target: further shrink Jim-awareness
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2009 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38
39 #include "target.h"
40 #include "target_type.h"
41 #include "target_request.h"
42 #include "breakpoints.h"
43 #include "register.h"
44 #include "trace.h"
45 #include "image.h"
46
47
48 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
49 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv);
50
51 /* targets */
52 extern struct target_type arm7tdmi_target;
53 extern struct target_type arm720t_target;
54 extern struct target_type arm9tdmi_target;
55 extern struct target_type arm920t_target;
56 extern struct target_type arm966e_target;
57 extern struct target_type arm926ejs_target;
58 extern struct target_type fa526_target;
59 extern struct target_type feroceon_target;
60 extern struct target_type dragonite_target;
61 extern struct target_type xscale_target;
62 extern struct target_type cortexm3_target;
63 extern struct target_type cortexa8_target;
64 extern struct target_type arm11_target;
65 extern struct target_type mips_m4k_target;
66 extern struct target_type avr_target;
67 extern struct target_type testee_target;
68
69 struct target_type *target_types[] =
70 {
71         &arm7tdmi_target,
72         &arm9tdmi_target,
73         &arm920t_target,
74         &arm720t_target,
75         &arm966e_target,
76         &arm926ejs_target,
77         &fa526_target,
78         &feroceon_target,
79         &dragonite_target,
80         &xscale_target,
81         &cortexm3_target,
82         &cortexa8_target,
83         &arm11_target,
84         &mips_m4k_target,
85         &avr_target,
86         &testee_target,
87         NULL,
88 };
89
90 struct target *all_targets = NULL;
91 struct target_event_callback *target_event_callbacks = NULL;
92 struct target_timer_callback *target_timer_callbacks = NULL;
93
94 static const Jim_Nvp nvp_assert[] = {
95         { .name = "assert", NVP_ASSERT },
96         { .name = "deassert", NVP_DEASSERT },
97         { .name = "T", NVP_ASSERT },
98         { .name = "F", NVP_DEASSERT },
99         { .name = "t", NVP_ASSERT },
100         { .name = "f", NVP_DEASSERT },
101         { .name = NULL, .value = -1 }
102 };
103
104 static const Jim_Nvp nvp_error_target[] = {
105         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
106         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
107         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
108         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
109         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
110         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
111         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
112         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
113         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
114         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
115         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
116         { .value = -1, .name = NULL }
117 };
118
119 const char *target_strerror_safe(int err)
120 {
121         const Jim_Nvp *n;
122
123         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
124         if (n->name == NULL) {
125                 return "unknown";
126         } else {
127                 return n->name;
128         }
129 }
130
131 static const Jim_Nvp nvp_target_event[] = {
132         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
133         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
134
135         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
136         { .value = TARGET_EVENT_HALTED, .name = "halted" },
137         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
138         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
139         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
140
141         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
142         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
143
144         /* historical name */
145
146         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
147
148         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
149         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
150         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
151         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
152         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
153         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
154         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
155         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
156         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
157         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
158         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
159
160         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
161         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
162
163         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
164         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
165
166         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
167         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
168
169         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
170         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
171
172         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
173         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
174
175         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
176         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
177         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
178
179         { .name = NULL, .value = -1 }
180 };
181
182 static const Jim_Nvp nvp_target_state[] = {
183         { .name = "unknown", .value = TARGET_UNKNOWN },
184         { .name = "running", .value = TARGET_RUNNING },
185         { .name = "halted",  .value = TARGET_HALTED },
186         { .name = "reset",   .value = TARGET_RESET },
187         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
188         { .name = NULL, .value = -1 },
189 };
190
191 static const Jim_Nvp nvp_target_debug_reason [] = {
192         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
193         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
194         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
195         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
196         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
197         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
198         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
199         { .name = NULL, .value = -1 },
200 };
201
202 static const Jim_Nvp nvp_target_endian[] = {
203         { .name = "big",    .value = TARGET_BIG_ENDIAN },
204         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
205         { .name = "be",     .value = TARGET_BIG_ENDIAN },
206         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
207         { .name = NULL,     .value = -1 },
208 };
209
210 static const Jim_Nvp nvp_reset_modes[] = {
211         { .name = "unknown", .value = RESET_UNKNOWN },
212         { .name = "run"    , .value = RESET_RUN },
213         { .name = "halt"   , .value = RESET_HALT },
214         { .name = "init"   , .value = RESET_INIT },
215         { .name = NULL     , .value = -1 },
216 };
217
218 const char *debug_reason_name(struct target *t)
219 {
220         const char *cp;
221
222         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
223                         t->debug_reason)->name;
224         if (!cp) {
225                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
226                 cp = "(*BUG*unknown*BUG*)";
227         }
228         return cp;
229 }
230
231 const char *
232 target_state_name( struct target *t )
233 {
234         const char *cp;
235         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
236         if( !cp ){
237                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
238                 cp = "(*BUG*unknown*BUG*)";
239         }
240         return cp;
241 }
242
243 /* determine the number of the new target */
244 static int new_target_number(void)
245 {
246         struct target *t;
247         int x;
248
249         /* number is 0 based */
250         x = -1;
251         t = all_targets;
252         while (t) {
253                 if (x < t->target_number) {
254                         x = t->target_number;
255                 }
256                 t = t->next;
257         }
258         return x + 1;
259 }
260
261 /* read a uint32_t from a buffer in target memory endianness */
262 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
263 {
264         if (target->endianness == TARGET_LITTLE_ENDIAN)
265                 return le_to_h_u32(buffer);
266         else
267                 return be_to_h_u32(buffer);
268 }
269
270 /* read a uint16_t from a buffer in target memory endianness */
271 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
272 {
273         if (target->endianness == TARGET_LITTLE_ENDIAN)
274                 return le_to_h_u16(buffer);
275         else
276                 return be_to_h_u16(buffer);
277 }
278
279 /* read a uint8_t from a buffer in target memory endianness */
280 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
281 {
282         return *buffer & 0x0ff;
283 }
284
285 /* write a uint32_t to a buffer in target memory endianness */
286 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
287 {
288         if (target->endianness == TARGET_LITTLE_ENDIAN)
289                 h_u32_to_le(buffer, value);
290         else
291                 h_u32_to_be(buffer, value);
292 }
293
294 /* write a uint16_t to a buffer in target memory endianness */
295 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
296 {
297         if (target->endianness == TARGET_LITTLE_ENDIAN)
298                 h_u16_to_le(buffer, value);
299         else
300                 h_u16_to_be(buffer, value);
301 }
302
303 /* write a uint8_t to a buffer in target memory endianness */
304 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
305 {
306         *buffer = value;
307 }
308
309 /* return a pointer to a configured target; id is name or number */
310 struct target *get_target(const char *id)
311 {
312         struct target *target;
313
314         /* try as tcltarget name */
315         for (target = all_targets; target; target = target->next) {
316                 if (target->cmd_name == NULL)
317                         continue;
318                 if (strcmp(id, target->cmd_name) == 0)
319                         return target;
320         }
321
322         /* It's OK to remove this fallback sometime after August 2010 or so */
323
324         /* no match, try as number */
325         unsigned num;
326         if (parse_uint(id, &num) != ERROR_OK)
327                 return NULL;
328
329         for (target = all_targets; target; target = target->next) {
330                 if (target->target_number == (int)num) {
331                         LOG_WARNING("use '%s' as target identifier, not '%u'",
332                                         target->cmd_name, num);
333                         return target;
334                 }
335         }
336
337         return NULL;
338 }
339
340 /* returns a pointer to the n-th configured target */
341 static struct target *get_target_by_num(int num)
342 {
343         struct target *target = all_targets;
344
345         while (target) {
346                 if (target->target_number == num) {
347                         return target;
348                 }
349                 target = target->next;
350         }
351
352         return NULL;
353 }
354
355 struct target* get_current_target(struct command_context *cmd_ctx)
356 {
357         struct target *target = get_target_by_num(cmd_ctx->current_target);
358
359         if (target == NULL)
360         {
361                 LOG_ERROR("BUG: current_target out of bounds");
362                 exit(-1);
363         }
364
365         return target;
366 }
367
368 int target_poll(struct target *target)
369 {
370         int retval;
371
372         /* We can't poll until after examine */
373         if (!target_was_examined(target))
374         {
375                 /* Fail silently lest we pollute the log */
376                 return ERROR_FAIL;
377         }
378
379         retval = target->type->poll(target);
380         if (retval != ERROR_OK)
381                 return retval;
382
383         if (target->halt_issued)
384         {
385                 if (target->state == TARGET_HALTED)
386                 {
387                         target->halt_issued = false;
388                 } else
389                 {
390                         long long t = timeval_ms() - target->halt_issued_time;
391                         if (t>1000)
392                         {
393                                 target->halt_issued = false;
394                                 LOG_INFO("Halt timed out, wake up GDB.");
395                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
396                         }
397                 }
398         }
399
400         return ERROR_OK;
401 }
402
403 int target_halt(struct target *target)
404 {
405         int retval;
406         /* We can't poll until after examine */
407         if (!target_was_examined(target))
408         {
409                 LOG_ERROR("Target not examined yet");
410                 return ERROR_FAIL;
411         }
412
413         retval = target->type->halt(target);
414         if (retval != ERROR_OK)
415                 return retval;
416
417         target->halt_issued = true;
418         target->halt_issued_time = timeval_ms();
419
420         return ERROR_OK;
421 }
422
423 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
424 {
425         int retval;
426
427         /* We can't poll until after examine */
428         if (!target_was_examined(target))
429         {
430                 LOG_ERROR("Target not examined yet");
431                 return ERROR_FAIL;
432         }
433
434         /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
435          * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
436          * the application.
437          */
438         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
439                 return retval;
440
441         return retval;
442 }
443
444 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
445 {
446         char buf[100];
447         int retval;
448         Jim_Nvp *n;
449         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
450         if (n->name == NULL) {
451                 LOG_ERROR("invalid reset mode");
452                 return ERROR_FAIL;
453         }
454
455         /* disable polling during reset to make reset event scripts
456          * more predictable, i.e. dr/irscan & pathmove in events will
457          * not have JTAG operations injected into the middle of a sequence.
458          */
459         bool save_poll = jtag_poll_get_enabled();
460
461         jtag_poll_set_enabled(false);
462
463         sprintf(buf, "ocd_process_reset %s", n->name);
464         retval = Jim_Eval(cmd_ctx->interp, buf);
465
466         jtag_poll_set_enabled(save_poll);
467
468         if (retval != JIM_OK) {
469                 Jim_PrintErrorMessage(cmd_ctx->interp);
470                 return ERROR_FAIL;
471         }
472
473         /* We want any events to be processed before the prompt */
474         retval = target_call_timer_callbacks_now();
475
476         return retval;
477 }
478
479 static int identity_virt2phys(struct target *target,
480                 uint32_t virtual, uint32_t *physical)
481 {
482         *physical = virtual;
483         return ERROR_OK;
484 }
485
486 static int no_mmu(struct target *target, int *enabled)
487 {
488         *enabled = 0;
489         return ERROR_OK;
490 }
491
492 static int default_examine(struct target *target)
493 {
494         target_set_examined(target);
495         return ERROR_OK;
496 }
497
498 int target_examine_one(struct target *target)
499 {
500         return target->type->examine(target);
501 }
502
503 static int jtag_enable_callback(enum jtag_event event, void *priv)
504 {
505         struct target *target = priv;
506
507         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
508                 return ERROR_OK;
509
510         jtag_unregister_event_callback(jtag_enable_callback, target);
511         return target_examine_one(target);
512 }
513
514
515 /* Targets that correctly implement init + examine, i.e.
516  * no communication with target during init:
517  *
518  * XScale
519  */
520 int target_examine(void)
521 {
522         int retval = ERROR_OK;
523         struct target *target;
524
525         for (target = all_targets; target; target = target->next)
526         {
527                 /* defer examination, but don't skip it */
528                 if (!target->tap->enabled) {
529                         jtag_register_event_callback(jtag_enable_callback,
530                                         target);
531                         continue;
532                 }
533                 if ((retval = target_examine_one(target)) != ERROR_OK)
534                         return retval;
535         }
536         return retval;
537 }
538 const char *target_type_name(struct target *target)
539 {
540         return target->type->name;
541 }
542
543 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
544 {
545         if (!target_was_examined(target))
546         {
547                 LOG_ERROR("Target not examined yet");
548                 return ERROR_FAIL;
549         }
550         return target->type->write_memory_imp(target, address, size, count, buffer);
551 }
552
553 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
554 {
555         if (!target_was_examined(target))
556         {
557                 LOG_ERROR("Target not examined yet");
558                 return ERROR_FAIL;
559         }
560         return target->type->read_memory_imp(target, address, size, count, buffer);
561 }
562
563 static int target_soft_reset_halt_imp(struct target *target)
564 {
565         if (!target_was_examined(target))
566         {
567                 LOG_ERROR("Target not examined yet");
568                 return ERROR_FAIL;
569         }
570         if (!target->type->soft_reset_halt_imp) {
571                 LOG_ERROR("Target %s does not support soft_reset_halt",
572                                 target_name(target));
573                 return ERROR_FAIL;
574         }
575         return target->type->soft_reset_halt_imp(target);
576 }
577
578 static int target_run_algorithm_imp(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
579 {
580         if (!target_was_examined(target))
581         {
582                 LOG_ERROR("Target not examined yet");
583                 return ERROR_FAIL;
584         }
585         return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
586 }
587
588 int target_read_memory(struct target *target,
589                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
590 {
591         return target->type->read_memory(target, address, size, count, buffer);
592 }
593
594 int target_read_phys_memory(struct target *target,
595                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
596 {
597         return target->type->read_phys_memory(target, address, size, count, buffer);
598 }
599
600 int target_write_memory(struct target *target,
601                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
602 {
603         return target->type->write_memory(target, address, size, count, buffer);
604 }
605
606 int target_write_phys_memory(struct target *target,
607                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
608 {
609         return target->type->write_phys_memory(target, address, size, count, buffer);
610 }
611
612 int target_bulk_write_memory(struct target *target,
613                 uint32_t address, uint32_t count, uint8_t *buffer)
614 {
615         return target->type->bulk_write_memory(target, address, count, buffer);
616 }
617
618 int target_add_breakpoint(struct target *target,
619                 struct breakpoint *breakpoint)
620 {
621         if (target->state != TARGET_HALTED) {
622                 LOG_WARNING("target %s is not halted", target->cmd_name);
623                 return ERROR_TARGET_NOT_HALTED;
624         }
625         return target->type->add_breakpoint(target, breakpoint);
626 }
627 int target_remove_breakpoint(struct target *target,
628                 struct breakpoint *breakpoint)
629 {
630         return target->type->remove_breakpoint(target, breakpoint);
631 }
632
633 int target_add_watchpoint(struct target *target,
634                 struct watchpoint *watchpoint)
635 {
636         if (target->state != TARGET_HALTED) {
637                 LOG_WARNING("target %s is not halted", target->cmd_name);
638                 return ERROR_TARGET_NOT_HALTED;
639         }
640         return target->type->add_watchpoint(target, watchpoint);
641 }
642 int target_remove_watchpoint(struct target *target,
643                 struct watchpoint *watchpoint)
644 {
645         return target->type->remove_watchpoint(target, watchpoint);
646 }
647
648 int target_get_gdb_reg_list(struct target *target,
649                 struct reg **reg_list[], int *reg_list_size)
650 {
651         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
652 }
653 int target_step(struct target *target,
654                 int current, uint32_t address, int handle_breakpoints)
655 {
656         return target->type->step(target, current, address, handle_breakpoints);
657 }
658
659
660 int target_run_algorithm(struct target *target,
661                 int num_mem_params, struct mem_param *mem_params,
662                 int num_reg_params, struct reg_param *reg_param,
663                 uint32_t entry_point, uint32_t exit_point,
664                 int timeout_ms, void *arch_info)
665 {
666         return target->type->run_algorithm(target,
667                         num_mem_params, mem_params, num_reg_params, reg_param,
668                         entry_point, exit_point, timeout_ms, arch_info);
669 }
670
671 /**
672  * Reset the @c examined flag for the given target.
673  * Pure paranoia -- targets are zeroed on allocation.
674  */
675 static void target_reset_examined(struct target *target)
676 {
677         target->examined = false;
678 }
679
680 static int
681 err_read_phys_memory(struct target *target, uint32_t address,
682                 uint32_t size, uint32_t count, uint8_t *buffer)
683 {
684         LOG_ERROR("Not implemented: %s", __func__);
685         return ERROR_FAIL;
686 }
687
688 static int
689 err_write_phys_memory(struct target *target, uint32_t address,
690                 uint32_t size, uint32_t count, uint8_t *buffer)
691 {
692         LOG_ERROR("Not implemented: %s", __func__);
693         return ERROR_FAIL;
694 }
695
696 static int handle_target(void *priv);
697
698 static int target_init_one(struct command_context *cmd_ctx,
699                 struct target *target)
700 {
701         target_reset_examined(target);
702
703         struct target_type *type = target->type;
704         if (type->examine == NULL)
705                 type->examine = default_examine;
706
707         int retval = type->init_target(cmd_ctx, target);
708         if (ERROR_OK != retval)
709         {
710                 LOG_ERROR("target '%s' init failed", target_name(target));
711                 return retval;
712         }
713
714         /**
715          * @todo get rid of those *memory_imp() methods, now that all
716          * callers are using target_*_memory() accessors ... and make
717          * sure the "physical" paths handle the same issues.
718          */
719         /* a non-invasive way(in terms of patches) to add some code that
720          * runs before the type->write/read_memory implementation
721          */
722         type->write_memory_imp = target->type->write_memory;
723         type->write_memory = target_write_memory_imp;
724
725         type->read_memory_imp = target->type->read_memory;
726         type->read_memory = target_read_memory_imp;
727
728         type->soft_reset_halt_imp = target->type->soft_reset_halt;
729         type->soft_reset_halt = target_soft_reset_halt_imp;
730
731         type->run_algorithm_imp = target->type->run_algorithm;
732         type->run_algorithm = target_run_algorithm_imp;
733
734         /* Sanity-check MMU support ... stub in what we must, to help
735          * implement it in stages, but warn if we need to do so.
736          */
737         if (type->mmu)
738         {
739                 if (type->write_phys_memory == NULL)
740                 {
741                         LOG_ERROR("type '%s' is missing write_phys_memory",
742                                         type->name);
743                         type->write_phys_memory = err_write_phys_memory;
744                 }
745                 if (type->read_phys_memory == NULL)
746                 {
747                         LOG_ERROR("type '%s' is missing read_phys_memory",
748                                         type->name);
749                         type->read_phys_memory = err_read_phys_memory;
750                 }
751                 if (type->virt2phys == NULL)
752                 {
753                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
754                         type->virt2phys = identity_virt2phys;
755                 }
756         }
757         else
758         {
759                 /* Make sure no-MMU targets all behave the same:  make no
760                  * distinction between physical and virtual addresses, and
761                  * ensure that virt2phys() is always an identity mapping.
762                  */
763                 if (type->write_phys_memory || type->read_phys_memory
764                                 || type->virt2phys)
765                 {
766                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
767                 }
768
769                 type->mmu = no_mmu;
770                 type->write_phys_memory = type->write_memory;
771                 type->read_phys_memory = type->read_memory;
772                 type->virt2phys = identity_virt2phys;
773         }
774         return ERROR_OK;
775 }
776
777 int target_init(struct command_context *cmd_ctx)
778 {
779         struct target *target;
780         int retval;
781
782         for (target = all_targets; target; target = target->next)
783         {
784                 retval = target_init_one(cmd_ctx, target);
785                 if (ERROR_OK != retval)
786                         return retval;
787         }
788
789         if (!all_targets)
790                 return ERROR_OK;
791
792         retval = target_register_user_commands(cmd_ctx);
793         if (ERROR_OK != retval)
794                 return retval;
795
796         retval = target_register_timer_callback(&handle_target,
797                         100, 1, cmd_ctx->interp);
798         if (ERROR_OK != retval)
799                 return retval;
800
801         return ERROR_OK;
802 }
803
804 COMMAND_HANDLER(handle_target_init_command)
805 {
806         if (CMD_ARGC != 0)
807                 return ERROR_COMMAND_SYNTAX_ERROR;
808
809         static bool target_initialized = false;
810         if (target_initialized)
811         {
812                 LOG_INFO("'target init' has already been called");
813                 return ERROR_OK;
814         }
815         target_initialized = true;
816
817         LOG_DEBUG("Initializing targets...");
818         return target_init(CMD_CTX);
819 }
820
821 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
822 {
823         struct target_event_callback **callbacks_p = &target_event_callbacks;
824
825         if (callback == NULL)
826         {
827                 return ERROR_INVALID_ARGUMENTS;
828         }
829
830         if (*callbacks_p)
831         {
832                 while ((*callbacks_p)->next)
833                         callbacks_p = &((*callbacks_p)->next);
834                 callbacks_p = &((*callbacks_p)->next);
835         }
836
837         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
838         (*callbacks_p)->callback = callback;
839         (*callbacks_p)->priv = priv;
840         (*callbacks_p)->next = NULL;
841
842         return ERROR_OK;
843 }
844
845 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
846 {
847         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
848         struct timeval now;
849
850         if (callback == NULL)
851         {
852                 return ERROR_INVALID_ARGUMENTS;
853         }
854
855         if (*callbacks_p)
856         {
857                 while ((*callbacks_p)->next)
858                         callbacks_p = &((*callbacks_p)->next);
859                 callbacks_p = &((*callbacks_p)->next);
860         }
861
862         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
863         (*callbacks_p)->callback = callback;
864         (*callbacks_p)->periodic = periodic;
865         (*callbacks_p)->time_ms = time_ms;
866
867         gettimeofday(&now, NULL);
868         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
869         time_ms -= (time_ms % 1000);
870         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
871         if ((*callbacks_p)->when.tv_usec > 1000000)
872         {
873                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
874                 (*callbacks_p)->when.tv_sec += 1;
875         }
876
877         (*callbacks_p)->priv = priv;
878         (*callbacks_p)->next = NULL;
879
880         return ERROR_OK;
881 }
882
883 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
884 {
885         struct target_event_callback **p = &target_event_callbacks;
886         struct target_event_callback *c = target_event_callbacks;
887
888         if (callback == NULL)
889         {
890                 return ERROR_INVALID_ARGUMENTS;
891         }
892
893         while (c)
894         {
895                 struct target_event_callback *next = c->next;
896                 if ((c->callback == callback) && (c->priv == priv))
897                 {
898                         *p = next;
899                         free(c);
900                         return ERROR_OK;
901                 }
902                 else
903                         p = &(c->next);
904                 c = next;
905         }
906
907         return ERROR_OK;
908 }
909
910 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
911 {
912         struct target_timer_callback **p = &target_timer_callbacks;
913         struct target_timer_callback *c = target_timer_callbacks;
914
915         if (callback == NULL)
916         {
917                 return ERROR_INVALID_ARGUMENTS;
918         }
919
920         while (c)
921         {
922                 struct target_timer_callback *next = c->next;
923                 if ((c->callback == callback) && (c->priv == priv))
924                 {
925                         *p = next;
926                         free(c);
927                         return ERROR_OK;
928                 }
929                 else
930                         p = &(c->next);
931                 c = next;
932         }
933
934         return ERROR_OK;
935 }
936
937 int target_call_event_callbacks(struct target *target, enum target_event event)
938 {
939         struct target_event_callback *callback = target_event_callbacks;
940         struct target_event_callback *next_callback;
941
942         if (event == TARGET_EVENT_HALTED)
943         {
944                 /* execute early halted first */
945                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
946         }
947
948         LOG_DEBUG("target event %i (%s)",
949                           event,
950                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
951
952         target_handle_event(target, event);
953
954         while (callback)
955         {
956                 next_callback = callback->next;
957                 callback->callback(target, event, callback->priv);
958                 callback = next_callback;
959         }
960
961         return ERROR_OK;
962 }
963
964 static int target_timer_callback_periodic_restart(
965                 struct target_timer_callback *cb, struct timeval *now)
966 {
967         int time_ms = cb->time_ms;
968         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
969         time_ms -= (time_ms % 1000);
970         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
971         if (cb->when.tv_usec > 1000000)
972         {
973                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
974                 cb->when.tv_sec += 1;
975         }
976         return ERROR_OK;
977 }
978
979 static int target_call_timer_callback(struct target_timer_callback *cb,
980                 struct timeval *now)
981 {
982         cb->callback(cb->priv);
983
984         if (cb->periodic)
985                 return target_timer_callback_periodic_restart(cb, now);
986
987         return target_unregister_timer_callback(cb->callback, cb->priv);
988 }
989
990 static int target_call_timer_callbacks_check_time(int checktime)
991 {
992         keep_alive();
993
994         struct timeval now;
995         gettimeofday(&now, NULL);
996
997         struct target_timer_callback *callback = target_timer_callbacks;
998         while (callback)
999         {
1000                 // cleaning up may unregister and free this callback
1001                 struct target_timer_callback *next_callback = callback->next;
1002
1003                 bool call_it = callback->callback &&
1004                         ((!checktime && callback->periodic) ||
1005                           now.tv_sec > callback->when.tv_sec ||
1006                          (now.tv_sec == callback->when.tv_sec &&
1007                           now.tv_usec >= callback->when.tv_usec));
1008
1009                 if (call_it)
1010                 {
1011                         int retval = target_call_timer_callback(callback, &now);
1012                         if (retval != ERROR_OK)
1013                                 return retval;
1014                 }
1015
1016                 callback = next_callback;
1017         }
1018
1019         return ERROR_OK;
1020 }
1021
1022 int target_call_timer_callbacks(void)
1023 {
1024         return target_call_timer_callbacks_check_time(1);
1025 }
1026
1027 /* invoke periodic callbacks immediately */
1028 int target_call_timer_callbacks_now(void)
1029 {
1030         return target_call_timer_callbacks_check_time(0);
1031 }
1032
1033 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1034 {
1035         struct working_area *c = target->working_areas;
1036         struct working_area *new_wa = NULL;
1037
1038         /* Reevaluate working area address based on MMU state*/
1039         if (target->working_areas == NULL)
1040         {
1041                 int retval;
1042                 int enabled;
1043
1044                 retval = target->type->mmu(target, &enabled);
1045                 if (retval != ERROR_OK)
1046                 {
1047                         return retval;
1048                 }
1049
1050                 if (!enabled) {
1051                         if (target->working_area_phys_spec) {
1052                                 LOG_DEBUG("MMU disabled, using physical "
1053                                         "address for working memory 0x%08x",
1054                                         (unsigned)target->working_area_phys);
1055                                 target->working_area = target->working_area_phys;
1056                         } else {
1057                                 LOG_ERROR("No working memory available. "
1058                                         "Specify -work-area-phys to target.");
1059                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1060                         }
1061                 } else {
1062                         if (target->working_area_virt_spec) {
1063                                 LOG_DEBUG("MMU enabled, using virtual "
1064                                         "address for working memory 0x%08x",
1065                                         (unsigned)target->working_area_virt);
1066                                 target->working_area = target->working_area_virt;
1067                         } else {
1068                                 LOG_ERROR("No working memory available. "
1069                                         "Specify -work-area-virt to target.");
1070                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1071                         }
1072                 }
1073         }
1074
1075         /* only allocate multiples of 4 byte */
1076         if (size % 4)
1077         {
1078                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1079                 size = (size + 3) & (~3);
1080         }
1081
1082         /* see if there's already a matching working area */
1083         while (c)
1084         {
1085                 if ((c->free) && (c->size == size))
1086                 {
1087                         new_wa = c;
1088                         break;
1089                 }
1090                 c = c->next;
1091         }
1092
1093         /* if not, allocate a new one */
1094         if (!new_wa)
1095         {
1096                 struct working_area **p = &target->working_areas;
1097                 uint32_t first_free = target->working_area;
1098                 uint32_t free_size = target->working_area_size;
1099
1100                 c = target->working_areas;
1101                 while (c)
1102                 {
1103                         first_free += c->size;
1104                         free_size -= c->size;
1105                         p = &c->next;
1106                         c = c->next;
1107                 }
1108
1109                 if (free_size < size)
1110                 {
1111                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1112                                     (unsigned)(size), (unsigned)(free_size));
1113                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1114                 }
1115
1116                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1117
1118                 new_wa = malloc(sizeof(struct working_area));
1119                 new_wa->next = NULL;
1120                 new_wa->size = size;
1121                 new_wa->address = first_free;
1122
1123                 if (target->backup_working_area)
1124                 {
1125                         int retval;
1126                         new_wa->backup = malloc(new_wa->size);
1127                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1128                         {
1129                                 free(new_wa->backup);
1130                                 free(new_wa);
1131                                 return retval;
1132                         }
1133                 }
1134                 else
1135                 {
1136                         new_wa->backup = NULL;
1137                 }
1138
1139                 /* put new entry in list */
1140                 *p = new_wa;
1141         }
1142
1143         /* mark as used, and return the new (reused) area */
1144         new_wa->free = 0;
1145         *area = new_wa;
1146
1147         /* user pointer */
1148         new_wa->user = area;
1149
1150         return ERROR_OK;
1151 }
1152
1153 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1154 {
1155         if (area->free)
1156                 return ERROR_OK;
1157
1158         if (restore && target->backup_working_area)
1159         {
1160                 int retval;
1161                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1162                         return retval;
1163         }
1164
1165         area->free = 1;
1166
1167         /* mark user pointer invalid */
1168         *area->user = NULL;
1169         area->user = NULL;
1170
1171         return ERROR_OK;
1172 }
1173
1174 int target_free_working_area(struct target *target, struct working_area *area)
1175 {
1176         return target_free_working_area_restore(target, area, 1);
1177 }
1178
1179 /* free resources and restore memory, if restoring memory fails,
1180  * free up resources anyway
1181  */
1182 void target_free_all_working_areas_restore(struct target *target, int restore)
1183 {
1184         struct working_area *c = target->working_areas;
1185
1186         while (c)
1187         {
1188                 struct working_area *next = c->next;
1189                 target_free_working_area_restore(target, c, restore);
1190
1191                 if (c->backup)
1192                         free(c->backup);
1193
1194                 free(c);
1195
1196                 c = next;
1197         }
1198
1199         target->working_areas = NULL;
1200 }
1201
1202 void target_free_all_working_areas(struct target *target)
1203 {
1204         target_free_all_working_areas_restore(target, 1);
1205 }
1206
1207 int target_arch_state(struct target *target)
1208 {
1209         int retval;
1210         if (target == NULL)
1211         {
1212                 LOG_USER("No target has been configured");
1213                 return ERROR_OK;
1214         }
1215
1216         LOG_USER("target state: %s", target_state_name( target ));
1217
1218         if (target->state != TARGET_HALTED)
1219                 return ERROR_OK;
1220
1221         retval = target->type->arch_state(target);
1222         return retval;
1223 }
1224
1225 /* Single aligned words are guaranteed to use 16 or 32 bit access
1226  * mode respectively, otherwise data is handled as quickly as
1227  * possible
1228  */
1229 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1230 {
1231         int retval;
1232         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1233                   (int)size, (unsigned)address);
1234
1235         if (!target_was_examined(target))
1236         {
1237                 LOG_ERROR("Target not examined yet");
1238                 return ERROR_FAIL;
1239         }
1240
1241         if (size == 0) {
1242                 return ERROR_OK;
1243         }
1244
1245         if ((address + size - 1) < address)
1246         {
1247                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1248                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1249                                   (unsigned)address,
1250                                   (unsigned)size);
1251                 return ERROR_FAIL;
1252         }
1253
1254         if (((address % 2) == 0) && (size == 2))
1255         {
1256                 return target_write_memory(target, address, 2, 1, buffer);
1257         }
1258
1259         /* handle unaligned head bytes */
1260         if (address % 4)
1261         {
1262                 uint32_t unaligned = 4 - (address % 4);
1263
1264                 if (unaligned > size)
1265                         unaligned = size;
1266
1267                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1268                         return retval;
1269
1270                 buffer += unaligned;
1271                 address += unaligned;
1272                 size -= unaligned;
1273         }
1274
1275         /* handle aligned words */
1276         if (size >= 4)
1277         {
1278                 int aligned = size - (size % 4);
1279
1280                 /* use bulk writes above a certain limit. This may have to be changed */
1281                 if (aligned > 128)
1282                 {
1283                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1284                                 return retval;
1285                 }
1286                 else
1287                 {
1288                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1289                                 return retval;
1290                 }
1291
1292                 buffer += aligned;
1293                 address += aligned;
1294                 size -= aligned;
1295         }
1296
1297         /* handle tail writes of less than 4 bytes */
1298         if (size > 0)
1299         {
1300                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1301                         return retval;
1302         }
1303
1304         return ERROR_OK;
1305 }
1306
1307 /* Single aligned words are guaranteed to use 16 or 32 bit access
1308  * mode respectively, otherwise data is handled as quickly as
1309  * possible
1310  */
1311 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1312 {
1313         int retval;
1314         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1315                           (int)size, (unsigned)address);
1316
1317         if (!target_was_examined(target))
1318         {
1319                 LOG_ERROR("Target not examined yet");
1320                 return ERROR_FAIL;
1321         }
1322
1323         if (size == 0) {
1324                 return ERROR_OK;
1325         }
1326
1327         if ((address + size - 1) < address)
1328         {
1329                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1330                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1331                                   address,
1332                                   size);
1333                 return ERROR_FAIL;
1334         }
1335
1336         if (((address % 2) == 0) && (size == 2))
1337         {
1338                 return target_read_memory(target, address, 2, 1, buffer);
1339         }
1340
1341         /* handle unaligned head bytes */
1342         if (address % 4)
1343         {
1344                 uint32_t unaligned = 4 - (address % 4);
1345
1346                 if (unaligned > size)
1347                         unaligned = size;
1348
1349                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1350                         return retval;
1351
1352                 buffer += unaligned;
1353                 address += unaligned;
1354                 size -= unaligned;
1355         }
1356
1357         /* handle aligned words */
1358         if (size >= 4)
1359         {
1360                 int aligned = size - (size % 4);
1361
1362                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1363                         return retval;
1364
1365                 buffer += aligned;
1366                 address += aligned;
1367                 size -= aligned;
1368         }
1369
1370         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1371         if(size >=2)
1372         {
1373                 int aligned = size - (size%2);
1374                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1375                 if (retval != ERROR_OK)
1376                         return retval;
1377
1378                 buffer += aligned;
1379                 address += aligned;
1380                 size -= aligned;
1381         }
1382         /* handle tail writes of less than 4 bytes */
1383         if (size > 0)
1384         {
1385                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1386                         return retval;
1387         }
1388
1389         return ERROR_OK;
1390 }
1391
1392 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1393 {
1394         uint8_t *buffer;
1395         int retval;
1396         uint32_t i;
1397         uint32_t checksum = 0;
1398         if (!target_was_examined(target))
1399         {
1400                 LOG_ERROR("Target not examined yet");
1401                 return ERROR_FAIL;
1402         }
1403
1404         if ((retval = target->type->checksum_memory(target, address,
1405                 size, &checksum)) != ERROR_OK)
1406         {
1407                 buffer = malloc(size);
1408                 if (buffer == NULL)
1409                 {
1410                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1411                         return ERROR_INVALID_ARGUMENTS;
1412                 }
1413                 retval = target_read_buffer(target, address, size, buffer);
1414                 if (retval != ERROR_OK)
1415                 {
1416                         free(buffer);
1417                         return retval;
1418                 }
1419
1420                 /* convert to target endianess */
1421                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1422                 {
1423                         uint32_t target_data;
1424                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1425                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1426                 }
1427
1428                 retval = image_calculate_checksum(buffer, size, &checksum);
1429                 free(buffer);
1430         }
1431
1432         *crc = checksum;
1433
1434         return retval;
1435 }
1436
1437 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1438 {
1439         int retval;
1440         if (!target_was_examined(target))
1441         {
1442                 LOG_ERROR("Target not examined yet");
1443                 return ERROR_FAIL;
1444         }
1445
1446         if (target->type->blank_check_memory == 0)
1447                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1448
1449         retval = target->type->blank_check_memory(target, address, size, blank);
1450
1451         return retval;
1452 }
1453
1454 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1455 {
1456         uint8_t value_buf[4];
1457         if (!target_was_examined(target))
1458         {
1459                 LOG_ERROR("Target not examined yet");
1460                 return ERROR_FAIL;
1461         }
1462
1463         int retval = target_read_memory(target, address, 4, 1, value_buf);
1464
1465         if (retval == ERROR_OK)
1466         {
1467                 *value = target_buffer_get_u32(target, value_buf);
1468                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1469                                   address,
1470                                   *value);
1471         }
1472         else
1473         {
1474                 *value = 0x0;
1475                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1476                                   address);
1477         }
1478
1479         return retval;
1480 }
1481
1482 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1483 {
1484         uint8_t value_buf[2];
1485         if (!target_was_examined(target))
1486         {
1487                 LOG_ERROR("Target not examined yet");
1488                 return ERROR_FAIL;
1489         }
1490
1491         int retval = target_read_memory(target, address, 2, 1, value_buf);
1492
1493         if (retval == ERROR_OK)
1494         {
1495                 *value = target_buffer_get_u16(target, value_buf);
1496                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1497                                   address,
1498                                   *value);
1499         }
1500         else
1501         {
1502                 *value = 0x0;
1503                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1504                                   address);
1505         }
1506
1507         return retval;
1508 }
1509
1510 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1511 {
1512         int retval = target_read_memory(target, address, 1, 1, value);
1513         if (!target_was_examined(target))
1514         {
1515                 LOG_ERROR("Target not examined yet");
1516                 return ERROR_FAIL;
1517         }
1518
1519         if (retval == ERROR_OK)
1520         {
1521                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1522                                   address,
1523                                   *value);
1524         }
1525         else
1526         {
1527                 *value = 0x0;
1528                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1529                                   address);
1530         }
1531
1532         return retval;
1533 }
1534
1535 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1536 {
1537         int retval;
1538         uint8_t value_buf[4];
1539         if (!target_was_examined(target))
1540         {
1541                 LOG_ERROR("Target not examined yet");
1542                 return ERROR_FAIL;
1543         }
1544
1545         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1546                           address,
1547                           value);
1548
1549         target_buffer_set_u32(target, value_buf, value);
1550         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1551         {
1552                 LOG_DEBUG("failed: %i", retval);
1553         }
1554
1555         return retval;
1556 }
1557
1558 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1559 {
1560         int retval;
1561         uint8_t value_buf[2];
1562         if (!target_was_examined(target))
1563         {
1564                 LOG_ERROR("Target not examined yet");
1565                 return ERROR_FAIL;
1566         }
1567
1568         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1569                           address,
1570                           value);
1571
1572         target_buffer_set_u16(target, value_buf, value);
1573         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1574         {
1575                 LOG_DEBUG("failed: %i", retval);
1576         }
1577
1578         return retval;
1579 }
1580
1581 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1582 {
1583         int retval;
1584         if (!target_was_examined(target))
1585         {
1586                 LOG_ERROR("Target not examined yet");
1587                 return ERROR_FAIL;
1588         }
1589
1590         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1591                           address, value);
1592
1593         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1594         {
1595                 LOG_DEBUG("failed: %i", retval);
1596         }
1597
1598         return retval;
1599 }
1600
1601 COMMAND_HANDLER(handle_targets_command)
1602 {
1603         struct target *target = all_targets;
1604
1605         if (CMD_ARGC == 1)
1606         {
1607                 target = get_target(CMD_ARGV[0]);
1608                 if (target == NULL) {
1609                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1610                         goto DumpTargets;
1611                 }
1612                 if (!target->tap->enabled) {
1613                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1614                                         "can't be the current target\n",
1615                                         target->tap->dotted_name);
1616                         return ERROR_FAIL;
1617                 }
1618
1619                 CMD_CTX->current_target = target->target_number;
1620                 return ERROR_OK;
1621         }
1622 DumpTargets:
1623
1624         target = all_targets;
1625         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1626         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1627         while (target)
1628         {
1629                 const char *state;
1630                 char marker = ' ';
1631
1632                 if (target->tap->enabled)
1633                         state = target_state_name( target );
1634                 else
1635                         state = "tap-disabled";
1636
1637                 if (CMD_CTX->current_target == target->target_number)
1638                         marker = '*';
1639
1640                 /* keep columns lined up to match the headers above */
1641                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1642                                           target->target_number,
1643                                           marker,
1644                                           target_name(target),
1645                                           target_type_name(target),
1646                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1647                                                                 target->endianness)->name,
1648                                           target->tap->dotted_name,
1649                                           state);
1650                 target = target->next;
1651         }
1652
1653         return ERROR_OK;
1654 }
1655
1656 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1657
1658 static int powerDropout;
1659 static int srstAsserted;
1660
1661 static int runPowerRestore;
1662 static int runPowerDropout;
1663 static int runSrstAsserted;
1664 static int runSrstDeasserted;
1665
1666 static int sense_handler(void)
1667 {
1668         static int prevSrstAsserted = 0;
1669         static int prevPowerdropout = 0;
1670
1671         int retval;
1672         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1673                 return retval;
1674
1675         int powerRestored;
1676         powerRestored = prevPowerdropout && !powerDropout;
1677         if (powerRestored)
1678         {
1679                 runPowerRestore = 1;
1680         }
1681
1682         long long current = timeval_ms();
1683         static long long lastPower = 0;
1684         int waitMore = lastPower + 2000 > current;
1685         if (powerDropout && !waitMore)
1686         {
1687                 runPowerDropout = 1;
1688                 lastPower = current;
1689         }
1690
1691         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1692                 return retval;
1693
1694         int srstDeasserted;
1695         srstDeasserted = prevSrstAsserted && !srstAsserted;
1696
1697         static long long lastSrst = 0;
1698         waitMore = lastSrst + 2000 > current;
1699         if (srstDeasserted && !waitMore)
1700         {
1701                 runSrstDeasserted = 1;
1702                 lastSrst = current;
1703         }
1704
1705         if (!prevSrstAsserted && srstAsserted)
1706         {
1707                 runSrstAsserted = 1;
1708         }
1709
1710         prevSrstAsserted = srstAsserted;
1711         prevPowerdropout = powerDropout;
1712
1713         if (srstDeasserted || powerRestored)
1714         {
1715                 /* Other than logging the event we can't do anything here.
1716                  * Issuing a reset is a particularly bad idea as we might
1717                  * be inside a reset already.
1718                  */
1719         }
1720
1721         return ERROR_OK;
1722 }
1723
1724 static void target_call_event_callbacks_all(enum target_event e) {
1725         struct target *target;
1726         target = all_targets;
1727         while (target) {
1728                 target_call_event_callbacks(target, e);
1729                 target = target->next;
1730         }
1731 }
1732
1733 /* process target state changes */
1734 static int handle_target(void *priv)
1735 {
1736         Jim_Interp *interp = (Jim_Interp *)priv;
1737         int retval = ERROR_OK;
1738
1739         /* we do not want to recurse here... */
1740         static int recursive = 0;
1741         if (! recursive)
1742         {
1743                 recursive = 1;
1744                 sense_handler();
1745                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1746                  * We need to avoid an infinite loop/recursion here and we do that by
1747                  * clearing the flags after running these events.
1748                  */
1749                 int did_something = 0;
1750                 if (runSrstAsserted)
1751                 {
1752                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1753                         Jim_Eval(interp, "srst_asserted");
1754                         did_something = 1;
1755                 }
1756                 if (runSrstDeasserted)
1757                 {
1758                         Jim_Eval(interp, "srst_deasserted");
1759                         did_something = 1;
1760                 }
1761                 if (runPowerDropout)
1762                 {
1763                         target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1764                         Jim_Eval(interp, "power_dropout");
1765                         did_something = 1;
1766                 }
1767                 if (runPowerRestore)
1768                 {
1769                         Jim_Eval(interp, "power_restore");
1770                         did_something = 1;
1771                 }
1772
1773                 if (did_something)
1774                 {
1775                         /* clear detect flags */
1776                         sense_handler();
1777                 }
1778
1779                 /* clear action flags */
1780
1781                 runSrstAsserted = 0;
1782                 runSrstDeasserted = 0;
1783                 runPowerRestore = 0;
1784                 runPowerDropout = 0;
1785
1786                 recursive = 0;
1787         }
1788
1789         /* Poll targets for state changes unless that's globally disabled.
1790          * Skip targets that are currently disabled.
1791          */
1792         for (struct target *target = all_targets;
1793                         is_jtag_poll_safe() && target;
1794                         target = target->next)
1795         {
1796                 if (!target->tap->enabled)
1797                         continue;
1798
1799                 /* only poll target if we've got power and srst isn't asserted */
1800                 if (!powerDropout && !srstAsserted)
1801                 {
1802                         /* polling may fail silently until the target has been examined */
1803                         if ((retval = target_poll(target)) != ERROR_OK)
1804                         {
1805                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1806                                 return retval;
1807                         }
1808                 }
1809         }
1810
1811         return retval;
1812 }
1813
1814 COMMAND_HANDLER(handle_reg_command)
1815 {
1816         struct target *target;
1817         struct reg *reg = NULL;
1818         unsigned count = 0;
1819         char *value;
1820
1821         LOG_DEBUG("-");
1822
1823         target = get_current_target(CMD_CTX);
1824
1825         /* list all available registers for the current target */
1826         if (CMD_ARGC == 0)
1827         {
1828                 struct reg_cache *cache = target->reg_cache;
1829
1830                 count = 0;
1831                 while (cache)
1832                 {
1833                         unsigned i;
1834
1835                         command_print(CMD_CTX, "===== %s", cache->name);
1836
1837                         for (i = 0, reg = cache->reg_list;
1838                                         i < cache->num_regs;
1839                                         i++, reg++, count++)
1840                         {
1841                                 /* only print cached values if they are valid */
1842                                 if (reg->valid) {
1843                                         value = buf_to_str(reg->value,
1844                                                         reg->size, 16);
1845                                         command_print(CMD_CTX,
1846                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1847                                                         count, reg->name,
1848                                                         reg->size, value,
1849                                                         reg->dirty
1850                                                                 ? " (dirty)"
1851                                                                 : "");
1852                                         free(value);
1853                                 } else {
1854                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1855                                                           count, reg->name,
1856                                                           reg->size) ;
1857                                 }
1858                         }
1859                         cache = cache->next;
1860                 }
1861
1862                 return ERROR_OK;
1863         }
1864
1865         /* access a single register by its ordinal number */
1866         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1867         {
1868                 unsigned num;
1869                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1870
1871                 struct reg_cache *cache = target->reg_cache;
1872                 count = 0;
1873                 while (cache)
1874                 {
1875                         unsigned i;
1876                         for (i = 0; i < cache->num_regs; i++)
1877                         {
1878                                 if (count++ == num)
1879                                 {
1880                                         reg = &cache->reg_list[i];
1881                                         break;
1882                                 }
1883                         }
1884                         if (reg)
1885                                 break;
1886                         cache = cache->next;
1887                 }
1888
1889                 if (!reg)
1890                 {
1891                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1892                         return ERROR_OK;
1893                 }
1894         } else /* access a single register by its name */
1895         {
1896                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1897
1898                 if (!reg)
1899                 {
1900                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1901                         return ERROR_OK;
1902                 }
1903         }
1904
1905         /* display a register */
1906         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1907         {
1908                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1909                         reg->valid = 0;
1910
1911                 if (reg->valid == 0)
1912                 {
1913                         reg->type->get(reg);
1914                 }
1915                 value = buf_to_str(reg->value, reg->size, 16);
1916                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1917                 free(value);
1918                 return ERROR_OK;
1919         }
1920
1921         /* set register value */
1922         if (CMD_ARGC == 2)
1923         {
1924                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
1925                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
1926
1927                 reg->type->set(reg, buf);
1928
1929                 value = buf_to_str(reg->value, reg->size, 16);
1930                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1931                 free(value);
1932
1933                 free(buf);
1934
1935                 return ERROR_OK;
1936         }
1937
1938         command_print(CMD_CTX, "usage: reg <#|name> [value]");
1939
1940         return ERROR_OK;
1941 }
1942
1943 COMMAND_HANDLER(handle_poll_command)
1944 {
1945         int retval = ERROR_OK;
1946         struct target *target = get_current_target(CMD_CTX);
1947
1948         if (CMD_ARGC == 0)
1949         {
1950                 command_print(CMD_CTX, "background polling: %s",
1951                                 jtag_poll_get_enabled() ? "on" : "off");
1952                 command_print(CMD_CTX, "TAP: %s (%s)",
1953                                 target->tap->dotted_name,
1954                                 target->tap->enabled ? "enabled" : "disabled");
1955                 if (!target->tap->enabled)
1956                         return ERROR_OK;
1957                 if ((retval = target_poll(target)) != ERROR_OK)
1958                         return retval;
1959                 if ((retval = target_arch_state(target)) != ERROR_OK)
1960                         return retval;
1961         }
1962         else if (CMD_ARGC == 1)
1963         {
1964                 bool enable;
1965                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
1966                 jtag_poll_set_enabled(enable);
1967         }
1968         else
1969         {
1970                 return ERROR_COMMAND_SYNTAX_ERROR;
1971         }
1972
1973         return retval;
1974 }
1975
1976 COMMAND_HANDLER(handle_wait_halt_command)
1977 {
1978         if (CMD_ARGC > 1)
1979                 return ERROR_COMMAND_SYNTAX_ERROR;
1980
1981         unsigned ms = 5000;
1982         if (1 == CMD_ARGC)
1983         {
1984                 int retval = parse_uint(CMD_ARGV[0], &ms);
1985                 if (ERROR_OK != retval)
1986                 {
1987                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
1988                         return ERROR_COMMAND_SYNTAX_ERROR;
1989                 }
1990                 // convert seconds (given) to milliseconds (needed)
1991                 ms *= 1000;
1992         }
1993
1994         struct target *target = get_current_target(CMD_CTX);
1995         return target_wait_state(target, TARGET_HALTED, ms);
1996 }
1997
1998 /* wait for target state to change. The trick here is to have a low
1999  * latency for short waits and not to suck up all the CPU time
2000  * on longer waits.
2001  *
2002  * After 500ms, keep_alive() is invoked
2003  */
2004 int target_wait_state(struct target *target, enum target_state state, int ms)
2005 {
2006         int retval;
2007         long long then = 0, cur;
2008         int once = 1;
2009
2010         for (;;)
2011         {
2012                 if ((retval = target_poll(target)) != ERROR_OK)
2013                         return retval;
2014                 if (target->state == state)
2015                 {
2016                         break;
2017                 }
2018                 cur = timeval_ms();
2019                 if (once)
2020                 {
2021                         once = 0;
2022                         then = timeval_ms();
2023                         LOG_DEBUG("waiting for target %s...",
2024                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2025                 }
2026
2027                 if (cur-then > 500)
2028                 {
2029                         keep_alive();
2030                 }
2031
2032                 if ((cur-then) > ms)
2033                 {
2034                         LOG_ERROR("timed out while waiting for target %s",
2035                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2036                         return ERROR_FAIL;
2037                 }
2038         }
2039
2040         return ERROR_OK;
2041 }
2042
2043 COMMAND_HANDLER(handle_halt_command)
2044 {
2045         LOG_DEBUG("-");
2046
2047         struct target *target = get_current_target(CMD_CTX);
2048         int retval = target_halt(target);
2049         if (ERROR_OK != retval)
2050                 return retval;
2051
2052         if (CMD_ARGC == 1)
2053         {
2054                 unsigned wait;
2055                 retval = parse_uint(CMD_ARGV[0], &wait);
2056                 if (ERROR_OK != retval)
2057                         return ERROR_COMMAND_SYNTAX_ERROR;
2058                 if (!wait)
2059                         return ERROR_OK;
2060         }
2061
2062         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2063 }
2064
2065 COMMAND_HANDLER(handle_soft_reset_halt_command)
2066 {
2067         struct target *target = get_current_target(CMD_CTX);
2068
2069         LOG_USER("requesting target halt and executing a soft reset");
2070
2071         target->type->soft_reset_halt(target);
2072
2073         return ERROR_OK;
2074 }
2075
2076 COMMAND_HANDLER(handle_reset_command)
2077 {
2078         if (CMD_ARGC > 1)
2079                 return ERROR_COMMAND_SYNTAX_ERROR;
2080
2081         enum target_reset_mode reset_mode = RESET_RUN;
2082         if (CMD_ARGC == 1)
2083         {
2084                 const Jim_Nvp *n;
2085                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2086                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2087                         return ERROR_COMMAND_SYNTAX_ERROR;
2088                 }
2089                 reset_mode = n->value;
2090         }
2091
2092         /* reset *all* targets */
2093         return target_process_reset(CMD_CTX, reset_mode);
2094 }
2095
2096
2097 COMMAND_HANDLER(handle_resume_command)
2098 {
2099         int current = 1;
2100         if (CMD_ARGC > 1)
2101                 return ERROR_COMMAND_SYNTAX_ERROR;
2102
2103         struct target *target = get_current_target(CMD_CTX);
2104         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2105
2106         /* with no CMD_ARGV, resume from current pc, addr = 0,
2107          * with one arguments, addr = CMD_ARGV[0],
2108          * handle breakpoints, not debugging */
2109         uint32_t addr = 0;
2110         if (CMD_ARGC == 1)
2111         {
2112                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2113                 current = 0;
2114         }
2115
2116         return target_resume(target, current, addr, 1, 0);
2117 }
2118
2119 COMMAND_HANDLER(handle_step_command)
2120 {
2121         if (CMD_ARGC > 1)
2122                 return ERROR_COMMAND_SYNTAX_ERROR;
2123
2124         LOG_DEBUG("-");
2125
2126         /* with no CMD_ARGV, step from current pc, addr = 0,
2127          * with one argument addr = CMD_ARGV[0],
2128          * handle breakpoints, debugging */
2129         uint32_t addr = 0;
2130         int current_pc = 1;
2131         if (CMD_ARGC == 1)
2132         {
2133                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2134                 current_pc = 0;
2135         }
2136
2137         struct target *target = get_current_target(CMD_CTX);
2138
2139         return target->type->step(target, current_pc, addr, 1);
2140 }
2141
2142 static void handle_md_output(struct command_context *cmd_ctx,
2143                 struct target *target, uint32_t address, unsigned size,
2144                 unsigned count, const uint8_t *buffer)
2145 {
2146         const unsigned line_bytecnt = 32;
2147         unsigned line_modulo = line_bytecnt / size;
2148
2149         char output[line_bytecnt * 4 + 1];
2150         unsigned output_len = 0;
2151
2152         const char *value_fmt;
2153         switch (size) {
2154         case 4: value_fmt = "%8.8x "; break;
2155         case 2: value_fmt = "%4.2x "; break;
2156         case 1: value_fmt = "%2.2x "; break;
2157         default:
2158                 /* "can't happen", caller checked */
2159                 LOG_ERROR("invalid memory read size: %u", size);
2160                 return;
2161         }
2162
2163         for (unsigned i = 0; i < count; i++)
2164         {
2165                 if (i % line_modulo == 0)
2166                 {
2167                         output_len += snprintf(output + output_len,
2168                                         sizeof(output) - output_len,
2169                                         "0x%8.8x: ",
2170                                         (unsigned)(address + (i*size)));
2171                 }
2172
2173                 uint32_t value = 0;
2174                 const uint8_t *value_ptr = buffer + i * size;
2175                 switch (size) {
2176                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2177                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2178                 case 1: value = *value_ptr;
2179                 }
2180                 output_len += snprintf(output + output_len,
2181                                 sizeof(output) - output_len,
2182                                 value_fmt, value);
2183
2184                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2185                 {
2186                         command_print(cmd_ctx, "%s", output);
2187                         output_len = 0;
2188                 }
2189         }
2190 }
2191
2192 COMMAND_HANDLER(handle_md_command)
2193 {
2194         if (CMD_ARGC < 1)
2195                 return ERROR_COMMAND_SYNTAX_ERROR;
2196
2197         unsigned size = 0;
2198         switch (CMD_NAME[2]) {
2199         case 'w': size = 4; break;
2200         case 'h': size = 2; break;
2201         case 'b': size = 1; break;
2202         default: return ERROR_COMMAND_SYNTAX_ERROR;
2203         }
2204
2205         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2206         int (*fn)(struct target *target,
2207                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2208         if (physical)
2209         {
2210                 CMD_ARGC--;
2211                 CMD_ARGV++;
2212                 fn=target_read_phys_memory;
2213         } else
2214         {
2215                 fn=target_read_memory;
2216         }
2217         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2218         {
2219                 return ERROR_COMMAND_SYNTAX_ERROR;
2220         }
2221
2222         uint32_t address;
2223         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2224
2225         unsigned count = 1;
2226         if (CMD_ARGC == 2)
2227                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2228
2229         uint8_t *buffer = calloc(count, size);
2230
2231         struct target *target = get_current_target(CMD_CTX);
2232         int retval = fn(target, address, size, count, buffer);
2233         if (ERROR_OK == retval)
2234                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2235
2236         free(buffer);
2237
2238         return retval;
2239 }
2240
2241 COMMAND_HANDLER(handle_mw_command)
2242 {
2243         if (CMD_ARGC < 2)
2244         {
2245                 return ERROR_COMMAND_SYNTAX_ERROR;
2246         }
2247         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2248         int (*fn)(struct target *target,
2249                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2250         if (physical)
2251         {
2252                 CMD_ARGC--;
2253                 CMD_ARGV++;
2254                 fn=target_write_phys_memory;
2255         } else
2256         {
2257                 fn=target_write_memory;
2258         }
2259         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2260                 return ERROR_COMMAND_SYNTAX_ERROR;
2261
2262         uint32_t address;
2263         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2264
2265         uint32_t value;
2266         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2267
2268         unsigned count = 1;
2269         if (CMD_ARGC == 3)
2270                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2271
2272         struct target *target = get_current_target(CMD_CTX);
2273         unsigned wordsize;
2274         uint8_t value_buf[4];
2275         switch (CMD_NAME[2])
2276         {
2277                 case 'w':
2278                         wordsize = 4;
2279                         target_buffer_set_u32(target, value_buf, value);
2280                         break;
2281                 case 'h':
2282                         wordsize = 2;
2283                         target_buffer_set_u16(target, value_buf, value);
2284                         break;
2285                 case 'b':
2286                         wordsize = 1;
2287                         value_buf[0] = value;
2288                         break;
2289                 default:
2290                         return ERROR_COMMAND_SYNTAX_ERROR;
2291         }
2292         for (unsigned i = 0; i < count; i++)
2293         {
2294                 int retval = fn(target,
2295                                 address + i * wordsize, wordsize, 1, value_buf);
2296                 if (ERROR_OK != retval)
2297                         return retval;
2298                 keep_alive();
2299         }
2300
2301         return ERROR_OK;
2302
2303 }
2304
2305 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2306                 uint32_t *min_address, uint32_t *max_address)
2307 {
2308         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2309                 return ERROR_COMMAND_SYNTAX_ERROR;
2310
2311         /* a base address isn't always necessary,
2312          * default to 0x0 (i.e. don't relocate) */
2313         if (CMD_ARGC >= 2)
2314         {
2315                 uint32_t addr;
2316                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2317                 image->base_address = addr;
2318                 image->base_address_set = 1;
2319         }
2320         else
2321                 image->base_address_set = 0;
2322
2323         image->start_address_set = 0;
2324
2325         if (CMD_ARGC >= 4)
2326         {
2327                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2328         }
2329         if (CMD_ARGC == 5)
2330         {
2331                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2332                 // use size (given) to find max (required)
2333                 *max_address += *min_address;
2334         }
2335
2336         if (*min_address > *max_address)
2337                 return ERROR_COMMAND_SYNTAX_ERROR;
2338
2339         return ERROR_OK;
2340 }
2341
2342 COMMAND_HANDLER(handle_load_image_command)
2343 {
2344         uint8_t *buffer;
2345         size_t buf_cnt;
2346         uint32_t image_size;
2347         uint32_t min_address = 0;
2348         uint32_t max_address = 0xffffffff;
2349         int i;
2350         struct image image;
2351
2352         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2353                         &image, &min_address, &max_address);
2354         if (ERROR_OK != retval)
2355                 return retval;
2356
2357         struct target *target = get_current_target(CMD_CTX);
2358
2359         struct duration bench;
2360         duration_start(&bench);
2361
2362         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2363         {
2364                 return ERROR_OK;
2365         }
2366
2367         image_size = 0x0;
2368         retval = ERROR_OK;
2369         for (i = 0; i < image.num_sections; i++)
2370         {
2371                 buffer = malloc(image.sections[i].size);
2372                 if (buffer == NULL)
2373                 {
2374                         command_print(CMD_CTX,
2375                                                   "error allocating buffer for section (%d bytes)",
2376                                                   (int)(image.sections[i].size));
2377                         break;
2378                 }
2379
2380                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2381                 {
2382                         free(buffer);
2383                         break;
2384                 }
2385
2386                 uint32_t offset = 0;
2387                 uint32_t length = buf_cnt;
2388
2389                 /* DANGER!!! beware of unsigned comparision here!!! */
2390
2391                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2392                                 (image.sections[i].base_address < max_address))
2393                 {
2394                         if (image.sections[i].base_address < min_address)
2395                         {
2396                                 /* clip addresses below */
2397                                 offset += min_address-image.sections[i].base_address;
2398                                 length -= offset;
2399                         }
2400
2401                         if (image.sections[i].base_address + buf_cnt > max_address)
2402                         {
2403                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2404                         }
2405
2406                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2407                         {
2408                                 free(buffer);
2409                                 break;
2410                         }
2411                         image_size += length;
2412                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2413                                                   (unsigned int)length,
2414                                                   image.sections[i].base_address + offset);
2415                 }
2416
2417                 free(buffer);
2418         }
2419
2420         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2421         {
2422                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2423                                 "in %fs (%0.3f kb/s)", image_size,
2424                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2425         }
2426
2427         image_close(&image);
2428
2429         return retval;
2430
2431 }
2432
2433 COMMAND_HANDLER(handle_dump_image_command)
2434 {
2435         struct fileio fileio;
2436
2437         uint8_t buffer[560];
2438         int retvaltemp;
2439
2440
2441         struct target *target = get_current_target(CMD_CTX);
2442
2443         if (CMD_ARGC != 3)
2444         {
2445                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2446                 return ERROR_OK;
2447         }
2448
2449         uint32_t address;
2450         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2451         uint32_t size;
2452         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2453
2454         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2455         {
2456                 return ERROR_OK;
2457         }
2458
2459         struct duration bench;
2460         duration_start(&bench);
2461
2462         int retval = ERROR_OK;
2463         while (size > 0)
2464         {
2465                 size_t size_written;
2466                 uint32_t this_run_size = (size > 560) ? 560 : size;
2467                 retval = target_read_buffer(target, address, this_run_size, buffer);
2468                 if (retval != ERROR_OK)
2469                 {
2470                         break;
2471                 }
2472
2473                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2474                 if (retval != ERROR_OK)
2475                 {
2476                         break;
2477                 }
2478
2479                 size -= this_run_size;
2480                 address += this_run_size;
2481         }
2482
2483         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2484                 return retvaltemp;
2485
2486         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2487         {
2488                 command_print(CMD_CTX,
2489                                 "dumped %zu bytes in %fs (%0.3f kb/s)", fileio.size,
2490                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2491         }
2492
2493         return retval;
2494 }
2495
2496 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2497 {
2498         uint8_t *buffer;
2499         size_t buf_cnt;
2500         uint32_t image_size;
2501         int i;
2502         int retval;
2503         uint32_t checksum = 0;
2504         uint32_t mem_checksum = 0;
2505
2506         struct image image;
2507
2508         struct target *target = get_current_target(CMD_CTX);
2509
2510         if (CMD_ARGC < 1)
2511         {
2512                 return ERROR_COMMAND_SYNTAX_ERROR;
2513         }
2514
2515         if (!target)
2516         {
2517                 LOG_ERROR("no target selected");
2518                 return ERROR_FAIL;
2519         }
2520
2521         struct duration bench;
2522         duration_start(&bench);
2523
2524         if (CMD_ARGC >= 2)
2525         {
2526                 uint32_t addr;
2527                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2528                 image.base_address = addr;
2529                 image.base_address_set = 1;
2530         }
2531         else
2532         {
2533                 image.base_address_set = 0;
2534                 image.base_address = 0x0;
2535         }
2536
2537         image.start_address_set = 0;
2538
2539         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2540         {
2541                 return retval;
2542         }
2543
2544         image_size = 0x0;
2545         retval = ERROR_OK;
2546         for (i = 0; i < image.num_sections; i++)
2547         {
2548                 buffer = malloc(image.sections[i].size);
2549                 if (buffer == NULL)
2550                 {
2551                         command_print(CMD_CTX,
2552                                                   "error allocating buffer for section (%d bytes)",
2553                                                   (int)(image.sections[i].size));
2554                         break;
2555                 }
2556                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2557                 {
2558                         free(buffer);
2559                         break;
2560                 }
2561
2562                 if (verify)
2563                 {
2564                         /* calculate checksum of image */
2565                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2566
2567                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2568                         if (retval != ERROR_OK)
2569                         {
2570                                 free(buffer);
2571                                 break;
2572                         }
2573
2574                         if (checksum != mem_checksum)
2575                         {
2576                                 /* failed crc checksum, fall back to a binary compare */
2577                                 uint8_t *data;
2578
2579                                 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2580
2581                                 data = (uint8_t*)malloc(buf_cnt);
2582
2583                                 /* Can we use 32bit word accesses? */
2584                                 int size = 1;
2585                                 int count = buf_cnt;
2586                                 if ((count % 4) == 0)
2587                                 {
2588                                         size *= 4;
2589                                         count /= 4;
2590                                 }
2591                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2592                                 if (retval == ERROR_OK)
2593                                 {
2594                                         uint32_t t;
2595                                         for (t = 0; t < buf_cnt; t++)
2596                                         {
2597                                                 if (data[t] != buffer[t])
2598                                                 {
2599                                                         command_print(CMD_CTX,
2600                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2601                                                                                   (unsigned)(t + image.sections[i].base_address),
2602                                                                                   data[t],
2603                                                                                   buffer[t]);
2604                                                         free(data);
2605                                                         free(buffer);
2606                                                         retval = ERROR_FAIL;
2607                                                         goto done;
2608                                                 }
2609                                                 if ((t%16384) == 0)
2610                                                 {
2611                                                         keep_alive();
2612                                                 }
2613                                         }
2614                                 }
2615
2616                                 free(data);
2617                         }
2618                 } else
2619                 {
2620                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2621                                                   image.sections[i].base_address,
2622                                                   buf_cnt);
2623                 }
2624
2625                 free(buffer);
2626                 image_size += buf_cnt;
2627         }
2628 done:
2629         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2630         {
2631                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2632                                 "in %fs (%0.3f kb/s)", image_size,
2633                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2634         }
2635
2636         image_close(&image);
2637
2638         return retval;
2639 }
2640
2641 COMMAND_HANDLER(handle_verify_image_command)
2642 {
2643         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2644 }
2645
2646 COMMAND_HANDLER(handle_test_image_command)
2647 {
2648         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2649 }
2650
2651 static int handle_bp_command_list(struct command_context *cmd_ctx)
2652 {
2653         struct target *target = get_current_target(cmd_ctx);
2654         struct breakpoint *breakpoint = target->breakpoints;
2655         while (breakpoint)
2656         {
2657                 if (breakpoint->type == BKPT_SOFT)
2658                 {
2659                         char* buf = buf_to_str(breakpoint->orig_instr,
2660                                         breakpoint->length, 16);
2661                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2662                                         breakpoint->address,
2663                                         breakpoint->length,
2664                                         breakpoint->set, buf);
2665                         free(buf);
2666                 }
2667                 else
2668                 {
2669                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2670                                                   breakpoint->address,
2671                                                   breakpoint->length, breakpoint->set);
2672                 }
2673
2674                 breakpoint = breakpoint->next;
2675         }
2676         return ERROR_OK;
2677 }
2678
2679 static int handle_bp_command_set(struct command_context *cmd_ctx,
2680                 uint32_t addr, uint32_t length, int hw)
2681 {
2682         struct target *target = get_current_target(cmd_ctx);
2683         int retval = breakpoint_add(target, addr, length, hw);
2684         if (ERROR_OK == retval)
2685                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2686         else
2687                 LOG_ERROR("Failure setting breakpoint");
2688         return retval;
2689 }
2690
2691 COMMAND_HANDLER(handle_bp_command)
2692 {
2693         if (CMD_ARGC == 0)
2694                 return handle_bp_command_list(CMD_CTX);
2695
2696         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2697         {
2698                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2699                 return ERROR_COMMAND_SYNTAX_ERROR;
2700         }
2701
2702         uint32_t addr;
2703         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2704         uint32_t length;
2705         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2706
2707         int hw = BKPT_SOFT;
2708         if (CMD_ARGC == 3)
2709         {
2710                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2711                         hw = BKPT_HARD;
2712                 else
2713                         return ERROR_COMMAND_SYNTAX_ERROR;
2714         }
2715
2716         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2717 }
2718
2719 COMMAND_HANDLER(handle_rbp_command)
2720 {
2721         if (CMD_ARGC != 1)
2722                 return ERROR_COMMAND_SYNTAX_ERROR;
2723
2724         uint32_t addr;
2725         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2726
2727         struct target *target = get_current_target(CMD_CTX);
2728         breakpoint_remove(target, addr);
2729
2730         return ERROR_OK;
2731 }
2732
2733 COMMAND_HANDLER(handle_wp_command)
2734 {
2735         struct target *target = get_current_target(CMD_CTX);
2736
2737         if (CMD_ARGC == 0)
2738         {
2739                 struct watchpoint *watchpoint = target->watchpoints;
2740
2741                 while (watchpoint)
2742                 {
2743                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2744                                         ", len: 0x%8.8" PRIx32
2745                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2746                                         ", mask: 0x%8.8" PRIx32,
2747                                         watchpoint->address,
2748                                         watchpoint->length,
2749                                         (int)watchpoint->rw,
2750                                         watchpoint->value,
2751                                         watchpoint->mask);
2752                         watchpoint = watchpoint->next;
2753                 }
2754                 return ERROR_OK;
2755         }
2756
2757         enum watchpoint_rw type = WPT_ACCESS;
2758         uint32_t addr = 0;
2759         uint32_t length = 0;
2760         uint32_t data_value = 0x0;
2761         uint32_t data_mask = 0xffffffff;
2762
2763         switch (CMD_ARGC)
2764         {
2765         case 5:
2766                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2767                 // fall through
2768         case 4:
2769                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2770                 // fall through
2771         case 3:
2772                 switch (CMD_ARGV[2][0])
2773                 {
2774                 case 'r':
2775                         type = WPT_READ;
2776                         break;
2777                 case 'w':
2778                         type = WPT_WRITE;
2779                         break;
2780                 case 'a':
2781                         type = WPT_ACCESS;
2782                         break;
2783                 default:
2784                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2785                         return ERROR_COMMAND_SYNTAX_ERROR;
2786                 }
2787                 // fall through
2788         case 2:
2789                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2790                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2791                 break;
2792
2793         default:
2794                 command_print(CMD_CTX, "usage: wp [address length "
2795                                 "[(r|w|a) [value [mask]]]]");
2796                 return ERROR_COMMAND_SYNTAX_ERROR;
2797         }
2798
2799         int retval = watchpoint_add(target, addr, length, type,
2800                         data_value, data_mask);
2801         if (ERROR_OK != retval)
2802                 LOG_ERROR("Failure setting watchpoints");
2803
2804         return retval;
2805 }
2806
2807 COMMAND_HANDLER(handle_rwp_command)
2808 {
2809         if (CMD_ARGC != 1)
2810                 return ERROR_COMMAND_SYNTAX_ERROR;
2811
2812         uint32_t addr;
2813         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2814
2815         struct target *target = get_current_target(CMD_CTX);
2816         watchpoint_remove(target, addr);
2817
2818         return ERROR_OK;
2819 }
2820
2821
2822 /**
2823  * Translate a virtual address to a physical address.
2824  *
2825  * The low-level target implementation must have logged a detailed error
2826  * which is forwarded to telnet/GDB session.
2827  */
2828 COMMAND_HANDLER(handle_virt2phys_command)
2829 {
2830         if (CMD_ARGC != 1)
2831                 return ERROR_COMMAND_SYNTAX_ERROR;
2832
2833         uint32_t va;
2834         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2835         uint32_t pa;
2836
2837         struct target *target = get_current_target(CMD_CTX);
2838         int retval = target->type->virt2phys(target, va, &pa);
2839         if (retval == ERROR_OK)
2840                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2841
2842         return retval;
2843 }
2844
2845 static void writeData(FILE *f, const void *data, size_t len)
2846 {
2847         size_t written = fwrite(data, 1, len, f);
2848         if (written != len)
2849                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2850 }
2851
2852 static void writeLong(FILE *f, int l)
2853 {
2854         int i;
2855         for (i = 0; i < 4; i++)
2856         {
2857                 char c = (l >> (i*8))&0xff;
2858                 writeData(f, &c, 1);
2859         }
2860
2861 }
2862
2863 static void writeString(FILE *f, char *s)
2864 {
2865         writeData(f, s, strlen(s));
2866 }
2867
2868 /* Dump a gmon.out histogram file. */
2869 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2870 {
2871         uint32_t i;
2872         FILE *f = fopen(filename, "w");
2873         if (f == NULL)
2874                 return;
2875         writeString(f, "gmon");
2876         writeLong(f, 0x00000001); /* Version */
2877         writeLong(f, 0); /* padding */
2878         writeLong(f, 0); /* padding */
2879         writeLong(f, 0); /* padding */
2880
2881         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
2882         writeData(f, &zero, 1);
2883
2884         /* figure out bucket size */
2885         uint32_t min = samples[0];
2886         uint32_t max = samples[0];
2887         for (i = 0; i < sampleNum; i++)
2888         {
2889                 if (min > samples[i])
2890                 {
2891                         min = samples[i];
2892                 }
2893                 if (max < samples[i])
2894                 {
2895                         max = samples[i];
2896                 }
2897         }
2898
2899         int addressSpace = (max-min + 1);
2900
2901         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2902         uint32_t length = addressSpace;
2903         if (length > maxBuckets)
2904         {
2905                 length = maxBuckets;
2906         }
2907         int *buckets = malloc(sizeof(int)*length);
2908         if (buckets == NULL)
2909         {
2910                 fclose(f);
2911                 return;
2912         }
2913         memset(buckets, 0, sizeof(int)*length);
2914         for (i = 0; i < sampleNum;i++)
2915         {
2916                 uint32_t address = samples[i];
2917                 long long a = address-min;
2918                 long long b = length-1;
2919                 long long c = addressSpace-1;
2920                 int index = (a*b)/c; /* danger!!!! int32 overflows */
2921                 buckets[index]++;
2922         }
2923
2924         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2925         writeLong(f, min);                      /* low_pc */
2926         writeLong(f, max);                      /* high_pc */
2927         writeLong(f, length);           /* # of samples */
2928         writeLong(f, 64000000);         /* 64MHz */
2929         writeString(f, "seconds");
2930         for (i = 0; i < (15-strlen("seconds")); i++)
2931                 writeData(f, &zero, 1);
2932         writeString(f, "s");
2933
2934         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2935
2936         char *data = malloc(2*length);
2937         if (data != NULL)
2938         {
2939                 for (i = 0; i < length;i++)
2940                 {
2941                         int val;
2942                         val = buckets[i];
2943                         if (val > 65535)
2944                         {
2945                                 val = 65535;
2946                         }
2947                         data[i*2]=val&0xff;
2948                         data[i*2 + 1]=(val >> 8)&0xff;
2949                 }
2950                 free(buckets);
2951                 writeData(f, data, length * 2);
2952                 free(data);
2953         } else
2954         {
2955                 free(buckets);
2956         }
2957
2958         fclose(f);
2959 }
2960
2961 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2962 COMMAND_HANDLER(handle_profile_command)
2963 {
2964         struct target *target = get_current_target(CMD_CTX);
2965         struct timeval timeout, now;
2966
2967         gettimeofday(&timeout, NULL);
2968         if (CMD_ARGC != 2)
2969         {
2970                 return ERROR_COMMAND_SYNTAX_ERROR;
2971         }
2972         unsigned offset;
2973         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
2974
2975         timeval_add_time(&timeout, offset, 0);
2976
2977         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
2978
2979         static const int maxSample = 10000;
2980         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
2981         if (samples == NULL)
2982                 return ERROR_OK;
2983
2984         int numSamples = 0;
2985         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2986         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2987
2988         for (;;)
2989         {
2990                 int retval;
2991                 target_poll(target);
2992                 if (target->state == TARGET_HALTED)
2993                 {
2994                         uint32_t t=*((uint32_t *)reg->value);
2995                         samples[numSamples++]=t;
2996                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2997                         target_poll(target);
2998                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2999                 } else if (target->state == TARGET_RUNNING)
3000                 {
3001                         /* We want to quickly sample the PC. */
3002                         if ((retval = target_halt(target)) != ERROR_OK)
3003                         {
3004                                 free(samples);
3005                                 return retval;
3006                         }
3007                 } else
3008                 {
3009                         command_print(CMD_CTX, "Target not halted or running");
3010                         retval = ERROR_OK;
3011                         break;
3012                 }
3013                 if (retval != ERROR_OK)
3014                 {
3015                         break;
3016                 }
3017
3018                 gettimeofday(&now, NULL);
3019                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3020                 {
3021                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3022                         if ((retval = target_poll(target)) != ERROR_OK)
3023                         {
3024                                 free(samples);
3025                                 return retval;
3026                         }
3027                         if (target->state == TARGET_HALTED)
3028                         {
3029                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3030                         }
3031                         if ((retval = target_poll(target)) != ERROR_OK)
3032                         {
3033                                 free(samples);
3034                                 return retval;
3035                         }
3036                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3037                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3038                         break;
3039                 }
3040         }
3041         free(samples);
3042
3043         return ERROR_OK;
3044 }
3045
3046 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3047 {
3048         char *namebuf;
3049         Jim_Obj *nameObjPtr, *valObjPtr;
3050         int result;
3051
3052         namebuf = alloc_printf("%s(%d)", varname, idx);
3053         if (!namebuf)
3054                 return JIM_ERR;
3055
3056         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3057         valObjPtr = Jim_NewIntObj(interp, val);
3058         if (!nameObjPtr || !valObjPtr)
3059         {
3060                 free(namebuf);
3061                 return JIM_ERR;
3062         }
3063
3064         Jim_IncrRefCount(nameObjPtr);
3065         Jim_IncrRefCount(valObjPtr);
3066         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3067         Jim_DecrRefCount(interp, nameObjPtr);
3068         Jim_DecrRefCount(interp, valObjPtr);
3069         free(namebuf);
3070         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3071         return result;
3072 }
3073
3074 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3075 {
3076         struct command_context *context;
3077         struct target *target;
3078
3079         context = Jim_GetAssocData(interp, "context");
3080         if (context == NULL)
3081         {
3082                 LOG_ERROR("mem2array: no command context");
3083                 return JIM_ERR;
3084         }
3085         target = get_current_target(context);
3086         if (target == NULL)
3087         {
3088                 LOG_ERROR("mem2array: no current target");
3089                 return JIM_ERR;
3090         }
3091
3092         return  target_mem2array(interp, target, argc-1, argv + 1);
3093 }
3094
3095 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3096 {
3097         long l;
3098         uint32_t width;
3099         int len;
3100         uint32_t addr;
3101         uint32_t count;
3102         uint32_t v;
3103         const char *varname;
3104         int  n, e, retval;
3105         uint32_t i;
3106
3107         /* argv[1] = name of array to receive the data
3108          * argv[2] = desired width
3109          * argv[3] = memory address
3110          * argv[4] = count of times to read
3111          */
3112         if (argc != 4) {
3113                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3114                 return JIM_ERR;
3115         }
3116         varname = Jim_GetString(argv[0], &len);
3117         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3118
3119         e = Jim_GetLong(interp, argv[1], &l);
3120         width = l;
3121         if (e != JIM_OK) {
3122                 return e;
3123         }
3124
3125         e = Jim_GetLong(interp, argv[2], &l);
3126         addr = l;
3127         if (e != JIM_OK) {
3128                 return e;
3129         }
3130         e = Jim_GetLong(interp, argv[3], &l);
3131         len = l;
3132         if (e != JIM_OK) {
3133                 return e;
3134         }
3135         switch (width) {
3136                 case 8:
3137                         width = 1;
3138                         break;
3139                 case 16:
3140                         width = 2;
3141                         break;
3142                 case 32:
3143                         width = 4;
3144                         break;
3145                 default:
3146                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3147                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3148                         return JIM_ERR;
3149         }
3150         if (len == 0) {
3151                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3152                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3153                 return JIM_ERR;
3154         }
3155         if ((addr + (len * width)) < addr) {
3156                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3157                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3158                 return JIM_ERR;
3159         }
3160         /* absurd transfer size? */
3161         if (len > 65536) {
3162                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3163                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3164                 return JIM_ERR;
3165         }
3166
3167         if ((width == 1) ||
3168                 ((width == 2) && ((addr & 1) == 0)) ||
3169                 ((width == 4) && ((addr & 3) == 0))) {
3170                 /* all is well */
3171         } else {
3172                 char buf[100];
3173                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3174                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3175                                 addr,
3176                                 width);
3177                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3178                 return JIM_ERR;
3179         }
3180
3181         /* Transfer loop */
3182
3183         /* index counter */
3184         n = 0;
3185
3186         size_t buffersize = 4096;
3187         uint8_t *buffer = malloc(buffersize);
3188         if (buffer == NULL)
3189                 return JIM_ERR;
3190
3191         /* assume ok */
3192         e = JIM_OK;
3193         while (len) {
3194                 /* Slurp... in buffer size chunks */
3195
3196                 count = len; /* in objects.. */
3197                 if (count > (buffersize/width)) {
3198                         count = (buffersize/width);
3199                 }
3200
3201                 retval = target_read_memory(target, addr, width, count, buffer);
3202                 if (retval != ERROR_OK) {
3203                         /* BOO !*/
3204                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3205                                           (unsigned int)addr,
3206                                           (int)width,
3207                                           (int)count);
3208                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3209                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3210                         e = JIM_ERR;
3211                         len = 0;
3212                 } else {
3213                         v = 0; /* shut up gcc */
3214                         for (i = 0 ;i < count ;i++, n++) {
3215                                 switch (width) {
3216                                         case 4:
3217                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3218                                                 break;
3219                                         case 2:
3220                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3221                                                 break;
3222                                         case 1:
3223                                                 v = buffer[i] & 0x0ff;
3224                                                 break;
3225                                 }
3226                                 new_int_array_element(interp, varname, n, v);
3227                         }
3228                         len -= count;
3229                 }
3230         }
3231
3232         free(buffer);
3233
3234         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3235
3236         return JIM_OK;
3237 }
3238
3239 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3240 {
3241         char *namebuf;
3242         Jim_Obj *nameObjPtr, *valObjPtr;
3243         int result;
3244         long l;
3245
3246         namebuf = alloc_printf("%s(%d)", varname, idx);
3247         if (!namebuf)
3248                 return JIM_ERR;
3249
3250         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3251         if (!nameObjPtr)
3252         {
3253                 free(namebuf);
3254                 return JIM_ERR;
3255         }
3256
3257         Jim_IncrRefCount(nameObjPtr);
3258         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3259         Jim_DecrRefCount(interp, nameObjPtr);
3260         free(namebuf);
3261         if (valObjPtr == NULL)
3262                 return JIM_ERR;
3263
3264         result = Jim_GetLong(interp, valObjPtr, &l);
3265         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3266         *val = l;
3267         return result;
3268 }
3269
3270 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3271 {
3272         struct command_context *context;
3273         struct target *target;
3274
3275         context = Jim_GetAssocData(interp, "context");
3276         if (context == NULL) {
3277                 LOG_ERROR("array2mem: no command context");
3278                 return JIM_ERR;
3279         }
3280         target = get_current_target(context);
3281         if (target == NULL) {
3282                 LOG_ERROR("array2mem: no current target");
3283                 return JIM_ERR;
3284         }
3285
3286         return target_array2mem(interp,target, argc-1, argv + 1);
3287 }
3288 static int target_array2mem(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3289 {
3290         long l;
3291         uint32_t width;
3292         int len;
3293         uint32_t addr;
3294         uint32_t count;
3295         uint32_t v;
3296         const char *varname;
3297         int  n, e, retval;
3298         uint32_t i;
3299
3300         /* argv[1] = name of array to get the data
3301          * argv[2] = desired width
3302          * argv[3] = memory address
3303          * argv[4] = count to write
3304          */
3305         if (argc != 4) {
3306                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3307                 return JIM_ERR;
3308         }
3309         varname = Jim_GetString(argv[0], &len);
3310         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3311
3312         e = Jim_GetLong(interp, argv[1], &l);
3313         width = l;
3314         if (e != JIM_OK) {
3315                 return e;
3316         }
3317
3318         e = Jim_GetLong(interp, argv[2], &l);
3319         addr = l;
3320         if (e != JIM_OK) {
3321                 return e;
3322         }
3323         e = Jim_GetLong(interp, argv[3], &l);
3324         len = l;
3325         if (e != JIM_OK) {
3326                 return e;
3327         }
3328         switch (width) {
3329                 case 8:
3330                         width = 1;
3331                         break;
3332                 case 16:
3333                         width = 2;
3334                         break;
3335                 case 32:
3336                         width = 4;
3337                         break;
3338                 default:
3339                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3340                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3341                         return JIM_ERR;
3342         }
3343         if (len == 0) {
3344                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3345                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3346                 return JIM_ERR;
3347         }
3348         if ((addr + (len * width)) < addr) {
3349                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3350                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3351                 return JIM_ERR;
3352         }
3353         /* absurd transfer size? */
3354         if (len > 65536) {
3355                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3356                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3357                 return JIM_ERR;
3358         }
3359
3360         if ((width == 1) ||
3361                 ((width == 2) && ((addr & 1) == 0)) ||
3362                 ((width == 4) && ((addr & 3) == 0))) {
3363                 /* all is well */
3364         } else {
3365                 char buf[100];
3366                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3367                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3368                                 (unsigned int)addr,
3369                                 (int)width);
3370                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3371                 return JIM_ERR;
3372         }
3373
3374         /* Transfer loop */
3375
3376         /* index counter */
3377         n = 0;
3378         /* assume ok */
3379         e = JIM_OK;
3380
3381         size_t buffersize = 4096;
3382         uint8_t *buffer = malloc(buffersize);
3383         if (buffer == NULL)
3384                 return JIM_ERR;
3385
3386         while (len) {
3387                 /* Slurp... in buffer size chunks */
3388
3389                 count = len; /* in objects.. */
3390                 if (count > (buffersize/width)) {
3391                         count = (buffersize/width);
3392                 }
3393
3394                 v = 0; /* shut up gcc */
3395                 for (i = 0 ;i < count ;i++, n++) {
3396                         get_int_array_element(interp, varname, n, &v);
3397                         switch (width) {
3398                         case 4:
3399                                 target_buffer_set_u32(target, &buffer[i*width], v);
3400                                 break;
3401                         case 2:
3402                                 target_buffer_set_u16(target, &buffer[i*width], v);
3403                                 break;
3404                         case 1:
3405                                 buffer[i] = v & 0x0ff;
3406                                 break;
3407                         }
3408                 }
3409                 len -= count;
3410
3411                 retval = target_write_memory(target, addr, width, count, buffer);
3412                 if (retval != ERROR_OK) {
3413                         /* BOO !*/
3414                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3415                                           (unsigned int)addr,
3416                                           (int)width,
3417                                           (int)count);
3418                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3419                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3420                         e = JIM_ERR;
3421                         len = 0;
3422                 }
3423         }
3424
3425         free(buffer);
3426
3427         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3428
3429         return JIM_OK;
3430 }
3431
3432 void target_all_handle_event(enum target_event e)
3433 {
3434         struct target *target;
3435
3436         LOG_DEBUG("**all*targets: event: %d, %s",
3437                            (int)e,
3438                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3439
3440         target = all_targets;
3441         while (target) {
3442                 target_handle_event(target, e);
3443                 target = target->next;
3444         }
3445 }
3446
3447
3448 /* FIX? should we propagate errors here rather than printing them
3449  * and continuing?
3450  */
3451 void target_handle_event(struct target *target, enum target_event e)
3452 {
3453         struct target_event_action *teap;
3454
3455         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3456                 if (teap->event == e) {
3457                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3458                                            target->target_number,
3459                                            target_name(target),
3460                                            target_type_name(target),
3461                                            e,
3462                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3463                                            Jim_GetString(teap->body, NULL));
3464                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3465                         {
3466                                 Jim_PrintErrorMessage(teap->interp);
3467                         }
3468                 }
3469         }
3470 }
3471
3472 /**
3473  * Returns true only if the target has a handler for the specified event.
3474  */
3475 bool target_has_event_action(struct target *target, enum target_event event)
3476 {
3477         struct target_event_action *teap;
3478
3479         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3480                 if (teap->event == event)
3481                         return true;
3482         }
3483         return false;
3484 }
3485
3486 enum target_cfg_param {
3487         TCFG_TYPE,
3488         TCFG_EVENT,
3489         TCFG_WORK_AREA_VIRT,
3490         TCFG_WORK_AREA_PHYS,
3491         TCFG_WORK_AREA_SIZE,
3492         TCFG_WORK_AREA_BACKUP,
3493         TCFG_ENDIAN,
3494         TCFG_VARIANT,
3495         TCFG_CHAIN_POSITION,
3496 };
3497
3498 static Jim_Nvp nvp_config_opts[] = {
3499         { .name = "-type",             .value = TCFG_TYPE },
3500         { .name = "-event",            .value = TCFG_EVENT },
3501         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3502         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3503         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3504         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3505         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3506         { .name = "-variant",          .value = TCFG_VARIANT },
3507         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3508
3509         { .name = NULL, .value = -1 }
3510 };
3511
3512 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3513 {
3514         Jim_Nvp *n;
3515         Jim_Obj *o;
3516         jim_wide w;
3517         char *cp;
3518         int e;
3519
3520         /* parse config or cget options ... */
3521         while (goi->argc > 0) {
3522                 Jim_SetEmptyResult(goi->interp);
3523                 /* Jim_GetOpt_Debug(goi); */
3524
3525                 if (target->type->target_jim_configure) {
3526                         /* target defines a configure function */
3527                         /* target gets first dibs on parameters */
3528                         e = (*(target->type->target_jim_configure))(target, goi);
3529                         if (e == JIM_OK) {
3530                                 /* more? */
3531                                 continue;
3532                         }
3533                         if (e == JIM_ERR) {
3534                                 /* An error */
3535                                 return e;
3536                         }
3537                         /* otherwise we 'continue' below */
3538                 }
3539                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3540                 if (e != JIM_OK) {
3541                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3542                         return e;
3543                 }
3544                 switch (n->value) {
3545                 case TCFG_TYPE:
3546                         /* not setable */
3547                         if (goi->isconfigure) {
3548                                 Jim_SetResult_sprintf(goi->interp,
3549                                                 "not settable: %s", n->name);
3550                                 return JIM_ERR;
3551                         } else {
3552                         no_params:
3553                                 if (goi->argc != 0) {
3554                                         Jim_WrongNumArgs(goi->interp,
3555                                                         goi->argc, goi->argv,
3556                                                         "NO PARAMS");
3557                                         return JIM_ERR;
3558                                 }
3559                         }
3560                         Jim_SetResultString(goi->interp,
3561                                         target_type_name(target), -1);
3562                         /* loop for more */
3563                         break;
3564                 case TCFG_EVENT:
3565                         if (goi->argc == 0) {
3566                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3567                                 return JIM_ERR;
3568                         }
3569
3570                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3571                         if (e != JIM_OK) {
3572                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3573                                 return e;
3574                         }
3575
3576                         if (goi->isconfigure) {
3577                                 if (goi->argc != 1) {
3578                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3579                                         return JIM_ERR;
3580                                 }
3581                         } else {
3582                                 if (goi->argc != 0) {
3583                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3584                                         return JIM_ERR;
3585                                 }
3586                         }
3587
3588                         {
3589                                 struct target_event_action *teap;
3590
3591                                 teap = target->event_action;
3592                                 /* replace existing? */
3593                                 while (teap) {
3594                                         if (teap->event == (enum target_event)n->value) {
3595                                                 break;
3596                                         }
3597                                         teap = teap->next;
3598                                 }
3599
3600                                 if (goi->isconfigure) {
3601                                         bool replace = true;
3602                                         if (teap == NULL) {
3603                                                 /* create new */
3604                                                 teap = calloc(1, sizeof(*teap));
3605                                                 replace = false;
3606                                         }
3607                                         teap->event = n->value;
3608                                         teap->interp = goi->interp;
3609                                         Jim_GetOpt_Obj(goi, &o);
3610                                         if (teap->body) {
3611                                                 Jim_DecrRefCount(teap->interp, teap->body);
3612                                         }
3613                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3614                                         /*
3615                                          * FIXME:
3616                                          *     Tcl/TK - "tk events" have a nice feature.
3617                                          *     See the "BIND" command.
3618                                          *    We should support that here.
3619                                          *     You can specify %X and %Y in the event code.
3620                                          *     The idea is: %T - target name.
3621                                          *     The idea is: %N - target number
3622                                          *     The idea is: %E - event name.
3623                                          */
3624                                         Jim_IncrRefCount(teap->body);
3625
3626                                         if (!replace)
3627                                         {
3628                                                 /* add to head of event list */
3629                                                 teap->next = target->event_action;
3630                                                 target->event_action = teap;
3631                                         }
3632                                         Jim_SetEmptyResult(goi->interp);
3633                                 } else {
3634                                         /* get */
3635                                         if (teap == NULL) {
3636                                                 Jim_SetEmptyResult(goi->interp);
3637                                         } else {
3638                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3639                                         }
3640                                 }
3641                         }
3642                         /* loop for more */
3643                         break;
3644
3645                 case TCFG_WORK_AREA_VIRT:
3646                         if (goi->isconfigure) {
3647                                 target_free_all_working_areas(target);
3648                                 e = Jim_GetOpt_Wide(goi, &w);
3649                                 if (e != JIM_OK) {
3650                                         return e;
3651                                 }
3652                                 target->working_area_virt = w;
3653                                 target->working_area_virt_spec = true;
3654                         } else {
3655                                 if (goi->argc != 0) {
3656                                         goto no_params;
3657                                 }
3658                         }
3659                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3660                         /* loop for more */
3661                         break;
3662
3663                 case TCFG_WORK_AREA_PHYS:
3664                         if (goi->isconfigure) {
3665                                 target_free_all_working_areas(target);
3666                                 e = Jim_GetOpt_Wide(goi, &w);
3667                                 if (e != JIM_OK) {
3668                                         return e;
3669                                 }
3670                                 target->working_area_phys = w;
3671                                 target->working_area_phys_spec = true;
3672                         } else {
3673                                 if (goi->argc != 0) {
3674                                         goto no_params;
3675                                 }
3676                         }
3677                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3678                         /* loop for more */
3679                         break;
3680
3681                 case TCFG_WORK_AREA_SIZE:
3682                         if (goi->isconfigure) {
3683                                 target_free_all_working_areas(target);
3684                                 e = Jim_GetOpt_Wide(goi, &w);
3685                                 if (e != JIM_OK) {
3686                                         return e;
3687                                 }
3688                                 target->working_area_size = w;
3689                         } else {
3690                                 if (goi->argc != 0) {
3691                                         goto no_params;
3692                                 }
3693                         }
3694                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3695                         /* loop for more */
3696                         break;
3697
3698                 case TCFG_WORK_AREA_BACKUP:
3699                         if (goi->isconfigure) {
3700                                 target_free_all_working_areas(target);
3701                                 e = Jim_GetOpt_Wide(goi, &w);
3702                                 if (e != JIM_OK) {
3703                                         return e;
3704                                 }
3705                                 /* make this exactly 1 or 0 */
3706                                 target->backup_working_area = (!!w);
3707                         } else {
3708                                 if (goi->argc != 0) {
3709                                         goto no_params;
3710                                 }
3711                         }
3712                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3713                         /* loop for more e*/
3714                         break;
3715
3716                 case TCFG_ENDIAN:
3717                         if (goi->isconfigure) {
3718                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3719                                 if (e != JIM_OK) {
3720                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3721                                         return e;
3722                                 }
3723                                 target->endianness = n->value;
3724                         } else {
3725                                 if (goi->argc != 0) {
3726                                         goto no_params;
3727                                 }
3728                         }
3729                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3730                         if (n->name == NULL) {
3731                                 target->endianness = TARGET_LITTLE_ENDIAN;
3732                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3733                         }
3734                         Jim_SetResultString(goi->interp, n->name, -1);
3735                         /* loop for more */
3736                         break;
3737
3738                 case TCFG_VARIANT:
3739                         if (goi->isconfigure) {
3740                                 if (goi->argc < 1) {
3741                                         Jim_SetResult_sprintf(goi->interp,
3742                                                                                    "%s ?STRING?",
3743                                                                                    n->name);
3744                                         return JIM_ERR;
3745                                 }
3746                                 if (target->variant) {
3747                                         free((void *)(target->variant));
3748                                 }
3749                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3750                                 target->variant = strdup(cp);
3751                         } else {
3752                                 if (goi->argc != 0) {
3753                                         goto no_params;
3754                                 }
3755                         }
3756                         Jim_SetResultString(goi->interp, target->variant,-1);
3757                         /* loop for more */
3758                         break;
3759                 case TCFG_CHAIN_POSITION:
3760                         if (goi->isconfigure) {
3761                                 Jim_Obj *o;
3762                                 struct jtag_tap *tap;
3763                                 target_free_all_working_areas(target);
3764                                 e = Jim_GetOpt_Obj(goi, &o);
3765                                 if (e != JIM_OK) {
3766                                         return e;
3767                                 }
3768                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3769                                 if (tap == NULL) {
3770                                         return JIM_ERR;
3771                                 }
3772                                 /* make this exactly 1 or 0 */
3773                                 target->tap = tap;
3774                         } else {
3775                                 if (goi->argc != 0) {
3776                                         goto no_params;
3777                                 }
3778                         }
3779                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3780                         /* loop for more e*/
3781                         break;
3782                 }
3783         } /* while (goi->argc) */
3784
3785
3786                 /* done - we return */
3787         return JIM_OK;
3788 }
3789
3790 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3791 {
3792         Jim_GetOptInfo goi;
3793         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3794         goi.isconfigure = strcmp(Jim_GetString(argv[0], NULL), "configure") == 0;
3795         int need_args = 1 + goi.isconfigure;
3796         if (goi.argc < need_args)
3797         {
3798                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3799                         goi.isconfigure
3800                                 ? "missing: -option VALUE ..."
3801                                 : "missing: -option ...");
3802                 return JIM_ERR;
3803         }
3804         struct target *target = Jim_CmdPrivData(goi.interp);
3805         return target_configure(&goi, target);
3806 }
3807
3808 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3809 {
3810         const char *cmd_name = Jim_GetString(argv[0], NULL);
3811
3812         Jim_GetOptInfo goi;
3813         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3814
3815         if (goi.argc != 2 && goi.argc != 3)
3816         {
3817                 Jim_SetResult_sprintf(goi.interp,
3818                                 "usage: %s <address> <data> [<count>]", cmd_name);
3819                 return JIM_ERR;
3820         }
3821
3822         jim_wide a;
3823         int e = Jim_GetOpt_Wide(&goi, &a);
3824         if (e != JIM_OK)
3825                 return e;
3826
3827         jim_wide b;
3828         e = Jim_GetOpt_Wide(&goi, &b);
3829         if (e != JIM_OK)
3830                 return e;
3831
3832         jim_wide c = 1;
3833         if (goi.argc == 3)
3834         {
3835                 e = Jim_GetOpt_Wide(&goi, &c);
3836                 if (e != JIM_OK)
3837                         return e;
3838         }
3839
3840         struct target *target = Jim_CmdPrivData(goi.interp);
3841         uint8_t  target_buf[32];
3842         if (strcasecmp(cmd_name, "mww") == 0) {
3843                 target_buffer_set_u32(target, target_buf, b);
3844                 b = 4;
3845         }
3846         else if (strcasecmp(cmd_name, "mwh") == 0) {
3847                 target_buffer_set_u16(target, target_buf, b);
3848                 b = 2;
3849         }
3850         else if (strcasecmp(cmd_name, "mwb") == 0) {
3851                 target_buffer_set_u8(target, target_buf, b);
3852                 b = 1;
3853         } else {
3854                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3855                 return JIM_ERR;
3856         }
3857
3858         for (jim_wide x = 0; x < c; x++)
3859         {
3860                 e = target_write_memory(target, a, b, 1, target_buf);
3861                 if (e != ERROR_OK)
3862                 {
3863                         Jim_SetResult_sprintf(interp,
3864                                         "Error writing @ 0x%08x: %d\n", (int)(a), e);
3865                         return JIM_ERR;
3866                 }
3867                 /* b = width */
3868                 a = a + b;
3869         }
3870         return JIM_OK;
3871 }
3872
3873 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3874 {
3875         const char *cmd_name = Jim_GetString(argv[0], NULL);
3876
3877         Jim_GetOptInfo goi;
3878         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3879
3880         if ((goi.argc == 2) || (goi.argc == 3))
3881         {
3882                 Jim_SetResult_sprintf(goi.interp,
3883                                 "usage: %s <address> [<count>]", cmd_name);
3884                 return JIM_ERR;
3885         }
3886
3887         jim_wide a;
3888         int e = Jim_GetOpt_Wide(&goi, &a);
3889         if (e != JIM_OK) {
3890                 return JIM_ERR;
3891         }
3892         jim_wide c;
3893         if (goi.argc) {
3894                 e = Jim_GetOpt_Wide(&goi, &c);
3895                 if (e != JIM_OK) {
3896                         return JIM_ERR;
3897                 }
3898         } else {
3899                 c = 1;
3900         }
3901         jim_wide b = 1; /* shut up gcc */
3902         if (strcasecmp(cmd_name, "mdw") == 0)
3903                 b = 4;
3904         else if (strcasecmp(cmd_name, "mdh") == 0)
3905                 b = 2;
3906         else if (strcasecmp(cmd_name, "mdb") == 0)
3907                 b = 1;
3908         else {
3909                 LOG_ERROR("command '%s' unknown: ", cmd_name);
3910                 return JIM_ERR;
3911         }
3912
3913         /* convert count to "bytes" */
3914         c = c * b;
3915
3916         struct target *target = Jim_CmdPrivData(goi.interp);
3917         uint8_t  target_buf[32];
3918         jim_wide x, y, z;
3919         while (c > 0) {
3920                 y = c;
3921                 if (y > 16) {
3922                         y = 16;
3923                 }
3924                 e = target_read_memory(target, a, b, y / b, target_buf);
3925                 if (e != ERROR_OK) {
3926                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
3927                         return JIM_ERR;
3928                 }
3929
3930                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
3931                 switch (b) {
3932                 case 4:
3933                         for (x = 0; x < 16 && x < y; x += 4)
3934                         {
3935                                 z = target_buffer_get_u32(target, &(target_buf[ x * 4 ]));
3936                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
3937                         }
3938                         for (; (x < 16) ; x += 4) {
3939                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
3940                         }
3941                         break;
3942                 case 2:
3943                         for (x = 0; x < 16 && x < y; x += 2)
3944                         {
3945                                 z = target_buffer_get_u16(target, &(target_buf[ x * 2 ]));
3946                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
3947                         }
3948                         for (; (x < 16) ; x += 2) {
3949                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
3950                         }
3951                         break;
3952                 case 1:
3953                 default:
3954                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
3955                                 z = target_buffer_get_u8(target, &(target_buf[ x * 4 ]));
3956                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
3957                         }
3958                         for (; (x < 16) ; x += 1) {
3959                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
3960                         }
3961                         break;
3962                 }
3963                 /* ascii-ify the bytes */
3964                 for (x = 0 ; x < y ; x++) {
3965                         if ((target_buf[x] >= 0x20) &&
3966                                 (target_buf[x] <= 0x7e)) {
3967                                 /* good */
3968                         } else {
3969                                 /* smack it */
3970                                 target_buf[x] = '.';
3971                         }
3972                 }
3973                 /* space pad  */
3974                 while (x < 16) {
3975                         target_buf[x] = ' ';
3976                         x++;
3977                 }
3978                 /* terminate */
3979                 target_buf[16] = 0;
3980                 /* print - with a newline */
3981                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
3982                 /* NEXT... */
3983                 c -= 16;
3984                 a += 16;
3985         }
3986         return JIM_OK;
3987 }
3988
3989 static int jim_target_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3990 {
3991         struct target *target = Jim_CmdPrivData(interp);
3992         return target_mem2array(interp, target, argc - 1, argv + 1);
3993 }
3994
3995 static int jim_target_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3996 {
3997         struct target *target = Jim_CmdPrivData(interp);
3998         return target_array2mem(interp, target, argc - 1, argv + 1);
3999 }
4000
4001 static int jim_target_tap_disabled(Jim_Interp *interp)
4002 {
4003         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4004         return JIM_ERR;
4005 }
4006
4007 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4008 {
4009         if (argc != 1)
4010         {
4011                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4012                 return JIM_ERR;
4013         }
4014         struct target *target = Jim_CmdPrivData(interp);
4015         if (!target->tap->enabled)
4016                 return jim_target_tap_disabled(interp);
4017
4018         int e = target->type->examine(target);
4019         if (e != ERROR_OK)
4020         {
4021                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4022                 return JIM_ERR;
4023         }
4024         return JIM_OK;
4025 }
4026
4027 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4028 {
4029         if (argc != 1)
4030         {
4031                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4032                 return JIM_ERR;
4033         }
4034         struct target *target = Jim_CmdPrivData(interp);
4035         if (!target->tap->enabled)
4036                 return jim_target_tap_disabled(interp);
4037
4038         int e;
4039         if (!(target_was_examined(target))) {
4040                 e = ERROR_TARGET_NOT_EXAMINED;
4041         } else {
4042                 e = target->type->poll(target);
4043         }
4044         if (e != ERROR_OK)
4045         {
4046                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4047                 return JIM_ERR;
4048         }
4049         return JIM_OK;
4050 }
4051
4052 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4053 {
4054         Jim_GetOptInfo goi;
4055         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4056
4057         if (goi.argc != 2)
4058         {
4059                 Jim_WrongNumArgs(interp, 0, argv,
4060                                 "([tT]|[fF]|assert|deassert) BOOL");
4061                 return JIM_ERR;
4062         }
4063
4064         Jim_Nvp *n;
4065         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4066         if (e != JIM_OK)
4067         {
4068                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4069                 return e;
4070         }
4071         /* the halt or not param */
4072         jim_wide a;
4073         e = Jim_GetOpt_Wide(&goi, &a);
4074         if (e != JIM_OK)
4075                 return e;
4076
4077         struct target *target = Jim_CmdPrivData(goi.interp);
4078         if (!target->tap->enabled)
4079                 return jim_target_tap_disabled(interp);
4080         if (!target->type->assert_reset || !target->type->deassert_reset)
4081         {
4082                 Jim_SetResult_sprintf(interp,
4083                                 "No target-specific reset for %s",
4084                                 target_name(target));
4085                 return JIM_ERR;
4086         }
4087         /* determine if we should halt or not. */
4088         target->reset_halt = !!a;
4089         /* When this happens - all workareas are invalid. */
4090         target_free_all_working_areas_restore(target, 0);
4091
4092         /* do the assert */
4093         if (n->value == NVP_ASSERT) {
4094                 e = target->type->assert_reset(target);
4095         } else {
4096                 e = target->type->deassert_reset(target);
4097         }
4098         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4099 }
4100
4101 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4102 {
4103         if (argc != 1) {
4104                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4105                 return JIM_ERR;
4106         }
4107         struct target *target = Jim_CmdPrivData(interp);
4108         if (!target->tap->enabled)
4109                 return jim_target_tap_disabled(interp);
4110         int e = target->type->halt(target);
4111         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4112 }
4113
4114 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4115 {
4116         Jim_GetOptInfo goi;
4117         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4118
4119         /* params:  <name>  statename timeoutmsecs */
4120         if (goi.argc != 2)
4121         {
4122                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4123                 Jim_SetResult_sprintf(goi.interp,
4124                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4125                 return JIM_ERR;
4126         }
4127
4128         Jim_Nvp *n;
4129         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4130         if (e != JIM_OK) {
4131                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4132                 return e;
4133         }
4134         jim_wide a;
4135         e = Jim_GetOpt_Wide(&goi, &a);
4136         if (e != JIM_OK) {
4137                 return e;
4138         }
4139         struct target *target = Jim_CmdPrivData(interp);
4140         if (!target->tap->enabled)
4141                 return jim_target_tap_disabled(interp);
4142
4143         e = target_wait_state(target, n->value, a);
4144         if (e != ERROR_OK)
4145         {
4146                 Jim_SetResult_sprintf(goi.interp,
4147                                 "target: %s wait %s fails (%d) %s",
4148                                 target_name(target), n->name,
4149                                 e, target_strerror_safe(e));
4150                 return JIM_ERR;
4151         }
4152         return JIM_OK;
4153 }
4154 /* List for human, Events defined for this target.
4155  * scripts/programs should use 'name cget -event NAME'
4156  */
4157 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4158 {
4159         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4160         struct target *target = Jim_CmdPrivData(interp);
4161         struct target_event_action *teap = target->event_action;
4162         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4163                                    target->target_number,
4164                                    target_name(target));
4165         command_print(cmd_ctx, "%-25s | Body", "Event");
4166         command_print(cmd_ctx, "------------------------- | "
4167                         "----------------------------------------");
4168         while (teap)
4169         {
4170                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4171                 command_print(cmd_ctx, "%-25s | %s",
4172                                 opt->name, Jim_GetString(teap->body, NULL));
4173                 teap = teap->next;
4174         }
4175         command_print(cmd_ctx, "***END***");
4176         return JIM_OK;
4177 }
4178 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4179 {
4180         if (argc != 1)
4181         {
4182                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4183                 return JIM_ERR;
4184         }
4185         struct target *target = Jim_CmdPrivData(interp);
4186         Jim_SetResultString(interp, target_state_name(target), -1);
4187         return JIM_OK;
4188 }
4189 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4190 {
4191         Jim_GetOptInfo goi;
4192         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4193         if (goi.argc != 1)
4194         {
4195                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4196                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4197                 return JIM_ERR;
4198         }
4199         Jim_Nvp *n;
4200         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4201         if (e != JIM_OK)
4202         {
4203                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4204                 return e;
4205         }
4206         struct target *target = Jim_CmdPrivData(interp);
4207         target_handle_event(target, n->value);
4208         return JIM_OK;
4209 }
4210
4211 static const struct command_registration target_instance_command_handlers[] = {
4212         {
4213                 .name = "configure",
4214                 .mode = COMMAND_CONFIG,
4215                 .jim_handler = &jim_target_configure,
4216                 .usage = "[<target_options> ...]",
4217                 .help  = "configure a new target for use",
4218         },
4219         {
4220                 .name = "cget",
4221                 .mode = COMMAND_ANY,
4222                 .jim_handler = &jim_target_configure,
4223                 .usage = "<target_type> [<target_options> ...]",
4224                 .help  = "configure a new target for use",
4225         },
4226         {
4227                 .name = "mww",
4228                 .mode = COMMAND_EXEC,
4229                 .jim_handler = &jim_target_mw,
4230                 .usage = "<address> <data> [<count>]",
4231                 .help = "Write 32-bit word(s) to target memory",
4232         },
4233         {
4234                 .name = "mwh",
4235                 .mode = COMMAND_EXEC,
4236                 .jim_handler = &jim_target_mw,
4237                 .usage = "<address> <data> [<count>]",
4238                 .help = "Write 16-bit half-word(s) to target memory",
4239         },
4240         {
4241                 .name = "mwb",
4242                 .mode = COMMAND_EXEC,
4243                 .jim_handler = &jim_target_mw,
4244                 .usage = "<address> <data> [<count>]",
4245                 .help = "Write byte(s) to target memory",
4246         },
4247         {
4248                 .name = "mdw",
4249                 .mode = COMMAND_EXEC,
4250                 .jim_handler = &jim_target_md,
4251                 .usage = "<address> [<count>]",
4252                 .help = "Display target memory as 32-bit words",
4253         },
4254         {
4255                 .name = "mdh",
4256                 .mode = COMMAND_EXEC,
4257                 .jim_handler = &jim_target_md,
4258                 .usage = "<address> [<count>]",
4259                 .help = "Display target memory as 16-bit half-words",
4260         },
4261         {
4262                 .name = "mdb",
4263                 .mode = COMMAND_EXEC,
4264                 .jim_handler = &jim_target_md,
4265                 .usage = "<address> [<count>]",
4266                 .help = "Display target memory as 8-bit bytes",
4267         },
4268         {
4269                 .name = "array2mem",
4270                 .mode = COMMAND_EXEC,
4271                 .jim_handler = &jim_target_array2mem,
4272         },
4273         {
4274                 .name = "mem2array",
4275                 .mode = COMMAND_EXEC,
4276                 .jim_handler = &jim_target_mem2array,
4277         },
4278         {
4279                 .name = "eventlist",
4280                 .mode = COMMAND_EXEC,
4281                 .jim_handler = &jim_target_event_list,
4282         },
4283         {
4284                 .name = "curstate",
4285                 .mode = COMMAND_EXEC,
4286                 .jim_handler = &jim_target_current_state,
4287         },
4288         {
4289                 .name = "arp_examine",
4290                 .mode = COMMAND_EXEC,
4291                 .jim_handler = &jim_target_examine,
4292         },
4293         {
4294                 .name = "arp_poll",
4295                 .mode = COMMAND_EXEC,
4296                 .jim_handler = &jim_target_poll,
4297         },
4298         {
4299                 .name = "arp_reset",
4300                 .mode = COMMAND_EXEC,
4301                 .jim_handler = &jim_target_reset,
4302         },
4303         {
4304                 .name = "arp_halt",
4305                 .mode = COMMAND_EXEC,
4306                 .jim_handler = &jim_target_halt,
4307         },
4308         {
4309                 .name = "arp_waitstate",
4310                 .mode = COMMAND_EXEC,
4311                 .jim_handler = &jim_target_wait_state,
4312         },
4313         {
4314                 .name = "invoke-event",
4315                 .mode = COMMAND_EXEC,
4316                 .jim_handler = &jim_target_invoke_event,
4317         },
4318         COMMAND_REGISTRATION_DONE
4319 };
4320
4321 static int target_create(Jim_GetOptInfo *goi)
4322 {
4323         Jim_Obj *new_cmd;
4324         Jim_Cmd *cmd;
4325         const char *cp;
4326         char *cp2;
4327         int e;
4328         int x;
4329         struct target *target;
4330         struct command_context *cmd_ctx;
4331
4332         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4333         if (goi->argc < 3) {
4334                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4335                 return JIM_ERR;
4336         }
4337
4338         /* COMMAND */
4339         Jim_GetOpt_Obj(goi, &new_cmd);
4340         /* does this command exist? */
4341         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4342         if (cmd) {
4343                 cp = Jim_GetString(new_cmd, NULL);
4344                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4345                 return JIM_ERR;
4346         }
4347
4348         /* TYPE */
4349         e = Jim_GetOpt_String(goi, &cp2, NULL);
4350         cp = cp2;
4351         /* now does target type exist */
4352         for (x = 0 ; target_types[x] ; x++) {
4353                 if (0 == strcmp(cp, target_types[x]->name)) {
4354                         /* found */
4355                         break;
4356                 }
4357         }
4358         if (target_types[x] == NULL) {
4359                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4360                 for (x = 0 ; target_types[x] ; x++) {
4361                         if (target_types[x + 1]) {
4362                                 Jim_AppendStrings(goi->interp,
4363                                                                    Jim_GetResult(goi->interp),
4364                                                                    target_types[x]->name,
4365                                                                    ", ", NULL);
4366                         } else {
4367                                 Jim_AppendStrings(goi->interp,
4368                                                                    Jim_GetResult(goi->interp),
4369                                                                    " or ",
4370                                                                    target_types[x]->name,NULL);
4371                         }
4372                 }
4373                 return JIM_ERR;
4374         }
4375
4376         /* Create it */
4377         target = calloc(1,sizeof(struct target));
4378         /* set target number */
4379         target->target_number = new_target_number();
4380
4381         /* allocate memory for each unique target type */
4382         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4383
4384         memcpy(target->type, target_types[x], sizeof(struct target_type));
4385
4386         /* will be set by "-endian" */
4387         target->endianness = TARGET_ENDIAN_UNKNOWN;
4388
4389         target->working_area        = 0x0;
4390         target->working_area_size   = 0x0;
4391         target->working_areas       = NULL;
4392         target->backup_working_area = 0;
4393
4394         target->state               = TARGET_UNKNOWN;
4395         target->debug_reason        = DBG_REASON_UNDEFINED;
4396         target->reg_cache           = NULL;
4397         target->breakpoints         = NULL;
4398         target->watchpoints         = NULL;
4399         target->next                = NULL;
4400         target->arch_info           = NULL;
4401
4402         target->display             = 1;
4403
4404         target->halt_issued                     = false;
4405
4406         /* initialize trace information */
4407         target->trace_info = malloc(sizeof(struct trace));
4408         target->trace_info->num_trace_points         = 0;
4409         target->trace_info->trace_points_size        = 0;
4410         target->trace_info->trace_points             = NULL;
4411         target->trace_info->trace_history_size       = 0;
4412         target->trace_info->trace_history            = NULL;
4413         target->trace_info->trace_history_pos        = 0;
4414         target->trace_info->trace_history_overflowed = 0;
4415
4416         target->dbgmsg          = NULL;
4417         target->dbg_msg_enabled = 0;
4418
4419         target->endianness = TARGET_ENDIAN_UNKNOWN;
4420
4421         /* Do the rest as "configure" options */
4422         goi->isconfigure = 1;
4423         e = target_configure(goi, target);
4424
4425         if (target->tap == NULL)
4426         {
4427                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4428                 e = JIM_ERR;
4429         }
4430
4431         if (e != JIM_OK) {
4432                 free(target->type);
4433                 free(target);
4434                 return e;
4435         }
4436
4437         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4438                 /* default endian to little if not specified */
4439                 target->endianness = TARGET_LITTLE_ENDIAN;
4440         }
4441
4442         /* incase variant is not set */
4443         if (!target->variant)
4444                 target->variant = strdup("");
4445
4446         cp = Jim_GetString(new_cmd, NULL);
4447         target->cmd_name = strdup(cp);
4448
4449         /* create the target specific commands */
4450         if (target->type->commands) {
4451                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4452                 if (ERROR_OK != e)
4453                         LOG_ERROR("unable to register '%s' commands", cp);
4454         }
4455         if (target->type->target_create) {
4456                 (*(target->type->target_create))(target, goi->interp);
4457         }
4458
4459         /* append to end of list */
4460         {
4461                 struct target **tpp;
4462                 tpp = &(all_targets);
4463                 while (*tpp) {
4464                         tpp = &((*tpp)->next);
4465                 }
4466                 *tpp = target;
4467         }
4468         
4469         /* now - create the new target name command */
4470         const const struct command_registration target_subcommands[] = {
4471                 {
4472                         .chain = target_instance_command_handlers,
4473                 },
4474                 {
4475                         .chain = target->type->commands,
4476                 },
4477                 COMMAND_REGISTRATION_DONE
4478         };
4479         const const struct command_registration target_commands[] = {
4480                 {
4481                         .name = cp,
4482                         .mode = COMMAND_ANY,
4483                         .help = "target command group",
4484                         .chain = target_subcommands,
4485                 },
4486                 COMMAND_REGISTRATION_DONE
4487         };
4488         e = register_commands(cmd_ctx, NULL, target_commands);
4489         if (ERROR_OK != e)
4490                 return JIM_ERR;
4491
4492         struct command *c = command_find_in_context(cmd_ctx, cp);
4493         assert(c);
4494         command_set_handler_data(c, target);
4495
4496         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4497 }
4498
4499 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4500 {
4501         if (argc != 1)
4502         {
4503                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4504                 return JIM_ERR;
4505         }
4506         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4507         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4508         return JIM_OK;
4509 }
4510
4511 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4512 {
4513         if (argc != 1)
4514         {
4515                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4516                 return JIM_ERR;
4517         }
4518         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4519         for (unsigned x = 0; NULL != target_types[x]; x++)
4520         {
4521                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4522                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4523         }
4524         return JIM_OK;
4525 }
4526
4527 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4528 {
4529         if (argc != 1)
4530         {
4531                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4532                 return JIM_ERR;
4533         }
4534         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4535         struct target *target = all_targets;
4536         while (target)
4537         {
4538                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4539                         Jim_NewStringObj(interp, target_name(target), -1));
4540                 target = target->next;
4541         }
4542         return JIM_OK;
4543 }
4544
4545 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4546 {
4547         Jim_GetOptInfo goi;
4548         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4549         if (goi.argc < 3)
4550         {
4551                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4552                         "<name> <target_type> [<target_options> ...]");
4553                 return JIM_ERR;
4554         }
4555         return target_create(&goi);
4556 }
4557
4558 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4559 {
4560         Jim_GetOptInfo goi;
4561         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4562
4563         /* It's OK to remove this mechanism sometime after August 2010 or so */
4564         LOG_WARNING("don't use numbers as target identifiers; use names");
4565         if (goi.argc != 1)
4566         {
4567                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4568                 return JIM_ERR;
4569         }
4570         jim_wide w;
4571         int e = Jim_GetOpt_Wide(&goi, &w);
4572         if (e != JIM_OK)
4573                 return JIM_ERR;
4574
4575         struct target *target;
4576         for (target = all_targets; NULL != target; target = target->next)
4577         {
4578                 if (target->target_number != w)
4579                         continue;
4580
4581                 Jim_SetResultString(goi.interp, target_name(target), -1);
4582                 return JIM_OK;
4583         }
4584         Jim_SetResult_sprintf(goi.interp,
4585                         "Target: number %d does not exist", (int)(w));
4586         return JIM_ERR;
4587 }
4588
4589 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4590 {
4591         if (argc != 1)
4592         {
4593                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4594                 return JIM_ERR;
4595         }
4596         unsigned count = 0;
4597         struct target *target = all_targets;
4598         while (NULL != target)
4599         {
4600                 target = target->next;
4601                 count++;
4602         }
4603         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4604         return JIM_OK;
4605 }
4606
4607 static const struct command_registration target_subcommand_handlers[] = {
4608         {
4609                 .name = "init",
4610                 .mode = COMMAND_CONFIG,
4611                 .handler = &handle_target_init_command,
4612                 .help = "initialize targets",
4613         },
4614         {
4615                 .name = "create",
4616                 .mode = COMMAND_ANY,
4617                 .jim_handler = &jim_target_create,
4618                 .usage = "<name> <type> ...",
4619                 .help = "Returns the currently selected target",
4620         },
4621         {
4622                 .name = "current",
4623                 .mode = COMMAND_ANY,
4624                 .jim_handler = &jim_target_current,
4625                 .help = "Returns the currently selected target",
4626         },
4627         {
4628                 .name = "types",
4629                 .mode = COMMAND_ANY,
4630                 .jim_handler = &jim_target_types,
4631                 .help = "Returns the available target types as a list of strings",
4632         },
4633         {
4634                 .name = "names",
4635                 .mode = COMMAND_ANY,
4636                 .jim_handler = &jim_target_names,
4637                 .help = "Returns the names of all targets as a list of strings",
4638         },
4639         {
4640                 .name = "number",
4641                 .mode = COMMAND_ANY,
4642                 .jim_handler = &jim_target_number,
4643                 .usage = "<number>",
4644                 .help = "Returns the name of target <n>",
4645         },
4646         {
4647                 .name = "count",
4648                 .mode = COMMAND_ANY,
4649                 .jim_handler = &jim_target_count,
4650                 .help = "Returns the number of targets as an integer",
4651         },
4652         COMMAND_REGISTRATION_DONE
4653 };
4654
4655
4656 struct FastLoad
4657 {
4658         uint32_t address;
4659         uint8_t *data;
4660         int length;
4661
4662 };
4663
4664 static int fastload_num;
4665 static struct FastLoad *fastload;
4666
4667 static void free_fastload(void)
4668 {
4669         if (fastload != NULL)
4670         {
4671                 int i;
4672                 for (i = 0; i < fastload_num; i++)
4673                 {
4674                         if (fastload[i].data)
4675                                 free(fastload[i].data);
4676                 }
4677                 free(fastload);
4678                 fastload = NULL;
4679         }
4680 }
4681
4682
4683
4684
4685 COMMAND_HANDLER(handle_fast_load_image_command)
4686 {
4687         uint8_t *buffer;
4688         size_t buf_cnt;
4689         uint32_t image_size;
4690         uint32_t min_address = 0;
4691         uint32_t max_address = 0xffffffff;
4692         int i;
4693
4694         struct image image;
4695
4696         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4697                         &image, &min_address, &max_address);
4698         if (ERROR_OK != retval)
4699                 return retval;
4700
4701         struct duration bench;
4702         duration_start(&bench);
4703
4704         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4705         {
4706                 return ERROR_OK;
4707         }
4708
4709         image_size = 0x0;
4710         retval = ERROR_OK;
4711         fastload_num = image.num_sections;
4712         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4713         if (fastload == NULL)
4714         {
4715                 image_close(&image);
4716                 return ERROR_FAIL;
4717         }
4718         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4719         for (i = 0; i < image.num_sections; i++)
4720         {
4721                 buffer = malloc(image.sections[i].size);
4722                 if (buffer == NULL)
4723                 {
4724                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4725                                                   (int)(image.sections[i].size));
4726                         break;
4727                 }
4728
4729                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4730                 {
4731                         free(buffer);
4732                         break;
4733                 }
4734
4735                 uint32_t offset = 0;
4736                 uint32_t length = buf_cnt;
4737
4738
4739                 /* DANGER!!! beware of unsigned comparision here!!! */
4740
4741                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4742                                 (image.sections[i].base_address < max_address))
4743                 {
4744                         if (image.sections[i].base_address < min_address)
4745                         {
4746                                 /* clip addresses below */
4747                                 offset += min_address-image.sections[i].base_address;
4748                                 length -= offset;
4749                         }
4750
4751                         if (image.sections[i].base_address + buf_cnt > max_address)
4752                         {
4753                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4754                         }
4755
4756                         fastload[i].address = image.sections[i].base_address + offset;
4757                         fastload[i].data = malloc(length);
4758                         if (fastload[i].data == NULL)
4759                         {
4760                                 free(buffer);
4761                                 break;
4762                         }
4763                         memcpy(fastload[i].data, buffer + offset, length);
4764                         fastload[i].length = length;
4765
4766                         image_size += length;
4767                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4768                                                   (unsigned int)length,
4769                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4770                 }
4771
4772                 free(buffer);
4773         }
4774
4775         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4776         {
4777                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4778                                 "in %fs (%0.3f kb/s)", image_size, 
4779                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4780
4781                 command_print(CMD_CTX,
4782                                 "WARNING: image has not been loaded to target!"
4783                                 "You can issue a 'fast_load' to finish loading.");
4784         }
4785
4786         image_close(&image);
4787
4788         if (retval != ERROR_OK)
4789         {
4790                 free_fastload();
4791         }
4792
4793         return retval;
4794 }
4795
4796 COMMAND_HANDLER(handle_fast_load_command)
4797 {
4798         if (CMD_ARGC > 0)
4799                 return ERROR_COMMAND_SYNTAX_ERROR;
4800         if (fastload == NULL)
4801         {
4802                 LOG_ERROR("No image in memory");
4803                 return ERROR_FAIL;
4804         }
4805         int i;
4806         int ms = timeval_ms();
4807         int size = 0;
4808         int retval = ERROR_OK;
4809         for (i = 0; i < fastload_num;i++)
4810         {
4811                 struct target *target = get_current_target(CMD_CTX);
4812                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
4813                                           (unsigned int)(fastload[i].address),
4814                                           (unsigned int)(fastload[i].length));
4815                 if (retval == ERROR_OK)
4816                 {
4817                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4818                 }
4819                 size += fastload[i].length;
4820         }
4821         int after = timeval_ms();
4822         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4823         return retval;
4824 }
4825
4826 static const struct command_registration target_command_handlers[] = {
4827         {
4828                 .name = "targets",
4829                 .handler = &handle_targets_command,
4830                 .mode = COMMAND_ANY,
4831                 .help = "change current command line target (one parameter) "
4832                         "or list targets (no parameters)",
4833                 .usage = "[<new_current_target>]",
4834         },
4835         {
4836                 .name = "target",
4837                 .mode = COMMAND_CONFIG,
4838                 .help = "configure target",
4839
4840                 .chain = target_subcommand_handlers,
4841         },
4842         COMMAND_REGISTRATION_DONE
4843 };
4844
4845 int target_register_commands(struct command_context *cmd_ctx)
4846 {
4847         return register_commands(cmd_ctx, NULL, target_command_handlers);
4848 }
4849
4850 static const struct command_registration target_exec_command_handlers[] = {
4851         {
4852                 .name = "fast_load_image",
4853                 .handler = &handle_fast_load_image_command,
4854                 .mode = COMMAND_ANY,
4855                 .help = "Load image into memory, mainly for profiling purposes",
4856                 .usage = "<file> <address> ['bin'|'ihex'|'elf'|'s19'] "
4857                         "[min_address] [max_length]",
4858         },
4859         {
4860                 .name = "fast_load",
4861                 .handler = &handle_fast_load_command,
4862                 .mode = COMMAND_ANY,
4863                 .help = "loads active fast load image to current target "
4864                         "- mainly for profiling purposes",
4865         },
4866         {
4867                 .name = "profile",
4868                 .handler = &handle_profile_command,
4869                 .mode = COMMAND_EXEC,
4870                 .help = "profiling samples the CPU PC",
4871         },
4872         /** @todo don't register virt2phys() unless target supports it */
4873         {
4874                 .name = "virt2phys",
4875                 .handler = &handle_virt2phys_command,
4876                 .mode = COMMAND_ANY,
4877                 .help = "translate a virtual address into a physical address",
4878         },
4879
4880         {
4881                 .name = "reg",
4882                 .handler = &handle_reg_command,
4883                 .mode = COMMAND_EXEC,
4884                 .help = "display or set a register",
4885         },
4886
4887         {
4888                 .name = "poll",
4889                 .handler = &handle_poll_command,
4890                 .mode = COMMAND_EXEC,
4891                 .help = "poll target state",
4892         },
4893         {
4894                 .name = "wait_halt",
4895                 .handler = &handle_wait_halt_command,
4896                 .mode = COMMAND_EXEC,
4897                 .help = "wait for target halt",
4898                 .usage = "[time (s)]",
4899         },
4900         {
4901                 .name = "halt",
4902                 .handler = &handle_halt_command,
4903                 .mode = COMMAND_EXEC,
4904                 .help = "halt target",
4905         },
4906         {
4907                 .name = "resume",
4908                 .handler = &handle_resume_command,
4909                 .mode = COMMAND_EXEC,
4910                 .help = "resume target",
4911                 .usage = "[<address>]",
4912         },
4913         {
4914                 .name = "reset",
4915                 .handler = &handle_reset_command,
4916                 .mode = COMMAND_EXEC,
4917                 .usage = "[run|halt|init]",
4918                 .help = "Reset all targets into the specified mode."
4919                         "Default reset mode is run, if not given.",
4920         },
4921         {
4922                 .name = "soft_reset_halt",
4923                 .handler = &handle_soft_reset_halt_command,
4924                 .mode = COMMAND_EXEC,
4925                 .help = "halt the target and do a soft reset",
4926         },
4927         {
4928
4929                 .name = "step",
4930                 .handler = &handle_step_command,
4931                 .mode = COMMAND_EXEC,
4932                 .help = "step one instruction from current PC or [addr]",
4933                 .usage = "[<address>]",
4934         },
4935         {
4936
4937                 .name = "mdw",
4938                 .handler = &handle_md_command,
4939                 .mode = COMMAND_EXEC,
4940                 .help = "display memory words",
4941                 .usage = "[phys] <addr> [count]",
4942         },
4943         {
4944                 .name = "mdh",
4945                 .handler = &handle_md_command,
4946                 .mode = COMMAND_EXEC,
4947                 .help = "display memory half-words",
4948                 .usage = "[phys] <addr> [count]",
4949         },
4950         {
4951                 .name = "mdb",
4952                 .handler = &handle_md_command,
4953                 .mode = COMMAND_EXEC,
4954                 .help = "display memory bytes",
4955                 .usage = "[phys] <addr> [count]",
4956         },
4957         {
4958
4959                 .name = "mww",
4960                 .handler = &handle_mw_command,
4961                 .mode = COMMAND_EXEC,
4962                 .help = "write memory word",
4963                 .usage = "[phys]  <addr> <value> [count]",
4964         },
4965         {
4966                 .name = "mwh",
4967                 .handler = &handle_mw_command,
4968                 .mode = COMMAND_EXEC,
4969                 .help = "write memory half-word",
4970                 .usage = "[phys] <addr> <value> [count]",
4971         },
4972         {
4973                 .name = "mwb",
4974                 .handler = &handle_mw_command,
4975                 .mode = COMMAND_EXEC,
4976                 .help = "write memory byte",
4977                 .usage = "[phys] <addr> <value> [count]",
4978         },
4979         {
4980
4981                 .name = "bp",
4982                 .handler = &handle_bp_command,
4983                 .mode = COMMAND_EXEC,
4984                 .help = "list or set breakpoint",
4985                 .usage = "[<address> <length> [hw]]",
4986         },
4987         {
4988                 .name = "rbp",
4989                 .handler = &handle_rbp_command,
4990                 .mode = COMMAND_EXEC,
4991                 .help = "remove breakpoint",
4992                 .usage = "<address>",
4993         },
4994         {
4995
4996                 .name = "wp",
4997                 .handler = &handle_wp_command,
4998                 .mode = COMMAND_EXEC,
4999                 .help = "list or set watchpoint",
5000                 .usage = "[<address> <length> <r/w/a> [value] [mask]]",
5001         },
5002         {
5003                 .name = "rwp",
5004                 .handler = &handle_rwp_command,
5005                 .mode = COMMAND_EXEC,
5006                 .help = "remove watchpoint",
5007                 .usage = "<address>",
5008
5009         },
5010         {
5011                 .name = "load_image",
5012                 .handler = &handle_load_image_command,
5013                 .mode = COMMAND_EXEC,
5014                 .usage = "<file> <address> ['bin'|'ihex'|'elf'|'s19'] "
5015                         "[min_address] [max_length]",
5016         },
5017         {
5018                 .name = "dump_image",
5019                 .handler = &handle_dump_image_command,
5020                 .mode = COMMAND_EXEC,
5021                 .usage = "<file> <address> <size>",
5022         },
5023         {
5024                 .name = "verify_image",
5025                 .handler = &handle_verify_image_command,
5026                 .mode = COMMAND_EXEC,
5027                 .usage = "<file> [offset] [type]",
5028         },
5029         {
5030                 .name = "test_image",
5031                 .handler = &handle_test_image_command,
5032                 .mode = COMMAND_EXEC,
5033                 .usage = "<file> [offset] [type]",
5034         },
5035         {
5036                 .name = "ocd_mem2array",
5037                 .mode = COMMAND_EXEC,
5038                 .jim_handler = &jim_mem2array,
5039                 .help = "read memory and return as a TCL array "
5040                         "for script processing",
5041                 .usage = "<arrayname> <width=32|16|8> <address> <count>",
5042         },
5043         {
5044                 .name = "ocd_array2mem",
5045                 .mode = COMMAND_EXEC,
5046                 .jim_handler = &jim_array2mem,
5047                 .help = "convert a TCL array to memory locations "
5048                         "and write the values",
5049                 .usage = "<arrayname> <width=32|16|8> <address> <count>",
5050         },
5051         COMMAND_REGISTRATION_DONE
5052 };
5053 int target_register_user_commands(struct command_context *cmd_ctx)
5054 {
5055         int retval = ERROR_OK;
5056         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5057                 return retval;
5058
5059         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5060                 return retval;
5061
5062
5063         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5064 }