jim tests: use installed
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
39
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
47
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50                 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52                 int argc, Jim_Obj *const *argv);
53 static int target_register_user_commands(struct command_context *cmd_ctx);
54
55 /* targets */
56 extern struct target_type arm7tdmi_target;
57 extern struct target_type arm720t_target;
58 extern struct target_type arm9tdmi_target;
59 extern struct target_type arm920t_target;
60 extern struct target_type arm966e_target;
61 extern struct target_type arm926ejs_target;
62 extern struct target_type fa526_target;
63 extern struct target_type feroceon_target;
64 extern struct target_type dragonite_target;
65 extern struct target_type xscale_target;
66 extern struct target_type cortexm3_target;
67 extern struct target_type cortexa8_target;
68 extern struct target_type arm11_target;
69 extern struct target_type mips_m4k_target;
70 extern struct target_type avr_target;
71 extern struct target_type dsp563xx_target;
72 extern struct target_type testee_target;
73 extern struct target_type avr32_ap7k_target;
74
75 static struct target_type *target_types[] =
76 {
77         &arm7tdmi_target,
78         &arm9tdmi_target,
79         &arm920t_target,
80         &arm720t_target,
81         &arm966e_target,
82         &arm926ejs_target,
83         &fa526_target,
84         &feroceon_target,
85         &dragonite_target,
86         &xscale_target,
87         &cortexm3_target,
88         &cortexa8_target,
89         &arm11_target,
90         &mips_m4k_target,
91         &avr_target,
92         &dsp563xx_target,
93         &testee_target,
94         &avr32_ap7k_target,
95         NULL,
96 };
97
98 struct target *all_targets = NULL;
99 static struct target_event_callback *target_event_callbacks = NULL;
100 static struct target_timer_callback *target_timer_callbacks = NULL;
101 static const int polling_interval = 100;
102
103 static const Jim_Nvp nvp_assert[] = {
104         { .name = "assert", NVP_ASSERT },
105         { .name = "deassert", NVP_DEASSERT },
106         { .name = "T", NVP_ASSERT },
107         { .name = "F", NVP_DEASSERT },
108         { .name = "t", NVP_ASSERT },
109         { .name = "f", NVP_DEASSERT },
110         { .name = NULL, .value = -1 }
111 };
112
113 static const Jim_Nvp nvp_error_target[] = {
114         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
115         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
116         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
117         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
118         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
119         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
120         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
121         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
122         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
123         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
124         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
125         { .value = -1, .name = NULL }
126 };
127
128 static const char *target_strerror_safe(int err)
129 {
130         const Jim_Nvp *n;
131
132         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
133         if (n->name == NULL) {
134                 return "unknown";
135         } else {
136                 return n->name;
137         }
138 }
139
140 static const Jim_Nvp nvp_target_event[] = {
141         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
142         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
143
144         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
145         { .value = TARGET_EVENT_HALTED, .name = "halted" },
146         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
147         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
148         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
149
150         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
151         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
152
153         /* historical name */
154
155         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
156
157         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
158         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
159         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
160         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
161         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
162         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
163         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
164         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
165         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
166         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
167         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
168
169         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
170         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
171
172         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
173         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
174
175         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
176         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
177
178         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
179         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
180
181         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
182         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
183
184         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
185         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
186         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
187
188         { .name = NULL, .value = -1 }
189 };
190
191 static const Jim_Nvp nvp_target_state[] = {
192         { .name = "unknown", .value = TARGET_UNKNOWN },
193         { .name = "running", .value = TARGET_RUNNING },
194         { .name = "halted",  .value = TARGET_HALTED },
195         { .name = "reset",   .value = TARGET_RESET },
196         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
197         { .name = NULL, .value = -1 },
198 };
199
200 static const Jim_Nvp nvp_target_debug_reason [] = {
201         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
202         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
203         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
204         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
205         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
206         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
207         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
208         { .name = NULL, .value = -1 },
209 };
210
211 static const Jim_Nvp nvp_target_endian[] = {
212         { .name = "big",    .value = TARGET_BIG_ENDIAN },
213         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
214         { .name = "be",     .value = TARGET_BIG_ENDIAN },
215         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
216         { .name = NULL,     .value = -1 },
217 };
218
219 static const Jim_Nvp nvp_reset_modes[] = {
220         { .name = "unknown", .value = RESET_UNKNOWN },
221         { .name = "run"    , .value = RESET_RUN },
222         { .name = "halt"   , .value = RESET_HALT },
223         { .name = "init"   , .value = RESET_INIT },
224         { .name = NULL     , .value = -1 },
225 };
226
227 const char *debug_reason_name(struct target *t)
228 {
229         const char *cp;
230
231         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
232                         t->debug_reason)->name;
233         if (!cp) {
234                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
235                 cp = "(*BUG*unknown*BUG*)";
236         }
237         return cp;
238 }
239
240 const char *
241 target_state_name( struct target *t )
242 {
243         const char *cp;
244         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
245         if( !cp ){
246                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
247                 cp = "(*BUG*unknown*BUG*)";
248         }
249         return cp;
250 }
251
252 /* determine the number of the new target */
253 static int new_target_number(void)
254 {
255         struct target *t;
256         int x;
257
258         /* number is 0 based */
259         x = -1;
260         t = all_targets;
261         while (t) {
262                 if (x < t->target_number) {
263                         x = t->target_number;
264                 }
265                 t = t->next;
266         }
267         return x + 1;
268 }
269
270 /* read a uint32_t from a buffer in target memory endianness */
271 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
272 {
273         if (target->endianness == TARGET_LITTLE_ENDIAN)
274                 return le_to_h_u32(buffer);
275         else
276                 return be_to_h_u32(buffer);
277 }
278
279 /* read a uint16_t from a buffer in target memory endianness */
280 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
281 {
282         if (target->endianness == TARGET_LITTLE_ENDIAN)
283                 return le_to_h_u16(buffer);
284         else
285                 return be_to_h_u16(buffer);
286 }
287
288 /* read a uint8_t from a buffer in target memory endianness */
289 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
290 {
291         return *buffer & 0x0ff;
292 }
293
294 /* write a uint32_t to a buffer in target memory endianness */
295 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
296 {
297         if (target->endianness == TARGET_LITTLE_ENDIAN)
298                 h_u32_to_le(buffer, value);
299         else
300                 h_u32_to_be(buffer, value);
301 }
302
303 /* write a uint16_t to a buffer in target memory endianness */
304 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
305 {
306         if (target->endianness == TARGET_LITTLE_ENDIAN)
307                 h_u16_to_le(buffer, value);
308         else
309                 h_u16_to_be(buffer, value);
310 }
311
312 /* write a uint8_t to a buffer in target memory endianness */
313 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
314 {
315         *buffer = value;
316 }
317
318 /* return a pointer to a configured target; id is name or number */
319 struct target *get_target(const char *id)
320 {
321         struct target *target;
322
323         /* try as tcltarget name */
324         for (target = all_targets; target; target = target->next) {
325                 if (target->cmd_name == NULL)
326                         continue;
327                 if (strcmp(id, target->cmd_name) == 0)
328                         return target;
329         }
330
331         /* It's OK to remove this fallback sometime after August 2010 or so */
332
333         /* no match, try as number */
334         unsigned num;
335         if (parse_uint(id, &num) != ERROR_OK)
336                 return NULL;
337
338         for (target = all_targets; target; target = target->next) {
339                 if (target->target_number == (int)num) {
340                         LOG_WARNING("use '%s' as target identifier, not '%u'",
341                                         target->cmd_name, num);
342                         return target;
343                 }
344         }
345
346         return NULL;
347 }
348
349 /* returns a pointer to the n-th configured target */
350 static struct target *get_target_by_num(int num)
351 {
352         struct target *target = all_targets;
353
354         while (target) {
355                 if (target->target_number == num) {
356                         return target;
357                 }
358                 target = target->next;
359         }
360
361         return NULL;
362 }
363
364 struct target* get_current_target(struct command_context *cmd_ctx)
365 {
366         struct target *target = get_target_by_num(cmd_ctx->current_target);
367
368         if (target == NULL)
369         {
370                 LOG_ERROR("BUG: current_target out of bounds");
371                 exit(-1);
372         }
373
374         return target;
375 }
376
377 int target_poll(struct target *target)
378 {
379         int retval;
380
381         /* We can't poll until after examine */
382         if (!target_was_examined(target))
383         {
384                 /* Fail silently lest we pollute the log */
385                 return ERROR_FAIL;
386         }
387
388         retval = target->type->poll(target);
389         if (retval != ERROR_OK)
390                 return retval;
391
392         if (target->halt_issued)
393         {
394                 if (target->state == TARGET_HALTED)
395                 {
396                         target->halt_issued = false;
397                 } else
398                 {
399                         long long t = timeval_ms() - target->halt_issued_time;
400                         if (t>1000)
401                         {
402                                 target->halt_issued = false;
403                                 LOG_INFO("Halt timed out, wake up GDB.");
404                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
405                         }
406                 }
407         }
408
409         return ERROR_OK;
410 }
411
412 int target_halt(struct target *target)
413 {
414         int retval;
415         /* We can't poll until after examine */
416         if (!target_was_examined(target))
417         {
418                 LOG_ERROR("Target not examined yet");
419                 return ERROR_FAIL;
420         }
421
422         retval = target->type->halt(target);
423         if (retval != ERROR_OK)
424                 return retval;
425
426         target->halt_issued = true;
427         target->halt_issued_time = timeval_ms();
428
429         return ERROR_OK;
430 }
431
432 /**
433  * Make the target (re)start executing using its saved execution
434  * context (possibly with some modifications).
435  *
436  * @param target Which target should start executing.
437  * @param current True to use the target's saved program counter instead
438  *      of the address parameter
439  * @param address Optionally used as the program counter.
440  * @param handle_breakpoints True iff breakpoints at the resumption PC
441  *      should be skipped.  (For example, maybe execution was stopped by
442  *      such a breakpoint, in which case it would be counterprodutive to
443  *      let it re-trigger.
444  * @param debug_execution False if all working areas allocated by OpenOCD
445  *      should be released and/or restored to their original contents.
446  *      (This would for example be true to run some downloaded "helper"
447  *      algorithm code, which resides in one such working buffer and uses
448  *      another for data storage.)
449  *
450  * @todo Resolve the ambiguity about what the "debug_execution" flag
451  * signifies.  For example, Target implementations don't agree on how
452  * it relates to invalidation of the register cache, or to whether
453  * breakpoints and watchpoints should be enabled.  (It would seem wrong
454  * to enable breakpoints when running downloaded "helper" algorithms
455  * (debug_execution true), since the breakpoints would be set to match
456  * target firmware being debugged, not the helper algorithm.... and
457  * enabling them could cause such helpers to malfunction (for example,
458  * by overwriting data with a breakpoint instruction.  On the other
459  * hand the infrastructure for running such helpers might use this
460  * procedure but rely on hardware breakpoint to detect termination.)
461  */
462 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
463 {
464         int retval;
465
466         /* We can't poll until after examine */
467         if (!target_was_examined(target))
468         {
469                 LOG_ERROR("Target not examined yet");
470                 return ERROR_FAIL;
471         }
472
473         /* note that resume *must* be asynchronous. The CPU can halt before
474          * we poll. The CPU can even halt at the current PC as a result of
475          * a software breakpoint being inserted by (a bug?) the application.
476          */
477         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
478                 return retval;
479
480         return retval;
481 }
482
483 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
484 {
485         char buf[100];
486         int retval;
487         Jim_Nvp *n;
488         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
489         if (n->name == NULL) {
490                 LOG_ERROR("invalid reset mode");
491                 return ERROR_FAIL;
492         }
493
494         /* disable polling during reset to make reset event scripts
495          * more predictable, i.e. dr/irscan & pathmove in events will
496          * not have JTAG operations injected into the middle of a sequence.
497          */
498         bool save_poll = jtag_poll_get_enabled();
499
500         jtag_poll_set_enabled(false);
501
502         sprintf(buf, "ocd_process_reset %s", n->name);
503         retval = Jim_Eval(cmd_ctx->interp, buf);
504
505         jtag_poll_set_enabled(save_poll);
506
507         if (retval != JIM_OK) {
508                 Jim_MakeErrorMessage(cmd_ctx->interp);
509                 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
510                 return ERROR_FAIL;
511         }
512
513         /* We want any events to be processed before the prompt */
514         retval = target_call_timer_callbacks_now();
515
516         struct target *target;
517         for (target = all_targets; target; target = target->next) {
518                 target->type->check_reset(target);
519         }
520
521         return retval;
522 }
523
524 static int identity_virt2phys(struct target *target,
525                 uint32_t virtual, uint32_t *physical)
526 {
527         *physical = virtual;
528         return ERROR_OK;
529 }
530
531 static int no_mmu(struct target *target, int *enabled)
532 {
533         *enabled = 0;
534         return ERROR_OK;
535 }
536
537 static int default_examine(struct target *target)
538 {
539         target_set_examined(target);
540         return ERROR_OK;
541 }
542
543 /* no check by default */
544 static int default_check_reset(struct target *target)
545 {
546         return ERROR_OK;
547 }
548
549 int target_examine_one(struct target *target)
550 {
551         return target->type->examine(target);
552 }
553
554 static int jtag_enable_callback(enum jtag_event event, void *priv)
555 {
556         struct target *target = priv;
557
558         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
559                 return ERROR_OK;
560
561         jtag_unregister_event_callback(jtag_enable_callback, target);
562         return target_examine_one(target);
563 }
564
565
566 /* Targets that correctly implement init + examine, i.e.
567  * no communication with target during init:
568  *
569  * XScale
570  */
571 int target_examine(void)
572 {
573         int retval = ERROR_OK;
574         struct target *target;
575
576         for (target = all_targets; target; target = target->next)
577         {
578                 /* defer examination, but don't skip it */
579                 if (!target->tap->enabled) {
580                         jtag_register_event_callback(jtag_enable_callback,
581                                         target);
582                         continue;
583                 }
584                 if ((retval = target_examine_one(target)) != ERROR_OK)
585                         return retval;
586         }
587         return retval;
588 }
589 const char *target_type_name(struct target *target)
590 {
591         return target->type->name;
592 }
593
594 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
595 {
596         if (!target_was_examined(target))
597         {
598                 LOG_ERROR("Target not examined yet");
599                 return ERROR_FAIL;
600         }
601         return target->type->write_memory_imp(target, address, size, count, buffer);
602 }
603
604 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
605 {
606         if (!target_was_examined(target))
607         {
608                 LOG_ERROR("Target not examined yet");
609                 return ERROR_FAIL;
610         }
611         return target->type->read_memory_imp(target, address, size, count, buffer);
612 }
613
614 static int target_soft_reset_halt_imp(struct target *target)
615 {
616         if (!target_was_examined(target))
617         {
618                 LOG_ERROR("Target not examined yet");
619                 return ERROR_FAIL;
620         }
621         if (!target->type->soft_reset_halt_imp) {
622                 LOG_ERROR("Target %s does not support soft_reset_halt",
623                                 target_name(target));
624                 return ERROR_FAIL;
625         }
626         return target->type->soft_reset_halt_imp(target);
627 }
628
629 /**
630  * Downloads a target-specific native code algorithm to the target,
631  * and executes it.  * Note that some targets may need to set up, enable,
632  * and tear down a breakpoint (hard or * soft) to detect algorithm
633  * termination, while others may support  lower overhead schemes where
634  * soft breakpoints embedded in the algorithm automatically terminate the
635  * algorithm.
636  *
637  * @param target used to run the algorithm
638  * @param arch_info target-specific description of the algorithm.
639  */
640 int target_run_algorithm(struct target *target,
641                 int num_mem_params, struct mem_param *mem_params,
642                 int num_reg_params, struct reg_param *reg_param,
643                 uint32_t entry_point, uint32_t exit_point,
644                 int timeout_ms, void *arch_info)
645 {
646         int retval = ERROR_FAIL;
647
648         if (!target_was_examined(target))
649         {
650                 LOG_ERROR("Target not examined yet");
651                 goto done;
652         }
653         if (!target->type->run_algorithm) {
654                 LOG_ERROR("Target type '%s' does not support %s",
655                                 target_type_name(target), __func__);
656                 goto done;
657         }
658
659         target->running_alg = true;
660         retval = target->type->run_algorithm(target,
661                         num_mem_params, mem_params,
662                         num_reg_params, reg_param,
663                         entry_point, exit_point, timeout_ms, arch_info);
664         target->running_alg = false;
665
666 done:
667         return retval;
668 }
669
670
671 int target_read_memory(struct target *target,
672                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
673 {
674         return target->type->read_memory(target, address, size, count, buffer);
675 }
676
677 static int target_read_phys_memory(struct target *target,
678                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
679 {
680         return target->type->read_phys_memory(target, address, size, count, buffer);
681 }
682
683 int target_write_memory(struct target *target,
684                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
685 {
686         return target->type->write_memory(target, address, size, count, buffer);
687 }
688
689 static int target_write_phys_memory(struct target *target,
690                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
691 {
692         return target->type->write_phys_memory(target, address, size, count, buffer);
693 }
694
695 int target_bulk_write_memory(struct target *target,
696                 uint32_t address, uint32_t count, uint8_t *buffer)
697 {
698         return target->type->bulk_write_memory(target, address, count, buffer);
699 }
700
701 int target_add_breakpoint(struct target *target,
702                 struct breakpoint *breakpoint)
703 {
704         if (target->state != TARGET_HALTED) {
705                 LOG_WARNING("target %s is not halted", target->cmd_name);
706                 return ERROR_TARGET_NOT_HALTED;
707         }
708         return target->type->add_breakpoint(target, breakpoint);
709 }
710 int target_remove_breakpoint(struct target *target,
711                 struct breakpoint *breakpoint)
712 {
713         return target->type->remove_breakpoint(target, breakpoint);
714 }
715
716 int target_add_watchpoint(struct target *target,
717                 struct watchpoint *watchpoint)
718 {
719         if (target->state != TARGET_HALTED) {
720                 LOG_WARNING("target %s is not halted", target->cmd_name);
721                 return ERROR_TARGET_NOT_HALTED;
722         }
723         return target->type->add_watchpoint(target, watchpoint);
724 }
725 int target_remove_watchpoint(struct target *target,
726                 struct watchpoint *watchpoint)
727 {
728         return target->type->remove_watchpoint(target, watchpoint);
729 }
730
731 int target_get_gdb_reg_list(struct target *target,
732                 struct reg **reg_list[], int *reg_list_size)
733 {
734         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
735 }
736 int target_step(struct target *target,
737                 int current, uint32_t address, int handle_breakpoints)
738 {
739         return target->type->step(target, current, address, handle_breakpoints);
740 }
741
742
743 /**
744  * Reset the @c examined flag for the given target.
745  * Pure paranoia -- targets are zeroed on allocation.
746  */
747 static void target_reset_examined(struct target *target)
748 {
749         target->examined = false;
750 }
751
752 static int
753 err_read_phys_memory(struct target *target, uint32_t address,
754                 uint32_t size, uint32_t count, uint8_t *buffer)
755 {
756         LOG_ERROR("Not implemented: %s", __func__);
757         return ERROR_FAIL;
758 }
759
760 static int
761 err_write_phys_memory(struct target *target, uint32_t address,
762                 uint32_t size, uint32_t count, uint8_t *buffer)
763 {
764         LOG_ERROR("Not implemented: %s", __func__);
765         return ERROR_FAIL;
766 }
767
768 static int handle_target(void *priv);
769
770 static int target_init_one(struct command_context *cmd_ctx,
771                 struct target *target)
772 {
773         target_reset_examined(target);
774
775         struct target_type *type = target->type;
776         if (type->examine == NULL)
777                 type->examine = default_examine;
778
779         if (type->check_reset== NULL)
780                 type->check_reset = default_check_reset;
781
782         int retval = type->init_target(cmd_ctx, target);
783         if (ERROR_OK != retval)
784         {
785                 LOG_ERROR("target '%s' init failed", target_name(target));
786                 return retval;
787         }
788
789         /**
790          * @todo get rid of those *memory_imp() methods, now that all
791          * callers are using target_*_memory() accessors ... and make
792          * sure the "physical" paths handle the same issues.
793          */
794         /* a non-invasive way(in terms of patches) to add some code that
795          * runs before the type->write/read_memory implementation
796          */
797         type->write_memory_imp = target->type->write_memory;
798         type->write_memory = target_write_memory_imp;
799
800         type->read_memory_imp = target->type->read_memory;
801         type->read_memory = target_read_memory_imp;
802
803         type->soft_reset_halt_imp = target->type->soft_reset_halt;
804         type->soft_reset_halt = target_soft_reset_halt_imp;
805
806         /* Sanity-check MMU support ... stub in what we must, to help
807          * implement it in stages, but warn if we need to do so.
808          */
809         if (type->mmu)
810         {
811                 if (type->write_phys_memory == NULL)
812                 {
813                         LOG_ERROR("type '%s' is missing write_phys_memory",
814                                         type->name);
815                         type->write_phys_memory = err_write_phys_memory;
816                 }
817                 if (type->read_phys_memory == NULL)
818                 {
819                         LOG_ERROR("type '%s' is missing read_phys_memory",
820                                         type->name);
821                         type->read_phys_memory = err_read_phys_memory;
822                 }
823                 if (type->virt2phys == NULL)
824                 {
825                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
826                         type->virt2phys = identity_virt2phys;
827                 }
828         }
829         else
830         {
831                 /* Make sure no-MMU targets all behave the same:  make no
832                  * distinction between physical and virtual addresses, and
833                  * ensure that virt2phys() is always an identity mapping.
834                  */
835                 if (type->write_phys_memory || type->read_phys_memory
836                                 || type->virt2phys)
837                 {
838                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
839                 }
840
841                 type->mmu = no_mmu;
842                 type->write_phys_memory = type->write_memory;
843                 type->read_phys_memory = type->read_memory;
844                 type->virt2phys = identity_virt2phys;
845         }
846         return ERROR_OK;
847 }
848
849 static int target_init(struct command_context *cmd_ctx)
850 {
851         struct target *target;
852         int retval;
853
854         for (target = all_targets; target; target = target->next)
855         {
856                 retval = target_init_one(cmd_ctx, target);
857                 if (ERROR_OK != retval)
858                         return retval;
859         }
860
861         if (!all_targets)
862                 return ERROR_OK;
863
864         retval = target_register_user_commands(cmd_ctx);
865         if (ERROR_OK != retval)
866                 return retval;
867
868         retval = target_register_timer_callback(&handle_target,
869                         polling_interval, 1, cmd_ctx->interp);
870         if (ERROR_OK != retval)
871                 return retval;
872
873         return ERROR_OK;
874 }
875
876 COMMAND_HANDLER(handle_target_init_command)
877 {
878         if (CMD_ARGC != 0)
879                 return ERROR_COMMAND_SYNTAX_ERROR;
880
881         static bool target_initialized = false;
882         if (target_initialized)
883         {
884                 LOG_INFO("'target init' has already been called");
885                 return ERROR_OK;
886         }
887         target_initialized = true;
888
889         LOG_DEBUG("Initializing targets...");
890         return target_init(CMD_CTX);
891 }
892
893 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
894 {
895         struct target_event_callback **callbacks_p = &target_event_callbacks;
896
897         if (callback == NULL)
898         {
899                 return ERROR_INVALID_ARGUMENTS;
900         }
901
902         if (*callbacks_p)
903         {
904                 while ((*callbacks_p)->next)
905                         callbacks_p = &((*callbacks_p)->next);
906                 callbacks_p = &((*callbacks_p)->next);
907         }
908
909         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
910         (*callbacks_p)->callback = callback;
911         (*callbacks_p)->priv = priv;
912         (*callbacks_p)->next = NULL;
913
914         return ERROR_OK;
915 }
916
917 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
918 {
919         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
920         struct timeval now;
921
922         if (callback == NULL)
923         {
924                 return ERROR_INVALID_ARGUMENTS;
925         }
926
927         if (*callbacks_p)
928         {
929                 while ((*callbacks_p)->next)
930                         callbacks_p = &((*callbacks_p)->next);
931                 callbacks_p = &((*callbacks_p)->next);
932         }
933
934         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
935         (*callbacks_p)->callback = callback;
936         (*callbacks_p)->periodic = periodic;
937         (*callbacks_p)->time_ms = time_ms;
938
939         gettimeofday(&now, NULL);
940         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
941         time_ms -= (time_ms % 1000);
942         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
943         if ((*callbacks_p)->when.tv_usec > 1000000)
944         {
945                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
946                 (*callbacks_p)->when.tv_sec += 1;
947         }
948
949         (*callbacks_p)->priv = priv;
950         (*callbacks_p)->next = NULL;
951
952         return ERROR_OK;
953 }
954
955 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
956 {
957         struct target_event_callback **p = &target_event_callbacks;
958         struct target_event_callback *c = target_event_callbacks;
959
960         if (callback == NULL)
961         {
962                 return ERROR_INVALID_ARGUMENTS;
963         }
964
965         while (c)
966         {
967                 struct target_event_callback *next = c->next;
968                 if ((c->callback == callback) && (c->priv == priv))
969                 {
970                         *p = next;
971                         free(c);
972                         return ERROR_OK;
973                 }
974                 else
975                         p = &(c->next);
976                 c = next;
977         }
978
979         return ERROR_OK;
980 }
981
982 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
983 {
984         struct target_timer_callback **p = &target_timer_callbacks;
985         struct target_timer_callback *c = target_timer_callbacks;
986
987         if (callback == NULL)
988         {
989                 return ERROR_INVALID_ARGUMENTS;
990         }
991
992         while (c)
993         {
994                 struct target_timer_callback *next = c->next;
995                 if ((c->callback == callback) && (c->priv == priv))
996                 {
997                         *p = next;
998                         free(c);
999                         return ERROR_OK;
1000                 }
1001                 else
1002                         p = &(c->next);
1003                 c = next;
1004         }
1005
1006         return ERROR_OK;
1007 }
1008
1009 int target_call_event_callbacks(struct target *target, enum target_event event)
1010 {
1011         struct target_event_callback *callback = target_event_callbacks;
1012         struct target_event_callback *next_callback;
1013
1014         if (event == TARGET_EVENT_HALTED)
1015         {
1016                 /* execute early halted first */
1017                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1018         }
1019
1020         LOG_DEBUG("target event %i (%s)",
1021                           event,
1022                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1023
1024         target_handle_event(target, event);
1025
1026         while (callback)
1027         {
1028                 next_callback = callback->next;
1029                 callback->callback(target, event, callback->priv);
1030                 callback = next_callback;
1031         }
1032
1033         return ERROR_OK;
1034 }
1035
1036 static int target_timer_callback_periodic_restart(
1037                 struct target_timer_callback *cb, struct timeval *now)
1038 {
1039         int time_ms = cb->time_ms;
1040         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1041         time_ms -= (time_ms % 1000);
1042         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1043         if (cb->when.tv_usec > 1000000)
1044         {
1045                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1046                 cb->when.tv_sec += 1;
1047         }
1048         return ERROR_OK;
1049 }
1050
1051 static int target_call_timer_callback(struct target_timer_callback *cb,
1052                 struct timeval *now)
1053 {
1054         cb->callback(cb->priv);
1055
1056         if (cb->periodic)
1057                 return target_timer_callback_periodic_restart(cb, now);
1058
1059         return target_unregister_timer_callback(cb->callback, cb->priv);
1060 }
1061
1062 static int target_call_timer_callbacks_check_time(int checktime)
1063 {
1064         keep_alive();
1065
1066         struct timeval now;
1067         gettimeofday(&now, NULL);
1068
1069         struct target_timer_callback *callback = target_timer_callbacks;
1070         while (callback)
1071         {
1072                 // cleaning up may unregister and free this callback
1073                 struct target_timer_callback *next_callback = callback->next;
1074
1075                 bool call_it = callback->callback &&
1076                         ((!checktime && callback->periodic) ||
1077                           now.tv_sec > callback->when.tv_sec ||
1078                          (now.tv_sec == callback->when.tv_sec &&
1079                           now.tv_usec >= callback->when.tv_usec));
1080
1081                 if (call_it)
1082                 {
1083                         int retval = target_call_timer_callback(callback, &now);
1084                         if (retval != ERROR_OK)
1085                                 return retval;
1086                 }
1087
1088                 callback = next_callback;
1089         }
1090
1091         return ERROR_OK;
1092 }
1093
1094 int target_call_timer_callbacks(void)
1095 {
1096         return target_call_timer_callbacks_check_time(1);
1097 }
1098
1099 /* invoke periodic callbacks immediately */
1100 int target_call_timer_callbacks_now(void)
1101 {
1102         return target_call_timer_callbacks_check_time(0);
1103 }
1104
1105 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1106 {
1107         struct working_area *c = target->working_areas;
1108         struct working_area *new_wa = NULL;
1109
1110         /* Reevaluate working area address based on MMU state*/
1111         if (target->working_areas == NULL)
1112         {
1113                 int retval;
1114                 int enabled;
1115
1116                 retval = target->type->mmu(target, &enabled);
1117                 if (retval != ERROR_OK)
1118                 {
1119                         return retval;
1120                 }
1121
1122                 if (!enabled) {
1123                         if (target->working_area_phys_spec) {
1124                                 LOG_DEBUG("MMU disabled, using physical "
1125                                         "address for working memory 0x%08x",
1126                                         (unsigned)target->working_area_phys);
1127                                 target->working_area = target->working_area_phys;
1128                         } else {
1129                                 LOG_ERROR("No working memory available. "
1130                                         "Specify -work-area-phys to target.");
1131                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1132                         }
1133                 } else {
1134                         if (target->working_area_virt_spec) {
1135                                 LOG_DEBUG("MMU enabled, using virtual "
1136                                         "address for working memory 0x%08x",
1137                                         (unsigned)target->working_area_virt);
1138                                 target->working_area = target->working_area_virt;
1139                         } else {
1140                                 LOG_ERROR("No working memory available. "
1141                                         "Specify -work-area-virt to target.");
1142                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1143                         }
1144                 }
1145         }
1146
1147         /* only allocate multiples of 4 byte */
1148         if (size % 4)
1149         {
1150                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1151                 size = (size + 3) & (~3);
1152         }
1153
1154         /* see if there's already a matching working area */
1155         while (c)
1156         {
1157                 if ((c->free) && (c->size == size))
1158                 {
1159                         new_wa = c;
1160                         break;
1161                 }
1162                 c = c->next;
1163         }
1164
1165         /* if not, allocate a new one */
1166         if (!new_wa)
1167         {
1168                 struct working_area **p = &target->working_areas;
1169                 uint32_t first_free = target->working_area;
1170                 uint32_t free_size = target->working_area_size;
1171
1172                 c = target->working_areas;
1173                 while (c)
1174                 {
1175                         first_free += c->size;
1176                         free_size -= c->size;
1177                         p = &c->next;
1178                         c = c->next;
1179                 }
1180
1181                 if (free_size < size)
1182                 {
1183                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1184                 }
1185
1186                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1187
1188                 new_wa = malloc(sizeof(struct working_area));
1189                 new_wa->next = NULL;
1190                 new_wa->size = size;
1191                 new_wa->address = first_free;
1192
1193                 if (target->backup_working_area)
1194                 {
1195                         int retval;
1196                         new_wa->backup = malloc(new_wa->size);
1197                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1198                         {
1199                                 free(new_wa->backup);
1200                                 free(new_wa);
1201                                 return retval;
1202                         }
1203                 }
1204                 else
1205                 {
1206                         new_wa->backup = NULL;
1207                 }
1208
1209                 /* put new entry in list */
1210                 *p = new_wa;
1211         }
1212
1213         /* mark as used, and return the new (reused) area */
1214         new_wa->free = 0;
1215         *area = new_wa;
1216
1217         /* user pointer */
1218         new_wa->user = area;
1219
1220         return ERROR_OK;
1221 }
1222
1223 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1224 {
1225         int retval;
1226
1227         retval = target_alloc_working_area_try(target, size, area);
1228         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1229         {
1230                 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1231         }
1232         return retval;
1233
1234 }
1235
1236 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1237 {
1238         if (area->free)
1239                 return ERROR_OK;
1240
1241         if (restore && target->backup_working_area)
1242         {
1243                 int retval;
1244                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1245                         return retval;
1246         }
1247
1248         area->free = 1;
1249
1250         /* mark user pointer invalid */
1251         *area->user = NULL;
1252         area->user = NULL;
1253
1254         return ERROR_OK;
1255 }
1256
1257 int target_free_working_area(struct target *target, struct working_area *area)
1258 {
1259         return target_free_working_area_restore(target, area, 1);
1260 }
1261
1262 /* free resources and restore memory, if restoring memory fails,
1263  * free up resources anyway
1264  */
1265 static void target_free_all_working_areas_restore(struct target *target, int restore)
1266 {
1267         struct working_area *c = target->working_areas;
1268
1269         while (c)
1270         {
1271                 struct working_area *next = c->next;
1272                 target_free_working_area_restore(target, c, restore);
1273
1274                 if (c->backup)
1275                         free(c->backup);
1276
1277                 free(c);
1278
1279                 c = next;
1280         }
1281
1282         target->working_areas = NULL;
1283 }
1284
1285 void target_free_all_working_areas(struct target *target)
1286 {
1287         target_free_all_working_areas_restore(target, 1);
1288 }
1289
1290 int target_arch_state(struct target *target)
1291 {
1292         int retval;
1293         if (target == NULL)
1294         {
1295                 LOG_USER("No target has been configured");
1296                 return ERROR_OK;
1297         }
1298
1299         LOG_USER("target state: %s", target_state_name( target ));
1300
1301         if (target->state != TARGET_HALTED)
1302                 return ERROR_OK;
1303
1304         retval = target->type->arch_state(target);
1305         return retval;
1306 }
1307
1308 /* Single aligned words are guaranteed to use 16 or 32 bit access
1309  * mode respectively, otherwise data is handled as quickly as
1310  * possible
1311  */
1312 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1313 {
1314         int retval;
1315         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1316                   (int)size, (unsigned)address);
1317
1318         if (!target_was_examined(target))
1319         {
1320                 LOG_ERROR("Target not examined yet");
1321                 return ERROR_FAIL;
1322         }
1323
1324         if (size == 0) {
1325                 return ERROR_OK;
1326         }
1327
1328         if ((address + size - 1) < address)
1329         {
1330                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1331                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1332                                   (unsigned)address,
1333                                   (unsigned)size);
1334                 return ERROR_FAIL;
1335         }
1336
1337         if (((address % 2) == 0) && (size == 2))
1338         {
1339                 return target_write_memory(target, address, 2, 1, buffer);
1340         }
1341
1342         /* handle unaligned head bytes */
1343         if (address % 4)
1344         {
1345                 uint32_t unaligned = 4 - (address % 4);
1346
1347                 if (unaligned > size)
1348                         unaligned = size;
1349
1350                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1351                         return retval;
1352
1353                 buffer += unaligned;
1354                 address += unaligned;
1355                 size -= unaligned;
1356         }
1357
1358         /* handle aligned words */
1359         if (size >= 4)
1360         {
1361                 int aligned = size - (size % 4);
1362
1363                 /* use bulk writes above a certain limit. This may have to be changed */
1364                 if (aligned > 128)
1365                 {
1366                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1367                                 return retval;
1368                 }
1369                 else
1370                 {
1371                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1372                                 return retval;
1373                 }
1374
1375                 buffer += aligned;
1376                 address += aligned;
1377                 size -= aligned;
1378         }
1379
1380         /* handle tail writes of less than 4 bytes */
1381         if (size > 0)
1382         {
1383                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1384                         return retval;
1385         }
1386
1387         return ERROR_OK;
1388 }
1389
1390 /* Single aligned words are guaranteed to use 16 or 32 bit access
1391  * mode respectively, otherwise data is handled as quickly as
1392  * possible
1393  */
1394 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1395 {
1396         int retval;
1397         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1398                           (int)size, (unsigned)address);
1399
1400         if (!target_was_examined(target))
1401         {
1402                 LOG_ERROR("Target not examined yet");
1403                 return ERROR_FAIL;
1404         }
1405
1406         if (size == 0) {
1407                 return ERROR_OK;
1408         }
1409
1410         if ((address + size - 1) < address)
1411         {
1412                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1413                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1414                                   address,
1415                                   size);
1416                 return ERROR_FAIL;
1417         }
1418
1419         if (((address % 2) == 0) && (size == 2))
1420         {
1421                 return target_read_memory(target, address, 2, 1, buffer);
1422         }
1423
1424         /* handle unaligned head bytes */
1425         if (address % 4)
1426         {
1427                 uint32_t unaligned = 4 - (address % 4);
1428
1429                 if (unaligned > size)
1430                         unaligned = size;
1431
1432                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1433                         return retval;
1434
1435                 buffer += unaligned;
1436                 address += unaligned;
1437                 size -= unaligned;
1438         }
1439
1440         /* handle aligned words */
1441         if (size >= 4)
1442         {
1443                 int aligned = size - (size % 4);
1444
1445                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1446                         return retval;
1447
1448                 buffer += aligned;
1449                 address += aligned;
1450                 size -= aligned;
1451         }
1452
1453         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1454         if(size >=2)
1455         {
1456                 int aligned = size - (size%2);
1457                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1458                 if (retval != ERROR_OK)
1459                         return retval;
1460
1461                 buffer += aligned;
1462                 address += aligned;
1463                 size -= aligned;
1464         }
1465         /* handle tail writes of less than 4 bytes */
1466         if (size > 0)
1467         {
1468                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1469                         return retval;
1470         }
1471
1472         return ERROR_OK;
1473 }
1474
1475 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1476 {
1477         uint8_t *buffer;
1478         int retval;
1479         uint32_t i;
1480         uint32_t checksum = 0;
1481         if (!target_was_examined(target))
1482         {
1483                 LOG_ERROR("Target not examined yet");
1484                 return ERROR_FAIL;
1485         }
1486
1487         if ((retval = target->type->checksum_memory(target, address,
1488                 size, &checksum)) != ERROR_OK)
1489         {
1490                 buffer = malloc(size);
1491                 if (buffer == NULL)
1492                 {
1493                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1494                         return ERROR_INVALID_ARGUMENTS;
1495                 }
1496                 retval = target_read_buffer(target, address, size, buffer);
1497                 if (retval != ERROR_OK)
1498                 {
1499                         free(buffer);
1500                         return retval;
1501                 }
1502
1503                 /* convert to target endianess */
1504                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1505                 {
1506                         uint32_t target_data;
1507                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1508                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1509                 }
1510
1511                 retval = image_calculate_checksum(buffer, size, &checksum);
1512                 free(buffer);
1513         }
1514
1515         *crc = checksum;
1516
1517         return retval;
1518 }
1519
1520 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1521 {
1522         int retval;
1523         if (!target_was_examined(target))
1524         {
1525                 LOG_ERROR("Target not examined yet");
1526                 return ERROR_FAIL;
1527         }
1528
1529         if (target->type->blank_check_memory == 0)
1530                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1531
1532         retval = target->type->blank_check_memory(target, address, size, blank);
1533
1534         return retval;
1535 }
1536
1537 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1538 {
1539         uint8_t value_buf[4];
1540         if (!target_was_examined(target))
1541         {
1542                 LOG_ERROR("Target not examined yet");
1543                 return ERROR_FAIL;
1544         }
1545
1546         int retval = target_read_memory(target, address, 4, 1, value_buf);
1547
1548         if (retval == ERROR_OK)
1549         {
1550                 *value = target_buffer_get_u32(target, value_buf);
1551                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1552                                   address,
1553                                   *value);
1554         }
1555         else
1556         {
1557                 *value = 0x0;
1558                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1559                                   address);
1560         }
1561
1562         return retval;
1563 }
1564
1565 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1566 {
1567         uint8_t value_buf[2];
1568         if (!target_was_examined(target))
1569         {
1570                 LOG_ERROR("Target not examined yet");
1571                 return ERROR_FAIL;
1572         }
1573
1574         int retval = target_read_memory(target, address, 2, 1, value_buf);
1575
1576         if (retval == ERROR_OK)
1577         {
1578                 *value = target_buffer_get_u16(target, value_buf);
1579                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1580                                   address,
1581                                   *value);
1582         }
1583         else
1584         {
1585                 *value = 0x0;
1586                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1587                                   address);
1588         }
1589
1590         return retval;
1591 }
1592
1593 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1594 {
1595         int retval = target_read_memory(target, address, 1, 1, value);
1596         if (!target_was_examined(target))
1597         {
1598                 LOG_ERROR("Target not examined yet");
1599                 return ERROR_FAIL;
1600         }
1601
1602         if (retval == ERROR_OK)
1603         {
1604                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1605                                   address,
1606                                   *value);
1607         }
1608         else
1609         {
1610                 *value = 0x0;
1611                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1612                                   address);
1613         }
1614
1615         return retval;
1616 }
1617
1618 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1619 {
1620         int retval;
1621         uint8_t value_buf[4];
1622         if (!target_was_examined(target))
1623         {
1624                 LOG_ERROR("Target not examined yet");
1625                 return ERROR_FAIL;
1626         }
1627
1628         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1629                           address,
1630                           value);
1631
1632         target_buffer_set_u32(target, value_buf, value);
1633         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1634         {
1635                 LOG_DEBUG("failed: %i", retval);
1636         }
1637
1638         return retval;
1639 }
1640
1641 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1642 {
1643         int retval;
1644         uint8_t value_buf[2];
1645         if (!target_was_examined(target))
1646         {
1647                 LOG_ERROR("Target not examined yet");
1648                 return ERROR_FAIL;
1649         }
1650
1651         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1652                           address,
1653                           value);
1654
1655         target_buffer_set_u16(target, value_buf, value);
1656         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1657         {
1658                 LOG_DEBUG("failed: %i", retval);
1659         }
1660
1661         return retval;
1662 }
1663
1664 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1665 {
1666         int retval;
1667         if (!target_was_examined(target))
1668         {
1669                 LOG_ERROR("Target not examined yet");
1670                 return ERROR_FAIL;
1671         }
1672
1673         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1674                           address, value);
1675
1676         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1677         {
1678                 LOG_DEBUG("failed: %i", retval);
1679         }
1680
1681         return retval;
1682 }
1683
1684 COMMAND_HANDLER(handle_targets_command)
1685 {
1686         struct target *target = all_targets;
1687
1688         if (CMD_ARGC == 1)
1689         {
1690                 target = get_target(CMD_ARGV[0]);
1691                 if (target == NULL) {
1692                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1693                         goto DumpTargets;
1694                 }
1695                 if (!target->tap->enabled) {
1696                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1697                                         "can't be the current target\n",
1698                                         target->tap->dotted_name);
1699                         return ERROR_FAIL;
1700                 }
1701
1702                 CMD_CTX->current_target = target->target_number;
1703                 return ERROR_OK;
1704         }
1705 DumpTargets:
1706
1707         target = all_targets;
1708         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1709         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1710         while (target)
1711         {
1712                 const char *state;
1713                 char marker = ' ';
1714
1715                 if (target->tap->enabled)
1716                         state = target_state_name( target );
1717                 else
1718                         state = "tap-disabled";
1719
1720                 if (CMD_CTX->current_target == target->target_number)
1721                         marker = '*';
1722
1723                 /* keep columns lined up to match the headers above */
1724                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1725                                           target->target_number,
1726                                           marker,
1727                                           target_name(target),
1728                                           target_type_name(target),
1729                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1730                                                                 target->endianness)->name,
1731                                           target->tap->dotted_name,
1732                                           state);
1733                 target = target->next;
1734         }
1735
1736         return ERROR_OK;
1737 }
1738
1739 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1740
1741 static int powerDropout;
1742 static int srstAsserted;
1743
1744 static int runPowerRestore;
1745 static int runPowerDropout;
1746 static int runSrstAsserted;
1747 static int runSrstDeasserted;
1748
1749 static int sense_handler(void)
1750 {
1751         static int prevSrstAsserted = 0;
1752         static int prevPowerdropout = 0;
1753
1754         int retval;
1755         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1756                 return retval;
1757
1758         int powerRestored;
1759         powerRestored = prevPowerdropout && !powerDropout;
1760         if (powerRestored)
1761         {
1762                 runPowerRestore = 1;
1763         }
1764
1765         long long current = timeval_ms();
1766         static long long lastPower = 0;
1767         int waitMore = lastPower + 2000 > current;
1768         if (powerDropout && !waitMore)
1769         {
1770                 runPowerDropout = 1;
1771                 lastPower = current;
1772         }
1773
1774         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1775                 return retval;
1776
1777         int srstDeasserted;
1778         srstDeasserted = prevSrstAsserted && !srstAsserted;
1779
1780         static long long lastSrst = 0;
1781         waitMore = lastSrst + 2000 > current;
1782         if (srstDeasserted && !waitMore)
1783         {
1784                 runSrstDeasserted = 1;
1785                 lastSrst = current;
1786         }
1787
1788         if (!prevSrstAsserted && srstAsserted)
1789         {
1790                 runSrstAsserted = 1;
1791         }
1792
1793         prevSrstAsserted = srstAsserted;
1794         prevPowerdropout = powerDropout;
1795
1796         if (srstDeasserted || powerRestored)
1797         {
1798                 /* Other than logging the event we can't do anything here.
1799                  * Issuing a reset is a particularly bad idea as we might
1800                  * be inside a reset already.
1801                  */
1802         }
1803
1804         return ERROR_OK;
1805 }
1806
1807 static int backoff_times = 0;
1808 static int backoff_count = 0;
1809
1810 /* process target state changes */
1811 static int handle_target(void *priv)
1812 {
1813         Jim_Interp *interp = (Jim_Interp *)priv;
1814         int retval = ERROR_OK;
1815
1816         if (!is_jtag_poll_safe())
1817         {
1818                 /* polling is disabled currently */
1819                 return ERROR_OK;
1820         }
1821
1822         /* we do not want to recurse here... */
1823         static int recursive = 0;
1824         if (! recursive)
1825         {
1826                 recursive = 1;
1827                 sense_handler();
1828                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1829                  * We need to avoid an infinite loop/recursion here and we do that by
1830                  * clearing the flags after running these events.
1831                  */
1832                 int did_something = 0;
1833                 if (runSrstAsserted)
1834                 {
1835                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
1836                         Jim_Eval(interp, "srst_asserted");
1837                         did_something = 1;
1838                 }
1839                 if (runSrstDeasserted)
1840                 {
1841                         Jim_Eval(interp, "srst_deasserted");
1842                         did_something = 1;
1843                 }
1844                 if (runPowerDropout)
1845                 {
1846                         LOG_INFO("Power dropout detected, running power_dropout proc.");
1847                         Jim_Eval(interp, "power_dropout");
1848                         did_something = 1;
1849                 }
1850                 if (runPowerRestore)
1851                 {
1852                         Jim_Eval(interp, "power_restore");
1853                         did_something = 1;
1854                 }
1855
1856                 if (did_something)
1857                 {
1858                         /* clear detect flags */
1859                         sense_handler();
1860                 }
1861
1862                 /* clear action flags */
1863
1864                 runSrstAsserted = 0;
1865                 runSrstDeasserted = 0;
1866                 runPowerRestore = 0;
1867                 runPowerDropout = 0;
1868
1869                 recursive = 0;
1870         }
1871
1872         if (backoff_times > backoff_count)
1873         {
1874                 /* do not poll this time as we failed previously */
1875                 backoff_count++;
1876                 return ERROR_OK;
1877         }
1878         backoff_count = 0;
1879
1880         /* Poll targets for state changes unless that's globally disabled.
1881          * Skip targets that are currently disabled.
1882          */
1883         for (struct target *target = all_targets;
1884                         is_jtag_poll_safe() && target;
1885                         target = target->next)
1886         {
1887                 if (!target->tap->enabled)
1888                         continue;
1889
1890                 /* only poll target if we've got power and srst isn't asserted */
1891                 if (!powerDropout && !srstAsserted)
1892                 {
1893                         /* polling may fail silently until the target has been examined */
1894                         if ((retval = target_poll(target)) != ERROR_OK)
1895                         {
1896                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
1897                                 if (backoff_times * polling_interval < 5000)
1898                                 {
1899                                         backoff_times *= 2;
1900                                         backoff_times++;
1901                                 }
1902                                 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);
1903
1904                                 /* Tell GDB to halt the debugger. This allows the user to
1905                                  * run monitor commands to handle the situation.
1906                                  */
1907                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1908                                 return retval;
1909                         }
1910                         /* Since we succeeded, we reset backoff count */
1911                         if (backoff_times > 0)
1912                         {
1913                                 LOG_USER("Polling succeeded again");
1914                         }
1915                         backoff_times = 0;
1916                 }
1917         }
1918
1919         return retval;
1920 }
1921
1922 COMMAND_HANDLER(handle_reg_command)
1923 {
1924         struct target *target;
1925         struct reg *reg = NULL;
1926         unsigned count = 0;
1927         char *value;
1928
1929         LOG_DEBUG("-");
1930
1931         target = get_current_target(CMD_CTX);
1932
1933         /* list all available registers for the current target */
1934         if (CMD_ARGC == 0)
1935         {
1936                 struct reg_cache *cache = target->reg_cache;
1937
1938                 count = 0;
1939                 while (cache)
1940                 {
1941                         unsigned i;
1942
1943                         command_print(CMD_CTX, "===== %s", cache->name);
1944
1945                         for (i = 0, reg = cache->reg_list;
1946                                         i < cache->num_regs;
1947                                         i++, reg++, count++)
1948                         {
1949                                 /* only print cached values if they are valid */
1950                                 if (reg->valid) {
1951                                         value = buf_to_str(reg->value,
1952                                                         reg->size, 16);
1953                                         command_print(CMD_CTX,
1954                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1955                                                         count, reg->name,
1956                                                         reg->size, value,
1957                                                         reg->dirty
1958                                                                 ? " (dirty)"
1959                                                                 : "");
1960                                         free(value);
1961                                 } else {
1962                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1963                                                           count, reg->name,
1964                                                           reg->size) ;
1965                                 }
1966                         }
1967                         cache = cache->next;
1968                 }
1969
1970                 return ERROR_OK;
1971         }
1972
1973         /* access a single register by its ordinal number */
1974         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1975         {
1976                 unsigned num;
1977                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1978
1979                 struct reg_cache *cache = target->reg_cache;
1980                 count = 0;
1981                 while (cache)
1982                 {
1983                         unsigned i;
1984                         for (i = 0; i < cache->num_regs; i++)
1985                         {
1986                                 if (count++ == num)
1987                                 {
1988                                         reg = &cache->reg_list[i];
1989                                         break;
1990                                 }
1991                         }
1992                         if (reg)
1993                                 break;
1994                         cache = cache->next;
1995                 }
1996
1997                 if (!reg)
1998                 {
1999                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
2000                         return ERROR_OK;
2001                 }
2002         } else /* access a single register by its name */
2003         {
2004                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2005
2006                 if (!reg)
2007                 {
2008                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2009                         return ERROR_OK;
2010                 }
2011         }
2012
2013         /* display a register */
2014         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2015         {
2016                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2017                         reg->valid = 0;
2018
2019                 if (reg->valid == 0)
2020                 {
2021                         reg->type->get(reg);
2022                 }
2023                 value = buf_to_str(reg->value, reg->size, 16);
2024                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2025                 free(value);
2026                 return ERROR_OK;
2027         }
2028
2029         /* set register value */
2030         if (CMD_ARGC == 2)
2031         {
2032                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2033                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2034
2035                 reg->type->set(reg, buf);
2036
2037                 value = buf_to_str(reg->value, reg->size, 16);
2038                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2039                 free(value);
2040
2041                 free(buf);
2042
2043                 return ERROR_OK;
2044         }
2045
2046         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2047
2048         return ERROR_OK;
2049 }
2050
2051 COMMAND_HANDLER(handle_poll_command)
2052 {
2053         int retval = ERROR_OK;
2054         struct target *target = get_current_target(CMD_CTX);
2055
2056         if (CMD_ARGC == 0)
2057         {
2058                 command_print(CMD_CTX, "background polling: %s",
2059                                 jtag_poll_get_enabled() ? "on" : "off");
2060                 command_print(CMD_CTX, "TAP: %s (%s)",
2061                                 target->tap->dotted_name,
2062                                 target->tap->enabled ? "enabled" : "disabled");
2063                 if (!target->tap->enabled)
2064                         return ERROR_OK;
2065                 if ((retval = target_poll(target)) != ERROR_OK)
2066                         return retval;
2067                 if ((retval = target_arch_state(target)) != ERROR_OK)
2068                         return retval;
2069         }
2070         else if (CMD_ARGC == 1)
2071         {
2072                 bool enable;
2073                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2074                 jtag_poll_set_enabled(enable);
2075         }
2076         else
2077         {
2078                 return ERROR_COMMAND_SYNTAX_ERROR;
2079         }
2080
2081         return retval;
2082 }
2083
2084 COMMAND_HANDLER(handle_wait_halt_command)
2085 {
2086         if (CMD_ARGC > 1)
2087                 return ERROR_COMMAND_SYNTAX_ERROR;
2088
2089         unsigned ms = 5000;
2090         if (1 == CMD_ARGC)
2091         {
2092                 int retval = parse_uint(CMD_ARGV[0], &ms);
2093                 if (ERROR_OK != retval)
2094                 {
2095                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2096                         return ERROR_COMMAND_SYNTAX_ERROR;
2097                 }
2098                 // convert seconds (given) to milliseconds (needed)
2099                 ms *= 1000;
2100         }
2101
2102         struct target *target = get_current_target(CMD_CTX);
2103         return target_wait_state(target, TARGET_HALTED, ms);
2104 }
2105
2106 /* wait for target state to change. The trick here is to have a low
2107  * latency for short waits and not to suck up all the CPU time
2108  * on longer waits.
2109  *
2110  * After 500ms, keep_alive() is invoked
2111  */
2112 int target_wait_state(struct target *target, enum target_state state, int ms)
2113 {
2114         int retval;
2115         long long then = 0, cur;
2116         int once = 1;
2117
2118         for (;;)
2119         {
2120                 if ((retval = target_poll(target)) != ERROR_OK)
2121                         return retval;
2122                 if (target->state == state)
2123                 {
2124                         break;
2125                 }
2126                 cur = timeval_ms();
2127                 if (once)
2128                 {
2129                         once = 0;
2130                         then = timeval_ms();
2131                         LOG_DEBUG("waiting for target %s...",
2132                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2133                 }
2134
2135                 if (cur-then > 500)
2136                 {
2137                         keep_alive();
2138                 }
2139
2140                 if ((cur-then) > ms)
2141                 {
2142                         LOG_ERROR("timed out while waiting for target %s",
2143                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2144                         return ERROR_FAIL;
2145                 }
2146         }
2147
2148         return ERROR_OK;
2149 }
2150
2151 COMMAND_HANDLER(handle_halt_command)
2152 {
2153         LOG_DEBUG("-");
2154
2155         struct target *target = get_current_target(CMD_CTX);
2156         int retval = target_halt(target);
2157         if (ERROR_OK != retval)
2158                 return retval;
2159
2160         if (CMD_ARGC == 1)
2161         {
2162                 unsigned wait_local;
2163                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2164                 if (ERROR_OK != retval)
2165                         return ERROR_COMMAND_SYNTAX_ERROR;
2166                 if (!wait_local)
2167                         return ERROR_OK;
2168         }
2169
2170         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2171 }
2172
2173 COMMAND_HANDLER(handle_soft_reset_halt_command)
2174 {
2175         struct target *target = get_current_target(CMD_CTX);
2176
2177         LOG_USER("requesting target halt and executing a soft reset");
2178
2179         target->type->soft_reset_halt(target);
2180
2181         return ERROR_OK;
2182 }
2183
2184 COMMAND_HANDLER(handle_reset_command)
2185 {
2186         if (CMD_ARGC > 1)
2187                 return ERROR_COMMAND_SYNTAX_ERROR;
2188
2189         enum target_reset_mode reset_mode = RESET_RUN;
2190         if (CMD_ARGC == 1)
2191         {
2192                 const Jim_Nvp *n;
2193                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2194                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2195                         return ERROR_COMMAND_SYNTAX_ERROR;
2196                 }
2197                 reset_mode = n->value;
2198         }
2199
2200         /* reset *all* targets */
2201         return target_process_reset(CMD_CTX, reset_mode);
2202 }
2203
2204
2205 COMMAND_HANDLER(handle_resume_command)
2206 {
2207         int current = 1;
2208         if (CMD_ARGC > 1)
2209                 return ERROR_COMMAND_SYNTAX_ERROR;
2210
2211         struct target *target = get_current_target(CMD_CTX);
2212         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2213
2214         /* with no CMD_ARGV, resume from current pc, addr = 0,
2215          * with one arguments, addr = CMD_ARGV[0],
2216          * handle breakpoints, not debugging */
2217         uint32_t addr = 0;
2218         if (CMD_ARGC == 1)
2219         {
2220                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2221                 current = 0;
2222         }
2223
2224         return target_resume(target, current, addr, 1, 0);
2225 }
2226
2227 COMMAND_HANDLER(handle_step_command)
2228 {
2229         if (CMD_ARGC > 1)
2230                 return ERROR_COMMAND_SYNTAX_ERROR;
2231
2232         LOG_DEBUG("-");
2233
2234         /* with no CMD_ARGV, step from current pc, addr = 0,
2235          * with one argument addr = CMD_ARGV[0],
2236          * handle breakpoints, debugging */
2237         uint32_t addr = 0;
2238         int current_pc = 1;
2239         if (CMD_ARGC == 1)
2240         {
2241                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2242                 current_pc = 0;
2243         }
2244
2245         struct target *target = get_current_target(CMD_CTX);
2246
2247         return target->type->step(target, current_pc, addr, 1);
2248 }
2249
2250 static void handle_md_output(struct command_context *cmd_ctx,
2251                 struct target *target, uint32_t address, unsigned size,
2252                 unsigned count, const uint8_t *buffer)
2253 {
2254         const unsigned line_bytecnt = 32;
2255         unsigned line_modulo = line_bytecnt / size;
2256
2257         char output[line_bytecnt * 4 + 1];
2258         unsigned output_len = 0;
2259
2260         const char *value_fmt;
2261         switch (size) {
2262         case 4: value_fmt = "%8.8x "; break;
2263         case 2: value_fmt = "%4.4x "; break;
2264         case 1: value_fmt = "%2.2x "; break;
2265         default:
2266                 /* "can't happen", caller checked */
2267                 LOG_ERROR("invalid memory read size: %u", size);
2268                 return;
2269         }
2270
2271         for (unsigned i = 0; i < count; i++)
2272         {
2273                 if (i % line_modulo == 0)
2274                 {
2275                         output_len += snprintf(output + output_len,
2276                                         sizeof(output) - output_len,
2277                                         "0x%8.8x: ",
2278                                         (unsigned)(address + (i*size)));
2279                 }
2280
2281                 uint32_t value = 0;
2282                 const uint8_t *value_ptr = buffer + i * size;
2283                 switch (size) {
2284                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2285                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2286                 case 1: value = *value_ptr;
2287                 }
2288                 output_len += snprintf(output + output_len,
2289                                 sizeof(output) - output_len,
2290                                 value_fmt, value);
2291
2292                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2293                 {
2294                         command_print(cmd_ctx, "%s", output);
2295                         output_len = 0;
2296                 }
2297         }
2298 }
2299
2300 COMMAND_HANDLER(handle_md_command)
2301 {
2302         if (CMD_ARGC < 1)
2303                 return ERROR_COMMAND_SYNTAX_ERROR;
2304
2305         unsigned size = 0;
2306         switch (CMD_NAME[2]) {
2307         case 'w': size = 4; break;
2308         case 'h': size = 2; break;
2309         case 'b': size = 1; break;
2310         default: return ERROR_COMMAND_SYNTAX_ERROR;
2311         }
2312
2313         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2314         int (*fn)(struct target *target,
2315                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2316         if (physical)
2317         {
2318                 CMD_ARGC--;
2319                 CMD_ARGV++;
2320                 fn=target_read_phys_memory;
2321         } else
2322         {
2323                 fn=target_read_memory;
2324         }
2325         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2326         {
2327                 return ERROR_COMMAND_SYNTAX_ERROR;
2328         }
2329
2330         uint32_t address;
2331         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2332
2333         unsigned count = 1;
2334         if (CMD_ARGC == 2)
2335                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2336
2337         uint8_t *buffer = calloc(count, size);
2338
2339         struct target *target = get_current_target(CMD_CTX);
2340         int retval = fn(target, address, size, count, buffer);
2341         if (ERROR_OK == retval)
2342                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2343
2344         free(buffer);
2345
2346         return retval;
2347 }
2348
2349 typedef int (*target_write_fn)(struct target *target,
2350                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2351
2352 static int target_write_memory_fast(struct target *target,
2353                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2354 {
2355         return target_write_buffer(target, address, size * count, buffer);
2356 }
2357
2358 static int target_fill_mem(struct target *target,
2359                 uint32_t address,
2360                 target_write_fn fn,
2361                 unsigned data_size,
2362                 /* value */
2363                 uint32_t b,
2364                 /* count */
2365                 unsigned c)
2366 {
2367         /* We have to write in reasonably large chunks to be able
2368          * to fill large memory areas with any sane speed */
2369         const unsigned chunk_size = 16384;
2370         uint8_t *target_buf = malloc(chunk_size * data_size);
2371         if (target_buf == NULL)
2372         {
2373                 LOG_ERROR("Out of memory");
2374                 return ERROR_FAIL;
2375         }
2376
2377         for (unsigned i = 0; i < chunk_size; i ++)
2378         {
2379                 switch (data_size)
2380                 {
2381                 case 4:
2382                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2383                         break;
2384                 case 2:
2385                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2386                         break;
2387                 case 1:
2388                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2389                         break;
2390                 default:
2391                         exit(-1);
2392                 }
2393         }
2394
2395         int retval = ERROR_OK;
2396
2397         for (unsigned x = 0; x < c; x += chunk_size)
2398         {
2399                 unsigned current;
2400                 current = c - x;
2401                 if (current > chunk_size)
2402                 {
2403                         current = chunk_size;
2404                 }
2405                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2406                 if (retval != ERROR_OK)
2407                 {
2408                         break;
2409                 }
2410                 /* avoid GDB timeouts */
2411                 keep_alive();
2412         }
2413         free(target_buf);
2414
2415         return retval;
2416 }
2417
2418
2419 COMMAND_HANDLER(handle_mw_command)
2420 {
2421         if (CMD_ARGC < 2)
2422         {
2423                 return ERROR_COMMAND_SYNTAX_ERROR;
2424         }
2425         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2426         target_write_fn fn;
2427         if (physical)
2428         {
2429                 CMD_ARGC--;
2430                 CMD_ARGV++;
2431                 fn=target_write_phys_memory;
2432         } else
2433         {
2434                 fn = target_write_memory_fast;
2435         }
2436         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2437                 return ERROR_COMMAND_SYNTAX_ERROR;
2438
2439         uint32_t address;
2440         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2441
2442         uint32_t value;
2443         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2444
2445         unsigned count = 1;
2446         if (CMD_ARGC == 3)
2447                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2448
2449         struct target *target = get_current_target(CMD_CTX);
2450         unsigned wordsize;
2451         switch (CMD_NAME[2])
2452         {
2453                 case 'w':
2454                         wordsize = 4;
2455                         break;
2456                 case 'h':
2457                         wordsize = 2;
2458                         break;
2459                 case 'b':
2460                         wordsize = 1;
2461                         break;
2462                 default:
2463                         return ERROR_COMMAND_SYNTAX_ERROR;
2464         }
2465
2466         return target_fill_mem(target, address, fn, wordsize, value, count);
2467 }
2468
2469 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2470                 uint32_t *min_address, uint32_t *max_address)
2471 {
2472         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2473                 return ERROR_COMMAND_SYNTAX_ERROR;
2474
2475         /* a base address isn't always necessary,
2476          * default to 0x0 (i.e. don't relocate) */
2477         if (CMD_ARGC >= 2)
2478         {
2479                 uint32_t addr;
2480                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2481                 image->base_address = addr;
2482                 image->base_address_set = 1;
2483         }
2484         else
2485                 image->base_address_set = 0;
2486
2487         image->start_address_set = 0;
2488
2489         if (CMD_ARGC >= 4)
2490         {
2491                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2492         }
2493         if (CMD_ARGC == 5)
2494         {
2495                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2496                 // use size (given) to find max (required)
2497                 *max_address += *min_address;
2498         }
2499
2500         if (*min_address > *max_address)
2501                 return ERROR_COMMAND_SYNTAX_ERROR;
2502
2503         return ERROR_OK;
2504 }
2505
2506 COMMAND_HANDLER(handle_load_image_command)
2507 {
2508         uint8_t *buffer;
2509         size_t buf_cnt;
2510         uint32_t image_size;
2511         uint32_t min_address = 0;
2512         uint32_t max_address = 0xffffffff;
2513         int i;
2514         struct image image;
2515
2516         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2517                         &image, &min_address, &max_address);
2518         if (ERROR_OK != retval)
2519                 return retval;
2520
2521         struct target *target = get_current_target(CMD_CTX);
2522
2523         struct duration bench;
2524         duration_start(&bench);
2525
2526         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2527         {
2528                 return ERROR_OK;
2529         }
2530
2531         image_size = 0x0;
2532         retval = ERROR_OK;
2533         for (i = 0; i < image.num_sections; i++)
2534         {
2535                 buffer = malloc(image.sections[i].size);
2536                 if (buffer == NULL)
2537                 {
2538                         command_print(CMD_CTX,
2539                                                   "error allocating buffer for section (%d bytes)",
2540                                                   (int)(image.sections[i].size));
2541                         break;
2542                 }
2543
2544                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2545                 {
2546                         free(buffer);
2547                         break;
2548                 }
2549
2550                 uint32_t offset = 0;
2551                 uint32_t length = buf_cnt;
2552
2553                 /* DANGER!!! beware of unsigned comparision here!!! */
2554
2555                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2556                                 (image.sections[i].base_address < max_address))
2557                 {
2558                         if (image.sections[i].base_address < min_address)
2559                         {
2560                                 /* clip addresses below */
2561                                 offset += min_address-image.sections[i].base_address;
2562                                 length -= offset;
2563                         }
2564
2565                         if (image.sections[i].base_address + buf_cnt > max_address)
2566                         {
2567                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2568                         }
2569
2570                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2571                         {
2572                                 free(buffer);
2573                                 break;
2574                         }
2575                         image_size += length;
2576                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2577                                                   (unsigned int)length,
2578                                                   image.sections[i].base_address + offset);
2579                 }
2580
2581                 free(buffer);
2582         }
2583
2584         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2585         {
2586                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2587                                 "in %fs (%0.3f KiB/s)", image_size,
2588                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2589         }
2590
2591         image_close(&image);
2592
2593         return retval;
2594
2595 }
2596
2597 COMMAND_HANDLER(handle_dump_image_command)
2598 {
2599         struct fileio fileio;
2600         uint8_t buffer[560];
2601         int retval, retvaltemp;
2602         uint32_t address, size;
2603         struct duration bench;
2604         struct target *target = get_current_target(CMD_CTX);
2605
2606         if (CMD_ARGC != 3)
2607                 return ERROR_COMMAND_SYNTAX_ERROR;
2608
2609         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2610         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2611
2612         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2613         if (retval != ERROR_OK)
2614                 return retval;
2615
2616         duration_start(&bench);
2617
2618         retval = ERROR_OK;
2619         while (size > 0)
2620         {
2621                 size_t size_written;
2622                 uint32_t this_run_size = (size > 560) ? 560 : size;
2623                 retval = target_read_buffer(target, address, this_run_size, buffer);
2624                 if (retval != ERROR_OK)
2625                 {
2626                         break;
2627                 }
2628
2629                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2630                 if (retval != ERROR_OK)
2631                 {
2632                         break;
2633                 }
2634
2635                 size -= this_run_size;
2636                 address += this_run_size;
2637         }
2638
2639         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2640         {
2641                 int filesize;
2642                 retval = fileio_size(&fileio, &filesize);
2643                 if (retval != ERROR_OK)
2644                         return retval;
2645                 command_print(CMD_CTX,
2646                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2647                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2648         }
2649
2650         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2651                 return retvaltemp;
2652
2653         return retval;
2654 }
2655
2656 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2657 {
2658         uint8_t *buffer;
2659         size_t buf_cnt;
2660         uint32_t image_size;
2661         int i;
2662         int retval;
2663         uint32_t checksum = 0;
2664         uint32_t mem_checksum = 0;
2665
2666         struct image image;
2667
2668         struct target *target = get_current_target(CMD_CTX);
2669
2670         if (CMD_ARGC < 1)
2671         {
2672                 return ERROR_COMMAND_SYNTAX_ERROR;
2673         }
2674
2675         if (!target)
2676         {
2677                 LOG_ERROR("no target selected");
2678                 return ERROR_FAIL;
2679         }
2680
2681         struct duration bench;
2682         duration_start(&bench);
2683
2684         if (CMD_ARGC >= 2)
2685         {
2686                 uint32_t addr;
2687                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2688                 image.base_address = addr;
2689                 image.base_address_set = 1;
2690         }
2691         else
2692         {
2693                 image.base_address_set = 0;
2694                 image.base_address = 0x0;
2695         }
2696
2697         image.start_address_set = 0;
2698
2699         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2700         {
2701                 return retval;
2702         }
2703
2704         image_size = 0x0;
2705         int diffs = 0;
2706         retval = ERROR_OK;
2707         for (i = 0; i < image.num_sections; i++)
2708         {
2709                 buffer = malloc(image.sections[i].size);
2710                 if (buffer == NULL)
2711                 {
2712                         command_print(CMD_CTX,
2713                                                   "error allocating buffer for section (%d bytes)",
2714                                                   (int)(image.sections[i].size));
2715                         break;
2716                 }
2717                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2718                 {
2719                         free(buffer);
2720                         break;
2721                 }
2722
2723                 if (verify)
2724                 {
2725                         /* calculate checksum of image */
2726                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2727                         if (retval != ERROR_OK)
2728                         {
2729                                 free(buffer);
2730                                 break;
2731                         }
2732
2733                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2734                         if (retval != ERROR_OK)
2735                         {
2736                                 free(buffer);
2737                                 break;
2738                         }
2739
2740                         if (checksum != mem_checksum)
2741                         {
2742                                 /* failed crc checksum, fall back to a binary compare */
2743                                 uint8_t *data;
2744
2745                                 if (diffs == 0)
2746                                 {
2747                                         LOG_ERROR("checksum mismatch - attempting binary compare");
2748                                 }
2749
2750                                 data = (uint8_t*)malloc(buf_cnt);
2751
2752                                 /* Can we use 32bit word accesses? */
2753                                 int size = 1;
2754                                 int count = buf_cnt;
2755                                 if ((count % 4) == 0)
2756                                 {
2757                                         size *= 4;
2758                                         count /= 4;
2759                                 }
2760                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2761                                 if (retval == ERROR_OK)
2762                                 {
2763                                         uint32_t t;
2764                                         for (t = 0; t < buf_cnt; t++)
2765                                         {
2766                                                 if (data[t] != buffer[t])
2767                                                 {
2768                                                         command_print(CMD_CTX,
2769                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2770                                                                                   diffs,
2771                                                                                   (unsigned)(t + image.sections[i].base_address),
2772                                                                                   data[t],
2773                                                                                   buffer[t]);
2774                                                         if (diffs++ >= 127)
2775                                                         {
2776                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2777                                                                 free(data);
2778                                                                 free(buffer);
2779                                                                 goto done;
2780                                                         }
2781                                                 }
2782                                                 keep_alive();
2783                                         }
2784                                 }
2785                                 free(data);
2786                         }
2787                 } else
2788                 {
2789                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2790                                                   image.sections[i].base_address,
2791                                                   buf_cnt);
2792                 }
2793
2794                 free(buffer);
2795                 image_size += buf_cnt;
2796         }
2797         if (diffs > 0)
2798         {
2799                 command_print(CMD_CTX, "No more differences found.");
2800         }
2801 done:
2802         if (diffs > 0)
2803         {
2804                 retval = ERROR_FAIL;
2805         }
2806         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2807         {
2808                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2809                                 "in %fs (%0.3f KiB/s)", image_size,
2810                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2811         }
2812
2813         image_close(&image);
2814
2815         return retval;
2816 }
2817
2818 COMMAND_HANDLER(handle_verify_image_command)
2819 {
2820         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2821 }
2822
2823 COMMAND_HANDLER(handle_test_image_command)
2824 {
2825         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2826 }
2827
2828 static int handle_bp_command_list(struct command_context *cmd_ctx)
2829 {
2830         struct target *target = get_current_target(cmd_ctx);
2831         struct breakpoint *breakpoint = target->breakpoints;
2832         while (breakpoint)
2833         {
2834                 if (breakpoint->type == BKPT_SOFT)
2835                 {
2836                         char* buf = buf_to_str(breakpoint->orig_instr,
2837                                         breakpoint->length, 16);
2838                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2839                                         breakpoint->address,
2840                                         breakpoint->length,
2841                                         breakpoint->set, buf);
2842                         free(buf);
2843                 }
2844                 else
2845                 {
2846                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2847                                                   breakpoint->address,
2848                                                   breakpoint->length, breakpoint->set);
2849                 }
2850
2851                 breakpoint = breakpoint->next;
2852         }
2853         return ERROR_OK;
2854 }
2855
2856 static int handle_bp_command_set(struct command_context *cmd_ctx,
2857                 uint32_t addr, uint32_t length, int hw)
2858 {
2859         struct target *target = get_current_target(cmd_ctx);
2860         int retval = breakpoint_add(target, addr, length, hw);
2861         if (ERROR_OK == retval)
2862                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2863         else
2864                 LOG_ERROR("Failure setting breakpoint");
2865         return retval;
2866 }
2867
2868 COMMAND_HANDLER(handle_bp_command)
2869 {
2870         if (CMD_ARGC == 0)
2871                 return handle_bp_command_list(CMD_CTX);
2872
2873         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2874         {
2875                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2876                 return ERROR_COMMAND_SYNTAX_ERROR;
2877         }
2878
2879         uint32_t addr;
2880         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2881         uint32_t length;
2882         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2883
2884         int hw = BKPT_SOFT;
2885         if (CMD_ARGC == 3)
2886         {
2887                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2888                         hw = BKPT_HARD;
2889                 else
2890                         return ERROR_COMMAND_SYNTAX_ERROR;
2891         }
2892
2893         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2894 }
2895
2896 COMMAND_HANDLER(handle_rbp_command)
2897 {
2898         if (CMD_ARGC != 1)
2899                 return ERROR_COMMAND_SYNTAX_ERROR;
2900
2901         uint32_t addr;
2902         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2903
2904         struct target *target = get_current_target(CMD_CTX);
2905         breakpoint_remove(target, addr);
2906
2907         return ERROR_OK;
2908 }
2909
2910 COMMAND_HANDLER(handle_wp_command)
2911 {
2912         struct target *target = get_current_target(CMD_CTX);
2913
2914         if (CMD_ARGC == 0)
2915         {
2916                 struct watchpoint *watchpoint = target->watchpoints;
2917
2918                 while (watchpoint)
2919                 {
2920                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2921                                         ", len: 0x%8.8" PRIx32
2922                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2923                                         ", mask: 0x%8.8" PRIx32,
2924                                         watchpoint->address,
2925                                         watchpoint->length,
2926                                         (int)watchpoint->rw,
2927                                         watchpoint->value,
2928                                         watchpoint->mask);
2929                         watchpoint = watchpoint->next;
2930                 }
2931                 return ERROR_OK;
2932         }
2933
2934         enum watchpoint_rw type = WPT_ACCESS;
2935         uint32_t addr = 0;
2936         uint32_t length = 0;
2937         uint32_t data_value = 0x0;
2938         uint32_t data_mask = 0xffffffff;
2939
2940         switch (CMD_ARGC)
2941         {
2942         case 5:
2943                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2944                 // fall through
2945         case 4:
2946                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2947                 // fall through
2948         case 3:
2949                 switch (CMD_ARGV[2][0])
2950                 {
2951                 case 'r':
2952                         type = WPT_READ;
2953                         break;
2954                 case 'w':
2955                         type = WPT_WRITE;
2956                         break;
2957                 case 'a':
2958                         type = WPT_ACCESS;
2959                         break;
2960                 default:
2961                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2962                         return ERROR_COMMAND_SYNTAX_ERROR;
2963                 }
2964                 // fall through
2965         case 2:
2966                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2967                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2968                 break;
2969
2970         default:
2971                 command_print(CMD_CTX, "usage: wp [address length "
2972                                 "[(r|w|a) [value [mask]]]]");
2973                 return ERROR_COMMAND_SYNTAX_ERROR;
2974         }
2975
2976         int retval = watchpoint_add(target, addr, length, type,
2977                         data_value, data_mask);
2978         if (ERROR_OK != retval)
2979                 LOG_ERROR("Failure setting watchpoints");
2980
2981         return retval;
2982 }
2983
2984 COMMAND_HANDLER(handle_rwp_command)
2985 {
2986         if (CMD_ARGC != 1)
2987                 return ERROR_COMMAND_SYNTAX_ERROR;
2988
2989         uint32_t addr;
2990         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2991
2992         struct target *target = get_current_target(CMD_CTX);
2993         watchpoint_remove(target, addr);
2994
2995         return ERROR_OK;
2996 }
2997
2998
2999 /**
3000  * Translate a virtual address to a physical address.
3001  *
3002  * The low-level target implementation must have logged a detailed error
3003  * which is forwarded to telnet/GDB session.
3004  */
3005 COMMAND_HANDLER(handle_virt2phys_command)
3006 {
3007         if (CMD_ARGC != 1)
3008                 return ERROR_COMMAND_SYNTAX_ERROR;
3009
3010         uint32_t va;
3011         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3012         uint32_t pa;
3013
3014         struct target *target = get_current_target(CMD_CTX);
3015         int retval = target->type->virt2phys(target, va, &pa);
3016         if (retval == ERROR_OK)
3017                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3018
3019         return retval;
3020 }
3021
3022 static void writeData(FILE *f, const void *data, size_t len)
3023 {
3024         size_t written = fwrite(data, 1, len, f);
3025         if (written != len)
3026                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3027 }
3028
3029 static void writeLong(FILE *f, int l)
3030 {
3031         int i;
3032         for (i = 0; i < 4; i++)
3033         {
3034                 char c = (l >> (i*8))&0xff;
3035                 writeData(f, &c, 1);
3036         }
3037
3038 }
3039
3040 static void writeString(FILE *f, char *s)
3041 {
3042         writeData(f, s, strlen(s));
3043 }
3044
3045 /* Dump a gmon.out histogram file. */
3046 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3047 {
3048         uint32_t i;
3049         FILE *f = fopen(filename, "w");
3050         if (f == NULL)
3051                 return;
3052         writeString(f, "gmon");
3053         writeLong(f, 0x00000001); /* Version */
3054         writeLong(f, 0); /* padding */
3055         writeLong(f, 0); /* padding */
3056         writeLong(f, 0); /* padding */
3057
3058         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3059         writeData(f, &zero, 1);
3060
3061         /* figure out bucket size */
3062         uint32_t min = samples[0];
3063         uint32_t max = samples[0];
3064         for (i = 0; i < sampleNum; i++)
3065         {
3066                 if (min > samples[i])
3067                 {
3068                         min = samples[i];
3069                 }
3070                 if (max < samples[i])
3071                 {
3072                         max = samples[i];
3073                 }
3074         }
3075
3076         int addressSpace = (max-min + 1);
3077
3078         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3079         uint32_t length = addressSpace;
3080         if (length > maxBuckets)
3081         {
3082                 length = maxBuckets;
3083         }
3084         int *buckets = malloc(sizeof(int)*length);
3085         if (buckets == NULL)
3086         {
3087                 fclose(f);
3088                 return;
3089         }
3090         memset(buckets, 0, sizeof(int)*length);
3091         for (i = 0; i < sampleNum;i++)
3092         {
3093                 uint32_t address = samples[i];
3094                 long long a = address-min;
3095                 long long b = length-1;
3096                 long long c = addressSpace-1;
3097                 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3098                 buckets[index_t]++;
3099         }
3100
3101         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3102         writeLong(f, min);                      /* low_pc */
3103         writeLong(f, max);                      /* high_pc */
3104         writeLong(f, length);           /* # of samples */
3105         writeLong(f, 64000000);         /* 64MHz */
3106         writeString(f, "seconds");
3107         for (i = 0; i < (15-strlen("seconds")); i++)
3108                 writeData(f, &zero, 1);
3109         writeString(f, "s");
3110
3111         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3112
3113         char *data = malloc(2*length);
3114         if (data != NULL)
3115         {
3116                 for (i = 0; i < length;i++)
3117                 {
3118                         int val;
3119                         val = buckets[i];
3120                         if (val > 65535)
3121                         {
3122                                 val = 65535;
3123                         }
3124                         data[i*2]=val&0xff;
3125                         data[i*2 + 1]=(val >> 8)&0xff;
3126                 }
3127                 free(buckets);
3128                 writeData(f, data, length * 2);
3129                 free(data);
3130         } else
3131         {
3132                 free(buckets);
3133         }
3134
3135         fclose(f);
3136 }
3137
3138 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3139  * which will be used as a random sampling of PC */
3140 COMMAND_HANDLER(handle_profile_command)
3141 {
3142         struct target *target = get_current_target(CMD_CTX);
3143         struct timeval timeout, now;
3144
3145         gettimeofday(&timeout, NULL);
3146         if (CMD_ARGC != 2)
3147         {
3148                 return ERROR_COMMAND_SYNTAX_ERROR;
3149         }
3150         unsigned offset;
3151         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3152
3153         timeval_add_time(&timeout, offset, 0);
3154
3155         /**
3156          * @todo: Some cores let us sample the PC without the
3157          * annoying halt/resume step; for example, ARMv7 PCSR.
3158          * Provide a way to use that more efficient mechanism.
3159          */
3160
3161         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3162
3163         static const int maxSample = 10000;
3164         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3165         if (samples == NULL)
3166                 return ERROR_OK;
3167
3168         int numSamples = 0;
3169         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3170         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3171
3172         for (;;)
3173         {
3174                 int retval;
3175                 target_poll(target);
3176                 if (target->state == TARGET_HALTED)
3177                 {
3178                         uint32_t t=*((uint32_t *)reg->value);
3179                         samples[numSamples++]=t;
3180                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3181                         target_poll(target);
3182                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3183                 } else if (target->state == TARGET_RUNNING)
3184                 {
3185                         /* We want to quickly sample the PC. */
3186                         if ((retval = target_halt(target)) != ERROR_OK)
3187                         {
3188                                 free(samples);
3189                                 return retval;
3190                         }
3191                 } else
3192                 {
3193                         command_print(CMD_CTX, "Target not halted or running");
3194                         retval = ERROR_OK;
3195                         break;
3196                 }
3197                 if (retval != ERROR_OK)
3198                 {
3199                         break;
3200                 }
3201
3202                 gettimeofday(&now, NULL);
3203                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3204                 {
3205                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3206                         if ((retval = target_poll(target)) != ERROR_OK)
3207                         {
3208                                 free(samples);
3209                                 return retval;
3210                         }
3211                         if (target->state == TARGET_HALTED)
3212                         {
3213                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3214                         }
3215                         if ((retval = target_poll(target)) != ERROR_OK)
3216                         {
3217                                 free(samples);
3218                                 return retval;
3219                         }
3220                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3221                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3222                         break;
3223                 }
3224         }
3225         free(samples);
3226
3227         return ERROR_OK;
3228 }
3229
3230 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3231 {
3232         char *namebuf;
3233         Jim_Obj *nameObjPtr, *valObjPtr;
3234         int result;
3235
3236         namebuf = alloc_printf("%s(%d)", varname, idx);
3237         if (!namebuf)
3238                 return JIM_ERR;
3239
3240         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3241         valObjPtr = Jim_NewIntObj(interp, val);
3242         if (!nameObjPtr || !valObjPtr)
3243         {
3244                 free(namebuf);
3245                 return JIM_ERR;
3246         }
3247
3248         Jim_IncrRefCount(nameObjPtr);
3249         Jim_IncrRefCount(valObjPtr);
3250         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3251         Jim_DecrRefCount(interp, nameObjPtr);
3252         Jim_DecrRefCount(interp, valObjPtr);
3253         free(namebuf);
3254         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3255         return result;
3256 }
3257
3258 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3259 {
3260         struct command_context *context;
3261         struct target *target;
3262
3263         context = current_command_context(interp);
3264         assert (context != NULL);
3265
3266         target = get_current_target(context);
3267         if (target == NULL)
3268         {
3269                 LOG_ERROR("mem2array: no current target");
3270                 return JIM_ERR;
3271         }
3272
3273         return  target_mem2array(interp, target, argc-1, argv + 1);
3274 }
3275
3276 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3277 {
3278         long l;
3279         uint32_t width;
3280         int len;
3281         uint32_t addr;
3282         uint32_t count;
3283         uint32_t v;
3284         const char *varname;
3285         int  n, e, retval;
3286         uint32_t i;
3287
3288         /* argv[1] = name of array to receive the data
3289          * argv[2] = desired width
3290          * argv[3] = memory address
3291          * argv[4] = count of times to read
3292          */
3293         if (argc != 4) {
3294                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3295                 return JIM_ERR;
3296         }
3297         varname = Jim_GetString(argv[0], &len);
3298         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3299
3300         e = Jim_GetLong(interp, argv[1], &l);
3301         width = l;
3302         if (e != JIM_OK) {
3303                 return e;
3304         }
3305
3306         e = Jim_GetLong(interp, argv[2], &l);
3307         addr = l;
3308         if (e != JIM_OK) {
3309                 return e;
3310         }
3311         e = Jim_GetLong(interp, argv[3], &l);
3312         len = l;
3313         if (e != JIM_OK) {
3314                 return e;
3315         }
3316         switch (width) {
3317                 case 8:
3318                         width = 1;
3319                         break;
3320                 case 16:
3321                         width = 2;
3322                         break;
3323                 case 32:
3324                         width = 4;
3325                         break;
3326                 default:
3327                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3328                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3329                         return JIM_ERR;
3330         }
3331         if (len == 0) {
3332                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3333                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3334                 return JIM_ERR;
3335         }
3336         if ((addr + (len * width)) < addr) {
3337                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3338                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3339                 return JIM_ERR;
3340         }
3341         /* absurd transfer size? */
3342         if (len > 65536) {
3343                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3344                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3345                 return JIM_ERR;
3346         }
3347
3348         if ((width == 1) ||
3349                 ((width == 2) && ((addr & 1) == 0)) ||
3350                 ((width == 4) && ((addr & 3) == 0))) {
3351                 /* all is well */
3352         } else {
3353                 char buf[100];
3354                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3355                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3356                                 addr,
3357                                 width);
3358                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3359                 return JIM_ERR;
3360         }
3361
3362         /* Transfer loop */
3363
3364         /* index counter */
3365         n = 0;
3366
3367         size_t buffersize = 4096;
3368         uint8_t *buffer = malloc(buffersize);
3369         if (buffer == NULL)
3370                 return JIM_ERR;
3371
3372         /* assume ok */
3373         e = JIM_OK;
3374         while (len) {
3375                 /* Slurp... in buffer size chunks */
3376
3377                 count = len; /* in objects.. */
3378                 if (count > (buffersize/width)) {
3379                         count = (buffersize/width);
3380                 }
3381
3382                 retval = target_read_memory(target, addr, width, count, buffer);
3383                 if (retval != ERROR_OK) {
3384                         /* BOO !*/
3385                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3386                                           (unsigned int)addr,
3387                                           (int)width,
3388                                           (int)count);
3389                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3390                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3391                         e = JIM_ERR;
3392                         len = 0;
3393                 } else {
3394                         v = 0; /* shut up gcc */
3395                         for (i = 0 ;i < count ;i++, n++) {
3396                                 switch (width) {
3397                                         case 4:
3398                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3399                                                 break;
3400                                         case 2:
3401                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3402                                                 break;
3403                                         case 1:
3404                                                 v = buffer[i] & 0x0ff;
3405                                                 break;
3406                                 }
3407                                 new_int_array_element(interp, varname, n, v);
3408                         }
3409                         len -= count;
3410                 }
3411         }
3412
3413         free(buffer);
3414
3415         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3416
3417         return JIM_OK;
3418 }
3419
3420 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3421 {
3422         char *namebuf;
3423         Jim_Obj *nameObjPtr, *valObjPtr;
3424         int result;
3425         long l;
3426
3427         namebuf = alloc_printf("%s(%d)", varname, idx);
3428         if (!namebuf)
3429                 return JIM_ERR;
3430
3431         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3432         if (!nameObjPtr)
3433         {
3434                 free(namebuf);
3435                 return JIM_ERR;
3436         }
3437
3438         Jim_IncrRefCount(nameObjPtr);
3439         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3440         Jim_DecrRefCount(interp, nameObjPtr);
3441         free(namebuf);
3442         if (valObjPtr == NULL)
3443                 return JIM_ERR;
3444
3445         result = Jim_GetLong(interp, valObjPtr, &l);
3446         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3447         *val = l;
3448         return result;
3449 }
3450
3451 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3452 {
3453         struct command_context *context;
3454         struct target *target;
3455
3456         context = current_command_context(interp);
3457         assert (context != NULL);
3458
3459         target = get_current_target(context);
3460         if (target == NULL) {
3461                 LOG_ERROR("array2mem: no current target");
3462                 return JIM_ERR;
3463         }
3464
3465         return target_array2mem(interp,target, argc-1, argv + 1);
3466 }
3467
3468 static int target_array2mem(Jim_Interp *interp, struct target *target,
3469                 int argc, Jim_Obj *const *argv)
3470 {
3471         long l;
3472         uint32_t width;
3473         int len;
3474         uint32_t addr;
3475         uint32_t count;
3476         uint32_t v;
3477         const char *varname;
3478         int  n, e, retval;
3479         uint32_t i;
3480
3481         /* argv[1] = name of array to get the data
3482          * argv[2] = desired width
3483          * argv[3] = memory address
3484          * argv[4] = count to write
3485          */
3486         if (argc != 4) {
3487                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3488                 return JIM_ERR;
3489         }
3490         varname = Jim_GetString(argv[0], &len);
3491         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3492
3493         e = Jim_GetLong(interp, argv[1], &l);
3494         width = l;
3495         if (e != JIM_OK) {
3496                 return e;
3497         }
3498
3499         e = Jim_GetLong(interp, argv[2], &l);
3500         addr = l;
3501         if (e != JIM_OK) {
3502                 return e;
3503         }
3504         e = Jim_GetLong(interp, argv[3], &l);
3505         len = l;
3506         if (e != JIM_OK) {
3507                 return e;
3508         }
3509         switch (width) {
3510                 case 8:
3511                         width = 1;
3512                         break;
3513                 case 16:
3514                         width = 2;
3515                         break;
3516                 case 32:
3517                         width = 4;
3518                         break;
3519                 default:
3520                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3521                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3522                         return JIM_ERR;
3523         }
3524         if (len == 0) {
3525                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3526                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3527                 return JIM_ERR;
3528         }
3529         if ((addr + (len * width)) < addr) {
3530                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3531                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3532                 return JIM_ERR;
3533         }
3534         /* absurd transfer size? */
3535         if (len > 65536) {
3536                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3537                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3538                 return JIM_ERR;
3539         }
3540
3541         if ((width == 1) ||
3542                 ((width == 2) && ((addr & 1) == 0)) ||
3543                 ((width == 4) && ((addr & 3) == 0))) {
3544                 /* all is well */
3545         } else {
3546                 char buf[100];
3547                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3548                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3549                                 (unsigned int)addr,
3550                                 (int)width);
3551                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3552                 return JIM_ERR;
3553         }
3554
3555         /* Transfer loop */
3556
3557         /* index counter */
3558         n = 0;
3559         /* assume ok */
3560         e = JIM_OK;
3561
3562         size_t buffersize = 4096;
3563         uint8_t *buffer = malloc(buffersize);
3564         if (buffer == NULL)
3565                 return JIM_ERR;
3566
3567         while (len) {
3568                 /* Slurp... in buffer size chunks */
3569
3570                 count = len; /* in objects.. */
3571                 if (count > (buffersize/width)) {
3572                         count = (buffersize/width);
3573                 }
3574
3575                 v = 0; /* shut up gcc */
3576                 for (i = 0 ;i < count ;i++, n++) {
3577                         get_int_array_element(interp, varname, n, &v);
3578                         switch (width) {
3579                         case 4:
3580                                 target_buffer_set_u32(target, &buffer[i*width], v);
3581                                 break;
3582                         case 2:
3583                                 target_buffer_set_u16(target, &buffer[i*width], v);
3584                                 break;
3585                         case 1:
3586                                 buffer[i] = v & 0x0ff;
3587                                 break;
3588                         }
3589                 }
3590                 len -= count;
3591
3592                 retval = target_write_memory(target, addr, width, count, buffer);
3593                 if (retval != ERROR_OK) {
3594                         /* BOO !*/
3595                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3596                                           (unsigned int)addr,
3597                                           (int)width,
3598                                           (int)count);
3599                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3600                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3601                         e = JIM_ERR;
3602                         len = 0;
3603                 }
3604         }
3605
3606         free(buffer);
3607
3608         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3609
3610         return JIM_OK;
3611 }
3612
3613 /* FIX? should we propagate errors here rather than printing them
3614  * and continuing?
3615  */
3616 void target_handle_event(struct target *target, enum target_event e)
3617 {
3618         struct target_event_action *teap;
3619
3620         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3621                 if (teap->event == e) {
3622                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3623                                            target->target_number,
3624                                            target_name(target),
3625                                            target_type_name(target),
3626                                            e,
3627                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3628                                            Jim_GetString(teap->body, NULL));
3629                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3630                         {
3631                                 Jim_MakeErrorMessage(teap->interp);
3632                                 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3633                         }
3634                 }
3635         }
3636 }
3637
3638 /**
3639  * Returns true only if the target has a handler for the specified event.
3640  */
3641 bool target_has_event_action(struct target *target, enum target_event event)
3642 {
3643         struct target_event_action *teap;
3644
3645         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3646                 if (teap->event == event)
3647                         return true;
3648         }
3649         return false;
3650 }
3651
3652 enum target_cfg_param {
3653         TCFG_TYPE,
3654         TCFG_EVENT,
3655         TCFG_WORK_AREA_VIRT,
3656         TCFG_WORK_AREA_PHYS,
3657         TCFG_WORK_AREA_SIZE,
3658         TCFG_WORK_AREA_BACKUP,
3659         TCFG_ENDIAN,
3660         TCFG_VARIANT,
3661         TCFG_CHAIN_POSITION,
3662 };
3663
3664 static Jim_Nvp nvp_config_opts[] = {
3665         { .name = "-type",             .value = TCFG_TYPE },
3666         { .name = "-event",            .value = TCFG_EVENT },
3667         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3668         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3669         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3670         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3671         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3672         { .name = "-variant",          .value = TCFG_VARIANT },
3673         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3674
3675         { .name = NULL, .value = -1 }
3676 };
3677
3678 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3679 {
3680         Jim_Nvp *n;
3681         Jim_Obj *o;
3682         jim_wide w;
3683         char *cp;
3684         int e;
3685
3686         /* parse config or cget options ... */
3687         while (goi->argc > 0) {
3688                 Jim_SetEmptyResult(goi->interp);
3689                 /* Jim_GetOpt_Debug(goi); */
3690
3691                 if (target->type->target_jim_configure) {
3692                         /* target defines a configure function */
3693                         /* target gets first dibs on parameters */
3694                         e = (*(target->type->target_jim_configure))(target, goi);
3695                         if (e == JIM_OK) {
3696                                 /* more? */
3697                                 continue;
3698                         }
3699                         if (e == JIM_ERR) {
3700                                 /* An error */
3701                                 return e;
3702                         }
3703                         /* otherwise we 'continue' below */
3704                 }
3705                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3706                 if (e != JIM_OK) {
3707                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3708                         return e;
3709                 }
3710                 switch (n->value) {
3711                 case TCFG_TYPE:
3712                         /* not setable */
3713                         if (goi->isconfigure) {
3714                                 Jim_SetResultFormatted(goi->interp,
3715                                                 "not settable: %s", n->name);
3716                                 return JIM_ERR;
3717                         } else {
3718                         no_params:
3719                                 if (goi->argc != 0) {
3720                                         Jim_WrongNumArgs(goi->interp,
3721                                                         goi->argc, goi->argv,
3722                                                         "NO PARAMS");
3723                                         return JIM_ERR;
3724                                 }
3725                         }
3726                         Jim_SetResultString(goi->interp,
3727                                         target_type_name(target), -1);
3728                         /* loop for more */
3729                         break;
3730                 case TCFG_EVENT:
3731                         if (goi->argc == 0) {
3732                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3733                                 return JIM_ERR;
3734                         }
3735
3736                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3737                         if (e != JIM_OK) {
3738                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3739                                 return e;
3740                         }
3741
3742                         if (goi->isconfigure) {
3743                                 if (goi->argc != 1) {
3744                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3745                                         return JIM_ERR;
3746                                 }
3747                         } else {
3748                                 if (goi->argc != 0) {
3749                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3750                                         return JIM_ERR;
3751                                 }
3752                         }
3753
3754                         {
3755                                 struct target_event_action *teap;
3756
3757                                 teap = target->event_action;
3758                                 /* replace existing? */
3759                                 while (teap) {
3760                                         if (teap->event == (enum target_event)n->value) {
3761                                                 break;
3762                                         }
3763                                         teap = teap->next;
3764                                 }
3765
3766                                 if (goi->isconfigure) {
3767                                         bool replace = true;
3768                                         if (teap == NULL) {
3769                                                 /* create new */
3770                                                 teap = calloc(1, sizeof(*teap));
3771                                                 replace = false;
3772                                         }
3773                                         teap->event = n->value;
3774                                         teap->interp = goi->interp;
3775                                         Jim_GetOpt_Obj(goi, &o);
3776                                         if (teap->body) {
3777                                                 Jim_DecrRefCount(teap->interp, teap->body);
3778                                         }
3779                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3780                                         /*
3781                                          * FIXME:
3782                                          *     Tcl/TK - "tk events" have a nice feature.
3783                                          *     See the "BIND" command.
3784                                          *    We should support that here.
3785                                          *     You can specify %X and %Y in the event code.
3786                                          *     The idea is: %T - target name.
3787                                          *     The idea is: %N - target number
3788                                          *     The idea is: %E - event name.
3789                                          */
3790                                         Jim_IncrRefCount(teap->body);
3791
3792                                         if (!replace)
3793                                         {
3794                                                 /* add to head of event list */
3795                                                 teap->next = target->event_action;
3796                                                 target->event_action = teap;
3797                                         }
3798                                         Jim_SetEmptyResult(goi->interp);
3799                                 } else {
3800                                         /* get */
3801                                         if (teap == NULL) {
3802                                                 Jim_SetEmptyResult(goi->interp);
3803                                         } else {
3804                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3805                                         }
3806                                 }
3807                         }
3808                         /* loop for more */
3809                         break;
3810
3811                 case TCFG_WORK_AREA_VIRT:
3812                         if (goi->isconfigure) {
3813                                 target_free_all_working_areas(target);
3814                                 e = Jim_GetOpt_Wide(goi, &w);
3815                                 if (e != JIM_OK) {
3816                                         return e;
3817                                 }
3818                                 target->working_area_virt = w;
3819                                 target->working_area_virt_spec = true;
3820                         } else {
3821                                 if (goi->argc != 0) {
3822                                         goto no_params;
3823                                 }
3824                         }
3825                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3826                         /* loop for more */
3827                         break;
3828
3829                 case TCFG_WORK_AREA_PHYS:
3830                         if (goi->isconfigure) {
3831                                 target_free_all_working_areas(target);
3832                                 e = Jim_GetOpt_Wide(goi, &w);
3833                                 if (e != JIM_OK) {
3834                                         return e;
3835                                 }
3836                                 target->working_area_phys = w;
3837                                 target->working_area_phys_spec = true;
3838                         } else {
3839                                 if (goi->argc != 0) {
3840                                         goto no_params;
3841                                 }
3842                         }
3843                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3844                         /* loop for more */
3845                         break;
3846
3847                 case TCFG_WORK_AREA_SIZE:
3848                         if (goi->isconfigure) {
3849                                 target_free_all_working_areas(target);
3850                                 e = Jim_GetOpt_Wide(goi, &w);
3851                                 if (e != JIM_OK) {
3852                                         return e;
3853                                 }
3854                                 target->working_area_size = w;
3855                         } else {
3856                                 if (goi->argc != 0) {
3857                                         goto no_params;
3858                                 }
3859                         }
3860                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3861                         /* loop for more */
3862                         break;
3863
3864                 case TCFG_WORK_AREA_BACKUP:
3865                         if (goi->isconfigure) {
3866                                 target_free_all_working_areas(target);
3867                                 e = Jim_GetOpt_Wide(goi, &w);
3868                                 if (e != JIM_OK) {
3869                                         return e;
3870                                 }
3871                                 /* make this exactly 1 or 0 */
3872                                 target->backup_working_area = (!!w);
3873                         } else {
3874                                 if (goi->argc != 0) {
3875                                         goto no_params;
3876                                 }
3877                         }
3878                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3879                         /* loop for more e*/
3880                         break;
3881
3882                 case TCFG_ENDIAN:
3883                         if (goi->isconfigure) {
3884                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3885                                 if (e != JIM_OK) {
3886                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3887                                         return e;
3888                                 }
3889                                 target->endianness = n->value;
3890                         } else {
3891                                 if (goi->argc != 0) {
3892                                         goto no_params;
3893                                 }
3894                         }
3895                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3896                         if (n->name == NULL) {
3897                                 target->endianness = TARGET_LITTLE_ENDIAN;
3898                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3899                         }
3900                         Jim_SetResultString(goi->interp, n->name, -1);
3901                         /* loop for more */
3902                         break;
3903
3904                 case TCFG_VARIANT:
3905                         if (goi->isconfigure) {
3906                                 if (goi->argc < 1) {
3907                                         Jim_SetResultFormatted(goi->interp,
3908                                                                                    "%s ?STRING?",
3909                                                                                    n->name);
3910                                         return JIM_ERR;
3911                                 }
3912                                 if (target->variant) {
3913                                         free((void *)(target->variant));
3914                                 }
3915                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3916                                 target->variant = strdup(cp);
3917                         } else {
3918                                 if (goi->argc != 0) {
3919                                         goto no_params;
3920                                 }
3921                         }
3922                         Jim_SetResultString(goi->interp, target->variant,-1);
3923                         /* loop for more */
3924                         break;
3925                 case TCFG_CHAIN_POSITION:
3926                         if (goi->isconfigure) {
3927                                 Jim_Obj *o_t;
3928                                 struct jtag_tap *tap;
3929                                 target_free_all_working_areas(target);
3930                                 e = Jim_GetOpt_Obj(goi, &o_t);
3931                                 if (e != JIM_OK) {
3932                                         return e;
3933                                 }
3934                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
3935                                 if (tap == NULL) {
3936                                         return JIM_ERR;
3937                                 }
3938                                 /* make this exactly 1 or 0 */
3939                                 target->tap = tap;
3940                         } else {
3941                                 if (goi->argc != 0) {
3942                                         goto no_params;
3943                                 }
3944                         }
3945                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3946                         /* loop for more e*/
3947                         break;
3948                 }
3949         } /* while (goi->argc) */
3950
3951
3952                 /* done - we return */
3953         return JIM_OK;
3954 }
3955
3956 static int
3957 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3958 {
3959         Jim_GetOptInfo goi;
3960
3961         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3962         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3963         int need_args = 1 + goi.isconfigure;
3964         if (goi.argc < need_args)
3965         {
3966                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3967                         goi.isconfigure
3968                                 ? "missing: -option VALUE ..."
3969                                 : "missing: -option ...");
3970                 return JIM_ERR;
3971         }
3972         struct target *target = Jim_CmdPrivData(goi.interp);
3973         return target_configure(&goi, target);
3974 }
3975
3976 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3977 {
3978         const char *cmd_name = Jim_GetString(argv[0], NULL);
3979
3980         Jim_GetOptInfo goi;
3981         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3982
3983         if (goi.argc < 2 || goi.argc > 4)
3984         {
3985                 Jim_SetResultFormatted(goi.interp,
3986                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
3987                 return JIM_ERR;
3988         }
3989
3990         target_write_fn fn;
3991         fn = target_write_memory_fast;
3992
3993         int e;
3994         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
3995         {
3996                 /* consume it */
3997                 struct Jim_Obj *obj;
3998                 e = Jim_GetOpt_Obj(&goi, &obj);
3999                 if (e != JIM_OK)
4000                         return e;
4001
4002                 fn = target_write_phys_memory;
4003         }
4004
4005         jim_wide a;
4006         e = Jim_GetOpt_Wide(&goi, &a);
4007         if (e != JIM_OK)
4008                 return e;
4009
4010         jim_wide b;
4011         e = Jim_GetOpt_Wide(&goi, &b);
4012         if (e != JIM_OK)
4013                 return e;
4014
4015         jim_wide c = 1;
4016         if (goi.argc == 1)
4017         {
4018                 e = Jim_GetOpt_Wide(&goi, &c);
4019                 if (e != JIM_OK)
4020                         return e;
4021         }
4022
4023         /* all args must be consumed */
4024         if (goi.argc != 0)
4025         {
4026                 return JIM_ERR;
4027         }
4028
4029         struct target *target = Jim_CmdPrivData(goi.interp);
4030         unsigned data_size;
4031         if (strcasecmp(cmd_name, "mww") == 0) {
4032                 data_size = 4;
4033         }
4034         else if (strcasecmp(cmd_name, "mwh") == 0) {
4035                 data_size = 2;
4036         }
4037         else if (strcasecmp(cmd_name, "mwb") == 0) {
4038                 data_size = 1;
4039         } else {
4040                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4041                 return JIM_ERR;
4042         }
4043
4044         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4045 }
4046
4047 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4048 {
4049         const char *cmd_name = Jim_GetString(argv[0], NULL);
4050
4051         Jim_GetOptInfo goi;
4052         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4053
4054         if ((goi.argc < 1) || (goi.argc > 3))
4055         {
4056                 Jim_SetResultFormatted(goi.interp,
4057                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4058                 return JIM_ERR;
4059         }
4060
4061         int (*fn)(struct target *target,
4062                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4063         fn=target_read_memory;
4064
4065         int e;
4066         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4067         {
4068                 /* consume it */
4069                 struct Jim_Obj *obj;
4070                 e = Jim_GetOpt_Obj(&goi, &obj);
4071                 if (e != JIM_OK)
4072                         return e;
4073
4074                 fn=target_read_phys_memory;
4075         }
4076
4077         jim_wide a;
4078         e = Jim_GetOpt_Wide(&goi, &a);
4079         if (e != JIM_OK) {
4080                 return JIM_ERR;
4081         }
4082         jim_wide c;
4083         if (goi.argc == 1) {
4084                 e = Jim_GetOpt_Wide(&goi, &c);
4085                 if (e != JIM_OK) {
4086                         return JIM_ERR;
4087                 }
4088         } else {
4089                 c = 1;
4090         }
4091
4092         /* all args must be consumed */
4093         if (goi.argc != 0)
4094         {
4095                 return JIM_ERR;
4096         }
4097
4098         jim_wide b = 1; /* shut up gcc */
4099         if (strcasecmp(cmd_name, "mdw") == 0)
4100                 b = 4;
4101         else if (strcasecmp(cmd_name, "mdh") == 0)
4102                 b = 2;
4103         else if (strcasecmp(cmd_name, "mdb") == 0)
4104                 b = 1;
4105         else {
4106                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4107                 return JIM_ERR;
4108         }
4109
4110         /* convert count to "bytes" */
4111         c = c * b;
4112
4113         struct target *target = Jim_CmdPrivData(goi.interp);
4114         uint8_t  target_buf[32];
4115         jim_wide x, y, z;
4116         while (c > 0) {
4117                 y = c;
4118                 if (y > 16) {
4119                         y = 16;
4120                 }
4121                 e = fn(target, a, b, y / b, target_buf);
4122                 if (e != ERROR_OK) {
4123                         char tmp[10];
4124                         snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
4125                         Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
4126                         return JIM_ERR;
4127                 }
4128
4129                 command_print(NULL, "0x%08x ", (int)(a));
4130                 switch (b) {
4131                 case 4:
4132                         for (x = 0; x < 16 && x < y; x += 4)
4133                         {
4134                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4135                                 command_print(NULL, "%08x ", (int)(z));
4136                         }
4137                         for (; (x < 16) ; x += 4) {
4138                                 command_print(NULL, "         ");
4139                         }
4140                         break;
4141                 case 2:
4142                         for (x = 0; x < 16 && x < y; x += 2)
4143                         {
4144                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4145                                 command_print(NULL, "%04x ", (int)(z));
4146                         }
4147                         for (; (x < 16) ; x += 2) {
4148                                 command_print(NULL, "     ");
4149                         }
4150                         break;
4151                 case 1:
4152                 default:
4153                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4154                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4155                                 command_print(NULL, "%02x ", (int)(z));
4156                         }
4157                         for (; (x < 16) ; x += 1) {
4158                                 command_print(NULL, "   ");
4159                         }
4160                         break;
4161                 }
4162                 /* ascii-ify the bytes */
4163                 for (x = 0 ; x < y ; x++) {
4164                         if ((target_buf[x] >= 0x20) &&
4165                                 (target_buf[x] <= 0x7e)) {
4166                                 /* good */
4167                         } else {
4168                                 /* smack it */
4169                                 target_buf[x] = '.';
4170                         }
4171                 }
4172                 /* space pad  */
4173                 while (x < 16) {
4174                         target_buf[x] = ' ';
4175                         x++;
4176                 }
4177                 /* terminate */
4178                 target_buf[16] = 0;
4179                 /* print - with a newline */
4180                 command_print(NULL, "%s\n", target_buf);
4181                 /* NEXT... */
4182                 c -= 16;
4183                 a += 16;
4184         }
4185         return JIM_OK;
4186 }
4187
4188 static int jim_target_mem2array(Jim_Interp *interp,
4189                 int argc, Jim_Obj *const *argv)
4190 {
4191         struct target *target = Jim_CmdPrivData(interp);
4192         return target_mem2array(interp, target, argc - 1, argv + 1);
4193 }
4194
4195 static int jim_target_array2mem(Jim_Interp *interp,
4196                 int argc, Jim_Obj *const *argv)
4197 {
4198         struct target *target = Jim_CmdPrivData(interp);
4199         return target_array2mem(interp, target, argc - 1, argv + 1);
4200 }
4201
4202 static int jim_target_tap_disabled(Jim_Interp *interp)
4203 {
4204         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4205         return JIM_ERR;
4206 }
4207
4208 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4209 {
4210         if (argc != 1)
4211         {
4212                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4213                 return JIM_ERR;
4214         }
4215         struct target *target = Jim_CmdPrivData(interp);
4216         if (!target->tap->enabled)
4217                 return jim_target_tap_disabled(interp);
4218
4219         int e = target->type->examine(target);
4220         if (e != ERROR_OK)
4221         {
4222                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4223                 Jim_SetResultFormatted(interp, "examine-fails: %#s", eObj);
4224                 Jim_FreeNewObj(interp, eObj);
4225                 return JIM_ERR;
4226         }
4227         return JIM_OK;
4228 }
4229
4230 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4231 {
4232         if (argc != 1)
4233         {
4234                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4235                 return JIM_ERR;
4236         }
4237         struct target *target = Jim_CmdPrivData(interp);
4238
4239         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4240                 return JIM_ERR;
4241
4242         return JIM_OK;
4243 }
4244
4245 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4246 {
4247         if (argc != 1)
4248         {
4249                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4250                 return JIM_ERR;
4251         }
4252         struct target *target = Jim_CmdPrivData(interp);
4253         if (!target->tap->enabled)
4254                 return jim_target_tap_disabled(interp);
4255
4256         int e;
4257         if (!(target_was_examined(target))) {
4258                 e = ERROR_TARGET_NOT_EXAMINED;
4259         } else {
4260                 e = target->type->poll(target);
4261         }
4262         if (e != ERROR_OK)
4263         {
4264                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4265                 Jim_SetResultFormatted(interp, "poll-fails: %#s", eObj);
4266                 Jim_FreeNewObj(interp, eObj);
4267                 return JIM_ERR;
4268         }
4269         return JIM_OK;
4270 }
4271
4272 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4273 {
4274         Jim_GetOptInfo goi;
4275         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4276
4277         if (goi.argc != 2)
4278         {
4279                 Jim_WrongNumArgs(interp, 0, argv,
4280                                 "([tT]|[fF]|assert|deassert) BOOL");
4281                 return JIM_ERR;
4282         }
4283
4284         Jim_Nvp *n;
4285         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4286         if (e != JIM_OK)
4287         {
4288                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4289                 return e;
4290         }
4291         /* the halt or not param */
4292         jim_wide a;
4293         e = Jim_GetOpt_Wide(&goi, &a);
4294         if (e != JIM_OK)
4295                 return e;
4296
4297         struct target *target = Jim_CmdPrivData(goi.interp);
4298         if (!target->tap->enabled)
4299                 return jim_target_tap_disabled(interp);
4300         if (!(target_was_examined(target)))
4301         {
4302                 LOG_ERROR("Target not examined yet");
4303                 return ERROR_TARGET_NOT_EXAMINED;
4304         }
4305         if (!target->type->assert_reset || !target->type->deassert_reset)
4306         {
4307                 Jim_SetResultFormatted(interp,
4308                                 "No target-specific reset for %s",
4309                                 target_name(target));
4310                 return JIM_ERR;
4311         }
4312         /* determine if we should halt or not. */
4313         target->reset_halt = !!a;
4314         /* When this happens - all workareas are invalid. */
4315         target_free_all_working_areas_restore(target, 0);
4316
4317         /* do the assert */
4318         if (n->value == NVP_ASSERT) {
4319                 e = target->type->assert_reset(target);
4320         } else {
4321                 e = target->type->deassert_reset(target);
4322         }
4323         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4324 }
4325
4326 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4327 {
4328         if (argc != 1) {
4329                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4330                 return JIM_ERR;
4331         }
4332         struct target *target = Jim_CmdPrivData(interp);
4333         if (!target->tap->enabled)
4334                 return jim_target_tap_disabled(interp);
4335         int e = target->type->halt(target);
4336         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4337 }
4338
4339 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4340 {
4341         Jim_GetOptInfo goi;
4342         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4343
4344         /* params:  <name>  statename timeoutmsecs */
4345         if (goi.argc != 2)
4346         {
4347                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4348                 Jim_SetResultFormatted(goi.interp,
4349                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4350                 return JIM_ERR;
4351         }
4352
4353         Jim_Nvp *n;
4354         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4355         if (e != JIM_OK) {
4356                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4357                 return e;
4358         }
4359         jim_wide a;
4360         e = Jim_GetOpt_Wide(&goi, &a);
4361         if (e != JIM_OK) {
4362                 return e;
4363         }
4364         struct target *target = Jim_CmdPrivData(interp);
4365         if (!target->tap->enabled)
4366                 return jim_target_tap_disabled(interp);
4367
4368         e = target_wait_state(target, n->value, a);
4369         if (e != ERROR_OK)
4370         {
4371                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4372                 Jim_SetResultFormatted(goi.interp,
4373                                 "target: %s wait %s fails (%#s) %s",
4374                                 target_name(target), n->name,
4375                                 eObj, target_strerror_safe(e));
4376                 Jim_FreeNewObj(interp, eObj);
4377                 return JIM_ERR;
4378         }
4379         return JIM_OK;
4380 }
4381 /* List for human, Events defined for this target.
4382  * scripts/programs should use 'name cget -event NAME'
4383  */
4384 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4385 {
4386         struct command_context *cmd_ctx = current_command_context(interp);
4387         assert (cmd_ctx != NULL);
4388
4389         struct target *target = Jim_CmdPrivData(interp);
4390         struct target_event_action *teap = target->event_action;
4391         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4392                                    target->target_number,
4393                                    target_name(target));
4394         command_print(cmd_ctx, "%-25s | Body", "Event");
4395         command_print(cmd_ctx, "------------------------- | "
4396                         "----------------------------------------");
4397         while (teap)
4398         {
4399                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4400                 command_print(cmd_ctx, "%-25s | %s",
4401                                 opt->name, Jim_GetString(teap->body, NULL));
4402                 teap = teap->next;
4403         }
4404         command_print(cmd_ctx, "***END***");
4405         return JIM_OK;
4406 }
4407 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4408 {
4409         if (argc != 1)
4410         {
4411                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4412                 return JIM_ERR;
4413         }
4414         struct target *target = Jim_CmdPrivData(interp);
4415         Jim_SetResultString(interp, target_state_name(target), -1);
4416         return JIM_OK;
4417 }
4418 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4419 {
4420         Jim_GetOptInfo goi;
4421         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4422         if (goi.argc != 1)
4423         {
4424                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4425                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4426                 return JIM_ERR;
4427         }
4428         Jim_Nvp *n;
4429         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4430         if (e != JIM_OK)
4431         {
4432                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4433                 return e;
4434         }
4435         struct target *target = Jim_CmdPrivData(interp);
4436         target_handle_event(target, n->value);
4437         return JIM_OK;
4438 }
4439
4440 static const struct command_registration target_instance_command_handlers[] = {
4441         {
4442                 .name = "configure",
4443                 .mode = COMMAND_CONFIG,
4444                 .jim_handler = jim_target_configure,
4445                 .help  = "configure a new target for use",
4446                 .usage = "[target_attribute ...]",
4447         },
4448         {
4449                 .name = "cget",
4450                 .mode = COMMAND_ANY,
4451                 .jim_handler = jim_target_configure,
4452                 .help  = "returns the specified target attribute",
4453                 .usage = "target_attribute",
4454         },
4455         {
4456                 .name = "mww",
4457                 .mode = COMMAND_EXEC,
4458                 .jim_handler = jim_target_mw,
4459                 .help = "Write 32-bit word(s) to target memory",
4460                 .usage = "address data [count]",
4461         },
4462         {
4463                 .name = "mwh",
4464                 .mode = COMMAND_EXEC,
4465                 .jim_handler = jim_target_mw,
4466                 .help = "Write 16-bit half-word(s) to target memory",
4467                 .usage = "address data [count]",
4468         },
4469         {
4470                 .name = "mwb",
4471                 .mode = COMMAND_EXEC,
4472                 .jim_handler = jim_target_mw,
4473                 .help = "Write byte(s) to target memory",
4474                 .usage = "address data [count]",
4475         },
4476         {
4477                 .name = "mdw",
4478                 .mode = COMMAND_EXEC,
4479                 .jim_handler = jim_target_md,
4480                 .help = "Display target memory as 32-bit words",
4481                 .usage = "address [count]",
4482         },
4483         {
4484                 .name = "mdh",
4485                 .mode = COMMAND_EXEC,
4486                 .jim_handler = jim_target_md,
4487                 .help = "Display target memory as 16-bit half-words",
4488                 .usage = "address [count]",
4489         },
4490         {
4491                 .name = "mdb",
4492                 .mode = COMMAND_EXEC,
4493                 .jim_handler = jim_target_md,
4494                 .help = "Display target memory as 8-bit bytes",
4495                 .usage = "address [count]",
4496         },
4497         {
4498                 .name = "array2mem",
4499                 .mode = COMMAND_EXEC,
4500                 .jim_handler = jim_target_array2mem,
4501                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4502                         "to target memory",
4503                 .usage = "arrayname bitwidth address count",
4504         },
4505         {
4506                 .name = "mem2array",
4507                 .mode = COMMAND_EXEC,
4508                 .jim_handler = jim_target_mem2array,
4509                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4510                         "from target memory",
4511                 .usage = "arrayname bitwidth address count",
4512         },
4513         {
4514                 .name = "eventlist",
4515                 .mode = COMMAND_EXEC,
4516                 .jim_handler = jim_target_event_list,
4517                 .help = "displays a table of events defined for this target",
4518         },
4519         {
4520                 .name = "curstate",
4521                 .mode = COMMAND_EXEC,
4522                 .jim_handler = jim_target_current_state,
4523                 .help = "displays the current state of this target",
4524         },
4525         {
4526                 .name = "arp_examine",
4527                 .mode = COMMAND_EXEC,
4528                 .jim_handler = jim_target_examine,
4529                 .help = "used internally for reset processing",
4530         },
4531         {
4532                 .name = "arp_halt_gdb",
4533                 .mode = COMMAND_EXEC,
4534                 .jim_handler = jim_target_halt_gdb,
4535                 .help = "used internally for reset processing to halt GDB",
4536         },
4537         {
4538                 .name = "arp_poll",
4539                 .mode = COMMAND_EXEC,
4540                 .jim_handler = jim_target_poll,
4541                 .help = "used internally for reset processing",
4542         },
4543         {
4544                 .name = "arp_reset",
4545                 .mode = COMMAND_EXEC,
4546                 .jim_handler = jim_target_reset,
4547                 .help = "used internally for reset processing",
4548         },
4549         {
4550                 .name = "arp_halt",
4551                 .mode = COMMAND_EXEC,
4552                 .jim_handler = jim_target_halt,
4553                 .help = "used internally for reset processing",
4554         },
4555         {
4556                 .name = "arp_waitstate",
4557                 .mode = COMMAND_EXEC,
4558                 .jim_handler = jim_target_wait_state,
4559                 .help = "used internally for reset processing",
4560         },
4561         {
4562                 .name = "invoke-event",
4563                 .mode = COMMAND_EXEC,
4564                 .jim_handler = jim_target_invoke_event,
4565                 .help = "invoke handler for specified event",
4566                 .usage = "event_name",
4567         },
4568         COMMAND_REGISTRATION_DONE
4569 };
4570
4571 static int target_create(Jim_GetOptInfo *goi)
4572 {
4573         Jim_Obj *new_cmd;
4574         Jim_Cmd *cmd;
4575         const char *cp;
4576         char *cp2;
4577         int e;
4578         int x;
4579         struct target *target;
4580         struct command_context *cmd_ctx;
4581
4582         cmd_ctx = current_command_context(goi->interp);
4583         assert (cmd_ctx != NULL);
4584
4585         if (goi->argc < 3) {
4586                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4587                 return JIM_ERR;
4588         }
4589
4590         /* COMMAND */
4591         Jim_GetOpt_Obj(goi, &new_cmd);
4592         /* does this command exist? */
4593         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4594         if (cmd) {
4595                 cp = Jim_GetString(new_cmd, NULL);
4596                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4597                 return JIM_ERR;
4598         }
4599
4600         /* TYPE */
4601         e = Jim_GetOpt_String(goi, &cp2, NULL);
4602         cp = cp2;
4603         /* now does target type exist */
4604         for (x = 0 ; target_types[x] ; x++) {
4605                 if (0 == strcmp(cp, target_types[x]->name)) {
4606                         /* found */
4607                         break;
4608                 }
4609         }
4610         if (target_types[x] == NULL) {
4611                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4612                 for (x = 0 ; target_types[x] ; x++) {
4613                         if (target_types[x + 1]) {
4614                                 Jim_AppendStrings(goi->interp,
4615                                                                    Jim_GetResult(goi->interp),
4616                                                                    target_types[x]->name,
4617                                                                    ", ", NULL);
4618                         } else {
4619                                 Jim_AppendStrings(goi->interp,
4620                                                                    Jim_GetResult(goi->interp),
4621                                                                    " or ",
4622                                                                    target_types[x]->name,NULL);
4623                         }
4624                 }
4625                 return JIM_ERR;
4626         }
4627
4628         /* Create it */
4629         target = calloc(1,sizeof(struct target));
4630         /* set target number */
4631         target->target_number = new_target_number();
4632
4633         /* allocate memory for each unique target type */
4634         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4635
4636         memcpy(target->type, target_types[x], sizeof(struct target_type));
4637
4638         /* will be set by "-endian" */
4639         target->endianness = TARGET_ENDIAN_UNKNOWN;
4640
4641         target->working_area        = 0x0;
4642         target->working_area_size   = 0x0;
4643         target->working_areas       = NULL;
4644         target->backup_working_area = 0;
4645
4646         target->state               = TARGET_UNKNOWN;
4647         target->debug_reason        = DBG_REASON_UNDEFINED;
4648         target->reg_cache           = NULL;
4649         target->breakpoints         = NULL;
4650         target->watchpoints         = NULL;
4651         target->next                = NULL;
4652         target->arch_info           = NULL;
4653
4654         target->display             = 1;
4655
4656         target->halt_issued                     = false;
4657
4658         /* initialize trace information */
4659         target->trace_info = malloc(sizeof(struct trace));
4660         target->trace_info->num_trace_points         = 0;
4661         target->trace_info->trace_points_size        = 0;
4662         target->trace_info->trace_points             = NULL;
4663         target->trace_info->trace_history_size       = 0;
4664         target->trace_info->trace_history            = NULL;
4665         target->trace_info->trace_history_pos        = 0;
4666         target->trace_info->trace_history_overflowed = 0;
4667
4668         target->dbgmsg          = NULL;
4669         target->dbg_msg_enabled = 0;
4670
4671         target->endianness = TARGET_ENDIAN_UNKNOWN;
4672
4673         /* Do the rest as "configure" options */
4674         goi->isconfigure = 1;
4675         e = target_configure(goi, target);
4676
4677         if (target->tap == NULL)
4678         {
4679                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4680                 e = JIM_ERR;
4681         }
4682
4683         if (e != JIM_OK) {
4684                 free(target->type);
4685                 free(target);
4686                 return e;
4687         }
4688
4689         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4690                 /* default endian to little if not specified */
4691                 target->endianness = TARGET_LITTLE_ENDIAN;
4692         }
4693
4694         /* incase variant is not set */
4695         if (!target->variant)
4696                 target->variant = strdup("");
4697
4698         cp = Jim_GetString(new_cmd, NULL);
4699         target->cmd_name = strdup(cp);
4700
4701         /* create the target specific commands */
4702         if (target->type->commands) {
4703                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4704                 if (ERROR_OK != e)
4705                         LOG_ERROR("unable to register '%s' commands", cp);
4706         }
4707         if (target->type->target_create) {
4708                 (*(target->type->target_create))(target, goi->interp);
4709         }
4710
4711         /* append to end of list */
4712         {
4713                 struct target **tpp;
4714                 tpp = &(all_targets);
4715                 while (*tpp) {
4716                         tpp = &((*tpp)->next);
4717                 }
4718                 *tpp = target;
4719         }
4720
4721         /* now - create the new target name command */
4722         const const struct command_registration target_subcommands[] = {
4723                 {
4724                         .chain = target_instance_command_handlers,
4725                 },
4726                 {
4727                         .chain = target->type->commands,
4728                 },
4729                 COMMAND_REGISTRATION_DONE
4730         };
4731         const const struct command_registration target_commands[] = {
4732                 {
4733                         .name = cp,
4734                         .mode = COMMAND_ANY,
4735                         .help = "target command group",
4736                         .chain = target_subcommands,
4737                 },
4738                 COMMAND_REGISTRATION_DONE
4739         };
4740         e = register_commands(cmd_ctx, NULL, target_commands);
4741         if (ERROR_OK != e)
4742                 return JIM_ERR;
4743
4744         struct command *c = command_find_in_context(cmd_ctx, cp);
4745         assert(c);
4746         command_set_handler_data(c, target);
4747
4748         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4749 }
4750
4751 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4752 {
4753         if (argc != 1)
4754         {
4755                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4756                 return JIM_ERR;
4757         }
4758         struct command_context *cmd_ctx = current_command_context(interp);
4759         assert (cmd_ctx != NULL);
4760
4761         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4762         return JIM_OK;
4763 }
4764
4765 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4766 {
4767         if (argc != 1)
4768         {
4769                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4770                 return JIM_ERR;
4771         }
4772         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4773         for (unsigned x = 0; NULL != target_types[x]; x++)
4774         {
4775                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4776                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4777         }
4778         return JIM_OK;
4779 }
4780
4781 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4782 {
4783         if (argc != 1)
4784         {
4785                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4786                 return JIM_ERR;
4787         }
4788         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4789         struct target *target = all_targets;
4790         while (target)
4791         {
4792                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4793                         Jim_NewStringObj(interp, target_name(target), -1));
4794                 target = target->next;
4795         }
4796         return JIM_OK;
4797 }
4798
4799 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4800 {
4801         Jim_GetOptInfo goi;
4802         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4803         if (goi.argc < 3)
4804         {
4805                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4806                         "<name> <target_type> [<target_options> ...]");
4807                 return JIM_ERR;
4808         }
4809         return target_create(&goi);
4810 }
4811
4812 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4813 {
4814         Jim_GetOptInfo goi;
4815         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4816
4817         /* It's OK to remove this mechanism sometime after August 2010 or so */
4818         LOG_WARNING("don't use numbers as target identifiers; use names");
4819         if (goi.argc != 1)
4820         {
4821                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
4822                 return JIM_ERR;
4823         }
4824         jim_wide w;
4825         int e = Jim_GetOpt_Wide(&goi, &w);
4826         if (e != JIM_OK)
4827                 return JIM_ERR;
4828
4829         struct target *target;
4830         for (target = all_targets; NULL != target; target = target->next)
4831         {
4832                 if (target->target_number != w)
4833                         continue;
4834
4835                 Jim_SetResultString(goi.interp, target_name(target), -1);
4836                 return JIM_OK;
4837         }
4838         {
4839                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
4840                 Jim_SetResultFormatted(goi.interp,
4841                         "Target: number %#s does not exist", wObj);
4842                 Jim_FreeNewObj(interp, wObj);
4843         }
4844         return JIM_ERR;
4845 }
4846
4847 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4848 {
4849         if (argc != 1)
4850         {
4851                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4852                 return JIM_ERR;
4853         }
4854         unsigned count = 0;
4855         struct target *target = all_targets;
4856         while (NULL != target)
4857         {
4858                 target = target->next;
4859                 count++;
4860         }
4861         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4862         return JIM_OK;
4863 }
4864
4865 static const struct command_registration target_subcommand_handlers[] = {
4866         {
4867                 .name = "init",
4868                 .mode = COMMAND_CONFIG,
4869                 .handler = handle_target_init_command,
4870                 .help = "initialize targets",
4871         },
4872         {
4873                 .name = "create",
4874                 /* REVISIT this should be COMMAND_CONFIG ... */
4875                 .mode = COMMAND_ANY,
4876                 .jim_handler = jim_target_create,
4877                 .usage = "name type '-chain-position' name [options ...]",
4878                 .help = "Creates and selects a new target",
4879         },
4880         {
4881                 .name = "current",
4882                 .mode = COMMAND_ANY,
4883                 .jim_handler = jim_target_current,
4884                 .help = "Returns the currently selected target",
4885         },
4886         {
4887                 .name = "types",
4888                 .mode = COMMAND_ANY,
4889                 .jim_handler = jim_target_types,
4890                 .help = "Returns the available target types as "
4891                                 "a list of strings",
4892         },
4893         {
4894                 .name = "names",
4895                 .mode = COMMAND_ANY,
4896                 .jim_handler = jim_target_names,
4897                 .help = "Returns the names of all targets as a list of strings",
4898         },
4899         {
4900                 .name = "number",
4901                 .mode = COMMAND_ANY,
4902                 .jim_handler = jim_target_number,
4903                 .usage = "number",
4904                 .help = "Returns the name of the numbered target "
4905                         "(DEPRECATED)",
4906         },
4907         {
4908                 .name = "count",
4909                 .mode = COMMAND_ANY,
4910                 .jim_handler = jim_target_count,
4911                 .help = "Returns the number of targets as an integer "
4912                         "(DEPRECATED)",
4913         },
4914         COMMAND_REGISTRATION_DONE
4915 };
4916
4917 struct FastLoad
4918 {
4919         uint32_t address;
4920         uint8_t *data;
4921         int length;
4922
4923 };
4924
4925 static int fastload_num;
4926 static struct FastLoad *fastload;
4927
4928 static void free_fastload(void)
4929 {
4930         if (fastload != NULL)
4931         {
4932                 int i;
4933                 for (i = 0; i < fastload_num; i++)
4934                 {
4935                         if (fastload[i].data)
4936                                 free(fastload[i].data);
4937                 }
4938                 free(fastload);
4939                 fastload = NULL;
4940         }
4941 }
4942
4943
4944
4945
4946 COMMAND_HANDLER(handle_fast_load_image_command)
4947 {
4948         uint8_t *buffer;
4949         size_t buf_cnt;
4950         uint32_t image_size;
4951         uint32_t min_address = 0;
4952         uint32_t max_address = 0xffffffff;
4953         int i;
4954
4955         struct image image;
4956
4957         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4958                         &image, &min_address, &max_address);
4959         if (ERROR_OK != retval)
4960                 return retval;
4961
4962         struct duration bench;
4963         duration_start(&bench);
4964
4965         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4966         {
4967                 return ERROR_OK;
4968         }
4969
4970         image_size = 0x0;
4971         retval = ERROR_OK;
4972         fastload_num = image.num_sections;
4973         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4974         if (fastload == NULL)
4975         {
4976                 image_close(&image);
4977                 return ERROR_FAIL;
4978         }
4979         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4980         for (i = 0; i < image.num_sections; i++)
4981         {
4982                 buffer = malloc(image.sections[i].size);
4983                 if (buffer == NULL)
4984                 {
4985                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4986                                                   (int)(image.sections[i].size));
4987                         break;
4988                 }
4989
4990                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4991                 {
4992                         free(buffer);
4993                         break;
4994                 }
4995
4996                 uint32_t offset = 0;
4997                 uint32_t length = buf_cnt;
4998
4999
5000                 /* DANGER!!! beware of unsigned comparision here!!! */
5001
5002                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
5003                                 (image.sections[i].base_address < max_address))
5004                 {
5005                         if (image.sections[i].base_address < min_address)
5006                         {
5007                                 /* clip addresses below */
5008                                 offset += min_address-image.sections[i].base_address;
5009                                 length -= offset;
5010                         }
5011
5012                         if (image.sections[i].base_address + buf_cnt > max_address)
5013                         {
5014                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5015                         }
5016
5017                         fastload[i].address = image.sections[i].base_address + offset;
5018                         fastload[i].data = malloc(length);
5019                         if (fastload[i].data == NULL)
5020                         {
5021                                 free(buffer);
5022                                 break;
5023                         }
5024                         memcpy(fastload[i].data, buffer + offset, length);
5025                         fastload[i].length = length;
5026
5027                         image_size += length;
5028                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5029                                                   (unsigned int)length,
5030                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5031                 }
5032
5033                 free(buffer);
5034         }
5035
5036         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
5037         {
5038                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5039                                 "in %fs (%0.3f KiB/s)", image_size,
5040                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5041
5042                 command_print(CMD_CTX,
5043                                 "WARNING: image has not been loaded to target!"
5044                                 "You can issue a 'fast_load' to finish loading.");
5045         }
5046
5047         image_close(&image);
5048
5049         if (retval != ERROR_OK)
5050         {
5051                 free_fastload();
5052         }
5053
5054         return retval;
5055 }
5056
5057 COMMAND_HANDLER(handle_fast_load_command)
5058 {
5059         if (CMD_ARGC > 0)
5060                 return ERROR_COMMAND_SYNTAX_ERROR;
5061         if (fastload == NULL)
5062         {
5063                 LOG_ERROR("No image in memory");
5064                 return ERROR_FAIL;
5065         }
5066         int i;
5067         int ms = timeval_ms();
5068         int size = 0;
5069         int retval = ERROR_OK;
5070         for (i = 0; i < fastload_num;i++)
5071         {
5072                 struct target *target = get_current_target(CMD_CTX);
5073                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5074                                           (unsigned int)(fastload[i].address),
5075                                           (unsigned int)(fastload[i].length));
5076                 if (retval == ERROR_OK)
5077                 {
5078                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5079                 }
5080                 size += fastload[i].length;
5081         }
5082         int after = timeval_ms();
5083         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5084         return retval;
5085 }
5086
5087 static const struct command_registration target_command_handlers[] = {
5088         {
5089                 .name = "targets",
5090                 .handler = handle_targets_command,
5091                 .mode = COMMAND_ANY,
5092                 .help = "change current default target (one parameter) "
5093                         "or prints table of all targets (no parameters)",
5094                 .usage = "[target]",
5095         },
5096         {
5097                 .name = "target",
5098                 .mode = COMMAND_CONFIG,
5099                 .help = "configure target",
5100
5101                 .chain = target_subcommand_handlers,
5102         },
5103         COMMAND_REGISTRATION_DONE
5104 };
5105
5106 int target_register_commands(struct command_context *cmd_ctx)
5107 {
5108         return register_commands(cmd_ctx, NULL, target_command_handlers);
5109 }
5110
5111 static bool target_reset_nag = true;
5112
5113 bool get_target_reset_nag(void)
5114 {
5115         return target_reset_nag;
5116 }
5117
5118 COMMAND_HANDLER(handle_target_reset_nag)
5119 {
5120         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5121                         &target_reset_nag, "Nag after each reset about options to improve "
5122                         "performance");
5123 }
5124
5125 static const struct command_registration target_exec_command_handlers[] = {
5126         {
5127                 .name = "fast_load_image",
5128                 .handler = handle_fast_load_image_command,
5129                 .mode = COMMAND_ANY,
5130                 .help = "Load image into server memory for later use by "
5131                         "fast_load; primarily for profiling",
5132                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5133                         "[min_address [max_length]]",
5134         },
5135         {
5136                 .name = "fast_load",
5137                 .handler = handle_fast_load_command,
5138                 .mode = COMMAND_EXEC,
5139                 .help = "loads active fast load image to current target "
5140                         "- mainly for profiling purposes",
5141         },
5142         {
5143                 .name = "profile",
5144                 .handler = handle_profile_command,
5145                 .mode = COMMAND_EXEC,
5146                 .help = "profiling samples the CPU PC",
5147         },
5148         /** @todo don't register virt2phys() unless target supports it */
5149         {
5150                 .name = "virt2phys",
5151                 .handler = handle_virt2phys_command,
5152                 .mode = COMMAND_ANY,
5153                 .help = "translate a virtual address into a physical address",
5154                 .usage = "virtual_address",
5155         },
5156         {
5157                 .name = "reg",
5158                 .handler = handle_reg_command,
5159                 .mode = COMMAND_EXEC,
5160                 .help = "display or set a register; with no arguments, "
5161                         "displays all registers and their values",
5162                 .usage = "[(register_name|register_number) [value]]",
5163         },
5164         {
5165                 .name = "poll",
5166                 .handler = handle_poll_command,
5167                 .mode = COMMAND_EXEC,
5168                 .help = "poll target state; or reconfigure background polling",
5169                 .usage = "['on'|'off']",
5170         },
5171         {
5172                 .name = "wait_halt",
5173                 .handler = handle_wait_halt_command,
5174                 .mode = COMMAND_EXEC,
5175                 .help = "wait up to the specified number of milliseconds "
5176                         "(default 5) for a previously requested halt",
5177                 .usage = "[milliseconds]",
5178         },
5179         {
5180                 .name = "halt",
5181                 .handler = handle_halt_command,
5182                 .mode = COMMAND_EXEC,
5183                 .help = "request target to halt, then wait up to the specified"
5184                         "number of milliseconds (default 5) for it to complete",
5185                 .usage = "[milliseconds]",
5186         },
5187         {
5188                 .name = "resume",
5189                 .handler = handle_resume_command,
5190                 .mode = COMMAND_EXEC,
5191                 .help = "resume target execution from current PC or address",
5192                 .usage = "[address]",
5193         },
5194         {
5195                 .name = "reset",
5196                 .handler = handle_reset_command,
5197                 .mode = COMMAND_EXEC,
5198                 .usage = "[run|halt|init]",
5199                 .help = "Reset all targets into the specified mode."
5200                         "Default reset mode is run, if not given.",
5201         },
5202         {
5203                 .name = "soft_reset_halt",
5204                 .handler = handle_soft_reset_halt_command,
5205                 .mode = COMMAND_EXEC,
5206                 .help = "halt the target and do a soft reset",
5207         },
5208         {
5209                 .name = "step",
5210                 .handler = handle_step_command,
5211                 .mode = COMMAND_EXEC,
5212                 .help = "step one instruction from current PC or address",
5213                 .usage = "[address]",
5214         },
5215         {
5216                 .name = "mdw",
5217                 .handler = handle_md_command,
5218                 .mode = COMMAND_EXEC,
5219                 .help = "display memory words",
5220                 .usage = "['phys'] address [count]",
5221         },
5222         {
5223                 .name = "mdh",
5224                 .handler = handle_md_command,
5225                 .mode = COMMAND_EXEC,
5226                 .help = "display memory half-words",
5227                 .usage = "['phys'] address [count]",
5228         },
5229         {
5230                 .name = "mdb",
5231                 .handler = handle_md_command,
5232                 .mode = COMMAND_EXEC,
5233                 .help = "display memory bytes",
5234                 .usage = "['phys'] address [count]",
5235         },
5236         {
5237                 .name = "mww",
5238                 .handler = handle_mw_command,
5239                 .mode = COMMAND_EXEC,
5240                 .help = "write memory word",
5241                 .usage = "['phys'] address value [count]",
5242         },
5243         {
5244                 .name = "mwh",
5245                 .handler = handle_mw_command,
5246                 .mode = COMMAND_EXEC,
5247                 .help = "write memory half-word",
5248                 .usage = "['phys'] address value [count]",
5249         },
5250         {
5251                 .name = "mwb",
5252                 .handler = handle_mw_command,
5253                 .mode = COMMAND_EXEC,
5254                 .help = "write memory byte",
5255                 .usage = "['phys'] address value [count]",
5256         },
5257         {
5258                 .name = "bp",
5259                 .handler = handle_bp_command,
5260                 .mode = COMMAND_EXEC,
5261                 .help = "list or set hardware or software breakpoint",
5262                 .usage = "[address length ['hw']]",
5263         },
5264         {
5265                 .name = "rbp",
5266                 .handler = handle_rbp_command,
5267                 .mode = COMMAND_EXEC,
5268                 .help = "remove breakpoint",
5269                 .usage = "address",
5270         },
5271         {
5272                 .name = "wp",
5273                 .handler = handle_wp_command,
5274                 .mode = COMMAND_EXEC,
5275                 .help = "list (no params) or create watchpoints",
5276                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5277         },
5278         {
5279                 .name = "rwp",
5280                 .handler = handle_rwp_command,
5281                 .mode = COMMAND_EXEC,
5282                 .help = "remove watchpoint",
5283                 .usage = "address",
5284         },
5285         {
5286                 .name = "load_image",
5287                 .handler = handle_load_image_command,
5288                 .mode = COMMAND_EXEC,
5289                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5290                         "[min_address] [max_length]",
5291         },
5292         {
5293                 .name = "dump_image",
5294                 .handler = handle_dump_image_command,
5295                 .mode = COMMAND_EXEC,
5296                 .usage = "filename address size",
5297         },
5298         {
5299                 .name = "verify_image",
5300                 .handler = handle_verify_image_command,
5301                 .mode = COMMAND_EXEC,
5302                 .usage = "filename [offset [type]]",
5303         },
5304         {
5305                 .name = "test_image",
5306                 .handler = handle_test_image_command,
5307                 .mode = COMMAND_EXEC,
5308                 .usage = "filename [offset [type]]",
5309         },
5310         {
5311                 .name = "mem2array",
5312                 .mode = COMMAND_EXEC,
5313                 .jim_handler = jim_mem2array,
5314                 .help = "read 8/16/32 bit memory and return as a TCL array "
5315                         "for script processing",
5316                 .usage = "arrayname bitwidth address count",
5317         },
5318         {
5319                 .name = "array2mem",
5320                 .mode = COMMAND_EXEC,
5321                 .jim_handler = jim_array2mem,
5322                 .help = "convert a TCL array to memory locations "
5323                         "and write the 8/16/32 bit values",
5324                 .usage = "arrayname bitwidth address count",
5325         },
5326         {
5327                 .name = "reset_nag",
5328                 .handler = handle_target_reset_nag,
5329                 .mode = COMMAND_ANY,
5330                 .help = "Nag after each reset about options that could have been "
5331                                 "enabled to improve performance. ",
5332                 .usage = "['enable'|'disable']",
5333         },
5334         COMMAND_REGISTRATION_DONE
5335 };
5336 static int target_register_user_commands(struct command_context *cmd_ctx)
5337 {
5338         int retval = ERROR_OK;
5339         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5340                 return retval;
5341
5342         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5343                 return retval;
5344
5345
5346         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5347 }