }