target: remove duplicate target events
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 static int target_read_buffer_default(struct target *target, uint32_t address,
60                 uint32_t size, uint8_t *buffer);
61 static int target_write_buffer_default(struct target *target, uint32_t address,
62                 uint32_t size, const uint8_t *buffer);
63 static int target_array2mem(Jim_Interp *interp, struct target *target,
64                 int argc, Jim_Obj * const *argv);
65 static int target_mem2array(Jim_Interp *interp, struct target *target,
66                 int argc, Jim_Obj * const *argv);
67 static int target_register_user_commands(struct command_context *cmd_ctx);
68
69 /* targets */
70 extern struct target_type arm7tdmi_target;
71 extern struct target_type arm720t_target;
72 extern struct target_type arm9tdmi_target;
73 extern struct target_type arm920t_target;
74 extern struct target_type arm966e_target;
75 extern struct target_type arm946e_target;
76 extern struct target_type arm926ejs_target;
77 extern struct target_type fa526_target;
78 extern struct target_type feroceon_target;
79 extern struct target_type dragonite_target;
80 extern struct target_type xscale_target;
81 extern struct target_type cortexm3_target;
82 extern struct target_type cortexa8_target;
83 extern struct target_type arm11_target;
84 extern struct target_type mips_m4k_target;
85 extern struct target_type avr_target;
86 extern struct target_type dsp563xx_target;
87 extern struct target_type dsp5680xx_target;
88 extern struct target_type testee_target;
89 extern struct target_type avr32_ap7k_target;
90 extern struct target_type stm32_stlink_target;
91
92 static struct target_type *target_types[] = {
93         &arm7tdmi_target,
94         &arm9tdmi_target,
95         &arm920t_target,
96         &arm720t_target,
97         &arm966e_target,
98         &arm946e_target,
99         &arm926ejs_target,
100         &fa526_target,
101         &feroceon_target,
102         &dragonite_target,
103         &xscale_target,
104         &cortexm3_target,
105         &cortexa8_target,
106         &arm11_target,
107         &mips_m4k_target,
108         &avr_target,
109         &dsp563xx_target,
110         &dsp5680xx_target,
111         &testee_target,
112         &avr32_ap7k_target,
113         &stm32_stlink_target,
114         NULL,
115 };
116
117 struct target *all_targets;
118 static struct target_event_callback *target_event_callbacks;
119 static struct target_timer_callback *target_timer_callbacks;
120 static const int polling_interval = 100;
121
122 static const Jim_Nvp nvp_assert[] = {
123         { .name = "assert", NVP_ASSERT },
124         { .name = "deassert", NVP_DEASSERT },
125         { .name = "T", NVP_ASSERT },
126         { .name = "F", NVP_DEASSERT },
127         { .name = "t", NVP_ASSERT },
128         { .name = "f", NVP_DEASSERT },
129         { .name = NULL, .value = -1 }
130 };
131
132 static const Jim_Nvp nvp_error_target[] = {
133         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
134         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
135         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
136         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
137         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
138         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
139         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
140         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
141         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
142         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
143         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
144         { .value = -1, .name = NULL }
145 };
146
147 static const char *target_strerror_safe(int err)
148 {
149         const Jim_Nvp *n;
150
151         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
152         if (n->name == NULL)
153                 return "unknown";
154         else
155                 return n->name;
156 }
157
158 static const Jim_Nvp nvp_target_event[] = {
159         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
160         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
161
162         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
163         { .value = TARGET_EVENT_HALTED, .name = "halted" },
164         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
165         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
166         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
167
168         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
169         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
170
171         /* historical name */
172
173         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
174
175         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
176         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
177         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
178         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
179         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
180         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
181         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
182         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
183         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
184         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
185         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
186
187         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
188         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
189
190         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
191         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
192
193         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
194         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
195
196         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
197         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
198
199         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
200         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
201
202         { .name = NULL, .value = -1 }
203 };
204
205 static const Jim_Nvp nvp_target_state[] = {
206         { .name = "unknown", .value = TARGET_UNKNOWN },
207         { .name = "running", .value = TARGET_RUNNING },
208         { .name = "halted",  .value = TARGET_HALTED },
209         { .name = "reset",   .value = TARGET_RESET },
210         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
211         { .name = NULL, .value = -1 },
212 };
213
214 static const Jim_Nvp nvp_target_debug_reason[] = {
215         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
216         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
217         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
218         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
219         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
220         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
221         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
222         { .name = NULL, .value = -1 },
223 };
224
225 static const Jim_Nvp nvp_target_endian[] = {
226         { .name = "big",    .value = TARGET_BIG_ENDIAN },
227         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
228         { .name = "be",     .value = TARGET_BIG_ENDIAN },
229         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
230         { .name = NULL,     .value = -1 },
231 };
232
233 static const Jim_Nvp nvp_reset_modes[] = {
234         { .name = "unknown", .value = RESET_UNKNOWN },
235         { .name = "run"    , .value = RESET_RUN },
236         { .name = "halt"   , .value = RESET_HALT },
237         { .name = "init"   , .value = RESET_INIT },
238         { .name = NULL     , .value = -1 },
239 };
240
241 const char *debug_reason_name(struct target *t)
242 {
243         const char *cp;
244
245         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
246                         t->debug_reason)->name;
247         if (!cp) {
248                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
249                 cp = "(*BUG*unknown*BUG*)";
250         }
251         return cp;
252 }
253
254 const char *target_state_name(struct target *t)
255 {
256         const char *cp;
257         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
258         if (!cp) {
259                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
260                 cp = "(*BUG*unknown*BUG*)";
261         }
262         return cp;
263 }
264
265 /* determine the number of the new target */
266 static int new_target_number(void)
267 {
268         struct target *t;
269         int x;
270
271         /* number is 0 based */
272         x = -1;
273         t = all_targets;
274         while (t) {
275                 if (x < t->target_number)
276                         x = t->target_number;
277                 t = t->next;
278         }
279         return x + 1;
280 }
281
282 /* read a uint32_t from a buffer in target memory endianness */
283 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
284 {
285         if (target->endianness == TARGET_LITTLE_ENDIAN)
286                 return le_to_h_u32(buffer);
287         else
288                 return be_to_h_u32(buffer);
289 }
290
291 /* read a uint24_t from a buffer in target memory endianness */
292 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
293 {
294         if (target->endianness == TARGET_LITTLE_ENDIAN)
295                 return le_to_h_u24(buffer);
296         else
297                 return be_to_h_u24(buffer);
298 }
299
300 /* read a uint16_t from a buffer in target memory endianness */
301 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
302 {
303         if (target->endianness == TARGET_LITTLE_ENDIAN)
304                 return le_to_h_u16(buffer);
305         else
306                 return be_to_h_u16(buffer);
307 }
308
309 /* read a uint8_t from a buffer in target memory endianness */
310 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
311 {
312         return *buffer & 0x0ff;
313 }
314
315 /* write a uint32_t to a buffer in target memory endianness */
316 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
317 {
318         if (target->endianness == TARGET_LITTLE_ENDIAN)
319                 h_u32_to_le(buffer, value);
320         else
321                 h_u32_to_be(buffer, value);
322 }
323
324 /* write a uint24_t to a buffer in target memory endianness */
325 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
326 {
327         if (target->endianness == TARGET_LITTLE_ENDIAN)
328                 h_u24_to_le(buffer, value);
329         else
330                 h_u24_to_be(buffer, value);
331 }
332
333 /* write a uint16_t to a buffer in target memory endianness */
334 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
335 {
336         if (target->endianness == TARGET_LITTLE_ENDIAN)
337                 h_u16_to_le(buffer, value);
338         else
339                 h_u16_to_be(buffer, value);
340 }
341
342 /* write a uint8_t to a buffer in target memory endianness */
343 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
344 {
345         *buffer = value;
346 }
347
348 /* write a uint32_t array to a buffer in target memory endianness */
349 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
350 {
351         uint32_t i;
352         for (i = 0; i < count; i++)
353                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
354 }
355
356 /* write a uint16_t array to a buffer in target memory endianness */
357 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
358 {
359         uint32_t i;
360         for (i = 0; i < count; i++)
361                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
362 }
363
364 /* write a uint32_t array to a buffer in target memory endianness */
365 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
366 {
367         uint32_t i;
368         for (i = 0; i < count; i++)
369                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
370 }
371
372 /* write a uint16_t array to a buffer in target memory endianness */
373 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
374 {
375         uint32_t i;
376         for (i = 0; i < count; i++)
377                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
378 }
379
380 /* return a pointer to a configured target; id is name or number */
381 struct target *get_target(const char *id)
382 {
383         struct target *target;
384
385         /* try as tcltarget name */
386         for (target = all_targets; target; target = target->next) {
387                 if (target->cmd_name == NULL)
388                         continue;
389                 if (strcmp(id, target->cmd_name) == 0)
390                         return target;
391         }
392
393         /* It's OK to remove this fallback sometime after August 2010 or so */
394
395         /* no match, try as number */
396         unsigned num;
397         if (parse_uint(id, &num) != ERROR_OK)
398                 return NULL;
399
400         for (target = all_targets; target; target = target->next) {
401                 if (target->target_number == (int)num) {
402                         LOG_WARNING("use '%s' as target identifier, not '%u'",
403                                         target->cmd_name, num);
404                         return target;
405                 }
406         }
407
408         return NULL;
409 }
410
411 /* returns a pointer to the n-th configured target */
412 static struct target *get_target_by_num(int num)
413 {
414         struct target *target = all_targets;
415
416         while (target) {
417                 if (target->target_number == num)
418                         return target;
419                 target = target->next;
420         }
421
422         return NULL;
423 }
424
425 struct target *get_current_target(struct command_context *cmd_ctx)
426 {
427         struct target *target = get_target_by_num(cmd_ctx->current_target);
428
429         if (target == NULL) {
430                 LOG_ERROR("BUG: current_target out of bounds");
431                 exit(-1);
432         }
433
434         return target;
435 }
436
437 int target_poll(struct target *target)
438 {
439         int retval;
440
441         /* We can't poll until after examine */
442         if (!target_was_examined(target)) {
443                 /* Fail silently lest we pollute the log */
444                 return ERROR_FAIL;
445         }
446
447         retval = target->type->poll(target);
448         if (retval != ERROR_OK)
449                 return retval;
450
451         if (target->halt_issued) {
452                 if (target->state == TARGET_HALTED)
453                         target->halt_issued = false;
454                 else {
455                         long long t = timeval_ms() - target->halt_issued_time;
456                         if (t > 1000) {
457                                 target->halt_issued = false;
458                                 LOG_INFO("Halt timed out, wake up GDB.");
459                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
460                         }
461                 }
462         }
463
464         return ERROR_OK;
465 }
466
467 int target_halt(struct target *target)
468 {
469         int retval;
470         /* We can't poll until after examine */
471         if (!target_was_examined(target)) {
472                 LOG_ERROR("Target not examined yet");
473                 return ERROR_FAIL;
474         }
475
476         retval = target->type->halt(target);
477         if (retval != ERROR_OK)
478                 return retval;
479
480         target->halt_issued = true;
481         target->halt_issued_time = timeval_ms();
482
483         return ERROR_OK;
484 }
485
486 /**
487  * Make the target (re)start executing using its saved execution
488  * context (possibly with some modifications).
489  *
490  * @param target Which target should start executing.
491  * @param current True to use the target's saved program counter instead
492  *      of the address parameter
493  * @param address Optionally used as the program counter.
494  * @param handle_breakpoints True iff breakpoints at the resumption PC
495  *      should be skipped.  (For example, maybe execution was stopped by
496  *      such a breakpoint, in which case it would be counterprodutive to
497  *      let it re-trigger.
498  * @param debug_execution False if all working areas allocated by OpenOCD
499  *      should be released and/or restored to their original contents.
500  *      (This would for example be true to run some downloaded "helper"
501  *      algorithm code, which resides in one such working buffer and uses
502  *      another for data storage.)
503  *
504  * @todo Resolve the ambiguity about what the "debug_execution" flag
505  * signifies.  For example, Target implementations don't agree on how
506  * it relates to invalidation of the register cache, or to whether
507  * breakpoints and watchpoints should be enabled.  (It would seem wrong
508  * to enable breakpoints when running downloaded "helper" algorithms
509  * (debug_execution true), since the breakpoints would be set to match
510  * target firmware being debugged, not the helper algorithm.... and
511  * enabling them could cause such helpers to malfunction (for example,
512  * by overwriting data with a breakpoint instruction.  On the other
513  * hand the infrastructure for running such helpers might use this
514  * procedure but rely on hardware breakpoint to detect termination.)
515  */
516 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
517 {
518         int retval;
519
520         /* We can't poll until after examine */
521         if (!target_was_examined(target)) {
522                 LOG_ERROR("Target not examined yet");
523                 return ERROR_FAIL;
524         }
525
526         /* note that resume *must* be asynchronous. The CPU can halt before
527          * we poll. The CPU can even halt at the current PC as a result of
528          * a software breakpoint being inserted by (a bug?) the application.
529          */
530         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
531         if (retval != ERROR_OK)
532                 return retval;
533
534         return retval;
535 }
536
537 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
538 {
539         char buf[100];
540         int retval;
541         Jim_Nvp *n;
542         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
543         if (n->name == NULL) {
544                 LOG_ERROR("invalid reset mode");
545                 return ERROR_FAIL;
546         }
547
548         /* disable polling during reset to make reset event scripts
549          * more predictable, i.e. dr/irscan & pathmove in events will
550          * not have JTAG operations injected into the middle of a sequence.
551          */
552         bool save_poll = jtag_poll_get_enabled();
553
554         jtag_poll_set_enabled(false);
555
556         sprintf(buf, "ocd_process_reset %s", n->name);
557         retval = Jim_Eval(cmd_ctx->interp, buf);
558
559         jtag_poll_set_enabled(save_poll);
560
561         if (retval != JIM_OK) {
562                 Jim_MakeErrorMessage(cmd_ctx->interp);
563                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
564                 return ERROR_FAIL;
565         }
566
567         /* We want any events to be processed before the prompt */
568         retval = target_call_timer_callbacks_now();
569
570         struct target *target;
571         for (target = all_targets; target; target = target->next)
572                 target->type->check_reset(target);
573
574         return retval;
575 }
576
577 static int identity_virt2phys(struct target *target,
578                 uint32_t virtual, uint32_t *physical)
579 {
580         *physical = virtual;
581         return ERROR_OK;
582 }
583
584 static int no_mmu(struct target *target, int *enabled)
585 {
586         *enabled = 0;
587         return ERROR_OK;
588 }
589
590 static int default_examine(struct target *target)
591 {
592         target_set_examined(target);
593         return ERROR_OK;
594 }
595
596 /* no check by default */
597 static int default_check_reset(struct target *target)
598 {
599         return ERROR_OK;
600 }
601
602 int target_examine_one(struct target *target)
603 {
604         return target->type->examine(target);
605 }
606
607 static int jtag_enable_callback(enum jtag_event event, void *priv)
608 {
609         struct target *target = priv;
610
611         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
612                 return ERROR_OK;
613
614         jtag_unregister_event_callback(jtag_enable_callback, target);
615         return target_examine_one(target);
616 }
617
618
619 /* Targets that correctly implement init + examine, i.e.
620  * no communication with target during init:
621  *
622  * XScale
623  */
624 int target_examine(void)
625 {
626         int retval = ERROR_OK;
627         struct target *target;
628
629         for (target = all_targets; target; target = target->next) {
630                 /* defer examination, but don't skip it */
631                 if (!target->tap->enabled) {
632                         jtag_register_event_callback(jtag_enable_callback,
633                                         target);
634                         continue;
635                 }
636                 retval = target_examine_one(target);
637                 if (retval != ERROR_OK)
638                         return retval;
639         }
640         return retval;
641 }
642 const char *target_type_name(struct target *target)
643 {
644         return target->type->name;
645 }
646
647 static int target_write_memory_imp(struct target *target, uint32_t address,
648                 uint32_t size, uint32_t count, const uint8_t *buffer)
649 {
650         if (!target_was_examined(target)) {
651                 LOG_ERROR("Target not examined yet");
652                 return ERROR_FAIL;
653         }
654         return target->type->write_memory_imp(target, address, size, count, buffer);
655 }
656
657 static int target_read_memory_imp(struct target *target, uint32_t address,
658                 uint32_t size, uint32_t count, uint8_t *buffer)
659 {
660         if (!target_was_examined(target)) {
661                 LOG_ERROR("Target not examined yet");
662                 return ERROR_FAIL;
663         }
664         return target->type->read_memory_imp(target, address, size, count, buffer);
665 }
666
667 static int target_soft_reset_halt_imp(struct target *target)
668 {
669         if (!target_was_examined(target)) {
670                 LOG_ERROR("Target not examined yet");
671                 return ERROR_FAIL;
672         }
673         if (!target->type->soft_reset_halt_imp) {
674                 LOG_ERROR("Target %s does not support soft_reset_halt",
675                                 target_name(target));
676                 return ERROR_FAIL;
677         }
678         return target->type->soft_reset_halt_imp(target);
679 }
680
681 /**
682  * Downloads a target-specific native code algorithm to the target,
683  * and executes it.  * Note that some targets may need to set up, enable,
684  * and tear down a breakpoint (hard or * soft) to detect algorithm
685  * termination, while others may support  lower overhead schemes where
686  * soft breakpoints embedded in the algorithm automatically terminate the
687  * algorithm.
688  *
689  * @param target used to run the algorithm
690  * @param arch_info target-specific description of the algorithm.
691  */
692 int target_run_algorithm(struct target *target,
693                 int num_mem_params, struct mem_param *mem_params,
694                 int num_reg_params, struct reg_param *reg_param,
695                 uint32_t entry_point, uint32_t exit_point,
696                 int timeout_ms, void *arch_info)
697 {
698         int retval = ERROR_FAIL;
699
700         if (!target_was_examined(target)) {
701                 LOG_ERROR("Target not examined yet");
702                 goto done;
703         }
704         if (!target->type->run_algorithm) {
705                 LOG_ERROR("Target type '%s' does not support %s",
706                                 target_type_name(target), __func__);
707                 goto done;
708         }
709
710         target->running_alg = true;
711         retval = target->type->run_algorithm(target,
712                         num_mem_params, mem_params,
713                         num_reg_params, reg_param,
714                         entry_point, exit_point, timeout_ms, arch_info);
715         target->running_alg = false;
716
717 done:
718         return retval;
719 }
720
721 /**
722  * Downloads a target-specific native code algorithm to the target,
723  * executes and leaves it running.
724  *
725  * @param target used to run the algorithm
726  * @param arch_info target-specific description of the algorithm.
727  */
728 int target_start_algorithm(struct target *target,
729                 int num_mem_params, struct mem_param *mem_params,
730                 int num_reg_params, struct reg_param *reg_params,
731                 uint32_t entry_point, uint32_t exit_point,
732                 void *arch_info)
733 {
734         int retval = ERROR_FAIL;
735
736         if (!target_was_examined(target)) {
737                 LOG_ERROR("Target not examined yet");
738                 goto done;
739         }
740         if (!target->type->start_algorithm) {
741                 LOG_ERROR("Target type '%s' does not support %s",
742                                 target_type_name(target), __func__);
743                 goto done;
744         }
745         if (target->running_alg) {
746                 LOG_ERROR("Target is already running an algorithm");
747                 goto done;
748         }
749
750         target->running_alg = true;
751         retval = target->type->start_algorithm(target,
752                         num_mem_params, mem_params,
753                         num_reg_params, reg_params,
754                         entry_point, exit_point, arch_info);
755
756 done:
757         return retval;
758 }
759
760 /**
761  * Waits for an algorithm started with target_start_algorithm() to complete.
762  *
763  * @param target used to run the algorithm
764  * @param arch_info target-specific description of the algorithm.
765  */
766 int target_wait_algorithm(struct target *target,
767                 int num_mem_params, struct mem_param *mem_params,
768                 int num_reg_params, struct reg_param *reg_params,
769                 uint32_t exit_point, int timeout_ms,
770                 void *arch_info)
771 {
772         int retval = ERROR_FAIL;
773
774         if (!target->type->wait_algorithm) {
775                 LOG_ERROR("Target type '%s' does not support %s",
776                                 target_type_name(target), __func__);
777                 goto done;
778         }
779         if (!target->running_alg) {
780                 LOG_ERROR("Target is not running an algorithm");
781                 goto done;
782         }
783
784         retval = target->type->wait_algorithm(target,
785                         num_mem_params, mem_params,
786                         num_reg_params, reg_params,
787                         exit_point, timeout_ms, arch_info);
788         if (retval != ERROR_TARGET_TIMEOUT)
789                 target->running_alg = false;
790
791 done:
792         return retval;
793 }
794
795 /**
796  * Executes a target-specific native code algorithm in the target.
797  * It differs from target_run_algorithm in that the algorithm is asynchronous.
798  * Because of this it requires an compliant algorithm:
799  * see contrib/loaders/flash/stm32f1x.S for example.
800  *
801  * @param target used to run the algorithm
802  */
803
804 int target_run_flash_async_algorithm(struct target *target,
805                 uint8_t *buffer, uint32_t count, int block_size,
806                 int num_mem_params, struct mem_param *mem_params,
807                 int num_reg_params, struct reg_param *reg_params,
808                 uint32_t buffer_start, uint32_t buffer_size,
809                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
810 {
811         int retval;
812
813         /* Set up working area. First word is write pointer, second word is read pointer,
814          * rest is fifo data area. */
815         uint32_t wp_addr = buffer_start;
816         uint32_t rp_addr = buffer_start + 4;
817         uint32_t fifo_start_addr = buffer_start + 8;
818         uint32_t fifo_end_addr = buffer_start + buffer_size;
819
820         uint32_t wp = fifo_start_addr;
821         uint32_t rp = fifo_start_addr;
822
823         /* validate block_size is 2^n */
824         assert(!block_size || !(block_size & (block_size - 1)));
825
826         retval = target_write_u32(target, wp_addr, wp);
827         if (retval != ERROR_OK)
828                 return retval;
829         retval = target_write_u32(target, rp_addr, rp);
830         if (retval != ERROR_OK)
831                 return retval;
832
833         /* Start up algorithm on target and let it idle while writing the first chunk */
834         retval = target_start_algorithm(target, num_mem_params, mem_params,
835                         num_reg_params, reg_params,
836                         entry_point,
837                         exit_point,
838                         arch_info);
839
840         if (retval != ERROR_OK) {
841                 LOG_ERROR("error starting target flash write algorithm");
842                 return retval;
843         }
844
845         while (count > 0) {
846
847                 retval = target_read_u32(target, rp_addr, &rp);
848                 if (retval != ERROR_OK) {
849                         LOG_ERROR("failed to get read pointer");
850                         break;
851                 }
852
853                 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
854
855                 if (rp == 0) {
856                         LOG_ERROR("flash write algorithm aborted by target");
857                         retval = ERROR_FLASH_OPERATION_FAILED;
858                         break;
859                 }
860
861                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
862                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
863                         break;
864                 }
865
866                 /* Count the number of bytes available in the fifo without
867                  * crossing the wrap around. Make sure to not fill it completely,
868                  * because that would make wp == rp and that's the empty condition. */
869                 uint32_t thisrun_bytes;
870                 if (rp > wp)
871                         thisrun_bytes = rp - wp - block_size;
872                 else if (rp > fifo_start_addr)
873                         thisrun_bytes = fifo_end_addr - wp;
874                 else
875                         thisrun_bytes = fifo_end_addr - wp - block_size;
876
877                 if (thisrun_bytes == 0) {
878                         /* Throttle polling a bit if transfer is (much) faster than flash
879                          * programming. The exact delay shouldn't matter as long as it's
880                          * less than buffer size / flash speed. This is very unlikely to
881                          * run when using high latency connections such as USB. */
882                         alive_sleep(10);
883                         continue;
884                 }
885
886                 /* Limit to the amount of data we actually want to write */
887                 if (thisrun_bytes > count * block_size)
888                         thisrun_bytes = count * block_size;
889
890                 /* Write data to fifo */
891                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
892                 if (retval != ERROR_OK)
893                         break;
894
895                 /* Update counters and wrap write pointer */
896                 buffer += thisrun_bytes;
897                 count -= thisrun_bytes / block_size;
898                 wp += thisrun_bytes;
899                 if (wp >= fifo_end_addr)
900                         wp = fifo_start_addr;
901
902                 /* Store updated write pointer to target */
903                 retval = target_write_u32(target, wp_addr, wp);
904                 if (retval != ERROR_OK)
905                         break;
906         }
907
908         if (retval != ERROR_OK) {
909                 /* abort flash write algorithm on target */
910                 target_write_u32(target, wp_addr, 0);
911         }
912
913         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
914                         num_reg_params, reg_params,
915                         exit_point,
916                         10000,
917                         arch_info);
918
919         if (retval2 != ERROR_OK) {
920                 LOG_ERROR("error waiting for target flash write algorithm");
921                 retval = retval2;
922         }
923
924         return retval;
925 }
926
927 int target_read_memory(struct target *target,
928                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
929 {
930         return target->type->read_memory(target, address, size, count, buffer);
931 }
932
933 static int target_read_phys_memory(struct target *target,
934                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
935 {
936         return target->type->read_phys_memory(target, address, size, count, buffer);
937 }
938
939 int target_write_memory(struct target *target,
940                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
941 {
942         return target->type->write_memory(target, address, size, count, buffer);
943 }
944
945 static int target_write_phys_memory(struct target *target,
946                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
947 {
948         return target->type->write_phys_memory(target, address, size, count, buffer);
949 }
950
951 int target_bulk_write_memory(struct target *target,
952                 uint32_t address, uint32_t count, const uint8_t *buffer)
953 {
954         return target->type->bulk_write_memory(target, address, count, buffer);
955 }
956
957 int target_add_breakpoint(struct target *target,
958                 struct breakpoint *breakpoint)
959 {
960         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
961                 LOG_WARNING("target %s is not halted", target->cmd_name);
962                 return ERROR_TARGET_NOT_HALTED;
963         }
964         return target->type->add_breakpoint(target, breakpoint);
965 }
966
967 int target_add_context_breakpoint(struct target *target,
968                 struct breakpoint *breakpoint)
969 {
970         if (target->state != TARGET_HALTED) {
971                 LOG_WARNING("target %s is not halted", target->cmd_name);
972                 return ERROR_TARGET_NOT_HALTED;
973         }
974         return target->type->add_context_breakpoint(target, breakpoint);
975 }
976
977 int target_add_hybrid_breakpoint(struct target *target,
978                 struct breakpoint *breakpoint)
979 {
980         if (target->state != TARGET_HALTED) {
981                 LOG_WARNING("target %s is not halted", target->cmd_name);
982                 return ERROR_TARGET_NOT_HALTED;
983         }
984         return target->type->add_hybrid_breakpoint(target, breakpoint);
985 }
986
987 int target_remove_breakpoint(struct target *target,
988                 struct breakpoint *breakpoint)
989 {
990         return target->type->remove_breakpoint(target, breakpoint);
991 }
992
993 int target_add_watchpoint(struct target *target,
994                 struct watchpoint *watchpoint)
995 {
996         if (target->state != TARGET_HALTED) {
997                 LOG_WARNING("target %s is not halted", target->cmd_name);
998                 return ERROR_TARGET_NOT_HALTED;
999         }
1000         return target->type->add_watchpoint(target, watchpoint);
1001 }
1002 int target_remove_watchpoint(struct target *target,
1003                 struct watchpoint *watchpoint)
1004 {
1005         return target->type->remove_watchpoint(target, watchpoint);
1006 }
1007
1008 int target_get_gdb_reg_list(struct target *target,
1009                 struct reg **reg_list[], int *reg_list_size)
1010 {
1011         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
1012 }
1013 int target_step(struct target *target,
1014                 int current, uint32_t address, int handle_breakpoints)
1015 {
1016         return target->type->step(target, current, address, handle_breakpoints);
1017 }
1018
1019 /**
1020  * Reset the @c examined flag for the given target.
1021  * Pure paranoia -- targets are zeroed on allocation.
1022  */
1023 static void target_reset_examined(struct target *target)
1024 {
1025         target->examined = false;
1026 }
1027
1028 static int err_read_phys_memory(struct target *target, uint32_t address,
1029                 uint32_t size, uint32_t count, uint8_t *buffer)
1030 {
1031         LOG_ERROR("Not implemented: %s", __func__);
1032         return ERROR_FAIL;
1033 }
1034
1035 static int err_write_phys_memory(struct target *target, uint32_t address,
1036                 uint32_t size, uint32_t count, const uint8_t *buffer)
1037 {
1038         LOG_ERROR("Not implemented: %s", __func__);
1039         return ERROR_FAIL;
1040 }
1041
1042 static int handle_target(void *priv);
1043
1044 static int target_init_one(struct command_context *cmd_ctx,
1045                 struct target *target)
1046 {
1047         target_reset_examined(target);
1048
1049         struct target_type *type = target->type;
1050         if (type->examine == NULL)
1051                 type->examine = default_examine;
1052
1053         if (type->check_reset == NULL)
1054                 type->check_reset = default_check_reset;
1055
1056         assert(type->init_target != NULL);
1057
1058         int retval = type->init_target(cmd_ctx, target);
1059         if (ERROR_OK != retval) {
1060                 LOG_ERROR("target '%s' init failed", target_name(target));
1061                 return retval;
1062         }
1063
1064         /**
1065          * @todo get rid of those *memory_imp() methods, now that all
1066          * callers are using target_*_memory() accessors ... and make
1067          * sure the "physical" paths handle the same issues.
1068          */
1069         /* a non-invasive way(in terms of patches) to add some code that
1070          * runs before the type->write/read_memory implementation
1071          */
1072         type->write_memory_imp = target->type->write_memory;
1073         type->write_memory = target_write_memory_imp;
1074
1075         type->read_memory_imp = target->type->read_memory;
1076         type->read_memory = target_read_memory_imp;
1077
1078         type->soft_reset_halt_imp = target->type->soft_reset_halt;
1079         type->soft_reset_halt = target_soft_reset_halt_imp;
1080
1081         /* Sanity-check MMU support ... stub in what we must, to help
1082          * implement it in stages, but warn if we need to do so.
1083          */
1084         if (type->mmu) {
1085                 if (type->write_phys_memory == NULL) {
1086                         LOG_ERROR("type '%s' is missing write_phys_memory",
1087                                         type->name);
1088                         type->write_phys_memory = err_write_phys_memory;
1089                 }
1090                 if (type->read_phys_memory == NULL) {
1091                         LOG_ERROR("type '%s' is missing read_phys_memory",
1092                                         type->name);
1093                         type->read_phys_memory = err_read_phys_memory;
1094                 }
1095                 if (type->virt2phys == NULL) {
1096                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1097                         type->virt2phys = identity_virt2phys;
1098                 }
1099         } else {
1100                 /* Make sure no-MMU targets all behave the same:  make no
1101                  * distinction between physical and virtual addresses, and
1102                  * ensure that virt2phys() is always an identity mapping.
1103                  */
1104                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1105                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1106
1107                 type->mmu = no_mmu;
1108                 type->write_phys_memory = type->write_memory;
1109                 type->read_phys_memory = type->read_memory;
1110                 type->virt2phys = identity_virt2phys;
1111         }
1112
1113         if (target->type->read_buffer == NULL)
1114                 target->type->read_buffer = target_read_buffer_default;
1115
1116         if (target->type->write_buffer == NULL)
1117                 target->type->write_buffer = target_write_buffer_default;
1118
1119         return ERROR_OK;
1120 }
1121
1122 static int target_init(struct command_context *cmd_ctx)
1123 {
1124         struct target *target;
1125         int retval;
1126
1127         for (target = all_targets; target; target = target->next) {
1128                 retval = target_init_one(cmd_ctx, target);
1129                 if (ERROR_OK != retval)
1130                         return retval;
1131         }
1132
1133         if (!all_targets)
1134                 return ERROR_OK;
1135
1136         retval = target_register_user_commands(cmd_ctx);
1137         if (ERROR_OK != retval)
1138                 return retval;
1139
1140         retval = target_register_timer_callback(&handle_target,
1141                         polling_interval, 1, cmd_ctx->interp);
1142         if (ERROR_OK != retval)
1143                 return retval;
1144
1145         return ERROR_OK;
1146 }
1147
1148 COMMAND_HANDLER(handle_target_init_command)
1149 {
1150         int retval;
1151
1152         if (CMD_ARGC != 0)
1153                 return ERROR_COMMAND_SYNTAX_ERROR;
1154
1155         static bool target_initialized;
1156         if (target_initialized) {
1157                 LOG_INFO("'target init' has already been called");
1158                 return ERROR_OK;
1159         }
1160         target_initialized = true;
1161
1162         retval = command_run_line(CMD_CTX, "init_targets");
1163         if (ERROR_OK != retval)
1164                 return retval;
1165
1166         retval = command_run_line(CMD_CTX, "init_board");
1167         if (ERROR_OK != retval)
1168                 return retval;
1169
1170         LOG_DEBUG("Initializing targets...");
1171         return target_init(CMD_CTX);
1172 }
1173
1174 int target_register_event_callback(int (*callback)(struct target *target,
1175                 enum target_event event, void *priv), void *priv)
1176 {
1177         struct target_event_callback **callbacks_p = &target_event_callbacks;
1178
1179         if (callback == NULL)
1180                 return ERROR_COMMAND_SYNTAX_ERROR;
1181
1182         if (*callbacks_p) {
1183                 while ((*callbacks_p)->next)
1184                         callbacks_p = &((*callbacks_p)->next);
1185                 callbacks_p = &((*callbacks_p)->next);
1186         }
1187
1188         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1189         (*callbacks_p)->callback = callback;
1190         (*callbacks_p)->priv = priv;
1191         (*callbacks_p)->next = NULL;
1192
1193         return ERROR_OK;
1194 }
1195
1196 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1197 {
1198         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1199         struct timeval now;
1200
1201         if (callback == NULL)
1202                 return ERROR_COMMAND_SYNTAX_ERROR;
1203
1204         if (*callbacks_p) {
1205                 while ((*callbacks_p)->next)
1206                         callbacks_p = &((*callbacks_p)->next);
1207                 callbacks_p = &((*callbacks_p)->next);
1208         }
1209
1210         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1211         (*callbacks_p)->callback = callback;
1212         (*callbacks_p)->periodic = periodic;
1213         (*callbacks_p)->time_ms = time_ms;
1214
1215         gettimeofday(&now, NULL);
1216         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1217         time_ms -= (time_ms % 1000);
1218         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1219         if ((*callbacks_p)->when.tv_usec > 1000000) {
1220                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1221                 (*callbacks_p)->when.tv_sec += 1;
1222         }
1223
1224         (*callbacks_p)->priv = priv;
1225         (*callbacks_p)->next = NULL;
1226
1227         return ERROR_OK;
1228 }
1229
1230 int target_unregister_event_callback(int (*callback)(struct target *target,
1231                 enum target_event event, void *priv), void *priv)
1232 {
1233         struct target_event_callback **p = &target_event_callbacks;
1234         struct target_event_callback *c = target_event_callbacks;
1235
1236         if (callback == NULL)
1237                 return ERROR_COMMAND_SYNTAX_ERROR;
1238
1239         while (c) {
1240                 struct target_event_callback *next = c->next;
1241                 if ((c->callback == callback) && (c->priv == priv)) {
1242                         *p = next;
1243                         free(c);
1244                         return ERROR_OK;
1245                 } else
1246                         p = &(c->next);
1247                 c = next;
1248         }
1249
1250         return ERROR_OK;
1251 }
1252
1253 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1254 {
1255         struct target_timer_callback **p = &target_timer_callbacks;
1256         struct target_timer_callback *c = target_timer_callbacks;
1257
1258         if (callback == NULL)
1259                 return ERROR_COMMAND_SYNTAX_ERROR;
1260
1261         while (c) {
1262                 struct target_timer_callback *next = c->next;
1263                 if ((c->callback == callback) && (c->priv == priv)) {
1264                         *p = next;
1265                         free(c);
1266                         return ERROR_OK;
1267                 } else
1268                         p = &(c->next);
1269                 c = next;
1270         }
1271
1272         return ERROR_OK;
1273 }
1274
1275 int target_call_event_callbacks(struct target *target, enum target_event event)
1276 {
1277         struct target_event_callback *callback = target_event_callbacks;
1278         struct target_event_callback *next_callback;
1279
1280         if (event == TARGET_EVENT_HALTED) {
1281                 /* execute early halted first */
1282                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1283         }
1284
1285         LOG_DEBUG("target event %i (%s)", event,
1286                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1287
1288         target_handle_event(target, event);
1289
1290         while (callback) {
1291                 next_callback = callback->next;
1292                 callback->callback(target, event, callback->priv);
1293                 callback = next_callback;
1294         }
1295
1296         return ERROR_OK;
1297 }
1298
1299 static int target_timer_callback_periodic_restart(
1300                 struct target_timer_callback *cb, struct timeval *now)
1301 {
1302         int time_ms = cb->time_ms;
1303         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1304         time_ms -= (time_ms % 1000);
1305         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1306         if (cb->when.tv_usec > 1000000) {
1307                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1308                 cb->when.tv_sec += 1;
1309         }
1310         return ERROR_OK;
1311 }
1312
1313 static int target_call_timer_callback(struct target_timer_callback *cb,
1314                 struct timeval *now)
1315 {
1316         cb->callback(cb->priv);
1317
1318         if (cb->periodic)
1319                 return target_timer_callback_periodic_restart(cb, now);
1320
1321         return target_unregister_timer_callback(cb->callback, cb->priv);
1322 }
1323
1324 static int target_call_timer_callbacks_check_time(int checktime)
1325 {
1326         keep_alive();
1327
1328         struct timeval now;
1329         gettimeofday(&now, NULL);
1330
1331         struct target_timer_callback *callback = target_timer_callbacks;
1332         while (callback) {
1333                 /* cleaning up may unregister and free this callback */
1334                 struct target_timer_callback *next_callback = callback->next;
1335
1336                 bool call_it = callback->callback &&
1337                         ((!checktime && callback->periodic) ||
1338                           now.tv_sec > callback->when.tv_sec ||
1339                          (now.tv_sec == callback->when.tv_sec &&
1340                           now.tv_usec >= callback->when.tv_usec));
1341
1342                 if (call_it) {
1343                         int retval = target_call_timer_callback(callback, &now);
1344                         if (retval != ERROR_OK)
1345                                 return retval;
1346                 }
1347
1348                 callback = next_callback;
1349         }
1350
1351         return ERROR_OK;
1352 }
1353
1354 int target_call_timer_callbacks(void)
1355 {
1356         return target_call_timer_callbacks_check_time(1);
1357 }
1358
1359 /* invoke periodic callbacks immediately */
1360 int target_call_timer_callbacks_now(void)
1361 {
1362         return target_call_timer_callbacks_check_time(0);
1363 }
1364
1365 /* Prints the working area layout for debug purposes */
1366 static void print_wa_layout(struct target *target)
1367 {
1368         struct working_area *c = target->working_areas;
1369
1370         while (c) {
1371                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1372                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1373                         c->address, c->address + c->size - 1, c->size);
1374                 c = c->next;
1375         }
1376 }
1377
1378 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1379 static void target_split_working_area(struct working_area *area, uint32_t size)
1380 {
1381         assert(area->free); /* Shouldn't split an allocated area */
1382         assert(size <= area->size); /* Caller should guarantee this */
1383
1384         /* Split only if not already the right size */
1385         if (size < area->size) {
1386                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1387
1388                 if (new_wa == NULL)
1389                         return;
1390
1391                 new_wa->next = area->next;
1392                 new_wa->size = area->size - size;
1393                 new_wa->address = area->address + size;
1394                 new_wa->backup = NULL;
1395                 new_wa->user = NULL;
1396                 new_wa->free = true;
1397
1398                 area->next = new_wa;
1399                 area->size = size;
1400
1401                 /* If backup memory was allocated to this area, it has the wrong size
1402                  * now so free it and it will be reallocated if/when needed */
1403                 if (area->backup) {
1404                         free(area->backup);
1405                         area->backup = NULL;
1406                 }
1407         }
1408 }
1409
1410 /* Merge all adjacent free areas into one */
1411 static void target_merge_working_areas(struct target *target)
1412 {
1413         struct working_area *c = target->working_areas;
1414
1415         while (c && c->next) {
1416                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1417
1418                 /* Find two adjacent free areas */
1419                 if (c->free && c->next->free) {
1420                         /* Merge the last into the first */
1421                         c->size += c->next->size;
1422
1423                         /* Remove the last */
1424                         struct working_area *to_be_freed = c->next;
1425                         c->next = c->next->next;
1426                         if (to_be_freed->backup)
1427                                 free(to_be_freed->backup);
1428                         free(to_be_freed);
1429
1430                         /* If backup memory was allocated to the remaining area, it's has
1431                          * the wrong size now */
1432                         if (c->backup) {
1433                                 free(c->backup);
1434                                 c->backup = NULL;
1435                         }
1436                 } else {
1437                         c = c->next;
1438                 }
1439         }
1440 }
1441
1442 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1443 {
1444         /* Reevaluate working area address based on MMU state*/
1445         if (target->working_areas == NULL) {
1446                 int retval;
1447                 int enabled;
1448
1449                 retval = target->type->mmu(target, &enabled);
1450                 if (retval != ERROR_OK)
1451                         return retval;
1452
1453                 if (!enabled) {
1454                         if (target->working_area_phys_spec) {
1455                                 LOG_DEBUG("MMU disabled, using physical "
1456                                         "address for working memory 0x%08"PRIx32,
1457                                         target->working_area_phys);
1458                                 target->working_area = target->working_area_phys;
1459                         } else {
1460                                 LOG_ERROR("No working memory available. "
1461                                         "Specify -work-area-phys to target.");
1462                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1463                         }
1464                 } else {
1465                         if (target->working_area_virt_spec) {
1466                                 LOG_DEBUG("MMU enabled, using virtual "
1467                                         "address for working memory 0x%08"PRIx32,
1468                                         target->working_area_virt);
1469                                 target->working_area = target->working_area_virt;
1470                         } else {
1471                                 LOG_ERROR("No working memory available. "
1472                                         "Specify -work-area-virt to target.");
1473                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1474                         }
1475                 }
1476
1477                 /* Set up initial working area on first call */
1478                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1479                 if (new_wa) {
1480                         new_wa->next = NULL;
1481                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1482                         new_wa->address = target->working_area;
1483                         new_wa->backup = NULL;
1484                         new_wa->user = NULL;
1485                         new_wa->free = true;
1486                 }
1487
1488                 target->working_areas = new_wa;
1489         }
1490
1491         /* only allocate multiples of 4 byte */
1492         if (size % 4)
1493                 size = (size + 3) & (~3UL);
1494
1495         struct working_area *c = target->working_areas;
1496
1497         /* Find the first large enough working area */
1498         while (c) {
1499                 if (c->free && c->size >= size)
1500                         break;
1501                 c = c->next;
1502         }
1503
1504         if (c == NULL)
1505                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1506
1507         /* Split the working area into the requested size */
1508         target_split_working_area(c, size);
1509
1510         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1511
1512         if (target->backup_working_area) {
1513                 if (c->backup == NULL) {
1514                         c->backup = malloc(c->size);
1515                         if (c->backup == NULL)
1516                                 return ERROR_FAIL;
1517                 }
1518
1519                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1520                 if (retval != ERROR_OK)
1521                         return retval;
1522         }
1523
1524         /* mark as used, and return the new (reused) area */
1525         c->free = false;
1526         *area = c;
1527
1528         /* user pointer */
1529         c->user = area;
1530
1531         print_wa_layout(target);
1532
1533         return ERROR_OK;
1534 }
1535
1536 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1537 {
1538         int retval;
1539
1540         retval = target_alloc_working_area_try(target, size, area);
1541         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1542                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1543         return retval;
1544
1545 }
1546
1547 static int target_restore_working_area(struct target *target, struct working_area *area)
1548 {
1549         int retval = ERROR_OK;
1550
1551         if (target->backup_working_area && area->backup != NULL) {
1552                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1553                 if (retval != ERROR_OK)
1554                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1555                                         area->size, area->address);
1556         }
1557
1558         return retval;
1559 }
1560
1561 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1562 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1563 {
1564         int retval = ERROR_OK;
1565
1566         if (area->free)
1567                 return retval;
1568
1569         if (restore) {
1570                 retval = target_restore_working_area(target, area);
1571                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1572                 if (retval != ERROR_OK)
1573                         return retval;
1574         }
1575
1576         area->free = true;
1577
1578         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1579                         area->size, area->address);
1580
1581         /* mark user pointer invalid */
1582         /* TODO: Is this really safe? It points to some previous caller's memory.
1583          * How could we know that the area pointer is still in that place and not
1584          * some other vital data? What's the purpose of this, anyway? */
1585         *area->user = NULL;
1586         area->user = NULL;
1587
1588         target_merge_working_areas(target);
1589
1590         print_wa_layout(target);
1591
1592         return retval;
1593 }
1594
1595 int target_free_working_area(struct target *target, struct working_area *area)
1596 {
1597         return target_free_working_area_restore(target, area, 1);
1598 }
1599
1600 /* free resources and restore memory, if restoring memory fails,
1601  * free up resources anyway
1602  */
1603 static void target_free_all_working_areas_restore(struct target *target, int restore)
1604 {
1605         struct working_area *c = target->working_areas;
1606
1607         LOG_DEBUG("freeing all working areas");
1608
1609         /* Loop through all areas, restoring the allocated ones and marking them as free */
1610         while (c) {
1611                 if (!c->free) {
1612                         if (restore)
1613                                 target_restore_working_area(target, c);
1614                         c->free = true;
1615                         *c->user = NULL; /* Same as above */
1616                         c->user = NULL;
1617                 }
1618                 c = c->next;
1619         }
1620
1621         /* Run a merge pass to combine all areas into one */
1622         target_merge_working_areas(target);
1623
1624         print_wa_layout(target);
1625 }
1626
1627 void target_free_all_working_areas(struct target *target)
1628 {
1629         target_free_all_working_areas_restore(target, 1);
1630 }
1631
1632 /* Find the largest number of bytes that can be allocated */
1633 uint32_t target_get_working_area_avail(struct target *target)
1634 {
1635         struct working_area *c = target->working_areas;
1636         uint32_t max_size = 0;
1637
1638         if (c == NULL)
1639                 return target->working_area_size;
1640
1641         while (c) {
1642                 if (c->free && max_size < c->size)
1643                         max_size = c->size;
1644
1645                 c = c->next;
1646         }
1647
1648         return max_size;
1649 }
1650
1651 int target_arch_state(struct target *target)
1652 {
1653         int retval;
1654         if (target == NULL) {
1655                 LOG_USER("No target has been configured");
1656                 return ERROR_OK;
1657         }
1658
1659         LOG_USER("target state: %s", target_state_name(target));
1660
1661         if (target->state != TARGET_HALTED)
1662                 return ERROR_OK;
1663
1664         retval = target->type->arch_state(target);
1665         return retval;
1666 }
1667
1668 /* Single aligned words are guaranteed to use 16 or 32 bit access
1669  * mode respectively, otherwise data is handled as quickly as
1670  * possible
1671  */
1672 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1673 {
1674         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1675                         (int)size, (unsigned)address);
1676
1677         if (!target_was_examined(target)) {
1678                 LOG_ERROR("Target not examined yet");
1679                 return ERROR_FAIL;
1680         }
1681
1682         if (size == 0)
1683                 return ERROR_OK;
1684
1685         if ((address + size - 1) < address) {
1686                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1687                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1688                                   (unsigned)address,
1689                                   (unsigned)size);
1690                 return ERROR_FAIL;
1691         }
1692
1693         return target->type->write_buffer(target, address, size, buffer);
1694 }
1695
1696 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1697 {
1698         int retval = ERROR_OK;
1699
1700         if (((address % 2) == 0) && (size == 2))
1701                 return target_write_memory(target, address, 2, 1, buffer);
1702
1703         /* handle unaligned head bytes */
1704         if (address % 4) {
1705                 uint32_t unaligned = 4 - (address % 4);
1706
1707                 if (unaligned > size)
1708                         unaligned = size;
1709
1710                 retval = target_write_memory(target, address, 1, unaligned, buffer);
1711                 if (retval != ERROR_OK)
1712                         return retval;
1713
1714                 buffer += unaligned;
1715                 address += unaligned;
1716                 size -= unaligned;
1717         }
1718
1719         /* handle aligned words */
1720         if (size >= 4) {
1721                 int aligned = size - (size % 4);
1722
1723                 /* use bulk writes above a certain limit. This may have to be changed */
1724                 if (aligned > 128) {
1725                         retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1726                         if (retval != ERROR_OK)
1727                                 return retval;
1728                 } else {
1729                         retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1730                         if (retval != ERROR_OK)
1731                                 return retval;
1732                 }
1733
1734                 buffer += aligned;
1735                 address += aligned;
1736                 size -= aligned;
1737         }
1738
1739         /* handle tail writes of less than 4 bytes */
1740         if (size > 0) {
1741                 retval = target_write_memory(target, address, 1, size, buffer);
1742                 if (retval != ERROR_OK)
1743                         return retval;
1744         }
1745
1746         return retval;
1747 }
1748
1749 /* Single aligned words are guaranteed to use 16 or 32 bit access
1750  * mode respectively, otherwise data is handled as quickly as
1751  * possible
1752  */
1753 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1754 {
1755         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1756                           (int)size, (unsigned)address);
1757
1758         if (!target_was_examined(target)) {
1759                 LOG_ERROR("Target not examined yet");
1760                 return ERROR_FAIL;
1761         }
1762
1763         if (size == 0)
1764                 return ERROR_OK;
1765
1766         if ((address + size - 1) < address) {
1767                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1768                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1769                                   address,
1770                                   size);
1771                 return ERROR_FAIL;
1772         }
1773
1774         return target->type->read_buffer(target, address, size, buffer);
1775 }
1776
1777 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1778 {
1779         int retval = ERROR_OK;
1780
1781         if (((address % 2) == 0) && (size == 2))
1782                 return target_read_memory(target, address, 2, 1, buffer);
1783
1784         /* handle unaligned head bytes */
1785         if (address % 4) {
1786                 uint32_t unaligned = 4 - (address % 4);
1787
1788                 if (unaligned > size)
1789                         unaligned = size;
1790
1791                 retval = target_read_memory(target, address, 1, unaligned, buffer);
1792                 if (retval != ERROR_OK)
1793                         return retval;
1794
1795                 buffer += unaligned;
1796                 address += unaligned;
1797                 size -= unaligned;
1798         }
1799
1800         /* handle aligned words */
1801         if (size >= 4) {
1802                 int aligned = size - (size % 4);
1803
1804                 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1805                 if (retval != ERROR_OK)
1806                         return retval;
1807
1808                 buffer += aligned;
1809                 address += aligned;
1810                 size -= aligned;
1811         }
1812
1813         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1814         if (size        >= 2) {
1815                 int aligned = size - (size % 2);
1816                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1817                 if (retval != ERROR_OK)
1818                         return retval;
1819
1820                 buffer += aligned;
1821                 address += aligned;
1822                 size -= aligned;
1823         }
1824         /* handle tail writes of less than 4 bytes */
1825         if (size > 0) {
1826                 retval = target_read_memory(target, address, 1, size, buffer);
1827                 if (retval != ERROR_OK)
1828                         return retval;
1829         }
1830
1831         return ERROR_OK;
1832 }
1833
1834 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1835 {
1836         uint8_t *buffer;
1837         int retval;
1838         uint32_t i;
1839         uint32_t checksum = 0;
1840         if (!target_was_examined(target)) {
1841                 LOG_ERROR("Target not examined yet");
1842                 return ERROR_FAIL;
1843         }
1844
1845         retval = target->type->checksum_memory(target, address, size, &checksum);
1846         if (retval != ERROR_OK) {
1847                 buffer = malloc(size);
1848                 if (buffer == NULL) {
1849                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1850                         return ERROR_COMMAND_SYNTAX_ERROR;
1851                 }
1852                 retval = target_read_buffer(target, address, size, buffer);
1853                 if (retval != ERROR_OK) {
1854                         free(buffer);
1855                         return retval;
1856                 }
1857
1858                 /* convert to target endianness */
1859                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1860                         uint32_t target_data;
1861                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1862                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1863                 }
1864
1865                 retval = image_calculate_checksum(buffer, size, &checksum);
1866                 free(buffer);
1867         }
1868
1869         *crc = checksum;
1870
1871         return retval;
1872 }
1873
1874 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1875 {
1876         int retval;
1877         if (!target_was_examined(target)) {
1878                 LOG_ERROR("Target not examined yet");
1879                 return ERROR_FAIL;
1880         }
1881
1882         if (target->type->blank_check_memory == 0)
1883                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1884
1885         retval = target->type->blank_check_memory(target, address, size, blank);
1886
1887         return retval;
1888 }
1889
1890 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1891 {
1892         uint8_t value_buf[4];
1893         if (!target_was_examined(target)) {
1894                 LOG_ERROR("Target not examined yet");
1895                 return ERROR_FAIL;
1896         }
1897
1898         int retval = target_read_memory(target, address, 4, 1, value_buf);
1899
1900         if (retval == ERROR_OK) {
1901                 *value = target_buffer_get_u32(target, value_buf);
1902                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1903                                   address,
1904                                   *value);
1905         } else {
1906                 *value = 0x0;
1907                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1908                                   address);
1909         }
1910
1911         return retval;
1912 }
1913
1914 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1915 {
1916         uint8_t value_buf[2];
1917         if (!target_was_examined(target)) {
1918                 LOG_ERROR("Target not examined yet");
1919                 return ERROR_FAIL;
1920         }
1921
1922         int retval = target_read_memory(target, address, 2, 1, value_buf);
1923
1924         if (retval == ERROR_OK) {
1925                 *value = target_buffer_get_u16(target, value_buf);
1926                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1927                                   address,
1928                                   *value);
1929         } else {
1930                 *value = 0x0;
1931                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1932                                   address);
1933         }
1934
1935         return retval;
1936 }
1937
1938 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1939 {
1940         int retval = target_read_memory(target, address, 1, 1, value);
1941         if (!target_was_examined(target)) {
1942                 LOG_ERROR("Target not examined yet");
1943                 return ERROR_FAIL;
1944         }
1945
1946         if (retval == ERROR_OK) {
1947                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1948                                   address,
1949                                   *value);
1950         } else {
1951                 *value = 0x0;
1952                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1953                                   address);
1954         }
1955
1956         return retval;
1957 }
1958
1959 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1960 {
1961         int retval;
1962         uint8_t value_buf[4];
1963         if (!target_was_examined(target)) {
1964                 LOG_ERROR("Target not examined yet");
1965                 return ERROR_FAIL;
1966         }
1967
1968         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1969                           address,
1970                           value);
1971
1972         target_buffer_set_u32(target, value_buf, value);
1973         retval = target_write_memory(target, address, 4, 1, value_buf);
1974         if (retval != ERROR_OK)
1975                 LOG_DEBUG("failed: %i", retval);
1976
1977         return retval;
1978 }
1979
1980 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1981 {
1982         int retval;
1983         uint8_t value_buf[2];
1984         if (!target_was_examined(target)) {
1985                 LOG_ERROR("Target not examined yet");
1986                 return ERROR_FAIL;
1987         }
1988
1989         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1990                           address,
1991                           value);
1992
1993         target_buffer_set_u16(target, value_buf, value);
1994         retval = target_write_memory(target, address, 2, 1, value_buf);
1995         if (retval != ERROR_OK)
1996                 LOG_DEBUG("failed: %i", retval);
1997
1998         return retval;
1999 }
2000
2001 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2002 {
2003         int retval;
2004         if (!target_was_examined(target)) {
2005                 LOG_ERROR("Target not examined yet");
2006                 return ERROR_FAIL;
2007         }
2008
2009         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2010                           address, value);
2011
2012         retval = target_write_memory(target, address, 1, 1, &value);
2013         if (retval != ERROR_OK)
2014                 LOG_DEBUG("failed: %i", retval);
2015
2016         return retval;
2017 }
2018
2019 static int find_target(struct command_context *cmd_ctx, const char *name)
2020 {
2021         struct target *target = get_target(name);
2022         if (target == NULL) {
2023                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2024                 return ERROR_FAIL;
2025         }
2026         if (!target->tap->enabled) {
2027                 LOG_USER("Target: TAP %s is disabled, "
2028                          "can't be the current target\n",
2029                          target->tap->dotted_name);
2030                 return ERROR_FAIL;
2031         }
2032
2033         cmd_ctx->current_target = target->target_number;
2034         return ERROR_OK;
2035 }
2036
2037
2038 COMMAND_HANDLER(handle_targets_command)
2039 {
2040         int retval = ERROR_OK;
2041         if (CMD_ARGC == 1) {
2042                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2043                 if (retval == ERROR_OK) {
2044                         /* we're done! */
2045                         return retval;
2046                 }
2047         }
2048
2049         struct target *target = all_targets;
2050         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2051         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2052         while (target) {
2053                 const char *state;
2054                 char marker = ' ';
2055
2056                 if (target->tap->enabled)
2057                         state = target_state_name(target);
2058                 else
2059                         state = "tap-disabled";
2060
2061                 if (CMD_CTX->current_target == target->target_number)
2062                         marker = '*';
2063
2064                 /* keep columns lined up to match the headers above */
2065                 command_print(CMD_CTX,
2066                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2067                                 target->target_number,
2068                                 marker,
2069                                 target_name(target),
2070                                 target_type_name(target),
2071                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2072                                         target->endianness)->name,
2073                                 target->tap->dotted_name,
2074                                 state);
2075                 target = target->next;
2076         }
2077
2078         return retval;
2079 }
2080
2081 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2082
2083 static int powerDropout;
2084 static int srstAsserted;
2085
2086 static int runPowerRestore;
2087 static int runPowerDropout;
2088 static int runSrstAsserted;
2089 static int runSrstDeasserted;
2090
2091 static int sense_handler(void)
2092 {
2093         static int prevSrstAsserted;
2094         static int prevPowerdropout;
2095
2096         int retval = jtag_power_dropout(&powerDropout);
2097         if (retval != ERROR_OK)
2098                 return retval;
2099
2100         int powerRestored;
2101         powerRestored = prevPowerdropout && !powerDropout;
2102         if (powerRestored)
2103                 runPowerRestore = 1;
2104
2105         long long current = timeval_ms();
2106         static long long lastPower;
2107         int waitMore = lastPower + 2000 > current;
2108         if (powerDropout && !waitMore) {
2109                 runPowerDropout = 1;
2110                 lastPower = current;
2111         }
2112
2113         retval = jtag_srst_asserted(&srstAsserted);
2114         if (retval != ERROR_OK)
2115                 return retval;
2116
2117         int srstDeasserted;
2118         srstDeasserted = prevSrstAsserted && !srstAsserted;
2119
2120         static long long lastSrst;
2121         waitMore = lastSrst + 2000 > current;
2122         if (srstDeasserted && !waitMore) {
2123                 runSrstDeasserted = 1;
2124                 lastSrst = current;
2125         }
2126
2127         if (!prevSrstAsserted && srstAsserted)
2128                 runSrstAsserted = 1;
2129
2130         prevSrstAsserted = srstAsserted;
2131         prevPowerdropout = powerDropout;
2132
2133         if (srstDeasserted || powerRestored) {
2134                 /* Other than logging the event we can't do anything here.
2135                  * Issuing a reset is a particularly bad idea as we might
2136                  * be inside a reset already.
2137                  */
2138         }
2139
2140         return ERROR_OK;
2141 }
2142
2143 static int backoff_times;
2144 static int backoff_count;
2145
2146 /* process target state changes */
2147 static int handle_target(void *priv)
2148 {
2149         Jim_Interp *interp = (Jim_Interp *)priv;
2150         int retval = ERROR_OK;
2151
2152         if (!is_jtag_poll_safe()) {
2153                 /* polling is disabled currently */
2154                 return ERROR_OK;
2155         }
2156
2157         /* we do not want to recurse here... */
2158         static int recursive;
2159         if (!recursive) {
2160                 recursive = 1;
2161                 sense_handler();
2162                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2163                  * We need to avoid an infinite loop/recursion here and we do that by
2164                  * clearing the flags after running these events.
2165                  */
2166                 int did_something = 0;
2167                 if (runSrstAsserted) {
2168                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2169                         Jim_Eval(interp, "srst_asserted");
2170                         did_something = 1;
2171                 }
2172                 if (runSrstDeasserted) {
2173                         Jim_Eval(interp, "srst_deasserted");
2174                         did_something = 1;
2175                 }
2176                 if (runPowerDropout) {
2177                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2178                         Jim_Eval(interp, "power_dropout");
2179                         did_something = 1;
2180                 }
2181                 if (runPowerRestore) {
2182                         Jim_Eval(interp, "power_restore");
2183                         did_something = 1;
2184                 }
2185
2186                 if (did_something) {
2187                         /* clear detect flags */
2188                         sense_handler();
2189                 }
2190
2191                 /* clear action flags */
2192
2193                 runSrstAsserted = 0;
2194                 runSrstDeasserted = 0;
2195                 runPowerRestore = 0;
2196                 runPowerDropout = 0;
2197
2198                 recursive = 0;
2199         }
2200
2201         if (backoff_times > backoff_count) {
2202                 /* do not poll this time as we failed previously */
2203                 backoff_count++;
2204                 return ERROR_OK;
2205         }
2206         backoff_count = 0;
2207
2208         /* Poll targets for state changes unless that's globally disabled.
2209          * Skip targets that are currently disabled.
2210          */
2211         for (struct target *target = all_targets;
2212                         is_jtag_poll_safe() && target;
2213                         target = target->next) {
2214                 if (!target->tap->enabled)
2215                         continue;
2216
2217                 /* only poll target if we've got power and srst isn't asserted */
2218                 if (!powerDropout && !srstAsserted) {
2219                         /* polling may fail silently until the target has been examined */
2220                         retval = target_poll(target);
2221                         if (retval != ERROR_OK) {
2222                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2223                                 if (backoff_times * polling_interval < 5000) {
2224                                         backoff_times *= 2;
2225                                         backoff_times++;
2226                                 }
2227                                 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms",
2228                                                 backoff_times * polling_interval);
2229
2230                                 /* Tell GDB to halt the debugger. This allows the user to
2231                                  * run monitor commands to handle the situation.
2232                                  */
2233                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2234                                 return retval;
2235                         }
2236                         /* Since we succeeded, we reset backoff count */
2237                         if (backoff_times > 0)
2238                                 LOG_USER("Polling succeeded again");
2239                         backoff_times = 0;
2240                 }
2241         }
2242
2243         return retval;
2244 }
2245
2246 COMMAND_HANDLER(handle_reg_command)
2247 {
2248         struct target *target;
2249         struct reg *reg = NULL;
2250         unsigned count = 0;
2251         char *value;
2252
2253         LOG_DEBUG("-");
2254
2255         target = get_current_target(CMD_CTX);
2256
2257         /* list all available registers for the current target */
2258         if (CMD_ARGC == 0) {
2259                 struct reg_cache *cache = target->reg_cache;
2260
2261                 count = 0;
2262                 while (cache) {
2263                         unsigned i;
2264
2265                         command_print(CMD_CTX, "===== %s", cache->name);
2266
2267                         for (i = 0, reg = cache->reg_list;
2268                                         i < cache->num_regs;
2269                                         i++, reg++, count++) {
2270                                 /* only print cached values if they are valid */
2271                                 if (reg->valid) {
2272                                         value = buf_to_str(reg->value,
2273                                                         reg->size, 16);
2274                                         command_print(CMD_CTX,
2275                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2276                                                         count, reg->name,
2277                                                         reg->size, value,
2278                                                         reg->dirty
2279                                                                 ? " (dirty)"
2280                                                                 : "");
2281                                         free(value);
2282                                 } else {
2283                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2284                                                           count, reg->name,
2285                                                           reg->size) ;
2286                                 }
2287                         }
2288                         cache = cache->next;
2289                 }
2290
2291                 return ERROR_OK;
2292         }
2293
2294         /* access a single register by its ordinal number */
2295         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2296                 unsigned num;
2297                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2298
2299                 struct reg_cache *cache = target->reg_cache;
2300                 count = 0;
2301                 while (cache) {
2302                         unsigned i;
2303                         for (i = 0; i < cache->num_regs; i++) {
2304                                 if (count++ == num) {
2305                                         reg = &cache->reg_list[i];
2306                                         break;
2307                                 }
2308                         }
2309                         if (reg)
2310                                 break;
2311                         cache = cache->next;
2312                 }
2313
2314                 if (!reg) {
2315                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2316                                         "has only %i registers (0 - %i)", num, count, count - 1);
2317                         return ERROR_OK;
2318                 }
2319         } else {
2320                 /* access a single register by its name */
2321                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2322
2323                 if (!reg) {
2324                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2325                         return ERROR_OK;
2326                 }
2327         }
2328
2329         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2330
2331         /* display a register */
2332         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2333                         && (CMD_ARGV[1][0] <= '9')))) {
2334                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2335                         reg->valid = 0;
2336
2337                 if (reg->valid == 0)
2338                         reg->type->get(reg);
2339                 value = buf_to_str(reg->value, reg->size, 16);
2340                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2341                 free(value);
2342                 return ERROR_OK;
2343         }
2344
2345         /* set register value */
2346         if (CMD_ARGC == 2) {
2347                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2348                 if (buf == NULL)
2349                         return ERROR_FAIL;
2350                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2351
2352                 reg->type->set(reg, buf);
2353
2354                 value = buf_to_str(reg->value, reg->size, 16);
2355                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2356                 free(value);
2357
2358                 free(buf);
2359
2360                 return ERROR_OK;
2361         }
2362
2363         return ERROR_COMMAND_SYNTAX_ERROR;
2364 }
2365
2366 COMMAND_HANDLER(handle_poll_command)
2367 {
2368         int retval = ERROR_OK;
2369         struct target *target = get_current_target(CMD_CTX);
2370
2371         if (CMD_ARGC == 0) {
2372                 command_print(CMD_CTX, "background polling: %s",
2373                                 jtag_poll_get_enabled() ? "on" : "off");
2374                 command_print(CMD_CTX, "TAP: %s (%s)",
2375                                 target->tap->dotted_name,
2376                                 target->tap->enabled ? "enabled" : "disabled");
2377                 if (!target->tap->enabled)
2378                         return ERROR_OK;
2379                 retval = target_poll(target);
2380                 if (retval != ERROR_OK)
2381                         return retval;
2382                 retval = target_arch_state(target);
2383                 if (retval != ERROR_OK)
2384                         return retval;
2385         } else if (CMD_ARGC == 1) {
2386                 bool enable;
2387                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2388                 jtag_poll_set_enabled(enable);
2389         } else
2390                 return ERROR_COMMAND_SYNTAX_ERROR;
2391
2392         return retval;
2393 }
2394
2395 COMMAND_HANDLER(handle_wait_halt_command)
2396 {
2397         if (CMD_ARGC > 1)
2398                 return ERROR_COMMAND_SYNTAX_ERROR;
2399
2400         unsigned ms = 5000;
2401         if (1 == CMD_ARGC) {
2402                 int retval = parse_uint(CMD_ARGV[0], &ms);
2403                 if (ERROR_OK != retval)
2404                         return ERROR_COMMAND_SYNTAX_ERROR;
2405                 /* convert seconds (given) to milliseconds (needed) */
2406                 ms *= 1000;
2407         }
2408
2409         struct target *target = get_current_target(CMD_CTX);
2410         return target_wait_state(target, TARGET_HALTED, ms);
2411 }
2412
2413 /* wait for target state to change. The trick here is to have a low
2414  * latency for short waits and not to suck up all the CPU time
2415  * on longer waits.
2416  *
2417  * After 500ms, keep_alive() is invoked
2418  */
2419 int target_wait_state(struct target *target, enum target_state state, int ms)
2420 {
2421         int retval;
2422         long long then = 0, cur;
2423         int once = 1;
2424
2425         for (;;) {
2426                 retval = target_poll(target);
2427                 if (retval != ERROR_OK)
2428                         return retval;
2429                 if (target->state == state)
2430                         break;
2431                 cur = timeval_ms();
2432                 if (once) {
2433                         once = 0;
2434                         then = timeval_ms();
2435                         LOG_DEBUG("waiting for target %s...",
2436                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2437                 }
2438
2439                 if (cur-then > 500)
2440                         keep_alive();
2441
2442                 if ((cur-then) > ms) {
2443                         LOG_ERROR("timed out while waiting for target %s",
2444                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2445                         return ERROR_FAIL;
2446                 }
2447         }
2448
2449         return ERROR_OK;
2450 }
2451
2452 COMMAND_HANDLER(handle_halt_command)
2453 {
2454         LOG_DEBUG("-");
2455
2456         struct target *target = get_current_target(CMD_CTX);
2457         int retval = target_halt(target);
2458         if (ERROR_OK != retval)
2459                 return retval;
2460
2461         if (CMD_ARGC == 1) {
2462                 unsigned wait_local;
2463                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2464                 if (ERROR_OK != retval)
2465                         return ERROR_COMMAND_SYNTAX_ERROR;
2466                 if (!wait_local)
2467                         return ERROR_OK;
2468         }
2469
2470         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2471 }
2472
2473 COMMAND_HANDLER(handle_soft_reset_halt_command)
2474 {
2475         struct target *target = get_current_target(CMD_CTX);
2476
2477         LOG_USER("requesting target halt and executing a soft reset");
2478
2479         target->type->soft_reset_halt(target);
2480
2481         return ERROR_OK;
2482 }
2483
2484 COMMAND_HANDLER(handle_reset_command)
2485 {
2486         if (CMD_ARGC > 1)
2487                 return ERROR_COMMAND_SYNTAX_ERROR;
2488
2489         enum target_reset_mode reset_mode = RESET_RUN;
2490         if (CMD_ARGC == 1) {
2491                 const Jim_Nvp *n;
2492                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2493                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2494                         return ERROR_COMMAND_SYNTAX_ERROR;
2495                 reset_mode = n->value;
2496         }
2497
2498         /* reset *all* targets */
2499         return target_process_reset(CMD_CTX, reset_mode);
2500 }
2501
2502
2503 COMMAND_HANDLER(handle_resume_command)
2504 {
2505         int current = 1;
2506         if (CMD_ARGC > 1)
2507                 return ERROR_COMMAND_SYNTAX_ERROR;
2508
2509         struct target *target = get_current_target(CMD_CTX);
2510         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2511
2512         /* with no CMD_ARGV, resume from current pc, addr = 0,
2513          * with one arguments, addr = CMD_ARGV[0],
2514          * handle breakpoints, not debugging */
2515         uint32_t addr = 0;
2516         if (CMD_ARGC == 1) {
2517                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2518                 current = 0;
2519         }
2520
2521         return target_resume(target, current, addr, 1, 0);
2522 }
2523
2524 COMMAND_HANDLER(handle_step_command)
2525 {
2526         if (CMD_ARGC > 1)
2527                 return ERROR_COMMAND_SYNTAX_ERROR;
2528
2529         LOG_DEBUG("-");
2530
2531         /* with no CMD_ARGV, step from current pc, addr = 0,
2532          * with one argument addr = CMD_ARGV[0],
2533          * handle breakpoints, debugging */
2534         uint32_t addr = 0;
2535         int current_pc = 1;
2536         if (CMD_ARGC == 1) {
2537                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2538                 current_pc = 0;
2539         }
2540
2541         struct target *target = get_current_target(CMD_CTX);
2542
2543         return target->type->step(target, current_pc, addr, 1);
2544 }
2545
2546 static void handle_md_output(struct command_context *cmd_ctx,
2547                 struct target *target, uint32_t address, unsigned size,
2548                 unsigned count, const uint8_t *buffer)
2549 {
2550         const unsigned line_bytecnt = 32;
2551         unsigned line_modulo = line_bytecnt / size;
2552
2553         char output[line_bytecnt * 4 + 1];
2554         unsigned output_len = 0;
2555
2556         const char *value_fmt;
2557         switch (size) {
2558         case 4:
2559                 value_fmt = "%8.8x ";
2560                 break;
2561         case 2:
2562                 value_fmt = "%4.4x ";
2563                 break;
2564         case 1:
2565                 value_fmt = "%2.2x ";
2566                 break;
2567         default:
2568                 /* "can't happen", caller checked */
2569                 LOG_ERROR("invalid memory read size: %u", size);
2570                 return;
2571         }
2572
2573         for (unsigned i = 0; i < count; i++) {
2574                 if (i % line_modulo == 0) {
2575                         output_len += snprintf(output + output_len,
2576                                         sizeof(output) - output_len,
2577                                         "0x%8.8x: ",
2578                                         (unsigned)(address + (i*size)));
2579                 }
2580
2581                 uint32_t value = 0;
2582                 const uint8_t *value_ptr = buffer + i * size;
2583                 switch (size) {
2584                 case 4:
2585                         value = target_buffer_get_u32(target, value_ptr);
2586                         break;
2587                 case 2:
2588                         value = target_buffer_get_u16(target, value_ptr);
2589                         break;
2590                 case 1:
2591                         value = *value_ptr;
2592                 }
2593                 output_len += snprintf(output + output_len,
2594                                 sizeof(output) - output_len,
2595                                 value_fmt, value);
2596
2597                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2598                         command_print(cmd_ctx, "%s", output);
2599                         output_len = 0;
2600                 }
2601         }
2602 }
2603
2604 COMMAND_HANDLER(handle_md_command)
2605 {
2606         if (CMD_ARGC < 1)
2607                 return ERROR_COMMAND_SYNTAX_ERROR;
2608
2609         unsigned size = 0;
2610         switch (CMD_NAME[2]) {
2611         case 'w':
2612                 size = 4;
2613                 break;
2614         case 'h':
2615                 size = 2;
2616                 break;
2617         case 'b':
2618                 size = 1;
2619                 break;
2620         default:
2621                 return ERROR_COMMAND_SYNTAX_ERROR;
2622         }
2623
2624         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2625         int (*fn)(struct target *target,
2626                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2627         if (physical) {
2628                 CMD_ARGC--;
2629                 CMD_ARGV++;
2630                 fn = target_read_phys_memory;
2631         } else
2632                 fn = target_read_memory;
2633         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2634                 return ERROR_COMMAND_SYNTAX_ERROR;
2635
2636         uint32_t address;
2637         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2638
2639         unsigned count = 1;
2640         if (CMD_ARGC == 2)
2641                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2642
2643         uint8_t *buffer = calloc(count, size);
2644
2645         struct target *target = get_current_target(CMD_CTX);
2646         int retval = fn(target, address, size, count, buffer);
2647         if (ERROR_OK == retval)
2648                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2649
2650         free(buffer);
2651
2652         return retval;
2653 }
2654
2655 typedef int (*target_write_fn)(struct target *target,
2656                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2657
2658 static int target_write_memory_fast(struct target *target,
2659                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2660 {
2661         return target_write_buffer(target, address, size * count, buffer);
2662 }
2663
2664 static int target_fill_mem(struct target *target,
2665                 uint32_t address,
2666                 target_write_fn fn,
2667                 unsigned data_size,
2668                 /* value */
2669                 uint32_t b,
2670                 /* count */
2671                 unsigned c)
2672 {
2673         /* We have to write in reasonably large chunks to be able
2674          * to fill large memory areas with any sane speed */
2675         const unsigned chunk_size = 16384;
2676         uint8_t *target_buf = malloc(chunk_size * data_size);
2677         if (target_buf == NULL) {
2678                 LOG_ERROR("Out of memory");
2679                 return ERROR_FAIL;
2680         }
2681
2682         for (unsigned i = 0; i < chunk_size; i++) {
2683                 switch (data_size) {
2684                 case 4:
2685                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2686                         break;
2687                 case 2:
2688                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2689                         break;
2690                 case 1:
2691                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2692                         break;
2693                 default:
2694                         exit(-1);
2695                 }
2696         }
2697
2698         int retval = ERROR_OK;
2699
2700         for (unsigned x = 0; x < c; x += chunk_size) {
2701                 unsigned current;
2702                 current = c - x;
2703                 if (current > chunk_size)
2704                         current = chunk_size;
2705                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2706                 if (retval != ERROR_OK)
2707                         break;
2708                 /* avoid GDB timeouts */
2709                 keep_alive();
2710         }
2711         free(target_buf);
2712
2713         return retval;
2714 }
2715
2716
2717 COMMAND_HANDLER(handle_mw_command)
2718 {
2719         if (CMD_ARGC < 2)
2720                 return ERROR_COMMAND_SYNTAX_ERROR;
2721         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2722         target_write_fn fn;
2723         if (physical) {
2724                 CMD_ARGC--;
2725                 CMD_ARGV++;
2726                 fn = target_write_phys_memory;
2727         } else
2728                 fn = target_write_memory_fast;
2729         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2730                 return ERROR_COMMAND_SYNTAX_ERROR;
2731
2732         uint32_t address;
2733         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2734
2735         uint32_t value;
2736         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2737
2738         unsigned count = 1;
2739         if (CMD_ARGC == 3)
2740                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2741
2742         struct target *target = get_current_target(CMD_CTX);
2743         unsigned wordsize;
2744         switch (CMD_NAME[2]) {
2745                 case 'w':
2746                         wordsize = 4;
2747                         break;
2748                 case 'h':
2749                         wordsize = 2;
2750                         break;
2751                 case 'b':
2752                         wordsize = 1;
2753                         break;
2754                 default:
2755                         return ERROR_COMMAND_SYNTAX_ERROR;
2756         }
2757
2758         return target_fill_mem(target, address, fn, wordsize, value, count);
2759 }
2760
2761 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2762                 uint32_t *min_address, uint32_t *max_address)
2763 {
2764         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2765                 return ERROR_COMMAND_SYNTAX_ERROR;
2766
2767         /* a base address isn't always necessary,
2768          * default to 0x0 (i.e. don't relocate) */
2769         if (CMD_ARGC >= 2) {
2770                 uint32_t addr;
2771                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2772                 image->base_address = addr;
2773                 image->base_address_set = 1;
2774         } else
2775                 image->base_address_set = 0;
2776
2777         image->start_address_set = 0;
2778
2779         if (CMD_ARGC >= 4)
2780                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2781         if (CMD_ARGC == 5) {
2782                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2783                 /* use size (given) to find max (required) */
2784                 *max_address += *min_address;
2785         }
2786
2787         if (*min_address > *max_address)
2788                 return ERROR_COMMAND_SYNTAX_ERROR;
2789
2790         return ERROR_OK;
2791 }
2792
2793 COMMAND_HANDLER(handle_load_image_command)
2794 {
2795         uint8_t *buffer;
2796         size_t buf_cnt;
2797         uint32_t image_size;
2798         uint32_t min_address = 0;
2799         uint32_t max_address = 0xffffffff;
2800         int i;
2801         struct image image;
2802
2803         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2804                         &image, &min_address, &max_address);
2805         if (ERROR_OK != retval)
2806                 return retval;
2807
2808         struct target *target = get_current_target(CMD_CTX);
2809
2810         struct duration bench;
2811         duration_start(&bench);
2812
2813         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2814                 return ERROR_OK;
2815
2816         image_size = 0x0;
2817         retval = ERROR_OK;
2818         for (i = 0; i < image.num_sections; i++) {
2819                 buffer = malloc(image.sections[i].size);
2820                 if (buffer == NULL) {
2821                         command_print(CMD_CTX,
2822                                                   "error allocating buffer for section (%d bytes)",
2823                                                   (int)(image.sections[i].size));
2824                         break;
2825                 }
2826
2827                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2828                 if (retval != ERROR_OK) {
2829                         free(buffer);
2830                         break;
2831                 }
2832
2833                 uint32_t offset = 0;
2834                 uint32_t length = buf_cnt;
2835
2836                 /* DANGER!!! beware of unsigned comparision here!!! */
2837
2838                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2839                                 (image.sections[i].base_address < max_address)) {
2840
2841                         if (image.sections[i].base_address < min_address) {
2842                                 /* clip addresses below */
2843                                 offset += min_address-image.sections[i].base_address;
2844                                 length -= offset;
2845                         }
2846
2847                         if (image.sections[i].base_address + buf_cnt > max_address)
2848                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2849
2850                         retval = target_write_buffer(target,
2851                                         image.sections[i].base_address + offset, length, buffer + offset);
2852                         if (retval != ERROR_OK) {
2853                                 free(buffer);
2854                                 break;
2855                         }
2856                         image_size += length;
2857                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2858                                         (unsigned int)length,
2859                                         image.sections[i].base_address + offset);
2860                 }
2861
2862                 free(buffer);
2863         }
2864
2865         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2866                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2867                                 "in %fs (%0.3f KiB/s)", image_size,
2868                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2869         }
2870
2871         image_close(&image);
2872
2873         return retval;
2874
2875 }
2876
2877 COMMAND_HANDLER(handle_dump_image_command)
2878 {
2879         struct fileio fileio;
2880         uint8_t *buffer;
2881         int retval, retvaltemp;
2882         uint32_t address, size;
2883         struct duration bench;
2884         struct target *target = get_current_target(CMD_CTX);
2885
2886         if (CMD_ARGC != 3)
2887                 return ERROR_COMMAND_SYNTAX_ERROR;
2888
2889         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2890         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2891
2892         uint32_t buf_size = (size > 4096) ? 4096 : size;
2893         buffer = malloc(buf_size);
2894         if (!buffer)
2895                 return ERROR_FAIL;
2896
2897         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2898         if (retval != ERROR_OK) {
2899                 free(buffer);
2900                 return retval;
2901         }
2902
2903         duration_start(&bench);
2904
2905         while (size > 0) {
2906                 size_t size_written;
2907                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2908                 retval = target_read_buffer(target, address, this_run_size, buffer);
2909                 if (retval != ERROR_OK)
2910                         break;
2911
2912                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2913                 if (retval != ERROR_OK)
2914                         break;
2915
2916                 size -= this_run_size;
2917                 address += this_run_size;
2918         }
2919
2920         free(buffer);
2921
2922         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2923                 int filesize;
2924                 retval = fileio_size(&fileio, &filesize);
2925                 if (retval != ERROR_OK)
2926                         return retval;
2927                 command_print(CMD_CTX,
2928                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2929                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2930         }
2931
2932         retvaltemp = fileio_close(&fileio);
2933         if (retvaltemp != ERROR_OK)
2934                 return retvaltemp;
2935
2936         return retval;
2937 }
2938
2939 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2940 {
2941         uint8_t *buffer;
2942         size_t buf_cnt;
2943         uint32_t image_size;
2944         int i;
2945         int retval;
2946         uint32_t checksum = 0;
2947         uint32_t mem_checksum = 0;
2948
2949         struct image image;
2950
2951         struct target *target = get_current_target(CMD_CTX);
2952
2953         if (CMD_ARGC < 1)
2954                 return ERROR_COMMAND_SYNTAX_ERROR;
2955
2956         if (!target) {
2957                 LOG_ERROR("no target selected");
2958                 return ERROR_FAIL;
2959         }
2960
2961         struct duration bench;
2962         duration_start(&bench);
2963
2964         if (CMD_ARGC >= 2) {
2965                 uint32_t addr;
2966                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2967                 image.base_address = addr;
2968                 image.base_address_set = 1;
2969         } else {
2970                 image.base_address_set = 0;
2971                 image.base_address = 0x0;
2972         }
2973
2974         image.start_address_set = 0;
2975
2976         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
2977         if (retval != ERROR_OK)
2978                 return retval;
2979
2980         image_size = 0x0;
2981         int diffs = 0;
2982         retval = ERROR_OK;
2983         for (i = 0; i < image.num_sections; i++) {
2984                 buffer = malloc(image.sections[i].size);
2985                 if (buffer == NULL) {
2986                         command_print(CMD_CTX,
2987                                         "error allocating buffer for section (%d bytes)",
2988                                         (int)(image.sections[i].size));
2989                         break;
2990                 }
2991                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2992                 if (retval != ERROR_OK) {
2993                         free(buffer);
2994                         break;
2995                 }
2996
2997                 if (verify) {
2998                         /* calculate checksum of image */
2999                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3000                         if (retval != ERROR_OK) {
3001                                 free(buffer);
3002                                 break;
3003                         }
3004
3005                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3006                         if (retval != ERROR_OK) {
3007                                 free(buffer);
3008                                 break;
3009                         }
3010
3011                         if (checksum != mem_checksum) {
3012                                 /* failed crc checksum, fall back to a binary compare */
3013                                 uint8_t *data;
3014
3015                                 if (diffs == 0)
3016                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3017
3018                                 data = (uint8_t *)malloc(buf_cnt);
3019
3020                                 /* Can we use 32bit word accesses? */
3021                                 int size = 1;
3022                                 int count = buf_cnt;
3023                                 if ((count % 4) == 0) {
3024                                         size *= 4;
3025                                         count /= 4;
3026                                 }
3027                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3028                                 if (retval == ERROR_OK) {
3029                                         uint32_t t;
3030                                         for (t = 0; t < buf_cnt; t++) {
3031                                                 if (data[t] != buffer[t]) {
3032                                                         command_print(CMD_CTX,
3033                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3034                                                                                   diffs,
3035                                                                                   (unsigned)(t + image.sections[i].base_address),
3036                                                                                   data[t],
3037                                                                                   buffer[t]);
3038                                                         if (diffs++ >= 127) {
3039                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3040                                                                 free(data);
3041                                                                 free(buffer);
3042                                                                 goto done;
3043                                                         }
3044                                                 }
3045                                                 keep_alive();
3046                                         }
3047                                 }
3048                                 free(data);
3049                         }
3050                 } else {
3051                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3052                                                   image.sections[i].base_address,
3053                                                   buf_cnt);
3054                 }
3055
3056                 free(buffer);
3057                 image_size += buf_cnt;
3058         }
3059         if (diffs > 0)
3060                 command_print(CMD_CTX, "No more differences found.");
3061 done:
3062         if (diffs > 0)
3063                 retval = ERROR_FAIL;
3064         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3065                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3066                                 "in %fs (%0.3f KiB/s)", image_size,
3067                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3068         }
3069
3070         image_close(&image);
3071
3072         return retval;
3073 }
3074
3075 COMMAND_HANDLER(handle_verify_image_command)
3076 {
3077         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3078 }
3079
3080 COMMAND_HANDLER(handle_test_image_command)
3081 {
3082         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3083 }
3084
3085 static int handle_bp_command_list(struct command_context *cmd_ctx)
3086 {
3087         struct target *target = get_current_target(cmd_ctx);
3088         struct breakpoint *breakpoint = target->breakpoints;
3089         while (breakpoint) {
3090                 if (breakpoint->type == BKPT_SOFT) {
3091                         char *buf = buf_to_str(breakpoint->orig_instr,
3092                                         breakpoint->length, 16);
3093                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3094                                         breakpoint->address,
3095                                         breakpoint->length,
3096                                         breakpoint->set, buf);
3097                         free(buf);
3098                 } else {
3099                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3100                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3101                                                         breakpoint->asid,
3102                                                         breakpoint->length, breakpoint->set);
3103                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3104                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3105                                                         breakpoint->address,
3106                                                         breakpoint->length, breakpoint->set);
3107                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3108                                                         breakpoint->asid);
3109                         } else
3110                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3111                                                         breakpoint->address,
3112                                                         breakpoint->length, breakpoint->set);
3113                 }
3114
3115                 breakpoint = breakpoint->next;
3116         }
3117         return ERROR_OK;
3118 }
3119
3120 static int handle_bp_command_set(struct command_context *cmd_ctx,
3121                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3122 {
3123         struct target *target = get_current_target(cmd_ctx);
3124
3125         if (asid == 0) {
3126                 int retval = breakpoint_add(target, addr, length, hw);
3127                 if (ERROR_OK == retval)
3128                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3129                 else {
3130                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3131                         return retval;
3132                 }
3133         } else if (addr == 0) {
3134                 int retval = context_breakpoint_add(target, asid, length, hw);
3135                 if (ERROR_OK == retval)
3136                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3137                 else {
3138                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3139                         return retval;
3140                 }
3141         } else {
3142                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3143                 if (ERROR_OK == retval)
3144                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3145                 else {
3146                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3147                         return retval;
3148                 }
3149         }
3150         return ERROR_OK;
3151 }
3152
3153 COMMAND_HANDLER(handle_bp_command)
3154 {
3155         uint32_t addr;
3156         uint32_t asid;
3157         uint32_t length;
3158         int hw = BKPT_SOFT;
3159
3160         switch (CMD_ARGC) {
3161                 case 0:
3162                         return handle_bp_command_list(CMD_CTX);
3163
3164                 case 2:
3165                         asid = 0;
3166                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3167                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3168                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3169
3170                 case 3:
3171                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3172                                 hw = BKPT_HARD;
3173                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3174
3175                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3176
3177                                 asid = 0;
3178                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3179                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3180                                 hw = BKPT_HARD;
3181                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3182                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3183                                 addr = 0;
3184                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3185                         }
3186
3187                 case 4:
3188                         hw = BKPT_HARD;
3189                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3190                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3191                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3192                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3193
3194                 default:
3195                         return ERROR_COMMAND_SYNTAX_ERROR;
3196         }
3197 }
3198
3199 COMMAND_HANDLER(handle_rbp_command)
3200 {
3201         if (CMD_ARGC != 1)
3202                 return ERROR_COMMAND_SYNTAX_ERROR;
3203
3204         uint32_t addr;
3205         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3206
3207         struct target *target = get_current_target(CMD_CTX);
3208         breakpoint_remove(target, addr);
3209
3210         return ERROR_OK;
3211 }
3212
3213 COMMAND_HANDLER(handle_wp_command)
3214 {
3215         struct target *target = get_current_target(CMD_CTX);
3216
3217         if (CMD_ARGC == 0) {
3218                 struct watchpoint *watchpoint = target->watchpoints;
3219
3220                 while (watchpoint) {
3221                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3222                                         ", len: 0x%8.8" PRIx32
3223                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3224                                         ", mask: 0x%8.8" PRIx32,
3225                                         watchpoint->address,
3226                                         watchpoint->length,
3227                                         (int)watchpoint->rw,
3228                                         watchpoint->value,
3229                                         watchpoint->mask);
3230                         watchpoint = watchpoint->next;
3231                 }
3232                 return ERROR_OK;
3233         }
3234
3235         enum watchpoint_rw type = WPT_ACCESS;
3236         uint32_t addr = 0;
3237         uint32_t length = 0;
3238         uint32_t data_value = 0x0;
3239         uint32_t data_mask = 0xffffffff;
3240
3241         switch (CMD_ARGC) {
3242         case 5:
3243                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3244                 /* fall through */
3245         case 4:
3246                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3247                 /* fall through */
3248         case 3:
3249                 switch (CMD_ARGV[2][0]) {
3250                 case 'r':
3251                         type = WPT_READ;
3252                         break;
3253                 case 'w':
3254                         type = WPT_WRITE;
3255                         break;
3256                 case 'a':
3257                         type = WPT_ACCESS;
3258                         break;
3259                 default:
3260                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3261                         return ERROR_COMMAND_SYNTAX_ERROR;
3262                 }
3263                 /* fall through */
3264         case 2:
3265                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3266                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3267                 break;
3268
3269         default:
3270                 return ERROR_COMMAND_SYNTAX_ERROR;
3271         }
3272
3273         int retval = watchpoint_add(target, addr, length, type,
3274                         data_value, data_mask);
3275         if (ERROR_OK != retval)
3276                 LOG_ERROR("Failure setting watchpoints");
3277
3278         return retval;
3279 }
3280
3281 COMMAND_HANDLER(handle_rwp_command)
3282 {
3283         if (CMD_ARGC != 1)
3284                 return ERROR_COMMAND_SYNTAX_ERROR;
3285
3286         uint32_t addr;
3287         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3288
3289         struct target *target = get_current_target(CMD_CTX);
3290         watchpoint_remove(target, addr);
3291
3292         return ERROR_OK;
3293 }
3294
3295 /**
3296  * Translate a virtual address to a physical address.
3297  *
3298  * The low-level target implementation must have logged a detailed error
3299  * which is forwarded to telnet/GDB session.
3300  */
3301 COMMAND_HANDLER(handle_virt2phys_command)
3302 {
3303         if (CMD_ARGC != 1)
3304                 return ERROR_COMMAND_SYNTAX_ERROR;
3305
3306         uint32_t va;
3307         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3308         uint32_t pa;
3309
3310         struct target *target = get_current_target(CMD_CTX);
3311         int retval = target->type->virt2phys(target, va, &pa);
3312         if (retval == ERROR_OK)
3313                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3314
3315         return retval;
3316 }
3317
3318 static void writeData(FILE *f, const void *data, size_t len)
3319 {
3320         size_t written = fwrite(data, 1, len, f);
3321         if (written != len)
3322                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3323 }
3324
3325 static void writeLong(FILE *f, int l)
3326 {
3327         int i;
3328         for (i = 0; i < 4; i++) {
3329                 char c = (l >> (i*8))&0xff;
3330                 writeData(f, &c, 1);
3331         }
3332
3333 }
3334
3335 static void writeString(FILE *f, char *s)
3336 {
3337         writeData(f, s, strlen(s));
3338 }
3339
3340 /* Dump a gmon.out histogram file. */
3341 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3342 {
3343         uint32_t i;
3344         FILE *f = fopen(filename, "w");
3345         if (f == NULL)
3346                 return;
3347         writeString(f, "gmon");
3348         writeLong(f, 0x00000001); /* Version */
3349         writeLong(f, 0); /* padding */
3350         writeLong(f, 0); /* padding */
3351         writeLong(f, 0); /* padding */
3352
3353         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3354         writeData(f, &zero, 1);
3355
3356         /* figure out bucket size */
3357         uint32_t min = samples[0];
3358         uint32_t max = samples[0];
3359         for (i = 0; i < sampleNum; i++) {
3360                 if (min > samples[i])
3361                         min = samples[i];
3362                 if (max < samples[i])
3363                         max = samples[i];
3364         }
3365
3366         int addressSpace = (max - min + 1);
3367         assert(addressSpace >= 2);
3368
3369         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3370         uint32_t length = addressSpace;
3371         if (length > maxBuckets)
3372                 length = maxBuckets;
3373         int *buckets = malloc(sizeof(int)*length);
3374         if (buckets == NULL) {
3375                 fclose(f);
3376                 return;
3377         }
3378         memset(buckets, 0, sizeof(int) * length);
3379         for (i = 0; i < sampleNum; i++) {
3380                 uint32_t address = samples[i];
3381                 long long a = address - min;
3382                 long long b = length - 1;
3383                 long long c = addressSpace - 1;
3384                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3385                 buckets[index_t]++;
3386         }
3387
3388         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3389         writeLong(f, min);                      /* low_pc */
3390         writeLong(f, max);                      /* high_pc */
3391         writeLong(f, length);           /* # of samples */
3392         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3393         writeString(f, "seconds");
3394         for (i = 0; i < (15-strlen("seconds")); i++)
3395                 writeData(f, &zero, 1);
3396         writeString(f, "s");
3397
3398         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3399
3400         char *data = malloc(2 * length);
3401         if (data != NULL) {
3402                 for (i = 0; i < length; i++) {
3403                         int val;
3404                         val = buckets[i];
3405                         if (val > 65535)
3406                                 val = 65535;
3407                         data[i * 2] = val&0xff;
3408                         data[i * 2 + 1] = (val >> 8) & 0xff;
3409                 }
3410                 free(buckets);
3411                 writeData(f, data, length * 2);
3412                 free(data);
3413         } else
3414                 free(buckets);
3415
3416         fclose(f);
3417 }
3418
3419 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3420  * which will be used as a random sampling of PC */
3421 COMMAND_HANDLER(handle_profile_command)
3422 {
3423         struct target *target = get_current_target(CMD_CTX);
3424         struct timeval timeout, now;
3425
3426         gettimeofday(&timeout, NULL);
3427         if (CMD_ARGC != 2)
3428                 return ERROR_COMMAND_SYNTAX_ERROR;
3429         unsigned offset;
3430         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3431
3432         timeval_add_time(&timeout, offset, 0);
3433
3434         /**
3435          * @todo: Some cores let us sample the PC without the
3436          * annoying halt/resume step; for example, ARMv7 PCSR.
3437          * Provide a way to use that more efficient mechanism.
3438          */
3439
3440         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3441
3442         static const int maxSample = 10000;
3443         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3444         if (samples == NULL)
3445                 return ERROR_OK;
3446
3447         int numSamples = 0;
3448         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3449         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3450
3451         int retval = ERROR_OK;
3452         for (;;) {
3453                 target_poll(target);
3454                 if (target->state == TARGET_HALTED) {
3455                         uint32_t t = *((uint32_t *)reg->value);
3456                         samples[numSamples++] = t;
3457                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
3458                         retval = target_resume(target, 1, 0, 0, 0);
3459                         target_poll(target);
3460                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3461                 } else if (target->state == TARGET_RUNNING) {
3462                         /* We want to quickly sample the PC. */
3463                         retval = target_halt(target);
3464                         if (retval != ERROR_OK) {
3465                                 free(samples);
3466                                 return retval;
3467                         }
3468                 } else {
3469                         command_print(CMD_CTX, "Target not halted or running");
3470                         retval = ERROR_OK;
3471                         break;
3472                 }
3473                 if (retval != ERROR_OK)
3474                         break;
3475
3476                 gettimeofday(&now, NULL);
3477                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3478                                 && (now.tv_usec >= timeout.tv_usec))) {
3479                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3480                         retval = target_poll(target);
3481                         if (retval != ERROR_OK) {
3482                                 free(samples);
3483                                 return retval;
3484                         }
3485                         if (target->state == TARGET_HALTED) {
3486                                 /* current pc, addr = 0, do not handle
3487                                  * breakpoints, not debugging */
3488                                 target_resume(target, 1, 0, 0, 0);
3489                         }
3490                         retval = target_poll(target);
3491                         if (retval != ERROR_OK) {
3492                                 free(samples);
3493                                 return retval;
3494                         }
3495                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3496                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3497                         break;
3498                 }
3499         }
3500         free(samples);
3501
3502         return retval;
3503 }
3504
3505 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3506 {
3507         char *namebuf;
3508         Jim_Obj *nameObjPtr, *valObjPtr;
3509         int result;
3510
3511         namebuf = alloc_printf("%s(%d)", varname, idx);
3512         if (!namebuf)
3513                 return JIM_ERR;
3514
3515         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3516         valObjPtr = Jim_NewIntObj(interp, val);
3517         if (!nameObjPtr || !valObjPtr) {
3518                 free(namebuf);
3519                 return JIM_ERR;
3520         }
3521
3522         Jim_IncrRefCount(nameObjPtr);
3523         Jim_IncrRefCount(valObjPtr);
3524         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3525         Jim_DecrRefCount(interp, nameObjPtr);
3526         Jim_DecrRefCount(interp, valObjPtr);
3527         free(namebuf);
3528         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3529         return result;
3530 }
3531
3532 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3533 {
3534         struct command_context *context;
3535         struct target *target;
3536
3537         context = current_command_context(interp);
3538         assert(context != NULL);
3539
3540         target = get_current_target(context);
3541         if (target == NULL) {
3542                 LOG_ERROR("mem2array: no current target");
3543                 return JIM_ERR;
3544         }
3545
3546         return target_mem2array(interp, target, argc - 1, argv + 1);
3547 }
3548
3549 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3550 {
3551         long l;
3552         uint32_t width;
3553         int len;
3554         uint32_t addr;
3555         uint32_t count;
3556         uint32_t v;
3557         const char *varname;
3558         int  n, e, retval;
3559         uint32_t i;
3560
3561         /* argv[1] = name of array to receive the data
3562          * argv[2] = desired width
3563          * argv[3] = memory address
3564          * argv[4] = count of times to read
3565          */
3566         if (argc != 4) {
3567                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3568                 return JIM_ERR;
3569         }
3570         varname = Jim_GetString(argv[0], &len);
3571         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3572
3573         e = Jim_GetLong(interp, argv[1], &l);
3574         width = l;
3575         if (e != JIM_OK)
3576                 return e;
3577
3578         e = Jim_GetLong(interp, argv[2], &l);
3579         addr = l;
3580         if (e != JIM_OK)
3581                 return e;
3582         e = Jim_GetLong(interp, argv[3], &l);
3583         len = l;
3584         if (e != JIM_OK)
3585                 return e;
3586         switch (width) {
3587                 case 8:
3588                         width = 1;
3589                         break;
3590                 case 16:
3591                         width = 2;
3592                         break;
3593                 case 32:
3594                         width = 4;
3595                         break;
3596                 default:
3597                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3598                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3599                         return JIM_ERR;
3600         }
3601         if (len == 0) {
3602                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3603                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3604                 return JIM_ERR;
3605         }
3606         if ((addr + (len * width)) < addr) {
3607                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3608                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3609                 return JIM_ERR;
3610         }
3611         /* absurd transfer size? */
3612         if (len > 65536) {
3613                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3614                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3615                 return JIM_ERR;
3616         }
3617
3618         if ((width == 1) ||
3619                 ((width == 2) && ((addr & 1) == 0)) ||
3620                 ((width == 4) && ((addr & 3) == 0))) {
3621                 /* all is well */
3622         } else {
3623                 char buf[100];
3624                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3625                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3626                                 addr,
3627                                 width);
3628                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3629                 return JIM_ERR;
3630         }
3631
3632         /* Transfer loop */
3633
3634         /* index counter */
3635         n = 0;
3636
3637         size_t buffersize = 4096;
3638         uint8_t *buffer = malloc(buffersize);
3639         if (buffer == NULL)
3640                 return JIM_ERR;
3641
3642         /* assume ok */
3643         e = JIM_OK;
3644         while (len) {
3645                 /* Slurp... in buffer size chunks */
3646
3647                 count = len; /* in objects.. */
3648                 if (count > (buffersize / width))
3649                         count = (buffersize / width);
3650
3651                 retval = target_read_memory(target, addr, width, count, buffer);
3652                 if (retval != ERROR_OK) {
3653                         /* BOO !*/
3654                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3655                                           (unsigned int)addr,
3656                                           (int)width,
3657                                           (int)count);
3658                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3659                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3660                         e = JIM_ERR;
3661                         break;
3662                 } else {
3663                         v = 0; /* shut up gcc */
3664                         for (i = 0; i < count ; i++, n++) {
3665                                 switch (width) {
3666                                         case 4:
3667                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3668                                                 break;
3669                                         case 2:
3670                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3671                                                 break;
3672                                         case 1:
3673                                                 v = buffer[i] & 0x0ff;
3674                                                 break;
3675                                 }
3676                                 new_int_array_element(interp, varname, n, v);
3677                         }
3678                         len -= count;
3679                 }
3680         }
3681
3682         free(buffer);
3683
3684         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3685
3686         return e;
3687 }
3688
3689 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3690 {
3691         char *namebuf;
3692         Jim_Obj *nameObjPtr, *valObjPtr;
3693         int result;
3694         long l;
3695
3696         namebuf = alloc_printf("%s(%d)", varname, idx);
3697         if (!namebuf)
3698                 return JIM_ERR;
3699
3700         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3701         if (!nameObjPtr) {
3702                 free(namebuf);
3703                 return JIM_ERR;
3704         }
3705
3706         Jim_IncrRefCount(nameObjPtr);
3707         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3708         Jim_DecrRefCount(interp, nameObjPtr);
3709         free(namebuf);
3710         if (valObjPtr == NULL)
3711                 return JIM_ERR;
3712
3713         result = Jim_GetLong(interp, valObjPtr, &l);
3714         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3715         *val = l;
3716         return result;
3717 }
3718
3719 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3720 {
3721         struct command_context *context;
3722         struct target *target;
3723
3724         context = current_command_context(interp);
3725         assert(context != NULL);
3726
3727         target = get_current_target(context);
3728         if (target == NULL) {
3729                 LOG_ERROR("array2mem: no current target");
3730                 return JIM_ERR;
3731         }
3732
3733         return target_array2mem(interp, target, argc-1, argv + 1);
3734 }
3735
3736 static int target_array2mem(Jim_Interp *interp, struct target *target,
3737                 int argc, Jim_Obj *const *argv)
3738 {
3739         long l;
3740         uint32_t width;
3741         int len;
3742         uint32_t addr;
3743         uint32_t count;
3744         uint32_t v;
3745         const char *varname;
3746         int  n, e, retval;
3747         uint32_t i;
3748
3749         /* argv[1] = name of array to get the data
3750          * argv[2] = desired width
3751          * argv[3] = memory address
3752          * argv[4] = count to write
3753          */
3754         if (argc != 4) {
3755                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3756                 return JIM_ERR;
3757         }
3758         varname = Jim_GetString(argv[0], &len);
3759         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3760
3761         e = Jim_GetLong(interp, argv[1], &l);
3762         width = l;
3763         if (e != JIM_OK)
3764                 return e;
3765
3766         e = Jim_GetLong(interp, argv[2], &l);
3767         addr = l;
3768         if (e != JIM_OK)
3769                 return e;
3770         e = Jim_GetLong(interp, argv[3], &l);
3771         len = l;
3772         if (e != JIM_OK)
3773                 return e;
3774         switch (width) {
3775                 case 8:
3776                         width = 1;
3777                         break;
3778                 case 16:
3779                         width = 2;
3780                         break;
3781                 case 32:
3782                         width = 4;
3783                         break;
3784                 default:
3785                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3786                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3787                                         "Invalid width param, must be 8/16/32", NULL);
3788                         return JIM_ERR;
3789         }
3790         if (len == 0) {
3791                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3792                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3793                                 "array2mem: zero width read?", NULL);
3794                 return JIM_ERR;
3795         }
3796         if ((addr + (len * width)) < addr) {
3797                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3798                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3799                                 "array2mem: addr + len - wraps to zero?", NULL);
3800                 return JIM_ERR;
3801         }
3802         /* absurd transfer size? */
3803         if (len > 65536) {
3804                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3805                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3806                                 "array2mem: absurd > 64K item request", NULL);
3807                 return JIM_ERR;
3808         }
3809
3810         if ((width == 1) ||
3811                 ((width == 2) && ((addr & 1) == 0)) ||
3812                 ((width == 4) && ((addr & 3) == 0))) {
3813                 /* all is well */
3814         } else {
3815                 char buf[100];
3816                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3817                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3818                                 (unsigned int)addr,
3819                                 (int)width);
3820                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3821                 return JIM_ERR;
3822         }
3823
3824         /* Transfer loop */
3825
3826         /* index counter */
3827         n = 0;
3828         /* assume ok */
3829         e = JIM_OK;
3830
3831         size_t buffersize = 4096;
3832         uint8_t *buffer = malloc(buffersize);
3833         if (buffer == NULL)
3834                 return JIM_ERR;
3835
3836         while (len) {
3837                 /* Slurp... in buffer size chunks */
3838
3839                 count = len; /* in objects.. */
3840                 if (count > (buffersize / width))
3841                         count = (buffersize / width);
3842
3843                 v = 0; /* shut up gcc */
3844                 for (i = 0; i < count; i++, n++) {
3845                         get_int_array_element(interp, varname, n, &v);
3846                         switch (width) {
3847                         case 4:
3848                                 target_buffer_set_u32(target, &buffer[i * width], v);
3849                                 break;
3850                         case 2:
3851                                 target_buffer_set_u16(target, &buffer[i * width], v);
3852                                 break;
3853                         case 1:
3854                                 buffer[i] = v & 0x0ff;
3855                                 break;
3856                         }
3857                 }
3858                 len -= count;
3859
3860                 retval = target_write_memory(target, addr, width, count, buffer);
3861                 if (retval != ERROR_OK) {
3862                         /* BOO !*/
3863                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3864                                           (unsigned int)addr,
3865                                           (int)width,
3866                                           (int)count);
3867                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3868                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3869                         e = JIM_ERR;
3870                         break;
3871                 }
3872         }
3873
3874         free(buffer);
3875
3876         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3877
3878         return e;
3879 }
3880
3881 /* FIX? should we propagate errors here rather than printing them
3882  * and continuing?
3883  */
3884 void target_handle_event(struct target *target, enum target_event e)
3885 {
3886         struct target_event_action *teap;
3887
3888         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3889                 if (teap->event == e) {
3890                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3891                                            target->target_number,
3892                                            target_name(target),
3893                                            target_type_name(target),
3894                                            e,
3895                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3896                                            Jim_GetString(teap->body, NULL));
3897                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3898                                 Jim_MakeErrorMessage(teap->interp);
3899                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3900                         }
3901                 }
3902         }
3903 }
3904
3905 /**
3906  * Returns true only if the target has a handler for the specified event.
3907  */
3908 bool target_has_event_action(struct target *target, enum target_event event)
3909 {
3910         struct target_event_action *teap;
3911
3912         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3913                 if (teap->event == event)
3914                         return true;
3915         }
3916         return false;
3917 }
3918
3919 enum target_cfg_param {
3920         TCFG_TYPE,
3921         TCFG_EVENT,
3922         TCFG_WORK_AREA_VIRT,
3923         TCFG_WORK_AREA_PHYS,
3924         TCFG_WORK_AREA_SIZE,
3925         TCFG_WORK_AREA_BACKUP,
3926         TCFG_ENDIAN,
3927         TCFG_VARIANT,
3928         TCFG_COREID,
3929         TCFG_CHAIN_POSITION,
3930         TCFG_DBGBASE,
3931         TCFG_RTOS,
3932 };
3933
3934 static Jim_Nvp nvp_config_opts[] = {
3935         { .name = "-type",             .value = TCFG_TYPE },
3936         { .name = "-event",            .value = TCFG_EVENT },
3937         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3938         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3939         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3940         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3941         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3942         { .name = "-variant",          .value = TCFG_VARIANT },
3943         { .name = "-coreid",           .value = TCFG_COREID },
3944         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3945         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
3946         { .name = "-rtos",             .value = TCFG_RTOS },
3947         { .name = NULL, .value = -1 }
3948 };
3949
3950 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3951 {
3952         Jim_Nvp *n;
3953         Jim_Obj *o;
3954         jim_wide w;
3955         char *cp;
3956         int e;
3957
3958         /* parse config or cget options ... */
3959         while (goi->argc > 0) {
3960                 Jim_SetEmptyResult(goi->interp);
3961                 /* Jim_GetOpt_Debug(goi); */
3962
3963                 if (target->type->target_jim_configure) {
3964                         /* target defines a configure function */
3965                         /* target gets first dibs on parameters */
3966                         e = (*(target->type->target_jim_configure))(target, goi);
3967                         if (e == JIM_OK) {
3968                                 /* more? */
3969                                 continue;
3970                         }
3971                         if (e == JIM_ERR) {
3972                                 /* An error */
3973                                 return e;
3974                         }
3975                         /* otherwise we 'continue' below */
3976                 }
3977                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3978                 if (e != JIM_OK) {
3979                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3980                         return e;
3981                 }
3982                 switch (n->value) {
3983                 case TCFG_TYPE:
3984                         /* not setable */
3985                         if (goi->isconfigure) {
3986                                 Jim_SetResultFormatted(goi->interp,
3987                                                 "not settable: %s", n->name);
3988                                 return JIM_ERR;
3989                         } else {
3990 no_params:
3991                                 if (goi->argc != 0) {
3992                                         Jim_WrongNumArgs(goi->interp,
3993                                                         goi->argc, goi->argv,
3994                                                         "NO PARAMS");
3995                                         return JIM_ERR;
3996                                 }
3997                         }
3998                         Jim_SetResultString(goi->interp,
3999                                         target_type_name(target), -1);
4000                         /* loop for more */
4001                         break;
4002                 case TCFG_EVENT:
4003                         if (goi->argc == 0) {
4004                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4005                                 return JIM_ERR;
4006                         }
4007
4008                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4009                         if (e != JIM_OK) {
4010                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4011                                 return e;
4012                         }
4013
4014                         if (goi->isconfigure) {
4015                                 if (goi->argc != 1) {
4016                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4017                                         return JIM_ERR;
4018                                 }
4019                         } else {
4020                                 if (goi->argc != 0) {
4021                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4022                                         return JIM_ERR;
4023                                 }
4024                         }
4025
4026                         {
4027                                 struct target_event_action *teap;
4028
4029                                 teap = target->event_action;
4030                                 /* replace existing? */
4031                                 while (teap) {
4032                                         if (teap->event == (enum target_event)n->value)
4033                                                 break;
4034                                         teap = teap->next;
4035                                 }
4036
4037                                 if (goi->isconfigure) {
4038                                         bool replace = true;
4039                                         if (teap == NULL) {
4040                                                 /* create new */
4041                                                 teap = calloc(1, sizeof(*teap));
4042                                                 replace = false;
4043                                         }
4044                                         teap->event = n->value;
4045                                         teap->interp = goi->interp;
4046                                         Jim_GetOpt_Obj(goi, &o);
4047                                         if (teap->body)
4048                                                 Jim_DecrRefCount(teap->interp, teap->body);
4049                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4050                                         /*
4051                                          * FIXME:
4052                                          *     Tcl/TK - "tk events" have a nice feature.
4053                                          *     See the "BIND" command.
4054                                          *    We should support that here.
4055                                          *     You can specify %X and %Y in the event code.
4056                                          *     The idea is: %T - target name.
4057                                          *     The idea is: %N - target number
4058                                          *     The idea is: %E - event name.
4059                                          */
4060                                         Jim_IncrRefCount(teap->body);
4061
4062                                         if (!replace) {
4063                                                 /* add to head of event list */
4064                                                 teap->next = target->event_action;
4065                                                 target->event_action = teap;
4066                                         }
4067                                         Jim_SetEmptyResult(goi->interp);
4068                                 } else {
4069                                         /* get */
4070                                         if (teap == NULL)
4071                                                 Jim_SetEmptyResult(goi->interp);
4072                                         else
4073                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4074                                 }
4075                         }
4076                         /* loop for more */
4077                         break;
4078
4079                 case TCFG_WORK_AREA_VIRT:
4080                         if (goi->isconfigure) {
4081                                 target_free_all_working_areas(target);
4082                                 e = Jim_GetOpt_Wide(goi, &w);
4083                                 if (e != JIM_OK)
4084                                         return e;
4085                                 target->working_area_virt = w;
4086                                 target->working_area_virt_spec = true;
4087                         } else {
4088                                 if (goi->argc != 0)
4089                                         goto no_params;
4090                         }
4091                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4092                         /* loop for more */
4093                         break;
4094
4095                 case TCFG_WORK_AREA_PHYS:
4096                         if (goi->isconfigure) {
4097                                 target_free_all_working_areas(target);
4098                                 e = Jim_GetOpt_Wide(goi, &w);
4099                                 if (e != JIM_OK)
4100                                         return e;
4101                                 target->working_area_phys = w;
4102                                 target->working_area_phys_spec = true;
4103                         } else {
4104                                 if (goi->argc != 0)
4105                                         goto no_params;
4106                         }
4107                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4108                         /* loop for more */
4109                         break;
4110
4111                 case TCFG_WORK_AREA_SIZE:
4112                         if (goi->isconfigure) {
4113                                 target_free_all_working_areas(target);
4114                                 e = Jim_GetOpt_Wide(goi, &w);
4115                                 if (e != JIM_OK)
4116                                         return e;
4117                                 target->working_area_size = w;
4118                         } else {
4119                                 if (goi->argc != 0)
4120                                         goto no_params;
4121                         }
4122                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4123                         /* loop for more */
4124                         break;
4125
4126                 case TCFG_WORK_AREA_BACKUP:
4127                         if (goi->isconfigure) {
4128                                 target_free_all_working_areas(target);
4129                                 e = Jim_GetOpt_Wide(goi, &w);
4130                                 if (e != JIM_OK)
4131                                         return e;
4132                                 /* make this exactly 1 or 0 */
4133                                 target->backup_working_area = (!!w);
4134                         } else {
4135                                 if (goi->argc != 0)
4136                                         goto no_params;
4137                         }
4138                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4139                         /* loop for more e*/
4140                         break;
4141
4142
4143                 case TCFG_ENDIAN:
4144                         if (goi->isconfigure) {
4145                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4146                                 if (e != JIM_OK) {
4147                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4148                                         return e;
4149                                 }
4150                                 target->endianness = n->value;
4151                         } else {
4152                                 if (goi->argc != 0)
4153                                         goto no_params;
4154                         }
4155                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4156                         if (n->name == NULL) {
4157                                 target->endianness = TARGET_LITTLE_ENDIAN;
4158                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4159                         }
4160                         Jim_SetResultString(goi->interp, n->name, -1);
4161                         /* loop for more */
4162                         break;
4163
4164                 case TCFG_VARIANT:
4165                         if (goi->isconfigure) {
4166                                 if (goi->argc < 1) {
4167                                         Jim_SetResultFormatted(goi->interp,
4168                                                                                    "%s ?STRING?",
4169                                                                                    n->name);
4170                                         return JIM_ERR;
4171                                 }
4172                                 if (target->variant)
4173                                         free((void *)(target->variant));
4174                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4175                                 if (e != JIM_OK)
4176                                         return e;
4177                                 target->variant = strdup(cp);
4178                         } else {
4179                                 if (goi->argc != 0)
4180                                         goto no_params;
4181                         }
4182                         Jim_SetResultString(goi->interp, target->variant, -1);
4183                         /* loop for more */
4184                         break;
4185
4186                 case TCFG_COREID:
4187                         if (goi->isconfigure) {
4188                                 e = Jim_GetOpt_Wide(goi, &w);
4189                                 if (e != JIM_OK)
4190                                         return e;
4191                                 target->coreid = (int32_t)w;
4192                         } else {
4193                                 if (goi->argc != 0)
4194                                         goto no_params;
4195                         }
4196                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4197                         /* loop for more */
4198                         break;
4199
4200                 case TCFG_CHAIN_POSITION:
4201                         if (goi->isconfigure) {
4202                                 Jim_Obj *o_t;
4203                                 struct jtag_tap *tap;
4204                                 target_free_all_working_areas(target);
4205                                 e = Jim_GetOpt_Obj(goi, &o_t);
4206                                 if (e != JIM_OK)
4207                                         return e;
4208                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4209                                 if (tap == NULL)
4210                                         return JIM_ERR;
4211                                 /* make this exactly 1 or 0 */
4212                                 target->tap = tap;
4213                         } else {
4214                                 if (goi->argc != 0)
4215                                         goto no_params;
4216                         }
4217                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4218                         /* loop for more e*/
4219                         break;
4220                 case TCFG_DBGBASE:
4221                         if (goi->isconfigure) {
4222                                 e = Jim_GetOpt_Wide(goi, &w);
4223                                 if (e != JIM_OK)
4224                                         return e;
4225                                 target->dbgbase = (uint32_t)w;
4226                                 target->dbgbase_set = true;
4227                         } else {
4228                                 if (goi->argc != 0)
4229                                         goto no_params;
4230                         }
4231                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4232                         /* loop for more */
4233                         break;
4234
4235                 case TCFG_RTOS:
4236                         /* RTOS */
4237                         {
4238                                 int result = rtos_create(goi, target);
4239                                 if (result != JIM_OK)
4240                                         return result;
4241                         }
4242                         /* loop for more */
4243                         break;
4244                 }
4245         } /* while (goi->argc) */
4246
4247
4248                 /* done - we return */
4249         return JIM_OK;
4250 }
4251
4252 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4253 {
4254         Jim_GetOptInfo goi;
4255
4256         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4257         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4258         int need_args = 1 + goi.isconfigure;
4259         if (goi.argc < need_args) {
4260                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4261                         goi.isconfigure
4262                                 ? "missing: -option VALUE ..."
4263                                 : "missing: -option ...");
4264                 return JIM_ERR;
4265         }
4266         struct target *target = Jim_CmdPrivData(goi.interp);
4267         return target_configure(&goi, target);
4268 }
4269
4270 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4271 {
4272         const char *cmd_name = Jim_GetString(argv[0], NULL);
4273
4274         Jim_GetOptInfo goi;
4275         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4276
4277         if (goi.argc < 2 || goi.argc > 4) {
4278                 Jim_SetResultFormatted(goi.interp,
4279                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4280                 return JIM_ERR;
4281         }
4282
4283         target_write_fn fn;
4284         fn = target_write_memory_fast;
4285
4286         int e;
4287         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4288                 /* consume it */
4289                 struct Jim_Obj *obj;
4290                 e = Jim_GetOpt_Obj(&goi, &obj);
4291                 if (e != JIM_OK)
4292                         return e;
4293
4294                 fn = target_write_phys_memory;
4295         }
4296
4297         jim_wide a;
4298         e = Jim_GetOpt_Wide(&goi, &a);
4299         if (e != JIM_OK)
4300                 return e;
4301
4302         jim_wide b;
4303         e = Jim_GetOpt_Wide(&goi, &b);
4304         if (e != JIM_OK)
4305                 return e;
4306
4307         jim_wide c = 1;
4308         if (goi.argc == 1) {
4309                 e = Jim_GetOpt_Wide(&goi, &c);
4310                 if (e != JIM_OK)
4311                         return e;
4312         }
4313
4314         /* all args must be consumed */
4315         if (goi.argc != 0)
4316                 return JIM_ERR;
4317
4318         struct target *target = Jim_CmdPrivData(goi.interp);
4319         unsigned data_size;
4320         if (strcasecmp(cmd_name, "mww") == 0)
4321                 data_size = 4;
4322         else if (strcasecmp(cmd_name, "mwh") == 0)
4323                 data_size = 2;
4324         else if (strcasecmp(cmd_name, "mwb") == 0)
4325                 data_size = 1;
4326         else {
4327                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4328                 return JIM_ERR;
4329         }
4330
4331         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4332 }
4333
4334 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4335 {
4336         const char *cmd_name = Jim_GetString(argv[0], NULL);
4337
4338         Jim_GetOptInfo goi;
4339         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4340
4341         if ((goi.argc < 1) || (goi.argc > 3)) {
4342                 Jim_SetResultFormatted(goi.interp,
4343                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4344                 return JIM_ERR;
4345         }
4346
4347         int (*fn)(struct target *target,
4348                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4349         fn = target_read_memory;
4350
4351         int e;
4352         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4353                 /* consume it */
4354                 struct Jim_Obj *obj;
4355                 e = Jim_GetOpt_Obj(&goi, &obj);
4356                 if (e != JIM_OK)
4357                         return e;
4358
4359                 fn = target_read_phys_memory;
4360         }
4361
4362         jim_wide a;
4363         e = Jim_GetOpt_Wide(&goi, &a);
4364         if (e != JIM_OK)
4365                 return JIM_ERR;
4366         jim_wide c;
4367         if (goi.argc == 1) {
4368                 e = Jim_GetOpt_Wide(&goi, &c);
4369                 if (e != JIM_OK)
4370                         return JIM_ERR;
4371         } else
4372                 c = 1;
4373
4374         /* all args must be consumed */
4375         if (goi.argc != 0)
4376                 return JIM_ERR;
4377
4378         jim_wide b = 1; /* shut up gcc */
4379         if (strcasecmp(cmd_name, "mdw") == 0)
4380                 b = 4;
4381         else if (strcasecmp(cmd_name, "mdh") == 0)
4382                 b = 2;
4383         else if (strcasecmp(cmd_name, "mdb") == 0)
4384                 b = 1;
4385         else {
4386                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4387                 return JIM_ERR;
4388         }
4389
4390         /* convert count to "bytes" */
4391         c = c * b;
4392
4393         struct target *target = Jim_CmdPrivData(goi.interp);
4394         uint8_t  target_buf[32];
4395         jim_wide x, y, z;
4396         while (c > 0) {
4397                 y = c;
4398                 if (y > 16)
4399                         y = 16;
4400                 e = fn(target, a, b, y / b, target_buf);
4401                 if (e != ERROR_OK) {
4402                         char tmp[10];
4403                         snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
4404                         Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
4405                         return JIM_ERR;
4406                 }
4407
4408                 command_print(NULL, "0x%08x ", (int)(a));
4409                 switch (b) {
4410                 case 4:
4411                         for (x = 0; x < 16 && x < y; x += 4) {
4412                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4413                                 command_print(NULL, "%08x ", (int)(z));
4414                         }
4415                         for (; (x < 16) ; x += 4)
4416                                 command_print(NULL, "         ");
4417                         break;
4418                 case 2:
4419                         for (x = 0; x < 16 && x < y; x += 2) {
4420                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4421                                 command_print(NULL, "%04x ", (int)(z));
4422                         }
4423                         for (; (x < 16) ; x += 2)
4424                                 command_print(NULL, "     ");
4425                         break;
4426                 case 1:
4427                 default:
4428                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4429                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4430                                 command_print(NULL, "%02x ", (int)(z));
4431                         }
4432                         for (; (x < 16) ; x += 1)
4433                                 command_print(NULL, "   ");
4434                         break;
4435                 }
4436                 /* ascii-ify the bytes */
4437                 for (x = 0 ; x < y ; x++) {
4438                         if ((target_buf[x] >= 0x20) &&
4439                                 (target_buf[x] <= 0x7e)) {
4440                                 /* good */
4441                         } else {
4442                                 /* smack it */
4443                                 target_buf[x] = '.';
4444                         }
4445                 }
4446                 /* space pad  */
4447                 while (x < 16) {
4448                         target_buf[x] = ' ';
4449                         x++;
4450                 }
4451                 /* terminate */
4452                 target_buf[16] = 0;
4453                 /* print - with a newline */
4454                 command_print(NULL, "%s\n", target_buf);
4455                 /* NEXT... */
4456                 c -= 16;
4457                 a += 16;
4458         }
4459         return JIM_OK;
4460 }
4461
4462 static int jim_target_mem2array(Jim_Interp *interp,
4463                 int argc, Jim_Obj *const *argv)
4464 {
4465         struct target *target = Jim_CmdPrivData(interp);
4466         return target_mem2array(interp, target, argc - 1, argv + 1);
4467 }
4468
4469 static int jim_target_array2mem(Jim_Interp *interp,
4470                 int argc, Jim_Obj *const *argv)
4471 {
4472         struct target *target = Jim_CmdPrivData(interp);
4473         return target_array2mem(interp, target, argc - 1, argv + 1);
4474 }
4475
4476 static int jim_target_tap_disabled(Jim_Interp *interp)
4477 {
4478         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4479         return JIM_ERR;
4480 }
4481
4482 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4483 {
4484         if (argc != 1) {
4485                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4486                 return JIM_ERR;
4487         }
4488         struct target *target = Jim_CmdPrivData(interp);
4489         if (!target->tap->enabled)
4490                 return jim_target_tap_disabled(interp);
4491
4492         int e = target->type->examine(target);
4493         if (e != ERROR_OK)
4494                 return JIM_ERR;
4495         return JIM_OK;
4496 }
4497
4498 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4499 {
4500         if (argc != 1) {
4501                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4502                 return JIM_ERR;
4503         }
4504         struct target *target = Jim_CmdPrivData(interp);
4505
4506         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4507                 return JIM_ERR;
4508
4509         return JIM_OK;
4510 }
4511
4512 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4513 {
4514         if (argc != 1) {
4515                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4516                 return JIM_ERR;
4517         }
4518         struct target *target = Jim_CmdPrivData(interp);
4519         if (!target->tap->enabled)
4520                 return jim_target_tap_disabled(interp);
4521
4522         int e;
4523         if (!(target_was_examined(target)))
4524                 e = ERROR_TARGET_NOT_EXAMINED;
4525         else
4526                 e = target->type->poll(target);
4527         if (e != ERROR_OK)
4528                 return JIM_ERR;
4529         return JIM_OK;
4530 }
4531
4532 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4533 {
4534         Jim_GetOptInfo goi;
4535         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4536
4537         if (goi.argc != 2) {
4538                 Jim_WrongNumArgs(interp, 0, argv,
4539                                 "([tT]|[fF]|assert|deassert) BOOL");
4540                 return JIM_ERR;
4541         }
4542
4543         Jim_Nvp *n;
4544         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4545         if (e != JIM_OK) {
4546                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4547                 return e;
4548         }
4549         /* the halt or not param */
4550         jim_wide a;
4551         e = Jim_GetOpt_Wide(&goi, &a);
4552         if (e != JIM_OK)
4553                 return e;
4554
4555         struct target *target = Jim_CmdPrivData(goi.interp);
4556         if (!target->tap->enabled)
4557                 return jim_target_tap_disabled(interp);
4558         if (!(target_was_examined(target))) {
4559                 LOG_ERROR("Target not examined yet");
4560                 return ERROR_TARGET_NOT_EXAMINED;
4561         }
4562         if (!target->type->assert_reset || !target->type->deassert_reset) {
4563                 Jim_SetResultFormatted(interp,
4564                                 "No target-specific reset for %s",
4565                                 target_name(target));
4566                 return JIM_ERR;
4567         }
4568         /* determine if we should halt or not. */
4569         target->reset_halt = !!a;
4570         /* When this happens - all workareas are invalid. */
4571         target_free_all_working_areas_restore(target, 0);
4572
4573         /* do the assert */
4574         if (n->value == NVP_ASSERT)
4575                 e = target->type->assert_reset(target);
4576         else
4577                 e = target->type->deassert_reset(target);
4578         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4579 }
4580
4581 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4582 {
4583         if (argc != 1) {
4584                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4585                 return JIM_ERR;
4586         }
4587         struct target *target = Jim_CmdPrivData(interp);
4588         if (!target->tap->enabled)
4589                 return jim_target_tap_disabled(interp);
4590         int e = target->type->halt(target);
4591         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4592 }
4593
4594 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4595 {
4596         Jim_GetOptInfo goi;
4597         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4598
4599         /* params:  <name>  statename timeoutmsecs */
4600         if (goi.argc != 2) {
4601                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4602                 Jim_SetResultFormatted(goi.interp,
4603                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4604                 return JIM_ERR;
4605         }
4606
4607         Jim_Nvp *n;
4608         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4609         if (e != JIM_OK) {
4610                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4611                 return e;
4612         }
4613         jim_wide a;
4614         e = Jim_GetOpt_Wide(&goi, &a);
4615         if (e != JIM_OK)
4616                 return e;
4617         struct target *target = Jim_CmdPrivData(interp);
4618         if (!target->tap->enabled)
4619                 return jim_target_tap_disabled(interp);
4620
4621         e = target_wait_state(target, n->value, a);
4622         if (e != ERROR_OK) {
4623                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4624                 Jim_SetResultFormatted(goi.interp,
4625                                 "target: %s wait %s fails (%#s) %s",
4626                                 target_name(target), n->name,
4627                                 eObj, target_strerror_safe(e));
4628                 Jim_FreeNewObj(interp, eObj);
4629                 return JIM_ERR;
4630         }
4631         return JIM_OK;
4632 }
4633 /* List for human, Events defined for this target.
4634  * scripts/programs should use 'name cget -event NAME'
4635  */
4636 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4637 {
4638         struct command_context *cmd_ctx = current_command_context(interp);
4639         assert(cmd_ctx != NULL);
4640
4641         struct target *target = Jim_CmdPrivData(interp);
4642         struct target_event_action *teap = target->event_action;
4643         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4644                                    target->target_number,
4645                                    target_name(target));
4646         command_print(cmd_ctx, "%-25s | Body", "Event");
4647         command_print(cmd_ctx, "------------------------- | "
4648                         "----------------------------------------");
4649         while (teap) {
4650                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4651                 command_print(cmd_ctx, "%-25s | %s",
4652                                 opt->name, Jim_GetString(teap->body, NULL));
4653                 teap = teap->next;
4654         }
4655         command_print(cmd_ctx, "***END***");
4656         return JIM_OK;
4657 }
4658 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4659 {
4660         if (argc != 1) {
4661                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4662                 return JIM_ERR;
4663         }
4664         struct target *target = Jim_CmdPrivData(interp);
4665         Jim_SetResultString(interp, target_state_name(target), -1);
4666         return JIM_OK;
4667 }
4668 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4669 {
4670         Jim_GetOptInfo goi;
4671         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4672         if (goi.argc != 1) {
4673                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4674                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4675                 return JIM_ERR;
4676         }
4677         Jim_Nvp *n;
4678         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4679         if (e != JIM_OK) {
4680                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4681                 return e;
4682         }
4683         struct target *target = Jim_CmdPrivData(interp);
4684         target_handle_event(target, n->value);
4685         return JIM_OK;
4686 }
4687
4688 static const struct command_registration target_instance_command_handlers[] = {
4689         {
4690                 .name = "configure",
4691                 .mode = COMMAND_CONFIG,
4692                 .jim_handler = jim_target_configure,
4693                 .help  = "configure a new target for use",
4694                 .usage = "[target_attribute ...]",
4695         },
4696         {
4697                 .name = "cget",
4698                 .mode = COMMAND_ANY,
4699                 .jim_handler = jim_target_configure,
4700                 .help  = "returns the specified target attribute",
4701                 .usage = "target_attribute",
4702         },
4703         {
4704                 .name = "mww",
4705                 .mode = COMMAND_EXEC,
4706                 .jim_handler = jim_target_mw,
4707                 .help = "Write 32-bit word(s) to target memory",
4708                 .usage = "address data [count]",
4709         },
4710         {
4711                 .name = "mwh",
4712                 .mode = COMMAND_EXEC,
4713                 .jim_handler = jim_target_mw,
4714                 .help = "Write 16-bit half-word(s) to target memory",
4715                 .usage = "address data [count]",
4716         },
4717         {
4718                 .name = "mwb",
4719                 .mode = COMMAND_EXEC,
4720                 .jim_handler = jim_target_mw,
4721                 .help = "Write byte(s) to target memory",
4722                 .usage = "address data [count]",
4723         },
4724         {
4725                 .name = "mdw",
4726                 .mode = COMMAND_EXEC,
4727                 .jim_handler = jim_target_md,
4728                 .help = "Display target memory as 32-bit words",
4729                 .usage = "address [count]",
4730         },
4731         {
4732                 .name = "mdh",
4733                 .mode = COMMAND_EXEC,
4734                 .jim_handler = jim_target_md,
4735                 .help = "Display target memory as 16-bit half-words",
4736                 .usage = "address [count]",
4737         },
4738         {
4739                 .name = "mdb",
4740                 .mode = COMMAND_EXEC,
4741                 .jim_handler = jim_target_md,
4742                 .help = "Display target memory as 8-bit bytes",
4743                 .usage = "address [count]",
4744         },
4745         {
4746                 .name = "array2mem",
4747                 .mode = COMMAND_EXEC,
4748                 .jim_handler = jim_target_array2mem,
4749                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4750                         "to target memory",
4751                 .usage = "arrayname bitwidth address count",
4752         },
4753         {
4754                 .name = "mem2array",
4755                 .mode = COMMAND_EXEC,
4756                 .jim_handler = jim_target_mem2array,
4757                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4758                         "from target memory",
4759                 .usage = "arrayname bitwidth address count",
4760         },
4761         {
4762                 .name = "eventlist",
4763                 .mode = COMMAND_EXEC,
4764                 .jim_handler = jim_target_event_list,
4765                 .help = "displays a table of events defined for this target",
4766         },
4767         {
4768                 .name = "curstate",
4769                 .mode = COMMAND_EXEC,
4770                 .jim_handler = jim_target_current_state,
4771                 .help = "displays the current state of this target",
4772         },
4773         {
4774                 .name = "arp_examine",
4775                 .mode = COMMAND_EXEC,
4776                 .jim_handler = jim_target_examine,
4777                 .help = "used internally for reset processing",
4778         },
4779         {
4780                 .name = "arp_halt_gdb",
4781                 .mode = COMMAND_EXEC,
4782                 .jim_handler = jim_target_halt_gdb,
4783                 .help = "used internally for reset processing to halt GDB",
4784         },
4785         {
4786                 .name = "arp_poll",
4787                 .mode = COMMAND_EXEC,
4788                 .jim_handler = jim_target_poll,
4789                 .help = "used internally for reset processing",
4790         },
4791         {
4792                 .name = "arp_reset",
4793                 .mode = COMMAND_EXEC,
4794                 .jim_handler = jim_target_reset,
4795                 .help = "used internally for reset processing",
4796         },
4797         {
4798                 .name = "arp_halt",
4799                 .mode = COMMAND_EXEC,
4800                 .jim_handler = jim_target_halt,
4801                 .help = "used internally for reset processing",
4802         },
4803         {
4804                 .name = "arp_waitstate",
4805                 .mode = COMMAND_EXEC,
4806                 .jim_handler = jim_target_wait_state,
4807                 .help = "used internally for reset processing",
4808         },
4809         {
4810                 .name = "invoke-event",
4811                 .mode = COMMAND_EXEC,
4812                 .jim_handler = jim_target_invoke_event,
4813                 .help = "invoke handler for specified event",
4814                 .usage = "event_name",
4815         },
4816         COMMAND_REGISTRATION_DONE
4817 };
4818
4819 static int target_create(Jim_GetOptInfo *goi)
4820 {
4821         Jim_Obj *new_cmd;
4822         Jim_Cmd *cmd;
4823         const char *cp;
4824         char *cp2;
4825         int e;
4826         int x;
4827         struct target *target;
4828         struct command_context *cmd_ctx;
4829
4830         cmd_ctx = current_command_context(goi->interp);
4831         assert(cmd_ctx != NULL);
4832
4833         if (goi->argc < 3) {
4834                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4835                 return JIM_ERR;
4836         }
4837
4838         /* COMMAND */
4839         Jim_GetOpt_Obj(goi, &new_cmd);
4840         /* does this command exist? */
4841         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4842         if (cmd) {
4843                 cp = Jim_GetString(new_cmd, NULL);
4844                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4845                 return JIM_ERR;
4846         }
4847
4848         /* TYPE */
4849         e = Jim_GetOpt_String(goi, &cp2, NULL);
4850         if (e != JIM_OK)
4851                 return e;
4852         cp = cp2;
4853         /* now does target type exist */
4854         for (x = 0 ; target_types[x] ; x++) {
4855                 if (0 == strcmp(cp, target_types[x]->name)) {
4856                         /* found */
4857                         break;
4858                 }
4859         }
4860         if (target_types[x] == NULL) {
4861                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4862                 for (x = 0 ; target_types[x] ; x++) {
4863                         if (target_types[x + 1]) {
4864                                 Jim_AppendStrings(goi->interp,
4865                                                                    Jim_GetResult(goi->interp),
4866                                                                    target_types[x]->name,
4867                                                                    ", ", NULL);
4868                         } else {
4869                                 Jim_AppendStrings(goi->interp,
4870                                                                    Jim_GetResult(goi->interp),
4871                                                                    " or ",
4872                                                                    target_types[x]->name, NULL);
4873                         }
4874                 }
4875                 return JIM_ERR;
4876         }
4877
4878         /* Create it */
4879         target = calloc(1, sizeof(struct target));
4880         /* set target number */
4881         target->target_number = new_target_number();
4882
4883         /* allocate memory for each unique target type */
4884         target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4885
4886         memcpy(target->type, target_types[x], sizeof(struct target_type));
4887
4888         /* will be set by "-endian" */
4889         target->endianness = TARGET_ENDIAN_UNKNOWN;
4890
4891         /* default to first core, override with -coreid */
4892         target->coreid = 0;
4893
4894         target->working_area        = 0x0;
4895         target->working_area_size   = 0x0;
4896         target->working_areas       = NULL;
4897         target->backup_working_area = 0;
4898
4899         target->state               = TARGET_UNKNOWN;
4900         target->debug_reason        = DBG_REASON_UNDEFINED;
4901         target->reg_cache           = NULL;
4902         target->breakpoints         = NULL;
4903         target->watchpoints         = NULL;
4904         target->next                = NULL;
4905         target->arch_info           = NULL;
4906
4907         target->display             = 1;
4908
4909         target->halt_issued                     = false;
4910
4911         /* initialize trace information */
4912         target->trace_info = malloc(sizeof(struct trace));
4913         target->trace_info->num_trace_points         = 0;
4914         target->trace_info->trace_points_size        = 0;
4915         target->trace_info->trace_points             = NULL;
4916         target->trace_info->trace_history_size       = 0;
4917         target->trace_info->trace_history            = NULL;
4918         target->trace_info->trace_history_pos        = 0;
4919         target->trace_info->trace_history_overflowed = 0;
4920
4921         target->dbgmsg          = NULL;
4922         target->dbg_msg_enabled = 0;
4923
4924         target->endianness = TARGET_ENDIAN_UNKNOWN;
4925
4926         target->rtos = NULL;
4927         target->rtos_auto_detect = false;
4928
4929         /* Do the rest as "configure" options */
4930         goi->isconfigure = 1;
4931         e = target_configure(goi, target);
4932
4933         if (target->tap == NULL) {
4934                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4935                 e = JIM_ERR;
4936         }
4937
4938         if (e != JIM_OK) {
4939                 free(target->type);
4940                 free(target);
4941                 return e;
4942         }
4943
4944         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4945                 /* default endian to little if not specified */
4946                 target->endianness = TARGET_LITTLE_ENDIAN;
4947         }
4948
4949         /* incase variant is not set */
4950         if (!target->variant)
4951                 target->variant = strdup("");
4952
4953         cp = Jim_GetString(new_cmd, NULL);
4954         target->cmd_name = strdup(cp);
4955
4956         /* create the target specific commands */
4957         if (target->type->commands) {
4958                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4959                 if (ERROR_OK != e)
4960                         LOG_ERROR("unable to register '%s' commands", cp);
4961         }
4962         if (target->type->target_create)
4963                 (*(target->type->target_create))(target, goi->interp);
4964
4965         /* append to end of list */
4966         {
4967                 struct target **tpp;
4968                 tpp = &(all_targets);
4969                 while (*tpp)
4970                         tpp = &((*tpp)->next);
4971                 *tpp = target;
4972         }
4973
4974         /* now - create the new target name command */
4975         const const struct command_registration target_subcommands[] = {
4976                 {
4977                         .chain = target_instance_command_handlers,
4978                 },
4979                 {
4980                         .chain = target->type->commands,
4981                 },
4982                 COMMAND_REGISTRATION_DONE
4983         };
4984         const const struct command_registration target_commands[] = {
4985                 {
4986                         .name = cp,
4987                         .mode = COMMAND_ANY,
4988                         .help = "target command group",
4989                         .usage = "",
4990                         .chain = target_subcommands,
4991                 },
4992                 COMMAND_REGISTRATION_DONE
4993         };
4994         e = register_commands(cmd_ctx, NULL, target_commands);
4995         if (ERROR_OK != e)
4996                 return JIM_ERR;
4997
4998         struct command *c = command_find_in_context(cmd_ctx, cp);
4999         assert(c);
5000         command_set_handler_data(c, target);
5001
5002         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5003 }
5004
5005 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5006 {
5007         if (argc != 1) {
5008                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5009                 return JIM_ERR;
5010         }
5011         struct command_context *cmd_ctx = current_command_context(interp);
5012         assert(cmd_ctx != NULL);
5013
5014         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
5015         return JIM_OK;
5016 }
5017
5018 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5019 {
5020         if (argc != 1) {
5021                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5022                 return JIM_ERR;
5023         }
5024         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5025         for (unsigned x = 0; NULL != target_types[x]; x++) {
5026                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5027                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5028         }
5029         return JIM_OK;
5030 }
5031
5032 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5033 {
5034         if (argc != 1) {
5035                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5036                 return JIM_ERR;
5037         }
5038         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5039         struct target *target = all_targets;
5040         while (target) {
5041                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5042                         Jim_NewStringObj(interp, target_name(target), -1));
5043                 target = target->next;
5044         }
5045         return JIM_OK;
5046 }
5047
5048 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5049 {
5050         int i;
5051         const char *targetname;
5052         int retval, len;
5053         struct target *target = (struct target *) NULL;
5054         struct target_list *head, *curr, *new;
5055         curr = (struct target_list *) NULL;
5056         head = (struct target_list *) NULL;
5057
5058         retval = 0;
5059         LOG_DEBUG("%d", argc);
5060         /* argv[1] = target to associate in smp
5061          * argv[2] = target to assoicate in smp
5062          * argv[3] ...
5063          */
5064
5065         for (i = 1; i < argc; i++) {
5066
5067                 targetname = Jim_GetString(argv[i], &len);
5068                 target = get_target(targetname);
5069                 LOG_DEBUG("%s ", targetname);
5070                 if (target) {
5071                         new = malloc(sizeof(struct target_list));
5072                         new->target = target;
5073                         new->next = (struct target_list *)NULL;
5074                         if (head == (struct target_list *)NULL) {
5075                                 head = new;
5076                                 curr = head;
5077                         } else {
5078                                 curr->next = new;
5079                                 curr = new;
5080                         }
5081                 }
5082         }
5083         /*  now parse the list of cpu and put the target in smp mode*/
5084         curr = head;
5085
5086         while (curr != (struct target_list *)NULL) {
5087                 target = curr->target;
5088                 target->smp = 1;
5089                 target->head = head;
5090                 curr = curr->next;
5091         }
5092         if (target->rtos)
5093                 retval = rtos_smp_init(head->target);
5094         return retval;
5095 }
5096
5097
5098 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5099 {
5100         Jim_GetOptInfo goi;
5101         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5102         if (goi.argc < 3) {
5103                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5104                         "<name> <target_type> [<target_options> ...]");
5105                 return JIM_ERR;
5106         }
5107         return target_create(&goi);
5108 }
5109
5110 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5111 {
5112         Jim_GetOptInfo goi;
5113         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5114
5115         /* It's OK to remove this mechanism sometime after August 2010 or so */
5116         LOG_WARNING("don't use numbers as target identifiers; use names");
5117         if (goi.argc != 1) {
5118                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5119                 return JIM_ERR;
5120         }
5121         jim_wide w;
5122         int e = Jim_GetOpt_Wide(&goi, &w);
5123         if (e != JIM_OK)
5124                 return JIM_ERR;
5125
5126         struct target *target;
5127         for (target = all_targets; NULL != target; target = target->next) {
5128                 if (target->target_number != w)
5129                         continue;
5130
5131                 Jim_SetResultString(goi.interp, target_name(target), -1);
5132                 return JIM_OK;
5133         }
5134         {
5135                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5136                 Jim_SetResultFormatted(goi.interp,
5137                         "Target: number %#s does not exist", wObj);
5138                 Jim_FreeNewObj(interp, wObj);
5139         }
5140         return JIM_ERR;
5141 }
5142
5143 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5144 {
5145         if (argc != 1) {
5146                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5147                 return JIM_ERR;
5148         }
5149         unsigned count = 0;
5150         struct target *target = all_targets;
5151         while (NULL != target) {
5152                 target = target->next;
5153                 count++;
5154         }
5155         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5156         return JIM_OK;
5157 }
5158
5159 static const struct command_registration target_subcommand_handlers[] = {
5160         {
5161                 .name = "init",
5162                 .mode = COMMAND_CONFIG,
5163                 .handler = handle_target_init_command,
5164                 .help = "initialize targets",
5165         },
5166         {
5167                 .name = "create",
5168                 /* REVISIT this should be COMMAND_CONFIG ... */
5169                 .mode = COMMAND_ANY,
5170                 .jim_handler = jim_target_create,
5171                 .usage = "name type '-chain-position' name [options ...]",
5172                 .help = "Creates and selects a new target",
5173         },
5174         {
5175                 .name = "current",
5176                 .mode = COMMAND_ANY,
5177                 .jim_handler = jim_target_current,
5178                 .help = "Returns the currently selected target",
5179         },
5180         {
5181                 .name = "types",
5182                 .mode = COMMAND_ANY,
5183                 .jim_handler = jim_target_types,
5184                 .help = "Returns the available target types as "
5185                                 "a list of strings",
5186         },
5187         {
5188                 .name = "names",
5189                 .mode = COMMAND_ANY,
5190                 .jim_handler = jim_target_names,
5191                 .help = "Returns the names of all targets as a list of strings",
5192         },
5193         {
5194                 .name = "number",
5195                 .mode = COMMAND_ANY,
5196                 .jim_handler = jim_target_number,
5197                 .usage = "number",
5198                 .help = "Returns the name of the numbered target "
5199                         "(DEPRECATED)",
5200         },
5201         {
5202                 .name = "count",
5203                 .mode = COMMAND_ANY,
5204                 .jim_handler = jim_target_count,
5205                 .help = "Returns the number of targets as an integer "
5206                         "(DEPRECATED)",
5207         },
5208         {
5209                 .name = "smp",
5210                 .mode = COMMAND_ANY,
5211                 .jim_handler = jim_target_smp,
5212                 .usage = "targetname1 targetname2 ...",
5213                 .help = "gather several target in a smp list"
5214         },
5215
5216         COMMAND_REGISTRATION_DONE
5217 };
5218
5219 struct FastLoad {
5220         uint32_t address;
5221         uint8_t *data;
5222         int length;
5223
5224 };
5225
5226 static int fastload_num;
5227 static struct FastLoad *fastload;
5228
5229 static void free_fastload(void)
5230 {
5231         if (fastload != NULL) {
5232                 int i;
5233                 for (i = 0; i < fastload_num; i++) {
5234                         if (fastload[i].data)
5235                                 free(fastload[i].data);
5236                 }
5237                 free(fastload);
5238                 fastload = NULL;
5239         }
5240 }
5241
5242 COMMAND_HANDLER(handle_fast_load_image_command)
5243 {
5244         uint8_t *buffer;
5245         size_t buf_cnt;
5246         uint32_t image_size;
5247         uint32_t min_address = 0;
5248         uint32_t max_address = 0xffffffff;
5249         int i;
5250
5251         struct image image;
5252
5253         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5254                         &image, &min_address, &max_address);
5255         if (ERROR_OK != retval)
5256                 return retval;
5257
5258         struct duration bench;
5259         duration_start(&bench);
5260
5261         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5262         if (retval != ERROR_OK)
5263                 return retval;
5264
5265         image_size = 0x0;
5266         retval = ERROR_OK;
5267         fastload_num = image.num_sections;
5268         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5269         if (fastload == NULL) {
5270                 command_print(CMD_CTX, "out of memory");
5271                 image_close(&image);
5272                 return ERROR_FAIL;
5273         }
5274         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5275         for (i = 0; i < image.num_sections; i++) {
5276                 buffer = malloc(image.sections[i].size);
5277                 if (buffer == NULL) {
5278                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5279                                                   (int)(image.sections[i].size));
5280                         retval = ERROR_FAIL;
5281                         break;
5282                 }
5283
5284                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5285                 if (retval != ERROR_OK) {
5286                         free(buffer);
5287                         break;
5288                 }
5289
5290                 uint32_t offset = 0;
5291                 uint32_t length = buf_cnt;
5292
5293                 /* DANGER!!! beware of unsigned comparision here!!! */
5294
5295                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5296                                 (image.sections[i].base_address < max_address)) {
5297                         if (image.sections[i].base_address < min_address) {
5298                                 /* clip addresses below */
5299                                 offset += min_address-image.sections[i].base_address;
5300                                 length -= offset;
5301                         }
5302
5303                         if (image.sections[i].base_address + buf_cnt > max_address)
5304                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5305
5306                         fastload[i].address = image.sections[i].base_address + offset;
5307                         fastload[i].data = malloc(length);
5308                         if (fastload[i].data == NULL) {
5309                                 free(buffer);
5310                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5311                                                           length);
5312                                 retval = ERROR_FAIL;
5313                                 break;
5314                         }
5315                         memcpy(fastload[i].data, buffer + offset, length);
5316                         fastload[i].length = length;
5317
5318                         image_size += length;
5319                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5320                                                   (unsigned int)length,
5321                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5322                 }
5323
5324                 free(buffer);
5325         }
5326
5327         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5328                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5329                                 "in %fs (%0.3f KiB/s)", image_size,
5330                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5331
5332                 command_print(CMD_CTX,
5333                                 "WARNING: image has not been loaded to target!"
5334                                 "You can issue a 'fast_load' to finish loading.");
5335         }
5336
5337         image_close(&image);
5338
5339         if (retval != ERROR_OK)
5340                 free_fastload();
5341
5342         return retval;
5343 }
5344
5345 COMMAND_HANDLER(handle_fast_load_command)
5346 {
5347         if (CMD_ARGC > 0)
5348                 return ERROR_COMMAND_SYNTAX_ERROR;
5349         if (fastload == NULL) {
5350                 LOG_ERROR("No image in memory");
5351                 return ERROR_FAIL;
5352         }
5353         int i;
5354         int ms = timeval_ms();
5355         int size = 0;
5356         int retval = ERROR_OK;
5357         for (i = 0; i < fastload_num; i++) {
5358                 struct target *target = get_current_target(CMD_CTX);
5359                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5360                                           (unsigned int)(fastload[i].address),
5361                                           (unsigned int)(fastload[i].length));
5362                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5363                 if (retval != ERROR_OK)
5364                         break;
5365                 size += fastload[i].length;
5366         }
5367         if (retval == ERROR_OK) {
5368                 int after = timeval_ms();
5369                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5370         }
5371         return retval;
5372 }
5373
5374 static const struct command_registration target_command_handlers[] = {
5375         {
5376                 .name = "targets",
5377                 .handler = handle_targets_command,
5378                 .mode = COMMAND_ANY,
5379                 .help = "change current default target (one parameter) "
5380                         "or prints table of all targets (no parameters)",
5381                 .usage = "[target]",
5382         },
5383         {
5384                 .name = "target",
5385                 .mode = COMMAND_CONFIG,
5386                 .help = "configure target",
5387
5388                 .chain = target_subcommand_handlers,
5389         },
5390         COMMAND_REGISTRATION_DONE
5391 };
5392
5393 int target_register_commands(struct command_context *cmd_ctx)
5394 {
5395         return register_commands(cmd_ctx, NULL, target_command_handlers);
5396 }
5397
5398 static bool target_reset_nag = true;
5399
5400 bool get_target_reset_nag(void)
5401 {
5402         return target_reset_nag;
5403 }
5404
5405 COMMAND_HANDLER(handle_target_reset_nag)
5406 {
5407         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5408                         &target_reset_nag, "Nag after each reset about options to improve "
5409                         "performance");
5410 }
5411
5412 COMMAND_HANDLER(handle_ps_command)
5413 {
5414         struct target *target = get_current_target(CMD_CTX);
5415         char *display;
5416         if (target->state != TARGET_HALTED) {
5417                 LOG_INFO("target not halted !!");
5418                 return ERROR_OK;
5419         }
5420
5421         if ((target->rtos) && (target->rtos->type)
5422                         && (target->rtos->type->ps_command)) {
5423                 display = target->rtos->type->ps_command(target);
5424                 command_print(CMD_CTX, "%s", display);
5425                 free(display);
5426                 return ERROR_OK;
5427         } else {
5428                 LOG_INFO("failed");
5429                 return ERROR_TARGET_FAILURE;
5430         }
5431 }
5432
5433 static const struct command_registration target_exec_command_handlers[] = {
5434         {
5435                 .name = "fast_load_image",
5436                 .handler = handle_fast_load_image_command,
5437                 .mode = COMMAND_ANY,
5438                 .help = "Load image into server memory for later use by "
5439                         "fast_load; primarily for profiling",
5440                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5441                         "[min_address [max_length]]",
5442         },
5443         {
5444                 .name = "fast_load",
5445                 .handler = handle_fast_load_command,
5446                 .mode = COMMAND_EXEC,
5447                 .help = "loads active fast load image to current target "
5448                         "- mainly for profiling purposes",
5449                 .usage = "",
5450         },
5451         {
5452                 .name = "profile",
5453                 .handler = handle_profile_command,
5454                 .mode = COMMAND_EXEC,
5455                 .usage = "seconds filename",
5456                 .help = "profiling samples the CPU PC",
5457         },
5458         /** @todo don't register virt2phys() unless target supports it */
5459         {
5460                 .name = "virt2phys",
5461                 .handler = handle_virt2phys_command,
5462                 .mode = COMMAND_ANY,
5463                 .help = "translate a virtual address into a physical address",
5464                 .usage = "virtual_address",
5465         },
5466         {
5467                 .name = "reg",
5468                 .handler = handle_reg_command,
5469                 .mode = COMMAND_EXEC,
5470                 .help = "display or set a register; with no arguments, "
5471                         "displays all registers and their values",
5472                 .usage = "[(register_name|register_number) [value]]",
5473         },
5474         {
5475                 .name = "poll",
5476                 .handler = handle_poll_command,
5477                 .mode = COMMAND_EXEC,
5478                 .help = "poll target state; or reconfigure background polling",
5479                 .usage = "['on'|'off']",
5480         },
5481         {
5482                 .name = "wait_halt",
5483                 .handler = handle_wait_halt_command,
5484                 .mode = COMMAND_EXEC,
5485                 .help = "wait up to the specified number of milliseconds "
5486                         "(default 5) for a previously requested halt",
5487                 .usage = "[milliseconds]",
5488         },
5489         {
5490                 .name = "halt",
5491                 .handler = handle_halt_command,
5492                 .mode = COMMAND_EXEC,
5493                 .help = "request target to halt, then wait up to the specified"
5494                         "number of milliseconds (default 5) for it to complete",
5495                 .usage = "[milliseconds]",
5496         },
5497         {
5498                 .name = "resume",
5499                 .handler = handle_resume_command,
5500                 .mode = COMMAND_EXEC,
5501                 .help = "resume target execution from current PC or address",
5502                 .usage = "[address]",
5503         },
5504         {
5505                 .name = "reset",
5506                 .handler = handle_reset_command,
5507                 .mode = COMMAND_EXEC,
5508                 .usage = "[run|halt|init]",
5509                 .help = "Reset all targets into the specified mode."
5510                         "Default reset mode is run, if not given.",
5511         },
5512         {
5513                 .name = "soft_reset_halt",
5514                 .handler = handle_soft_reset_halt_command,
5515                 .mode = COMMAND_EXEC,
5516                 .usage = "",
5517                 .help = "halt the target and do a soft reset",
5518         },
5519         {
5520                 .name = "step",
5521                 .handler = handle_step_command,
5522                 .mode = COMMAND_EXEC,
5523                 .help = "step one instruction from current PC or address",
5524                 .usage = "[address]",
5525         },
5526         {
5527                 .name = "mdw",
5528                 .handler = handle_md_command,
5529                 .mode = COMMAND_EXEC,
5530                 .help = "display memory words",
5531                 .usage = "['phys'] address [count]",
5532         },
5533         {
5534                 .name = "mdh",
5535                 .handler = handle_md_command,
5536                 .mode = COMMAND_EXEC,
5537                 .help = "display memory half-words",
5538                 .usage = "['phys'] address [count]",
5539         },
5540         {
5541                 .name = "mdb",
5542                 .handler = handle_md_command,
5543                 .mode = COMMAND_EXEC,
5544                 .help = "display memory bytes",
5545                 .usage = "['phys'] address [count]",
5546         },
5547         {
5548                 .name = "mww",
5549                 .handler = handle_mw_command,
5550                 .mode = COMMAND_EXEC,
5551                 .help = "write memory word",
5552                 .usage = "['phys'] address value [count]",
5553         },
5554         {
5555                 .name = "mwh",
5556                 .handler = handle_mw_command,
5557                 .mode = COMMAND_EXEC,
5558                 .help = "write memory half-word",
5559                 .usage = "['phys'] address value [count]",
5560         },
5561         {
5562                 .name = "mwb",
5563                 .handler = handle_mw_command,
5564                 .mode = COMMAND_EXEC,
5565                 .help = "write memory byte",
5566                 .usage = "['phys'] address value [count]",
5567         },
5568         {
5569                 .name = "bp",
5570                 .handler = handle_bp_command,
5571                 .mode = COMMAND_EXEC,
5572                 .help = "list or set hardware or software breakpoint",
5573                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5574         },
5575         {
5576                 .name = "rbp",
5577                 .handler = handle_rbp_command,
5578                 .mode = COMMAND_EXEC,
5579                 .help = "remove breakpoint",
5580                 .usage = "address",
5581         },
5582         {
5583                 .name = "wp",
5584                 .handler = handle_wp_command,
5585                 .mode = COMMAND_EXEC,
5586                 .help = "list (no params) or create watchpoints",
5587                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5588         },
5589         {
5590                 .name = "rwp",
5591                 .handler = handle_rwp_command,
5592                 .mode = COMMAND_EXEC,
5593                 .help = "remove watchpoint",
5594                 .usage = "address",
5595         },
5596         {
5597                 .name = "load_image",
5598                 .handler = handle_load_image_command,
5599                 .mode = COMMAND_EXEC,
5600                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5601                         "[min_address] [max_length]",
5602         },
5603         {
5604                 .name = "dump_image",
5605                 .handler = handle_dump_image_command,
5606                 .mode = COMMAND_EXEC,
5607                 .usage = "filename address size",
5608         },
5609         {
5610                 .name = "verify_image",
5611                 .handler = handle_verify_image_command,
5612                 .mode = COMMAND_EXEC,
5613                 .usage = "filename [offset [type]]",
5614         },
5615         {
5616                 .name = "test_image",
5617                 .handler = handle_test_image_command,
5618                 .mode = COMMAND_EXEC,
5619                 .usage = "filename [offset [type]]",
5620         },
5621         {
5622                 .name = "mem2array",
5623                 .mode = COMMAND_EXEC,
5624                 .jim_handler = jim_mem2array,
5625                 .help = "read 8/16/32 bit memory and return as a TCL array "
5626                         "for script processing",
5627                 .usage = "arrayname bitwidth address count",
5628         },
5629         {
5630                 .name = "array2mem",
5631                 .mode = COMMAND_EXEC,
5632                 .jim_handler = jim_array2mem,
5633                 .help = "convert a TCL array to memory locations "
5634                         "and write the 8/16/32 bit values",
5635                 .usage = "arrayname bitwidth address count",
5636         },
5637         {
5638                 .name = "reset_nag",
5639                 .handler = handle_target_reset_nag,
5640                 .mode = COMMAND_ANY,
5641                 .help = "Nag after each reset about options that could have been "
5642                                 "enabled to improve performance. ",
5643                 .usage = "['enable'|'disable']",
5644         },
5645         {
5646                 .name = "ps",
5647                 .handler = handle_ps_command,
5648                 .mode = COMMAND_EXEC,
5649                 .help = "list all tasks ",
5650                 .usage = " ",
5651         },
5652
5653         COMMAND_REGISTRATION_DONE
5654 };
5655 static int target_register_user_commands(struct command_context *cmd_ctx)
5656 {
5657         int retval = ERROR_OK;
5658         retval = target_request_register_commands(cmd_ctx);
5659         if (retval != ERROR_OK)
5660                 return retval;
5661
5662         retval = trace_register_commands(cmd_ctx);
5663         if (retval != ERROR_OK)
5664                 return retval;
5665
5666
5667         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5668 }