gdb: restore behavior from 0.3.1 for srst_asserted and power_restore
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38
39 #include "target.h"
40 #include "target_type.h"
41 #include "target_request.h"
42 #include "breakpoints.h"
43 #include "register.h"
44 #include "trace.h"
45 #include "image.h"
46
47
48 static int target_array2mem(Jim_Interp *interp, struct target *target,
49                 int argc, Jim_Obj *const *argv);
50 static int target_mem2array(Jim_Interp *interp, struct target *target,
51                 int argc, Jim_Obj *const *argv);
52
53 /* targets */
54 extern struct target_type arm7tdmi_target;
55 extern struct target_type arm720t_target;
56 extern struct target_type arm9tdmi_target;
57 extern struct target_type arm920t_target;
58 extern struct target_type arm966e_target;
59 extern struct target_type arm926ejs_target;
60 extern struct target_type fa526_target;
61 extern struct target_type feroceon_target;
62 extern struct target_type dragonite_target;
63 extern struct target_type xscale_target;
64 extern struct target_type cortexm3_target;
65 extern struct target_type cortexa8_target;
66 extern struct target_type arm11_target;
67 extern struct target_type mips_m4k_target;
68 extern struct target_type avr_target;
69 extern struct target_type dsp563xx_target;
70 extern struct target_type testee_target;
71
72 struct target_type *target_types[] =
73 {
74         &arm7tdmi_target,
75         &arm9tdmi_target,
76         &arm920t_target,
77         &arm720t_target,
78         &arm966e_target,
79         &arm926ejs_target,
80         &fa526_target,
81         &feroceon_target,
82         &dragonite_target,
83         &xscale_target,
84         &cortexm3_target,
85         &cortexa8_target,
86         &arm11_target,
87         &mips_m4k_target,
88         &avr_target,
89         &dsp563xx_target,
90         &testee_target,
91         NULL,
92 };
93
94 struct target *all_targets = NULL;
95 struct target_event_callback *target_event_callbacks = NULL;
96 struct target_timer_callback *target_timer_callbacks = NULL;
97
98 static const Jim_Nvp nvp_assert[] = {
99         { .name = "assert", NVP_ASSERT },
100         { .name = "deassert", NVP_DEASSERT },
101         { .name = "T", NVP_ASSERT },
102         { .name = "F", NVP_DEASSERT },
103         { .name = "t", NVP_ASSERT },
104         { .name = "f", NVP_DEASSERT },
105         { .name = NULL, .value = -1 }
106 };
107
108 static const Jim_Nvp nvp_error_target[] = {
109         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
110         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
111         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
112         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
113         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
114         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
115         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
116         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
117         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
118         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
119         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
120         { .value = -1, .name = NULL }
121 };
122
123 const char *target_strerror_safe(int err)
124 {
125         const Jim_Nvp *n;
126
127         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
128         if (n->name == NULL) {
129                 return "unknown";
130         } else {
131                 return n->name;
132         }
133 }
134
135 static const Jim_Nvp nvp_target_event[] = {
136         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
137         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
138
139         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
140         { .value = TARGET_EVENT_HALTED, .name = "halted" },
141         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
142         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
143         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
144
145         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
146         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
147
148         /* historical name */
149
150         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
151
152         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
153         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
154         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
155         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
156         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
157         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
158         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
159         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
160         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
161         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
162         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
163
164         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
165         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
166
167         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
168         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
169
170         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
171         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
172
173         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
174         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
175
176         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
177         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
178
179         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
180         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
181         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
182
183         { .name = NULL, .value = -1 }
184 };
185
186 static const Jim_Nvp nvp_target_state[] = {
187         { .name = "unknown", .value = TARGET_UNKNOWN },
188         { .name = "running", .value = TARGET_RUNNING },
189         { .name = "halted",  .value = TARGET_HALTED },
190         { .name = "reset",   .value = TARGET_RESET },
191         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
192         { .name = NULL, .value = -1 },
193 };
194
195 static const Jim_Nvp nvp_target_debug_reason [] = {
196         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
197         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
198         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
199         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
200         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
201         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
202         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
203         { .name = NULL, .value = -1 },
204 };
205
206 static const Jim_Nvp nvp_target_endian[] = {
207         { .name = "big",    .value = TARGET_BIG_ENDIAN },
208         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
209         { .name = "be",     .value = TARGET_BIG_ENDIAN },
210         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
211         { .name = NULL,     .value = -1 },
212 };
213
214 static const Jim_Nvp nvp_reset_modes[] = {
215         { .name = "unknown", .value = RESET_UNKNOWN },
216         { .name = "run"    , .value = RESET_RUN },
217         { .name = "halt"   , .value = RESET_HALT },
218         { .name = "init"   , .value = RESET_INIT },
219         { .name = NULL     , .value = -1 },
220 };
221
222 const char *debug_reason_name(struct target *t)
223 {
224         const char *cp;
225
226         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
227                         t->debug_reason)->name;
228         if (!cp) {
229                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
230                 cp = "(*BUG*unknown*BUG*)";
231         }
232         return cp;
233 }
234
235 const char *
236 target_state_name( struct target *t )
237 {
238         const char *cp;
239         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
240         if( !cp ){
241                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
242                 cp = "(*BUG*unknown*BUG*)";
243         }
244         return cp;
245 }
246
247 /* determine the number of the new target */
248 static int new_target_number(void)
249 {
250         struct target *t;
251         int x;
252
253         /* number is 0 based */
254         x = -1;
255         t = all_targets;
256         while (t) {
257                 if (x < t->target_number) {
258                         x = t->target_number;
259                 }
260                 t = t->next;
261         }
262         return x + 1;
263 }
264
265 /* read a uint32_t from a buffer in target memory endianness */
266 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
267 {
268         if (target->endianness == TARGET_LITTLE_ENDIAN)
269                 return le_to_h_u32(buffer);
270         else
271                 return be_to_h_u32(buffer);
272 }
273
274 /* read a uint16_t from a buffer in target memory endianness */
275 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
276 {
277         if (target->endianness == TARGET_LITTLE_ENDIAN)
278                 return le_to_h_u16(buffer);
279         else
280                 return be_to_h_u16(buffer);
281 }
282
283 /* read a uint8_t from a buffer in target memory endianness */
284 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
285 {
286         return *buffer & 0x0ff;
287 }
288
289 /* write a uint32_t to a buffer in target memory endianness */
290 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
291 {
292         if (target->endianness == TARGET_LITTLE_ENDIAN)
293                 h_u32_to_le(buffer, value);
294         else
295                 h_u32_to_be(buffer, value);
296 }
297
298 /* write a uint16_t to a buffer in target memory endianness */
299 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
300 {
301         if (target->endianness == TARGET_LITTLE_ENDIAN)
302                 h_u16_to_le(buffer, value);
303         else
304                 h_u16_to_be(buffer, value);
305 }
306
307 /* write a uint8_t to a buffer in target memory endianness */
308 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
309 {
310         *buffer = value;
311 }
312
313 /* return a pointer to a configured target; id is name or number */
314 struct target *get_target(const char *id)
315 {
316         struct target *target;
317
318         /* try as tcltarget name */
319         for (target = all_targets; target; target = target->next) {
320                 if (target->cmd_name == NULL)
321                         continue;
322                 if (strcmp(id, target->cmd_name) == 0)
323                         return target;
324         }
325
326         /* It's OK to remove this fallback sometime after August 2010 or so */
327
328         /* no match, try as number */
329         unsigned num;
330         if (parse_uint(id, &num) != ERROR_OK)
331                 return NULL;
332
333         for (target = all_targets; target; target = target->next) {
334                 if (target->target_number == (int)num) {
335                         LOG_WARNING("use '%s' as target identifier, not '%u'",
336                                         target->cmd_name, num);
337                         return target;
338                 }
339         }
340
341         return NULL;
342 }
343
344 /* returns a pointer to the n-th configured target */
345 static struct target *get_target_by_num(int num)
346 {
347         struct target *target = all_targets;
348
349         while (target) {
350                 if (target->target_number == num) {
351                         return target;
352                 }
353                 target = target->next;
354         }
355
356         return NULL;
357 }
358
359 struct target* get_current_target(struct command_context *cmd_ctx)
360 {
361         struct target *target = get_target_by_num(cmd_ctx->current_target);
362
363         if (target == NULL)
364         {
365                 LOG_ERROR("BUG: current_target out of bounds");
366                 exit(-1);
367         }
368
369         return target;
370 }
371
372 int target_poll(struct target *target)
373 {
374         int retval;
375
376         /* We can't poll until after examine */
377         if (!target_was_examined(target))
378         {
379                 /* Fail silently lest we pollute the log */
380                 return ERROR_FAIL;
381         }
382
383         retval = target->type->poll(target);
384         if (retval != ERROR_OK)
385                 return retval;
386
387         if (target->halt_issued)
388         {
389                 if (target->state == TARGET_HALTED)
390                 {
391                         target->halt_issued = false;
392                 } else
393                 {
394                         long long t = timeval_ms() - target->halt_issued_time;
395                         if (t>1000)
396                         {
397                                 target->halt_issued = false;
398                                 LOG_INFO("Halt timed out, wake up GDB.");
399                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
400                         }
401                 }
402         }
403
404         return ERROR_OK;
405 }
406
407 int target_halt(struct target *target)
408 {
409         int retval;
410         /* We can't poll until after examine */
411         if (!target_was_examined(target))
412         {
413                 LOG_ERROR("Target not examined yet");
414                 return ERROR_FAIL;
415         }
416
417         retval = target->type->halt(target);
418         if (retval != ERROR_OK)
419                 return retval;
420
421         target->halt_issued = true;
422         target->halt_issued_time = timeval_ms();
423
424         return ERROR_OK;
425 }
426
427 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
428 {
429         int retval;
430
431         /* We can't poll until after examine */
432         if (!target_was_examined(target))
433         {
434                 LOG_ERROR("Target not examined yet");
435                 return ERROR_FAIL;
436         }
437
438         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
439          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
440          * the application.
441          */
442         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
443                 return retval;
444
445         return retval;
446 }
447
448 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
449 {
450         char buf[100];
451         int retval;
452         Jim_Nvp *n;
453         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
454         if (n->name == NULL) {
455                 LOG_ERROR("invalid reset mode");
456                 return ERROR_FAIL;
457         }
458
459         /* disable polling during reset to make reset event scripts
460          * more predictable, i.e. dr/irscan & pathmove in events will
461          * not have JTAG operations injected into the middle of a sequence.
462          */
463         bool save_poll = jtag_poll_get_enabled();
464
465         jtag_poll_set_enabled(false);
466
467         sprintf(buf, "ocd_process_reset %s", n->name);
468         retval = Jim_Eval(cmd_ctx->interp, buf);
469
470         jtag_poll_set_enabled(save_poll);
471
472         if (retval != JIM_OK) {
473                 Jim_PrintErrorMessage(cmd_ctx->interp);
474                 return ERROR_FAIL;
475         }
476
477         /* We want any events to be processed before the prompt */
478         retval = target_call_timer_callbacks_now();
479
480         struct target *target;
481         for (target = all_targets; target; target = target->next) {
482                 target->type->check_reset(target);
483         }
484
485         return retval;
486 }
487
488 static int identity_virt2phys(struct target *target,
489                 uint32_t virtual, uint32_t *physical)
490 {
491         *physical = virtual;
492         return ERROR_OK;
493 }
494
495 static int no_mmu(struct target *target, int *enabled)
496 {
497         *enabled = 0;
498         return ERROR_OK;
499 }
500
501 static int default_examine(struct target *target)
502 {
503         target_set_examined(target);
504         return ERROR_OK;
505 }
506
507 /* no check by default */
508 static int default_check_reset(struct target *target)
509 {
510         return ERROR_OK;
511 }
512
513 int target_examine_one(struct target *target)
514 {
515         return target->type->examine(target);
516 }
517
518 static int jtag_enable_callback(enum jtag_event event, void *priv)
519 {
520         struct target *target = priv;
521
522         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
523                 return ERROR_OK;
524
525         jtag_unregister_event_callback(jtag_enable_callback, target);
526         return target_examine_one(target);
527 }
528
529
530 /* Targets that correctly implement init + examine, i.e.
531  * no communication with target during init:
532  *
533  * XScale
534  */
535 int target_examine(void)
536 {
537         int retval = ERROR_OK;
538         struct target *target;
539
540         for (target = all_targets; target; target = target->next)
541         {
542                 /* defer examination, but don't skip it */
543                 if (!target->tap->enabled) {
544                         jtag_register_event_callback(jtag_enable_callback,
545                                         target);
546                         continue;
547                 }
548                 if ((retval = target_examine_one(target)) != ERROR_OK)
549                         return retval;
550         }
551         return retval;
552 }
553 const char *target_type_name(struct target *target)
554 {
555         return target->type->name;
556 }
557
558 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
559 {
560         if (!target_was_examined(target))
561         {
562                 LOG_ERROR("Target not examined yet");
563                 return ERROR_FAIL;
564         }
565         return target->type->write_memory_imp(target, address, size, count, buffer);
566 }
567
568 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
569 {
570         if (!target_was_examined(target))
571         {
572                 LOG_ERROR("Target not examined yet");
573                 return ERROR_FAIL;
574         }
575         return target->type->read_memory_imp(target, address, size, count, buffer);
576 }
577
578 static int target_soft_reset_halt_imp(struct target *target)
579 {
580         if (!target_was_examined(target))
581         {
582                 LOG_ERROR("Target not examined yet");
583                 return ERROR_FAIL;
584         }
585         if (!target->type->soft_reset_halt_imp) {
586                 LOG_ERROR("Target %s does not support soft_reset_halt",
587                                 target_name(target));
588                 return ERROR_FAIL;
589         }
590         return target->type->soft_reset_halt_imp(target);
591 }
592
593 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
594 {
595         if (!target_was_examined(target))
596         {
597                 LOG_ERROR("Target not examined yet");
598                 return ERROR_FAIL;
599         }
600         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
601 }
602
603 int target_read_memory(struct target *target,
604                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
605 {
606         return target->type->read_memory(target, address, size, count, buffer);
607 }
608
609 int target_read_phys_memory(struct target *target,
610                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
611 {
612         return target->type->read_phys_memory(target, address, size, count, buffer);
613 }
614
615 int target_write_memory(struct target *target,
616                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
617 {
618         return target->type->write_memory(target, address, size, count, buffer);
619 }
620
621 int target_write_phys_memory(struct target *target,
622                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
623 {
624         return target->type->write_phys_memory(target, address, size, count, buffer);
625 }
626
627 int target_bulk_write_memory(struct target *target,
628                 uint32_t address, uint32_t count, uint8_t *buffer)
629 {
630         return target->type->bulk_write_memory(target, address, count, buffer);
631 }
632
633 int target_add_breakpoint(struct target *target,
634                 struct breakpoint *breakpoint)
635 {
636         if (target->state != TARGET_HALTED) {
637                 LOG_WARNING("target %s is not halted", target->cmd_name);
638                 return ERROR_TARGET_NOT_HALTED;
639         }
640         return target->type->add_breakpoint(target, breakpoint);
641 }
642 int target_remove_breakpoint(struct target *target,
643                 struct breakpoint *breakpoint)
644 {
645         return target->type->remove_breakpoint(target, breakpoint);
646 }
647
648 int target_add_watchpoint(struct target *target,
649                 struct watchpoint *watchpoint)
650 {
651         if (target->state != TARGET_HALTED) {
652                 LOG_WARNING("target %s is not halted", target->cmd_name);
653                 return ERROR_TARGET_NOT_HALTED;
654         }
655         return target->type->add_watchpoint(target, watchpoint);
656 }
657 int target_remove_watchpoint(struct target *target,
658                 struct watchpoint *watchpoint)
659 {
660         return target->type->remove_watchpoint(target, watchpoint);
661 }
662
663 int target_get_gdb_reg_list(struct target *target,
664                 struct reg **reg_list[], int *reg_list_size)
665 {
666         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
667 }
668 int target_step(struct target *target,
669                 int current, uint32_t address, int handle_breakpoints)
670 {
671         return target->type->step(target, current, address, handle_breakpoints);
672 }
673
674
675 int target_run_algorithm(struct target *target,
676                 int num_mem_params, struct mem_param *mem_params,
677                 int num_reg_params, struct reg_param *reg_param,
678                 uint32_t entry_point, uint32_t exit_point,
679                 int timeout_ms, void *arch_info)
680 {
681         return target->type->run_algorithm(target,
682                         num_mem_params, mem_params, num_reg_params, reg_param,
683                         entry_point, exit_point, timeout_ms, arch_info);
684 }
685
686 /**
687  * Reset the @c examined flag for the given target.
688  * Pure paranoia -- targets are zeroed on allocation.
689  */
690 static void target_reset_examined(struct target *target)
691 {
692         target->examined = false;
693 }
694
695 static int
696 err_read_phys_memory(struct target *target, uint32_t address,
697                 uint32_t size, uint32_t count, uint8_t *buffer)
698 {
699         LOG_ERROR("Not implemented: %s", __func__);
700         return ERROR_FAIL;
701 }
702
703 static int
704 err_write_phys_memory(struct target *target, uint32_t address,
705                 uint32_t size, uint32_t count, uint8_t *buffer)
706 {
707         LOG_ERROR("Not implemented: %s", __func__);
708         return ERROR_FAIL;
709 }
710
711 static int handle_target(void *priv);
712
713 static int target_init_one(struct command_context *cmd_ctx,
714                 struct target *target)
715 {
716         target_reset_examined(target);
717
718         struct target_type *type = target->type;
719         if (type->examine == NULL)
720                 type->examine = default_examine;
721
722         if (type->check_reset== NULL)
723                 type->check_reset = default_check_reset;
724
725         int retval = type->init_target(cmd_ctx, target);
726         if (ERROR_OK != retval)
727         {
728                 LOG_ERROR("target '%s' init failed", target_name(target));
729                 return retval;
730         }
731
732         /**
733          * @todo get rid of those *memory_imp() methods, now that all
734          * callers are using target_*_memory() accessors ... and make
735          * sure the "physical" paths handle the same issues.
736          */
737         /* a non-invasive way(in terms of patches) to add some code that
738          * runs before the type->write/read_memory implementation
739          */
740         type->write_memory_imp = target->type->write_memory;
741         type->write_memory = target_write_memory_imp;
742
743         type->read_memory_imp = target->type->read_memory;
744         type->read_memory = target_read_memory_imp;
745
746         type->soft_reset_halt_imp = target->type->soft_reset_halt;
747         type->soft_reset_halt = target_soft_reset_halt_imp;
748
749         type->run_algorithm_imp = target->type->run_algorithm;
750         type->run_algorithm = target_run_algorithm_imp;
751
752         /* Sanity-check MMU support ... stub in what we must, to help
753          * implement it in stages, but warn if we need to do so.
754          */
755         if (type->mmu)
756         {
757                 if (type->write_phys_memory == NULL)
758                 {
759                         LOG_ERROR("type '%s' is missing write_phys_memory",
760                                         type->name);
761                         type->write_phys_memory = err_write_phys_memory;
762                 }
763                 if (type->read_phys_memory == NULL)
764                 {
765                         LOG_ERROR("type '%s' is missing read_phys_memory",
766                                         type->name);
767                         type->read_phys_memory = err_read_phys_memory;
768                 }
769                 if (type->virt2phys == NULL)
770                 {
771                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
772                         type->virt2phys = identity_virt2phys;
773                 }
774         }
775         else
776         {
777                 /* Make sure no-MMU targets all behave the same:  make no
778                  * distinction between physical and virtual addresses, and
779                  * ensure that virt2phys() is always an identity mapping.
780                  */
781                 if (type->write_phys_memory || type->read_phys_memory
782                                 || type->virt2phys)
783                 {
784                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
785                 }
786
787                 type->mmu = no_mmu;
788                 type->write_phys_memory = type->write_memory;
789                 type->read_phys_memory = type->read_memory;
790                 type->virt2phys = identity_virt2phys;
791         }
792         return ERROR_OK;
793 }
794
795 int target_init(struct command_context *cmd_ctx)
796 {
797         struct target *target;
798         int retval;
799
800         for (target = all_targets; target; target = target->next)
801         {
802                 retval = target_init_one(cmd_ctx, target);
803                 if (ERROR_OK != retval)
804                         return retval;
805         }
806
807         if (!all_targets)
808                 return ERROR_OK;
809
810         retval = target_register_user_commands(cmd_ctx);
811         if (ERROR_OK != retval)
812                 return retval;
813
814         retval = target_register_timer_callback(&handle_target,
815                         100, 1, cmd_ctx->interp);
816         if (ERROR_OK != retval)
817                 return retval;
818
819         return ERROR_OK;
820 }
821
822 COMMAND_HANDLER(handle_target_init_command)
823 {
824         if (CMD_ARGC != 0)
825                 return ERROR_COMMAND_SYNTAX_ERROR;
826
827         static bool target_initialized = false;
828         if (target_initialized)
829         {
830                 LOG_INFO("'target init' has already been called");
831                 return ERROR_OK;
832         }
833         target_initialized = true;
834
835         LOG_DEBUG("Initializing targets...");
836         return target_init(CMD_CTX);
837 }
838
839 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
840 {
841         struct target_event_callback **callbacks_p = &target_event_callbacks;
842
843         if (callback == NULL)
844         {
845                 return ERROR_INVALID_ARGUMENTS;
846         }
847
848         if (*callbacks_p)
849         {
850                 while ((*callbacks_p)->next)
851                         callbacks_p = &((*callbacks_p)->next);
852                 callbacks_p = &((*callbacks_p)->next);
853         }
854
855         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
856         (*callbacks_p)->callback = callback;
857         (*callbacks_p)->priv = priv;
858         (*callbacks_p)->next = NULL;
859
860         return ERROR_OK;
861 }
862
863 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
864 {
865         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
866         struct timeval now;
867
868         if (callback == NULL)
869         {
870                 return ERROR_INVALID_ARGUMENTS;
871         }
872
873         if (*callbacks_p)
874         {
875                 while ((*callbacks_p)->next)
876                         callbacks_p = &((*callbacks_p)->next);
877                 callbacks_p = &((*callbacks_p)->next);
878         }
879
880         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
881         (*callbacks_p)->callback = callback;
882         (*callbacks_p)->periodic = periodic;
883         (*callbacks_p)->time_ms = time_ms;
884
885         gettimeofday(&now, NULL);
886         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
887         time_ms -= (time_ms % 1000);
888         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
889         if ((*callbacks_p)->when.tv_usec > 1000000)
890         {
891                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
892                 (*callbacks_p)->when.tv_sec += 1;
893         }
894
895         (*callbacks_p)->priv = priv;
896         (*callbacks_p)->next = NULL;
897
898         return ERROR_OK;
899 }
900
901 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
902 {
903         struct target_event_callback **p = &target_event_callbacks;
904         struct target_event_callback *c = target_event_callbacks;
905
906         if (callback == NULL)
907         {
908                 return ERROR_INVALID_ARGUMENTS;
909         }
910
911         while (c)
912         {
913                 struct target_event_callback *next = c->next;
914                 if ((c->callback == callback) && (c->priv == priv))
915                 {
916                         *p = next;
917                         free(c);
918                         return ERROR_OK;
919                 }
920                 else
921                         p = &(c->next);
922                 c = next;
923         }
924
925         return ERROR_OK;
926 }
927
928 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
929 {
930         struct target_timer_callback **p = &target_timer_callbacks;
931         struct target_timer_callback *c = target_timer_callbacks;
932
933         if (callback == NULL)
934         {
935                 return ERROR_INVALID_ARGUMENTS;
936         }
937
938         while (c)
939         {
940                 struct target_timer_callback *next = c->next;
941                 if ((c->callback == callback) && (c->priv == priv))
942                 {
943                         *p = next;
944                         free(c);
945                         return ERROR_OK;
946                 }
947                 else
948                         p = &(c->next);
949                 c = next;
950         }
951
952         return ERROR_OK;
953 }
954
955 int target_call_event_callbacks(struct target *target, enum target_event event)
956 {
957         struct target_event_callback *callback = target_event_callbacks;
958         struct target_event_callback *next_callback;
959
960         if (event == TARGET_EVENT_HALTED)
961         {
962                 /* execute early halted first */
963                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
964         }
965
966         LOG_DEBUG("target event %i (%s)",
967                           event,
968                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
969
970         target_handle_event(target, event);
971
972         while (callback)
973         {
974                 next_callback = callback->next;
975                 callback->callback(target, event, callback->priv);
976                 callback = next_callback;
977         }
978
979         return ERROR_OK;
980 }
981
982 static int target_timer_callback_periodic_restart(
983                 struct target_timer_callback *cb, struct timeval *now)
984 {
985         int time_ms = cb->time_ms;
986         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
987         time_ms -= (time_ms % 1000);
988         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
989         if (cb->when.tv_usec > 1000000)
990         {
991                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
992                 cb->when.tv_sec += 1;
993         }
994         return ERROR_OK;
995 }
996
997 static int target_call_timer_callback(struct target_timer_callback *cb,
998                 struct timeval *now)
999 {
1000         cb->callback(cb->priv);
1001
1002         if (cb->periodic)
1003                 return target_timer_callback_periodic_restart(cb, now);
1004
1005         return target_unregister_timer_callback(cb->callback, cb->priv);
1006 }
1007
1008 static int target_call_timer_callbacks_check_time(int checktime)
1009 {
1010         keep_alive();
1011
1012         struct timeval now;
1013         gettimeofday(&now, NULL);
1014
1015         struct target_timer_callback *callback = target_timer_callbacks;
1016         while (callback)
1017         {
1018                 // cleaning up may unregister and free this callback
1019                 struct target_timer_callback *next_callback = callback->next;
1020
1021                 bool call_it = callback->callback &&
1022                         ((!checktime && callback->periodic) ||
1023                           now.tv_sec > callback->when.tv_sec ||
1024                          (now.tv_sec == callback->when.tv_sec &&
1025                           now.tv_usec >= callback->when.tv_usec));
1026
1027                 if (call_it)
1028                 {
1029                         int retval = target_call_timer_callback(callback, &now);
1030                         if (retval != ERROR_OK)
1031                                 return retval;
1032                 }
1033
1034                 callback = next_callback;
1035         }
1036
1037         return ERROR_OK;
1038 }
1039
1040 int target_call_timer_callbacks(void)
1041 {
1042         return target_call_timer_callbacks_check_time(1);
1043 }
1044
1045 /* invoke periodic callbacks immediately */
1046 int target_call_timer_callbacks_now(void)
1047 {
1048         return target_call_timer_callbacks_check_time(0);
1049 }
1050
1051 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1052 {
1053         struct working_area *c = target->working_areas;
1054         struct working_area *new_wa = NULL;
1055
1056         /* Reevaluate working area address based on MMU state*/
1057         if (target->working_areas == NULL)
1058         {
1059                 int retval;
1060                 int enabled;
1061
1062                 retval = target->type->mmu(target, &enabled);
1063                 if (retval != ERROR_OK)
1064                 {
1065                         return retval;
1066                 }
1067
1068                 if (!enabled) {
1069                         if (target->working_area_phys_spec) {
1070                                 LOG_DEBUG("MMU disabled, using physical "
1071                                         "address for working memory 0x%08x",
1072                                         (unsigned)target->working_area_phys);
1073                                 target->working_area = target->working_area_phys;
1074                         } else {
1075                                 LOG_ERROR("No working memory available. "
1076                                         "Specify -work-area-phys to target.");
1077                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1078                         }
1079                 } else {
1080                         if (target->working_area_virt_spec) {
1081                                 LOG_DEBUG("MMU enabled, using virtual "
1082                                         "address for working memory 0x%08x",
1083                                         (unsigned)target->working_area_virt);
1084                                 target->working_area = target->working_area_virt;
1085                         } else {
1086                                 LOG_ERROR("No working memory available. "
1087                                         "Specify -work-area-virt to target.");
1088                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1089                         }
1090                 }
1091         }
1092
1093         /* only allocate multiples of 4 byte */
1094         if (size % 4)
1095         {
1096                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1097                 size = (size + 3) & (~3);
1098         }
1099
1100         /* see if there's already a matching working area */
1101         while (c)
1102         {
1103                 if ((c->free) && (c->size == size))
1104                 {
1105                         new_wa = c;
1106                         break;
1107                 }
1108                 c = c->next;
1109         }
1110
1111         /* if not, allocate a new one */
1112         if (!new_wa)
1113         {
1114                 struct working_area **p = &target->working_areas;
1115                 uint32_t first_free = target->working_area;
1116                 uint32_t free_size = target->working_area_size;
1117
1118                 c = target->working_areas;
1119                 while (c)
1120                 {
1121                         first_free += c->size;
1122                         free_size -= c->size;
1123                         p = &c->next;
1124                         c = c->next;
1125                 }
1126
1127                 if (free_size < size)
1128                 {
1129                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1130                                     (unsigned)(size), (unsigned)(free_size));
1131                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1132                 }
1133
1134                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1135
1136                 new_wa = malloc(sizeof(struct working_area));
1137                 new_wa->next = NULL;
1138                 new_wa->size = size;
1139                 new_wa->address = first_free;
1140
1141                 if (target->backup_working_area)
1142                 {
1143                         int retval;
1144                         new_wa->backup = malloc(new_wa->size);
1145                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1146                         {
1147                                 free(new_wa->backup);
1148                                 free(new_wa);
1149                                 return retval;
1150                         }
1151                 }
1152                 else
1153                 {
1154                         new_wa->backup = NULL;
1155                 }
1156
1157                 /* put new entry in list */
1158                 *p = new_wa;
1159         }
1160
1161         /* mark as used, and return the new (reused) area */
1162         new_wa->free = 0;
1163         *area = new_wa;
1164
1165         /* user pointer */
1166         new_wa->user = area;
1167
1168         return ERROR_OK;
1169 }
1170
1171 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1172 {
1173         if (area->free)
1174                 return ERROR_OK;
1175
1176         if (restore && target->backup_working_area)
1177         {
1178                 int retval;
1179                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1180                         return retval;
1181         }
1182
1183         area->free = 1;
1184
1185         /* mark user pointer invalid */
1186         *area->user = NULL;
1187         area->user = NULL;
1188
1189         return ERROR_OK;
1190 }
1191
1192 int target_free_working_area(struct target *target, struct working_area *area)
1193 {
1194         return target_free_working_area_restore(target, area, 1);
1195 }
1196
1197 /* free resources and restore memory, if restoring memory fails,
1198  * free up resources anyway
1199  */
1200 void target_free_all_working_areas_restore(struct target *target, int restore)
1201 {
1202         struct working_area *c = target->working_areas;
1203
1204         while (c)
1205         {
1206                 struct working_area *next = c->next;
1207                 target_free_working_area_restore(target, c, restore);
1208
1209                 if (c->backup)
1210                         free(c->backup);
1211
1212                 free(c);
1213
1214                 c = next;
1215         }
1216
1217         target->working_areas = NULL;
1218 }
1219
1220 void target_free_all_working_areas(struct target *target)
1221 {
1222         target_free_all_working_areas_restore(target, 1);
1223 }
1224
1225 int target_arch_state(struct target *target)
1226 {
1227         int retval;
1228         if (target == NULL)
1229         {
1230                 LOG_USER("No target has been configured");
1231                 return ERROR_OK;
1232         }
1233
1234         LOG_USER("target state: %s", target_state_name( target ));
1235
1236         if (target->state != TARGET_HALTED)
1237                 return ERROR_OK;
1238
1239         retval = target->type->arch_state(target);
1240         return retval;
1241 }
1242
1243 /* Single aligned words are guaranteed to use 16 or 32 bit access
1244  * mode respectively, otherwise data is handled as quickly as
1245  * possible
1246  */
1247 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1248 {
1249         int retval;
1250         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1251                   (int)size, (unsigned)address);
1252
1253         if (!target_was_examined(target))
1254         {
1255                 LOG_ERROR("Target not examined yet");
1256                 return ERROR_FAIL;
1257         }
1258
1259         if (size == 0) {
1260                 return ERROR_OK;
1261         }
1262
1263         if ((address + size - 1) < address)
1264         {
1265                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1266                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1267                                   (unsigned)address,
1268                                   (unsigned)size);
1269                 return ERROR_FAIL;
1270         }
1271
1272         if (((address % 2) == 0) && (size == 2))
1273         {
1274                 return target_write_memory(target, address, 2, 1, buffer);
1275         }
1276
1277         /* handle unaligned head bytes */
1278         if (address % 4)
1279         {
1280                 uint32_t unaligned = 4 - (address % 4);
1281
1282                 if (unaligned > size)
1283                         unaligned = size;
1284
1285                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1286                         return retval;
1287
1288                 buffer += unaligned;
1289                 address += unaligned;
1290                 size -= unaligned;
1291         }
1292
1293         /* handle aligned words */
1294         if (size >= 4)
1295         {
1296                 int aligned = size - (size % 4);
1297
1298                 /* use bulk writes above a certain limit. This may have to be changed */
1299                 if (aligned > 128)
1300                 {
1301                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1302                                 return retval;
1303                 }
1304                 else
1305                 {
1306                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1307                                 return retval;
1308                 }
1309
1310                 buffer += aligned;
1311                 address += aligned;
1312                 size -= aligned;
1313         }
1314
1315         /* handle tail writes of less than 4 bytes */
1316         if (size > 0)
1317         {
1318                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1319                         return retval;
1320         }
1321
1322         return ERROR_OK;
1323 }
1324
1325 /* Single aligned words are guaranteed to use 16 or 32 bit access
1326  * mode respectively, otherwise data is handled as quickly as
1327  * possible
1328  */
1329 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1330 {
1331         int retval;
1332         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1333                           (int)size, (unsigned)address);
1334
1335         if (!target_was_examined(target))
1336         {
1337                 LOG_ERROR("Target not examined yet");
1338                 return ERROR_FAIL;
1339         }
1340
1341         if (size == 0) {
1342                 return ERROR_OK;
1343         }
1344
1345         if ((address + size - 1) < address)
1346         {
1347                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1348                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1349                                   address,
1350                                   size);
1351                 return ERROR_FAIL;
1352         }
1353
1354         if (((address % 2) == 0) && (size == 2))
1355         {
1356                 return target_read_memory(target, address, 2, 1, buffer);
1357         }
1358
1359         /* handle unaligned head bytes */
1360         if (address % 4)
1361         {
1362                 uint32_t unaligned = 4 - (address % 4);
1363
1364                 if (unaligned > size)
1365                         unaligned = size;
1366
1367                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1368                         return retval;
1369
1370                 buffer += unaligned;
1371                 address += unaligned;
1372                 size -= unaligned;
1373         }
1374
1375         /* handle aligned words */
1376         if (size >= 4)
1377         {
1378                 int aligned = size - (size % 4);
1379
1380                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1381                         return retval;
1382
1383                 buffer += aligned;
1384                 address += aligned;
1385                 size -= aligned;
1386         }
1387
1388         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1389         if(size >=2)
1390         {
1391                 int aligned = size - (size%2);
1392                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1393                 if (retval != ERROR_OK)
1394                         return retval;
1395
1396                 buffer += aligned;
1397                 address += aligned;
1398                 size -= aligned;
1399         }
1400         /* handle tail writes of less than 4 bytes */
1401         if (size > 0)
1402         {
1403                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1404                         return retval;
1405         }
1406
1407         return ERROR_OK;
1408 }
1409
1410 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1411 {
1412         uint8_t *buffer;
1413         int retval;
1414         uint32_t i;
1415         uint32_t checksum = 0;
1416         if (!target_was_examined(target))
1417         {
1418                 LOG_ERROR("Target not examined yet");
1419                 return ERROR_FAIL;
1420         }
1421
1422         if ((retval = target->type->checksum_memory(target, address,
1423                 size, &checksum)) != ERROR_OK)
1424         {
1425                 buffer = malloc(size);
1426                 if (buffer == NULL)
1427                 {
1428                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1429                         return ERROR_INVALID_ARGUMENTS;
1430                 }
1431                 retval = target_read_buffer(target, address, size, buffer);
1432                 if (retval != ERROR_OK)
1433                 {
1434                         free(buffer);
1435                         return retval;
1436                 }
1437
1438                 /* convert to target endianess */
1439                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1440                 {
1441                         uint32_t target_data;
1442                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1443                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1444                 }
1445
1446                 retval = image_calculate_checksum(buffer, size, &checksum);
1447                 free(buffer);
1448         }
1449
1450         *crc = checksum;
1451
1452         return retval;
1453 }
1454
1455 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1456 {
1457         int retval;
1458         if (!target_was_examined(target))
1459         {
1460                 LOG_ERROR("Target not examined yet");
1461                 return ERROR_FAIL;
1462         }
1463
1464         if (target->type->blank_check_memory == 0)
1465                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1466
1467         retval = target->type->blank_check_memory(target, address, size, blank);
1468
1469         return retval;
1470 }
1471
1472 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1473 {
1474         uint8_t value_buf[4];
1475         if (!target_was_examined(target))
1476         {
1477                 LOG_ERROR("Target not examined yet");
1478                 return ERROR_FAIL;
1479         }
1480
1481         int retval = target_read_memory(target, address, 4, 1, value_buf);
1482
1483         if (retval == ERROR_OK)
1484         {
1485                 *value = target_buffer_get_u32(target, value_buf);
1486                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1487                                   address,
1488                                   *value);
1489         }
1490         else
1491         {
1492                 *value = 0x0;
1493                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1494                                   address);
1495         }
1496
1497         return retval;
1498 }
1499
1500 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1501 {
1502         uint8_t value_buf[2];
1503         if (!target_was_examined(target))
1504         {
1505                 LOG_ERROR("Target not examined yet");
1506                 return ERROR_FAIL;
1507         }
1508
1509         int retval = target_read_memory(target, address, 2, 1, value_buf);
1510
1511         if (retval == ERROR_OK)
1512         {
1513                 *value = target_buffer_get_u16(target, value_buf);
1514                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1515                                   address,
1516                                   *value);
1517         }
1518         else
1519         {
1520                 *value = 0x0;
1521                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1522                                   address);
1523         }
1524
1525         return retval;
1526 }
1527
1528 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1529 {
1530         int retval = target_read_memory(target, address, 1, 1, value);
1531         if (!target_was_examined(target))
1532         {
1533                 LOG_ERROR("Target not examined yet");
1534                 return ERROR_FAIL;
1535         }
1536
1537         if (retval == ERROR_OK)
1538         {
1539                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1540                                   address,
1541                                   *value);
1542         }
1543         else
1544         {
1545                 *value = 0x0;
1546                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1547                                   address);
1548         }
1549
1550         return retval;
1551 }
1552
1553 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1554 {
1555         int retval;
1556         uint8_t value_buf[4];
1557         if (!target_was_examined(target))
1558         {
1559                 LOG_ERROR("Target not examined yet");
1560                 return ERROR_FAIL;
1561         }
1562
1563         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1564                           address,
1565                           value);
1566
1567         target_buffer_set_u32(target, value_buf, value);
1568         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1569         {
1570                 LOG_DEBUG("failed: %i", retval);
1571         }
1572
1573         return retval;
1574 }
1575
1576 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1577 {
1578         int retval;
1579         uint8_t value_buf[2];
1580         if (!target_was_examined(target))
1581         {
1582                 LOG_ERROR("Target not examined yet");
1583                 return ERROR_FAIL;
1584         }
1585
1586         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1587                           address,
1588                           value);
1589
1590         target_buffer_set_u16(target, value_buf, value);
1591         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1592         {
1593                 LOG_DEBUG("failed: %i", retval);
1594         }
1595
1596         return retval;
1597 }
1598
1599 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1600 {
1601         int retval;
1602         if (!target_was_examined(target))
1603         {
1604                 LOG_ERROR("Target not examined yet");
1605                 return ERROR_FAIL;
1606         }
1607
1608         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1609                           address, value);
1610
1611         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1612         {
1613                 LOG_DEBUG("failed: %i", retval);
1614         }
1615
1616         return retval;
1617 }
1618
1619 COMMAND_HANDLER(handle_targets_command)
1620 {
1621         struct target *target = all_targets;
1622
1623         if (CMD_ARGC == 1)
1624         {
1625                 target = get_target(CMD_ARGV[0]);
1626                 if (target == NULL) {
1627                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1628                         goto DumpTargets;
1629                 }
1630                 if (!target->tap->enabled) {
1631                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1632                                         "can't be the current target\n",
1633                                         target->tap->dotted_name);
1634                         return ERROR_FAIL;
1635                 }
1636
1637                 CMD_CTX->current_target = target->target_number;
1638                 return ERROR_OK;
1639         }
1640 DumpTargets:
1641
1642         target = all_targets;
1643         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1644         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1645         while (target)
1646         {
1647                 const char *state;
1648                 char marker = ' ';
1649
1650                 if (target->tap->enabled)
1651                         state = target_state_name( target );
1652                 else
1653                         state = "tap-disabled";
1654
1655                 if (CMD_CTX->current_target == target->target_number)
1656                         marker = '*';
1657
1658                 /* keep columns lined up to match the headers above */
1659                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1660                                           target->target_number,
1661                                           marker,
1662                                           target_name(target),
1663                                           target_type_name(target),
1664                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1665                                                                 target->endianness)->name,
1666                                           target->tap->dotted_name,
1667                                           state);
1668                 target = target->next;
1669         }
1670
1671         return ERROR_OK;
1672 }
1673
1674 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1675
1676 static int powerDropout;
1677 static int srstAsserted;
1678
1679 static int runPowerRestore;
1680 static int runPowerDropout;
1681 static int runSrstAsserted;
1682 static int runSrstDeasserted;
1683
1684 static int sense_handler(void)
1685 {
1686         static int prevSrstAsserted = 0;
1687         static int prevPowerdropout = 0;
1688
1689         int retval;
1690         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1691                 return retval;
1692
1693         int powerRestored;
1694         powerRestored = prevPowerdropout && !powerDropout;
1695         if (powerRestored)
1696         {
1697                 runPowerRestore = 1;
1698         }
1699
1700         long long current = timeval_ms();
1701         static long long lastPower = 0;
1702         int waitMore = lastPower + 2000 > current;
1703         if (powerDropout && !waitMore)
1704         {
1705                 runPowerDropout = 1;
1706                 lastPower = current;
1707         }
1708
1709         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1710                 return retval;
1711
1712         int srstDeasserted;
1713         srstDeasserted = prevSrstAsserted && !srstAsserted;
1714
1715         static long long lastSrst = 0;
1716         waitMore = lastSrst + 2000 > current;
1717         if (srstDeasserted && !waitMore)
1718         {
1719                 runSrstDeasserted = 1;
1720                 lastSrst = current;
1721         }
1722
1723         if (!prevSrstAsserted && srstAsserted)
1724         {
1725                 runSrstAsserted = 1;
1726         }
1727
1728         prevSrstAsserted = srstAsserted;
1729         prevPowerdropout = powerDropout;
1730
1731         if (srstDeasserted || powerRestored)
1732         {
1733                 /* Other than logging the event we can't do anything here.
1734                  * Issuing a reset is a particularly bad idea as we might
1735                  * be inside a reset already.
1736                  */
1737         }
1738
1739         return ERROR_OK;
1740 }
1741
1742 /* process target state changes */
1743 static int handle_target(void *priv)
1744 {
1745         Jim_Interp *interp = (Jim_Interp *)priv;
1746         int retval = ERROR_OK;
1747
1748         /* we do not want to recurse here... */
1749         static int recursive = 0;
1750         if (! recursive)
1751         {
1752                 recursive = 1;
1753                 sense_handler();
1754                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1755                  * We need to avoid an infinite loop/recursion here and we do that by
1756                  * clearing the flags after running these events.
1757                  */
1758                 int did_something = 0;
1759                 if (runSrstAsserted)
1760                 {
1761                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
1762                         Jim_Eval(interp, "srst_asserted");
1763                         did_something = 1;
1764                 }
1765                 if (runSrstDeasserted)
1766                 {
1767                         Jim_Eval(interp, "srst_deasserted");
1768                         did_something = 1;
1769                 }
1770                 if (runPowerDropout)
1771                 {
1772                         LOG_INFO("Power dropout detected, running power_dropout proc.");
1773                         Jim_Eval(interp, "power_dropout");
1774                         did_something = 1;
1775                 }
1776                 if (runPowerRestore)
1777                 {
1778                         Jim_Eval(interp, "power_restore");
1779                         did_something = 1;
1780                 }
1781
1782                 if (did_something)
1783                 {
1784                         /* clear detect flags */
1785                         sense_handler();
1786                 }
1787
1788                 /* clear action flags */
1789
1790                 runSrstAsserted = 0;
1791                 runSrstDeasserted = 0;
1792                 runPowerRestore = 0;
1793                 runPowerDropout = 0;
1794
1795                 recursive = 0;
1796         }
1797
1798         /* Poll targets for state changes unless that's globally disabled.
1799          * Skip targets that are currently disabled.
1800          */
1801         for (struct target *target = all_targets;
1802                         is_jtag_poll_safe() && target;
1803                         target = target->next)
1804         {
1805                 if (!target->tap->enabled)
1806                         continue;
1807
1808                 /* only poll target if we've got power and srst isn't asserted */
1809                 if (!powerDropout && !srstAsserted)
1810                 {
1811                         /* polling may fail silently until the target has been examined */
1812                         if ((retval = target_poll(target)) != ERROR_OK)
1813                         {
1814                                 /* FIX!!!!! If we add a LOG_INFO() here to output a line in GDB
1815                                  * *why* we are aborting GDB, then we'll spam telnet when the
1816                                  * poll is failing persistently.
1817                                  *
1818                                  * If we could implement an event that detected the
1819                                  * target going from non-pollable to pollable, we could issue
1820                                  * an error only upon the transition.
1821                                  */
1822                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1823                                 return retval;
1824                         }
1825                 }
1826         }
1827
1828         return retval;
1829 }
1830
1831 COMMAND_HANDLER(handle_reg_command)
1832 {
1833         struct target *target;
1834         struct reg *reg = NULL;
1835         unsigned count = 0;
1836         char *value;
1837
1838         LOG_DEBUG("-");
1839
1840         target = get_current_target(CMD_CTX);
1841
1842         /* list all available registers for the current target */
1843         if (CMD_ARGC == 0)
1844         {
1845                 struct reg_cache *cache = target->reg_cache;
1846
1847                 count = 0;
1848                 while (cache)
1849                 {
1850                         unsigned i;
1851
1852                         command_print(CMD_CTX, "===== %s", cache->name);
1853
1854                         for (i = 0, reg = cache->reg_list;
1855                                         i < cache->num_regs;
1856                                         i++, reg++, count++)
1857                         {
1858                                 /* only print cached values if they are valid */
1859                                 if (reg->valid) {
1860                                         value = buf_to_str(reg->value,
1861                                                         reg->size, 16);
1862                                         command_print(CMD_CTX,
1863                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1864                                                         count, reg->name,
1865                                                         reg->size, value,
1866                                                         reg->dirty
1867                                                                 ? " (dirty)"
1868                                                                 : "");
1869                                         free(value);
1870                                 } else {
1871                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1872                                                           count, reg->name,
1873                                                           reg->size) ;
1874                                 }
1875                         }
1876                         cache = cache->next;
1877                 }
1878
1879                 return ERROR_OK;
1880         }
1881
1882         /* access a single register by its ordinal number */
1883         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1884         {
1885                 unsigned num;
1886                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1887
1888                 struct reg_cache *cache = target->reg_cache;
1889                 count = 0;
1890                 while (cache)
1891                 {
1892                         unsigned i;
1893                         for (i = 0; i < cache->num_regs; i++)
1894                         {
1895                                 if (count++ == num)
1896                                 {
1897                                         reg = &cache->reg_list[i];
1898                                         break;
1899                                 }
1900                         }
1901                         if (reg)
1902                                 break;
1903                         cache = cache->next;
1904                 }
1905
1906                 if (!reg)
1907                 {
1908                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1909                         return ERROR_OK;
1910                 }
1911         } else /* access a single register by its name */
1912         {
1913                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1914
1915                 if (!reg)
1916                 {
1917                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1918                         return ERROR_OK;
1919                 }
1920         }
1921
1922         /* display a register */
1923         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1924         {
1925                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1926                         reg->valid = 0;
1927
1928                 if (reg->valid == 0)
1929                 {
1930                         reg->type->get(reg);
1931                 }
1932                 value = buf_to_str(reg->value, reg->size, 16);
1933                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1934                 free(value);
1935                 return ERROR_OK;
1936         }
1937
1938         /* set register value */
1939         if (CMD_ARGC == 2)
1940         {
1941                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
1942                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
1943
1944                 reg->type->set(reg, buf);
1945
1946                 value = buf_to_str(reg->value, reg->size, 16);
1947                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1948                 free(value);
1949
1950                 free(buf);
1951
1952                 return ERROR_OK;
1953         }
1954
1955         command_print(CMD_CTX, "usage: reg <#|name> [value]");
1956
1957         return ERROR_OK;
1958 }
1959
1960 COMMAND_HANDLER(handle_poll_command)
1961 {
1962         int retval = ERROR_OK;
1963         struct target *target = get_current_target(CMD_CTX);
1964
1965         if (CMD_ARGC == 0)
1966         {
1967                 command_print(CMD_CTX, "background polling: %s",
1968                                 jtag_poll_get_enabled() ? "on" : "off");
1969                 command_print(CMD_CTX, "TAP: %s (%s)",
1970                                 target->tap->dotted_name,
1971                                 target->tap->enabled ? "enabled" : "disabled");
1972                 if (!target->tap->enabled)
1973                         return ERROR_OK;
1974                 if ((retval = target_poll(target)) != ERROR_OK)
1975                         return retval;
1976                 if ((retval = target_arch_state(target)) != ERROR_OK)
1977                         return retval;
1978         }
1979         else if (CMD_ARGC == 1)
1980         {
1981                 bool enable;
1982                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
1983                 jtag_poll_set_enabled(enable);
1984         }
1985         else
1986         {
1987                 return ERROR_COMMAND_SYNTAX_ERROR;
1988         }
1989
1990         return retval;
1991 }
1992
1993 COMMAND_HANDLER(handle_wait_halt_command)
1994 {
1995         if (CMD_ARGC > 1)
1996                 return ERROR_COMMAND_SYNTAX_ERROR;
1997
1998         unsigned ms = 5000;
1999         if (1 == CMD_ARGC)
2000         {
2001                 int retval = parse_uint(CMD_ARGV[0], &ms);
2002                 if (ERROR_OK != retval)
2003                 {
2004                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2005                         return ERROR_COMMAND_SYNTAX_ERROR;
2006                 }
2007                 // convert seconds (given) to milliseconds (needed)
2008                 ms *= 1000;
2009         }
2010
2011         struct target *target = get_current_target(CMD_CTX);
2012         return target_wait_state(target, TARGET_HALTED, ms);
2013 }
2014
2015 /* wait for target state to change. The trick here is to have a low
2016  * latency for short waits and not to suck up all the CPU time
2017  * on longer waits.
2018  *
2019  * After 500ms, keep_alive() is invoked
2020  */
2021 int target_wait_state(struct target *target, enum target_state state, int ms)
2022 {
2023         int retval;
2024         long long then = 0, cur;
2025         int once = 1;
2026
2027         for (;;)
2028         {
2029                 if ((retval = target_poll(target)) != ERROR_OK)
2030                         return retval;
2031                 if (target->state == state)
2032                 {
2033                         break;
2034                 }
2035                 cur = timeval_ms();
2036                 if (once)
2037                 {
2038                         once = 0;
2039                         then = timeval_ms();
2040                         LOG_DEBUG("waiting for target %s...",
2041                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2042                 }
2043
2044                 if (cur-then > 500)
2045                 {
2046                         keep_alive();
2047                 }
2048
2049                 if ((cur-then) > ms)
2050                 {
2051                         LOG_ERROR("timed out while waiting for target %s",
2052                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2053                         return ERROR_FAIL;
2054                 }
2055         }
2056
2057         return ERROR_OK;
2058 }
2059
2060 COMMAND_HANDLER(handle_halt_command)
2061 {
2062         LOG_DEBUG("-");
2063
2064         struct target *target = get_current_target(CMD_CTX);
2065         int retval = target_halt(target);
2066         if (ERROR_OK != retval)
2067                 return retval;
2068
2069         if (CMD_ARGC == 1)
2070         {
2071                 unsigned wait;
2072                 retval = parse_uint(CMD_ARGV[0], &wait);
2073                 if (ERROR_OK != retval)
2074                         return ERROR_COMMAND_SYNTAX_ERROR;
2075                 if (!wait)
2076                         return ERROR_OK;
2077         }
2078
2079         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2080 }
2081
2082 COMMAND_HANDLER(handle_soft_reset_halt_command)
2083 {
2084         struct target *target = get_current_target(CMD_CTX);
2085
2086         LOG_USER("requesting target halt and executing a soft reset");
2087
2088         target->type->soft_reset_halt(target);
2089
2090         return ERROR_OK;
2091 }
2092
2093 COMMAND_HANDLER(handle_reset_command)
2094 {
2095         if (CMD_ARGC > 1)
2096                 return ERROR_COMMAND_SYNTAX_ERROR;
2097
2098         enum target_reset_mode reset_mode = RESET_RUN;
2099         if (CMD_ARGC == 1)
2100         {
2101                 const Jim_Nvp *n;
2102                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2103                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2104                         return ERROR_COMMAND_SYNTAX_ERROR;
2105                 }
2106                 reset_mode = n->value;
2107         }
2108
2109         /* reset *all* targets */
2110         return target_process_reset(CMD_CTX, reset_mode);
2111 }
2112
2113
2114 COMMAND_HANDLER(handle_resume_command)
2115 {
2116         int current = 1;
2117         if (CMD_ARGC > 1)
2118                 return ERROR_COMMAND_SYNTAX_ERROR;
2119
2120         struct target *target = get_current_target(CMD_CTX);
2121         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2122
2123         /* with no CMD_ARGV, resume from current pc, addr = 0,
2124          * with one arguments, addr = CMD_ARGV[0],
2125          * handle breakpoints, not debugging */
2126         uint32_t addr = 0;
2127         if (CMD_ARGC == 1)
2128         {
2129                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2130                 current = 0;
2131         }
2132
2133         return target_resume(target, current, addr, 1, 0);
2134 }
2135
2136 COMMAND_HANDLER(handle_step_command)
2137 {
2138         if (CMD_ARGC > 1)
2139                 return ERROR_COMMAND_SYNTAX_ERROR;
2140
2141         LOG_DEBUG("-");
2142
2143         /* with no CMD_ARGV, step from current pc, addr = 0,
2144          * with one argument addr = CMD_ARGV[0],
2145          * handle breakpoints, debugging */
2146         uint32_t addr = 0;
2147         int current_pc = 1;
2148         if (CMD_ARGC == 1)
2149         {
2150                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2151                 current_pc = 0;
2152         }
2153
2154         struct target *target = get_current_target(CMD_CTX);
2155
2156         return target->type->step(target, current_pc, addr, 1);
2157 }
2158
2159 static void handle_md_output(struct command_context *cmd_ctx,
2160                 struct target *target, uint32_t address, unsigned size,
2161                 unsigned count, const uint8_t *buffer)
2162 {
2163         const unsigned line_bytecnt = 32;
2164         unsigned line_modulo = line_bytecnt / size;
2165
2166         char output[line_bytecnt * 4 + 1];
2167         unsigned output_len = 0;
2168
2169         const char *value_fmt;
2170         switch (size) {
2171         case 4: value_fmt = "%8.8x "; break;
2172         case 2: value_fmt = "%4.4x "; break;
2173         case 1: value_fmt = "%2.2x "; break;
2174         default:
2175                 /* "can't happen", caller checked */
2176                 LOG_ERROR("invalid memory read size: %u", size);
2177                 return;
2178         }
2179
2180         for (unsigned i = 0; i < count; i++)
2181         {
2182                 if (i % line_modulo == 0)
2183                 {
2184                         output_len += snprintf(output + output_len,
2185                                         sizeof(output) - output_len,
2186                                         "0x%8.8x: ",
2187                                         (unsigned)(address + (i*size)));
2188                 }
2189
2190                 uint32_t value = 0;
2191                 const uint8_t *value_ptr = buffer + i * size;
2192                 switch (size) {
2193                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2194                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2195                 case 1: value = *value_ptr;
2196                 }
2197                 output_len += snprintf(output + output_len,
2198                                 sizeof(output) - output_len,
2199                                 value_fmt, value);
2200
2201                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2202                 {
2203                         command_print(cmd_ctx, "%s", output);
2204                         output_len = 0;
2205                 }
2206         }
2207 }
2208
2209 COMMAND_HANDLER(handle_md_command)
2210 {
2211         if (CMD_ARGC < 1)
2212                 return ERROR_COMMAND_SYNTAX_ERROR;
2213
2214         unsigned size = 0;
2215         switch (CMD_NAME[2]) {
2216         case 'w': size = 4; break;
2217         case 'h': size = 2; break;
2218         case 'b': size = 1; break;
2219         default: return ERROR_COMMAND_SYNTAX_ERROR;
2220         }
2221
2222         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2223         int (*fn)(struct target *target,
2224                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2225         if (physical)
2226         {
2227                 CMD_ARGC--;
2228                 CMD_ARGV++;
2229                 fn=target_read_phys_memory;
2230         } else
2231         {
2232                 fn=target_read_memory;
2233         }
2234         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2235         {
2236                 return ERROR_COMMAND_SYNTAX_ERROR;
2237         }
2238
2239         uint32_t address;
2240         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2241
2242         unsigned count = 1;
2243         if (CMD_ARGC == 2)
2244                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2245
2246         uint8_t *buffer = calloc(count, size);
2247
2248         struct target *target = get_current_target(CMD_CTX);
2249         int retval = fn(target, address, size, count, buffer);
2250         if (ERROR_OK == retval)
2251                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2252
2253         free(buffer);
2254
2255         return retval;
2256 }
2257
2258 COMMAND_HANDLER(handle_mw_command)
2259 {
2260         if (CMD_ARGC < 2)
2261         {
2262                 return ERROR_COMMAND_SYNTAX_ERROR;
2263         }
2264         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2265         int (*fn)(struct target *target,
2266                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2267         if (physical)
2268         {
2269                 CMD_ARGC--;
2270                 CMD_ARGV++;
2271                 fn=target_write_phys_memory;
2272         } else
2273         {
2274                 fn=target_write_memory;
2275         }
2276         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2277                 return ERROR_COMMAND_SYNTAX_ERROR;
2278
2279         uint32_t address;
2280         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2281
2282         uint32_t value;
2283         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2284
2285         unsigned count = 1;
2286         if (CMD_ARGC == 3)
2287                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2288
2289         struct target *target = get_current_target(CMD_CTX);
2290         unsigned wordsize;
2291         uint8_t value_buf[4];
2292         switch (CMD_NAME[2])
2293         {
2294                 case 'w':
2295                         wordsize = 4;
2296                         target_buffer_set_u32(target, value_buf, value);
2297                         break;
2298                 case 'h':
2299                         wordsize = 2;
2300                         target_buffer_set_u16(target, value_buf, value);
2301                         break;
2302                 case 'b':
2303                         wordsize = 1;
2304                         value_buf[0] = value;
2305                         break;
2306                 default:
2307                         return ERROR_COMMAND_SYNTAX_ERROR;
2308         }
2309         for (unsigned i = 0; i < count; i++)
2310         {
2311                 int retval = fn(target,
2312                                 address + i * wordsize, wordsize, 1, value_buf);
2313                 if (ERROR_OK != retval)
2314                         return retval;
2315                 keep_alive();
2316         }
2317
2318         return ERROR_OK;
2319
2320 }
2321
2322 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2323                 uint32_t *min_address, uint32_t *max_address)
2324 {
2325         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2326                 return ERROR_COMMAND_SYNTAX_ERROR;
2327
2328         /* a base address isn't always necessary,
2329          * default to 0x0 (i.e. don't relocate) */
2330         if (CMD_ARGC >= 2)
2331         {
2332                 uint32_t addr;
2333                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2334                 image->base_address = addr;
2335                 image->base_address_set = 1;
2336         }
2337         else
2338                 image->base_address_set = 0;
2339
2340         image->start_address_set = 0;
2341
2342         if (CMD_ARGC >= 4)
2343         {
2344                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2345         }
2346         if (CMD_ARGC == 5)
2347         {
2348                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2349                 // use size (given) to find max (required)
2350                 *max_address += *min_address;
2351         }
2352
2353         if (*min_address > *max_address)
2354                 return ERROR_COMMAND_SYNTAX_ERROR;
2355
2356         return ERROR_OK;
2357 }
2358
2359 COMMAND_HANDLER(handle_load_image_command)
2360 {
2361         uint8_t *buffer;
2362         size_t buf_cnt;
2363         uint32_t image_size;
2364         uint32_t min_address = 0;
2365         uint32_t max_address = 0xffffffff;
2366         int i;
2367         struct image image;
2368
2369         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2370                         &image, &min_address, &max_address);
2371         if (ERROR_OK != retval)
2372                 return retval;
2373
2374         struct target *target = get_current_target(CMD_CTX);
2375
2376         struct duration bench;
2377         duration_start(&bench);
2378
2379         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2380         {
2381                 return ERROR_OK;
2382         }
2383
2384         image_size = 0x0;
2385         retval = ERROR_OK;
2386         for (i = 0; i < image.num_sections; i++)
2387         {
2388                 buffer = malloc(image.sections[i].size);
2389                 if (buffer == NULL)
2390                 {
2391                         command_print(CMD_CTX,
2392                                                   "error allocating buffer for section (%d bytes)",
2393                                                   (int)(image.sections[i].size));
2394                         break;
2395                 }
2396
2397                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2398                 {
2399                         free(buffer);
2400                         break;
2401                 }
2402
2403                 uint32_t offset = 0;
2404                 uint32_t length = buf_cnt;
2405
2406                 /* DANGER!!! beware of unsigned comparision here!!! */
2407
2408                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2409                                 (image.sections[i].base_address < max_address))
2410                 {
2411                         if (image.sections[i].base_address < min_address)
2412                         {
2413                                 /* clip addresses below */
2414                                 offset += min_address-image.sections[i].base_address;
2415                                 length -= offset;
2416                         }
2417
2418                         if (image.sections[i].base_address + buf_cnt > max_address)
2419                         {
2420                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2421                         }
2422
2423                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2424                         {
2425                                 free(buffer);
2426                                 break;
2427                         }
2428                         image_size += length;
2429                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2430                                                   (unsigned int)length,
2431                                                   image.sections[i].base_address + offset);
2432                 }
2433
2434                 free(buffer);
2435         }
2436
2437         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2438         {
2439                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2440                                 "in %fs (%0.3f kb/s)", image_size,
2441                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2442         }
2443
2444         image_close(&image);
2445
2446         return retval;
2447
2448 }
2449
2450 COMMAND_HANDLER(handle_dump_image_command)
2451 {
2452         struct fileio fileio;
2453
2454         uint8_t buffer[560];
2455         int retvaltemp;
2456
2457
2458         struct target *target = get_current_target(CMD_CTX);
2459
2460         if (CMD_ARGC != 3)
2461         {
2462                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2463                 return ERROR_OK;
2464         }
2465
2466         uint32_t address;
2467         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2468         uint32_t size;
2469         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2470
2471         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2472         {
2473                 return ERROR_OK;
2474         }
2475
2476         struct duration bench;
2477         duration_start(&bench);
2478
2479         int retval = ERROR_OK;
2480         while (size > 0)
2481         {
2482                 size_t size_written;
2483                 uint32_t this_run_size = (size > 560) ? 560 : size;
2484                 retval = target_read_buffer(target, address, this_run_size, buffer);
2485                 if (retval != ERROR_OK)
2486                 {
2487                         break;
2488                 }
2489
2490                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2491                 if (retval != ERROR_OK)
2492                 {
2493                         break;
2494                 }
2495
2496                 size -= this_run_size;
2497                 address += this_run_size;
2498         }
2499
2500         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2501                 return retvaltemp;
2502
2503         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2504         {
2505                 command_print(CMD_CTX,
2506                                 "dumped %ld bytes in %fs (%0.3f kb/s)", (long)fileio.size,
2507                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2508         }
2509
2510         return retval;
2511 }
2512
2513 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2514 {
2515         uint8_t *buffer;
2516         size_t buf_cnt;
2517         uint32_t image_size;
2518         int i;
2519         int retval;
2520         uint32_t checksum = 0;
2521         uint32_t mem_checksum = 0;
2522
2523         struct image image;
2524
2525         struct target *target = get_current_target(CMD_CTX);
2526
2527         if (CMD_ARGC < 1)
2528         {
2529                 return ERROR_COMMAND_SYNTAX_ERROR;
2530         }
2531
2532         if (!target)
2533         {
2534                 LOG_ERROR("no target selected");
2535                 return ERROR_FAIL;
2536         }
2537
2538         struct duration bench;
2539         duration_start(&bench);
2540
2541         if (CMD_ARGC >= 2)
2542         {
2543                 uint32_t addr;
2544                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2545                 image.base_address = addr;
2546                 image.base_address_set = 1;
2547         }
2548         else
2549         {
2550                 image.base_address_set = 0;
2551                 image.base_address = 0x0;
2552         }
2553
2554         image.start_address_set = 0;
2555
2556         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2557         {
2558                 return retval;
2559         }
2560
2561         image_size = 0x0;
2562         retval = ERROR_OK;
2563         for (i = 0; i < image.num_sections; i++)
2564         {
2565                 buffer = malloc(image.sections[i].size);
2566                 if (buffer == NULL)
2567                 {
2568                         command_print(CMD_CTX,
2569                                                   "error allocating buffer for section (%d bytes)",
2570                                                   (int)(image.sections[i].size));
2571                         break;
2572                 }
2573                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2574                 {
2575                         free(buffer);
2576                         break;
2577                 }
2578
2579                 if (verify)
2580                 {
2581                         /* calculate checksum of image */
2582                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2583
2584                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2585                         if (retval != ERROR_OK)
2586                         {
2587                                 free(buffer);
2588                                 break;
2589                         }
2590
2591                         if (checksum != mem_checksum)
2592                         {
2593                                 /* failed crc checksum, fall back to a binary compare */
2594                                 uint8_t *data;
2595
2596                                 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2597
2598                                 data = (uint8_t*)malloc(buf_cnt);
2599
2600                                 /* Can we use 32bit word accesses? */
2601                                 int size = 1;
2602                                 int count = buf_cnt;
2603                                 if ((count % 4) == 0)
2604                                 {
2605                                         size *= 4;
2606                                         count /= 4;
2607                                 }
2608                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2609                                 if (retval == ERROR_OK)
2610                                 {
2611                                         uint32_t t;
2612                                         for (t = 0; t < buf_cnt; t++)
2613                                         {
2614                                                 if (data[t] != buffer[t])
2615                                                 {
2616                                                         command_print(CMD_CTX,
2617                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2618                                                                                   (unsigned)(t + image.sections[i].base_address),
2619                                                                                   data[t],
2620                                                                                   buffer[t]);
2621                                                         free(data);
2622                                                         free(buffer);
2623                                                         retval = ERROR_FAIL;
2624                                                         goto done;
2625                                                 }
2626                                                 if ((t%16384) == 0)
2627                                                 {
2628                                                         keep_alive();
2629                                                 }
2630                                         }
2631                                 }
2632
2633                                 free(data);
2634                         }
2635                 } else
2636                 {
2637                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2638                                                   image.sections[i].base_address,
2639                                                   buf_cnt);
2640                 }
2641
2642                 free(buffer);
2643                 image_size += buf_cnt;
2644         }
2645 done:
2646         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2647         {
2648                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2649                                 "in %fs (%0.3f kb/s)", image_size,
2650                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2651         }
2652
2653         image_close(&image);
2654
2655         return retval;
2656 }
2657
2658 COMMAND_HANDLER(handle_verify_image_command)
2659 {
2660         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2661 }
2662
2663 COMMAND_HANDLER(handle_test_image_command)
2664 {
2665         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2666 }
2667
2668 static int handle_bp_command_list(struct command_context *cmd_ctx)
2669 {
2670         struct target *target = get_current_target(cmd_ctx);
2671         struct breakpoint *breakpoint = target->breakpoints;
2672         while (breakpoint)
2673         {
2674                 if (breakpoint->type == BKPT_SOFT)
2675                 {
2676                         char* buf = buf_to_str(breakpoint->orig_instr,
2677                                         breakpoint->length, 16);
2678                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2679                                         breakpoint->address,
2680                                         breakpoint->length,
2681                                         breakpoint->set, buf);
2682                         free(buf);
2683                 }
2684                 else
2685                 {
2686                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2687                                                   breakpoint->address,
2688                                                   breakpoint->length, breakpoint->set);
2689                 }
2690
2691                 breakpoint = breakpoint->next;
2692         }
2693         return ERROR_OK;
2694 }
2695
2696 static int handle_bp_command_set(struct command_context *cmd_ctx,
2697                 uint32_t addr, uint32_t length, int hw)
2698 {
2699         struct target *target = get_current_target(cmd_ctx);
2700         int retval = breakpoint_add(target, addr, length, hw);
2701         if (ERROR_OK == retval)
2702                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2703         else
2704                 LOG_ERROR("Failure setting breakpoint");
2705         return retval;
2706 }
2707
2708 COMMAND_HANDLER(handle_bp_command)
2709 {
2710         if (CMD_ARGC == 0)
2711                 return handle_bp_command_list(CMD_CTX);
2712
2713         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2714         {
2715                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2716                 return ERROR_COMMAND_SYNTAX_ERROR;
2717         }
2718
2719         uint32_t addr;
2720         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2721         uint32_t length;
2722         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2723
2724         int hw = BKPT_SOFT;
2725         if (CMD_ARGC == 3)
2726         {
2727                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2728                         hw = BKPT_HARD;
2729                 else
2730                         return ERROR_COMMAND_SYNTAX_ERROR;
2731         }
2732
2733         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2734 }
2735
2736 COMMAND_HANDLER(handle_rbp_command)
2737 {
2738         if (CMD_ARGC != 1)
2739                 return ERROR_COMMAND_SYNTAX_ERROR;
2740
2741         uint32_t addr;
2742         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2743
2744         struct target *target = get_current_target(CMD_CTX);
2745         breakpoint_remove(target, addr);
2746
2747         return ERROR_OK;
2748 }
2749
2750 COMMAND_HANDLER(handle_wp_command)
2751 {
2752         struct target *target = get_current_target(CMD_CTX);
2753
2754         if (CMD_ARGC == 0)
2755         {
2756                 struct watchpoint *watchpoint = target->watchpoints;
2757
2758                 while (watchpoint)
2759                 {
2760                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2761                                         ", len: 0x%8.8" PRIx32
2762                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2763                                         ", mask: 0x%8.8" PRIx32,
2764                                         watchpoint->address,
2765                                         watchpoint->length,
2766                                         (int)watchpoint->rw,
2767                                         watchpoint->value,
2768                                         watchpoint->mask);
2769                         watchpoint = watchpoint->next;
2770                 }
2771                 return ERROR_OK;
2772         }
2773
2774         enum watchpoint_rw type = WPT_ACCESS;
2775         uint32_t addr = 0;
2776         uint32_t length = 0;
2777         uint32_t data_value = 0x0;
2778         uint32_t data_mask = 0xffffffff;
2779
2780         switch (CMD_ARGC)
2781         {
2782         case 5:
2783                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2784                 // fall through
2785         case 4:
2786                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2787                 // fall through
2788         case 3:
2789                 switch (CMD_ARGV[2][0])
2790                 {
2791                 case 'r':
2792                         type = WPT_READ;
2793                         break;
2794                 case 'w':
2795                         type = WPT_WRITE;
2796                         break;
2797                 case 'a':
2798                         type = WPT_ACCESS;
2799                         break;
2800                 default:
2801                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2802                         return ERROR_COMMAND_SYNTAX_ERROR;
2803                 }
2804                 // fall through
2805         case 2:
2806                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2807                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2808                 break;
2809
2810         default:
2811                 command_print(CMD_CTX, "usage: wp [address length "
2812                                 "[(r|w|a) [value [mask]]]]");
2813                 return ERROR_COMMAND_SYNTAX_ERROR;
2814         }
2815
2816         int retval = watchpoint_add(target, addr, length, type,
2817                         data_value, data_mask);
2818         if (ERROR_OK != retval)
2819                 LOG_ERROR("Failure setting watchpoints");
2820
2821         return retval;
2822 }
2823
2824 COMMAND_HANDLER(handle_rwp_command)
2825 {
2826         if (CMD_ARGC != 1)
2827                 return ERROR_COMMAND_SYNTAX_ERROR;
2828
2829         uint32_t addr;
2830         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2831
2832         struct target *target = get_current_target(CMD_CTX);
2833         watchpoint_remove(target, addr);
2834
2835         return ERROR_OK;
2836 }
2837
2838
2839 /**
2840  * Translate a virtual address to a physical address.
2841  *
2842  * The low-level target implementation must have logged a detailed error
2843  * which is forwarded to telnet/GDB session.
2844  */
2845 COMMAND_HANDLER(handle_virt2phys_command)
2846 {
2847         if (CMD_ARGC != 1)
2848                 return ERROR_COMMAND_SYNTAX_ERROR;
2849
2850         uint32_t va;
2851         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2852         uint32_t pa;
2853
2854         struct target *target = get_current_target(CMD_CTX);
2855         int retval = target->type->virt2phys(target, va, &pa);
2856         if (retval == ERROR_OK)
2857                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2858
2859         return retval;
2860 }
2861
2862 static void writeData(FILE *f, const void *data, size_t len)
2863 {
2864         size_t written = fwrite(data, 1, len, f);
2865         if (written != len)
2866                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2867 }
2868
2869 static void writeLong(FILE *f, int l)
2870 {
2871         int i;
2872         for (i = 0; i < 4; i++)
2873         {
2874                 char c = (l >> (i*8))&0xff;
2875                 writeData(f, &c, 1);
2876         }
2877
2878 }
2879
2880 static void writeString(FILE *f, char *s)
2881 {
2882         writeData(f, s, strlen(s));
2883 }
2884
2885 /* Dump a gmon.out histogram file. */
2886 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2887 {
2888         uint32_t i;
2889         FILE *f = fopen(filename, "w");
2890         if (f == NULL)
2891                 return;
2892         writeString(f, "gmon");
2893         writeLong(f, 0x00000001); /* Version */
2894         writeLong(f, 0); /* padding */
2895         writeLong(f, 0); /* padding */
2896         writeLong(f, 0); /* padding */
2897
2898         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
2899         writeData(f, &zero, 1);
2900
2901         /* figure out bucket size */
2902         uint32_t min = samples[0];
2903         uint32_t max = samples[0];
2904         for (i = 0; i < sampleNum; i++)
2905         {
2906                 if (min > samples[i])
2907                 {
2908                         min = samples[i];
2909                 }
2910                 if (max < samples[i])
2911                 {
2912                         max = samples[i];
2913                 }
2914         }
2915
2916         int addressSpace = (max-min + 1);
2917
2918         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2919         uint32_t length = addressSpace;
2920         if (length > maxBuckets)
2921         {
2922                 length = maxBuckets;
2923         }
2924         int *buckets = malloc(sizeof(int)*length);
2925         if (buckets == NULL)
2926         {
2927                 fclose(f);
2928                 return;
2929         }
2930         memset(buckets, 0, sizeof(int)*length);
2931         for (i = 0; i < sampleNum;i++)
2932         {
2933                 uint32_t address = samples[i];
2934                 long long a = address-min;
2935                 long long b = length-1;
2936                 long long c = addressSpace-1;
2937                 int index = (a*b)/c; /* danger!!!! int32 overflows */
2938                 buckets[index]++;
2939         }
2940
2941         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2942         writeLong(f, min);                      /* low_pc */
2943         writeLong(f, max);                      /* high_pc */
2944         writeLong(f, length);           /* # of samples */
2945         writeLong(f, 64000000);         /* 64MHz */
2946         writeString(f, "seconds");
2947         for (i = 0; i < (15-strlen("seconds")); i++)
2948                 writeData(f, &zero, 1);
2949         writeString(f, "s");
2950
2951         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2952
2953         char *data = malloc(2*length);
2954         if (data != NULL)
2955         {
2956                 for (i = 0; i < length;i++)
2957                 {
2958                         int val;
2959                         val = buckets[i];
2960                         if (val > 65535)
2961                         {
2962                                 val = 65535;
2963                         }
2964                         data[i*2]=val&0xff;
2965                         data[i*2 + 1]=(val >> 8)&0xff;
2966                 }
2967                 free(buckets);
2968                 writeData(f, data, length * 2);
2969                 free(data);
2970         } else
2971         {
2972                 free(buckets);
2973         }
2974
2975         fclose(f);
2976 }
2977
2978 /* profiling samples the CPU PC as quickly as OpenOCD is able,
2979  * which will be used as a random sampling of PC */
2980 COMMAND_HANDLER(handle_profile_command)
2981 {
2982         struct target *target = get_current_target(CMD_CTX);
2983         struct timeval timeout, now;
2984
2985         gettimeofday(&timeout, NULL);
2986         if (CMD_ARGC != 2)
2987         {
2988                 return ERROR_COMMAND_SYNTAX_ERROR;
2989         }
2990         unsigned offset;
2991         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
2992
2993         timeval_add_time(&timeout, offset, 0);
2994
2995         /**
2996          * @todo: Some cores let us sample the PC without the
2997          * annoying halt/resume step; for example, ARMv7 PCSR.
2998          * Provide a way to use that more efficient mechanism.
2999          */
3000
3001         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3002
3003         static const int maxSample = 10000;
3004         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3005         if (samples == NULL)
3006                 return ERROR_OK;
3007
3008         int numSamples = 0;
3009         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3010         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3011
3012         for (;;)
3013         {
3014                 int retval;
3015                 target_poll(target);
3016                 if (target->state == TARGET_HALTED)
3017                 {
3018                         uint32_t t=*((uint32_t *)reg->value);
3019                         samples[numSamples++]=t;
3020                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3021                         target_poll(target);
3022                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3023                 } else if (target->state == TARGET_RUNNING)
3024                 {
3025                         /* We want to quickly sample the PC. */
3026                         if ((retval = target_halt(target)) != ERROR_OK)
3027                         {
3028                                 free(samples);
3029                                 return retval;
3030                         }
3031                 } else
3032                 {
3033                         command_print(CMD_CTX, "Target not halted or running");
3034                         retval = ERROR_OK;
3035                         break;
3036                 }
3037                 if (retval != ERROR_OK)
3038                 {
3039                         break;
3040                 }
3041
3042                 gettimeofday(&now, NULL);
3043                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3044                 {
3045                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3046                         if ((retval = target_poll(target)) != ERROR_OK)
3047                         {
3048                                 free(samples);
3049                                 return retval;
3050                         }
3051                         if (target->state == TARGET_HALTED)
3052                         {
3053                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3054                         }
3055                         if ((retval = target_poll(target)) != ERROR_OK)
3056                         {
3057                                 free(samples);
3058                                 return retval;
3059                         }
3060                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3061                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3062                         break;
3063                 }
3064         }
3065         free(samples);
3066
3067         return ERROR_OK;
3068 }
3069
3070 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3071 {
3072         char *namebuf;
3073         Jim_Obj *nameObjPtr, *valObjPtr;
3074         int result;
3075
3076         namebuf = alloc_printf("%s(%d)", varname, idx);
3077         if (!namebuf)
3078                 return JIM_ERR;
3079
3080         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3081         valObjPtr = Jim_NewIntObj(interp, val);
3082         if (!nameObjPtr || !valObjPtr)
3083         {
3084                 free(namebuf);
3085                 return JIM_ERR;
3086         }
3087
3088         Jim_IncrRefCount(nameObjPtr);
3089         Jim_IncrRefCount(valObjPtr);
3090         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3091         Jim_DecrRefCount(interp, nameObjPtr);
3092         Jim_DecrRefCount(interp, valObjPtr);
3093         free(namebuf);
3094         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3095         return result;
3096 }
3097
3098 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3099 {
3100         struct command_context *context;
3101         struct target *target;
3102
3103         context = Jim_GetAssocData(interp, "context");
3104         if (context == NULL)
3105         {
3106                 LOG_ERROR("mem2array: no command context");
3107                 return JIM_ERR;
3108         }
3109         target = get_current_target(context);
3110         if (target == NULL)
3111         {
3112                 LOG_ERROR("mem2array: no current target");
3113                 return JIM_ERR;
3114         }
3115
3116         return  target_mem2array(interp, target, argc-1, argv + 1);
3117 }
3118
3119 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3120 {
3121         long l;
3122         uint32_t width;
3123         int len;
3124         uint32_t addr;
3125         uint32_t count;
3126         uint32_t v;
3127         const char *varname;
3128         int  n, e, retval;
3129         uint32_t i;
3130
3131         /* argv[1] = name of array to receive the data
3132          * argv[2] = desired width
3133          * argv[3] = memory address
3134          * argv[4] = count of times to read
3135          */
3136         if (argc != 4) {
3137                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3138                 return JIM_ERR;
3139         }
3140         varname = Jim_GetString(argv[0], &len);
3141         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3142
3143         e = Jim_GetLong(interp, argv[1], &l);
3144         width = l;
3145         if (e != JIM_OK) {
3146                 return e;
3147         }
3148
3149         e = Jim_GetLong(interp, argv[2], &l);
3150         addr = l;
3151         if (e != JIM_OK) {
3152                 return e;
3153         }
3154         e = Jim_GetLong(interp, argv[3], &l);
3155         len = l;
3156         if (e != JIM_OK) {
3157                 return e;
3158         }
3159         switch (width) {
3160                 case 8:
3161                         width = 1;
3162                         break;
3163                 case 16:
3164                         width = 2;
3165                         break;
3166                 case 32:
3167                         width = 4;
3168                         break;
3169                 default:
3170                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3171                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3172                         return JIM_ERR;
3173         }
3174         if (len == 0) {
3175                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3176                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3177                 return JIM_ERR;
3178         }
3179         if ((addr + (len * width)) < addr) {
3180                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3181                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3182                 return JIM_ERR;
3183         }
3184         /* absurd transfer size? */
3185         if (len > 65536) {
3186                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3187                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3188                 return JIM_ERR;
3189         }
3190
3191         if ((width == 1) ||
3192                 ((width == 2) && ((addr & 1) == 0)) ||
3193                 ((width == 4) && ((addr & 3) == 0))) {
3194                 /* all is well */
3195         } else {
3196                 char buf[100];
3197                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3198                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3199                                 addr,
3200                                 width);
3201                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3202                 return JIM_ERR;
3203         }
3204
3205         /* Transfer loop */
3206
3207         /* index counter */
3208         n = 0;
3209
3210         size_t buffersize = 4096;
3211         uint8_t *buffer = malloc(buffersize);
3212         if (buffer == NULL)
3213                 return JIM_ERR;
3214
3215         /* assume ok */
3216         e = JIM_OK;
3217         while (len) {
3218                 /* Slurp... in buffer size chunks */
3219
3220                 count = len; /* in objects.. */
3221                 if (count > (buffersize/width)) {
3222                         count = (buffersize/width);
3223                 }
3224
3225                 retval = target_read_memory(target, addr, width, count, buffer);
3226                 if (retval != ERROR_OK) {
3227                         /* BOO !*/
3228                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3229                                           (unsigned int)addr,
3230                                           (int)width,
3231                                           (int)count);
3232                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3233                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3234                         e = JIM_ERR;
3235                         len = 0;
3236                 } else {
3237                         v = 0; /* shut up gcc */
3238                         for (i = 0 ;i < count ;i++, n++) {
3239                                 switch (width) {
3240                                         case 4:
3241                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3242                                                 break;
3243                                         case 2:
3244                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3245                                                 break;
3246                                         case 1:
3247                                                 v = buffer[i] & 0x0ff;
3248                                                 break;
3249                                 }
3250                                 new_int_array_element(interp, varname, n, v);
3251                         }
3252                         len -= count;
3253                 }
3254         }
3255
3256         free(buffer);
3257
3258         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3259
3260         return JIM_OK;
3261 }
3262
3263 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3264 {
3265         char *namebuf;
3266         Jim_Obj *nameObjPtr, *valObjPtr;
3267         int result;
3268         long l;
3269
3270         namebuf = alloc_printf("%s(%d)", varname, idx);
3271         if (!namebuf)
3272                 return JIM_ERR;
3273
3274         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3275         if (!nameObjPtr)
3276         {
3277                 free(namebuf);
3278                 return JIM_ERR;
3279         }
3280
3281         Jim_IncrRefCount(nameObjPtr);
3282         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3283         Jim_DecrRefCount(interp, nameObjPtr);
3284         free(namebuf);
3285         if (valObjPtr == NULL)
3286                 return JIM_ERR;
3287
3288         result = Jim_GetLong(interp, valObjPtr, &l);
3289         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3290         *val = l;
3291         return result;
3292 }
3293
3294 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3295 {
3296         struct command_context *context;
3297         struct target *target;
3298
3299         context = Jim_GetAssocData(interp, "context");
3300         if (context == NULL) {
3301                 LOG_ERROR("array2mem: no command context");
3302                 return JIM_ERR;
3303         }
3304         target = get_current_target(context);
3305         if (target == NULL) {
3306                 LOG_ERROR("array2mem: no current target");
3307                 return JIM_ERR;
3308         }
3309
3310         return target_array2mem(interp,target, argc-1, argv + 1);
3311 }
3312
3313 static int target_array2mem(Jim_Interp *interp, struct target *target,
3314                 int argc, Jim_Obj *const *argv)
3315 {
3316         long l;
3317         uint32_t width;
3318         int len;
3319         uint32_t addr;
3320         uint32_t count;
3321         uint32_t v;
3322         const char *varname;
3323         int  n, e, retval;
3324         uint32_t i;
3325
3326         /* argv[1] = name of array to get the data
3327          * argv[2] = desired width
3328          * argv[3] = memory address
3329          * argv[4] = count to write
3330          */
3331         if (argc != 4) {
3332                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3333                 return JIM_ERR;
3334         }
3335         varname = Jim_GetString(argv[0], &len);
3336         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3337
3338         e = Jim_GetLong(interp, argv[1], &l);
3339         width = l;
3340         if (e != JIM_OK) {
3341                 return e;
3342         }
3343
3344         e = Jim_GetLong(interp, argv[2], &l);
3345         addr = l;
3346         if (e != JIM_OK) {
3347                 return e;
3348         }
3349         e = Jim_GetLong(interp, argv[3], &l);
3350         len = l;
3351         if (e != JIM_OK) {
3352                 return e;
3353         }
3354         switch (width) {
3355                 case 8:
3356                         width = 1;
3357                         break;
3358                 case 16:
3359                         width = 2;
3360                         break;
3361                 case 32:
3362                         width = 4;
3363                         break;
3364                 default:
3365                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3366                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3367                         return JIM_ERR;
3368         }
3369         if (len == 0) {
3370                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3371                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3372                 return JIM_ERR;
3373         }
3374         if ((addr + (len * width)) < addr) {
3375                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3376                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3377                 return JIM_ERR;
3378         }
3379         /* absurd transfer size? */
3380         if (len > 65536) {
3381                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3382                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3383                 return JIM_ERR;
3384         }
3385
3386         if ((width == 1) ||
3387                 ((width == 2) && ((addr & 1) == 0)) ||
3388                 ((width == 4) && ((addr & 3) == 0))) {
3389                 /* all is well */
3390         } else {
3391                 char buf[100];
3392                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3393                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3394                                 (unsigned int)addr,
3395                                 (int)width);
3396                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3397                 return JIM_ERR;
3398         }
3399
3400         /* Transfer loop */
3401
3402         /* index counter */
3403         n = 0;
3404         /* assume ok */
3405         e = JIM_OK;
3406
3407         size_t buffersize = 4096;
3408         uint8_t *buffer = malloc(buffersize);
3409         if (buffer == NULL)
3410                 return JIM_ERR;
3411
3412         while (len) {
3413                 /* Slurp... in buffer size chunks */
3414
3415                 count = len; /* in objects.. */
3416                 if (count > (buffersize/width)) {
3417                         count = (buffersize/width);
3418                 }
3419
3420                 v = 0; /* shut up gcc */
3421                 for (i = 0 ;i < count ;i++, n++) {
3422                         get_int_array_element(interp, varname, n, &v);
3423                         switch (width) {
3424                         case 4:
3425                                 target_buffer_set_u32(target, &buffer[i*width], v);
3426                                 break;
3427                         case 2:
3428                                 target_buffer_set_u16(target, &buffer[i*width], v);
3429                                 break;
3430                         case 1:
3431                                 buffer[i] = v & 0x0ff;
3432                                 break;
3433                         }
3434                 }
3435                 len -= count;
3436
3437                 retval = target_write_memory(target, addr, width, count, buffer);
3438                 if (retval != ERROR_OK) {
3439                         /* BOO !*/
3440                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3441                                           (unsigned int)addr,
3442                                           (int)width,
3443                                           (int)count);
3444                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3445                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3446                         e = JIM_ERR;
3447                         len = 0;
3448                 }
3449         }
3450
3451         free(buffer);
3452
3453         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3454
3455         return JIM_OK;
3456 }
3457
3458 void target_all_handle_event(enum target_event e)
3459 {
3460         struct target *target;
3461
3462         LOG_DEBUG("**all*targets: event: %d, %s",
3463                            (int)e,
3464                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3465
3466         target = all_targets;
3467         while (target) {
3468                 target_handle_event(target, e);
3469                 target = target->next;
3470         }
3471 }
3472
3473
3474 /* FIX? should we propagate errors here rather than printing them
3475  * and continuing?
3476  */
3477 void target_handle_event(struct target *target, enum target_event e)
3478 {
3479         struct target_event_action *teap;
3480
3481         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3482                 if (teap->event == e) {
3483                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3484                                            target->target_number,
3485                                            target_name(target),
3486                                            target_type_name(target),
3487                                            e,
3488                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3489                                            Jim_GetString(teap->body, NULL));
3490                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3491                         {
3492                                 Jim_PrintErrorMessage(teap->interp);
3493                         }
3494                 }
3495         }
3496 }
3497
3498 /**
3499  * Returns true only if the target has a handler for the specified event.
3500  */
3501 bool target_has_event_action(struct target *target, enum target_event event)
3502 {
3503         struct target_event_action *teap;
3504
3505         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3506                 if (teap->event == event)
3507                         return true;
3508         }
3509         return false;
3510 }
3511
3512 enum target_cfg_param {
3513         TCFG_TYPE,
3514         TCFG_EVENT,
3515         TCFG_WORK_AREA_VIRT,
3516         TCFG_WORK_AREA_PHYS,
3517         TCFG_WORK_AREA_SIZE,
3518         TCFG_WORK_AREA_BACKUP,
3519         TCFG_ENDIAN,
3520         TCFG_VARIANT,
3521         TCFG_CHAIN_POSITION,
3522 };
3523
3524 static Jim_Nvp nvp_config_opts[] = {
3525         { .name = "-type",             .value = TCFG_TYPE },
3526         { .name = "-event",            .value = TCFG_EVENT },
3527         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3528         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3529         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3530         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3531         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3532         { .name = "-variant",          .value = TCFG_VARIANT },
3533         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3534
3535         { .name = NULL, .value = -1 }
3536 };
3537
3538 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3539 {
3540         Jim_Nvp *n;
3541         Jim_Obj *o;
3542         jim_wide w;
3543         char *cp;
3544         int e;
3545
3546         /* parse config or cget options ... */
3547         while (goi->argc > 0) {
3548                 Jim_SetEmptyResult(goi->interp);
3549                 /* Jim_GetOpt_Debug(goi); */
3550
3551                 if (target->type->target_jim_configure) {
3552                         /* target defines a configure function */
3553                         /* target gets first dibs on parameters */
3554                         e = (*(target->type->target_jim_configure))(target, goi);
3555                         if (e == JIM_OK) {
3556                                 /* more? */
3557                                 continue;
3558                         }
3559                         if (e == JIM_ERR) {
3560                                 /* An error */
3561                                 return e;
3562                         }
3563                         /* otherwise we 'continue' below */
3564                 }
3565                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3566                 if (e != JIM_OK) {
3567                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3568                         return e;
3569                 }
3570                 switch (n->value) {
3571                 case TCFG_TYPE:
3572                         /* not setable */
3573                         if (goi->isconfigure) {
3574                                 Jim_SetResult_sprintf(goi->interp,
3575                                                 "not settable: %s", n->name);
3576                                 return JIM_ERR;
3577                         } else {
3578                         no_params:
3579                                 if (goi->argc != 0) {
3580                                         Jim_WrongNumArgs(goi->interp,
3581                                                         goi->argc, goi->argv,
3582                                                         "NO PARAMS");
3583                                         return JIM_ERR;
3584                                 }
3585                         }
3586                         Jim_SetResultString(goi->interp,
3587                                         target_type_name(target), -1);
3588                         /* loop for more */
3589                         break;
3590                 case TCFG_EVENT:
3591                         if (goi->argc == 0) {
3592                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3593                                 return JIM_ERR;
3594                         }
3595
3596                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3597                         if (e != JIM_OK) {
3598                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3599                                 return e;
3600                         }
3601
3602                         if (goi->isconfigure) {
3603                                 if (goi->argc != 1) {
3604                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3605                                         return JIM_ERR;
3606                                 }
3607                         } else {
3608                                 if (goi->argc != 0) {
3609                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3610                                         return JIM_ERR;
3611                                 }
3612                         }
3613
3614                         {
3615                                 struct target_event_action *teap;
3616
3617                                 teap = target->event_action;
3618                                 /* replace existing? */
3619                                 while (teap) {
3620                                         if (teap->event == (enum target_event)n->value) {
3621                                                 break;
3622                                         }
3623                                         teap = teap->next;
3624                                 }
3625
3626                                 if (goi->isconfigure) {
3627                                         bool replace = true;
3628                                         if (teap == NULL) {
3629                                                 /* create new */
3630                                                 teap = calloc(1, sizeof(*teap));
3631                                                 replace = false;
3632                                         }
3633                                         teap->event = n->value;
3634                                         teap->interp = goi->interp;
3635                                         Jim_GetOpt_Obj(goi, &o);
3636                                         if (teap->body) {
3637                                                 Jim_DecrRefCount(teap->interp, teap->body);
3638                                         }
3639                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3640                                         /*
3641                                          * FIXME:
3642                                          *     Tcl/TK - "tk events" have a nice feature.
3643                                          *     See the "BIND" command.
3644                                          *    We should support that here.
3645                                          *     You can specify %X and %Y in the event code.
3646                                          *     The idea is: %T - target name.
3647                                          *     The idea is: %N - target number
3648                                          *     The idea is: %E - event name.
3649                                          */
3650                                         Jim_IncrRefCount(teap->body);
3651
3652                                         if (!replace)
3653                                         {
3654                                                 /* add to head of event list */
3655                                                 teap->next = target->event_action;
3656                                                 target->event_action = teap;
3657                                         }
3658                                         Jim_SetEmptyResult(goi->interp);
3659                                 } else {
3660                                         /* get */
3661                                         if (teap == NULL) {
3662                                                 Jim_SetEmptyResult(goi->interp);
3663                                         } else {
3664                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3665                                         }
3666                                 }
3667                         }
3668                         /* loop for more */
3669                         break;
3670
3671                 case TCFG_WORK_AREA_VIRT:
3672                         if (goi->isconfigure) {
3673                                 target_free_all_working_areas(target);
3674                                 e = Jim_GetOpt_Wide(goi, &w);
3675                                 if (e != JIM_OK) {
3676                                         return e;
3677                                 }
3678                                 target->working_area_virt = w;
3679                                 target->working_area_virt_spec = true;
3680                         } else {
3681                                 if (goi->argc != 0) {
3682                                         goto no_params;
3683                                 }
3684                         }
3685                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3686                         /* loop for more */
3687                         break;
3688
3689                 case TCFG_WORK_AREA_PHYS:
3690                         if (goi->isconfigure) {
3691                                 target_free_all_working_areas(target);
3692                                 e = Jim_GetOpt_Wide(goi, &w);
3693                                 if (e != JIM_OK) {
3694                                         return e;
3695                                 }
3696                                 target->working_area_phys = w;
3697                                 target->working_area_phys_spec = true;
3698                         } else {
3699                                 if (goi->argc != 0) {
3700                                         goto no_params;
3701                                 }
3702                         }
3703                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3704                         /* loop for more */
3705                         break;
3706
3707                 case TCFG_WORK_AREA_SIZE:
3708                         if (goi->isconfigure) {
3709                                 target_free_all_working_areas(target);
3710                                 e = Jim_GetOpt_Wide(goi, &w);
3711                                 if (e != JIM_OK) {
3712                                         return e;
3713                                 }
3714                                 target->working_area_size = w;
3715                         } else {
3716                                 if (goi->argc != 0) {
3717                                         goto no_params;
3718                                 }
3719                         }
3720                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3721                         /* loop for more */
3722                         break;
3723
3724                 case TCFG_WORK_AREA_BACKUP:
3725                         if (goi->isconfigure) {
3726                                 target_free_all_working_areas(target);
3727                                 e = Jim_GetOpt_Wide(goi, &w);
3728                                 if (e != JIM_OK) {
3729                                         return e;
3730                                 }
3731                                 /* make this exactly 1 or 0 */
3732                                 target->backup_working_area = (!!w);
3733                         } else {
3734                                 if (goi->argc != 0) {
3735                                         goto no_params;
3736                                 }
3737                         }
3738                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3739                         /* loop for more e*/
3740                         break;
3741
3742                 case TCFG_ENDIAN:
3743                         if (goi->isconfigure) {
3744                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3745                                 if (e != JIM_OK) {
3746                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3747                                         return e;
3748                                 }
3749                                 target->endianness = n->value;
3750                         } else {
3751                                 if (goi->argc != 0) {
3752                                         goto no_params;
3753                                 }
3754                         }
3755                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3756                         if (n->name == NULL) {
3757                                 target->endianness = TARGET_LITTLE_ENDIAN;
3758                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3759                         }
3760                         Jim_SetResultString(goi->interp, n->name, -1);
3761                         /* loop for more */
3762                         break;
3763
3764                 case TCFG_VARIANT:
3765                         if (goi->isconfigure) {
3766                                 if (goi->argc < 1) {
3767                                         Jim_SetResult_sprintf(goi->interp,
3768                                                                                    "%s ?STRING?",
3769                                                                                    n->name);
3770                                         return JIM_ERR;
3771                                 }
3772                                 if (target->variant) {
3773                                         free((void *)(target->variant));
3774                                 }
3775                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3776                                 target->variant = strdup(cp);
3777                         } else {
3778                                 if (goi->argc != 0) {
3779                                         goto no_params;
3780                                 }
3781                         }
3782                         Jim_SetResultString(goi->interp, target->variant,-1);
3783                         /* loop for more */
3784                         break;
3785                 case TCFG_CHAIN_POSITION:
3786                         if (goi->isconfigure) {
3787                                 Jim_Obj *o;
3788                                 struct jtag_tap *tap;
3789                                 target_free_all_working_areas(target);
3790                                 e = Jim_GetOpt_Obj(goi, &o);
3791                                 if (e != JIM_OK) {
3792                                         return e;
3793                                 }
3794                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3795                                 if (tap == NULL) {
3796                                         return JIM_ERR;
3797                                 }
3798                                 /* make this exactly 1 or 0 */
3799                                 target->tap = tap;
3800                         } else {
3801                                 if (goi->argc != 0) {
3802                                         goto no_params;
3803                                 }
3804                         }
3805                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3806                         /* loop for more e*/
3807                         break;
3808                 }
3809         } /* while (goi->argc) */
3810
3811
3812                 /* done - we return */
3813         return JIM_OK;
3814 }
3815
3816 static int
3817 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3818 {
3819         Jim_GetOptInfo goi;
3820
3821         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3822         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3823         int need_args = 1 + goi.isconfigure;
3824         if (goi.argc < need_args)
3825         {
3826                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3827                         goi.isconfigure
3828                                 ? "missing: -option VALUE ..."
3829                                 : "missing: -option ...");
3830                 return JIM_ERR;
3831         }
3832         struct target *target = Jim_CmdPrivData(goi.interp);
3833         return target_configure(&goi, target);
3834 }
3835
3836 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3837 {
3838         const char *cmd_name = Jim_GetString(argv[0], NULL);
3839
3840         Jim_GetOptInfo goi;
3841         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3842
3843         if (goi.argc != 2 && goi.argc != 3)
3844         {
3845                 Jim_SetResult_sprintf(goi.interp,
3846                                 "usage: %s <address> <data> [<count>]", cmd_name);
3847                 return JIM_ERR;
3848         }
3849
3850         jim_wide a;
3851         int e = Jim_GetOpt_Wide(&goi, &a);
3852         if (e != JIM_OK)
3853                 return e;
3854
3855         jim_wide b;
3856         e = Jim_GetOpt_Wide(&goi, &b);
3857         if (e != JIM_OK)
3858                 return e;
3859
3860         jim_wide c = 1;
3861         if (goi.argc == 3)
3862         {
3863                 e = Jim_GetOpt_Wide(&goi, &c);
3864                 if (e != JIM_OK)
3865                         return e;
3866         }
3867
3868         struct target *target = Jim_CmdPrivData(goi.interp);
3869         uint8_t  target_buf[32];
3870         if (strcasecmp(cmd_name, "mww") == 0) {
3871                 target_buffer_set_u32(target, target_buf, b);
3872                 b = 4;
3873         }
3874         else if (strcasecmp(cmd_name, "mwh") == 0) {
3875                 target_buffer_set_u16(target, target_buf, b);
3876                 b = 2;
3877         }
3878         else if (strcasecmp(cmd_name, "mwb") == 0) {
3879                 target_buffer_set_u8(target, target_buf, b);
3880                 b = 1;
3881         } else {
3882                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3883                 return JIM_ERR;
3884         }
3885
3886         for (jim_wide x = 0; x < c; x++)
3887         {
3888                 e = target_write_memory(target, a, b, 1, target_buf);
3889                 if (e != ERROR_OK)
3890                 {
3891                         Jim_SetResult_sprintf(interp,
3892                                         "Error writing @ 0x%08x: %d\n", (int)(a), e);
3893                         return JIM_ERR;
3894                 }
3895                 /* b = width */
3896                 a = a + b;
3897         }
3898         return JIM_OK;
3899 }
3900
3901 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3902 {
3903         const char *cmd_name = Jim_GetString(argv[0], NULL);
3904
3905         Jim_GetOptInfo goi;
3906         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3907
3908         if ((goi.argc == 2) || (goi.argc == 3))
3909         {
3910                 Jim_SetResult_sprintf(goi.interp,
3911                                 "usage: %s <address> [<count>]", cmd_name);
3912                 return JIM_ERR;
3913         }
3914
3915         jim_wide a;
3916         int e = Jim_GetOpt_Wide(&goi, &a);
3917         if (e != JIM_OK) {
3918                 return JIM_ERR;
3919         }
3920         jim_wide c;
3921         if (goi.argc) {
3922                 e = Jim_GetOpt_Wide(&goi, &c);
3923                 if (e != JIM_OK) {
3924                         return JIM_ERR;
3925                 }
3926         } else {
3927                 c = 1;
3928         }
3929         jim_wide b = 1; /* shut up gcc */
3930         if (strcasecmp(cmd_name, "mdw") == 0)
3931                 b = 4;
3932         else if (strcasecmp(cmd_name, "mdh") == 0)
3933                 b = 2;
3934         else if (strcasecmp(cmd_name, "mdb") == 0)
3935                 b = 1;
3936         else {
3937                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3938                 return JIM_ERR;
3939         }
3940
3941         /* convert count to "bytes" */
3942         c = c * b;
3943
3944         struct target *target = Jim_CmdPrivData(goi.interp);
3945         uint8_t  target_buf[32];
3946         jim_wide x, y, z;
3947         while (c > 0) {
3948                 y = c;
3949                 if (y > 16) {
3950                         y = 16;
3951                 }
3952                 e = target_read_memory(target, a, b, y / b, target_buf);
3953                 if (e != ERROR_OK) {
3954                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
3955                         return JIM_ERR;
3956                 }
3957
3958                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
3959                 switch (b) {
3960                 case 4:
3961                         for (x = 0; x < 16 && x < y; x += 4)
3962                         {
3963                                 z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
3964                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
3965                         }
3966                         for (; (x < 16) ; x += 4) {
3967                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
3968                         }
3969                         break;
3970                 case 2:
3971                         for (x = 0; x < 16 && x < y; x += 2)
3972                         {
3973                                 z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
3974                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
3975                         }
3976                         for (; (x < 16) ; x += 2) {
3977                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
3978                         }
3979                         break;
3980                 case 1:
3981                 default:
3982                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
3983                                 z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
3984                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
3985                         }
3986                         for (; (x < 16) ; x += 1) {
3987                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
3988                         }
3989                         break;
3990                 }
3991                 /* ascii-ify the bytes */
3992                 for (x = 0 ; x < y ; x++) {
3993                         if ((target_buf[x] >= 0x20) &&
3994                                 (target_buf[x] <= 0x7e)) {
3995                                 /* good */
3996                         } else {
3997                                 /* smack it */
3998                                 target_buf[x] = '.';
3999                         }
4000                 }
4001                 /* space pad  */
4002                 while (x < 16) {
4003                         target_buf[x] = ' ';
4004                         x++;
4005                 }
4006                 /* terminate */
4007                 target_buf[16] = 0;
4008                 /* print - with a newline */
4009                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4010                 /* NEXT... */
4011                 c -= 16;
4012                 a += 16;
4013         }
4014         return JIM_OK;
4015 }
4016
4017 static int jim_target_mem2array(Jim_Interp *interp,
4018                 int argc, Jim_Obj *const *argv)
4019 {
4020         struct target *target = Jim_CmdPrivData(interp);
4021         return target_mem2array(interp, target, argc - 1, argv + 1);
4022 }
4023
4024 static int jim_target_array2mem(Jim_Interp *interp,
4025                 int argc, Jim_Obj *const *argv)
4026 {
4027         struct target *target = Jim_CmdPrivData(interp);
4028         return target_array2mem(interp, target, argc - 1, argv + 1);
4029 }
4030
4031 static int jim_target_tap_disabled(Jim_Interp *interp)
4032 {
4033         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4034         return JIM_ERR;
4035 }
4036
4037 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4038 {
4039         if (argc != 1)
4040         {
4041                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4042                 return JIM_ERR;
4043         }
4044         struct target *target = Jim_CmdPrivData(interp);
4045         if (!target->tap->enabled)
4046                 return jim_target_tap_disabled(interp);
4047
4048         int e = target->type->examine(target);
4049         if (e != ERROR_OK)
4050         {
4051                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4052                 return JIM_ERR;
4053         }
4054         return JIM_OK;
4055 }
4056
4057 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4058 {
4059         if (argc != 1)
4060         {
4061                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4062                 return JIM_ERR;
4063         }
4064         struct target *target = Jim_CmdPrivData(interp);
4065
4066         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4067                 return JIM_ERR;
4068
4069         return JIM_OK;
4070 }
4071
4072 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4073 {
4074         if (argc != 1)
4075         {
4076                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4077                 return JIM_ERR;
4078         }
4079         struct target *target = Jim_CmdPrivData(interp);
4080         if (!target->tap->enabled)
4081                 return jim_target_tap_disabled(interp);
4082
4083         int e;
4084         if (!(target_was_examined(target))) {
4085                 e = ERROR_TARGET_NOT_EXAMINED;
4086         } else {
4087                 e = target->type->poll(target);
4088         }
4089         if (e != ERROR_OK)
4090         {
4091                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4092                 return JIM_ERR;
4093         }
4094         return JIM_OK;
4095 }
4096
4097 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4098 {
4099         Jim_GetOptInfo goi;
4100         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4101
4102         if (goi.argc != 2)
4103         {
4104                 Jim_WrongNumArgs(interp, 0, argv,
4105                                 "([tT]|[fF]|assert|deassert) BOOL");
4106                 return JIM_ERR;
4107         }
4108
4109         Jim_Nvp *n;
4110         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4111         if (e != JIM_OK)
4112         {
4113                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4114                 return e;
4115         }
4116         /* the halt or not param */
4117         jim_wide a;
4118         e = Jim_GetOpt_Wide(&goi, &a);
4119         if (e != JIM_OK)
4120                 return e;
4121
4122         struct target *target = Jim_CmdPrivData(goi.interp);
4123         if (!target->tap->enabled)
4124                 return jim_target_tap_disabled(interp);
4125         if (!(target_was_examined(target)))
4126         {
4127                 LOG_ERROR("Target not examined yet");
4128                 return ERROR_TARGET_NOT_EXAMINED;
4129         }
4130         if (!target->type->assert_reset || !target->type->deassert_reset)
4131         {
4132                 Jim_SetResult_sprintf(interp,
4133                                 "No target-specific reset for %s",
4134                                 target_name(target));
4135                 return JIM_ERR;
4136         }
4137         /* determine if we should halt or not. */
4138         target->reset_halt = !!a;
4139         /* When this happens - all workareas are invalid. */
4140         target_free_all_working_areas_restore(target, 0);
4141
4142         /* do the assert */
4143         if (n->value == NVP_ASSERT) {
4144                 e = target->type->assert_reset(target);
4145         } else {
4146                 e = target->type->deassert_reset(target);
4147         }
4148         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4149 }
4150
4151 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4152 {
4153         if (argc != 1) {
4154                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4155                 return JIM_ERR;
4156         }
4157         struct target *target = Jim_CmdPrivData(interp);
4158         if (!target->tap->enabled)
4159                 return jim_target_tap_disabled(interp);
4160         int e = target->type->halt(target);
4161         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4162 }
4163
4164 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4165 {
4166         Jim_GetOptInfo goi;
4167         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4168
4169         /* params:  <name>  statename timeoutmsecs */
4170         if (goi.argc != 2)
4171         {
4172                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4173                 Jim_SetResult_sprintf(goi.interp,
4174                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4175                 return JIM_ERR;
4176         }
4177
4178         Jim_Nvp *n;
4179         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4180         if (e != JIM_OK) {
4181                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4182                 return e;
4183         }
4184         jim_wide a;
4185         e = Jim_GetOpt_Wide(&goi, &a);
4186         if (e != JIM_OK) {
4187                 return e;
4188         }
4189         struct target *target = Jim_CmdPrivData(interp);
4190         if (!target->tap->enabled)
4191                 return jim_target_tap_disabled(interp);
4192
4193         e = target_wait_state(target, n->value, a);
4194         if (e != ERROR_OK)
4195         {
4196                 Jim_SetResult_sprintf(goi.interp,
4197                                 "target: %s wait %s fails (%d) %s",
4198                                 target_name(target), n->name,
4199                                 e, target_strerror_safe(e));
4200                 return JIM_ERR;
4201         }
4202         return JIM_OK;
4203 }
4204 /* List for human, Events defined for this target.
4205  * scripts/programs should use 'name cget -event NAME'
4206  */
4207 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4208 {
4209         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4210         struct target *target = Jim_CmdPrivData(interp);
4211         struct target_event_action *teap = target->event_action;
4212         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4213                                    target->target_number,
4214                                    target_name(target));
4215         command_print(cmd_ctx, "%-25s | Body", "Event");
4216         command_print(cmd_ctx, "------------------------- | "
4217                         "----------------------------------------");
4218         while (teap)
4219         {
4220                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4221                 command_print(cmd_ctx, "%-25s | %s",
4222                                 opt->name, Jim_GetString(teap->body, NULL));
4223                 teap = teap->next;
4224         }
4225         command_print(cmd_ctx, "***END***");
4226         return JIM_OK;
4227 }
4228 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4229 {
4230         if (argc != 1)
4231         {
4232                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4233                 return JIM_ERR;
4234         }
4235         struct target *target = Jim_CmdPrivData(interp);
4236         Jim_SetResultString(interp, target_state_name(target), -1);
4237         return JIM_OK;
4238 }
4239 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4240 {
4241         Jim_GetOptInfo goi;
4242         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4243         if (goi.argc != 1)
4244         {
4245                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4246                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4247                 return JIM_ERR;
4248         }
4249         Jim_Nvp *n;
4250         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4251         if (e != JIM_OK)
4252         {
4253                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4254                 return e;
4255         }
4256         struct target *target = Jim_CmdPrivData(interp);
4257         target_handle_event(target, n->value);
4258         return JIM_OK;
4259 }
4260
4261 static const struct command_registration target_instance_command_handlers[] = {
4262         {
4263                 .name = "configure",
4264                 .mode = COMMAND_CONFIG,
4265                 .jim_handler = jim_target_configure,
4266                 .help  = "configure a new target for use",
4267                 .usage = "[target_attribute ...]",
4268         },
4269         {
4270                 .name = "cget",
4271                 .mode = COMMAND_ANY,
4272                 .jim_handler = jim_target_configure,
4273                 .help  = "returns the specified target attribute",
4274                 .usage = "target_attribute",
4275         },
4276         {
4277                 .name = "mww",
4278                 .mode = COMMAND_EXEC,
4279                 .jim_handler = jim_target_mw,
4280                 .help = "Write 32-bit word(s) to target memory",
4281                 .usage = "address data [count]",
4282         },
4283         {
4284                 .name = "mwh",
4285                 .mode = COMMAND_EXEC,
4286                 .jim_handler = jim_target_mw,
4287                 .help = "Write 16-bit half-word(s) to target memory",
4288                 .usage = "address data [count]",
4289         },
4290         {
4291                 .name = "mwb",
4292                 .mode = COMMAND_EXEC,
4293                 .jim_handler = jim_target_mw,
4294                 .help = "Write byte(s) to target memory",
4295                 .usage = "address data [count]",
4296         },
4297         {
4298                 .name = "mdw",
4299                 .mode = COMMAND_EXEC,
4300                 .jim_handler = jim_target_md,
4301                 .help = "Display target memory as 32-bit words",
4302                 .usage = "address [count]",
4303         },
4304         {
4305                 .name = "mdh",
4306                 .mode = COMMAND_EXEC,
4307                 .jim_handler = jim_target_md,
4308                 .help = "Display target memory as 16-bit half-words",
4309                 .usage = "address [count]",
4310         },
4311         {
4312                 .name = "mdb",
4313                 .mode = COMMAND_EXEC,
4314                 .jim_handler = jim_target_md,
4315                 .help = "Display target memory as 8-bit bytes",
4316                 .usage = "address [count]",
4317         },
4318         {
4319                 .name = "array2mem",
4320                 .mode = COMMAND_EXEC,
4321                 .jim_handler = jim_target_array2mem,
4322                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4323                         "to target memory",
4324                 .usage = "arrayname bitwidth address count",
4325         },
4326         {
4327                 .name = "mem2array",
4328                 .mode = COMMAND_EXEC,
4329                 .jim_handler = jim_target_mem2array,
4330                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4331                         "from target memory",
4332                 .usage = "arrayname bitwidth address count",
4333         },
4334         {
4335                 .name = "eventlist",
4336                 .mode = COMMAND_EXEC,
4337                 .jim_handler = jim_target_event_list,
4338                 .help = "displays a table of events defined for this target",
4339         },
4340         {
4341                 .name = "curstate",
4342                 .mode = COMMAND_EXEC,
4343                 .jim_handler = jim_target_current_state,
4344                 .help = "displays the current state of this target",
4345         },
4346         {
4347                 .name = "arp_examine",
4348                 .mode = COMMAND_EXEC,
4349                 .jim_handler = jim_target_examine,
4350                 .help = "used internally for reset processing",
4351         },
4352         {
4353                 .name = "arp_halt_gdb",
4354                 .mode = COMMAND_EXEC,
4355                 .jim_handler = jim_target_halt_gdb,
4356                 .help = "used internally for reset processing to halt GDB",
4357         },
4358         {
4359                 .name = "arp_poll",
4360                 .mode = COMMAND_EXEC,
4361                 .jim_handler = jim_target_poll,
4362                 .help = "used internally for reset processing",
4363         },
4364         {
4365                 .name = "arp_reset",
4366                 .mode = COMMAND_EXEC,
4367                 .jim_handler = jim_target_reset,
4368                 .help = "used internally for reset processing",
4369         },
4370         {
4371                 .name = "arp_halt",
4372                 .mode = COMMAND_EXEC,
4373                 .jim_handler = jim_target_halt,
4374                 .help = "used internally for reset processing",
4375         },
4376         {
4377                 .name = "arp_waitstate",
4378                 .mode = COMMAND_EXEC,
4379                 .jim_handler = jim_target_wait_state,
4380                 .help = "used internally for reset processing",
4381         },
4382         {
4383                 .name = "invoke-event",
4384                 .mode = COMMAND_EXEC,
4385                 .jim_handler = jim_target_invoke_event,
4386                 .help = "invoke handler for specified event",
4387                 .usage = "event_name",
4388         },
4389         COMMAND_REGISTRATION_DONE
4390 };
4391
4392 static int target_create(Jim_GetOptInfo *goi)
4393 {
4394         Jim_Obj *new_cmd;
4395         Jim_Cmd *cmd;
4396         const char *cp;
4397         char *cp2;
4398         int e;
4399         int x;
4400         struct target *target;
4401         struct command_context *cmd_ctx;
4402
4403         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4404         if (goi->argc < 3) {
4405                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4406                 return JIM_ERR;
4407         }
4408
4409         /* COMMAND */
4410         Jim_GetOpt_Obj(goi, &new_cmd);
4411         /* does this command exist? */
4412         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4413         if (cmd) {
4414                 cp = Jim_GetString(new_cmd, NULL);
4415                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4416                 return JIM_ERR;
4417         }
4418
4419         /* TYPE */
4420         e = Jim_GetOpt_String(goi, &cp2, NULL);
4421         cp = cp2;
4422         /* now does target type exist */
4423         for (x = 0 ; target_types[x] ; x++) {
4424                 if (0 == strcmp(cp, target_types[x]->name)) {
4425                         /* found */
4426                         break;
4427                 }
4428         }
4429         if (target_types[x] == NULL) {
4430                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4431                 for (x = 0 ; target_types[x] ; x++) {
4432                         if (target_types[x + 1]) {
4433                                 Jim_AppendStrings(goi->interp,
4434                                                                    Jim_GetResult(goi->interp),
4435                                                                    target_types[x]->name,
4436                                                                    ", ", NULL);
4437                         } else {
4438                                 Jim_AppendStrings(goi->interp,
4439                                                                    Jim_GetResult(goi->interp),
4440                                                                    " or ",
4441                                                                    target_types[x]->name,NULL);
4442                         }
4443                 }
4444                 return JIM_ERR;
4445         }
4446
4447         /* Create it */
4448         target = calloc(1,sizeof(struct target));
4449         /* set target number */
4450         target->target_number = new_target_number();
4451
4452         /* allocate memory for each unique target type */
4453         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4454
4455         memcpy(target->type, target_types[x], sizeof(struct target_type));
4456
4457         /* will be set by "-endian" */
4458         target->endianness = TARGET_ENDIAN_UNKNOWN;
4459
4460         target->working_area        = 0x0;
4461         target->working_area_size   = 0x0;
4462         target->working_areas       = NULL;
4463         target->backup_working_area = 0;
4464
4465         target->state               = TARGET_UNKNOWN;
4466         target->debug_reason        = DBG_REASON_UNDEFINED;
4467         target->reg_cache           = NULL;
4468         target->breakpoints         = NULL;
4469         target->watchpoints         = NULL;
4470         target->next                = NULL;
4471         target->arch_info           = NULL;
4472
4473         target->display             = 1;
4474
4475         target->halt_issued                     = false;
4476
4477         /* initialize trace information */
4478         target->trace_info = malloc(sizeof(struct trace));
4479         target->trace_info->num_trace_points         = 0;
4480         target->trace_info->trace_points_size        = 0;
4481         target->trace_info->trace_points             = NULL;
4482         target->trace_info->trace_history_size       = 0;
4483         target->trace_info->trace_history            = NULL;
4484         target->trace_info->trace_history_pos        = 0;
4485         target->trace_info->trace_history_overflowed = 0;
4486
4487         target->dbgmsg          = NULL;
4488         target->dbg_msg_enabled = 0;
4489
4490         target->endianness = TARGET_ENDIAN_UNKNOWN;
4491
4492         /* Do the rest as "configure" options */
4493         goi->isconfigure = 1;
4494         e = target_configure(goi, target);
4495
4496         if (target->tap == NULL)
4497         {
4498                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4499                 e = JIM_ERR;
4500         }
4501
4502         if (e != JIM_OK) {
4503                 free(target->type);
4504                 free(target);
4505                 return e;
4506         }
4507
4508         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4509                 /* default endian to little if not specified */
4510                 target->endianness = TARGET_LITTLE_ENDIAN;
4511         }
4512
4513         /* incase variant is not set */
4514         if (!target->variant)
4515                 target->variant = strdup("");
4516
4517         cp = Jim_GetString(new_cmd, NULL);
4518         target->cmd_name = strdup(cp);
4519
4520         /* create the target specific commands */
4521         if (target->type->commands) {
4522                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4523                 if (ERROR_OK != e)
4524                         LOG_ERROR("unable to register '%s' commands", cp);
4525         }
4526         if (target->type->target_create) {
4527                 (*(target->type->target_create))(target, goi->interp);
4528         }
4529
4530         /* append to end of list */
4531         {
4532                 struct target **tpp;
4533                 tpp = &(all_targets);
4534                 while (*tpp) {
4535                         tpp = &((*tpp)->next);
4536                 }
4537                 *tpp = target;
4538         }
4539
4540         /* now - create the new target name command */
4541         const const struct command_registration target_subcommands[] = {
4542                 {
4543                         .chain = target_instance_command_handlers,
4544                 },
4545                 {
4546                         .chain = target->type->commands,
4547                 },
4548                 COMMAND_REGISTRATION_DONE
4549         };
4550         const const struct command_registration target_commands[] = {
4551                 {
4552                         .name = cp,
4553                         .mode = COMMAND_ANY,
4554                         .help = "target command group",
4555                         .chain = target_subcommands,
4556                 },
4557                 COMMAND_REGISTRATION_DONE
4558         };
4559         e = register_commands(cmd_ctx, NULL, target_commands);
4560         if (ERROR_OK != e)
4561                 return JIM_ERR;
4562
4563         struct command *c = command_find_in_context(cmd_ctx, cp);
4564         assert(c);
4565         command_set_handler_data(c, target);
4566
4567         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4568 }
4569
4570 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4571 {
4572         if (argc != 1)
4573         {
4574                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4575                 return JIM_ERR;
4576         }
4577         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4578         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4579         return JIM_OK;
4580 }
4581
4582 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4583 {
4584         if (argc != 1)
4585         {
4586                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4587                 return JIM_ERR;
4588         }
4589         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4590         for (unsigned x = 0; NULL != target_types[x]; x++)
4591         {
4592                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4593                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4594         }
4595         return JIM_OK;
4596 }
4597
4598 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4599 {
4600         if (argc != 1)
4601         {
4602                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4603                 return JIM_ERR;
4604         }
4605         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4606         struct target *target = all_targets;
4607         while (target)
4608         {
4609                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4610                         Jim_NewStringObj(interp, target_name(target), -1));
4611                 target = target->next;
4612         }
4613         return JIM_OK;
4614 }
4615
4616 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4617 {
4618         Jim_GetOptInfo goi;
4619         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4620         if (goi.argc < 3)
4621         {
4622                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4623                         "<name> <target_type> [<target_options> ...]");
4624                 return JIM_ERR;
4625         }
4626         return target_create(&goi);
4627 }
4628
4629 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4630 {
4631         Jim_GetOptInfo goi;
4632         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4633
4634         /* It's OK to remove this mechanism sometime after August 2010 or so */
4635         LOG_WARNING("don't use numbers as target identifiers; use names");
4636         if (goi.argc != 1)
4637         {
4638                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4639                 return JIM_ERR;
4640         }
4641         jim_wide w;
4642         int e = Jim_GetOpt_Wide(&goi, &w);
4643         if (e != JIM_OK)
4644                 return JIM_ERR;
4645
4646         struct target *target;
4647         for (target = all_targets; NULL != target; target = target->next)
4648         {
4649                 if (target->target_number != w)
4650                         continue;
4651
4652                 Jim_SetResultString(goi.interp, target_name(target), -1);
4653                 return JIM_OK;
4654         }
4655         Jim_SetResult_sprintf(goi.interp,
4656                         "Target: number %d does not exist", (int)(w));
4657         return JIM_ERR;
4658 }
4659
4660 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4661 {
4662         if (argc != 1)
4663         {
4664                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4665                 return JIM_ERR;
4666         }
4667         unsigned count = 0;
4668         struct target *target = all_targets;
4669         while (NULL != target)
4670         {
4671                 target = target->next;
4672                 count++;
4673         }
4674         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4675         return JIM_OK;
4676 }
4677
4678 static const struct command_registration target_subcommand_handlers[] = {
4679         {
4680                 .name = "init",
4681                 .mode = COMMAND_CONFIG,
4682                 .handler = handle_target_init_command,
4683                 .help = "initialize targets",
4684         },
4685         {
4686                 .name = "create",
4687                 /* REVISIT this should be COMMAND_CONFIG ... */
4688                 .mode = COMMAND_ANY,
4689                 .jim_handler = jim_target_create,
4690                 .usage = "name type '-chain-position' name [options ...]",
4691                 .help = "Creates and selects a new target",
4692         },
4693         {
4694                 .name = "current",
4695                 .mode = COMMAND_ANY,
4696                 .jim_handler = jim_target_current,
4697                 .help = "Returns the currently selected target",
4698         },
4699         {
4700                 .name = "types",
4701                 .mode = COMMAND_ANY,
4702                 .jim_handler = jim_target_types,
4703                 .help = "Returns the available target types as "
4704                                 "a list of strings",
4705         },
4706         {
4707                 .name = "names",
4708                 .mode = COMMAND_ANY,
4709                 .jim_handler = jim_target_names,
4710                 .help = "Returns the names of all targets as a list of strings",
4711         },
4712         {
4713                 .name = "number",
4714                 .mode = COMMAND_ANY,
4715                 .jim_handler = jim_target_number,
4716                 .usage = "number",
4717                 .help = "Returns the name of the numbered target "
4718                         "(DEPRECATED)",
4719         },
4720         {
4721                 .name = "count",
4722                 .mode = COMMAND_ANY,
4723                 .jim_handler = jim_target_count,
4724                 .help = "Returns the number of targets as an integer "
4725                         "(DEPRECATED)",
4726         },
4727         COMMAND_REGISTRATION_DONE
4728 };
4729
4730 struct FastLoad
4731 {
4732         uint32_t address;
4733         uint8_t *data;
4734         int length;
4735
4736 };
4737
4738 static int fastload_num;
4739 static struct FastLoad *fastload;
4740
4741 static void free_fastload(void)
4742 {
4743         if (fastload != NULL)
4744         {
4745                 int i;
4746                 for (i = 0; i < fastload_num; i++)
4747                 {
4748                         if (fastload[i].data)
4749                                 free(fastload[i].data);
4750                 }
4751                 free(fastload);
4752                 fastload = NULL;
4753         }
4754 }
4755
4756
4757
4758
4759 COMMAND_HANDLER(handle_fast_load_image_command)
4760 {
4761         uint8_t *buffer;
4762         size_t buf_cnt;
4763         uint32_t image_size;
4764         uint32_t min_address = 0;
4765         uint32_t max_address = 0xffffffff;
4766         int i;
4767
4768         struct image image;
4769
4770         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4771                         &image, &min_address, &max_address);
4772         if (ERROR_OK != retval)
4773                 return retval;
4774
4775         struct duration bench;
4776         duration_start(&bench);
4777
4778         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4779         {
4780                 return ERROR_OK;
4781         }
4782
4783         image_size = 0x0;
4784         retval = ERROR_OK;
4785         fastload_num = image.num_sections;
4786         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4787         if (fastload == NULL)
4788         {
4789                 image_close(&image);
4790                 return ERROR_FAIL;
4791         }
4792         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4793         for (i = 0; i < image.num_sections; i++)
4794         {
4795                 buffer = malloc(image.sections[i].size);
4796                 if (buffer == NULL)
4797                 {
4798                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4799                                                   (int)(image.sections[i].size));
4800                         break;
4801                 }
4802
4803                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4804                 {
4805                         free(buffer);
4806                         break;
4807                 }
4808
4809                 uint32_t offset = 0;
4810                 uint32_t length = buf_cnt;
4811
4812
4813                 /* DANGER!!! beware of unsigned comparision here!!! */
4814
4815                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4816                                 (image.sections[i].base_address < max_address))
4817                 {
4818                         if (image.sections[i].base_address < min_address)
4819                         {
4820                                 /* clip addresses below */
4821                                 offset += min_address-image.sections[i].base_address;
4822                                 length -= offset;
4823                         }
4824
4825                         if (image.sections[i].base_address + buf_cnt > max_address)
4826                         {
4827                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4828                         }
4829
4830                         fastload[i].address = image.sections[i].base_address + offset;
4831                         fastload[i].data = malloc(length);
4832                         if (fastload[i].data == NULL)
4833                         {
4834                                 free(buffer);
4835                                 break;
4836                         }
4837                         memcpy(fastload[i].data, buffer + offset, length);
4838                         fastload[i].length = length;
4839
4840                         image_size += length;
4841                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4842                                                   (unsigned int)length,
4843                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4844                 }
4845
4846                 free(buffer);
4847         }
4848
4849         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4850         {
4851                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4852                                 "in %fs (%0.3f kb/s)", image_size, 
4853                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4854
4855                 command_print(CMD_CTX,
4856                                 "WARNING: image has not been loaded to target!"
4857                                 "You can issue a 'fast_load' to finish loading.");
4858         }
4859
4860         image_close(&image);
4861
4862         if (retval != ERROR_OK)
4863         {
4864                 free_fastload();
4865         }
4866
4867         return retval;
4868 }
4869
4870 COMMAND_HANDLER(handle_fast_load_command)
4871 {
4872         if (CMD_ARGC > 0)
4873                 return ERROR_COMMAND_SYNTAX_ERROR;
4874         if (fastload == NULL)
4875         {
4876                 LOG_ERROR("No image in memory");
4877                 return ERROR_FAIL;
4878         }
4879         int i;
4880         int ms = timeval_ms();
4881         int size = 0;
4882         int retval = ERROR_OK;
4883         for (i = 0; i < fastload_num;i++)
4884         {
4885                 struct target *target = get_current_target(CMD_CTX);
4886                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
4887                                           (unsigned int)(fastload[i].address),
4888                                           (unsigned int)(fastload[i].length));
4889                 if (retval == ERROR_OK)
4890                 {
4891                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4892                 }
4893                 size += fastload[i].length;
4894         }
4895         int after = timeval_ms();
4896         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4897         return retval;
4898 }
4899
4900 static const struct command_registration target_command_handlers[] = {
4901         {
4902                 .name = "targets",
4903                 .handler = handle_targets_command,
4904                 .mode = COMMAND_ANY,
4905                 .help = "change current default target (one parameter) "
4906                         "or prints table of all targets (no parameters)",
4907                 .usage = "[target]",
4908         },
4909         {
4910                 .name = "target",
4911                 .mode = COMMAND_CONFIG,
4912                 .help = "configure target",
4913
4914                 .chain = target_subcommand_handlers,
4915         },
4916         COMMAND_REGISTRATION_DONE
4917 };
4918
4919 int target_register_commands(struct command_context *cmd_ctx)
4920 {
4921         return register_commands(cmd_ctx, NULL, target_command_handlers);
4922 }
4923
4924 static bool target_reset_nag = true;
4925
4926 bool get_target_reset_nag(void)
4927 {
4928         return target_reset_nag;
4929 }
4930
4931 COMMAND_HANDLER(handle_target_reset_nag)
4932 {
4933         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
4934                         &target_reset_nag, "Nag after each reset about options to improve "
4935                         "performance");
4936 }
4937
4938 static const struct command_registration target_exec_command_handlers[] = {
4939         {
4940                 .name = "fast_load_image",
4941                 .handler = handle_fast_load_image_command,
4942                 .mode = COMMAND_ANY,
4943                 .help = "Load image into server memory for later use by "
4944                         "fast_load; primarily for profiling",
4945                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
4946                         "[min_address [max_length]]",
4947         },
4948         {
4949                 .name = "fast_load",
4950                 .handler = handle_fast_load_command,
4951                 .mode = COMMAND_EXEC,
4952                 .help = "loads active fast load image to current target "
4953                         "- mainly for profiling purposes",
4954         },
4955         {
4956                 .name = "profile",
4957                 .handler = handle_profile_command,
4958                 .mode = COMMAND_EXEC,
4959                 .help = "profiling samples the CPU PC",
4960         },
4961         /** @todo don't register virt2phys() unless target supports it */
4962         {
4963                 .name = "virt2phys",
4964                 .handler = handle_virt2phys_command,
4965                 .mode = COMMAND_ANY,
4966                 .help = "translate a virtual address into a physical address",
4967                 .usage = "virtual_address",
4968         },
4969         {
4970                 .name = "reg",
4971                 .handler = handle_reg_command,
4972                 .mode = COMMAND_EXEC,
4973                 .help = "display or set a register; with no arguments, "
4974                         "displays all registers and their values",
4975                 .usage = "[(register_name|register_number) [value]]",
4976         },
4977         {
4978                 .name = "poll",
4979                 .handler = handle_poll_command,
4980                 .mode = COMMAND_EXEC,
4981                 .help = "poll target state; or reconfigure background polling",
4982                 .usage = "['on'|'off']",
4983         },
4984         {
4985                 .name = "wait_halt",
4986                 .handler = handle_wait_halt_command,
4987                 .mode = COMMAND_EXEC,
4988                 .help = "wait up to the specified number of milliseconds "
4989                         "(default 5) for a previously requested halt",
4990                 .usage = "[milliseconds]",
4991         },
4992         {
4993                 .name = "halt",
4994                 .handler = handle_halt_command,
4995                 .mode = COMMAND_EXEC,
4996                 .help = "request target to halt, then wait up to the specified"
4997                         "number of milliseconds (default 5) for it to complete",
4998                 .usage = "[milliseconds]",
4999         },
5000         {
5001                 .name = "resume",
5002                 .handler = handle_resume_command,
5003                 .mode = COMMAND_EXEC,
5004                 .help = "resume target execution from current PC or address",
5005                 .usage = "[address]",
5006         },
5007         {
5008                 .name = "reset",
5009                 .handler = handle_reset_command,
5010                 .mode = COMMAND_EXEC,
5011                 .usage = "[run|halt|init]",
5012                 .help = "Reset all targets into the specified mode."
5013                         "Default reset mode is run, if not given.",
5014         },
5015         {
5016                 .name = "soft_reset_halt",
5017                 .handler = handle_soft_reset_halt_command,
5018                 .mode = COMMAND_EXEC,
5019                 .help = "halt the target and do a soft reset",
5020         },
5021         {
5022                 .name = "step",
5023                 .handler = handle_step_command,
5024                 .mode = COMMAND_EXEC,
5025                 .help = "step one instruction from current PC or address",
5026                 .usage = "[address]",
5027         },
5028         {
5029                 .name = "mdw",
5030                 .handler = handle_md_command,
5031                 .mode = COMMAND_EXEC,
5032                 .help = "display memory words",
5033                 .usage = "['phys'] address [count]",
5034         },
5035         {
5036                 .name = "mdh",
5037                 .handler = handle_md_command,
5038                 .mode = COMMAND_EXEC,
5039                 .help = "display memory half-words",
5040                 .usage = "['phys'] address [count]",
5041         },
5042         {
5043                 .name = "mdb",
5044                 .handler = handle_md_command,
5045                 .mode = COMMAND_EXEC,
5046                 .help = "display memory bytes",
5047                 .usage = "['phys'] address [count]",
5048         },
5049         {
5050                 .name = "mww",
5051                 .handler = handle_mw_command,
5052                 .mode = COMMAND_EXEC,
5053                 .help = "write memory word",
5054                 .usage = "['phys'] address value [count]",
5055         },
5056         {
5057                 .name = "mwh",
5058                 .handler = handle_mw_command,
5059                 .mode = COMMAND_EXEC,
5060                 .help = "write memory half-word",
5061                 .usage = "['phys'] address value [count]",
5062         },
5063         {
5064                 .name = "mwb",
5065                 .handler = handle_mw_command,
5066                 .mode = COMMAND_EXEC,
5067                 .help = "write memory byte",
5068                 .usage = "['phys'] address value [count]",
5069         },
5070         {
5071                 .name = "bp",
5072                 .handler = handle_bp_command,
5073                 .mode = COMMAND_EXEC,
5074                 .help = "list or set hardware or software breakpoint",
5075                 .usage = "[address length ['hw']]",
5076         },
5077         {
5078                 .name = "rbp",
5079                 .handler = handle_rbp_command,
5080                 .mode = COMMAND_EXEC,
5081                 .help = "remove breakpoint",
5082                 .usage = "address",
5083         },
5084         {
5085                 .name = "wp",
5086                 .handler = handle_wp_command,
5087                 .mode = COMMAND_EXEC,
5088                 .help = "list (no params) or create watchpoints",
5089                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5090         },
5091         {
5092                 .name = "rwp",
5093                 .handler = handle_rwp_command,
5094                 .mode = COMMAND_EXEC,
5095                 .help = "remove watchpoint",
5096                 .usage = "address",
5097         },
5098         {
5099                 .name = "load_image",
5100                 .handler = handle_load_image_command,
5101                 .mode = COMMAND_EXEC,
5102                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5103                         "[min_address] [max_length]",
5104         },
5105         {
5106                 .name = "dump_image",
5107                 .handler = handle_dump_image_command,
5108                 .mode = COMMAND_EXEC,
5109                 .usage = "filename address size",
5110         },
5111         {
5112                 .name = "verify_image",
5113                 .handler = handle_verify_image_command,
5114                 .mode = COMMAND_EXEC,
5115                 .usage = "filename [offset [type]]",
5116         },
5117         {
5118                 .name = "test_image",
5119                 .handler = handle_test_image_command,
5120                 .mode = COMMAND_EXEC,
5121                 .usage = "filename [offset [type]]",
5122         },
5123         {
5124                 .name = "ocd_mem2array",
5125                 .mode = COMMAND_EXEC,
5126                 .jim_handler = jim_mem2array,
5127                 .help = "read 8/16/32 bit memory and return as a TCL array "
5128                         "for script processing",
5129                 .usage = "arrayname bitwidth address count",
5130         },
5131         {
5132                 .name = "ocd_array2mem",
5133                 .mode = COMMAND_EXEC,
5134                 .jim_handler = jim_array2mem,
5135                 .help = "convert a TCL array to memory locations "
5136                         "and write the 8/16/32 bit values",
5137                 .usage = "arrayname bitwidth address count",
5138         },
5139         {
5140                 .name = "reset_nag",
5141                 .handler = handle_target_reset_nag,
5142                 .mode = COMMAND_ANY,
5143                 .help = "Nag after each reset about options that could have been "
5144                                 "enabled to improve performance. ",
5145                 .usage = "['enable'|'disable']",
5146         },
5147         COMMAND_REGISTRATION_DONE
5148 };
5149 int target_register_user_commands(struct command_context *cmd_ctx)
5150 {
5151         int retval = ERROR_OK;
5152         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5153                 return retval;
5154
5155         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5156                 return retval;
5157
5158
5159         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5160 }