target: add debug_reason_name()
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "breakpoints.h"
40 #include <helper/time_support.h>
41 #include "register.h"
42 #include "trace.h"
43 #include "image.h"
44 #include <jtag/jtag.h>
45
46
47 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
48 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
49
50 /* targets */
51 extern struct target_type arm7tdmi_target;
52 extern struct target_type arm720t_target;
53 extern struct target_type arm9tdmi_target;
54 extern struct target_type arm920t_target;
55 extern struct target_type arm966e_target;
56 extern struct target_type arm926ejs_target;
57 extern struct target_type fa526_target;
58 extern struct target_type feroceon_target;
59 extern struct target_type dragonite_target;
60 extern struct target_type xscale_target;
61 extern struct target_type cortexm3_target;
62 extern struct target_type cortexa8_target;
63 extern struct target_type arm11_target;
64 extern struct target_type mips_m4k_target;
65 extern struct target_type avr_target;
66 extern struct target_type testee_target;
67
68 struct target_type *target_types[] =
69 {
70         &arm7tdmi_target,
71         &arm9tdmi_target,
72         &arm920t_target,
73         &arm720t_target,
74         &arm966e_target,
75         &arm926ejs_target,
76         &fa526_target,
77         &feroceon_target,
78         &dragonite_target,
79         &xscale_target,
80         &cortexm3_target,
81         &cortexa8_target,
82         &arm11_target,
83         &mips_m4k_target,
84         &avr_target,
85         &testee_target,
86         NULL,
87 };
88
89 struct target *all_targets = NULL;
90 struct target_event_callback *target_event_callbacks = NULL;
91 struct target_timer_callback *target_timer_callbacks = NULL;
92
93 const Jim_Nvp nvp_assert[] = {
94         { .name = "assert", NVP_ASSERT },
95         { .name = "deassert", NVP_DEASSERT },
96         { .name = "T", NVP_ASSERT },
97         { .name = "F", NVP_DEASSERT },
98         { .name = "t", NVP_ASSERT },
99         { .name = "f", NVP_DEASSERT },
100         { .name = NULL, .value = -1 }
101 };
102
103 const Jim_Nvp nvp_error_target[] = {
104         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
105         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
106         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
107         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
108         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
109         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
110         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
111         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
112         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
113         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
114         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
115         { .value = -1, .name = NULL }
116 };
117
118 const char *target_strerror_safe(int err)
119 {
120         const Jim_Nvp *n;
121
122         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
123         if (n->name == NULL) {
124                 return "unknown";
125         } else {
126                 return n->name;
127         }
128 }
129
130 static const Jim_Nvp nvp_target_event[] = {
131         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
132         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
133
134         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
135         { .value = TARGET_EVENT_HALTED, .name = "halted" },
136         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
137         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
138         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
139
140         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
141         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
142
143         /* historical name */
144
145         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
146
147         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
148         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
149         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
150         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
151         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
152         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
153         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
154         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
155         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
156         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
157         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
158
159         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
160         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
161
162         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
163         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
164
165         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
166         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
167
168         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
169         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
170
171         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
172         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
173
174         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
175         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
176         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
177
178         { .name = NULL, .value = -1 }
179 };
180
181 const Jim_Nvp nvp_target_state[] = {
182         { .name = "unknown", .value = TARGET_UNKNOWN },
183         { .name = "running", .value = TARGET_RUNNING },
184         { .name = "halted",  .value = TARGET_HALTED },
185         { .name = "reset",   .value = TARGET_RESET },
186         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
187         { .name = NULL, .value = -1 },
188 };
189
190 static const Jim_Nvp nvp_target_debug_reason [] = {
191         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
192         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
193         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
194         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
195         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
196         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
197         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
198         { .name = NULL, .value = -1 },
199 };
200
201 const Jim_Nvp nvp_target_endian[] = {
202         { .name = "big",    .value = TARGET_BIG_ENDIAN },
203         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
204         { .name = "be",     .value = TARGET_BIG_ENDIAN },
205         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
206         { .name = NULL,     .value = -1 },
207 };
208
209 const Jim_Nvp nvp_reset_modes[] = {
210         { .name = "unknown", .value = RESET_UNKNOWN },
211         { .name = "run"    , .value = RESET_RUN },
212         { .name = "halt"   , .value = RESET_HALT },
213         { .name = "init"   , .value = RESET_INIT },
214         { .name = NULL     , .value = -1 },
215 };
216
217 const char *debug_reason_name(struct target *t)
218 {
219         const char *cp;
220
221         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
222                         t->debug_reason)->name;
223         if (!cp) {
224                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
225                 cp = "(*BUG*unknown*BUG*)";
226         }
227         return cp;
228 }
229
230 const char *
231 target_state_name( struct target *t )
232 {
233         const char *cp;
234         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
235         if( !cp ){
236                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
237                 cp = "(*BUG*unknown*BUG*)";
238         }
239         return cp;
240 }
241
242 /* determine the number of the new target */
243 static int new_target_number(void)
244 {
245         struct target *t;
246         int x;
247
248         /* number is 0 based */
249         x = -1;
250         t = all_targets;
251         while (t) {
252                 if (x < t->target_number) {
253                         x = t->target_number;
254                 }
255                 t = t->next;
256         }
257         return x + 1;
258 }
259
260 /* read a uint32_t from a buffer in target memory endianness */
261 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
262 {
263         if (target->endianness == TARGET_LITTLE_ENDIAN)
264                 return le_to_h_u32(buffer);
265         else
266                 return be_to_h_u32(buffer);
267 }
268
269 /* read a uint16_t from a buffer in target memory endianness */
270 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
271 {
272         if (target->endianness == TARGET_LITTLE_ENDIAN)
273                 return le_to_h_u16(buffer);
274         else
275                 return be_to_h_u16(buffer);
276 }
277
278 /* read a uint8_t from a buffer in target memory endianness */
279 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
280 {
281         return *buffer & 0x0ff;
282 }
283
284 /* write a uint32_t to a buffer in target memory endianness */
285 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
286 {
287         if (target->endianness == TARGET_LITTLE_ENDIAN)
288                 h_u32_to_le(buffer, value);
289         else
290                 h_u32_to_be(buffer, value);
291 }
292
293 /* write a uint16_t to a buffer in target memory endianness */
294 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
295 {
296         if (target->endianness == TARGET_LITTLE_ENDIAN)
297                 h_u16_to_le(buffer, value);
298         else
299                 h_u16_to_be(buffer, value);
300 }
301
302 /* write a uint8_t to a buffer in target memory endianness */
303 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
304 {
305         *buffer = value;
306 }
307
308 /* return a pointer to a configured target; id is name or number */
309 struct target *get_target(const char *id)
310 {
311         struct target *target;
312
313         /* try as tcltarget name */
314         for (target = all_targets; target; target = target->next) {
315                 if (target->cmd_name == NULL)
316                         continue;
317                 if (strcmp(id, target->cmd_name) == 0)
318                         return target;
319         }
320
321         /* It's OK to remove this fallback sometime after August 2010 or so */
322
323         /* no match, try as number */
324         unsigned num;
325         if (parse_uint(id, &num) != ERROR_OK)
326                 return NULL;
327
328         for (target = all_targets; target; target = target->next) {
329                 if (target->target_number == (int)num) {
330                         LOG_WARNING("use '%s' as target identifier, not '%u'",
331                                         target->cmd_name, num);
332                         return target;
333                 }
334         }
335
336         return NULL;
337 }
338
339 /* returns a pointer to the n-th configured target */
340 static struct target *get_target_by_num(int num)
341 {
342         struct target *target = all_targets;
343
344         while (target) {
345                 if (target->target_number == num) {
346                         return target;
347                 }
348                 target = target->next;
349         }
350
351         return NULL;
352 }
353
354 struct target* get_current_target(struct command_context *cmd_ctx)
355 {
356         struct target *target = get_target_by_num(cmd_ctx->current_target);
357
358         if (target == NULL)
359         {
360                 LOG_ERROR("BUG: current_target out of bounds");
361                 exit(-1);
362         }
363
364         return target;
365 }
366
367 int target_poll(struct target *target)
368 {
369         int retval;
370
371         /* We can't poll until after examine */
372         if (!target_was_examined(target))
373         {
374                 /* Fail silently lest we pollute the log */
375                 return ERROR_FAIL;
376         }
377
378         retval = target->type->poll(target);
379         if (retval != ERROR_OK)
380                 return retval;
381
382         if (target->halt_issued)
383         {
384                 if (target->state == TARGET_HALTED)
385                 {
386                         target->halt_issued = false;
387                 } else
388                 {
389                         long long t = timeval_ms() - target->halt_issued_time;
390                         if (t>1000)
391                         {
392                                 target->halt_issued = false;
393                                 LOG_INFO("Halt timed out, wake up GDB.");
394                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
395                         }
396                 }
397         }
398
399         return ERROR_OK;
400 }
401
402 int target_halt(struct target *target)
403 {
404         int retval;
405         /* We can't poll until after examine */
406         if (!target_was_examined(target))
407         {
408                 LOG_ERROR("Target not examined yet");
409                 return ERROR_FAIL;
410         }
411
412         retval = target->type->halt(target);
413         if (retval != ERROR_OK)
414                 return retval;
415
416         target->halt_issued = true;
417         target->halt_issued_time = timeval_ms();
418
419         return ERROR_OK;
420 }
421
422 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
423 {
424         int retval;
425
426         /* We can't poll until after examine */
427         if (!target_was_examined(target))
428         {
429                 LOG_ERROR("Target not examined yet");
430                 return ERROR_FAIL;
431         }
432
433         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
434          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
435          * the application.
436          */
437         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
438                 return retval;
439
440         return retval;
441 }
442
443 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
444 {
445         char buf[100];
446         int retval;
447         Jim_Nvp *n;
448         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
449         if (n->name == NULL) {
450                 LOG_ERROR("invalid reset mode");
451                 return ERROR_FAIL;
452         }
453
454         /* disable polling during reset to make reset event scripts
455          * more predictable, i.e. dr/irscan & pathmove in events will
456          * not have JTAG operations injected into the middle of a sequence.
457          */
458         bool save_poll = jtag_poll_get_enabled();
459
460         jtag_poll_set_enabled(false);
461
462         sprintf(buf, "ocd_process_reset %s", n->name);
463         retval = Jim_Eval(cmd_ctx->interp, buf);
464
465         jtag_poll_set_enabled(save_poll);
466
467         if (retval != JIM_OK) {
468                 Jim_PrintErrorMessage(cmd_ctx->interp);
469                 return ERROR_FAIL;
470         }
471
472         /* We want any events to be processed before the prompt */
473         retval = target_call_timer_callbacks_now();
474
475         return retval;
476 }
477
478 static int identity_virt2phys(struct target *target,
479                 uint32_t virtual, uint32_t *physical)
480 {
481         *physical = virtual;
482         return ERROR_OK;
483 }
484
485 static int no_mmu(struct target *target, int *enabled)
486 {
487         *enabled = 0;
488         return ERROR_OK;
489 }
490
491 static int default_examine(struct target *target)
492 {
493         target_set_examined(target);
494         return ERROR_OK;
495 }
496
497 int target_examine_one(struct target *target)
498 {
499         return target->type->examine(target);
500 }
501
502 static int jtag_enable_callback(enum jtag_event event, void *priv)
503 {
504         struct target *target = priv;
505
506         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
507                 return ERROR_OK;
508
509         jtag_unregister_event_callback(jtag_enable_callback, target);
510         return target_examine_one(target);
511 }
512
513
514 /* Targets that correctly implement init + examine, i.e.
515  * no communication with target during init:
516  *
517  * XScale
518  */
519 int target_examine(void)
520 {
521         int retval = ERROR_OK;
522         struct target *target;
523
524         for (target = all_targets; target; target = target->next)
525         {
526                 /* defer examination, but don't skip it */
527                 if (!target->tap->enabled) {
528                         jtag_register_event_callback(jtag_enable_callback,
529                                         target);
530                         continue;
531                 }
532                 if ((retval = target_examine_one(target)) != ERROR_OK)
533                         return retval;
534         }
535         return retval;
536 }
537 const char *target_type_name(struct target *target)
538 {
539         return target->type->name;
540 }
541
542 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
543 {
544         if (!target_was_examined(target))
545         {
546                 LOG_ERROR("Target not examined yet");
547                 return ERROR_FAIL;
548         }
549         return target->type->write_memory_imp(target, address, size, count, buffer);
550 }
551
552 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
553 {
554         if (!target_was_examined(target))
555         {
556                 LOG_ERROR("Target not examined yet");
557                 return ERROR_FAIL;
558         }
559         return target->type->read_memory_imp(target, address, size, count, buffer);
560 }
561
562 static int target_soft_reset_halt_imp(struct target *target)
563 {
564         if (!target_was_examined(target))
565         {
566                 LOG_ERROR("Target not examined yet");
567                 return ERROR_FAIL;
568         }
569         if (!target->type->soft_reset_halt_imp) {
570                 LOG_ERROR("Target %s does not support soft_reset_halt",
571                                 target_name(target));
572                 return ERROR_FAIL;
573         }
574         return target->type->soft_reset_halt_imp(target);
575 }
576
577 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
578 {
579         if (!target_was_examined(target))
580         {
581                 LOG_ERROR("Target not examined yet");
582                 return ERROR_FAIL;
583         }
584         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
585 }
586
587 int target_read_memory(struct target *target,
588                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
589 {
590         return target->type->read_memory(target, address, size, count, buffer);
591 }
592
593 int target_read_phys_memory(struct target *target,
594                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
595 {
596         return target->type->read_phys_memory(target, address, size, count, buffer);
597 }
598
599 int target_write_memory(struct target *target,
600                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
601 {
602         return target->type->write_memory(target, address, size, count, buffer);
603 }
604
605 int target_write_phys_memory(struct target *target,
606                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
607 {
608         return target->type->write_phys_memory(target, address, size, count, buffer);
609 }
610
611 int target_bulk_write_memory(struct target *target,
612                 uint32_t address, uint32_t count, uint8_t *buffer)
613 {
614         return target->type->bulk_write_memory(target, address, count, buffer);
615 }
616
617 int target_add_breakpoint(struct target *target,
618                 struct breakpoint *breakpoint)
619 {
620         if (target->state != TARGET_HALTED) {
621                 LOG_WARNING("target %s is not halted", target->cmd_name);
622                 return ERROR_TARGET_NOT_HALTED;
623         }
624         return target->type->add_breakpoint(target, breakpoint);
625 }
626 int target_remove_breakpoint(struct target *target,
627                 struct breakpoint *breakpoint)
628 {
629         return target->type->remove_breakpoint(target, breakpoint);
630 }
631
632 int target_add_watchpoint(struct target *target,
633                 struct watchpoint *watchpoint)
634 {
635         if (target->state != TARGET_HALTED) {
636                 LOG_WARNING("target %s is not halted", target->cmd_name);
637                 return ERROR_TARGET_NOT_HALTED;
638         }
639         return target->type->add_watchpoint(target, watchpoint);
640 }
641 int target_remove_watchpoint(struct target *target,
642                 struct watchpoint *watchpoint)
643 {
644         return target->type->remove_watchpoint(target, watchpoint);
645 }
646
647 int target_get_gdb_reg_list(struct target *target,
648                 struct reg **reg_list[], int *reg_list_size)
649 {
650         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
651 }
652 int target_step(struct target *target,
653                 int current, uint32_t address, int handle_breakpoints)
654 {
655         return target->type->step(target, current, address, handle_breakpoints);
656 }
657
658
659 int target_run_algorithm(struct target *target,
660                 int num_mem_params, struct mem_param *mem_params,
661                 int num_reg_params, struct reg_param *reg_param,
662                 uint32_t entry_point, uint32_t exit_point,
663                 int timeout_ms, void *arch_info)
664 {
665         return target->type->run_algorithm(target,
666                         num_mem_params, mem_params, num_reg_params, reg_param,
667                         entry_point, exit_point, timeout_ms, arch_info);
668 }
669
670 /**
671  * Reset the @c examined flag for the given target.
672  * Pure paranoia -- targets are zeroed on allocation.
673  */
674 static void target_reset_examined(struct target *target)
675 {
676         target->examined = false;
677 }
678
679 static int
680 err_read_phys_memory(struct target *target, uint32_t address,
681                 uint32_t size, uint32_t count, uint8_t *buffer)
682 {
683         LOG_ERROR("Not implemented: %s", __func__);
684         return ERROR_FAIL;
685 }
686
687 static int
688 err_write_phys_memory(struct target *target, uint32_t address,
689                 uint32_t size, uint32_t count, uint8_t *buffer)
690 {
691         LOG_ERROR("Not implemented: %s", __func__);
692         return ERROR_FAIL;
693 }
694
695 static int handle_target(void *priv);
696
697 static int target_init_one(struct command_context *cmd_ctx,
698                 struct target *target)
699 {
700         target_reset_examined(target);
701
702         struct target_type *type = target->type;
703         if (type->examine == NULL)
704                 type->examine = default_examine;
705
706         int retval = type->init_target(cmd_ctx, target);
707         if (ERROR_OK != retval)
708         {
709                 LOG_ERROR("target '%s' init failed", target_name(target));
710                 return retval;
711         }
712
713         /**
714          * @todo get rid of those *memory_imp() methods, now that all
715          * callers are using target_*_memory() accessors ... and make
716          * sure the "physical" paths handle the same issues.
717          */
718         /* a non-invasive way(in terms of patches) to add some code that
719          * runs before the type->write/read_memory implementation
720          */
721         type->write_memory_imp = target->type->write_memory;
722         type->write_memory = target_write_memory_imp;
723
724         type->read_memory_imp = target->type->read_memory;
725         type->read_memory = target_read_memory_imp;
726
727         type->soft_reset_halt_imp = target->type->soft_reset_halt;
728         type->soft_reset_halt = target_soft_reset_halt_imp;
729
730         type->run_algorithm_imp = target->type->run_algorithm;
731         type->run_algorithm = target_run_algorithm_imp;
732
733         /* Sanity-check MMU support ... stub in what we must, to help
734          * implement it in stages, but warn if we need to do so.
735          */
736         if (type->mmu)
737         {
738                 if (type->write_phys_memory == NULL)
739                 {
740                         LOG_ERROR("type '%s' is missing write_phys_memory",
741                                         type->name);
742                         type->write_phys_memory = err_write_phys_memory;
743                 }
744                 if (type->read_phys_memory == NULL)
745                 {
746                         LOG_ERROR("type '%s' is missing read_phys_memory",
747                                         type->name);
748                         type->read_phys_memory = err_read_phys_memory;
749                 }
750                 if (type->virt2phys == NULL)
751                 {
752                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
753                         type->virt2phys = identity_virt2phys;
754                 }
755         }
756         else
757         {
758                 /* Make sure no-MMU targets all behave the same:  make no
759                  * distinction between physical and virtual addresses, and
760                  * ensure that virt2phys() is always an identity mapping.
761                  */
762                 if (type->write_phys_memory || type->read_phys_memory
763                                 || type->virt2phys)
764                 {
765                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
766                 }
767
768                 type->mmu = no_mmu;
769                 type->write_phys_memory = type->write_memory;
770                 type->read_phys_memory = type->read_memory;
771                 type->virt2phys = identity_virt2phys;
772         }
773         return ERROR_OK;
774 }
775
776 int target_init(struct command_context *cmd_ctx)
777 {
778         struct target *target;
779         int retval;
780
781         for (target = all_targets; target; target = target->next)
782         {
783                 retval = target_init_one(cmd_ctx, target);
784                 if (ERROR_OK != retval)
785                         return retval;
786         }
787
788         if (!all_targets)
789                 return ERROR_OK;
790
791         retval = target_register_user_commands(cmd_ctx);
792         if (ERROR_OK != retval)
793                 return retval;
794
795         retval = target_register_timer_callback(&handle_target,
796                         100, 1, cmd_ctx->interp);
797         if (ERROR_OK != retval)
798                 return retval;
799
800         return ERROR_OK;
801 }
802
803 COMMAND_HANDLER(handle_target_init_command)
804 {
805         if (CMD_ARGC != 0)
806                 return ERROR_COMMAND_SYNTAX_ERROR;
807
808         static bool target_initialized = false;
809         if (target_initialized)
810         {
811                 LOG_INFO("'target init' has already been called");
812                 return ERROR_OK;
813         }
814         target_initialized = true;
815
816         LOG_DEBUG("Initializing targets...");
817         return target_init(CMD_CTX);
818 }
819
820 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
821 {
822         struct target_event_callback **callbacks_p = &target_event_callbacks;
823
824         if (callback == NULL)
825         {
826                 return ERROR_INVALID_ARGUMENTS;
827         }
828
829         if (*callbacks_p)
830         {
831                 while ((*callbacks_p)->next)
832                         callbacks_p = &((*callbacks_p)->next);
833                 callbacks_p = &((*callbacks_p)->next);
834         }
835
836         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
837         (*callbacks_p)->callback = callback;
838         (*callbacks_p)->priv = priv;
839         (*callbacks_p)->next = NULL;
840
841         return ERROR_OK;
842 }
843
844 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
845 {
846         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
847         struct timeval now;
848
849         if (callback == NULL)
850         {
851                 return ERROR_INVALID_ARGUMENTS;
852         }
853
854         if (*callbacks_p)
855         {
856                 while ((*callbacks_p)->next)
857                         callbacks_p = &((*callbacks_p)->next);
858                 callbacks_p = &((*callbacks_p)->next);
859         }
860
861         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
862         (*callbacks_p)->callback = callback;
863         (*callbacks_p)->periodic = periodic;
864         (*callbacks_p)->time_ms = time_ms;
865
866         gettimeofday(&now, NULL);
867         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
868         time_ms -= (time_ms % 1000);
869         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
870         if ((*callbacks_p)->when.tv_usec > 1000000)
871         {
872                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
873                 (*callbacks_p)->when.tv_sec += 1;
874         }
875
876         (*callbacks_p)->priv = priv;
877         (*callbacks_p)->next = NULL;
878
879         return ERROR_OK;
880 }
881
882 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
883 {
884         struct target_event_callback **p = &target_event_callbacks;
885         struct target_event_callback *c = target_event_callbacks;
886
887         if (callback == NULL)
888         {
889                 return ERROR_INVALID_ARGUMENTS;
890         }
891
892         while (c)
893         {
894                 struct target_event_callback *next = c->next;
895                 if ((c->callback == callback) && (c->priv == priv))
896                 {
897                         *p = next;
898                         free(c);
899                         return ERROR_OK;
900                 }
901                 else
902                         p = &(c->next);
903                 c = next;
904         }
905
906         return ERROR_OK;
907 }
908
909 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
910 {
911         struct target_timer_callback **p = &target_timer_callbacks;
912         struct target_timer_callback *c = target_timer_callbacks;
913
914         if (callback == NULL)
915         {
916                 return ERROR_INVALID_ARGUMENTS;
917         }
918
919         while (c)
920         {
921                 struct target_timer_callback *next = c->next;
922                 if ((c->callback == callback) && (c->priv == priv))
923                 {
924                         *p = next;
925                         free(c);
926                         return ERROR_OK;
927                 }
928                 else
929                         p = &(c->next);
930                 c = next;
931         }
932
933         return ERROR_OK;
934 }
935
936 int target_call_event_callbacks(struct target *target, enum target_event event)
937 {
938         struct target_event_callback *callback = target_event_callbacks;
939         struct target_event_callback *next_callback;
940
941         if (event == TARGET_EVENT_HALTED)
942         {
943                 /* execute early halted first */
944                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
945         }
946
947         LOG_DEBUG("target event %i (%s)",
948                           event,
949                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
950
951         target_handle_event(target, event);
952
953         while (callback)
954         {
955                 next_callback = callback->next;
956                 callback->callback(target, event, callback->priv);
957                 callback = next_callback;
958         }
959
960         return ERROR_OK;
961 }
962
963 static int target_timer_callback_periodic_restart(
964                 struct target_timer_callback *cb, struct timeval *now)
965 {
966         int time_ms = cb->time_ms;
967         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
968         time_ms -= (time_ms % 1000);
969         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
970         if (cb->when.tv_usec > 1000000)
971         {
972                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
973                 cb->when.tv_sec += 1;
974         }
975         return ERROR_OK;
976 }
977
978 static int target_call_timer_callback(struct target_timer_callback *cb,
979                 struct timeval *now)
980 {
981         cb->callback(cb->priv);
982
983         if (cb->periodic)
984                 return target_timer_callback_periodic_restart(cb, now);
985
986         return target_unregister_timer_callback(cb->callback, cb->priv);
987 }
988
989 static int target_call_timer_callbacks_check_time(int checktime)
990 {
991         keep_alive();
992
993         struct timeval now;
994         gettimeofday(&now, NULL);
995
996         struct target_timer_callback *callback = target_timer_callbacks;
997         while (callback)
998         {
999                 // cleaning up may unregister and free this callback
1000                 struct target_timer_callback *next_callback = callback->next;
1001
1002                 bool call_it = callback->callback &&
1003                         ((!checktime && callback->periodic) ||
1004                           now.tv_sec > callback->when.tv_sec ||
1005                          (now.tv_sec == callback->when.tv_sec &&
1006                           now.tv_usec >= callback->when.tv_usec));
1007
1008                 if (call_it)
1009                 {
1010                         int retval = target_call_timer_callback(callback, &now);
1011                         if (retval != ERROR_OK)
1012                                 return retval;
1013                 }
1014
1015                 callback = next_callback;
1016         }
1017
1018         return ERROR_OK;
1019 }
1020
1021 int target_call_timer_callbacks(void)
1022 {
1023         return target_call_timer_callbacks_check_time(1);
1024 }
1025
1026 /* invoke periodic callbacks immediately */
1027 int target_call_timer_callbacks_now(void)
1028 {
1029         return target_call_timer_callbacks_check_time(0);
1030 }
1031
1032 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1033 {
1034         struct working_area *c = target->working_areas;
1035         struct working_area *new_wa = NULL;
1036
1037         /* Reevaluate working area address based on MMU state*/
1038         if (target->working_areas == NULL)
1039         {
1040                 int retval;
1041                 int enabled;
1042
1043                 retval = target->type->mmu(target, &enabled);
1044                 if (retval != ERROR_OK)
1045                 {
1046                         return retval;
1047                 }
1048
1049                 if (!enabled) {
1050                         if (target->working_area_phys_spec) {
1051                                 LOG_DEBUG("MMU disabled, using physical "
1052                                         "address for working memory 0x%08x",
1053                                         (unsigned)target->working_area_phys);
1054                                 target->working_area = target->working_area_phys;
1055                         } else {
1056                                 LOG_ERROR("No working memory available. "
1057                                         "Specify -work-area-phys to target.");
1058                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1059                         }
1060                 } else {
1061                         if (target->working_area_virt_spec) {
1062                                 LOG_DEBUG("MMU enabled, using virtual "
1063                                         "address for working memory 0x%08x",
1064                                         (unsigned)target->working_area_virt);
1065                                 target->working_area = target->working_area_virt;
1066                         } else {
1067                                 LOG_ERROR("No working memory available. "
1068                                         "Specify -work-area-virt to target.");
1069                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1070                         }
1071                 }
1072         }
1073
1074         /* only allocate multiples of 4 byte */
1075         if (size % 4)
1076         {
1077                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1078                 size = (size + 3) & (~3);
1079         }
1080
1081         /* see if there's already a matching working area */
1082         while (c)
1083         {
1084                 if ((c->free) && (c->size == size))
1085                 {
1086                         new_wa = c;
1087                         break;
1088                 }
1089                 c = c->next;
1090         }
1091
1092         /* if not, allocate a new one */
1093         if (!new_wa)
1094         {
1095                 struct working_area **p = &target->working_areas;
1096                 uint32_t first_free = target->working_area;
1097                 uint32_t free_size = target->working_area_size;
1098
1099                 c = target->working_areas;
1100                 while (c)
1101                 {
1102                         first_free += c->size;
1103                         free_size -= c->size;
1104                         p = &c->next;
1105                         c = c->next;
1106                 }
1107
1108                 if (free_size < size)
1109                 {
1110                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1111                                     (unsigned)(size), (unsigned)(free_size));
1112                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1113                 }
1114
1115                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1116
1117                 new_wa = malloc(sizeof(struct working_area));
1118                 new_wa->next = NULL;
1119                 new_wa->size = size;
1120                 new_wa->address = first_free;
1121
1122                 if (target->backup_working_area)
1123                 {
1124                         int retval;
1125                         new_wa->backup = malloc(new_wa->size);
1126                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1127                         {
1128                                 free(new_wa->backup);
1129                                 free(new_wa);
1130                                 return retval;
1131                         }
1132                 }
1133                 else
1134                 {
1135                         new_wa->backup = NULL;
1136                 }
1137
1138                 /* put new entry in list */
1139                 *p = new_wa;
1140         }
1141
1142         /* mark as used, and return the new (reused) area */
1143         new_wa->free = 0;
1144         *area = new_wa;
1145
1146         /* user pointer */
1147         new_wa->user = area;
1148
1149         return ERROR_OK;
1150 }
1151
1152 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1153 {
1154         if (area->free)
1155                 return ERROR_OK;
1156
1157         if (restore && target->backup_working_area)
1158         {
1159                 int retval;
1160                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1161                         return retval;
1162         }
1163
1164         area->free = 1;
1165
1166         /* mark user pointer invalid */
1167         *area->user = NULL;
1168         area->user = NULL;
1169
1170         return ERROR_OK;
1171 }
1172
1173 int target_free_working_area(struct target *target, struct working_area *area)
1174 {
1175         return target_free_working_area_restore(target, area, 1);
1176 }
1177
1178 /* free resources and restore memory, if restoring memory fails,
1179  * free up resources anyway
1180  */
1181 void target_free_all_working_areas_restore(struct target *target, int restore)
1182 {
1183         struct working_area *c = target->working_areas;
1184
1185         while (c)
1186         {
1187                 struct working_area *next = c->next;
1188                 target_free_working_area_restore(target, c, restore);
1189
1190                 if (c->backup)
1191                         free(c->backup);
1192
1193                 free(c);
1194
1195                 c = next;
1196         }
1197
1198         target->working_areas = NULL;
1199 }
1200
1201 void target_free_all_working_areas(struct target *target)
1202 {
1203         target_free_all_working_areas_restore(target, 1);
1204 }
1205
1206 int target_arch_state(struct target *target)
1207 {
1208         int retval;
1209         if (target == NULL)
1210         {
1211                 LOG_USER("No target has been configured");
1212                 return ERROR_OK;
1213         }
1214
1215         LOG_USER("target state: %s", target_state_name( target ));
1216
1217         if (target->state != TARGET_HALTED)
1218                 return ERROR_OK;
1219
1220         retval = target->type->arch_state(target);
1221         return retval;
1222 }
1223
1224 /* Single aligned words are guaranteed to use 16 or 32 bit access
1225  * mode respectively, otherwise data is handled as quickly as
1226  * possible
1227  */
1228 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1229 {
1230         int retval;
1231         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1232                   (int)size, (unsigned)address);
1233
1234         if (!target_was_examined(target))
1235         {
1236                 LOG_ERROR("Target not examined yet");
1237                 return ERROR_FAIL;
1238         }
1239
1240         if (size == 0) {
1241                 return ERROR_OK;
1242         }
1243
1244         if ((address + size - 1) < address)
1245         {
1246                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1247                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1248                                   (unsigned)address,
1249                                   (unsigned)size);
1250                 return ERROR_FAIL;
1251         }
1252
1253         if (((address % 2) == 0) && (size == 2))
1254         {
1255                 return target_write_memory(target, address, 2, 1, buffer);
1256         }
1257
1258         /* handle unaligned head bytes */
1259         if (address % 4)
1260         {
1261                 uint32_t unaligned = 4 - (address % 4);
1262
1263                 if (unaligned > size)
1264                         unaligned = size;
1265
1266                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1267                         return retval;
1268
1269                 buffer += unaligned;
1270                 address += unaligned;
1271                 size -= unaligned;
1272         }
1273
1274         /* handle aligned words */
1275         if (size >= 4)
1276         {
1277                 int aligned = size - (size % 4);
1278
1279                 /* use bulk writes above a certain limit. This may have to be changed */
1280                 if (aligned > 128)
1281                 {
1282                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1283                                 return retval;
1284                 }
1285                 else
1286                 {
1287                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1288                                 return retval;
1289                 }
1290
1291                 buffer += aligned;
1292                 address += aligned;
1293                 size -= aligned;
1294         }
1295
1296         /* handle tail writes of less than 4 bytes */
1297         if (size > 0)
1298         {
1299                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1300                         return retval;
1301         }
1302
1303         return ERROR_OK;
1304 }
1305
1306 /* Single aligned words are guaranteed to use 16 or 32 bit access
1307  * mode respectively, otherwise data is handled as quickly as
1308  * possible
1309  */
1310 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1311 {
1312         int retval;
1313         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1314                           (int)size, (unsigned)address);
1315
1316         if (!target_was_examined(target))
1317         {
1318                 LOG_ERROR("Target not examined yet");
1319                 return ERROR_FAIL;
1320         }
1321
1322         if (size == 0) {
1323                 return ERROR_OK;
1324         }
1325
1326         if ((address + size - 1) < address)
1327         {
1328                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1329                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1330                                   address,
1331                                   size);
1332                 return ERROR_FAIL;
1333         }
1334
1335         if (((address % 2) == 0) && (size == 2))
1336         {
1337                 return target_read_memory(target, address, 2, 1, buffer);
1338         }
1339
1340         /* handle unaligned head bytes */
1341         if (address % 4)
1342         {
1343                 uint32_t unaligned = 4 - (address % 4);
1344
1345                 if (unaligned > size)
1346                         unaligned = size;
1347
1348                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1349                         return retval;
1350
1351                 buffer += unaligned;
1352                 address += unaligned;
1353                 size -= unaligned;
1354         }
1355
1356         /* handle aligned words */
1357         if (size >= 4)
1358         {
1359                 int aligned = size - (size % 4);
1360
1361                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1362                         return retval;
1363
1364                 buffer += aligned;
1365                 address += aligned;
1366                 size -= aligned;
1367         }
1368
1369         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1370         if(size >=2)
1371         {
1372                 int aligned = size - (size%2);
1373                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1374                 if (retval != ERROR_OK)
1375                         return retval;
1376
1377                 buffer += aligned;
1378                 address += aligned;
1379                 size -= aligned;
1380         }
1381         /* handle tail writes of less than 4 bytes */
1382         if (size > 0)
1383         {
1384                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1385                         return retval;
1386         }
1387
1388         return ERROR_OK;
1389 }
1390
1391 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1392 {
1393         uint8_t *buffer;
1394         int retval;
1395         uint32_t i;
1396         uint32_t checksum = 0;
1397         if (!target_was_examined(target))
1398         {
1399                 LOG_ERROR("Target not examined yet");
1400                 return ERROR_FAIL;
1401         }
1402
1403         if ((retval = target->type->checksum_memory(target, address,
1404                 size, &checksum)) != ERROR_OK)
1405         {
1406                 buffer = malloc(size);
1407                 if (buffer == NULL)
1408                 {
1409                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1410                         return ERROR_INVALID_ARGUMENTS;
1411                 }
1412                 retval = target_read_buffer(target, address, size, buffer);
1413                 if (retval != ERROR_OK)
1414                 {
1415                         free(buffer);
1416                         return retval;
1417                 }
1418
1419                 /* convert to target endianess */
1420                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1421                 {
1422                         uint32_t target_data;
1423                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1424                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1425                 }
1426
1427                 retval = image_calculate_checksum(buffer, size, &checksum);
1428                 free(buffer);
1429         }
1430
1431         *crc = checksum;
1432
1433         return retval;
1434 }
1435
1436 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1437 {
1438         int retval;
1439         if (!target_was_examined(target))
1440         {
1441                 LOG_ERROR("Target not examined yet");
1442                 return ERROR_FAIL;
1443         }
1444
1445         if (target->type->blank_check_memory == 0)
1446                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1447
1448         retval = target->type->blank_check_memory(target, address, size, blank);
1449
1450         return retval;
1451 }
1452
1453 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1454 {
1455         uint8_t value_buf[4];
1456         if (!target_was_examined(target))
1457         {
1458                 LOG_ERROR("Target not examined yet");
1459                 return ERROR_FAIL;
1460         }
1461
1462         int retval = target_read_memory(target, address, 4, 1, value_buf);
1463
1464         if (retval == ERROR_OK)
1465         {
1466                 *value = target_buffer_get_u32(target, value_buf);
1467                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1468                                   address,
1469                                   *value);
1470         }
1471         else
1472         {
1473                 *value = 0x0;
1474                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1475                                   address);
1476         }
1477
1478         return retval;
1479 }
1480
1481 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1482 {
1483         uint8_t value_buf[2];
1484         if (!target_was_examined(target))
1485         {
1486                 LOG_ERROR("Target not examined yet");
1487                 return ERROR_FAIL;
1488         }
1489
1490         int retval = target_read_memory(target, address, 2, 1, value_buf);
1491
1492         if (retval == ERROR_OK)
1493         {
1494                 *value = target_buffer_get_u16(target, value_buf);
1495                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1496                                   address,
1497                                   *value);
1498         }
1499         else
1500         {
1501                 *value = 0x0;
1502                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1503                                   address);
1504         }
1505
1506         return retval;
1507 }
1508
1509 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1510 {
1511         int retval = target_read_memory(target, address, 1, 1, value);
1512         if (!target_was_examined(target))
1513         {
1514                 LOG_ERROR("Target not examined yet");
1515                 return ERROR_FAIL;
1516         }
1517
1518         if (retval == ERROR_OK)
1519         {
1520                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1521                                   address,
1522                                   *value);
1523         }
1524         else
1525         {
1526                 *value = 0x0;
1527                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1528                                   address);
1529         }
1530
1531         return retval;
1532 }
1533
1534 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1535 {
1536         int retval;
1537         uint8_t value_buf[4];
1538         if (!target_was_examined(target))
1539         {
1540                 LOG_ERROR("Target not examined yet");
1541                 return ERROR_FAIL;
1542         }
1543
1544         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1545                           address,
1546                           value);
1547
1548         target_buffer_set_u32(target, value_buf, value);
1549         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1550         {
1551                 LOG_DEBUG("failed: %i", retval);
1552         }
1553
1554         return retval;
1555 }
1556
1557 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1558 {
1559         int retval;
1560         uint8_t value_buf[2];
1561         if (!target_was_examined(target))
1562         {
1563                 LOG_ERROR("Target not examined yet");
1564                 return ERROR_FAIL;
1565         }
1566
1567         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1568                           address,
1569                           value);
1570
1571         target_buffer_set_u16(target, value_buf, value);
1572         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1573         {
1574                 LOG_DEBUG("failed: %i", retval);
1575         }
1576
1577         return retval;
1578 }
1579
1580 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1581 {
1582         int retval;
1583         if (!target_was_examined(target))
1584         {
1585                 LOG_ERROR("Target not examined yet");
1586                 return ERROR_FAIL;
1587         }
1588
1589         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1590                           address, value);
1591
1592         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1593         {
1594                 LOG_DEBUG("failed: %i", retval);
1595         }
1596
1597         return retval;
1598 }
1599
1600 COMMAND_HANDLER(handle_targets_command)
1601 {
1602         struct target *target = all_targets;
1603
1604         if (CMD_ARGC == 1)
1605         {
1606                 target = get_target(CMD_ARGV[0]);
1607                 if (target == NULL) {
1608                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1609                         goto DumpTargets;
1610                 }
1611                 if (!target->tap->enabled) {
1612                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1613                                         "can't be the current target\n",
1614                                         target->tap->dotted_name);
1615                         return ERROR_FAIL;
1616                 }
1617
1618                 CMD_CTX->current_target = target->target_number;
1619                 return ERROR_OK;
1620         }
1621 DumpTargets:
1622
1623         target = all_targets;
1624         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1625         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1626         while (target)
1627         {
1628                 const char *state;
1629                 char marker = ' ';
1630
1631                 if (target->tap->enabled)
1632                         state = target_state_name( target );
1633                 else
1634                         state = "tap-disabled";
1635
1636                 if (CMD_CTX->current_target == target->target_number)
1637                         marker = '*';
1638
1639                 /* keep columns lined up to match the headers above */
1640                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1641                                           target->target_number,
1642                                           marker,
1643                                           target_name(target),
1644                                           target_type_name(target),
1645                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1646                                                                 target->endianness)->name,
1647                                           target->tap->dotted_name,
1648                                           state);
1649                 target = target->next;
1650         }
1651
1652         return ERROR_OK;
1653 }
1654
1655 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1656
1657 static int powerDropout;
1658 static int srstAsserted;
1659
1660 static int runPowerRestore;
1661 static int runPowerDropout;
1662 static int runSrstAsserted;
1663 static int runSrstDeasserted;
1664
1665 static int sense_handler(void)
1666 {
1667         static int prevSrstAsserted = 0;
1668         static int prevPowerdropout = 0;
1669
1670         int retval;
1671         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1672                 return retval;
1673
1674         int powerRestored;
1675         powerRestored = prevPowerdropout && !powerDropout;
1676         if (powerRestored)
1677         {
1678                 runPowerRestore = 1;
1679         }
1680
1681         long long current = timeval_ms();
1682         static long long lastPower = 0;
1683         int waitMore = lastPower + 2000 > current;
1684         if (powerDropout && !waitMore)
1685         {
1686                 runPowerDropout = 1;
1687                 lastPower = current;
1688         }
1689
1690         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1691                 return retval;
1692
1693         int srstDeasserted;
1694         srstDeasserted = prevSrstAsserted && !srstAsserted;
1695
1696         static long long lastSrst = 0;
1697         waitMore = lastSrst + 2000 > current;
1698         if (srstDeasserted && !waitMore)
1699         {
1700                 runSrstDeasserted = 1;
1701                 lastSrst = current;
1702         }
1703
1704         if (!prevSrstAsserted && srstAsserted)
1705         {
1706                 runSrstAsserted = 1;
1707         }
1708
1709         prevSrstAsserted = srstAsserted;
1710         prevPowerdropout = powerDropout;
1711
1712         if (srstDeasserted || powerRestored)
1713         {
1714                 /* Other than logging the event we can't do anything here.
1715                  * Issuing a reset is a particularly bad idea as we might
1716                  * be inside a reset already.
1717                  */
1718         }
1719
1720         return ERROR_OK;
1721 }
1722
1723 static void target_call_event_callbacks_all(enum target_event e) {
1724         struct target *target;
1725         target = all_targets;
1726         while (target) {
1727                 target_call_event_callbacks(target, e);
1728                 target = target->next;
1729         }
1730 }
1731
1732 /* process target state changes */
1733 static int handle_target(void *priv)
1734 {
1735         Jim_Interp *interp = (Jim_Interp *)priv;
1736         int retval = ERROR_OK;
1737
1738         /* we do not want to recurse here... */
1739         static int recursive = 0;
1740         if (! recursive)
1741         {
1742                 recursive = 1;
1743                 sense_handler();
1744                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1745                  * We need to avoid an infinite loop/recursion here and we do that by
1746                  * clearing the flags after running these events.
1747                  */
1748                 int did_something = 0;
1749                 if (runSrstAsserted)
1750                 {
1751                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1752                         Jim_Eval(interp, "srst_asserted");
1753                         did_something = 1;
1754                 }
1755                 if (runSrstDeasserted)
1756                 {
1757                         Jim_Eval(interp, "srst_deasserted");
1758                         did_something = 1;
1759                 }
1760                 if (runPowerDropout)
1761                 {
1762                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1763                         Jim_Eval(interp, "power_dropout");
1764                         did_something = 1;
1765                 }
1766                 if (runPowerRestore)
1767                 {
1768                         Jim_Eval(interp, "power_restore");
1769                         did_something = 1;
1770                 }
1771
1772                 if (did_something)
1773                 {
1774                         /* clear detect flags */
1775                         sense_handler();
1776                 }
1777
1778                 /* clear action flags */
1779
1780                 runSrstAsserted = 0;
1781                 runSrstDeasserted = 0;
1782                 runPowerRestore = 0;
1783                 runPowerDropout = 0;
1784
1785                 recursive = 0;
1786         }
1787
1788         /* Poll targets for state changes unless that's globally disabled.
1789          * Skip targets that are currently disabled.
1790          */
1791         for (struct target *target = all_targets;
1792                         is_jtag_poll_safe() && target;
1793                         target = target->next)
1794         {
1795                 if (!target->tap->enabled)
1796                         continue;
1797
1798                 /* only poll target if we've got power and srst isn't asserted */
1799                 if (!powerDropout && !srstAsserted)
1800                 {
1801                         /* polling may fail silently until the target has been examined */
1802                         if ((retval = target_poll(target)) != ERROR_OK)
1803                         {
1804                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1805                                 return retval;
1806                         }
1807                 }
1808         }
1809
1810         return retval;
1811 }
1812
1813 COMMAND_HANDLER(handle_reg_command)
1814 {
1815         struct target *target;
1816         struct reg *reg = NULL;
1817         unsigned count = 0;
1818         char *value;
1819
1820         LOG_DEBUG("-");
1821
1822         target = get_current_target(CMD_CTX);
1823
1824         /* list all available registers for the current target */
1825         if (CMD_ARGC == 0)
1826         {
1827                 struct reg_cache *cache = target->reg_cache;
1828
1829                 count = 0;
1830                 while (cache)
1831                 {
1832                         unsigned i;
1833
1834                         command_print(CMD_CTX, "===== %s", cache->name);
1835
1836                         for (i = 0, reg = cache->reg_list;
1837                                         i < cache->num_regs;
1838                                         i++, reg++, count++)
1839                         {
1840                                 /* only print cached values if they are valid */
1841                                 if (reg->valid) {
1842                                         value = buf_to_str(reg->value,
1843                                                         reg->size, 16);
1844                                         command_print(CMD_CTX,
1845                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1846                                                         count, reg->name,
1847                                                         reg->size, value,
1848                                                         reg->dirty
1849                                                                 ? " (dirty)"
1850                                                                 : "");
1851                                         free(value);
1852                                 } else {
1853                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1854                                                           count, reg->name,
1855                                                           reg->size) ;
1856                                 }
1857                         }
1858                         cache = cache->next;
1859                 }
1860
1861                 return ERROR_OK;
1862         }
1863
1864         /* access a single register by its ordinal number */
1865         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1866         {
1867                 unsigned num;
1868                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1869
1870                 struct reg_cache *cache = target->reg_cache;
1871                 count = 0;
1872                 while (cache)
1873                 {
1874                         unsigned i;
1875                         for (i = 0; i < cache->num_regs; i++)
1876                         {
1877                                 if (count++ == num)
1878                                 {
1879                                         reg = &cache->reg_list[i];
1880                                         break;
1881                                 }
1882                         }
1883                         if (reg)
1884                                 break;
1885                         cache = cache->next;
1886                 }
1887
1888                 if (!reg)
1889                 {
1890                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1891                         return ERROR_OK;
1892                 }
1893         } else /* access a single register by its name */
1894         {
1895                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1896
1897                 if (!reg)
1898                 {
1899                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1900                         return ERROR_OK;
1901                 }
1902         }
1903
1904         /* display a register */
1905         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1906         {
1907                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1908                         reg->valid = 0;
1909
1910                 if (reg->valid == 0)
1911                 {
1912                         reg->type->get(reg);
1913                 }
1914                 value = buf_to_str(reg->value, reg->size, 16);
1915                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1916                 free(value);
1917                 return ERROR_OK;
1918         }
1919
1920         /* set register value */
1921         if (CMD_ARGC == 2)
1922         {
1923                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
1924                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
1925
1926                 reg->type->set(reg, buf);
1927
1928                 value = buf_to_str(reg->value, reg->size, 16);
1929                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1930                 free(value);
1931
1932                 free(buf);
1933
1934                 return ERROR_OK;
1935         }
1936
1937         command_print(CMD_CTX, "usage: reg <#|name> [value]");
1938
1939         return ERROR_OK;
1940 }
1941
1942 COMMAND_HANDLER(handle_poll_command)
1943 {
1944         int retval = ERROR_OK;
1945         struct target *target = get_current_target(CMD_CTX);
1946
1947         if (CMD_ARGC == 0)
1948         {
1949                 command_print(CMD_CTX, "background polling: %s",
1950                                 jtag_poll_get_enabled() ? "on" : "off");
1951                 command_print(CMD_CTX, "TAP: %s (%s)",
1952                                 target->tap->dotted_name,
1953                                 target->tap->enabled ? "enabled" : "disabled");
1954                 if (!target->tap->enabled)
1955                         return ERROR_OK;
1956                 if ((retval = target_poll(target)) != ERROR_OK)
1957                         return retval;
1958                 if ((retval = target_arch_state(target)) != ERROR_OK)
1959                         return retval;
1960         }
1961         else if (CMD_ARGC == 1)
1962         {
1963                 bool enable;
1964                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
1965                 jtag_poll_set_enabled(enable);
1966         }
1967         else
1968         {
1969                 return ERROR_COMMAND_SYNTAX_ERROR;
1970         }
1971
1972         return retval;
1973 }
1974
1975 COMMAND_HANDLER(handle_wait_halt_command)
1976 {
1977         if (CMD_ARGC > 1)
1978                 return ERROR_COMMAND_SYNTAX_ERROR;
1979
1980         unsigned ms = 5000;
1981         if (1 == CMD_ARGC)
1982         {
1983                 int retval = parse_uint(CMD_ARGV[0], &ms);
1984                 if (ERROR_OK != retval)
1985                 {
1986                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
1987                         return ERROR_COMMAND_SYNTAX_ERROR;
1988                 }
1989                 // convert seconds (given) to milliseconds (needed)
1990                 ms *= 1000;
1991         }
1992
1993         struct target *target = get_current_target(CMD_CTX);
1994         return target_wait_state(target, TARGET_HALTED, ms);
1995 }
1996
1997 /* wait for target state to change. The trick here is to have a low
1998  * latency for short waits and not to suck up all the CPU time
1999  * on longer waits.
2000  *
2001  * After 500ms, keep_alive() is invoked
2002  */
2003 int target_wait_state(struct target *target, enum target_state state, int ms)
2004 {
2005         int retval;
2006         long long then = 0, cur;
2007         int once = 1;
2008
2009         for (;;)
2010         {
2011                 if ((retval = target_poll(target)) != ERROR_OK)
2012                         return retval;
2013                 if (target->state == state)
2014                 {
2015                         break;
2016                 }
2017                 cur = timeval_ms();
2018                 if (once)
2019                 {
2020                         once = 0;
2021                         then = timeval_ms();
2022                         LOG_DEBUG("waiting for target %s...",
2023                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2024                 }
2025
2026                 if (cur-then > 500)
2027                 {
2028                         keep_alive();
2029                 }
2030
2031                 if ((cur-then) > ms)
2032                 {
2033                         LOG_ERROR("timed out while waiting for target %s",
2034                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2035                         return ERROR_FAIL;
2036                 }
2037         }
2038
2039         return ERROR_OK;
2040 }
2041
2042 COMMAND_HANDLER(handle_halt_command)
2043 {
2044         LOG_DEBUG("-");
2045
2046         struct target *target = get_current_target(CMD_CTX);
2047         int retval = target_halt(target);
2048         if (ERROR_OK != retval)
2049                 return retval;
2050
2051         if (CMD_ARGC == 1)
2052         {
2053                 unsigned wait;
2054                 retval = parse_uint(CMD_ARGV[0], &wait);
2055                 if (ERROR_OK != retval)
2056                         return ERROR_COMMAND_SYNTAX_ERROR;
2057                 if (!wait)
2058                         return ERROR_OK;
2059         }
2060
2061         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2062 }
2063
2064 COMMAND_HANDLER(handle_soft_reset_halt_command)
2065 {
2066         struct target *target = get_current_target(CMD_CTX);
2067
2068         LOG_USER("requesting target halt and executing a soft reset");
2069
2070         target->type->soft_reset_halt(target);
2071
2072         return ERROR_OK;
2073 }
2074
2075 COMMAND_HANDLER(handle_reset_command)
2076 {
2077         if (CMD_ARGC > 1)
2078                 return ERROR_COMMAND_SYNTAX_ERROR;
2079
2080         enum target_reset_mode reset_mode = RESET_RUN;
2081         if (CMD_ARGC == 1)
2082         {
2083                 const Jim_Nvp *n;
2084                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2085                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2086                         return ERROR_COMMAND_SYNTAX_ERROR;
2087                 }
2088                 reset_mode = n->value;
2089         }
2090
2091         /* reset *all* targets */
2092         return target_process_reset(CMD_CTX, reset_mode);
2093 }
2094
2095
2096 COMMAND_HANDLER(handle_resume_command)
2097 {
2098         int current = 1;
2099         if (CMD_ARGC > 1)
2100                 return ERROR_COMMAND_SYNTAX_ERROR;
2101
2102         struct target *target = get_current_target(CMD_CTX);
2103         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2104
2105         /* with no CMD_ARGV, resume from current pc, addr = 0,
2106          * with one arguments, addr = CMD_ARGV[0],
2107          * handle breakpoints, not debugging */
2108         uint32_t addr = 0;
2109         if (CMD_ARGC == 1)
2110         {
2111                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2112                 current = 0;
2113         }
2114
2115         return target_resume(target, current, addr, 1, 0);
2116 }
2117
2118 COMMAND_HANDLER(handle_step_command)
2119 {
2120         if (CMD_ARGC > 1)
2121                 return ERROR_COMMAND_SYNTAX_ERROR;
2122
2123         LOG_DEBUG("-");
2124
2125         /* with no CMD_ARGV, step from current pc, addr = 0,
2126          * with one argument addr = CMD_ARGV[0],
2127          * handle breakpoints, debugging */
2128         uint32_t addr = 0;
2129         int current_pc = 1;
2130         if (CMD_ARGC == 1)
2131         {
2132                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2133                 current_pc = 0;
2134         }
2135
2136         struct target *target = get_current_target(CMD_CTX);
2137
2138         return target->type->step(target, current_pc, addr, 1);
2139 }
2140
2141 static void handle_md_output(struct command_context *cmd_ctx,
2142                 struct target *target, uint32_t address, unsigned size,
2143                 unsigned count, const uint8_t *buffer)
2144 {
2145         const unsigned line_bytecnt = 32;
2146         unsigned line_modulo = line_bytecnt / size;
2147
2148         char output[line_bytecnt * 4 + 1];
2149         unsigned output_len = 0;
2150
2151         const char *value_fmt;
2152         switch (size) {
2153         case 4: value_fmt = "%8.8x "; break;
2154         case 2: value_fmt = "%4.2x "; break;
2155         case 1: value_fmt = "%2.2x "; break;
2156         default:
2157                 LOG_ERROR("invalid memory read size: %u", size);
2158                 exit(-1);
2159         }
2160
2161         for (unsigned i = 0; i < count; i++)
2162         {
2163                 if (i % line_modulo == 0)
2164                 {
2165                         output_len += snprintf(output + output_len,
2166                                         sizeof(output) - output_len,
2167                                         "0x%8.8x: ",
2168                                         (unsigned)(address + (i*size)));
2169                 }
2170
2171                 uint32_t value = 0;
2172                 const uint8_t *value_ptr = buffer + i * size;
2173                 switch (size) {
2174                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2175                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2176                 case 1: value = *value_ptr;
2177                 }
2178                 output_len += snprintf(output + output_len,
2179                                 sizeof(output) - output_len,
2180                                 value_fmt, value);
2181
2182                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2183                 {
2184                         command_print(cmd_ctx, "%s", output);
2185                         output_len = 0;
2186                 }
2187         }
2188 }
2189
2190 COMMAND_HANDLER(handle_md_command)
2191 {
2192         if (CMD_ARGC < 1)
2193                 return ERROR_COMMAND_SYNTAX_ERROR;
2194
2195         unsigned size = 0;
2196         switch (CMD_NAME[2]) {
2197         case 'w': size = 4; break;
2198         case 'h': size = 2; break;
2199         case 'b': size = 1; break;
2200         default: return ERROR_COMMAND_SYNTAX_ERROR;
2201         }
2202
2203         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2204         int (*fn)(struct target *target,
2205                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2206         if (physical)
2207         {
2208                 CMD_ARGC--;
2209                 CMD_ARGV++;
2210                 fn=target_read_phys_memory;
2211         } else
2212         {
2213                 fn=target_read_memory;
2214         }
2215         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2216         {
2217                 return ERROR_COMMAND_SYNTAX_ERROR;
2218         }
2219
2220         uint32_t address;
2221         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2222
2223         unsigned count = 1;
2224         if (CMD_ARGC == 2)
2225                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2226
2227         uint8_t *buffer = calloc(count, size);
2228
2229         struct target *target = get_current_target(CMD_CTX);
2230         int retval = fn(target, address, size, count, buffer);
2231         if (ERROR_OK == retval)
2232                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2233
2234         free(buffer);
2235
2236         return retval;
2237 }
2238
2239 COMMAND_HANDLER(handle_mw_command)
2240 {
2241         if (CMD_ARGC < 2)
2242         {
2243                 return ERROR_COMMAND_SYNTAX_ERROR;
2244         }
2245         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2246         int (*fn)(struct target *target,
2247                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2248         if (physical)
2249         {
2250                 CMD_ARGC--;
2251                 CMD_ARGV++;
2252                 fn=target_write_phys_memory;
2253         } else
2254         {
2255                 fn=target_write_memory;
2256         }
2257         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2258                 return ERROR_COMMAND_SYNTAX_ERROR;
2259
2260         uint32_t address;
2261         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2262
2263         uint32_t value;
2264         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2265
2266         unsigned count = 1;
2267         if (CMD_ARGC == 3)
2268                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2269
2270         struct target *target = get_current_target(CMD_CTX);
2271         unsigned wordsize;
2272         uint8_t value_buf[4];
2273         switch (CMD_NAME[2])
2274         {
2275                 case 'w':
2276                         wordsize = 4;
2277                         target_buffer_set_u32(target, value_buf, value);
2278                         break;
2279                 case 'h':
2280                         wordsize = 2;
2281                         target_buffer_set_u16(target, value_buf, value);
2282                         break;
2283                 case 'b':
2284                         wordsize = 1;
2285                         value_buf[0] = value;
2286                         break;
2287                 default:
2288                         return ERROR_COMMAND_SYNTAX_ERROR;
2289         }
2290         for (unsigned i = 0; i < count; i++)
2291         {
2292                 int retval = fn(target,
2293                                 address + i * wordsize, wordsize, 1, value_buf);
2294                 if (ERROR_OK != retval)
2295                         return retval;
2296                 keep_alive();
2297         }
2298
2299         return ERROR_OK;
2300
2301 }
2302
2303 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2304                 uint32_t *min_address, uint32_t *max_address)
2305 {
2306         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2307                 return ERROR_COMMAND_SYNTAX_ERROR;
2308
2309         /* a base address isn't always necessary,
2310          * default to 0x0 (i.e. don't relocate) */
2311         if (CMD_ARGC >= 2)
2312         {
2313                 uint32_t addr;
2314                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2315                 image->base_address = addr;
2316                 image->base_address_set = 1;
2317         }
2318         else
2319                 image->base_address_set = 0;
2320
2321         image->start_address_set = 0;
2322
2323         if (CMD_ARGC >= 4)
2324         {
2325                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2326         }
2327         if (CMD_ARGC == 5)
2328         {
2329                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2330                 // use size (given) to find max (required)
2331                 *max_address += *min_address;
2332         }
2333
2334         if (*min_address > *max_address)
2335                 return ERROR_COMMAND_SYNTAX_ERROR;
2336
2337         return ERROR_OK;
2338 }
2339
2340 COMMAND_HANDLER(handle_load_image_command)
2341 {
2342         uint8_t *buffer;
2343         size_t buf_cnt;
2344         uint32_t image_size;
2345         uint32_t min_address = 0;
2346         uint32_t max_address = 0xffffffff;
2347         int i;
2348         struct image image;
2349
2350         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2351                         &image, &min_address, &max_address);
2352         if (ERROR_OK != retval)
2353                 return retval;
2354
2355         struct target *target = get_current_target(CMD_CTX);
2356
2357         struct duration bench;
2358         duration_start(&bench);
2359
2360         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2361         {
2362                 return ERROR_OK;
2363         }
2364
2365         image_size = 0x0;
2366         retval = ERROR_OK;
2367         for (i = 0; i < image.num_sections; i++)
2368         {
2369                 buffer = malloc(image.sections[i].size);
2370                 if (buffer == NULL)
2371                 {
2372                         command_print(CMD_CTX,
2373                                                   "error allocating buffer for section (%d bytes)",
2374                                                   (int)(image.sections[i].size));
2375                         break;
2376                 }
2377
2378                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2379                 {
2380                         free(buffer);
2381                         break;
2382                 }
2383
2384                 uint32_t offset = 0;
2385                 uint32_t length = buf_cnt;
2386
2387                 /* DANGER!!! beware of unsigned comparision here!!! */
2388
2389                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2390                                 (image.sections[i].base_address < max_address))
2391                 {
2392                         if (image.sections[i].base_address < min_address)
2393                         {
2394                                 /* clip addresses below */
2395                                 offset += min_address-image.sections[i].base_address;
2396                                 length -= offset;
2397                         }
2398
2399                         if (image.sections[i].base_address + buf_cnt > max_address)
2400                         {
2401                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2402                         }
2403
2404                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2405                         {
2406                                 free(buffer);
2407                                 break;
2408                         }
2409                         image_size += length;
2410                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2411                                                   (unsigned int)length,
2412                                                   image.sections[i].base_address + offset);
2413                 }
2414
2415                 free(buffer);
2416         }
2417
2418         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2419         {
2420                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2421                                 "in %fs (%0.3f kb/s)", image_size,
2422                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2423         }
2424
2425         image_close(&image);
2426
2427         return retval;
2428
2429 }
2430
2431 COMMAND_HANDLER(handle_dump_image_command)
2432 {
2433         struct fileio fileio;
2434
2435         uint8_t buffer[560];
2436         int retvaltemp;
2437
2438
2439         struct target *target = get_current_target(CMD_CTX);
2440
2441         if (CMD_ARGC != 3)
2442         {
2443                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2444                 return ERROR_OK;
2445         }
2446
2447         uint32_t address;
2448         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2449         uint32_t size;
2450         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2451
2452         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2453         {
2454                 return ERROR_OK;
2455         }
2456
2457         struct duration bench;
2458         duration_start(&bench);
2459
2460         int retval = ERROR_OK;
2461         while (size > 0)
2462         {
2463                 size_t size_written;
2464                 uint32_t this_run_size = (size > 560) ? 560 : size;
2465                 retval = target_read_buffer(target, address, this_run_size, buffer);
2466                 if (retval != ERROR_OK)
2467                 {
2468                         break;
2469                 }
2470
2471                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2472                 if (retval != ERROR_OK)
2473                 {
2474                         break;
2475                 }
2476
2477                 size -= this_run_size;
2478                 address += this_run_size;
2479         }
2480
2481         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2482                 return retvaltemp;
2483
2484         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2485         {
2486                 command_print(CMD_CTX,
2487                                 "dumped %zu bytes in %fs (%0.3f kb/s)", fileio.size,
2488                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2489         }
2490
2491         return retval;
2492 }
2493
2494 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2495 {
2496         uint8_t *buffer;
2497         size_t buf_cnt;
2498         uint32_t image_size;
2499         int i;
2500         int retval;
2501         uint32_t checksum = 0;
2502         uint32_t mem_checksum = 0;
2503
2504         struct image image;
2505
2506         struct target *target = get_current_target(CMD_CTX);
2507
2508         if (CMD_ARGC < 1)
2509         {
2510                 return ERROR_COMMAND_SYNTAX_ERROR;
2511         }
2512
2513         if (!target)
2514         {
2515                 LOG_ERROR("no target selected");
2516                 return ERROR_FAIL;
2517         }
2518
2519         struct duration bench;
2520         duration_start(&bench);
2521
2522         if (CMD_ARGC >= 2)
2523         {
2524                 uint32_t addr;
2525                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2526                 image.base_address = addr;
2527                 image.base_address_set = 1;
2528         }
2529         else
2530         {
2531                 image.base_address_set = 0;
2532                 image.base_address = 0x0;
2533         }
2534
2535         image.start_address_set = 0;
2536
2537         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2538         {
2539                 return retval;
2540         }
2541
2542         image_size = 0x0;
2543         retval = ERROR_OK;
2544         for (i = 0; i < image.num_sections; i++)
2545         {
2546                 buffer = malloc(image.sections[i].size);
2547                 if (buffer == NULL)
2548                 {
2549                         command_print(CMD_CTX,
2550                                                   "error allocating buffer for section (%d bytes)",
2551                                                   (int)(image.sections[i].size));
2552                         break;
2553                 }
2554                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2555                 {
2556                         free(buffer);
2557                         break;
2558                 }
2559
2560                 if (verify)
2561                 {
2562                         /* calculate checksum of image */
2563                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2564
2565                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2566                         if (retval != ERROR_OK)
2567                         {
2568                                 free(buffer);
2569                                 break;
2570                         }
2571
2572                         if (checksum != mem_checksum)
2573                         {
2574                                 /* failed crc checksum, fall back to a binary compare */
2575                                 uint8_t *data;
2576
2577                                 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2578
2579                                 data = (uint8_t*)malloc(buf_cnt);
2580
2581                                 /* Can we use 32bit word accesses? */
2582                                 int size = 1;
2583                                 int count = buf_cnt;
2584                                 if ((count % 4) == 0)
2585                                 {
2586                                         size *= 4;
2587                                         count /= 4;
2588                                 }
2589                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2590                                 if (retval == ERROR_OK)
2591                                 {
2592                                         uint32_t t;
2593                                         for (t = 0; t < buf_cnt; t++)
2594                                         {
2595                                                 if (data[t] != buffer[t])
2596                                                 {
2597                                                         command_print(CMD_CTX,
2598                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2599                                                                                   (unsigned)(t + image.sections[i].base_address),
2600                                                                                   data[t],
2601                                                                                   buffer[t]);
2602                                                         free(data);
2603                                                         free(buffer);
2604                                                         retval = ERROR_FAIL;
2605                                                         goto done;
2606                                                 }
2607                                                 if ((t%16384) == 0)
2608                                                 {
2609                                                         keep_alive();
2610                                                 }
2611                                         }
2612                                 }
2613
2614                                 free(data);
2615                         }
2616                 } else
2617                 {
2618                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2619                                                   image.sections[i].base_address,
2620                                                   buf_cnt);
2621                 }
2622
2623                 free(buffer);
2624                 image_size += buf_cnt;
2625         }
2626 done:
2627         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2628         {
2629                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2630                                 "in %fs (%0.3f kb/s)", image_size,
2631                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2632         }
2633
2634         image_close(&image);
2635
2636         return retval;
2637 }
2638
2639 COMMAND_HANDLER(handle_verify_image_command)
2640 {
2641         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2642 }
2643
2644 COMMAND_HANDLER(handle_test_image_command)
2645 {
2646         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2647 }
2648
2649 static int handle_bp_command_list(struct command_context *cmd_ctx)
2650 {
2651         struct target *target = get_current_target(cmd_ctx);
2652         struct breakpoint *breakpoint = target->breakpoints;
2653         while (breakpoint)
2654         {
2655                 if (breakpoint->type == BKPT_SOFT)
2656                 {
2657                         char* buf = buf_to_str(breakpoint->orig_instr,
2658                                         breakpoint->length, 16);
2659                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2660                                         breakpoint->address,
2661                                         breakpoint->length,
2662                                         breakpoint->set, buf);
2663                         free(buf);
2664                 }
2665                 else
2666                 {
2667                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2668                                                   breakpoint->address,
2669                                                   breakpoint->length, breakpoint->set);
2670                 }
2671
2672                 breakpoint = breakpoint->next;
2673         }
2674         return ERROR_OK;
2675 }
2676
2677 static int handle_bp_command_set(struct command_context *cmd_ctx,
2678                 uint32_t addr, uint32_t length, int hw)
2679 {
2680         struct target *target = get_current_target(cmd_ctx);
2681         int retval = breakpoint_add(target, addr, length, hw);
2682         if (ERROR_OK == retval)
2683                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2684         else
2685                 LOG_ERROR("Failure setting breakpoint");
2686         return retval;
2687 }
2688
2689 COMMAND_HANDLER(handle_bp_command)
2690 {
2691         if (CMD_ARGC == 0)
2692                 return handle_bp_command_list(CMD_CTX);
2693
2694         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2695         {
2696                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2697                 return ERROR_COMMAND_SYNTAX_ERROR;
2698         }
2699
2700         uint32_t addr;
2701         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2702         uint32_t length;
2703         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2704
2705         int hw = BKPT_SOFT;
2706         if (CMD_ARGC == 3)
2707         {
2708                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2709                         hw = BKPT_HARD;
2710                 else
2711                         return ERROR_COMMAND_SYNTAX_ERROR;
2712         }
2713
2714         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2715 }
2716
2717 COMMAND_HANDLER(handle_rbp_command)
2718 {
2719         if (CMD_ARGC != 1)
2720                 return ERROR_COMMAND_SYNTAX_ERROR;
2721
2722         uint32_t addr;
2723         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2724
2725         struct target *target = get_current_target(CMD_CTX);
2726         breakpoint_remove(target, addr);
2727
2728         return ERROR_OK;
2729 }
2730
2731 COMMAND_HANDLER(handle_wp_command)
2732 {
2733         struct target *target = get_current_target(CMD_CTX);
2734
2735         if (CMD_ARGC == 0)
2736         {
2737                 struct watchpoint *watchpoint = target->watchpoints;
2738
2739                 while (watchpoint)
2740                 {
2741                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2742                                         ", len: 0x%8.8" PRIx32
2743                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2744                                         ", mask: 0x%8.8" PRIx32,
2745                                         watchpoint->address,
2746                                         watchpoint->length,
2747                                         (int)watchpoint->rw,
2748                                         watchpoint->value,
2749                                         watchpoint->mask);
2750                         watchpoint = watchpoint->next;
2751                 }
2752                 return ERROR_OK;
2753         }
2754
2755         enum watchpoint_rw type = WPT_ACCESS;
2756         uint32_t addr = 0;
2757         uint32_t length = 0;
2758         uint32_t data_value = 0x0;
2759         uint32_t data_mask = 0xffffffff;
2760
2761         switch (CMD_ARGC)
2762         {
2763         case 5:
2764                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2765                 // fall through
2766         case 4:
2767                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2768                 // fall through
2769         case 3:
2770                 switch (CMD_ARGV[2][0])
2771                 {
2772                 case 'r':
2773                         type = WPT_READ;
2774                         break;
2775                 case 'w':
2776                         type = WPT_WRITE;
2777                         break;
2778                 case 'a':
2779                         type = WPT_ACCESS;
2780                         break;
2781                 default:
2782                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2783                         return ERROR_COMMAND_SYNTAX_ERROR;
2784                 }
2785                 // fall through
2786         case 2:
2787                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2788                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2789                 break;
2790
2791         default:
2792                 command_print(CMD_CTX, "usage: wp [address length "
2793                                 "[(r|w|a) [value [mask]]]]");
2794                 return ERROR_COMMAND_SYNTAX_ERROR;
2795         }
2796
2797         int retval = watchpoint_add(target, addr, length, type,
2798                         data_value, data_mask);
2799         if (ERROR_OK != retval)
2800                 LOG_ERROR("Failure setting watchpoints");
2801
2802         return retval;
2803 }
2804
2805 COMMAND_HANDLER(handle_rwp_command)
2806 {
2807         if (CMD_ARGC != 1)
2808                 return ERROR_COMMAND_SYNTAX_ERROR;
2809
2810         uint32_t addr;
2811         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2812
2813         struct target *target = get_current_target(CMD_CTX);
2814         watchpoint_remove(target, addr);
2815
2816         return ERROR_OK;
2817 }
2818
2819
2820 /**
2821  * Translate a virtual address to a physical address.
2822  *
2823  * The low-level target implementation must have logged a detailed error
2824  * which is forwarded to telnet/GDB session.
2825  */
2826 COMMAND_HANDLER(handle_virt2phys_command)
2827 {
2828         if (CMD_ARGC != 1)
2829                 return ERROR_COMMAND_SYNTAX_ERROR;
2830
2831         uint32_t va;
2832         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2833         uint32_t pa;
2834
2835         struct target *target = get_current_target(CMD_CTX);
2836         int retval = target->type->virt2phys(target, va, &pa);
2837         if (retval == ERROR_OK)
2838                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2839
2840         return retval;
2841 }
2842
2843 static void writeData(FILE *f, const void *data, size_t len)
2844 {
2845         size_t written = fwrite(data, 1, len, f);
2846         if (written != len)
2847                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2848 }
2849
2850 static void writeLong(FILE *f, int l)
2851 {
2852         int i;
2853         for (i = 0; i < 4; i++)
2854         {
2855                 char c = (l >> (i*8))&0xff;
2856                 writeData(f, &c, 1);
2857         }
2858
2859 }
2860
2861 static void writeString(FILE *f, char *s)
2862 {
2863         writeData(f, s, strlen(s));
2864 }
2865
2866 /* Dump a gmon.out histogram file. */
2867 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2868 {
2869         uint32_t i;
2870         FILE *f = fopen(filename, "w");
2871         if (f == NULL)
2872                 return;
2873         writeString(f, "gmon");
2874         writeLong(f, 0x00000001); /* Version */
2875         writeLong(f, 0); /* padding */
2876         writeLong(f, 0); /* padding */
2877         writeLong(f, 0); /* padding */
2878
2879         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
2880         writeData(f, &zero, 1);
2881
2882         /* figure out bucket size */
2883         uint32_t min = samples[0];
2884         uint32_t max = samples[0];
2885         for (i = 0; i < sampleNum; i++)
2886         {
2887                 if (min > samples[i])
2888                 {
2889                         min = samples[i];
2890                 }
2891                 if (max < samples[i])
2892                 {
2893                         max = samples[i];
2894                 }
2895         }
2896
2897         int addressSpace = (max-min + 1);
2898
2899         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2900         uint32_t length = addressSpace;
2901         if (length > maxBuckets)
2902         {
2903                 length = maxBuckets;
2904         }
2905         int *buckets = malloc(sizeof(int)*length);
2906         if (buckets == NULL)
2907         {
2908                 fclose(f);
2909                 return;
2910         }
2911         memset(buckets, 0, sizeof(int)*length);
2912         for (i = 0; i < sampleNum;i++)
2913         {
2914                 uint32_t address = samples[i];
2915                 long long a = address-min;
2916                 long long b = length-1;
2917                 long long c = addressSpace-1;
2918                 int index = (a*b)/c; /* danger!!!! int32 overflows */
2919                 buckets[index]++;
2920         }
2921
2922         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2923         writeLong(f, min);                      /* low_pc */
2924         writeLong(f, max);                      /* high_pc */
2925         writeLong(f, length);           /* # of samples */
2926         writeLong(f, 64000000);         /* 64MHz */
2927         writeString(f, "seconds");
2928         for (i = 0; i < (15-strlen("seconds")); i++)
2929                 writeData(f, &zero, 1);
2930         writeString(f, "s");
2931
2932         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2933
2934         char *data = malloc(2*length);
2935         if (data != NULL)
2936         {
2937                 for (i = 0; i < length;i++)
2938                 {
2939                         int val;
2940                         val = buckets[i];
2941                         if (val > 65535)
2942                         {
2943                                 val = 65535;
2944                         }
2945                         data[i*2]=val&0xff;
2946                         data[i*2 + 1]=(val >> 8)&0xff;
2947                 }
2948                 free(buckets);
2949                 writeData(f, data, length * 2);
2950                 free(data);
2951         } else
2952         {
2953                 free(buckets);
2954         }
2955
2956         fclose(f);
2957 }
2958
2959 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2960 COMMAND_HANDLER(handle_profile_command)
2961 {
2962         struct target *target = get_current_target(CMD_CTX);
2963         struct timeval timeout, now;
2964
2965         gettimeofday(&timeout, NULL);
2966         if (CMD_ARGC != 2)
2967         {
2968                 return ERROR_COMMAND_SYNTAX_ERROR;
2969         }
2970         unsigned offset;
2971         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
2972
2973         timeval_add_time(&timeout, offset, 0);
2974
2975         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
2976
2977         static const int maxSample = 10000;
2978         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
2979         if (samples == NULL)
2980                 return ERROR_OK;
2981
2982         int numSamples = 0;
2983         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2984         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2985
2986         for (;;)
2987         {
2988                 int retval;
2989                 target_poll(target);
2990                 if (target->state == TARGET_HALTED)
2991                 {
2992                         uint32_t t=*((uint32_t *)reg->value);
2993                         samples[numSamples++]=t;
2994                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2995                         target_poll(target);
2996                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2997                 } else if (target->state == TARGET_RUNNING)
2998                 {
2999                         /* We want to quickly sample the PC. */
3000                         if ((retval = target_halt(target)) != ERROR_OK)
3001                         {
3002                                 free(samples);
3003                                 return retval;
3004                         }
3005                 } else
3006                 {
3007                         command_print(CMD_CTX, "Target not halted or running");
3008                         retval = ERROR_OK;
3009                         break;
3010                 }
3011                 if (retval != ERROR_OK)
3012                 {
3013                         break;
3014                 }
3015
3016                 gettimeofday(&now, NULL);
3017                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3018                 {
3019                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3020                         if ((retval = target_poll(target)) != ERROR_OK)
3021                         {
3022                                 free(samples);
3023                                 return retval;
3024                         }
3025                         if (target->state == TARGET_HALTED)
3026                         {
3027                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3028                         }
3029                         if ((retval = target_poll(target)) != ERROR_OK)
3030                         {
3031                                 free(samples);
3032                                 return retval;
3033                         }
3034                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3035                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3036                         break;
3037                 }
3038         }
3039         free(samples);
3040
3041         return ERROR_OK;
3042 }
3043
3044 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3045 {
3046         char *namebuf;
3047         Jim_Obj *nameObjPtr, *valObjPtr;
3048         int result;
3049
3050         namebuf = alloc_printf("%s(%d)", varname, idx);
3051         if (!namebuf)
3052                 return JIM_ERR;
3053
3054         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3055         valObjPtr = Jim_NewIntObj(interp, val);
3056         if (!nameObjPtr || !valObjPtr)
3057         {
3058                 free(namebuf);
3059                 return JIM_ERR;
3060         }
3061
3062         Jim_IncrRefCount(nameObjPtr);
3063         Jim_IncrRefCount(valObjPtr);
3064         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3065         Jim_DecrRefCount(interp, nameObjPtr);
3066         Jim_DecrRefCount(interp, valObjPtr);
3067         free(namebuf);
3068         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3069         return result;
3070 }
3071
3072 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3073 {
3074         struct command_context *context;
3075         struct target *target;
3076
3077         context = Jim_GetAssocData(interp, "context");
3078         if (context == NULL)
3079         {
3080                 LOG_ERROR("mem2array: no command context");
3081                 return JIM_ERR;
3082         }
3083         target = get_current_target(context);
3084         if (target == NULL)
3085         {
3086                 LOG_ERROR("mem2array: no current target");
3087                 return JIM_ERR;
3088         }
3089
3090         return  target_mem2array(interp, target, argc-1, argv + 1);
3091 }
3092
3093 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3094 {
3095         long l;
3096         uint32_t width;
3097         int len;
3098         uint32_t addr;
3099         uint32_t count;
3100         uint32_t v;
3101         const char *varname;
3102         int  n, e, retval;
3103         uint32_t i;
3104
3105         /* argv[1] = name of array to receive the data
3106          * argv[2] = desired width
3107          * argv[3] = memory address
3108          * argv[4] = count of times to read
3109          */
3110         if (argc != 4) {
3111                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3112                 return JIM_ERR;
3113         }
3114         varname = Jim_GetString(argv[0], &len);
3115         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3116
3117         e = Jim_GetLong(interp, argv[1], &l);
3118         width = l;
3119         if (e != JIM_OK) {
3120                 return e;
3121         }
3122
3123         e = Jim_GetLong(interp, argv[2], &l);
3124         addr = l;
3125         if (e != JIM_OK) {
3126                 return e;
3127         }
3128         e = Jim_GetLong(interp, argv[3], &l);
3129         len = l;
3130         if (e != JIM_OK) {
3131                 return e;
3132         }
3133         switch (width) {
3134                 case 8:
3135                         width = 1;
3136                         break;
3137                 case 16:
3138                         width = 2;
3139                         break;
3140                 case 32:
3141                         width = 4;
3142                         break;
3143                 default:
3144                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3145                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3146                         return JIM_ERR;
3147         }
3148         if (len == 0) {
3149                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3150                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3151                 return JIM_ERR;
3152         }
3153         if ((addr + (len * width)) < addr) {
3154                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3155                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3156                 return JIM_ERR;
3157         }
3158         /* absurd transfer size? */
3159         if (len > 65536) {
3160                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3161                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3162                 return JIM_ERR;
3163         }
3164
3165         if ((width == 1) ||
3166                 ((width == 2) && ((addr & 1) == 0)) ||
3167                 ((width == 4) && ((addr & 3) == 0))) {
3168                 /* all is well */
3169         } else {
3170                 char buf[100];
3171                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3172                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3173                                 addr,
3174                                 width);
3175                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3176                 return JIM_ERR;
3177         }
3178
3179         /* Transfer loop */
3180
3181         /* index counter */
3182         n = 0;
3183
3184         size_t buffersize = 4096;
3185         uint8_t *buffer = malloc(buffersize);
3186         if (buffer == NULL)
3187                 return JIM_ERR;
3188
3189         /* assume ok */
3190         e = JIM_OK;
3191         while (len) {
3192                 /* Slurp... in buffer size chunks */
3193
3194                 count = len; /* in objects.. */
3195                 if (count > (buffersize/width)) {
3196                         count = (buffersize/width);
3197                 }
3198
3199                 retval = target_read_memory(target, addr, width, count, buffer);
3200                 if (retval != ERROR_OK) {
3201                         /* BOO !*/
3202                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3203                                           (unsigned int)addr,
3204                                           (int)width,
3205                                           (int)count);
3206                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3207                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3208                         e = JIM_ERR;
3209                         len = 0;
3210                 } else {
3211                         v = 0; /* shut up gcc */
3212                         for (i = 0 ;i < count ;i++, n++) {
3213                                 switch (width) {
3214                                         case 4:
3215                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3216                                                 break;
3217                                         case 2:
3218                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3219                                                 break;
3220                                         case 1:
3221                                                 v = buffer[i] & 0x0ff;
3222                                                 break;
3223                                 }
3224                                 new_int_array_element(interp, varname, n, v);
3225                         }
3226                         len -= count;
3227                 }
3228         }
3229
3230         free(buffer);
3231
3232         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3233
3234         return JIM_OK;
3235 }
3236
3237 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3238 {
3239         char *namebuf;
3240         Jim_Obj *nameObjPtr, *valObjPtr;
3241         int result;
3242         long l;
3243
3244         namebuf = alloc_printf("%s(%d)", varname, idx);
3245         if (!namebuf)
3246                 return JIM_ERR;
3247
3248         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3249         if (!nameObjPtr)
3250         {
3251                 free(namebuf);
3252                 return JIM_ERR;
3253         }
3254
3255         Jim_IncrRefCount(nameObjPtr);
3256         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3257         Jim_DecrRefCount(interp, nameObjPtr);
3258         free(namebuf);
3259         if (valObjPtr == NULL)
3260                 return JIM_ERR;
3261
3262         result = Jim_GetLong(interp, valObjPtr, &l);
3263         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3264         *val = l;
3265         return result;
3266 }
3267
3268 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3269 {
3270         struct command_context *context;
3271         struct target *target;
3272
3273         context = Jim_GetAssocData(interp, "context");
3274         if (context == NULL) {
3275                 LOG_ERROR("array2mem: no command context");
3276                 return JIM_ERR;
3277         }
3278         target = get_current_target(context);
3279         if (target == NULL) {
3280                 LOG_ERROR("array2mem: no current target");
3281                 return JIM_ERR;
3282         }
3283
3284         return target_array2mem(interp,target, argc-1, argv + 1);
3285 }
3286 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3287 {
3288         long l;
3289         uint32_t width;
3290         int len;
3291         uint32_t addr;
3292         uint32_t count;
3293         uint32_t v;
3294         const char *varname;
3295         int  n, e, retval;
3296         uint32_t i;
3297
3298         /* argv[1] = name of array to get the data
3299          * argv[2] = desired width
3300          * argv[3] = memory address
3301          * argv[4] = count to write
3302          */
3303         if (argc != 4) {
3304                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3305                 return JIM_ERR;
3306         }
3307         varname = Jim_GetString(argv[0], &len);
3308         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3309
3310         e = Jim_GetLong(interp, argv[1], &l);
3311         width = l;
3312         if (e != JIM_OK) {
3313                 return e;
3314         }
3315
3316         e = Jim_GetLong(interp, argv[2], &l);
3317         addr = l;
3318         if (e != JIM_OK) {
3319                 return e;
3320         }
3321         e = Jim_GetLong(interp, argv[3], &l);
3322         len = l;
3323         if (e != JIM_OK) {
3324                 return e;
3325         }
3326         switch (width) {
3327                 case 8:
3328                         width = 1;
3329                         break;
3330                 case 16:
3331                         width = 2;
3332                         break;
3333                 case 32:
3334                         width = 4;
3335                         break;
3336                 default:
3337                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3338                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3339                         return JIM_ERR;
3340         }
3341         if (len == 0) {
3342                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3343                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3344                 return JIM_ERR;
3345         }
3346         if ((addr + (len * width)) < addr) {
3347                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3348                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3349                 return JIM_ERR;
3350         }
3351         /* absurd transfer size? */
3352         if (len > 65536) {
3353                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3354                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3355                 return JIM_ERR;
3356         }
3357
3358         if ((width == 1) ||
3359                 ((width == 2) && ((addr & 1) == 0)) ||
3360                 ((width == 4) && ((addr & 3) == 0))) {
3361                 /* all is well */
3362         } else {
3363                 char buf[100];
3364                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3365                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3366                                 (unsigned int)addr,
3367                                 (int)width);
3368                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3369                 return JIM_ERR;
3370         }
3371
3372         /* Transfer loop */
3373
3374         /* index counter */
3375         n = 0;
3376         /* assume ok */
3377         e = JIM_OK;
3378
3379         size_t buffersize = 4096;
3380         uint8_t *buffer = malloc(buffersize);
3381         if (buffer == NULL)
3382                 return JIM_ERR;
3383
3384         while (len) {
3385                 /* Slurp... in buffer size chunks */
3386
3387                 count = len; /* in objects.. */
3388                 if (count > (buffersize/width)) {
3389                         count = (buffersize/width);
3390                 }
3391
3392                 v = 0; /* shut up gcc */
3393                 for (i = 0 ;i < count ;i++, n++) {
3394                         get_int_array_element(interp, varname, n, &v);
3395                         switch (width) {
3396                         case 4:
3397                                 target_buffer_set_u32(target, &buffer[i*width], v);
3398                                 break;
3399                         case 2:
3400                                 target_buffer_set_u16(target, &buffer[i*width], v);
3401                                 break;
3402                         case 1:
3403                                 buffer[i] = v & 0x0ff;
3404                                 break;
3405                         }
3406                 }
3407                 len -= count;
3408
3409                 retval = target_write_memory(target, addr, width, count, buffer);
3410                 if (retval != ERROR_OK) {
3411                         /* BOO !*/
3412                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3413                                           (unsigned int)addr,
3414                                           (int)width,
3415                                           (int)count);
3416                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3417                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3418                         e = JIM_ERR;
3419                         len = 0;
3420                 }
3421         }
3422
3423         free(buffer);
3424
3425         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3426
3427         return JIM_OK;
3428 }
3429
3430 void target_all_handle_event(enum target_event e)
3431 {
3432         struct target *target;
3433
3434         LOG_DEBUG("**all*targets: event: %d, %s",
3435                            (int)e,
3436                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3437
3438         target = all_targets;
3439         while (target) {
3440                 target_handle_event(target, e);
3441                 target = target->next;
3442         }
3443 }
3444
3445
3446 /* FIX? should we propagate errors here rather than printing them
3447  * and continuing?
3448  */
3449 void target_handle_event(struct target *target, enum target_event e)
3450 {
3451         struct target_event_action *teap;
3452
3453         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3454                 if (teap->event == e) {
3455                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3456                                            target->target_number,
3457                                            target_name(target),
3458                                            target_type_name(target),
3459                                            e,
3460                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3461                                            Jim_GetString(teap->body, NULL));
3462                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3463                         {
3464                                 Jim_PrintErrorMessage(teap->interp);
3465                         }
3466                 }
3467         }
3468 }
3469
3470 /**
3471  * Returns true only if the target has a handler for the specified event.
3472  */
3473 bool target_has_event_action(struct target *target, enum target_event event)
3474 {
3475         struct target_event_action *teap;
3476
3477         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3478                 if (teap->event == event)
3479                         return true;
3480         }
3481         return false;
3482 }
3483
3484 enum target_cfg_param {
3485         TCFG_TYPE,
3486         TCFG_EVENT,
3487         TCFG_WORK_AREA_VIRT,
3488         TCFG_WORK_AREA_PHYS,
3489         TCFG_WORK_AREA_SIZE,
3490         TCFG_WORK_AREA_BACKUP,
3491         TCFG_ENDIAN,
3492         TCFG_VARIANT,
3493         TCFG_CHAIN_POSITION,
3494 };
3495
3496 static Jim_Nvp nvp_config_opts[] = {
3497         { .name = "-type",             .value = TCFG_TYPE },
3498         { .name = "-event",            .value = TCFG_EVENT },
3499         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3500         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3501         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3502         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3503         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3504         { .name = "-variant",          .value = TCFG_VARIANT },
3505         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3506
3507         { .name = NULL, .value = -1 }
3508 };
3509
3510 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3511 {
3512         Jim_Nvp *n;
3513         Jim_Obj *o;
3514         jim_wide w;
3515         char *cp;
3516         int e;
3517
3518         /* parse config or cget options ... */
3519         while (goi->argc > 0) {
3520                 Jim_SetEmptyResult(goi->interp);
3521                 /* Jim_GetOpt_Debug(goi); */
3522
3523                 if (target->type->target_jim_configure) {
3524                         /* target defines a configure function */
3525                         /* target gets first dibs on parameters */
3526                         e = (*(target->type->target_jim_configure))(target, goi);
3527                         if (e == JIM_OK) {
3528                                 /* more? */
3529                                 continue;
3530                         }
3531                         if (e == JIM_ERR) {
3532                                 /* An error */
3533                                 return e;
3534                         }
3535                         /* otherwise we 'continue' below */
3536                 }
3537                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3538                 if (e != JIM_OK) {
3539                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3540                         return e;
3541                 }
3542                 switch (n->value) {
3543                 case TCFG_TYPE:
3544                         /* not setable */
3545                         if (goi->isconfigure) {
3546                                 Jim_SetResult_sprintf(goi->interp,
3547                                                 "not settable: %s", n->name);
3548                                 return JIM_ERR;
3549                         } else {
3550                         no_params:
3551                                 if (goi->argc != 0) {
3552                                         Jim_WrongNumArgs(goi->interp,
3553                                                         goi->argc, goi->argv,
3554                                                         "NO PARAMS");
3555                                         return JIM_ERR;
3556                                 }
3557                         }
3558                         Jim_SetResultString(goi->interp,
3559                                         target_type_name(target), -1);
3560                         /* loop for more */
3561                         break;
3562                 case TCFG_EVENT:
3563                         if (goi->argc == 0) {
3564                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3565                                 return JIM_ERR;
3566                         }
3567
3568                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3569                         if (e != JIM_OK) {
3570                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3571                                 return e;
3572                         }
3573
3574                         if (goi->isconfigure) {
3575                                 if (goi->argc != 1) {
3576                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3577                                         return JIM_ERR;
3578                                 }
3579                         } else {
3580                                 if (goi->argc != 0) {
3581                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3582                                         return JIM_ERR;
3583                                 }
3584                         }
3585
3586                         {
3587                                 struct target_event_action *teap;
3588
3589                                 teap = target->event_action;
3590                                 /* replace existing? */
3591                                 while (teap) {
3592                                         if (teap->event == (enum target_event)n->value) {
3593                                                 break;
3594                                         }
3595                                         teap = teap->next;
3596                                 }
3597
3598                                 if (goi->isconfigure) {
3599                                         bool replace = true;
3600                                         if (teap == NULL) {
3601                                                 /* create new */
3602                                                 teap = calloc(1, sizeof(*teap));
3603                                                 replace = false;
3604                                         }
3605                                         teap->event = n->value;
3606                                         teap->interp = goi->interp;
3607                                         Jim_GetOpt_Obj(goi, &o);
3608                                         if (teap->body) {
3609                                                 Jim_DecrRefCount(teap->interp, teap->body);
3610                                         }
3611                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3612                                         /*
3613                                          * FIXME:
3614                                          *     Tcl/TK - "tk events" have a nice feature.
3615                                          *     See the "BIND" command.
3616                                          *    We should support that here.
3617                                          *     You can specify %X and %Y in the event code.
3618                                          *     The idea is: %T - target name.
3619                                          *     The idea is: %N - target number
3620                                          *     The idea is: %E - event name.
3621                                          */
3622                                         Jim_IncrRefCount(teap->body);
3623
3624                                         if (!replace)
3625                                         {
3626                                                 /* add to head of event list */
3627                                                 teap->next = target->event_action;
3628                                                 target->event_action = teap;
3629                                         }
3630                                         Jim_SetEmptyResult(goi->interp);
3631                                 } else {
3632                                         /* get */
3633                                         if (teap == NULL) {
3634                                                 Jim_SetEmptyResult(goi->interp);
3635                                         } else {
3636                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3637                                         }
3638                                 }
3639                         }
3640                         /* loop for more */
3641                         break;
3642
3643                 case TCFG_WORK_AREA_VIRT:
3644                         if (goi->isconfigure) {
3645                                 target_free_all_working_areas(target);
3646                                 e = Jim_GetOpt_Wide(goi, &w);
3647                                 if (e != JIM_OK) {
3648                                         return e;
3649                                 }
3650                                 target->working_area_virt = w;
3651                                 target->working_area_virt_spec = true;
3652                         } else {
3653                                 if (goi->argc != 0) {
3654                                         goto no_params;
3655                                 }
3656                         }
3657                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3658                         /* loop for more */
3659                         break;
3660
3661                 case TCFG_WORK_AREA_PHYS:
3662                         if (goi->isconfigure) {
3663                                 target_free_all_working_areas(target);
3664                                 e = Jim_GetOpt_Wide(goi, &w);
3665                                 if (e != JIM_OK) {
3666                                         return e;
3667                                 }
3668                                 target->working_area_phys = w;
3669                                 target->working_area_phys_spec = true;
3670                         } else {
3671                                 if (goi->argc != 0) {
3672                                         goto no_params;
3673                                 }
3674                         }
3675                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3676                         /* loop for more */
3677                         break;
3678
3679                 case TCFG_WORK_AREA_SIZE:
3680                         if (goi->isconfigure) {
3681                                 target_free_all_working_areas(target);
3682                                 e = Jim_GetOpt_Wide(goi, &w);
3683                                 if (e != JIM_OK) {
3684                                         return e;
3685                                 }
3686                                 target->working_area_size = w;
3687                         } else {
3688                                 if (goi->argc != 0) {
3689                                         goto no_params;
3690                                 }
3691                         }
3692                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3693                         /* loop for more */
3694                         break;
3695
3696                 case TCFG_WORK_AREA_BACKUP:
3697                         if (goi->isconfigure) {
3698                                 target_free_all_working_areas(target);
3699                                 e = Jim_GetOpt_Wide(goi, &w);
3700                                 if (e != JIM_OK) {
3701                                         return e;
3702                                 }
3703                                 /* make this exactly 1 or 0 */
3704                                 target->backup_working_area = (!!w);
3705                         } else {
3706                                 if (goi->argc != 0) {
3707                                         goto no_params;
3708                                 }
3709                         }
3710                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3711                         /* loop for more e*/
3712                         break;
3713
3714                 case TCFG_ENDIAN:
3715                         if (goi->isconfigure) {
3716                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3717                                 if (e != JIM_OK) {
3718                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3719                                         return e;
3720                                 }
3721                                 target->endianness = n->value;
3722                         } else {
3723                                 if (goi->argc != 0) {
3724                                         goto no_params;
3725                                 }
3726                         }
3727                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3728                         if (n->name == NULL) {
3729                                 target->endianness = TARGET_LITTLE_ENDIAN;
3730                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3731                         }
3732                         Jim_SetResultString(goi->interp, n->name, -1);
3733                         /* loop for more */
3734                         break;
3735
3736                 case TCFG_VARIANT:
3737                         if (goi->isconfigure) {
3738                                 if (goi->argc < 1) {
3739                                         Jim_SetResult_sprintf(goi->interp,
3740                                                                                    "%s ?STRING?",
3741                                                                                    n->name);
3742                                         return JIM_ERR;
3743                                 }
3744                                 if (target->variant) {
3745                                         free((void *)(target->variant));
3746                                 }
3747                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3748                                 target->variant = strdup(cp);
3749                         } else {
3750                                 if (goi->argc != 0) {
3751                                         goto no_params;
3752                                 }
3753                         }
3754                         Jim_SetResultString(goi->interp, target->variant,-1);
3755                         /* loop for more */
3756                         break;
3757                 case TCFG_CHAIN_POSITION:
3758                         if (goi->isconfigure) {
3759                                 Jim_Obj *o;
3760                                 struct jtag_tap *tap;
3761                                 target_free_all_working_areas(target);
3762                                 e = Jim_GetOpt_Obj(goi, &o);
3763                                 if (e != JIM_OK) {
3764                                         return e;
3765                                 }
3766                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3767                                 if (tap == NULL) {
3768                                         return JIM_ERR;
3769                                 }
3770                                 /* make this exactly 1 or 0 */
3771                                 target->tap = tap;
3772                         } else {
3773                                 if (goi->argc != 0) {
3774                                         goto no_params;
3775                                 }
3776                         }
3777                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3778                         /* loop for more e*/
3779                         break;
3780                 }
3781         } /* while (goi->argc) */
3782
3783
3784                 /* done - we return */
3785         return JIM_OK;
3786 }
3787
3788 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3789 {
3790         Jim_GetOptInfo goi;
3791         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3792         goi.isconfigure = strcmp(Jim_GetString(argv[0], NULL), "configure") == 0;
3793         int need_args = 1 + goi.isconfigure;
3794         if (goi.argc < need_args)
3795         {
3796                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3797                         goi.isconfigure
3798                                 ? "missing: -option VALUE ..."
3799                                 : "missing: -option ...");
3800                 return JIM_ERR;
3801         }
3802         struct target *target = Jim_CmdPrivData(goi.interp);
3803         return target_configure(&goi, target);
3804 }
3805
3806 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3807 {
3808         const char *cmd_name = Jim_GetString(argv[0], NULL);
3809
3810         Jim_GetOptInfo goi;
3811         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3812
3813         if (goi.argc != 2 && goi.argc != 3)
3814         {
3815                 Jim_SetResult_sprintf(goi.interp,
3816                                 "usage: %s <address> <data> [<count>]", cmd_name);
3817                 return JIM_ERR;
3818         }
3819
3820         jim_wide a;
3821         int e = Jim_GetOpt_Wide(&goi, &a);
3822         if (e != JIM_OK)
3823                 return e;
3824
3825         jim_wide b;
3826         e = Jim_GetOpt_Wide(&goi, &b);
3827         if (e != JIM_OK)
3828                 return e;
3829
3830         jim_wide c = 1;
3831         if (goi.argc == 3)
3832         {
3833                 e = Jim_GetOpt_Wide(&goi, &c);
3834                 if (e != JIM_OK)
3835                         return e;
3836         }
3837
3838         struct target *target = Jim_CmdPrivData(goi.interp);
3839         uint8_t  target_buf[32];
3840         if (strcasecmp(cmd_name, "mww") == 0) {
3841                 target_buffer_set_u32(target, target_buf, b);
3842                 b = 4;
3843         }
3844         else if (strcasecmp(cmd_name, "mwh") == 0) {
3845                 target_buffer_set_u16(target, target_buf, b);
3846                 b = 2;
3847         }
3848         else if (strcasecmp(cmd_name, "mwb") == 0) {
3849                 target_buffer_set_u8(target, target_buf, b);
3850                 b = 1;
3851         } else {
3852                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3853                 return JIM_ERR;
3854         }
3855
3856         for (jim_wide x = 0; x < c; x++)
3857         {
3858                 e = target_write_memory(target, a, b, 1, target_buf);
3859                 if (e != ERROR_OK)
3860                 {
3861                         Jim_SetResult_sprintf(interp,
3862                                         "Error writing @ 0x%08x: %d\n", (int)(a), e);
3863                         return JIM_ERR;
3864                 }
3865                 /* b = width */
3866                 a = a + b;
3867         }
3868         return JIM_OK;
3869 }
3870
3871 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3872 {
3873         const char *cmd_name = Jim_GetString(argv[0], NULL);
3874
3875         Jim_GetOptInfo goi;
3876         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3877
3878         if ((goi.argc == 2) || (goi.argc == 3))
3879         {
3880                 Jim_SetResult_sprintf(goi.interp,
3881                                 "usage: %s <address> [<count>]", cmd_name);
3882                 return JIM_ERR;
3883         }
3884
3885         jim_wide a;
3886         int e = Jim_GetOpt_Wide(&goi, &a);
3887         if (e != JIM_OK) {
3888                 return JIM_ERR;
3889         }
3890         jim_wide c;
3891         if (goi.argc) {
3892                 e = Jim_GetOpt_Wide(&goi, &c);
3893                 if (e != JIM_OK) {
3894                         return JIM_ERR;
3895                 }
3896         } else {
3897                 c = 1;
3898         }
3899         jim_wide b = 1; /* shut up gcc */
3900         if (strcasecmp(cmd_name, "mdw") == 0)
3901                 b = 4;
3902         else if (strcasecmp(cmd_name, "mdh") == 0)
3903                 b = 2;
3904         else if (strcasecmp(cmd_name, "mdb") == 0)
3905                 b = 1;
3906         else {
3907                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3908                 return JIM_ERR;
3909         }
3910
3911         /* convert count to "bytes" */
3912         c = c * b;
3913
3914         struct target *target = Jim_CmdPrivData(goi.interp);
3915         uint8_t  target_buf[32];
3916         jim_wide x, y, z;
3917         while (c > 0) {
3918                 y = c;
3919                 if (y > 16) {
3920                         y = 16;
3921                 }
3922                 e = target_read_memory(target, a, b, y / b, target_buf);
3923                 if (e != ERROR_OK) {
3924                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
3925                         return JIM_ERR;
3926                 }
3927
3928                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
3929                 switch (b) {
3930                 case 4:
3931                         for (x = 0; x < 16 && x < y; x += 4)
3932                         {
3933                                 z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
3934                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
3935                         }
3936                         for (; (x < 16) ; x += 4) {
3937                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
3938                         }
3939                         break;
3940                 case 2:
3941                         for (x = 0; x < 16 && x < y; x += 2)
3942                         {
3943                                 z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
3944                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
3945                         }
3946                         for (; (x < 16) ; x += 2) {
3947                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
3948                         }
3949                         break;
3950                 case 1:
3951                 default:
3952                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
3953                                 z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
3954                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
3955                         }
3956                         for (; (x < 16) ; x += 1) {
3957                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
3958                         }
3959                         break;
3960                 }
3961                 /* ascii-ify the bytes */
3962                 for (x = 0 ; x < y ; x++) {
3963                         if ((target_buf[x] >= 0x20) &&
3964                                 (target_buf[x] <= 0x7e)) {
3965                                 /* good */
3966                         } else {
3967                                 /* smack it */
3968                                 target_buf[x] = '.';
3969                         }
3970                 }
3971                 /* space pad  */
3972                 while (x < 16) {
3973                         target_buf[x] = ' ';
3974                         x++;
3975                 }
3976                 /* terminate */
3977                 target_buf[16] = 0;
3978                 /* print - with a newline */
3979                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
3980                 /* NEXT... */
3981                 c -= 16;
3982                 a += 16;
3983         }
3984         return JIM_OK;
3985 }
3986
3987 static int jim_target_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3988 {
3989         struct target *target = Jim_CmdPrivData(interp);
3990         return target_mem2array(interp, target, argc - 1, argv + 1);
3991 }
3992
3993 static int jim_target_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3994 {
3995         struct target *target = Jim_CmdPrivData(interp);
3996         return target_array2mem(interp, target, argc - 1, argv + 1);
3997 }
3998
3999 static int jim_target_tap_disabled(Jim_Interp *interp)
4000 {
4001         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4002         return JIM_ERR;
4003 }
4004
4005 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4006 {
4007         if (argc != 1)
4008         {
4009                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4010                 return JIM_ERR;
4011         }
4012         struct target *target = Jim_CmdPrivData(interp);
4013         if (!target->tap->enabled)
4014                 return jim_target_tap_disabled(interp);
4015
4016         int e = target->type->examine(target);
4017         if (e != ERROR_OK)
4018         {
4019                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4020                 return JIM_ERR;
4021         }
4022         return JIM_OK;
4023 }
4024
4025 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4026 {
4027         if (argc != 1)
4028         {
4029                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4030                 return JIM_ERR;
4031         }
4032         struct target *target = Jim_CmdPrivData(interp);
4033         if (!target->tap->enabled)
4034                 return jim_target_tap_disabled(interp);
4035
4036         int e;
4037         if (!(target_was_examined(target))) {
4038                 e = ERROR_TARGET_NOT_EXAMINED;
4039         } else {
4040                 e = target->type->poll(target);
4041         }
4042         if (e != ERROR_OK)
4043         {
4044                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4045                 return JIM_ERR;
4046         }
4047         return JIM_OK;
4048 }
4049
4050 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4051 {
4052         Jim_GetOptInfo goi;
4053         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4054
4055         if (goi.argc != 2)
4056         {
4057                 Jim_WrongNumArgs(interp, 0, argv,
4058                                 "([tT]|[fF]|assert|deassert) BOOL");
4059                 return JIM_ERR;
4060         }
4061
4062         Jim_Nvp *n;
4063         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4064         if (e != JIM_OK)
4065         {
4066                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4067                 return e;
4068         }
4069         /* the halt or not param */
4070         jim_wide a;
4071         e = Jim_GetOpt_Wide(&goi, &a);
4072         if (e != JIM_OK)
4073                 return e;
4074
4075         struct target *target = Jim_CmdPrivData(goi.interp);
4076         if (!target->tap->enabled)
4077                 return jim_target_tap_disabled(interp);
4078         if (!target->type->assert_reset || !target->type->deassert_reset)
4079         {
4080                 Jim_SetResult_sprintf(interp,
4081                                 "No target-specific reset for %s",
4082                                 target_name(target));
4083                 return JIM_ERR;
4084         }
4085         /* determine if we should halt or not. */
4086         target->reset_halt = !!a;
4087         /* When this happens - all workareas are invalid. */
4088         target_free_all_working_areas_restore(target, 0);
4089
4090         /* do the assert */
4091         if (n->value == NVP_ASSERT) {
4092                 e = target->type->assert_reset(target);
4093         } else {
4094                 e = target->type->deassert_reset(target);
4095         }
4096         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4097 }
4098
4099 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4100 {
4101         if (argc != 1) {
4102                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4103                 return JIM_ERR;
4104         }
4105         struct target *target = Jim_CmdPrivData(interp);
4106         if (!target->tap->enabled)
4107                 return jim_target_tap_disabled(interp);
4108         int e = target->type->halt(target);
4109         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4110 }
4111
4112 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4113 {
4114         Jim_GetOptInfo goi;
4115         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4116
4117         /* params:  <name>  statename timeoutmsecs */
4118         if (goi.argc != 2)
4119         {
4120                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4121                 Jim_SetResult_sprintf(goi.interp,
4122                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4123                 return JIM_ERR;
4124         }
4125
4126         Jim_Nvp *n;
4127         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4128         if (e != JIM_OK) {
4129                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4130                 return e;
4131         }
4132         jim_wide a;
4133         e = Jim_GetOpt_Wide(&goi, &a);
4134         if (e != JIM_OK) {
4135                 return e;
4136         }
4137         struct target *target = Jim_CmdPrivData(interp);
4138         if (!target->tap->enabled)
4139                 return jim_target_tap_disabled(interp);
4140
4141         e = target_wait_state(target, n->value, a);
4142         if (e != ERROR_OK)
4143         {
4144                 Jim_SetResult_sprintf(goi.interp,
4145                                 "target: %s wait %s fails (%d) %s",
4146                                 target_name(target), n->name,
4147                                 e, target_strerror_safe(e));
4148                 return JIM_ERR;
4149         }
4150         return JIM_OK;
4151 }
4152 /* List for human, Events defined for this target.
4153  * scripts/programs should use 'name cget -event NAME'
4154  */
4155 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4156 {
4157         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4158         struct target *target = Jim_CmdPrivData(interp);
4159         struct target_event_action *teap = target->event_action;
4160         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4161                                    target->target_number,
4162                                    target_name(target));
4163         command_print(cmd_ctx, "%-25s | Body", "Event");
4164         command_print(cmd_ctx, "------------------------- | "
4165                         "----------------------------------------");
4166         while (teap)
4167         {
4168                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4169                 command_print(cmd_ctx, "%-25s | %s",
4170                                 opt->name, Jim_GetString(teap->body, NULL));
4171                 teap = teap->next;
4172         }
4173         command_print(cmd_ctx, "***END***");
4174         return JIM_OK;
4175 }
4176 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4177 {
4178         if (argc != 1)
4179         {
4180                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4181                 return JIM_ERR;
4182         }
4183         struct target *target = Jim_CmdPrivData(interp);
4184         Jim_SetResultString(interp, target_state_name(target), -1);
4185         return JIM_OK;
4186 }
4187 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4188 {
4189         Jim_GetOptInfo goi;
4190         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4191         if (goi.argc != 1)
4192         {
4193                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4194                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4195                 return JIM_ERR;
4196         }
4197         Jim_Nvp *n;
4198         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4199         if (e != JIM_OK)
4200         {
4201                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4202                 return e;
4203         }
4204         struct target *target = Jim_CmdPrivData(interp);
4205         target_handle_event(target, n->value);
4206         return JIM_OK;
4207 }
4208
4209 static const struct command_registration target_instance_command_handlers[] = {
4210         {
4211                 .name = "configure",
4212                 .mode = COMMAND_CONFIG,
4213                 .jim_handler = &jim_target_configure,
4214                 .usage = "[<target_options> ...]",
4215                 .help  = "configure a new target for use",
4216         },
4217         {
4218                 .name = "cget",
4219                 .mode = COMMAND_ANY,
4220                 .jim_handler = &jim_target_configure,
4221                 .usage = "<target_type> [<target_options> ...]",
4222                 .help  = "configure a new target for use",
4223         },
4224         {
4225                 .name = "mww",
4226                 .mode = COMMAND_EXEC,
4227                 .jim_handler = &jim_target_mw,
4228                 .usage = "<address> <data> [<count>]",
4229                 .help = "Write 32-bit word(s) to target memory",
4230         },
4231         {
4232                 .name = "mwh",
4233                 .mode = COMMAND_EXEC,
4234                 .jim_handler = &jim_target_mw,
4235                 .usage = "<address> <data> [<count>]",
4236                 .help = "Write 16-bit half-word(s) to target memory",
4237         },
4238         {
4239                 .name = "mwb",
4240                 .mode = COMMAND_EXEC,
4241                 .jim_handler = &jim_target_mw,
4242                 .usage = "<address> <data> [<count>]",
4243                 .help = "Write byte(s) to target memory",
4244         },
4245         {
4246                 .name = "mdw",
4247                 .mode = COMMAND_EXEC,
4248                 .jim_handler = &jim_target_md,
4249                 .usage = "<address> [<count>]",
4250                 .help = "Display target memory as 32-bit words",
4251         },
4252         {
4253                 .name = "mdh",
4254                 .mode = COMMAND_EXEC,
4255                 .jim_handler = &jim_target_md,
4256                 .usage = "<address> [<count>]",
4257                 .help = "Display target memory as 16-bit half-words",
4258         },
4259         {
4260                 .name = "mdb",
4261                 .mode = COMMAND_EXEC,
4262                 .jim_handler = &jim_target_md,
4263                 .usage = "<address> [<count>]",
4264                 .help = "Display target memory as 8-bit bytes",
4265         },
4266         {
4267                 .name = "array2mem",
4268                 .mode = COMMAND_EXEC,
4269                 .jim_handler = &jim_target_array2mem,
4270         },
4271         {
4272                 .name = "mem2array",
4273                 .mode = COMMAND_EXEC,
4274                 .jim_handler = &jim_target_mem2array,
4275         },
4276         {
4277                 .name = "eventlist",
4278                 .mode = COMMAND_EXEC,
4279                 .jim_handler = &jim_target_event_list,
4280         },
4281         {
4282                 .name = "curstate",
4283                 .mode = COMMAND_EXEC,
4284                 .jim_handler = &jim_target_current_state,
4285         },
4286         {
4287                 .name = "arp_examine",
4288                 .mode = COMMAND_EXEC,
4289                 .jim_handler = &jim_target_examine,
4290         },
4291         {
4292                 .name = "arp_poll",
4293                 .mode = COMMAND_EXEC,
4294                 .jim_handler = &jim_target_poll,
4295         },
4296         {
4297                 .name = "arp_reset",
4298                 .mode = COMMAND_EXEC,
4299                 .jim_handler = &jim_target_reset,
4300         },
4301         {
4302                 .name = "arp_halt",
4303                 .mode = COMMAND_EXEC,
4304                 .jim_handler = &jim_target_halt,
4305         },
4306         {
4307                 .name = "arp_waitstate",
4308                 .mode = COMMAND_EXEC,
4309                 .jim_handler = &jim_target_wait_state,
4310         },
4311         {
4312                 .name = "invoke-event",
4313                 .mode = COMMAND_EXEC,
4314                 .jim_handler = &jim_target_invoke_event,
4315         },
4316         COMMAND_REGISTRATION_DONE
4317 };
4318
4319 static int target_create(Jim_GetOptInfo *goi)
4320 {
4321         Jim_Obj *new_cmd;
4322         Jim_Cmd *cmd;
4323         const char *cp;
4324         char *cp2;
4325         int e;
4326         int x;
4327         struct target *target;
4328         struct command_context *cmd_ctx;
4329
4330         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4331         if (goi->argc < 3) {
4332                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4333                 return JIM_ERR;
4334         }
4335
4336         /* COMMAND */
4337         Jim_GetOpt_Obj(goi, &new_cmd);
4338         /* does this command exist? */
4339         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4340         if (cmd) {
4341                 cp = Jim_GetString(new_cmd, NULL);
4342                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4343                 return JIM_ERR;
4344         }
4345
4346         /* TYPE */
4347         e = Jim_GetOpt_String(goi, &cp2, NULL);
4348         cp = cp2;
4349         /* now does target type exist */
4350         for (x = 0 ; target_types[x] ; x++) {
4351                 if (0 == strcmp(cp, target_types[x]->name)) {
4352                         /* found */
4353                         break;
4354                 }
4355         }
4356         if (target_types[x] == NULL) {
4357                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4358                 for (x = 0 ; target_types[x] ; x++) {
4359                         if (target_types[x + 1]) {
4360                                 Jim_AppendStrings(goi->interp,
4361                                                                    Jim_GetResult(goi->interp),
4362                                                                    target_types[x]->name,
4363                                                                    ", ", NULL);
4364                         } else {
4365                                 Jim_AppendStrings(goi->interp,
4366                                                                    Jim_GetResult(goi->interp),
4367                                                                    " or ",
4368                                                                    target_types[x]->name,NULL);
4369                         }
4370                 }
4371                 return JIM_ERR;
4372         }
4373
4374         /* Create it */
4375         target = calloc(1,sizeof(struct target));
4376         /* set target number */
4377         target->target_number = new_target_number();
4378
4379         /* allocate memory for each unique target type */
4380         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4381
4382         memcpy(target->type, target_types[x], sizeof(struct target_type));
4383
4384         /* will be set by "-endian" */
4385         target->endianness = TARGET_ENDIAN_UNKNOWN;
4386
4387         target->working_area        = 0x0;
4388         target->working_area_size   = 0x0;
4389         target->working_areas       = NULL;
4390         target->backup_working_area = 0;
4391
4392         target->state               = TARGET_UNKNOWN;
4393         target->debug_reason        = DBG_REASON_UNDEFINED;
4394         target->reg_cache           = NULL;
4395         target->breakpoints         = NULL;
4396         target->watchpoints         = NULL;
4397         target->next                = NULL;
4398         target->arch_info           = NULL;
4399
4400         target->display             = 1;
4401
4402         target->halt_issued                     = false;
4403
4404         /* initialize trace information */
4405         target->trace_info = malloc(sizeof(struct trace));
4406         target->trace_info->num_trace_points         = 0;
4407         target->trace_info->trace_points_size        = 0;
4408         target->trace_info->trace_points             = NULL;
4409         target->trace_info->trace_history_size       = 0;
4410         target->trace_info->trace_history            = NULL;
4411         target->trace_info->trace_history_pos        = 0;
4412         target->trace_info->trace_history_overflowed = 0;
4413
4414         target->dbgmsg          = NULL;
4415         target->dbg_msg_enabled = 0;
4416
4417         target->endianness = TARGET_ENDIAN_UNKNOWN;
4418
4419         /* Do the rest as "configure" options */
4420         goi->isconfigure = 1;
4421         e = target_configure(goi, target);
4422
4423         if (target->tap == NULL)
4424         {
4425                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4426                 e = JIM_ERR;
4427         }
4428
4429         if (e != JIM_OK) {
4430                 free(target->type);
4431                 free(target);
4432                 return e;
4433         }
4434
4435         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4436                 /* default endian to little if not specified */
4437                 target->endianness = TARGET_LITTLE_ENDIAN;
4438         }
4439
4440         /* incase variant is not set */
4441         if (!target->variant)
4442                 target->variant = strdup("");
4443
4444         cp = Jim_GetString(new_cmd, NULL);
4445         target->cmd_name = strdup(cp);
4446
4447         /* create the target specific commands */
4448         if (target->type->commands) {
4449                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4450                 if (ERROR_OK != e)
4451                         LOG_ERROR("unable to register '%s' commands", cp);
4452         }
4453         if (target->type->target_create) {
4454                 (*(target->type->target_create))(target, goi->interp);
4455         }
4456
4457         /* append to end of list */
4458         {
4459                 struct target **tpp;
4460                 tpp = &(all_targets);
4461                 while (*tpp) {
4462                         tpp = &((*tpp)->next);
4463                 }
4464                 *tpp = target;
4465         }
4466         
4467         /* now - create the new target name command */
4468         const const struct command_registration target_subcommands[] = {
4469                 {
4470                         .chain = target_instance_command_handlers,
4471                 },
4472                 {
4473                         .chain = target->type->commands,
4474                 },
4475                 COMMAND_REGISTRATION_DONE
4476         };
4477         const const struct command_registration target_commands[] = {
4478                 {
4479                         .name = cp,
4480                         .mode = COMMAND_ANY,
4481                         .help = "target command group",
4482                         .chain = target_subcommands,
4483                 },
4484                 COMMAND_REGISTRATION_DONE
4485         };
4486         e = register_commands(cmd_ctx, NULL, target_commands);
4487         if (ERROR_OK != e)
4488                 return JIM_ERR;
4489
4490         struct command *c = command_find_in_context(cmd_ctx, cp);
4491         assert(c);
4492         command_set_handler_data(c, target);
4493
4494         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4495 }
4496
4497 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4498 {
4499         if (argc != 1)
4500         {
4501                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4502                 return JIM_ERR;
4503         }
4504         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4505         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4506         return JIM_OK;
4507 }
4508
4509 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4510 {
4511         if (argc != 1)
4512         {
4513                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4514                 return JIM_ERR;
4515         }
4516         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4517         for (unsigned x = 0; NULL != target_types[x]; x++)
4518         {
4519                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4520                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4521         }
4522         return JIM_OK;
4523 }
4524
4525 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4526 {
4527         if (argc != 1)
4528         {
4529                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4530                 return JIM_ERR;
4531         }
4532         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4533         struct target *target = all_targets;
4534         while (target)
4535         {
4536                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4537                         Jim_NewStringObj(interp, target_name(target), -1));
4538                 target = target->next;
4539         }
4540         return JIM_OK;
4541 }
4542
4543 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4544 {
4545         Jim_GetOptInfo goi;
4546         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4547         if (goi.argc < 3)
4548         {
4549                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4550                         "<name> <target_type> [<target_options> ...]");
4551                 return JIM_ERR;
4552         }
4553         return target_create(&goi);
4554 }
4555
4556 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4557 {
4558         Jim_GetOptInfo goi;
4559         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4560
4561         /* It's OK to remove this mechanism sometime after August 2010 or so */
4562         LOG_WARNING("don't use numbers as target identifiers; use names");
4563         if (goi.argc != 1)
4564         {
4565                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4566                 return JIM_ERR;
4567         }
4568         jim_wide w;
4569         int e = Jim_GetOpt_Wide(&goi, &w);
4570         if (e != JIM_OK)
4571                 return JIM_ERR;
4572
4573         struct target *target;
4574         for (target = all_targets; NULL != target; target = target->next)
4575         {
4576                 if (target->target_number != w)
4577                         continue;
4578
4579                 Jim_SetResultString(goi.interp, target_name(target), -1);
4580                 return JIM_OK;
4581         }
4582         Jim_SetResult_sprintf(goi.interp,
4583                         "Target: number %d does not exist", (int)(w));
4584         return JIM_ERR;
4585 }
4586
4587 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4588 {
4589         if (argc != 1)
4590         {
4591                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4592                 return JIM_ERR;
4593         }
4594         unsigned count = 0;
4595         struct target *target = all_targets;
4596         while (NULL != target)
4597         {
4598                 target = target->next;
4599                 count++;
4600         }
4601         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4602         return JIM_OK;
4603 }
4604
4605 static const struct command_registration target_subcommand_handlers[] = {
4606         {
4607                 .name = "init",
4608                 .mode = COMMAND_CONFIG,
4609                 .handler = &handle_target_init_command,
4610                 .help = "initialize targets",
4611         },
4612         {
4613                 .name = "create",
4614                 .mode = COMMAND_ANY,
4615                 .jim_handler = &jim_target_create,
4616                 .usage = "<name> <type> ...",
4617                 .help = "Returns the currently selected target",
4618         },
4619         {
4620                 .name = "current",
4621                 .mode = COMMAND_ANY,
4622                 .jim_handler = &jim_target_current,
4623                 .help = "Returns the currently selected target",
4624         },
4625         {
4626                 .name = "types",
4627                 .mode = COMMAND_ANY,
4628                 .jim_handler = &jim_target_types,
4629                 .help = "Returns the available target types as a list of strings",
4630         },
4631         {
4632                 .name = "names",
4633                 .mode = COMMAND_ANY,
4634                 .jim_handler = &jim_target_names,
4635                 .help = "Returns the names of all targets as a list of strings",
4636         },
4637         {
4638                 .name = "number",
4639                 .mode = COMMAND_ANY,
4640                 .jim_handler = &jim_target_number,
4641                 .usage = "<number>",
4642                 .help = "Returns the name of target <n>",
4643         },
4644         {
4645                 .name = "count",
4646                 .mode = COMMAND_ANY,
4647                 .jim_handler = &jim_target_count,
4648                 .help = "Returns the number of targets as an integer",
4649         },
4650         COMMAND_REGISTRATION_DONE
4651 };
4652
4653
4654 struct FastLoad
4655 {
4656         uint32_t address;
4657         uint8_t *data;
4658         int length;
4659
4660 };
4661
4662 static int fastload_num;
4663 static struct FastLoad *fastload;
4664
4665 static void free_fastload(void)
4666 {
4667         if (fastload != NULL)
4668         {
4669                 int i;
4670                 for (i = 0; i < fastload_num; i++)
4671                 {
4672                         if (fastload[i].data)
4673                                 free(fastload[i].data);
4674                 }
4675                 free(fastload);
4676                 fastload = NULL;
4677         }
4678 }
4679
4680
4681
4682
4683 COMMAND_HANDLER(handle_fast_load_image_command)
4684 {
4685         uint8_t *buffer;
4686         size_t buf_cnt;
4687         uint32_t image_size;
4688         uint32_t min_address = 0;
4689         uint32_t max_address = 0xffffffff;
4690         int i;
4691
4692         struct image image;
4693
4694         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4695                         &image, &min_address, &max_address);
4696         if (ERROR_OK != retval)
4697                 return retval;
4698
4699         struct duration bench;
4700         duration_start(&bench);
4701
4702         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4703         {
4704                 return ERROR_OK;
4705         }
4706
4707         image_size = 0x0;
4708         retval = ERROR_OK;
4709         fastload_num = image.num_sections;
4710         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4711         if (fastload == NULL)
4712         {
4713                 image_close(&image);
4714                 return ERROR_FAIL;
4715         }
4716         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4717         for (i = 0; i < image.num_sections; i++)
4718         {
4719                 buffer = malloc(image.sections[i].size);
4720                 if (buffer == NULL)
4721                 {
4722                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4723                                                   (int)(image.sections[i].size));
4724                         break;
4725                 }
4726
4727                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4728                 {
4729                         free(buffer);
4730                         break;
4731                 }
4732
4733                 uint32_t offset = 0;
4734                 uint32_t length = buf_cnt;
4735
4736
4737                 /* DANGER!!! beware of unsigned comparision here!!! */
4738
4739                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4740                                 (image.sections[i].base_address < max_address))
4741                 {
4742                         if (image.sections[i].base_address < min_address)
4743                         {
4744                                 /* clip addresses below */
4745                                 offset += min_address-image.sections[i].base_address;
4746                                 length -= offset;
4747                         }
4748
4749                         if (image.sections[i].base_address + buf_cnt > max_address)
4750                         {
4751                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4752                         }
4753
4754                         fastload[i].address = image.sections[i].base_address + offset;
4755                         fastload[i].data = malloc(length);
4756                         if (fastload[i].data == NULL)
4757                         {
4758                                 free(buffer);
4759                                 break;
4760                         }
4761                         memcpy(fastload[i].data, buffer + offset, length);
4762                         fastload[i].length = length;
4763
4764                         image_size += length;
4765                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4766                                                   (unsigned int)length,
4767                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4768                 }
4769
4770                 free(buffer);
4771         }
4772
4773         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4774         {
4775                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4776                                 "in %fs (%0.3f kb/s)", image_size, 
4777                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4778
4779                 command_print(CMD_CTX,
4780                                 "WARNING: image has not been loaded to target!"
4781                                 "You can issue a 'fast_load' to finish loading.");
4782         }
4783
4784         image_close(&image);
4785
4786         if (retval != ERROR_OK)
4787         {
4788                 free_fastload();
4789         }
4790
4791         return retval;
4792 }
4793
4794 COMMAND_HANDLER(handle_fast_load_command)
4795 {
4796         if (CMD_ARGC > 0)
4797                 return ERROR_COMMAND_SYNTAX_ERROR;
4798         if (fastload == NULL)
4799         {
4800                 LOG_ERROR("No image in memory");
4801                 return ERROR_FAIL;
4802         }
4803         int i;
4804         int ms = timeval_ms();
4805         int size = 0;
4806         int retval = ERROR_OK;
4807         for (i = 0; i < fastload_num;i++)
4808         {
4809                 struct target *target = get_current_target(CMD_CTX);
4810                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
4811                                           (unsigned int)(fastload[i].address),
4812                                           (unsigned int)(fastload[i].length));
4813                 if (retval == ERROR_OK)
4814                 {
4815                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4816                 }
4817                 size += fastload[i].length;
4818         }
4819         int after = timeval_ms();
4820         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4821         return retval;
4822 }
4823
4824 static const struct command_registration target_command_handlers[] = {
4825         {
4826                 .name = "targets",
4827                 .handler = &handle_targets_command,
4828                 .mode = COMMAND_ANY,
4829                 .help = "change current command line target (one parameter) "
4830                         "or list targets (no parameters)",
4831                 .usage = "[<new_current_target>]",
4832         },
4833         {
4834                 .name = "target",
4835                 .mode = COMMAND_CONFIG,
4836                 .help = "configure target",
4837
4838                 .chain = target_subcommand_handlers,
4839         },
4840         COMMAND_REGISTRATION_DONE
4841 };
4842
4843 int target_register_commands(struct command_context *cmd_ctx)
4844 {
4845         return register_commands(cmd_ctx, NULL, target_command_handlers);
4846 }
4847
4848 static const struct command_registration target_exec_command_handlers[] = {
4849         {
4850                 .name = "fast_load_image",
4851                 .handler = &handle_fast_load_image_command,
4852                 .mode = COMMAND_ANY,
4853                 .help = "Load image into memory, mainly for profiling purposes",
4854                 .usage = "<file> <address> ['bin'|'ihex'|'elf'|'s19'] "
4855                         "[min_address] [max_length]",
4856         },
4857         {
4858                 .name = "fast_load",
4859                 .handler = &handle_fast_load_command,
4860                 .mode = COMMAND_ANY,
4861                 .help = "loads active fast load image to current target "
4862                         "- mainly for profiling purposes",
4863         },
4864         {
4865                 .name = "profile",
4866                 .handler = &handle_profile_command,
4867                 .mode = COMMAND_EXEC,
4868                 .help = "profiling samples the CPU PC",
4869         },
4870         /** @todo don't register virt2phys() unless target supports it */
4871         {
4872                 .name = "virt2phys",
4873                 .handler = &handle_virt2phys_command,
4874                 .mode = COMMAND_ANY,
4875                 .help = "translate a virtual address into a physical address",
4876         },
4877
4878         {
4879                 .name = "reg",
4880                 .handler = &handle_reg_command,
4881                 .mode = COMMAND_EXEC,
4882                 .help = "display or set a register",
4883         },
4884
4885         {
4886                 .name = "poll",
4887                 .handler = &handle_poll_command,
4888                 .mode = COMMAND_EXEC,
4889                 .help = "poll target state",
4890         },
4891         {
4892                 .name = "wait_halt",
4893                 .handler = &handle_wait_halt_command,
4894                 .mode = COMMAND_EXEC,
4895                 .help = "wait for target halt",
4896                 .usage = "[time (s)]",
4897         },
4898         {
4899                 .name = "halt",
4900                 .handler = &handle_halt_command,
4901                 .mode = COMMAND_EXEC,
4902                 .help = "halt target",
4903         },
4904         {
4905                 .name = "resume",
4906                 .handler = &handle_resume_command,
4907                 .mode = COMMAND_EXEC,
4908                 .help = "resume target",
4909                 .usage = "[<address>]",
4910         },
4911         {
4912                 .name = "reset",
4913                 .handler = &handle_reset_command,
4914                 .mode = COMMAND_EXEC,
4915                 .usage = "[run|halt|init]",
4916                 .help = "Reset all targets into the specified mode."
4917                         "Default reset mode is run, if not given.",
4918         },
4919         {
4920                 .name = "soft_reset_halt",
4921                 .handler = &handle_soft_reset_halt_command,
4922                 .mode = COMMAND_EXEC,
4923                 .help = "halt the target and do a soft reset",
4924         },
4925         {
4926
4927                 .name = "step",
4928                 .handler = &handle_step_command,
4929                 .mode = COMMAND_EXEC,
4930                 .help = "step one instruction from current PC or [addr]",
4931                 .usage = "[<address>]",
4932         },
4933         {
4934
4935                 .name = "mdw",
4936                 .handler = &handle_md_command,
4937                 .mode = COMMAND_EXEC,
4938                 .help = "display memory words",
4939                 .usage = "[phys] <addr> [count]",
4940         },
4941         {
4942                 .name = "mdh",
4943                 .handler = &handle_md_command,
4944                 .mode = COMMAND_EXEC,
4945                 .help = "display memory half-words",
4946                 .usage = "[phys] <addr> [count]",
4947         },
4948         {
4949                 .name = "mdb",
4950                 .handler = &handle_md_command,
4951                 .mode = COMMAND_EXEC,
4952                 .help = "display memory bytes",
4953                 .usage = "[phys] <addr> [count]",
4954         },
4955         {
4956
4957                 .name = "mww",
4958                 .handler = &handle_mw_command,
4959                 .mode = COMMAND_EXEC,
4960                 .help = "write memory word",
4961                 .usage = "[phys]  <addr> <value> [count]",
4962         },
4963         {
4964                 .name = "mwh",
4965                 .handler = &handle_mw_command,
4966                 .mode = COMMAND_EXEC,
4967                 .help = "write memory half-word",
4968                 .usage = "[phys] <addr> <value> [count]",
4969         },
4970         {
4971                 .name = "mwb",
4972                 .handler = &handle_mw_command,
4973                 .mode = COMMAND_EXEC,
4974                 .help = "write memory byte",
4975                 .usage = "[phys] <addr> <value> [count]",
4976         },
4977         {
4978
4979                 .name = "bp",
4980                 .handler = &handle_bp_command,
4981                 .mode = COMMAND_EXEC,
4982                 .help = "list or set breakpoint",
4983                 .usage = "[<address> <length> [hw]]",
4984         },
4985         {
4986                 .name = "rbp",
4987                 .handler = &handle_rbp_command,
4988                 .mode = COMMAND_EXEC,
4989                 .help = "remove breakpoint",
4990                 .usage = "<address>",
4991         },
4992         {
4993
4994                 .name = "wp",
4995                 .handler = &handle_wp_command,
4996                 .mode = COMMAND_EXEC,
4997                 .help = "list or set watchpoint",
4998                 .usage = "[<address> <length> <r/w/a> [value] [mask]]",
4999         },
5000         {
5001                 .name = "rwp",
5002                 .handler = &handle_rwp_command,
5003                 .mode = COMMAND_EXEC,
5004                 .help = "remove watchpoint",
5005                 .usage = "<address>",
5006
5007         },
5008         {
5009                 .name = "load_image",
5010                 .handler = &handle_load_image_command,
5011                 .mode = COMMAND_EXEC,
5012                 .usage = "<file> <address> ['bin'|'ihex'|'elf'|'s19'] "
5013                         "[min_address] [max_length]",
5014         },
5015         {
5016                 .name = "dump_image",
5017                 .handler = &handle_dump_image_command,
5018                 .mode = COMMAND_EXEC,
5019                 .usage = "<file> <address> <size>",
5020         },
5021         {
5022                 .name = "verify_image",
5023                 .handler = &handle_verify_image_command,
5024                 .mode = COMMAND_EXEC,
5025                 .usage = "<file> [offset] [type]",
5026         },
5027         {
5028                 .name = "test_image",
5029                 .handler = &handle_test_image_command,
5030                 .mode = COMMAND_EXEC,
5031                 .usage = "<file> [offset] [type]",
5032         },
5033         {
5034                 .name = "ocd_mem2array",
5035                 .mode = COMMAND_EXEC,
5036                 .jim_handler = &jim_mem2array,
5037                 .help = "read memory and return as a TCL array "
5038                         "for script processing",
5039                 .usage = "<arrayname> <width=32|16|8> <address> <count>",
5040         },
5041         {
5042                 .name = "ocd_array2mem",
5043                 .mode = COMMAND_EXEC,
5044                 .jim_handler = &jim_array2mem,
5045                 .help = "convert a TCL array to memory locations "
5046                         "and write the values",
5047                 .usage = "<arrayname> <width=32|16|8> <address> <count>",
5048         },
5049         COMMAND_REGISTRATION_DONE
5050 };
5051 int target_register_user_commands(struct command_context *cmd_ctx)
5052 {
5053         int retval = ERROR_OK;
5054         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5055                 return retval;
5056
5057         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5058                 return retval;
5059
5060
5061         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5062 }