TARGET: review scope of functions
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
39
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
47
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50                 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52                 int argc, Jim_Obj *const *argv);
53 static int target_register_user_commands(struct command_context *cmd_ctx);
54
55 /* targets */
56 extern struct target_type arm7tdmi_target;
57 extern struct target_type arm720t_target;
58 extern struct target_type arm9tdmi_target;
59 extern struct target_type arm920t_target;
60 extern struct target_type arm966e_target;
61 extern struct target_type arm926ejs_target;
62 extern struct target_type fa526_target;
63 extern struct target_type feroceon_target;
64 extern struct target_type dragonite_target;
65 extern struct target_type xscale_target;
66 extern struct target_type cortexm3_target;
67 extern struct target_type cortexa8_target;
68 extern struct target_type arm11_target;
69 extern struct target_type mips_m4k_target;
70 extern struct target_type avr_target;
71 extern struct target_type dsp563xx_target;
72 extern struct target_type testee_target;
73
74 static struct target_type *target_types[] =
75 {
76         &arm7tdmi_target,
77         &arm9tdmi_target,
78         &arm920t_target,
79         &arm720t_target,
80         &arm966e_target,
81         &arm926ejs_target,
82         &fa526_target,
83         &feroceon_target,
84         &dragonite_target,
85         &xscale_target,
86         &cortexm3_target,
87         &cortexa8_target,
88         &arm11_target,
89         &mips_m4k_target,
90         &avr_target,
91         &dsp563xx_target,
92         &testee_target,
93         NULL,
94 };
95
96 struct target *all_targets = NULL;
97 static struct target_event_callback *target_event_callbacks = NULL;
98 static struct target_timer_callback *target_timer_callbacks = NULL;
99
100 static const Jim_Nvp nvp_assert[] = {
101         { .name = "assert", NVP_ASSERT },
102         { .name = "deassert", NVP_DEASSERT },
103         { .name = "T", NVP_ASSERT },
104         { .name = "F", NVP_DEASSERT },
105         { .name = "t", NVP_ASSERT },
106         { .name = "f", NVP_DEASSERT },
107         { .name = NULL, .value = -1 }
108 };
109
110 static const Jim_Nvp nvp_error_target[] = {
111         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
112         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
113         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
114         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
115         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
116         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
117         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
118         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
119         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
120         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
121         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
122         { .value = -1, .name = NULL }
123 };
124
125 static const char *target_strerror_safe(int err)
126 {
127         const Jim_Nvp *n;
128
129         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
130         if (n->name == NULL) {
131                 return "unknown";
132         } else {
133                 return n->name;
134         }
135 }
136
137 static const Jim_Nvp nvp_target_event[] = {
138         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
139         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
140
141         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
142         { .value = TARGET_EVENT_HALTED, .name = "halted" },
143         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
144         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
145         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
146
147         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
148         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
149
150         /* historical name */
151
152         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
153
154         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
155         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
156         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
157         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
158         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
159         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
160         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
161         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
162         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
163         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
164         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
165
166         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
167         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
168
169         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
170         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
171
172         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
173         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
174
175         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
176         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
177
178         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
179         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
180
181         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
182         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
183         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
184
185         { .name = NULL, .value = -1 }
186 };
187
188 static const Jim_Nvp nvp_target_state[] = {
189         { .name = "unknown", .value = TARGET_UNKNOWN },
190         { .name = "running", .value = TARGET_RUNNING },
191         { .name = "halted",  .value = TARGET_HALTED },
192         { .name = "reset",   .value = TARGET_RESET },
193         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
194         { .name = NULL, .value = -1 },
195 };
196
197 static const Jim_Nvp nvp_target_debug_reason [] = {
198         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
199         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
200         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
201         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
202         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
203         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
204         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
205         { .name = NULL, .value = -1 },
206 };
207
208 static const Jim_Nvp nvp_target_endian[] = {
209         { .name = "big",    .value = TARGET_BIG_ENDIAN },
210         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
211         { .name = "be",     .value = TARGET_BIG_ENDIAN },
212         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
213         { .name = NULL,     .value = -1 },
214 };
215
216 static const Jim_Nvp nvp_reset_modes[] = {
217         { .name = "unknown", .value = RESET_UNKNOWN },
218         { .name = "run"    , .value = RESET_RUN },
219         { .name = "halt"   , .value = RESET_HALT },
220         { .name = "init"   , .value = RESET_INIT },
221         { .name = NULL     , .value = -1 },
222 };
223
224 const char *debug_reason_name(struct target *t)
225 {
226         const char *cp;
227
228         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
229                         t->debug_reason)->name;
230         if (!cp) {
231                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
232                 cp = "(*BUG*unknown*BUG*)";
233         }
234         return cp;
235 }
236
237 const char *
238 target_state_name( struct target *t )
239 {
240         const char *cp;
241         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
242         if( !cp ){
243                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
244                 cp = "(*BUG*unknown*BUG*)";
245         }
246         return cp;
247 }
248
249 /* determine the number of the new target */
250 static int new_target_number(void)
251 {
252         struct target *t;
253         int x;
254
255         /* number is 0 based */
256         x = -1;
257         t = all_targets;
258         while (t) {
259                 if (x < t->target_number) {
260                         x = t->target_number;
261                 }
262                 t = t->next;
263         }
264         return x + 1;
265 }
266
267 /* read a uint32_t from a buffer in target memory endianness */
268 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
269 {
270         if (target->endianness == TARGET_LITTLE_ENDIAN)
271                 return le_to_h_u32(buffer);
272         else
273                 return be_to_h_u32(buffer);
274 }
275
276 /* read a uint16_t from a buffer in target memory endianness */
277 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
278 {
279         if (target->endianness == TARGET_LITTLE_ENDIAN)
280                 return le_to_h_u16(buffer);
281         else
282                 return be_to_h_u16(buffer);
283 }
284
285 /* read a uint8_t from a buffer in target memory endianness */
286 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
287 {
288         return *buffer & 0x0ff;
289 }
290
291 /* write a uint32_t to a buffer in target memory endianness */
292 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
293 {
294         if (target->endianness == TARGET_LITTLE_ENDIAN)
295                 h_u32_to_le(buffer, value);
296         else
297                 h_u32_to_be(buffer, value);
298 }
299
300 /* write a uint16_t to a buffer in target memory endianness */
301 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
302 {
303         if (target->endianness == TARGET_LITTLE_ENDIAN)
304                 h_u16_to_le(buffer, value);
305         else
306                 h_u16_to_be(buffer, value);
307 }
308
309 /* write a uint8_t to a buffer in target memory endianness */
310 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
311 {
312         *buffer = value;
313 }
314
315 /* return a pointer to a configured target; id is name or number */
316 struct target *get_target(const char *id)
317 {
318         struct target *target;
319
320         /* try as tcltarget name */
321         for (target = all_targets; target; target = target->next) {
322                 if (target->cmd_name == NULL)
323                         continue;
324                 if (strcmp(id, target->cmd_name) == 0)
325                         return target;
326         }
327
328         /* It's OK to remove this fallback sometime after August 2010 or so */
329
330         /* no match, try as number */
331         unsigned num;
332         if (parse_uint(id, &num) != ERROR_OK)
333                 return NULL;
334
335         for (target = all_targets; target; target = target->next) {
336                 if (target->target_number == (int)num) {
337                         LOG_WARNING("use '%s' as target identifier, not '%u'",
338                                         target->cmd_name, num);
339                         return target;
340                 }
341         }
342
343         return NULL;
344 }
345
346 /* returns a pointer to the n-th configured target */
347 static struct target *get_target_by_num(int num)
348 {
349         struct target *target = all_targets;
350
351         while (target) {
352                 if (target->target_number == num) {
353                         return target;
354                 }
355                 target = target->next;
356         }
357
358         return NULL;
359 }
360
361 struct target* get_current_target(struct command_context *cmd_ctx)
362 {
363         struct target *target = get_target_by_num(cmd_ctx->current_target);
364
365         if (target == NULL)
366         {
367                 LOG_ERROR("BUG: current_target out of bounds");
368                 exit(-1);
369         }
370
371         return target;
372 }
373
374 int target_poll(struct target *target)
375 {
376         int retval;
377
378         /* We can't poll until after examine */
379         if (!target_was_examined(target))
380         {
381                 /* Fail silently lest we pollute the log */
382                 return ERROR_FAIL;
383         }
384
385         retval = target->type->poll(target);
386         if (retval != ERROR_OK)
387                 return retval;
388
389         if (target->halt_issued)
390         {
391                 if (target->state == TARGET_HALTED)
392                 {
393                         target->halt_issued = false;
394                 } else
395                 {
396                         long long t = timeval_ms() - target->halt_issued_time;
397                         if (t>1000)
398                         {
399                                 target->halt_issued = false;
400                                 LOG_INFO("Halt timed out, wake up GDB.");
401                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
402                         }
403                 }
404         }
405
406         return ERROR_OK;
407 }
408
409 int target_halt(struct target *target)
410 {
411         int retval;
412         /* We can't poll until after examine */
413         if (!target_was_examined(target))
414         {
415                 LOG_ERROR("Target not examined yet");
416                 return ERROR_FAIL;
417         }
418
419         retval = target->type->halt(target);
420         if (retval != ERROR_OK)
421                 return retval;
422
423         target->halt_issued = true;
424         target->halt_issued_time = timeval_ms();
425
426         return ERROR_OK;
427 }
428
429 /**
430  * Make the target (re)start executing using its saved execution
431  * context (possibly with some modifications).
432  *
433  * @param target Which target should start executing.
434  * @param current True to use the target's saved program counter instead
435  *      of the address parameter
436  * @param address Optionally used as the program counter.
437  * @param handle_breakpoints True iff breakpoints at the resumption PC
438  *      should be skipped.  (For example, maybe execution was stopped by
439  *      such a breakpoint, in which case it would be counterprodutive to
440  *      let it re-trigger.
441  * @param debug_execution False if all working areas allocated by OpenOCD
442  *      should be released and/or restored to their original contents.
443  *      (This would for example be true to run some downloaded "helper"
444  *      algorithm code, which resides in one such working buffer and uses
445  *      another for data storage.)
446  *
447  * @todo Resolve the ambiguity about what the "debug_execution" flag
448  * signifies.  For example, Target implementations don't agree on how
449  * it relates to invalidation of the register cache, or to whether
450  * breakpoints and watchpoints should be enabled.  (It would seem wrong
451  * to enable breakpoints when running downloaded "helper" algorithms
452  * (debug_execution true), since the breakpoints would be set to match
453  * target firmware being debugged, not the helper algorithm.... and
454  * enabling them could cause such helpers to malfunction (for example,
455  * by overwriting data with a breakpoint instruction.  On the other
456  * hand the infrastructure for running such helpers might use this
457  * procedure but rely on hardware breakpoint to detect termination.)
458  */
459 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
460 {
461         int retval;
462
463         /* We can't poll until after examine */
464         if (!target_was_examined(target))
465         {
466                 LOG_ERROR("Target not examined yet");
467                 return ERROR_FAIL;
468         }
469
470         /* note that resume *must* be asynchronous. The CPU can halt before
471          * we poll. The CPU can even halt at the current PC as a result of
472          * a software breakpoint being inserted by (a bug?) the application.
473          */
474         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
475                 return retval;
476
477         /* Invalidate any cached protect/erase/... flash status, since
478          * almost all targets will now be able modify the flash by
479          * themselves.  We want flash drivers and infrastructure to
480          * be able to rely on (non-invalidated) cached state.
481          *
482          * For now we require that algorithms provided by OpenOCD are
483          * used only by code which properly maintains that  cached state.
484          * state
485          *
486          * REVISIT do the same for NAND ; maybe other flash flavors too...
487          */
488                 if (!target->running_alg)
489                 nor_resume(target);
490         return retval;
491 }
492
493 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
494 {
495         char buf[100];
496         int retval;
497         Jim_Nvp *n;
498         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
499         if (n->name == NULL) {
500                 LOG_ERROR("invalid reset mode");
501                 return ERROR_FAIL;
502         }
503
504         /* disable polling during reset to make reset event scripts
505          * more predictable, i.e. dr/irscan & pathmove in events will
506          * not have JTAG operations injected into the middle of a sequence.
507          */
508         bool save_poll = jtag_poll_get_enabled();
509
510         jtag_poll_set_enabled(false);
511
512         sprintf(buf, "ocd_process_reset %s", n->name);
513         retval = Jim_Eval(cmd_ctx->interp, buf);
514
515         jtag_poll_set_enabled(save_poll);
516
517         if (retval != JIM_OK) {
518                 Jim_PrintErrorMessage(cmd_ctx->interp);
519                 return ERROR_FAIL;
520         }
521
522         /* We want any events to be processed before the prompt */
523         retval = target_call_timer_callbacks_now();
524
525         struct target *target;
526         for (target = all_targets; target; target = target->next) {
527                 target->type->check_reset(target);
528         }
529
530         return retval;
531 }
532
533 static int identity_virt2phys(struct target *target,
534                 uint32_t virtual, uint32_t *physical)
535 {
536         *physical = virtual;
537         return ERROR_OK;
538 }
539
540 static int no_mmu(struct target *target, int *enabled)
541 {
542         *enabled = 0;
543         return ERROR_OK;
544 }
545
546 static int default_examine(struct target *target)
547 {
548         target_set_examined(target);
549         return ERROR_OK;
550 }
551
552 /* no check by default */
553 static int default_check_reset(struct target *target)
554 {
555         return ERROR_OK;
556 }
557
558 int target_examine_one(struct target *target)
559 {
560         return target->type->examine(target);
561 }
562
563 static int jtag_enable_callback(enum jtag_event event, void *priv)
564 {
565         struct target *target = priv;
566
567         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
568                 return ERROR_OK;
569
570         jtag_unregister_event_callback(jtag_enable_callback, target);
571         return target_examine_one(target);
572 }
573
574
575 /* Targets that correctly implement init + examine, i.e.
576  * no communication with target during init:
577  *
578  * XScale
579  */
580 int target_examine(void)
581 {
582         int retval = ERROR_OK;
583         struct target *target;
584
585         for (target = all_targets; target; target = target->next)
586         {
587                 /* defer examination, but don't skip it */
588                 if (!target->tap->enabled) {
589                         jtag_register_event_callback(jtag_enable_callback,
590                                         target);
591                         continue;
592                 }
593                 if ((retval = target_examine_one(target)) != ERROR_OK)
594                         return retval;
595         }
596         return retval;
597 }
598 const char *target_type_name(struct target *target)
599 {
600         return target->type->name;
601 }
602
603 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
604 {
605         if (!target_was_examined(target))
606         {
607                 LOG_ERROR("Target not examined yet");
608                 return ERROR_FAIL;
609         }
610         return target->type->write_memory_imp(target, address, size, count, buffer);
611 }
612
613 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
614 {
615         if (!target_was_examined(target))
616         {
617                 LOG_ERROR("Target not examined yet");
618                 return ERROR_FAIL;
619         }
620         return target->type->read_memory_imp(target, address, size, count, buffer);
621 }
622
623 static int target_soft_reset_halt_imp(struct target *target)
624 {
625         if (!target_was_examined(target))
626         {
627                 LOG_ERROR("Target not examined yet");
628                 return ERROR_FAIL;
629         }
630         if (!target->type->soft_reset_halt_imp) {
631                 LOG_ERROR("Target %s does not support soft_reset_halt",
632                                 target_name(target));
633                 return ERROR_FAIL;
634         }
635         return target->type->soft_reset_halt_imp(target);
636 }
637
638 /**
639  * Downloads a target-specific native code algorithm to the target,
640  * and executes it.  * Note that some targets may need to set up, enable,
641  * and tear down a breakpoint (hard or * soft) to detect algorithm
642  * termination, while others may support  lower overhead schemes where
643  * soft breakpoints embedded in the algorithm automatically terminate the
644  * algorithm.
645  *
646  * @param target used to run the algorithm
647  * @param arch_info target-specific description of the algorithm.
648  */
649 int target_run_algorithm(struct target *target,
650                 int num_mem_params, struct mem_param *mem_params,
651                 int num_reg_params, struct reg_param *reg_param,
652                 uint32_t entry_point, uint32_t exit_point,
653                 int timeout_ms, void *arch_info)
654 {
655         int retval = ERROR_FAIL;
656
657         if (!target_was_examined(target))
658         {
659                 LOG_ERROR("Target not examined yet");
660                 goto done;
661         }
662         if (!target->type->run_algorithm) {
663                 LOG_ERROR("Target type '%s' does not support %s",
664                                 target_type_name(target), __func__);
665                 goto done;
666         }
667
668         target->running_alg = true;
669         retval = target->type->run_algorithm(target,
670                         num_mem_params, mem_params,
671                         num_reg_params, reg_param,
672                         entry_point, exit_point, timeout_ms, arch_info);
673         target->running_alg = false;
674
675 done:
676         return retval;
677 }
678
679
680 int target_read_memory(struct target *target,
681                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
682 {
683         return target->type->read_memory(target, address, size, count, buffer);
684 }
685
686 static int target_read_phys_memory(struct target *target,
687                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
688 {
689         return target->type->read_phys_memory(target, address, size, count, buffer);
690 }
691
692 int target_write_memory(struct target *target,
693                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
694 {
695         return target->type->write_memory(target, address, size, count, buffer);
696 }
697
698 static int target_write_phys_memory(struct target *target,
699                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
700 {
701         return target->type->write_phys_memory(target, address, size, count, buffer);
702 }
703
704 int target_bulk_write_memory(struct target *target,
705                 uint32_t address, uint32_t count, uint8_t *buffer)
706 {
707         return target->type->bulk_write_memory(target, address, count, buffer);
708 }
709
710 int target_add_breakpoint(struct target *target,
711                 struct breakpoint *breakpoint)
712 {
713         if (target->state != TARGET_HALTED) {
714                 LOG_WARNING("target %s is not halted", target->cmd_name);
715                 return ERROR_TARGET_NOT_HALTED;
716         }
717         return target->type->add_breakpoint(target, breakpoint);
718 }
719 int target_remove_breakpoint(struct target *target,
720                 struct breakpoint *breakpoint)
721 {
722         return target->type->remove_breakpoint(target, breakpoint);
723 }
724
725 int target_add_watchpoint(struct target *target,
726                 struct watchpoint *watchpoint)
727 {
728         if (target->state != TARGET_HALTED) {
729                 LOG_WARNING("target %s is not halted", target->cmd_name);
730                 return ERROR_TARGET_NOT_HALTED;
731         }
732         return target->type->add_watchpoint(target, watchpoint);
733 }
734 int target_remove_watchpoint(struct target *target,
735                 struct watchpoint *watchpoint)
736 {
737         return target->type->remove_watchpoint(target, watchpoint);
738 }
739
740 int target_get_gdb_reg_list(struct target *target,
741                 struct reg **reg_list[], int *reg_list_size)
742 {
743         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
744 }
745 int target_step(struct target *target,
746                 int current, uint32_t address, int handle_breakpoints)
747 {
748         return target->type->step(target, current, address, handle_breakpoints);
749 }
750
751
752 /**
753  * Reset the @c examined flag for the given target.
754  * Pure paranoia -- targets are zeroed on allocation.
755  */
756 static void target_reset_examined(struct target *target)
757 {
758         target->examined = false;
759 }
760
761 static int
762 err_read_phys_memory(struct target *target, uint32_t address,
763                 uint32_t size, uint32_t count, uint8_t *buffer)
764 {
765         LOG_ERROR("Not implemented: %s", __func__);
766         return ERROR_FAIL;
767 }
768
769 static int
770 err_write_phys_memory(struct target *target, uint32_t address,
771                 uint32_t size, uint32_t count, uint8_t *buffer)
772 {
773         LOG_ERROR("Not implemented: %s", __func__);
774         return ERROR_FAIL;
775 }
776
777 static int handle_target(void *priv);
778
779 static int target_init_one(struct command_context *cmd_ctx,
780                 struct target *target)
781 {
782         target_reset_examined(target);
783
784         struct target_type *type = target->type;
785         if (type->examine == NULL)
786                 type->examine = default_examine;
787
788         if (type->check_reset== NULL)
789                 type->check_reset = default_check_reset;
790
791         int retval = type->init_target(cmd_ctx, target);
792         if (ERROR_OK != retval)
793         {
794                 LOG_ERROR("target '%s' init failed", target_name(target));
795                 return retval;
796         }
797
798         /**
799          * @todo get rid of those *memory_imp() methods, now that all
800          * callers are using target_*_memory() accessors ... and make
801          * sure the "physical" paths handle the same issues.
802          */
803         /* a non-invasive way(in terms of patches) to add some code that
804          * runs before the type->write/read_memory implementation
805          */
806         type->write_memory_imp = target->type->write_memory;
807         type->write_memory = target_write_memory_imp;
808
809         type->read_memory_imp = target->type->read_memory;
810         type->read_memory = target_read_memory_imp;
811
812         type->soft_reset_halt_imp = target->type->soft_reset_halt;
813         type->soft_reset_halt = target_soft_reset_halt_imp;
814
815         /* Sanity-check MMU support ... stub in what we must, to help
816          * implement it in stages, but warn if we need to do so.
817          */
818         if (type->mmu)
819         {
820                 if (type->write_phys_memory == NULL)
821                 {
822                         LOG_ERROR("type '%s' is missing write_phys_memory",
823                                         type->name);
824                         type->write_phys_memory = err_write_phys_memory;
825                 }
826                 if (type->read_phys_memory == NULL)
827                 {
828                         LOG_ERROR("type '%s' is missing read_phys_memory",
829                                         type->name);
830                         type->read_phys_memory = err_read_phys_memory;
831                 }
832                 if (type->virt2phys == NULL)
833                 {
834                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
835                         type->virt2phys = identity_virt2phys;
836                 }
837         }
838         else
839         {
840                 /* Make sure no-MMU targets all behave the same:  make no
841                  * distinction between physical and virtual addresses, and
842                  * ensure that virt2phys() is always an identity mapping.
843                  */
844                 if (type->write_phys_memory || type->read_phys_memory
845                                 || type->virt2phys)
846                 {
847                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
848                 }
849
850                 type->mmu = no_mmu;
851                 type->write_phys_memory = type->write_memory;
852                 type->read_phys_memory = type->read_memory;
853                 type->virt2phys = identity_virt2phys;
854         }
855         return ERROR_OK;
856 }
857
858 static int target_init(struct command_context *cmd_ctx)
859 {
860         struct target *target;
861         int retval;
862
863         for (target = all_targets; target; target = target->next)
864         {
865                 retval = target_init_one(cmd_ctx, target);
866                 if (ERROR_OK != retval)
867                         return retval;
868         }
869
870         if (!all_targets)
871                 return ERROR_OK;
872
873         retval = target_register_user_commands(cmd_ctx);
874         if (ERROR_OK != retval)
875                 return retval;
876
877         retval = target_register_timer_callback(&handle_target,
878                         100, 1, cmd_ctx->interp);
879         if (ERROR_OK != retval)
880                 return retval;
881
882         return ERROR_OK;
883 }
884
885 COMMAND_HANDLER(handle_target_init_command)
886 {
887         if (CMD_ARGC != 0)
888                 return ERROR_COMMAND_SYNTAX_ERROR;
889
890         static bool target_initialized = false;
891         if (target_initialized)
892         {
893                 LOG_INFO("'target init' has already been called");
894                 return ERROR_OK;
895         }
896         target_initialized = true;
897
898         LOG_DEBUG("Initializing targets...");
899         return target_init(CMD_CTX);
900 }
901
902 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
903 {
904         struct target_event_callback **callbacks_p = &target_event_callbacks;
905
906         if (callback == NULL)
907         {
908                 return ERROR_INVALID_ARGUMENTS;
909         }
910
911         if (*callbacks_p)
912         {
913                 while ((*callbacks_p)->next)
914                         callbacks_p = &((*callbacks_p)->next);
915                 callbacks_p = &((*callbacks_p)->next);
916         }
917
918         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
919         (*callbacks_p)->callback = callback;
920         (*callbacks_p)->priv = priv;
921         (*callbacks_p)->next = NULL;
922
923         return ERROR_OK;
924 }
925
926 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
927 {
928         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
929         struct timeval now;
930
931         if (callback == NULL)
932         {
933                 return ERROR_INVALID_ARGUMENTS;
934         }
935
936         if (*callbacks_p)
937         {
938                 while ((*callbacks_p)->next)
939                         callbacks_p = &((*callbacks_p)->next);
940                 callbacks_p = &((*callbacks_p)->next);
941         }
942
943         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
944         (*callbacks_p)->callback = callback;
945         (*callbacks_p)->periodic = periodic;
946         (*callbacks_p)->time_ms = time_ms;
947
948         gettimeofday(&now, NULL);
949         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
950         time_ms -= (time_ms % 1000);
951         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
952         if ((*callbacks_p)->when.tv_usec > 1000000)
953         {
954                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
955                 (*callbacks_p)->when.tv_sec += 1;
956         }
957
958         (*callbacks_p)->priv = priv;
959         (*callbacks_p)->next = NULL;
960
961         return ERROR_OK;
962 }
963
964 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
965 {
966         struct target_event_callback **p = &target_event_callbacks;
967         struct target_event_callback *c = target_event_callbacks;
968
969         if (callback == NULL)
970         {
971                 return ERROR_INVALID_ARGUMENTS;
972         }
973
974         while (c)
975         {
976                 struct target_event_callback *next = c->next;
977                 if ((c->callback == callback) && (c->priv == priv))
978                 {
979                         *p = next;
980                         free(c);
981                         return ERROR_OK;
982                 }
983                 else
984                         p = &(c->next);
985                 c = next;
986         }
987
988         return ERROR_OK;
989 }
990
991 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
992 {
993         struct target_timer_callback **p = &target_timer_callbacks;
994         struct target_timer_callback *c = target_timer_callbacks;
995
996         if (callback == NULL)
997         {
998                 return ERROR_INVALID_ARGUMENTS;
999         }
1000
1001         while (c)
1002         {
1003                 struct target_timer_callback *next = c->next;
1004                 if ((c->callback == callback) && (c->priv == priv))
1005                 {
1006                         *p = next;
1007                         free(c);
1008                         return ERROR_OK;
1009                 }
1010                 else
1011                         p = &(c->next);
1012                 c = next;
1013         }
1014
1015         return ERROR_OK;
1016 }
1017
1018 int target_call_event_callbacks(struct target *target, enum target_event event)
1019 {
1020         struct target_event_callback *callback = target_event_callbacks;
1021         struct target_event_callback *next_callback;
1022
1023         if (event == TARGET_EVENT_HALTED)
1024         {
1025                 /* execute early halted first */
1026                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1027         }
1028
1029         LOG_DEBUG("target event %i (%s)",
1030                           event,
1031                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1032
1033         target_handle_event(target, event);
1034
1035         while (callback)
1036         {
1037                 next_callback = callback->next;
1038                 callback->callback(target, event, callback->priv);
1039                 callback = next_callback;
1040         }
1041
1042         return ERROR_OK;
1043 }
1044
1045 static int target_timer_callback_periodic_restart(
1046                 struct target_timer_callback *cb, struct timeval *now)
1047 {
1048         int time_ms = cb->time_ms;
1049         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1050         time_ms -= (time_ms % 1000);
1051         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1052         if (cb->when.tv_usec > 1000000)
1053         {
1054                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1055                 cb->when.tv_sec += 1;
1056         }
1057         return ERROR_OK;
1058 }
1059
1060 static int target_call_timer_callback(struct target_timer_callback *cb,
1061                 struct timeval *now)
1062 {
1063         cb->callback(cb->priv);
1064
1065         if (cb->periodic)
1066                 return target_timer_callback_periodic_restart(cb, now);
1067
1068         return target_unregister_timer_callback(cb->callback, cb->priv);
1069 }
1070
1071 static int target_call_timer_callbacks_check_time(int checktime)
1072 {
1073         keep_alive();
1074
1075         struct timeval now;
1076         gettimeofday(&now, NULL);
1077
1078         struct target_timer_callback *callback = target_timer_callbacks;
1079         while (callback)
1080         {
1081                 // cleaning up may unregister and free this callback
1082                 struct target_timer_callback *next_callback = callback->next;
1083
1084                 bool call_it = callback->callback &&
1085                         ((!checktime && callback->periodic) ||
1086                           now.tv_sec > callback->when.tv_sec ||
1087                          (now.tv_sec == callback->when.tv_sec &&
1088                           now.tv_usec >= callback->when.tv_usec));
1089
1090                 if (call_it)
1091                 {
1092                         int retval = target_call_timer_callback(callback, &now);
1093                         if (retval != ERROR_OK)
1094                                 return retval;
1095                 }
1096
1097                 callback = next_callback;
1098         }
1099
1100         return ERROR_OK;
1101 }
1102
1103 int target_call_timer_callbacks(void)
1104 {
1105         return target_call_timer_callbacks_check_time(1);
1106 }
1107
1108 /* invoke periodic callbacks immediately */
1109 int target_call_timer_callbacks_now(void)
1110 {
1111         return target_call_timer_callbacks_check_time(0);
1112 }
1113
1114 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1115 {
1116         struct working_area *c = target->working_areas;
1117         struct working_area *new_wa = NULL;
1118
1119         /* Reevaluate working area address based on MMU state*/
1120         if (target->working_areas == NULL)
1121         {
1122                 int retval;
1123                 int enabled;
1124
1125                 retval = target->type->mmu(target, &enabled);
1126                 if (retval != ERROR_OK)
1127                 {
1128                         return retval;
1129                 }
1130
1131                 if (!enabled) {
1132                         if (target->working_area_phys_spec) {
1133                                 LOG_DEBUG("MMU disabled, using physical "
1134                                         "address for working memory 0x%08x",
1135                                         (unsigned)target->working_area_phys);
1136                                 target->working_area = target->working_area_phys;
1137                         } else {
1138                                 LOG_ERROR("No working memory available. "
1139                                         "Specify -work-area-phys to target.");
1140                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1141                         }
1142                 } else {
1143                         if (target->working_area_virt_spec) {
1144                                 LOG_DEBUG("MMU enabled, using virtual "
1145                                         "address for working memory 0x%08x",
1146                                         (unsigned)target->working_area_virt);
1147                                 target->working_area = target->working_area_virt;
1148                         } else {
1149                                 LOG_ERROR("No working memory available. "
1150                                         "Specify -work-area-virt to target.");
1151                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1152                         }
1153                 }
1154         }
1155
1156         /* only allocate multiples of 4 byte */
1157         if (size % 4)
1158         {
1159                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1160                 size = (size + 3) & (~3);
1161         }
1162
1163         /* see if there's already a matching working area */
1164         while (c)
1165         {
1166                 if ((c->free) && (c->size == size))
1167                 {
1168                         new_wa = c;
1169                         break;
1170                 }
1171                 c = c->next;
1172         }
1173
1174         /* if not, allocate a new one */
1175         if (!new_wa)
1176         {
1177                 struct working_area **p = &target->working_areas;
1178                 uint32_t first_free = target->working_area;
1179                 uint32_t free_size = target->working_area_size;
1180
1181                 c = target->working_areas;
1182                 while (c)
1183                 {
1184                         first_free += c->size;
1185                         free_size -= c->size;
1186                         p = &c->next;
1187                         c = c->next;
1188                 }
1189
1190                 if (free_size < size)
1191                 {
1192                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1193                                     (unsigned)(size), (unsigned)(free_size));
1194                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1195                 }
1196
1197                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1198
1199                 new_wa = malloc(sizeof(struct working_area));
1200                 new_wa->next = NULL;
1201                 new_wa->size = size;
1202                 new_wa->address = first_free;
1203
1204                 if (target->backup_working_area)
1205                 {
1206                         int retval;
1207                         new_wa->backup = malloc(new_wa->size);
1208                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1209                         {
1210                                 free(new_wa->backup);
1211                                 free(new_wa);
1212                                 return retval;
1213                         }
1214                 }
1215                 else
1216                 {
1217                         new_wa->backup = NULL;
1218                 }
1219
1220                 /* put new entry in list */
1221                 *p = new_wa;
1222         }
1223
1224         /* mark as used, and return the new (reused) area */
1225         new_wa->free = 0;
1226         *area = new_wa;
1227
1228         /* user pointer */
1229         new_wa->user = area;
1230
1231         return ERROR_OK;
1232 }
1233
1234 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1235 {
1236         if (area->free)
1237                 return ERROR_OK;
1238
1239         if (restore && target->backup_working_area)
1240         {
1241                 int retval;
1242                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1243                         return retval;
1244         }
1245
1246         area->free = 1;
1247
1248         /* mark user pointer invalid */
1249         *area->user = NULL;
1250         area->user = NULL;
1251
1252         return ERROR_OK;
1253 }
1254
1255 int target_free_working_area(struct target *target, struct working_area *area)
1256 {
1257         return target_free_working_area_restore(target, area, 1);
1258 }
1259
1260 /* free resources and restore memory, if restoring memory fails,
1261  * free up resources anyway
1262  */
1263 static void target_free_all_working_areas_restore(struct target *target, int restore)
1264 {
1265         struct working_area *c = target->working_areas;
1266
1267         while (c)
1268         {
1269                 struct working_area *next = c->next;
1270                 target_free_working_area_restore(target, c, restore);
1271
1272                 if (c->backup)
1273                         free(c->backup);
1274
1275                 free(c);
1276
1277                 c = next;
1278         }
1279
1280         target->working_areas = NULL;
1281 }
1282
1283 void target_free_all_working_areas(struct target *target)
1284 {
1285         target_free_all_working_areas_restore(target, 1);
1286 }
1287
1288 int target_arch_state(struct target *target)
1289 {
1290         int retval;
1291         if (target == NULL)
1292         {
1293                 LOG_USER("No target has been configured");
1294                 return ERROR_OK;
1295         }
1296
1297         LOG_USER("target state: %s", target_state_name( target ));
1298
1299         if (target->state != TARGET_HALTED)
1300                 return ERROR_OK;
1301
1302         retval = target->type->arch_state(target);
1303         return retval;
1304 }
1305
1306 /* Single aligned words are guaranteed to use 16 or 32 bit access
1307  * mode respectively, otherwise data is handled as quickly as
1308  * possible
1309  */
1310 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1311 {
1312         int retval;
1313         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1314                   (int)size, (unsigned)address);
1315
1316         if (!target_was_examined(target))
1317         {
1318                 LOG_ERROR("Target not examined yet");
1319                 return ERROR_FAIL;
1320         }
1321
1322         if (size == 0) {
1323                 return ERROR_OK;
1324         }
1325
1326         if ((address + size - 1) < address)
1327         {
1328                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1329                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1330                                   (unsigned)address,
1331                                   (unsigned)size);
1332                 return ERROR_FAIL;
1333         }
1334
1335         if (((address % 2) == 0) && (size == 2))
1336         {
1337                 return target_write_memory(target, address, 2, 1, buffer);
1338         }
1339
1340         /* handle unaligned head bytes */
1341         if (address % 4)
1342         {
1343                 uint32_t unaligned = 4 - (address % 4);
1344
1345                 if (unaligned > size)
1346                         unaligned = size;
1347
1348                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1349                         return retval;
1350
1351                 buffer += unaligned;
1352                 address += unaligned;
1353                 size -= unaligned;
1354         }
1355
1356         /* handle aligned words */
1357         if (size >= 4)
1358         {
1359                 int aligned = size - (size % 4);
1360
1361                 /* use bulk writes above a certain limit. This may have to be changed */
1362                 if (aligned > 128)
1363                 {
1364                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1365                                 return retval;
1366                 }
1367                 else
1368                 {
1369                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1370                                 return retval;
1371                 }
1372
1373                 buffer += aligned;
1374                 address += aligned;
1375                 size -= aligned;
1376         }
1377
1378         /* handle tail writes of less than 4 bytes */
1379         if (size > 0)
1380         {
1381                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1382                         return retval;
1383         }
1384
1385         return ERROR_OK;
1386 }
1387
1388 /* Single aligned words are guaranteed to use 16 or 32 bit access
1389  * mode respectively, otherwise data is handled as quickly as
1390  * possible
1391  */
1392 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1393 {
1394         int retval;
1395         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1396                           (int)size, (unsigned)address);
1397
1398         if (!target_was_examined(target))
1399         {
1400                 LOG_ERROR("Target not examined yet");
1401                 return ERROR_FAIL;
1402         }
1403
1404         if (size == 0) {
1405                 return ERROR_OK;
1406         }
1407
1408         if ((address + size - 1) < address)
1409         {
1410                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1411                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1412                                   address,
1413                                   size);
1414                 return ERROR_FAIL;
1415         }
1416
1417         if (((address % 2) == 0) && (size == 2))
1418         {
1419                 return target_read_memory(target, address, 2, 1, buffer);
1420         }
1421
1422         /* handle unaligned head bytes */
1423         if (address % 4)
1424         {
1425                 uint32_t unaligned = 4 - (address % 4);
1426
1427                 if (unaligned > size)
1428                         unaligned = size;
1429
1430                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1431                         return retval;
1432
1433                 buffer += unaligned;
1434                 address += unaligned;
1435                 size -= unaligned;
1436         }
1437
1438         /* handle aligned words */
1439         if (size >= 4)
1440         {
1441                 int aligned = size - (size % 4);
1442
1443                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1444                         return retval;
1445
1446                 buffer += aligned;
1447                 address += aligned;
1448                 size -= aligned;
1449         }
1450
1451         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1452         if(size >=2)
1453         {
1454                 int aligned = size - (size%2);
1455                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1456                 if (retval != ERROR_OK)
1457                         return retval;
1458
1459                 buffer += aligned;
1460                 address += aligned;
1461                 size -= aligned;
1462         }
1463         /* handle tail writes of less than 4 bytes */
1464         if (size > 0)
1465         {
1466                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1467                         return retval;
1468         }
1469
1470         return ERROR_OK;
1471 }
1472
1473 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1474 {
1475         uint8_t *buffer;
1476         int retval;
1477         uint32_t i;
1478         uint32_t checksum = 0;
1479         if (!target_was_examined(target))
1480         {
1481                 LOG_ERROR("Target not examined yet");
1482                 return ERROR_FAIL;
1483         }
1484
1485         if ((retval = target->type->checksum_memory(target, address,
1486                 size, &checksum)) != ERROR_OK)
1487         {
1488                 buffer = malloc(size);
1489                 if (buffer == NULL)
1490                 {
1491                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1492                         return ERROR_INVALID_ARGUMENTS;
1493                 }
1494                 retval = target_read_buffer(target, address, size, buffer);
1495                 if (retval != ERROR_OK)
1496                 {
1497                         free(buffer);
1498                         return retval;
1499                 }
1500
1501                 /* convert to target endianess */
1502                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1503                 {
1504                         uint32_t target_data;
1505                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1506                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1507                 }
1508
1509                 retval = image_calculate_checksum(buffer, size, &checksum);
1510                 free(buffer);
1511         }
1512
1513         *crc = checksum;
1514
1515         return retval;
1516 }
1517
1518 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1519 {
1520         int retval;
1521         if (!target_was_examined(target))
1522         {
1523                 LOG_ERROR("Target not examined yet");
1524                 return ERROR_FAIL;
1525         }
1526
1527         if (target->type->blank_check_memory == 0)
1528                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1529
1530         retval = target->type->blank_check_memory(target, address, size, blank);
1531
1532         return retval;
1533 }
1534
1535 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1536 {
1537         uint8_t value_buf[4];
1538         if (!target_was_examined(target))
1539         {
1540                 LOG_ERROR("Target not examined yet");
1541                 return ERROR_FAIL;
1542         }
1543
1544         int retval = target_read_memory(target, address, 4, 1, value_buf);
1545
1546         if (retval == ERROR_OK)
1547         {
1548                 *value = target_buffer_get_u32(target, value_buf);
1549                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1550                                   address,
1551                                   *value);
1552         }
1553         else
1554         {
1555                 *value = 0x0;
1556                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1557                                   address);
1558         }
1559
1560         return retval;
1561 }
1562
1563 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1564 {
1565         uint8_t value_buf[2];
1566         if (!target_was_examined(target))
1567         {
1568                 LOG_ERROR("Target not examined yet");
1569                 return ERROR_FAIL;
1570         }
1571
1572         int retval = target_read_memory(target, address, 2, 1, value_buf);
1573
1574         if (retval == ERROR_OK)
1575         {
1576                 *value = target_buffer_get_u16(target, value_buf);
1577                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1578                                   address,
1579                                   *value);
1580         }
1581         else
1582         {
1583                 *value = 0x0;
1584                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1585                                   address);
1586         }
1587
1588         return retval;
1589 }
1590
1591 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1592 {
1593         int retval = target_read_memory(target, address, 1, 1, value);
1594         if (!target_was_examined(target))
1595         {
1596                 LOG_ERROR("Target not examined yet");
1597                 return ERROR_FAIL;
1598         }
1599
1600         if (retval == ERROR_OK)
1601         {
1602                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1603                                   address,
1604                                   *value);
1605         }
1606         else
1607         {
1608                 *value = 0x0;
1609                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1610                                   address);
1611         }
1612
1613         return retval;
1614 }
1615
1616 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1617 {
1618         int retval;
1619         uint8_t value_buf[4];
1620         if (!target_was_examined(target))
1621         {
1622                 LOG_ERROR("Target not examined yet");
1623                 return ERROR_FAIL;
1624         }
1625
1626         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1627                           address,
1628                           value);
1629
1630         target_buffer_set_u32(target, value_buf, value);
1631         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1632         {
1633                 LOG_DEBUG("failed: %i", retval);
1634         }
1635
1636         return retval;
1637 }
1638
1639 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1640 {
1641         int retval;
1642         uint8_t value_buf[2];
1643         if (!target_was_examined(target))
1644         {
1645                 LOG_ERROR("Target not examined yet");
1646                 return ERROR_FAIL;
1647         }
1648
1649         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1650                           address,
1651                           value);
1652
1653         target_buffer_set_u16(target, value_buf, value);
1654         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1655         {
1656                 LOG_DEBUG("failed: %i", retval);
1657         }
1658
1659         return retval;
1660 }
1661
1662 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1663 {
1664         int retval;
1665         if (!target_was_examined(target))
1666         {
1667                 LOG_ERROR("Target not examined yet");
1668                 return ERROR_FAIL;
1669         }
1670
1671         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1672                           address, value);
1673
1674         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1675         {
1676                 LOG_DEBUG("failed: %i", retval);
1677         }
1678
1679         return retval;
1680 }
1681
1682 COMMAND_HANDLER(handle_targets_command)
1683 {
1684         struct target *target = all_targets;
1685
1686         if (CMD_ARGC == 1)
1687         {
1688                 target = get_target(CMD_ARGV[0]);
1689                 if (target == NULL) {
1690                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1691                         goto DumpTargets;
1692                 }
1693                 if (!target->tap->enabled) {
1694                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1695                                         "can't be the current target\n",
1696                                         target->tap->dotted_name);
1697                         return ERROR_FAIL;
1698                 }
1699
1700                 CMD_CTX->current_target = target->target_number;
1701                 return ERROR_OK;
1702         }
1703 DumpTargets:
1704
1705         target = all_targets;
1706         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1707         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1708         while (target)
1709         {
1710                 const char *state;
1711                 char marker = ' ';
1712
1713                 if (target->tap->enabled)
1714                         state = target_state_name( target );
1715                 else
1716                         state = "tap-disabled";
1717
1718                 if (CMD_CTX->current_target == target->target_number)
1719                         marker = '*';
1720
1721                 /* keep columns lined up to match the headers above */
1722                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1723                                           target->target_number,
1724                                           marker,
1725                                           target_name(target),
1726                                           target_type_name(target),
1727                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1728                                                                 target->endianness)->name,
1729                                           target->tap->dotted_name,
1730                                           state);
1731                 target = target->next;
1732         }
1733
1734         return ERROR_OK;
1735 }
1736
1737 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1738
1739 static int powerDropout;
1740 static int srstAsserted;
1741
1742 static int runPowerRestore;
1743 static int runPowerDropout;
1744 static int runSrstAsserted;
1745 static int runSrstDeasserted;
1746
1747 static int sense_handler(void)
1748 {
1749         static int prevSrstAsserted = 0;
1750         static int prevPowerdropout = 0;
1751
1752         int retval;
1753         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1754                 return retval;
1755
1756         int powerRestored;
1757         powerRestored = prevPowerdropout && !powerDropout;
1758         if (powerRestored)
1759         {
1760                 runPowerRestore = 1;
1761         }
1762
1763         long long current = timeval_ms();
1764         static long long lastPower = 0;
1765         int waitMore = lastPower + 2000 > current;
1766         if (powerDropout && !waitMore)
1767         {
1768                 runPowerDropout = 1;
1769                 lastPower = current;
1770         }
1771
1772         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1773                 return retval;
1774
1775         int srstDeasserted;
1776         srstDeasserted = prevSrstAsserted && !srstAsserted;
1777
1778         static long long lastSrst = 0;
1779         waitMore = lastSrst + 2000 > current;
1780         if (srstDeasserted && !waitMore)
1781         {
1782                 runSrstDeasserted = 1;
1783                 lastSrst = current;
1784         }
1785
1786         if (!prevSrstAsserted && srstAsserted)
1787         {
1788                 runSrstAsserted = 1;
1789         }
1790
1791         prevSrstAsserted = srstAsserted;
1792         prevPowerdropout = powerDropout;
1793
1794         if (srstDeasserted || powerRestored)
1795         {
1796                 /* Other than logging the event we can't do anything here.
1797                  * Issuing a reset is a particularly bad idea as we might
1798                  * be inside a reset already.
1799                  */
1800         }
1801
1802         return ERROR_OK;
1803 }
1804
1805 /* process target state changes */
1806 static int handle_target(void *priv)
1807 {
1808         Jim_Interp *interp = (Jim_Interp *)priv;
1809         int retval = ERROR_OK;
1810
1811         if (!is_jtag_poll_safe())
1812         {
1813                 /* polling is disabled currently */
1814                 return ERROR_OK;
1815         }
1816
1817         /* we do not want to recurse here... */
1818         static int recursive = 0;
1819         if (! recursive)
1820         {
1821                 recursive = 1;
1822                 sense_handler();
1823                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1824                  * We need to avoid an infinite loop/recursion here and we do that by
1825                  * clearing the flags after running these events.
1826                  */
1827                 int did_something = 0;
1828                 if (runSrstAsserted)
1829                 {
1830                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
1831                         Jim_Eval(interp, "srst_asserted");
1832                         did_something = 1;
1833                 }
1834                 if (runSrstDeasserted)
1835                 {
1836                         Jim_Eval(interp, "srst_deasserted");
1837                         did_something = 1;
1838                 }
1839                 if (runPowerDropout)
1840                 {
1841                         LOG_INFO("Power dropout detected, running power_dropout proc.");
1842                         Jim_Eval(interp, "power_dropout");
1843                         did_something = 1;
1844                 }
1845                 if (runPowerRestore)
1846                 {
1847                         Jim_Eval(interp, "power_restore");
1848                         did_something = 1;
1849                 }
1850
1851                 if (did_something)
1852                 {
1853                         /* clear detect flags */
1854                         sense_handler();
1855                 }
1856
1857                 /* clear action flags */
1858
1859                 runSrstAsserted = 0;
1860                 runSrstDeasserted = 0;
1861                 runPowerRestore = 0;
1862                 runPowerDropout = 0;
1863
1864                 recursive = 0;
1865         }
1866
1867         /* Poll targets for state changes unless that's globally disabled.
1868          * Skip targets that are currently disabled.
1869          */
1870         for (struct target *target = all_targets;
1871                         is_jtag_poll_safe() && target;
1872                         target = target->next)
1873         {
1874                 if (!target->tap->enabled)
1875                         continue;
1876
1877                 /* only poll target if we've got power and srst isn't asserted */
1878                 if (!powerDropout && !srstAsserted)
1879                 {
1880                         /* polling may fail silently until the target has been examined */
1881                         if ((retval = target_poll(target)) != ERROR_OK)
1882                         {
1883                                 /* FIX!!!!! If we add a LOG_INFO() here to output a line in GDB
1884                                  * *why* we are aborting GDB, then we'll spam telnet when the
1885                                  * poll is failing persistently.
1886                                  *
1887                                  * If we could implement an event that detected the
1888                                  * target going from non-pollable to pollable, we could issue
1889                                  * an error only upon the transition.
1890                                  */
1891                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1892                                 return retval;
1893                         }
1894                 }
1895         }
1896
1897         return retval;
1898 }
1899
1900 COMMAND_HANDLER(handle_reg_command)
1901 {
1902         struct target *target;
1903         struct reg *reg = NULL;
1904         unsigned count = 0;
1905         char *value;
1906
1907         LOG_DEBUG("-");
1908
1909         target = get_current_target(CMD_CTX);
1910
1911         /* list all available registers for the current target */
1912         if (CMD_ARGC == 0)
1913         {
1914                 struct reg_cache *cache = target->reg_cache;
1915
1916                 count = 0;
1917                 while (cache)
1918                 {
1919                         unsigned i;
1920
1921                         command_print(CMD_CTX, "===== %s", cache->name);
1922
1923                         for (i = 0, reg = cache->reg_list;
1924                                         i < cache->num_regs;
1925                                         i++, reg++, count++)
1926                         {
1927                                 /* only print cached values if they are valid */
1928                                 if (reg->valid) {
1929                                         value = buf_to_str(reg->value,
1930                                                         reg->size, 16);
1931                                         command_print(CMD_CTX,
1932                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1933                                                         count, reg->name,
1934                                                         reg->size, value,
1935                                                         reg->dirty
1936                                                                 ? " (dirty)"
1937                                                                 : "");
1938                                         free(value);
1939                                 } else {
1940                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1941                                                           count, reg->name,
1942                                                           reg->size) ;
1943                                 }
1944                         }
1945                         cache = cache->next;
1946                 }
1947
1948                 return ERROR_OK;
1949         }
1950
1951         /* access a single register by its ordinal number */
1952         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1953         {
1954                 unsigned num;
1955                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1956
1957                 struct reg_cache *cache = target->reg_cache;
1958                 count = 0;
1959                 while (cache)
1960                 {
1961                         unsigned i;
1962                         for (i = 0; i < cache->num_regs; i++)
1963                         {
1964                                 if (count++ == num)
1965                                 {
1966                                         reg = &cache->reg_list[i];
1967                                         break;
1968                                 }
1969                         }
1970                         if (reg)
1971                                 break;
1972                         cache = cache->next;
1973                 }
1974
1975                 if (!reg)
1976                 {
1977                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1978                         return ERROR_OK;
1979                 }
1980         } else /* access a single register by its name */
1981         {
1982                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1983
1984                 if (!reg)
1985                 {
1986                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1987                         return ERROR_OK;
1988                 }
1989         }
1990
1991         /* display a register */
1992         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1993         {
1994                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1995                         reg->valid = 0;
1996
1997                 if (reg->valid == 0)
1998                 {
1999                         reg->type->get(reg);
2000                 }
2001                 value = buf_to_str(reg->value, reg->size, 16);
2002                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2003                 free(value);
2004                 return ERROR_OK;
2005         }
2006
2007         /* set register value */
2008         if (CMD_ARGC == 2)
2009         {
2010                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2011                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2012
2013                 reg->type->set(reg, buf);
2014
2015                 value = buf_to_str(reg->value, reg->size, 16);
2016                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2017                 free(value);
2018
2019                 free(buf);
2020
2021                 return ERROR_OK;
2022         }
2023
2024         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2025
2026         return ERROR_OK;
2027 }
2028
2029 COMMAND_HANDLER(handle_poll_command)
2030 {
2031         int retval = ERROR_OK;
2032         struct target *target = get_current_target(CMD_CTX);
2033
2034         if (CMD_ARGC == 0)
2035         {
2036                 command_print(CMD_CTX, "background polling: %s",
2037                                 jtag_poll_get_enabled() ? "on" : "off");
2038                 command_print(CMD_CTX, "TAP: %s (%s)",
2039                                 target->tap->dotted_name,
2040                                 target->tap->enabled ? "enabled" : "disabled");
2041                 if (!target->tap->enabled)
2042                         return ERROR_OK;
2043                 if ((retval = target_poll(target)) != ERROR_OK)
2044                         return retval;
2045                 if ((retval = target_arch_state(target)) != ERROR_OK)
2046                         return retval;
2047         }
2048         else if (CMD_ARGC == 1)
2049         {
2050                 bool enable;
2051                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2052                 jtag_poll_set_enabled(enable);
2053         }
2054         else
2055         {
2056                 return ERROR_COMMAND_SYNTAX_ERROR;
2057         }
2058
2059         return retval;
2060 }
2061
2062 COMMAND_HANDLER(handle_wait_halt_command)
2063 {
2064         if (CMD_ARGC > 1)
2065                 return ERROR_COMMAND_SYNTAX_ERROR;
2066
2067         unsigned ms = 5000;
2068         if (1 == CMD_ARGC)
2069         {
2070                 int retval = parse_uint(CMD_ARGV[0], &ms);
2071                 if (ERROR_OK != retval)
2072                 {
2073                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2074                         return ERROR_COMMAND_SYNTAX_ERROR;
2075                 }
2076                 // convert seconds (given) to milliseconds (needed)
2077                 ms *= 1000;
2078         }
2079
2080         struct target *target = get_current_target(CMD_CTX);
2081         return target_wait_state(target, TARGET_HALTED, ms);
2082 }
2083
2084 /* wait for target state to change. The trick here is to have a low
2085  * latency for short waits and not to suck up all the CPU time
2086  * on longer waits.
2087  *
2088  * After 500ms, keep_alive() is invoked
2089  */
2090 int target_wait_state(struct target *target, enum target_state state, int ms)
2091 {
2092         int retval;
2093         long long then = 0, cur;
2094         int once = 1;
2095
2096         for (;;)
2097         {
2098                 if ((retval = target_poll(target)) != ERROR_OK)
2099                         return retval;
2100                 if (target->state == state)
2101                 {
2102                         break;
2103                 }
2104                 cur = timeval_ms();
2105                 if (once)
2106                 {
2107                         once = 0;
2108                         then = timeval_ms();
2109                         LOG_DEBUG("waiting for target %s...",
2110                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2111                 }
2112
2113                 if (cur-then > 500)
2114                 {
2115                         keep_alive();
2116                 }
2117
2118                 if ((cur-then) > ms)
2119                 {
2120                         LOG_ERROR("timed out while waiting for target %s",
2121                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2122                         return ERROR_FAIL;
2123                 }
2124         }
2125
2126         return ERROR_OK;
2127 }
2128
2129 COMMAND_HANDLER(handle_halt_command)
2130 {
2131         LOG_DEBUG("-");
2132
2133         struct target *target = get_current_target(CMD_CTX);
2134         int retval = target_halt(target);
2135         if (ERROR_OK != retval)
2136                 return retval;
2137
2138         if (CMD_ARGC == 1)
2139         {
2140                 unsigned wait;
2141                 retval = parse_uint(CMD_ARGV[0], &wait);
2142                 if (ERROR_OK != retval)
2143                         return ERROR_COMMAND_SYNTAX_ERROR;
2144                 if (!wait)
2145                         return ERROR_OK;
2146         }
2147
2148         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2149 }
2150
2151 COMMAND_HANDLER(handle_soft_reset_halt_command)
2152 {
2153         struct target *target = get_current_target(CMD_CTX);
2154
2155         LOG_USER("requesting target halt and executing a soft reset");
2156
2157         target->type->soft_reset_halt(target);
2158
2159         return ERROR_OK;
2160 }
2161
2162 COMMAND_HANDLER(handle_reset_command)
2163 {
2164         if (CMD_ARGC > 1)
2165                 return ERROR_COMMAND_SYNTAX_ERROR;
2166
2167         enum target_reset_mode reset_mode = RESET_RUN;
2168         if (CMD_ARGC == 1)
2169         {
2170                 const Jim_Nvp *n;
2171                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2172                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2173                         return ERROR_COMMAND_SYNTAX_ERROR;
2174                 }
2175                 reset_mode = n->value;
2176         }
2177
2178         /* reset *all* targets */
2179         return target_process_reset(CMD_CTX, reset_mode);
2180 }
2181
2182
2183 COMMAND_HANDLER(handle_resume_command)
2184 {
2185         int current = 1;
2186         if (CMD_ARGC > 1)
2187                 return ERROR_COMMAND_SYNTAX_ERROR;
2188
2189         struct target *target = get_current_target(CMD_CTX);
2190         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2191
2192         /* with no CMD_ARGV, resume from current pc, addr = 0,
2193          * with one arguments, addr = CMD_ARGV[0],
2194          * handle breakpoints, not debugging */
2195         uint32_t addr = 0;
2196         if (CMD_ARGC == 1)
2197         {
2198                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2199                 current = 0;
2200         }
2201
2202         return target_resume(target, current, addr, 1, 0);
2203 }
2204
2205 COMMAND_HANDLER(handle_step_command)
2206 {
2207         if (CMD_ARGC > 1)
2208                 return ERROR_COMMAND_SYNTAX_ERROR;
2209
2210         LOG_DEBUG("-");
2211
2212         /* with no CMD_ARGV, step from current pc, addr = 0,
2213          * with one argument addr = CMD_ARGV[0],
2214          * handle breakpoints, debugging */
2215         uint32_t addr = 0;
2216         int current_pc = 1;
2217         if (CMD_ARGC == 1)
2218         {
2219                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2220                 current_pc = 0;
2221         }
2222
2223         struct target *target = get_current_target(CMD_CTX);
2224
2225         return target->type->step(target, current_pc, addr, 1);
2226 }
2227
2228 static void handle_md_output(struct command_context *cmd_ctx,
2229                 struct target *target, uint32_t address, unsigned size,
2230                 unsigned count, const uint8_t *buffer)
2231 {
2232         const unsigned line_bytecnt = 32;
2233         unsigned line_modulo = line_bytecnt / size;
2234
2235         char output[line_bytecnt * 4 + 1];
2236         unsigned output_len = 0;
2237
2238         const char *value_fmt;
2239         switch (size) {
2240         case 4: value_fmt = "%8.8x "; break;
2241         case 2: value_fmt = "%4.4x "; break;
2242         case 1: value_fmt = "%2.2x "; break;
2243         default:
2244                 /* "can't happen", caller checked */
2245                 LOG_ERROR("invalid memory read size: %u", size);
2246                 return;
2247         }
2248
2249         for (unsigned i = 0; i < count; i++)
2250         {
2251                 if (i % line_modulo == 0)
2252                 {
2253                         output_len += snprintf(output + output_len,
2254                                         sizeof(output) - output_len,
2255                                         "0x%8.8x: ",
2256                                         (unsigned)(address + (i*size)));
2257                 }
2258
2259                 uint32_t value = 0;
2260                 const uint8_t *value_ptr = buffer + i * size;
2261                 switch (size) {
2262                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2263                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2264                 case 1: value = *value_ptr;
2265                 }
2266                 output_len += snprintf(output + output_len,
2267                                 sizeof(output) - output_len,
2268                                 value_fmt, value);
2269
2270                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2271                 {
2272                         command_print(cmd_ctx, "%s", output);
2273                         output_len = 0;
2274                 }
2275         }
2276 }
2277
2278 COMMAND_HANDLER(handle_md_command)
2279 {
2280         if (CMD_ARGC < 1)
2281                 return ERROR_COMMAND_SYNTAX_ERROR;
2282
2283         unsigned size = 0;
2284         switch (CMD_NAME[2]) {
2285         case 'w': size = 4; break;
2286         case 'h': size = 2; break;
2287         case 'b': size = 1; break;
2288         default: return ERROR_COMMAND_SYNTAX_ERROR;
2289         }
2290
2291         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2292         int (*fn)(struct target *target,
2293                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2294         if (physical)
2295         {
2296                 CMD_ARGC--;
2297                 CMD_ARGV++;
2298                 fn=target_read_phys_memory;
2299         } else
2300         {
2301                 fn=target_read_memory;
2302         }
2303         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2304         {
2305                 return ERROR_COMMAND_SYNTAX_ERROR;
2306         }
2307
2308         uint32_t address;
2309         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2310
2311         unsigned count = 1;
2312         if (CMD_ARGC == 2)
2313                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2314
2315         uint8_t *buffer = calloc(count, size);
2316
2317         struct target *target = get_current_target(CMD_CTX);
2318         int retval = fn(target, address, size, count, buffer);
2319         if (ERROR_OK == retval)
2320                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2321
2322         free(buffer);
2323
2324         return retval;
2325 }
2326
2327 typedef int (*target_write_fn)(struct target *target,
2328                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2329
2330 static int target_write_memory_fast(struct target *target,
2331                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2332 {
2333         return target_write_buffer(target, address, size * count, buffer);
2334 }
2335
2336 static int target_fill_mem(struct target *target,
2337                 uint32_t address,
2338                 target_write_fn fn,
2339                 unsigned data_size,
2340                 /* value */
2341                 uint32_t b,
2342                 /* count */
2343                 unsigned c)
2344 {
2345         /* We have to write in reasonably large chunks to be able
2346          * to fill large memory areas with any sane speed */
2347         const unsigned chunk_size = 16384;
2348         uint8_t *target_buf = malloc(chunk_size * data_size);
2349         if (target_buf == NULL)
2350         {
2351                 LOG_ERROR("Out of memory");
2352                 return ERROR_FAIL;
2353         }
2354
2355         for (unsigned i = 0; i < chunk_size; i ++)
2356         {
2357                 switch (data_size)
2358                 {
2359                 case 4:
2360                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2361                         break;
2362                 case 2:
2363                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2364                         break;
2365                 case 1:
2366                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2367                         break;
2368                 default:
2369                         exit(-1);
2370                 }
2371         }
2372
2373         int retval = ERROR_OK;
2374
2375         for (unsigned x = 0; x < c; x += chunk_size)
2376         {
2377                 unsigned current;
2378                 current = c - x;
2379                 if (current > chunk_size)
2380                 {
2381                         current = chunk_size;
2382                 }
2383                 int retval = fn(target, address + x * data_size, data_size, current, target_buf);
2384                 if (retval != ERROR_OK)
2385                 {
2386                         break;
2387                 }
2388                 /* avoid GDB timeouts */
2389                 keep_alive();
2390         }
2391         free(target_buf);
2392
2393         return retval;
2394 }
2395
2396
2397 COMMAND_HANDLER(handle_mw_command)
2398 {
2399         if (CMD_ARGC < 2)
2400         {
2401                 return ERROR_COMMAND_SYNTAX_ERROR;
2402         }
2403         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2404         target_write_fn fn;
2405         if (physical)
2406         {
2407                 CMD_ARGC--;
2408                 CMD_ARGV++;
2409                 fn=target_write_phys_memory;
2410         } else
2411         {
2412                 fn = target_write_memory_fast;
2413         }
2414         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2415                 return ERROR_COMMAND_SYNTAX_ERROR;
2416
2417         uint32_t address;
2418         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2419
2420         uint32_t value;
2421         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2422
2423         unsigned count = 1;
2424         if (CMD_ARGC == 3)
2425                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2426
2427         struct target *target = get_current_target(CMD_CTX);
2428         unsigned wordsize;
2429         switch (CMD_NAME[2])
2430         {
2431                 case 'w':
2432                         wordsize = 4;
2433                         break;
2434                 case 'h':
2435                         wordsize = 2;
2436                         break;
2437                 case 'b':
2438                         wordsize = 1;
2439                         break;
2440                 default:
2441                         return ERROR_COMMAND_SYNTAX_ERROR;
2442         }
2443
2444         return target_fill_mem(target, address, fn, wordsize, value, count);
2445 }
2446
2447 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2448                 uint32_t *min_address, uint32_t *max_address)
2449 {
2450         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2451                 return ERROR_COMMAND_SYNTAX_ERROR;
2452
2453         /* a base address isn't always necessary,
2454          * default to 0x0 (i.e. don't relocate) */
2455         if (CMD_ARGC >= 2)
2456         {
2457                 uint32_t addr;
2458                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2459                 image->base_address = addr;
2460                 image->base_address_set = 1;
2461         }
2462         else
2463                 image->base_address_set = 0;
2464
2465         image->start_address_set = 0;
2466
2467         if (CMD_ARGC >= 4)
2468         {
2469                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2470         }
2471         if (CMD_ARGC == 5)
2472         {
2473                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2474                 // use size (given) to find max (required)
2475                 *max_address += *min_address;
2476         }
2477
2478         if (*min_address > *max_address)
2479                 return ERROR_COMMAND_SYNTAX_ERROR;
2480
2481         return ERROR_OK;
2482 }
2483
2484 COMMAND_HANDLER(handle_load_image_command)
2485 {
2486         uint8_t *buffer;
2487         size_t buf_cnt;
2488         uint32_t image_size;
2489         uint32_t min_address = 0;
2490         uint32_t max_address = 0xffffffff;
2491         int i;
2492         struct image image;
2493
2494         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2495                         &image, &min_address, &max_address);
2496         if (ERROR_OK != retval)
2497                 return retval;
2498
2499         struct target *target = get_current_target(CMD_CTX);
2500
2501         struct duration bench;
2502         duration_start(&bench);
2503
2504         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2505         {
2506                 return ERROR_OK;
2507         }
2508
2509         image_size = 0x0;
2510         retval = ERROR_OK;
2511         for (i = 0; i < image.num_sections; i++)
2512         {
2513                 buffer = malloc(image.sections[i].size);
2514                 if (buffer == NULL)
2515                 {
2516                         command_print(CMD_CTX,
2517                                                   "error allocating buffer for section (%d bytes)",
2518                                                   (int)(image.sections[i].size));
2519                         break;
2520                 }
2521
2522                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2523                 {
2524                         free(buffer);
2525                         break;
2526                 }
2527
2528                 uint32_t offset = 0;
2529                 uint32_t length = buf_cnt;
2530
2531                 /* DANGER!!! beware of unsigned comparision here!!! */
2532
2533                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2534                                 (image.sections[i].base_address < max_address))
2535                 {
2536                         if (image.sections[i].base_address < min_address)
2537                         {
2538                                 /* clip addresses below */
2539                                 offset += min_address-image.sections[i].base_address;
2540                                 length -= offset;
2541                         }
2542
2543                         if (image.sections[i].base_address + buf_cnt > max_address)
2544                         {
2545                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2546                         }
2547
2548                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2549                         {
2550                                 free(buffer);
2551                                 break;
2552                         }
2553                         image_size += length;
2554                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2555                                                   (unsigned int)length,
2556                                                   image.sections[i].base_address + offset);
2557                 }
2558
2559                 free(buffer);
2560         }
2561
2562         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2563         {
2564                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2565                                 "in %fs (%0.3f kb/s)", image_size,
2566                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2567         }
2568
2569         image_close(&image);
2570
2571         return retval;
2572
2573 }
2574
2575 COMMAND_HANDLER(handle_dump_image_command)
2576 {
2577         struct fileio fileio;
2578
2579         uint8_t buffer[560];
2580         int retvaltemp;
2581
2582
2583         struct target *target = get_current_target(CMD_CTX);
2584
2585         if (CMD_ARGC != 3)
2586         {
2587                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2588                 return ERROR_OK;
2589         }
2590
2591         uint32_t address;
2592         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2593         uint32_t size;
2594         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2595
2596         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2597         {
2598                 return ERROR_OK;
2599         }
2600
2601         struct duration bench;
2602         duration_start(&bench);
2603
2604         int retval = ERROR_OK;
2605         while (size > 0)
2606         {
2607                 size_t size_written;
2608                 uint32_t this_run_size = (size > 560) ? 560 : size;
2609                 retval = target_read_buffer(target, address, this_run_size, buffer);
2610                 if (retval != ERROR_OK)
2611                 {
2612                         break;
2613                 }
2614
2615                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2616                 if (retval != ERROR_OK)
2617                 {
2618                         break;
2619                 }
2620
2621                 size -= this_run_size;
2622                 address += this_run_size;
2623         }
2624
2625         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2626                 return retvaltemp;
2627
2628         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2629         {
2630                 command_print(CMD_CTX,
2631                                 "dumped %ld bytes in %fs (%0.3f kb/s)", (long)fileio.size,
2632                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2633         }
2634
2635         return retval;
2636 }
2637
2638 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2639 {
2640         uint8_t *buffer;
2641         size_t buf_cnt;
2642         uint32_t image_size;
2643         int i;
2644         int retval;
2645         uint32_t checksum = 0;
2646         uint32_t mem_checksum = 0;
2647
2648         struct image image;
2649
2650         struct target *target = get_current_target(CMD_CTX);
2651
2652         if (CMD_ARGC < 1)
2653         {
2654                 return ERROR_COMMAND_SYNTAX_ERROR;
2655         }
2656
2657         if (!target)
2658         {
2659                 LOG_ERROR("no target selected");
2660                 return ERROR_FAIL;
2661         }
2662
2663         struct duration bench;
2664         duration_start(&bench);
2665
2666         if (CMD_ARGC >= 2)
2667         {
2668                 uint32_t addr;
2669                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2670                 image.base_address = addr;
2671                 image.base_address_set = 1;
2672         }
2673         else
2674         {
2675                 image.base_address_set = 0;
2676                 image.base_address = 0x0;
2677         }
2678
2679         image.start_address_set = 0;
2680
2681         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2682         {
2683                 return retval;
2684         }
2685
2686         image_size = 0x0;
2687         retval = ERROR_OK;
2688         for (i = 0; i < image.num_sections; i++)
2689         {
2690                 buffer = malloc(image.sections[i].size);
2691                 if (buffer == NULL)
2692                 {
2693                         command_print(CMD_CTX,
2694                                                   "error allocating buffer for section (%d bytes)",
2695                                                   (int)(image.sections[i].size));
2696                         break;
2697                 }
2698                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2699                 {
2700                         free(buffer);
2701                         break;
2702                 }
2703
2704                 if (verify)
2705                 {
2706                         /* calculate checksum of image */
2707                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2708
2709                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2710                         if (retval != ERROR_OK)
2711                         {
2712                                 free(buffer);
2713                                 break;
2714                         }
2715
2716                         if (checksum != mem_checksum)
2717                         {
2718                                 /* failed crc checksum, fall back to a binary compare */
2719                                 uint8_t *data;
2720
2721                                 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2722
2723                                 data = (uint8_t*)malloc(buf_cnt);
2724
2725                                 /* Can we use 32bit word accesses? */
2726                                 int size = 1;
2727                                 int count = buf_cnt;
2728                                 if ((count % 4) == 0)
2729                                 {
2730                                         size *= 4;
2731                                         count /= 4;
2732                                 }
2733                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2734                                 if (retval == ERROR_OK)
2735                                 {
2736                                         uint32_t t;
2737                                         for (t = 0; t < buf_cnt; t++)
2738                                         {
2739                                                 if (data[t] != buffer[t])
2740                                                 {
2741                                                         command_print(CMD_CTX,
2742                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2743                                                                                   (unsigned)(t + image.sections[i].base_address),
2744                                                                                   data[t],
2745                                                                                   buffer[t]);
2746                                                         free(data);
2747                                                         free(buffer);
2748                                                         retval = ERROR_FAIL;
2749                                                         goto done;
2750                                                 }
2751                                                 if ((t%16384) == 0)
2752                                                 {
2753                                                         keep_alive();
2754                                                 }
2755                                         }
2756                                 }
2757
2758                                 free(data);
2759                         }
2760                 } else
2761                 {
2762                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2763                                                   image.sections[i].base_address,
2764                                                   buf_cnt);
2765                 }
2766
2767                 free(buffer);
2768                 image_size += buf_cnt;
2769         }
2770 done:
2771         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2772         {
2773                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2774                                 "in %fs (%0.3f kb/s)", image_size,
2775                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2776         }
2777
2778         image_close(&image);
2779
2780         return retval;
2781 }
2782
2783 COMMAND_HANDLER(handle_verify_image_command)
2784 {
2785         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2786 }
2787
2788 COMMAND_HANDLER(handle_test_image_command)
2789 {
2790         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2791 }
2792
2793 static int handle_bp_command_list(struct command_context *cmd_ctx)
2794 {
2795         struct target *target = get_current_target(cmd_ctx);
2796         struct breakpoint *breakpoint = target->breakpoints;
2797         while (breakpoint)
2798         {
2799                 if (breakpoint->type == BKPT_SOFT)
2800                 {
2801                         char* buf = buf_to_str(breakpoint->orig_instr,
2802                                         breakpoint->length, 16);
2803                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2804                                         breakpoint->address,
2805                                         breakpoint->length,
2806                                         breakpoint->set, buf);
2807                         free(buf);
2808                 }
2809                 else
2810                 {
2811                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2812                                                   breakpoint->address,
2813                                                   breakpoint->length, breakpoint->set);
2814                 }
2815
2816                 breakpoint = breakpoint->next;
2817         }
2818         return ERROR_OK;
2819 }
2820
2821 static int handle_bp_command_set(struct command_context *cmd_ctx,
2822                 uint32_t addr, uint32_t length, int hw)
2823 {
2824         struct target *target = get_current_target(cmd_ctx);
2825         int retval = breakpoint_add(target, addr, length, hw);
2826         if (ERROR_OK == retval)
2827                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2828         else
2829                 LOG_ERROR("Failure setting breakpoint");
2830         return retval;
2831 }
2832
2833 COMMAND_HANDLER(handle_bp_command)
2834 {
2835         if (CMD_ARGC == 0)
2836                 return handle_bp_command_list(CMD_CTX);
2837
2838         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2839         {
2840                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2841                 return ERROR_COMMAND_SYNTAX_ERROR;
2842         }
2843
2844         uint32_t addr;
2845         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2846         uint32_t length;
2847         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2848
2849         int hw = BKPT_SOFT;
2850         if (CMD_ARGC == 3)
2851         {
2852                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2853                         hw = BKPT_HARD;
2854                 else
2855                         return ERROR_COMMAND_SYNTAX_ERROR;
2856         }
2857
2858         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2859 }
2860
2861 COMMAND_HANDLER(handle_rbp_command)
2862 {
2863         if (CMD_ARGC != 1)
2864                 return ERROR_COMMAND_SYNTAX_ERROR;
2865
2866         uint32_t addr;
2867         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2868
2869         struct target *target = get_current_target(CMD_CTX);
2870         breakpoint_remove(target, addr);
2871
2872         return ERROR_OK;
2873 }
2874
2875 COMMAND_HANDLER(handle_wp_command)
2876 {
2877         struct target *target = get_current_target(CMD_CTX);
2878
2879         if (CMD_ARGC == 0)
2880         {
2881                 struct watchpoint *watchpoint = target->watchpoints;
2882
2883                 while (watchpoint)
2884                 {
2885                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2886                                         ", len: 0x%8.8" PRIx32
2887                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2888                                         ", mask: 0x%8.8" PRIx32,
2889                                         watchpoint->address,
2890                                         watchpoint->length,
2891                                         (int)watchpoint->rw,
2892                                         watchpoint->value,
2893                                         watchpoint->mask);
2894                         watchpoint = watchpoint->next;
2895                 }
2896                 return ERROR_OK;
2897         }
2898
2899         enum watchpoint_rw type = WPT_ACCESS;
2900         uint32_t addr = 0;
2901         uint32_t length = 0;
2902         uint32_t data_value = 0x0;
2903         uint32_t data_mask = 0xffffffff;
2904
2905         switch (CMD_ARGC)
2906         {
2907         case 5:
2908                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2909                 // fall through
2910         case 4:
2911                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2912                 // fall through
2913         case 3:
2914                 switch (CMD_ARGV[2][0])
2915                 {
2916                 case 'r':
2917                         type = WPT_READ;
2918                         break;
2919                 case 'w':
2920                         type = WPT_WRITE;
2921                         break;
2922                 case 'a':
2923                         type = WPT_ACCESS;
2924                         break;
2925                 default:
2926                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2927                         return ERROR_COMMAND_SYNTAX_ERROR;
2928                 }
2929                 // fall through
2930         case 2:
2931                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2932                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2933                 break;
2934
2935         default:
2936                 command_print(CMD_CTX, "usage: wp [address length "
2937                                 "[(r|w|a) [value [mask]]]]");
2938                 return ERROR_COMMAND_SYNTAX_ERROR;
2939         }
2940
2941         int retval = watchpoint_add(target, addr, length, type,
2942                         data_value, data_mask);
2943         if (ERROR_OK != retval)
2944                 LOG_ERROR("Failure setting watchpoints");
2945
2946         return retval;
2947 }
2948
2949 COMMAND_HANDLER(handle_rwp_command)
2950 {
2951         if (CMD_ARGC != 1)
2952                 return ERROR_COMMAND_SYNTAX_ERROR;
2953
2954         uint32_t addr;
2955         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2956
2957         struct target *target = get_current_target(CMD_CTX);
2958         watchpoint_remove(target, addr);
2959
2960         return ERROR_OK;
2961 }
2962
2963
2964 /**
2965  * Translate a virtual address to a physical address.
2966  *
2967  * The low-level target implementation must have logged a detailed error
2968  * which is forwarded to telnet/GDB session.
2969  */
2970 COMMAND_HANDLER(handle_virt2phys_command)
2971 {
2972         if (CMD_ARGC != 1)
2973                 return ERROR_COMMAND_SYNTAX_ERROR;
2974
2975         uint32_t va;
2976         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2977         uint32_t pa;
2978
2979         struct target *target = get_current_target(CMD_CTX);
2980         int retval = target->type->virt2phys(target, va, &pa);
2981         if (retval == ERROR_OK)
2982                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2983
2984         return retval;
2985 }
2986
2987 static void writeData(FILE *f, const void *data, size_t len)
2988 {
2989         size_t written = fwrite(data, 1, len, f);
2990         if (written != len)
2991                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2992 }
2993
2994 static void writeLong(FILE *f, int l)
2995 {
2996         int i;
2997         for (i = 0; i < 4; i++)
2998         {
2999                 char c = (l >> (i*8))&0xff;
3000                 writeData(f, &c, 1);
3001         }
3002
3003 }
3004
3005 static void writeString(FILE *f, char *s)
3006 {
3007         writeData(f, s, strlen(s));
3008 }
3009
3010 /* Dump a gmon.out histogram file. */
3011 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3012 {
3013         uint32_t i;
3014         FILE *f = fopen(filename, "w");
3015         if (f == NULL)
3016                 return;
3017         writeString(f, "gmon");
3018         writeLong(f, 0x00000001); /* Version */
3019         writeLong(f, 0); /* padding */
3020         writeLong(f, 0); /* padding */
3021         writeLong(f, 0); /* padding */
3022
3023         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3024         writeData(f, &zero, 1);
3025
3026         /* figure out bucket size */
3027         uint32_t min = samples[0];
3028         uint32_t max = samples[0];
3029         for (i = 0; i < sampleNum; i++)
3030         {
3031                 if (min > samples[i])
3032                 {
3033                         min = samples[i];
3034                 }
3035                 if (max < samples[i])
3036                 {
3037                         max = samples[i];
3038                 }
3039         }
3040
3041         int addressSpace = (max-min + 1);
3042
3043         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3044         uint32_t length = addressSpace;
3045         if (length > maxBuckets)
3046         {
3047                 length = maxBuckets;
3048         }
3049         int *buckets = malloc(sizeof(int)*length);
3050         if (buckets == NULL)
3051         {
3052                 fclose(f);
3053                 return;
3054         }
3055         memset(buckets, 0, sizeof(int)*length);
3056         for (i = 0; i < sampleNum;i++)
3057         {
3058                 uint32_t address = samples[i];
3059                 long long a = address-min;
3060                 long long b = length-1;
3061                 long long c = addressSpace-1;
3062                 int index = (a*b)/c; /* danger!!!! int32 overflows */
3063                 buckets[index]++;
3064         }
3065
3066         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3067         writeLong(f, min);                      /* low_pc */
3068         writeLong(f, max);                      /* high_pc */
3069         writeLong(f, length);           /* # of samples */
3070         writeLong(f, 64000000);         /* 64MHz */
3071         writeString(f, "seconds");
3072         for (i = 0; i < (15-strlen("seconds")); i++)
3073                 writeData(f, &zero, 1);
3074         writeString(f, "s");
3075
3076         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3077
3078         char *data = malloc(2*length);
3079         if (data != NULL)
3080         {
3081                 for (i = 0; i < length;i++)
3082                 {
3083                         int val;
3084                         val = buckets[i];
3085                         if (val > 65535)
3086                         {
3087                                 val = 65535;
3088                         }
3089                         data[i*2]=val&0xff;
3090                         data[i*2 + 1]=(val >> 8)&0xff;
3091                 }
3092                 free(buckets);
3093                 writeData(f, data, length * 2);
3094                 free(data);
3095         } else
3096         {
3097                 free(buckets);
3098         }
3099
3100         fclose(f);
3101 }
3102
3103 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3104  * which will be used as a random sampling of PC */
3105 COMMAND_HANDLER(handle_profile_command)
3106 {
3107         struct target *target = get_current_target(CMD_CTX);
3108         struct timeval timeout, now;
3109
3110         gettimeofday(&timeout, NULL);
3111         if (CMD_ARGC != 2)
3112         {
3113                 return ERROR_COMMAND_SYNTAX_ERROR;
3114         }
3115         unsigned offset;
3116         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3117
3118         timeval_add_time(&timeout, offset, 0);
3119
3120         /**
3121          * @todo: Some cores let us sample the PC without the
3122          * annoying halt/resume step; for example, ARMv7 PCSR.
3123          * Provide a way to use that more efficient mechanism.
3124          */
3125
3126         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3127
3128         static const int maxSample = 10000;
3129         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3130         if (samples == NULL)
3131                 return ERROR_OK;
3132
3133         int numSamples = 0;
3134         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3135         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3136
3137         for (;;)
3138         {
3139                 int retval;
3140                 target_poll(target);
3141                 if (target->state == TARGET_HALTED)
3142                 {
3143                         uint32_t t=*((uint32_t *)reg->value);
3144                         samples[numSamples++]=t;
3145                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3146                         target_poll(target);
3147                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3148                 } else if (target->state == TARGET_RUNNING)
3149                 {
3150                         /* We want to quickly sample the PC. */
3151                         if ((retval = target_halt(target)) != ERROR_OK)
3152                         {
3153                                 free(samples);
3154                                 return retval;
3155                         }
3156                 } else
3157                 {
3158                         command_print(CMD_CTX, "Target not halted or running");
3159                         retval = ERROR_OK;
3160                         break;
3161                 }
3162                 if (retval != ERROR_OK)
3163                 {
3164                         break;
3165                 }
3166
3167                 gettimeofday(&now, NULL);
3168                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3169                 {
3170                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3171                         if ((retval = target_poll(target)) != ERROR_OK)
3172                         {
3173                                 free(samples);
3174                                 return retval;
3175                         }
3176                         if (target->state == TARGET_HALTED)
3177                         {
3178                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3179                         }
3180                         if ((retval = target_poll(target)) != ERROR_OK)
3181                         {
3182                                 free(samples);
3183                                 return retval;
3184                         }
3185                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3186                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3187                         break;
3188                 }
3189         }
3190         free(samples);
3191
3192         return ERROR_OK;
3193 }
3194
3195 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3196 {
3197         char *namebuf;
3198         Jim_Obj *nameObjPtr, *valObjPtr;
3199         int result;
3200
3201         namebuf = alloc_printf("%s(%d)", varname, idx);
3202         if (!namebuf)
3203                 return JIM_ERR;
3204
3205         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3206         valObjPtr = Jim_NewIntObj(interp, val);
3207         if (!nameObjPtr || !valObjPtr)
3208         {
3209                 free(namebuf);
3210                 return JIM_ERR;
3211         }
3212
3213         Jim_IncrRefCount(nameObjPtr);
3214         Jim_IncrRefCount(valObjPtr);
3215         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3216         Jim_DecrRefCount(interp, nameObjPtr);
3217         Jim_DecrRefCount(interp, valObjPtr);
3218         free(namebuf);
3219         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3220         return result;
3221 }
3222
3223 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3224 {
3225         struct command_context *context;
3226         struct target *target;
3227
3228         context = Jim_GetAssocData(interp, "context");
3229         if (context == NULL)
3230         {
3231                 LOG_ERROR("mem2array: no command context");
3232                 return JIM_ERR;
3233         }
3234         target = get_current_target(context);
3235         if (target == NULL)
3236         {
3237                 LOG_ERROR("mem2array: no current target");
3238                 return JIM_ERR;
3239         }
3240
3241         return  target_mem2array(interp, target, argc-1, argv + 1);
3242 }
3243
3244 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3245 {
3246         long l;
3247         uint32_t width;
3248         int len;
3249         uint32_t addr;
3250         uint32_t count;
3251         uint32_t v;
3252         const char *varname;
3253         int  n, e, retval;
3254         uint32_t i;
3255
3256         /* argv[1] = name of array to receive the data
3257          * argv[2] = desired width
3258          * argv[3] = memory address
3259          * argv[4] = count of times to read
3260          */
3261         if (argc != 4) {
3262                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3263                 return JIM_ERR;
3264         }
3265         varname = Jim_GetString(argv[0], &len);
3266         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3267
3268         e = Jim_GetLong(interp, argv[1], &l);
3269         width = l;
3270         if (e != JIM_OK) {
3271                 return e;
3272         }
3273
3274         e = Jim_GetLong(interp, argv[2], &l);
3275         addr = l;
3276         if (e != JIM_OK) {
3277                 return e;
3278         }
3279         e = Jim_GetLong(interp, argv[3], &l);
3280         len = l;
3281         if (e != JIM_OK) {
3282                 return e;
3283         }
3284         switch (width) {
3285                 case 8:
3286                         width = 1;
3287                         break;
3288                 case 16:
3289                         width = 2;
3290                         break;
3291                 case 32:
3292                         width = 4;
3293                         break;
3294                 default:
3295                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3296                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3297                         return JIM_ERR;
3298         }
3299         if (len == 0) {
3300                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3301                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3302                 return JIM_ERR;
3303         }
3304         if ((addr + (len * width)) < addr) {
3305                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3306                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3307                 return JIM_ERR;
3308         }
3309         /* absurd transfer size? */
3310         if (len > 65536) {
3311                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3312                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3313                 return JIM_ERR;
3314         }
3315
3316         if ((width == 1) ||
3317                 ((width == 2) && ((addr & 1) == 0)) ||
3318                 ((width == 4) && ((addr & 3) == 0))) {
3319                 /* all is well */
3320         } else {
3321                 char buf[100];
3322                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3323                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3324                                 addr,
3325                                 width);
3326                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3327                 return JIM_ERR;
3328         }
3329
3330         /* Transfer loop */
3331
3332         /* index counter */
3333         n = 0;
3334
3335         size_t buffersize = 4096;
3336         uint8_t *buffer = malloc(buffersize);
3337         if (buffer == NULL)
3338                 return JIM_ERR;
3339
3340         /* assume ok */
3341         e = JIM_OK;
3342         while (len) {
3343                 /* Slurp... in buffer size chunks */
3344
3345                 count = len; /* in objects.. */
3346                 if (count > (buffersize/width)) {
3347                         count = (buffersize/width);
3348                 }
3349
3350                 retval = target_read_memory(target, addr, width, count, buffer);
3351                 if (retval != ERROR_OK) {
3352                         /* BOO !*/
3353                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3354                                           (unsigned int)addr,
3355                                           (int)width,
3356                                           (int)count);
3357                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3358                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3359                         e = JIM_ERR;
3360                         len = 0;
3361                 } else {
3362                         v = 0; /* shut up gcc */
3363                         for (i = 0 ;i < count ;i++, n++) {
3364                                 switch (width) {
3365                                         case 4:
3366                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3367                                                 break;
3368                                         case 2:
3369                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3370                                                 break;
3371                                         case 1:
3372                                                 v = buffer[i] & 0x0ff;
3373                                                 break;
3374                                 }
3375                                 new_int_array_element(interp, varname, n, v);
3376                         }
3377                         len -= count;
3378                 }
3379         }
3380
3381         free(buffer);
3382
3383         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3384
3385         return JIM_OK;
3386 }
3387
3388 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3389 {
3390         char *namebuf;
3391         Jim_Obj *nameObjPtr, *valObjPtr;
3392         int result;
3393         long l;
3394
3395         namebuf = alloc_printf("%s(%d)", varname, idx);
3396         if (!namebuf)
3397                 return JIM_ERR;
3398
3399         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3400         if (!nameObjPtr)
3401         {
3402                 free(namebuf);
3403                 return JIM_ERR;
3404         }
3405
3406         Jim_IncrRefCount(nameObjPtr);
3407         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3408         Jim_DecrRefCount(interp, nameObjPtr);
3409         free(namebuf);
3410         if (valObjPtr == NULL)
3411                 return JIM_ERR;
3412
3413         result = Jim_GetLong(interp, valObjPtr, &l);
3414         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3415         *val = l;
3416         return result;
3417 }
3418
3419 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3420 {
3421         struct command_context *context;
3422         struct target *target;
3423
3424         context = Jim_GetAssocData(interp, "context");
3425         if (context == NULL) {
3426                 LOG_ERROR("array2mem: no command context");
3427                 return JIM_ERR;
3428         }
3429         target = get_current_target(context);
3430         if (target == NULL) {
3431                 LOG_ERROR("array2mem: no current target");
3432                 return JIM_ERR;
3433         }
3434
3435         return target_array2mem(interp,target, argc-1, argv + 1);
3436 }
3437
3438 static int target_array2mem(Jim_Interp *interp, struct target *target,
3439                 int argc, Jim_Obj *const *argv)
3440 {
3441         long l;
3442         uint32_t width;
3443         int len;
3444         uint32_t addr;
3445         uint32_t count;
3446         uint32_t v;
3447         const char *varname;
3448         int  n, e, retval;
3449         uint32_t i;
3450
3451         /* argv[1] = name of array to get the data
3452          * argv[2] = desired width
3453          * argv[3] = memory address
3454          * argv[4] = count to write
3455          */
3456         if (argc != 4) {
3457                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3458                 return JIM_ERR;
3459         }
3460         varname = Jim_GetString(argv[0], &len);
3461         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3462
3463         e = Jim_GetLong(interp, argv[1], &l);
3464         width = l;
3465         if (e != JIM_OK) {
3466                 return e;
3467         }
3468
3469         e = Jim_GetLong(interp, argv[2], &l);
3470         addr = l;
3471         if (e != JIM_OK) {
3472                 return e;
3473         }
3474         e = Jim_GetLong(interp, argv[3], &l);
3475         len = l;
3476         if (e != JIM_OK) {
3477                 return e;
3478         }
3479         switch (width) {
3480                 case 8:
3481                         width = 1;
3482                         break;
3483                 case 16:
3484                         width = 2;
3485                         break;
3486                 case 32:
3487                         width = 4;
3488                         break;
3489                 default:
3490                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3491                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3492                         return JIM_ERR;
3493         }
3494         if (len == 0) {
3495                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3496                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3497                 return JIM_ERR;
3498         }
3499         if ((addr + (len * width)) < addr) {
3500                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3501                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3502                 return JIM_ERR;
3503         }
3504         /* absurd transfer size? */
3505         if (len > 65536) {
3506                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3507                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3508                 return JIM_ERR;
3509         }
3510
3511         if ((width == 1) ||
3512                 ((width == 2) && ((addr & 1) == 0)) ||
3513                 ((width == 4) && ((addr & 3) == 0))) {
3514                 /* all is well */
3515         } else {
3516                 char buf[100];
3517                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3518                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3519                                 (unsigned int)addr,
3520                                 (int)width);
3521                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3522                 return JIM_ERR;
3523         }
3524
3525         /* Transfer loop */
3526
3527         /* index counter */
3528         n = 0;
3529         /* assume ok */
3530         e = JIM_OK;
3531
3532         size_t buffersize = 4096;
3533         uint8_t *buffer = malloc(buffersize);
3534         if (buffer == NULL)
3535                 return JIM_ERR;
3536
3537         while (len) {
3538                 /* Slurp... in buffer size chunks */
3539
3540                 count = len; /* in objects.. */
3541                 if (count > (buffersize/width)) {
3542                         count = (buffersize/width);
3543                 }
3544
3545                 v = 0; /* shut up gcc */
3546                 for (i = 0 ;i < count ;i++, n++) {
3547                         get_int_array_element(interp, varname, n, &v);
3548                         switch (width) {
3549                         case 4:
3550                                 target_buffer_set_u32(target, &buffer[i*width], v);
3551                                 break;
3552                         case 2:
3553                                 target_buffer_set_u16(target, &buffer[i*width], v);
3554                                 break;
3555                         case 1:
3556                                 buffer[i] = v & 0x0ff;
3557                                 break;
3558                         }
3559                 }
3560                 len -= count;
3561
3562                 retval = target_write_memory(target, addr, width, count, buffer);
3563                 if (retval != ERROR_OK) {
3564                         /* BOO !*/
3565                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3566                                           (unsigned int)addr,
3567                                           (int)width,
3568                                           (int)count);
3569                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3570                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3571                         e = JIM_ERR;
3572                         len = 0;
3573                 }
3574         }
3575
3576         free(buffer);
3577
3578         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3579
3580         return JIM_OK;
3581 }
3582
3583 void target_all_handle_event(enum target_event e)
3584 {
3585         struct target *target;
3586
3587         LOG_DEBUG("**all*targets: event: %d, %s",
3588                            (int)e,
3589                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3590
3591         target = all_targets;
3592         while (target) {
3593                 target_handle_event(target, e);
3594                 target = target->next;
3595         }
3596 }
3597
3598
3599 /* FIX? should we propagate errors here rather than printing them
3600  * and continuing?
3601  */
3602 void target_handle_event(struct target *target, enum target_event e)
3603 {
3604         struct target_event_action *teap;
3605
3606         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3607                 if (teap->event == e) {
3608                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3609                                            target->target_number,
3610                                            target_name(target),
3611                                            target_type_name(target),
3612                                            e,
3613                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3614                                            Jim_GetString(teap->body, NULL));
3615                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3616                         {
3617                                 Jim_PrintErrorMessage(teap->interp);
3618                         }
3619                 }
3620         }
3621 }
3622
3623 /**
3624  * Returns true only if the target has a handler for the specified event.
3625  */
3626 bool target_has_event_action(struct target *target, enum target_event event)
3627 {
3628         struct target_event_action *teap;
3629
3630         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3631                 if (teap->event == event)
3632                         return true;
3633         }
3634         return false;
3635 }
3636
3637 enum target_cfg_param {
3638         TCFG_TYPE,
3639         TCFG_EVENT,
3640         TCFG_WORK_AREA_VIRT,
3641         TCFG_WORK_AREA_PHYS,
3642         TCFG_WORK_AREA_SIZE,
3643         TCFG_WORK_AREA_BACKUP,
3644         TCFG_ENDIAN,
3645         TCFG_VARIANT,
3646         TCFG_CHAIN_POSITION,
3647 };
3648
3649 static Jim_Nvp nvp_config_opts[] = {
3650         { .name = "-type",             .value = TCFG_TYPE },
3651         { .name = "-event",            .value = TCFG_EVENT },
3652         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3653         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3654         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3655         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3656         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3657         { .name = "-variant",          .value = TCFG_VARIANT },
3658         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3659
3660         { .name = NULL, .value = -1 }
3661 };
3662
3663 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3664 {
3665         Jim_Nvp *n;
3666         Jim_Obj *o;
3667         jim_wide w;
3668         char *cp;
3669         int e;
3670
3671         /* parse config or cget options ... */
3672         while (goi->argc > 0) {
3673                 Jim_SetEmptyResult(goi->interp);
3674                 /* Jim_GetOpt_Debug(goi); */
3675
3676                 if (target->type->target_jim_configure) {
3677                         /* target defines a configure function */
3678                         /* target gets first dibs on parameters */
3679                         e = (*(target->type->target_jim_configure))(target, goi);
3680                         if (e == JIM_OK) {
3681                                 /* more? */
3682                                 continue;
3683                         }
3684                         if (e == JIM_ERR) {
3685                                 /* An error */
3686                                 return e;
3687                         }
3688                         /* otherwise we 'continue' below */
3689                 }
3690                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3691                 if (e != JIM_OK) {
3692                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3693                         return e;
3694                 }
3695                 switch (n->value) {
3696                 case TCFG_TYPE:
3697                         /* not setable */
3698                         if (goi->isconfigure) {
3699                                 Jim_SetResult_sprintf(goi->interp,
3700                                                 "not settable: %s", n->name);
3701                                 return JIM_ERR;
3702                         } else {
3703                         no_params:
3704                                 if (goi->argc != 0) {
3705                                         Jim_WrongNumArgs(goi->interp,
3706                                                         goi->argc, goi->argv,
3707                                                         "NO PARAMS");
3708                                         return JIM_ERR;
3709                                 }
3710                         }
3711                         Jim_SetResultString(goi->interp,
3712                                         target_type_name(target), -1);
3713                         /* loop for more */
3714                         break;
3715                 case TCFG_EVENT:
3716                         if (goi->argc == 0) {
3717                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3718                                 return JIM_ERR;
3719                         }
3720
3721                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3722                         if (e != JIM_OK) {
3723                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3724                                 return e;
3725                         }
3726
3727                         if (goi->isconfigure) {
3728                                 if (goi->argc != 1) {
3729                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3730                                         return JIM_ERR;
3731                                 }
3732                         } else {
3733                                 if (goi->argc != 0) {
3734                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3735                                         return JIM_ERR;
3736                                 }
3737                         }
3738
3739                         {
3740                                 struct target_event_action *teap;
3741
3742                                 teap = target->event_action;
3743                                 /* replace existing? */
3744                                 while (teap) {
3745                                         if (teap->event == (enum target_event)n->value) {
3746                                                 break;
3747                                         }
3748                                         teap = teap->next;
3749                                 }
3750
3751                                 if (goi->isconfigure) {
3752                                         bool replace = true;
3753                                         if (teap == NULL) {
3754                                                 /* create new */
3755                                                 teap = calloc(1, sizeof(*teap));
3756                                                 replace = false;
3757                                         }
3758                                         teap->event = n->value;
3759                                         teap->interp = goi->interp;
3760                                         Jim_GetOpt_Obj(goi, &o);
3761                                         if (teap->body) {
3762                                                 Jim_DecrRefCount(teap->interp, teap->body);
3763                                         }
3764                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3765                                         /*
3766                                          * FIXME:
3767                                          *     Tcl/TK - "tk events" have a nice feature.
3768                                          *     See the "BIND" command.
3769                                          *    We should support that here.
3770                                          *     You can specify %X and %Y in the event code.
3771                                          *     The idea is: %T - target name.
3772                                          *     The idea is: %N - target number
3773                                          *     The idea is: %E - event name.
3774                                          */
3775                                         Jim_IncrRefCount(teap->body);
3776
3777                                         if (!replace)
3778                                         {
3779                                                 /* add to head of event list */
3780                                                 teap->next = target->event_action;
3781                                                 target->event_action = teap;
3782                                         }
3783                                         Jim_SetEmptyResult(goi->interp);
3784                                 } else {
3785                                         /* get */
3786                                         if (teap == NULL) {
3787                                                 Jim_SetEmptyResult(goi->interp);
3788                                         } else {
3789                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3790                                         }
3791                                 }
3792                         }
3793                         /* loop for more */
3794                         break;
3795
3796                 case TCFG_WORK_AREA_VIRT:
3797                         if (goi->isconfigure) {
3798                                 target_free_all_working_areas(target);
3799                                 e = Jim_GetOpt_Wide(goi, &w);
3800                                 if (e != JIM_OK) {
3801                                         return e;
3802                                 }
3803                                 target->working_area_virt = w;
3804                                 target->working_area_virt_spec = true;
3805                         } else {
3806                                 if (goi->argc != 0) {
3807                                         goto no_params;
3808                                 }
3809                         }
3810                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3811                         /* loop for more */
3812                         break;
3813
3814                 case TCFG_WORK_AREA_PHYS:
3815                         if (goi->isconfigure) {
3816                                 target_free_all_working_areas(target);
3817                                 e = Jim_GetOpt_Wide(goi, &w);
3818                                 if (e != JIM_OK) {
3819                                         return e;
3820                                 }
3821                                 target->working_area_phys = w;
3822                                 target->working_area_phys_spec = true;
3823                         } else {
3824                                 if (goi->argc != 0) {
3825                                         goto no_params;
3826                                 }
3827                         }
3828                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3829                         /* loop for more */
3830                         break;
3831
3832                 case TCFG_WORK_AREA_SIZE:
3833                         if (goi->isconfigure) {
3834                                 target_free_all_working_areas(target);
3835                                 e = Jim_GetOpt_Wide(goi, &w);
3836                                 if (e != JIM_OK) {
3837                                         return e;
3838                                 }
3839                                 target->working_area_size = w;
3840                         } else {
3841                                 if (goi->argc != 0) {
3842                                         goto no_params;
3843                                 }
3844                         }
3845                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3846                         /* loop for more */
3847                         break;
3848
3849                 case TCFG_WORK_AREA_BACKUP:
3850                         if (goi->isconfigure) {
3851                                 target_free_all_working_areas(target);
3852                                 e = Jim_GetOpt_Wide(goi, &w);
3853                                 if (e != JIM_OK) {
3854                                         return e;
3855                                 }
3856                                 /* make this exactly 1 or 0 */
3857                                 target->backup_working_area = (!!w);
3858                         } else {
3859                                 if (goi->argc != 0) {
3860                                         goto no_params;
3861                                 }
3862                         }
3863                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3864                         /* loop for more e*/
3865                         break;
3866
3867                 case TCFG_ENDIAN:
3868                         if (goi->isconfigure) {
3869                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3870                                 if (e != JIM_OK) {
3871                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3872                                         return e;
3873                                 }
3874                                 target->endianness = n->value;
3875                         } else {
3876                                 if (goi->argc != 0) {
3877                                         goto no_params;
3878                                 }
3879                         }
3880                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3881                         if (n->name == NULL) {
3882                                 target->endianness = TARGET_LITTLE_ENDIAN;
3883                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3884                         }
3885                         Jim_SetResultString(goi->interp, n->name, -1);
3886                         /* loop for more */
3887                         break;
3888
3889                 case TCFG_VARIANT:
3890                         if (goi->isconfigure) {
3891                                 if (goi->argc < 1) {
3892                                         Jim_SetResult_sprintf(goi->interp,
3893                                                                                    "%s ?STRING?",
3894                                                                                    n->name);
3895                                         return JIM_ERR;
3896                                 }
3897                                 if (target->variant) {
3898                                         free((void *)(target->variant));
3899                                 }
3900                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3901                                 target->variant = strdup(cp);
3902                         } else {
3903                                 if (goi->argc != 0) {
3904                                         goto no_params;
3905                                 }
3906                         }
3907                         Jim_SetResultString(goi->interp, target->variant,-1);
3908                         /* loop for more */
3909                         break;
3910                 case TCFG_CHAIN_POSITION:
3911                         if (goi->isconfigure) {
3912                                 Jim_Obj *o;
3913                                 struct jtag_tap *tap;
3914                                 target_free_all_working_areas(target);
3915                                 e = Jim_GetOpt_Obj(goi, &o);
3916                                 if (e != JIM_OK) {
3917                                         return e;
3918                                 }
3919                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3920                                 if (tap == NULL) {
3921                                         return JIM_ERR;
3922                                 }
3923                                 /* make this exactly 1 or 0 */
3924                                 target->tap = tap;
3925                         } else {
3926                                 if (goi->argc != 0) {
3927                                         goto no_params;
3928                                 }
3929                         }
3930                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3931                         /* loop for more e*/
3932                         break;
3933                 }
3934         } /* while (goi->argc) */
3935
3936
3937                 /* done - we return */
3938         return JIM_OK;
3939 }
3940
3941 static int
3942 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3943 {
3944         Jim_GetOptInfo goi;
3945
3946         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3947         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3948         int need_args = 1 + goi.isconfigure;
3949         if (goi.argc < need_args)
3950         {
3951                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3952                         goi.isconfigure
3953                                 ? "missing: -option VALUE ..."
3954                                 : "missing: -option ...");
3955                 return JIM_ERR;
3956         }
3957         struct target *target = Jim_CmdPrivData(goi.interp);
3958         return target_configure(&goi, target);
3959 }
3960
3961 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3962 {
3963         const char *cmd_name = Jim_GetString(argv[0], NULL);
3964
3965         Jim_GetOptInfo goi;
3966         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3967
3968         /* danger! goi.argc will be modified below! */
3969         argc = goi.argc;
3970
3971         if (argc != 2 && argc != 3)
3972         {
3973                 Jim_SetResult_sprintf(goi.interp,
3974                                 "usage: %s <address> <data> [<count>]", cmd_name);
3975                 return JIM_ERR;
3976         }
3977
3978
3979         jim_wide a;
3980         int e = Jim_GetOpt_Wide(&goi, &a);
3981         if (e != JIM_OK)
3982                 return e;
3983
3984         jim_wide b;
3985         e = Jim_GetOpt_Wide(&goi, &b);
3986         if (e != JIM_OK)
3987                 return e;
3988
3989         jim_wide c = 1;
3990         if (argc == 3)
3991         {
3992                 e = Jim_GetOpt_Wide(&goi, &c);
3993                 if (e != JIM_OK)
3994                         return e;
3995         }
3996
3997         struct target *target = Jim_CmdPrivData(goi.interp);
3998         unsigned data_size;
3999         if (strcasecmp(cmd_name, "mww") == 0) {
4000                 data_size = 4;
4001         }
4002         else if (strcasecmp(cmd_name, "mwh") == 0) {
4003                 data_size = 2;
4004         }
4005         else if (strcasecmp(cmd_name, "mwb") == 0) {
4006                 data_size = 1;
4007         } else {
4008                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4009                 return JIM_ERR;
4010         }
4011
4012         return (target_fill_mem(target, a, target_write_memory_fast, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4013 }
4014
4015 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4016 {
4017         const char *cmd_name = Jim_GetString(argv[0], NULL);
4018
4019         Jim_GetOptInfo goi;
4020         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4021
4022         /* danger! goi.argc will be modified below! */
4023         argc = goi.argc;
4024
4025         if ((argc != 1) && (argc != 2))
4026         {
4027                 Jim_SetResult_sprintf(goi.interp,
4028                                 "usage: %s <address> [<count>]", cmd_name);
4029                 return JIM_ERR;
4030         }
4031
4032         jim_wide a;
4033         int e = Jim_GetOpt_Wide(&goi, &a);
4034         if (e != JIM_OK) {
4035                 return JIM_ERR;
4036         }
4037         jim_wide c;
4038         if (argc == 2) {
4039                 e = Jim_GetOpt_Wide(&goi, &c);
4040                 if (e != JIM_OK) {
4041                         return JIM_ERR;
4042                 }
4043         } else {
4044                 c = 1;
4045         }
4046         jim_wide b = 1; /* shut up gcc */
4047         if (strcasecmp(cmd_name, "mdw") == 0)
4048                 b = 4;
4049         else if (strcasecmp(cmd_name, "mdh") == 0)
4050                 b = 2;
4051         else if (strcasecmp(cmd_name, "mdb") == 0)
4052                 b = 1;
4053         else {
4054                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4055                 return JIM_ERR;
4056         }
4057
4058         /* convert count to "bytes" */
4059         c = c * b;
4060
4061         struct target *target = Jim_CmdPrivData(goi.interp);
4062         uint8_t  target_buf[32];
4063         jim_wide x, y, z;
4064         while (c > 0) {
4065                 y = c;
4066                 if (y > 16) {
4067                         y = 16;
4068                 }
4069                 e = target_read_memory(target, a, b, y / b, target_buf);
4070                 if (e != ERROR_OK) {
4071                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4072                         return JIM_ERR;
4073                 }
4074
4075                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4076                 switch (b) {
4077                 case 4:
4078                         for (x = 0; x < 16 && x < y; x += 4)
4079                         {
4080                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4081                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4082                         }
4083                         for (; (x < 16) ; x += 4) {
4084                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
4085                         }
4086                         break;
4087                 case 2:
4088                         for (x = 0; x < 16 && x < y; x += 2)
4089                         {
4090                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4091                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4092                         }
4093                         for (; (x < 16) ; x += 2) {
4094                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
4095                         }
4096                         break;
4097                 case 1:
4098                 default:
4099                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4100                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4101                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4102                         }
4103                         for (; (x < 16) ; x += 1) {
4104                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
4105                         }
4106                         break;
4107                 }
4108                 /* ascii-ify the bytes */
4109                 for (x = 0 ; x < y ; x++) {
4110                         if ((target_buf[x] >= 0x20) &&
4111                                 (target_buf[x] <= 0x7e)) {
4112                                 /* good */
4113                         } else {
4114                                 /* smack it */
4115                                 target_buf[x] = '.';
4116                         }
4117                 }
4118                 /* space pad  */
4119                 while (x < 16) {
4120                         target_buf[x] = ' ';
4121                         x++;
4122                 }
4123                 /* terminate */
4124                 target_buf[16] = 0;
4125                 /* print - with a newline */
4126                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4127                 /* NEXT... */
4128                 c -= 16;
4129                 a += 16;
4130         }
4131         return JIM_OK;
4132 }
4133
4134 static int jim_target_mem2array(Jim_Interp *interp,
4135                 int argc, Jim_Obj *const *argv)
4136 {
4137         struct target *target = Jim_CmdPrivData(interp);
4138         return target_mem2array(interp, target, argc - 1, argv + 1);
4139 }
4140
4141 static int jim_target_array2mem(Jim_Interp *interp,
4142                 int argc, Jim_Obj *const *argv)
4143 {
4144         struct target *target = Jim_CmdPrivData(interp);
4145         return target_array2mem(interp, target, argc - 1, argv + 1);
4146 }
4147
4148 static int jim_target_tap_disabled(Jim_Interp *interp)
4149 {
4150         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4151         return JIM_ERR;
4152 }
4153
4154 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4155 {
4156         if (argc != 1)
4157         {
4158                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4159                 return JIM_ERR;
4160         }
4161         struct target *target = Jim_CmdPrivData(interp);
4162         if (!target->tap->enabled)
4163                 return jim_target_tap_disabled(interp);
4164
4165         int e = target->type->examine(target);
4166         if (e != ERROR_OK)
4167         {
4168                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4169                 return JIM_ERR;
4170         }
4171         return JIM_OK;
4172 }
4173
4174 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4175 {
4176         if (argc != 1)
4177         {
4178                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4179                 return JIM_ERR;
4180         }
4181         struct target *target = Jim_CmdPrivData(interp);
4182
4183         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4184                 return JIM_ERR;
4185
4186         return JIM_OK;
4187 }
4188
4189 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4190 {
4191         if (argc != 1)
4192         {
4193                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4194                 return JIM_ERR;
4195         }
4196         struct target *target = Jim_CmdPrivData(interp);
4197         if (!target->tap->enabled)
4198                 return jim_target_tap_disabled(interp);
4199
4200         int e;
4201         if (!(target_was_examined(target))) {
4202                 e = ERROR_TARGET_NOT_EXAMINED;
4203         } else {
4204                 e = target->type->poll(target);
4205         }
4206         if (e != ERROR_OK)
4207         {
4208                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4209                 return JIM_ERR;
4210         }
4211         return JIM_OK;
4212 }
4213
4214 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4215 {
4216         Jim_GetOptInfo goi;
4217         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4218
4219         if (goi.argc != 2)
4220         {
4221                 Jim_WrongNumArgs(interp, 0, argv,
4222                                 "([tT]|[fF]|assert|deassert) BOOL");
4223                 return JIM_ERR;
4224         }
4225
4226         Jim_Nvp *n;
4227         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4228         if (e != JIM_OK)
4229         {
4230                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4231                 return e;
4232         }
4233         /* the halt or not param */
4234         jim_wide a;
4235         e = Jim_GetOpt_Wide(&goi, &a);
4236         if (e != JIM_OK)
4237                 return e;
4238
4239         struct target *target = Jim_CmdPrivData(goi.interp);
4240         if (!target->tap->enabled)
4241                 return jim_target_tap_disabled(interp);
4242         if (!(target_was_examined(target)))
4243         {
4244                 LOG_ERROR("Target not examined yet");
4245                 return ERROR_TARGET_NOT_EXAMINED;
4246         }
4247         if (!target->type->assert_reset || !target->type->deassert_reset)
4248         {
4249                 Jim_SetResult_sprintf(interp,
4250                                 "No target-specific reset for %s",
4251                                 target_name(target));
4252                 return JIM_ERR;
4253         }
4254         /* determine if we should halt or not. */
4255         target->reset_halt = !!a;
4256         /* When this happens - all workareas are invalid. */
4257         target_free_all_working_areas_restore(target, 0);
4258
4259         /* do the assert */
4260         if (n->value == NVP_ASSERT) {
4261                 e = target->type->assert_reset(target);
4262         } else {
4263                 e = target->type->deassert_reset(target);
4264         }
4265         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4266 }
4267
4268 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4269 {
4270         if (argc != 1) {
4271                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4272                 return JIM_ERR;
4273         }
4274         struct target *target = Jim_CmdPrivData(interp);
4275         if (!target->tap->enabled)
4276                 return jim_target_tap_disabled(interp);
4277         int e = target->type->halt(target);
4278         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4279 }
4280
4281 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4282 {
4283         Jim_GetOptInfo goi;
4284         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4285
4286         /* params:  <name>  statename timeoutmsecs */
4287         if (goi.argc != 2)
4288         {
4289                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4290                 Jim_SetResult_sprintf(goi.interp,
4291                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4292                 return JIM_ERR;
4293         }
4294
4295         Jim_Nvp *n;
4296         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4297         if (e != JIM_OK) {
4298                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4299                 return e;
4300         }
4301         jim_wide a;
4302         e = Jim_GetOpt_Wide(&goi, &a);
4303         if (e != JIM_OK) {
4304                 return e;
4305         }
4306         struct target *target = Jim_CmdPrivData(interp);
4307         if (!target->tap->enabled)
4308                 return jim_target_tap_disabled(interp);
4309
4310         e = target_wait_state(target, n->value, a);
4311         if (e != ERROR_OK)
4312         {
4313                 Jim_SetResult_sprintf(goi.interp,
4314                                 "target: %s wait %s fails (%d) %s",
4315                                 target_name(target), n->name,
4316                                 e, target_strerror_safe(e));
4317                 return JIM_ERR;
4318         }
4319         return JIM_OK;
4320 }
4321 /* List for human, Events defined for this target.
4322  * scripts/programs should use 'name cget -event NAME'
4323  */
4324 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4325 {
4326         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4327         struct target *target = Jim_CmdPrivData(interp);
4328         struct target_event_action *teap = target->event_action;
4329         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4330                                    target->target_number,
4331                                    target_name(target));
4332         command_print(cmd_ctx, "%-25s | Body", "Event");
4333         command_print(cmd_ctx, "------------------------- | "
4334                         "----------------------------------------");
4335         while (teap)
4336         {
4337                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4338                 command_print(cmd_ctx, "%-25s | %s",
4339                                 opt->name, Jim_GetString(teap->body, NULL));
4340                 teap = teap->next;
4341         }
4342         command_print(cmd_ctx, "***END***");
4343         return JIM_OK;
4344 }
4345 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4346 {
4347         if (argc != 1)
4348         {
4349                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4350                 return JIM_ERR;
4351         }
4352         struct target *target = Jim_CmdPrivData(interp);
4353         Jim_SetResultString(interp, target_state_name(target), -1);
4354         return JIM_OK;
4355 }
4356 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4357 {
4358         Jim_GetOptInfo goi;
4359         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4360         if (goi.argc != 1)
4361         {
4362                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4363                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4364                 return JIM_ERR;
4365         }
4366         Jim_Nvp *n;
4367         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4368         if (e != JIM_OK)
4369         {
4370                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4371                 return e;
4372         }
4373         struct target *target = Jim_CmdPrivData(interp);
4374         target_handle_event(target, n->value);
4375         return JIM_OK;
4376 }
4377
4378 static const struct command_registration target_instance_command_handlers[] = {
4379         {
4380                 .name = "configure",
4381                 .mode = COMMAND_CONFIG,
4382                 .jim_handler = jim_target_configure,
4383                 .help  = "configure a new target for use",
4384                 .usage = "[target_attribute ...]",
4385         },
4386         {
4387                 .name = "cget",
4388                 .mode = COMMAND_ANY,
4389                 .jim_handler = jim_target_configure,
4390                 .help  = "returns the specified target attribute",
4391                 .usage = "target_attribute",
4392         },
4393         {
4394                 .name = "mww",
4395                 .mode = COMMAND_EXEC,
4396                 .jim_handler = jim_target_mw,
4397                 .help = "Write 32-bit word(s) to target memory",
4398                 .usage = "address data [count]",
4399         },
4400         {
4401                 .name = "mwh",
4402                 .mode = COMMAND_EXEC,
4403                 .jim_handler = jim_target_mw,
4404                 .help = "Write 16-bit half-word(s) to target memory",
4405                 .usage = "address data [count]",
4406         },
4407         {
4408                 .name = "mwb",
4409                 .mode = COMMAND_EXEC,
4410                 .jim_handler = jim_target_mw,
4411                 .help = "Write byte(s) to target memory",
4412                 .usage = "address data [count]",
4413         },
4414         {
4415                 .name = "mdw",
4416                 .mode = COMMAND_EXEC,
4417                 .jim_handler = jim_target_md,
4418                 .help = "Display target memory as 32-bit words",
4419                 .usage = "address [count]",
4420         },
4421         {
4422                 .name = "mdh",
4423                 .mode = COMMAND_EXEC,
4424                 .jim_handler = jim_target_md,
4425                 .help = "Display target memory as 16-bit half-words",
4426                 .usage = "address [count]",
4427         },
4428         {
4429                 .name = "mdb",
4430                 .mode = COMMAND_EXEC,
4431                 .jim_handler = jim_target_md,
4432                 .help = "Display target memory as 8-bit bytes",
4433                 .usage = "address [count]",
4434         },
4435         {
4436                 .name = "array2mem",
4437                 .mode = COMMAND_EXEC,
4438                 .jim_handler = jim_target_array2mem,
4439                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4440                         "to target memory",
4441                 .usage = "arrayname bitwidth address count",
4442         },
4443         {
4444                 .name = "mem2array",
4445                 .mode = COMMAND_EXEC,
4446                 .jim_handler = jim_target_mem2array,
4447                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4448                         "from target memory",
4449                 .usage = "arrayname bitwidth address count",
4450         },
4451         {
4452                 .name = "eventlist",
4453                 .mode = COMMAND_EXEC,
4454                 .jim_handler = jim_target_event_list,
4455                 .help = "displays a table of events defined for this target",
4456         },
4457         {
4458                 .name = "curstate",
4459                 .mode = COMMAND_EXEC,
4460                 .jim_handler = jim_target_current_state,
4461                 .help = "displays the current state of this target",
4462         },
4463         {
4464                 .name = "arp_examine",
4465                 .mode = COMMAND_EXEC,
4466                 .jim_handler = jim_target_examine,
4467                 .help = "used internally for reset processing",
4468         },
4469         {
4470                 .name = "arp_halt_gdb",
4471                 .mode = COMMAND_EXEC,
4472                 .jim_handler = jim_target_halt_gdb,
4473                 .help = "used internally for reset processing to halt GDB",
4474         },
4475         {
4476                 .name = "arp_poll",
4477                 .mode = COMMAND_EXEC,
4478                 .jim_handler = jim_target_poll,
4479                 .help = "used internally for reset processing",
4480         },
4481         {
4482                 .name = "arp_reset",
4483                 .mode = COMMAND_EXEC,
4484                 .jim_handler = jim_target_reset,
4485                 .help = "used internally for reset processing",
4486         },
4487         {
4488                 .name = "arp_halt",
4489                 .mode = COMMAND_EXEC,
4490                 .jim_handler = jim_target_halt,
4491                 .help = "used internally for reset processing",
4492         },
4493         {
4494                 .name = "arp_waitstate",
4495                 .mode = COMMAND_EXEC,
4496                 .jim_handler = jim_target_wait_state,
4497                 .help = "used internally for reset processing",
4498         },
4499         {
4500                 .name = "invoke-event",
4501                 .mode = COMMAND_EXEC,
4502                 .jim_handler = jim_target_invoke_event,
4503                 .help = "invoke handler for specified event",
4504                 .usage = "event_name",
4505         },
4506         COMMAND_REGISTRATION_DONE
4507 };
4508
4509 static int target_create(Jim_GetOptInfo *goi)
4510 {
4511         Jim_Obj *new_cmd;
4512         Jim_Cmd *cmd;
4513         const char *cp;
4514         char *cp2;
4515         int e;
4516         int x;
4517         struct target *target;
4518         struct command_context *cmd_ctx;
4519
4520         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4521         if (goi->argc < 3) {
4522                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4523                 return JIM_ERR;
4524         }
4525
4526         /* COMMAND */
4527         Jim_GetOpt_Obj(goi, &new_cmd);
4528         /* does this command exist? */
4529         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4530         if (cmd) {
4531                 cp = Jim_GetString(new_cmd, NULL);
4532                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4533                 return JIM_ERR;
4534         }
4535
4536         /* TYPE */
4537         e = Jim_GetOpt_String(goi, &cp2, NULL);
4538         cp = cp2;
4539         /* now does target type exist */
4540         for (x = 0 ; target_types[x] ; x++) {
4541                 if (0 == strcmp(cp, target_types[x]->name)) {
4542                         /* found */
4543                         break;
4544                 }
4545         }
4546         if (target_types[x] == NULL) {
4547                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4548                 for (x = 0 ; target_types[x] ; x++) {
4549                         if (target_types[x + 1]) {
4550                                 Jim_AppendStrings(goi->interp,
4551                                                                    Jim_GetResult(goi->interp),
4552                                                                    target_types[x]->name,
4553                                                                    ", ", NULL);
4554                         } else {
4555                                 Jim_AppendStrings(goi->interp,
4556                                                                    Jim_GetResult(goi->interp),
4557                                                                    " or ",
4558                                                                    target_types[x]->name,NULL);
4559                         }
4560                 }
4561                 return JIM_ERR;
4562         }
4563
4564         /* Create it */
4565         target = calloc(1,sizeof(struct target));
4566         /* set target number */
4567         target->target_number = new_target_number();
4568
4569         /* allocate memory for each unique target type */
4570         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4571
4572         memcpy(target->type, target_types[x], sizeof(struct target_type));
4573
4574         /* will be set by "-endian" */
4575         target->endianness = TARGET_ENDIAN_UNKNOWN;
4576
4577         target->working_area        = 0x0;
4578         target->working_area_size   = 0x0;
4579         target->working_areas       = NULL;
4580         target->backup_working_area = 0;
4581
4582         target->state               = TARGET_UNKNOWN;
4583         target->debug_reason        = DBG_REASON_UNDEFINED;
4584         target->reg_cache           = NULL;
4585         target->breakpoints         = NULL;
4586         target->watchpoints         = NULL;
4587         target->next                = NULL;
4588         target->arch_info           = NULL;
4589
4590         target->display             = 1;
4591
4592         target->halt_issued                     = false;
4593
4594         /* initialize trace information */
4595         target->trace_info = malloc(sizeof(struct trace));
4596         target->trace_info->num_trace_points         = 0;
4597         target->trace_info->trace_points_size        = 0;
4598         target->trace_info->trace_points             = NULL;
4599         target->trace_info->trace_history_size       = 0;
4600         target->trace_info->trace_history            = NULL;
4601         target->trace_info->trace_history_pos        = 0;
4602         target->trace_info->trace_history_overflowed = 0;
4603
4604         target->dbgmsg          = NULL;
4605         target->dbg_msg_enabled = 0;
4606
4607         target->endianness = TARGET_ENDIAN_UNKNOWN;
4608
4609         /* Do the rest as "configure" options */
4610         goi->isconfigure = 1;
4611         e = target_configure(goi, target);
4612
4613         if (target->tap == NULL)
4614         {
4615                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4616                 e = JIM_ERR;
4617         }
4618
4619         if (e != JIM_OK) {
4620                 free(target->type);
4621                 free(target);
4622                 return e;
4623         }
4624
4625         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4626                 /* default endian to little if not specified */
4627                 target->endianness = TARGET_LITTLE_ENDIAN;
4628         }
4629
4630         /* incase variant is not set */
4631         if (!target->variant)
4632                 target->variant = strdup("");
4633
4634         cp = Jim_GetString(new_cmd, NULL);
4635         target->cmd_name = strdup(cp);
4636
4637         /* create the target specific commands */
4638         if (target->type->commands) {
4639                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4640                 if (ERROR_OK != e)
4641                         LOG_ERROR("unable to register '%s' commands", cp);
4642         }
4643         if (target->type->target_create) {
4644                 (*(target->type->target_create))(target, goi->interp);
4645         }
4646
4647         /* append to end of list */
4648         {
4649                 struct target **tpp;
4650                 tpp = &(all_targets);
4651                 while (*tpp) {
4652                         tpp = &((*tpp)->next);
4653                 }
4654                 *tpp = target;
4655         }
4656
4657         /* now - create the new target name command */
4658         const const struct command_registration target_subcommands[] = {
4659                 {
4660                         .chain = target_instance_command_handlers,
4661                 },
4662                 {
4663                         .chain = target->type->commands,
4664                 },
4665                 COMMAND_REGISTRATION_DONE
4666         };
4667         const const struct command_registration target_commands[] = {
4668                 {
4669                         .name = cp,
4670                         .mode = COMMAND_ANY,
4671                         .help = "target command group",
4672                         .chain = target_subcommands,
4673                 },
4674                 COMMAND_REGISTRATION_DONE
4675         };
4676         e = register_commands(cmd_ctx, NULL, target_commands);
4677         if (ERROR_OK != e)
4678                 return JIM_ERR;
4679
4680         struct command *c = command_find_in_context(cmd_ctx, cp);
4681         assert(c);
4682         command_set_handler_data(c, target);
4683
4684         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4685 }
4686
4687 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4688 {
4689         if (argc != 1)
4690         {
4691                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4692                 return JIM_ERR;
4693         }
4694         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4695         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4696         return JIM_OK;
4697 }
4698
4699 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4700 {
4701         if (argc != 1)
4702         {
4703                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4704                 return JIM_ERR;
4705         }
4706         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4707         for (unsigned x = 0; NULL != target_types[x]; x++)
4708         {
4709                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4710                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4711         }
4712         return JIM_OK;
4713 }
4714
4715 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4716 {
4717         if (argc != 1)
4718         {
4719                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4720                 return JIM_ERR;
4721         }
4722         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4723         struct target *target = all_targets;
4724         while (target)
4725         {
4726                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4727                         Jim_NewStringObj(interp, target_name(target), -1));
4728                 target = target->next;
4729         }
4730         return JIM_OK;
4731 }
4732
4733 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4734 {
4735         Jim_GetOptInfo goi;
4736         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4737         if (goi.argc < 3)
4738         {
4739                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4740                         "<name> <target_type> [<target_options> ...]");
4741                 return JIM_ERR;
4742         }
4743         return target_create(&goi);
4744 }
4745
4746 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4747 {
4748         Jim_GetOptInfo goi;
4749         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4750
4751         /* It's OK to remove this mechanism sometime after August 2010 or so */
4752         LOG_WARNING("don't use numbers as target identifiers; use names");
4753         if (goi.argc != 1)
4754         {
4755                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4756                 return JIM_ERR;
4757         }
4758         jim_wide w;
4759         int e = Jim_GetOpt_Wide(&goi, &w);
4760         if (e != JIM_OK)
4761                 return JIM_ERR;
4762
4763         struct target *target;
4764         for (target = all_targets; NULL != target; target = target->next)
4765         {
4766                 if (target->target_number != w)
4767                         continue;
4768
4769                 Jim_SetResultString(goi.interp, target_name(target), -1);
4770                 return JIM_OK;
4771         }
4772         Jim_SetResult_sprintf(goi.interp,
4773                         "Target: number %d does not exist", (int)(w));
4774         return JIM_ERR;
4775 }
4776
4777 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4778 {
4779         if (argc != 1)
4780         {
4781                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4782                 return JIM_ERR;
4783         }
4784         unsigned count = 0;
4785         struct target *target = all_targets;
4786         while (NULL != target)
4787         {
4788                 target = target->next;
4789                 count++;
4790         }
4791         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4792         return JIM_OK;
4793 }
4794
4795 static const struct command_registration target_subcommand_handlers[] = {
4796         {
4797                 .name = "init",
4798                 .mode = COMMAND_CONFIG,
4799                 .handler = handle_target_init_command,
4800                 .help = "initialize targets",
4801         },
4802         {
4803                 .name = "create",
4804                 /* REVISIT this should be COMMAND_CONFIG ... */
4805                 .mode = COMMAND_ANY,
4806                 .jim_handler = jim_target_create,
4807                 .usage = "name type '-chain-position' name [options ...]",
4808                 .help = "Creates and selects a new target",
4809         },
4810         {
4811                 .name = "current",
4812                 .mode = COMMAND_ANY,
4813                 .jim_handler = jim_target_current,
4814                 .help = "Returns the currently selected target",
4815         },
4816         {
4817                 .name = "types",
4818                 .mode = COMMAND_ANY,
4819                 .jim_handler = jim_target_types,
4820                 .help = "Returns the available target types as "
4821                                 "a list of strings",
4822         },
4823         {
4824                 .name = "names",
4825                 .mode = COMMAND_ANY,
4826                 .jim_handler = jim_target_names,
4827                 .help = "Returns the names of all targets as a list of strings",
4828         },
4829         {
4830                 .name = "number",
4831                 .mode = COMMAND_ANY,
4832                 .jim_handler = jim_target_number,
4833                 .usage = "number",
4834                 .help = "Returns the name of the numbered target "
4835                         "(DEPRECATED)",
4836         },
4837         {
4838                 .name = "count",
4839                 .mode = COMMAND_ANY,
4840                 .jim_handler = jim_target_count,
4841                 .help = "Returns the number of targets as an integer "
4842                         "(DEPRECATED)",
4843         },
4844         COMMAND_REGISTRATION_DONE
4845 };
4846
4847 struct FastLoad
4848 {
4849         uint32_t address;
4850         uint8_t *data;
4851         int length;
4852
4853 };
4854
4855 static int fastload_num;
4856 static struct FastLoad *fastload;
4857
4858 static void free_fastload(void)
4859 {
4860         if (fastload != NULL)
4861         {
4862                 int i;
4863                 for (i = 0; i < fastload_num; i++)
4864                 {
4865                         if (fastload[i].data)
4866                                 free(fastload[i].data);
4867                 }
4868                 free(fastload);
4869                 fastload = NULL;
4870         }
4871 }
4872
4873
4874
4875
4876 COMMAND_HANDLER(handle_fast_load_image_command)
4877 {
4878         uint8_t *buffer;
4879         size_t buf_cnt;
4880         uint32_t image_size;
4881         uint32_t min_address = 0;
4882         uint32_t max_address = 0xffffffff;
4883         int i;
4884
4885         struct image image;
4886
4887         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4888                         &image, &min_address, &max_address);
4889         if (ERROR_OK != retval)
4890                 return retval;
4891
4892         struct duration bench;
4893         duration_start(&bench);
4894
4895         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4896         {
4897                 return ERROR_OK;
4898         }
4899
4900         image_size = 0x0;
4901         retval = ERROR_OK;
4902         fastload_num = image.num_sections;
4903         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4904         if (fastload == NULL)
4905         {
4906                 image_close(&image);
4907                 return ERROR_FAIL;
4908         }
4909         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4910         for (i = 0; i < image.num_sections; i++)
4911         {
4912                 buffer = malloc(image.sections[i].size);
4913                 if (buffer == NULL)
4914                 {
4915                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4916                                                   (int)(image.sections[i].size));
4917                         break;
4918                 }
4919
4920                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4921                 {
4922                         free(buffer);
4923                         break;
4924                 }
4925
4926                 uint32_t offset = 0;
4927                 uint32_t length = buf_cnt;
4928
4929
4930                 /* DANGER!!! beware of unsigned comparision here!!! */
4931
4932                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4933                                 (image.sections[i].base_address < max_address))
4934                 {
4935                         if (image.sections[i].base_address < min_address)
4936                         {
4937                                 /* clip addresses below */
4938                                 offset += min_address-image.sections[i].base_address;
4939                                 length -= offset;
4940                         }
4941
4942                         if (image.sections[i].base_address + buf_cnt > max_address)
4943                         {
4944                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4945                         }
4946
4947                         fastload[i].address = image.sections[i].base_address + offset;
4948                         fastload[i].data = malloc(length);
4949                         if (fastload[i].data == NULL)
4950                         {
4951                                 free(buffer);
4952                                 break;
4953                         }
4954                         memcpy(fastload[i].data, buffer + offset, length);
4955                         fastload[i].length = length;
4956
4957                         image_size += length;
4958                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4959                                                   (unsigned int)length,
4960                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4961                 }
4962
4963                 free(buffer);
4964         }
4965
4966         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4967         {
4968                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4969                                 "in %fs (%0.3f kb/s)", image_size, 
4970                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4971
4972                 command_print(CMD_CTX,
4973                                 "WARNING: image has not been loaded to target!"
4974                                 "You can issue a 'fast_load' to finish loading.");
4975         }
4976
4977         image_close(&image);
4978
4979         if (retval != ERROR_OK)
4980         {
4981                 free_fastload();
4982         }
4983
4984         return retval;
4985 }
4986
4987 COMMAND_HANDLER(handle_fast_load_command)
4988 {
4989         if (CMD_ARGC > 0)
4990                 return ERROR_COMMAND_SYNTAX_ERROR;
4991         if (fastload == NULL)
4992         {
4993                 LOG_ERROR("No image in memory");
4994                 return ERROR_FAIL;
4995         }
4996         int i;
4997         int ms = timeval_ms();
4998         int size = 0;
4999         int retval = ERROR_OK;
5000         for (i = 0; i < fastload_num;i++)
5001         {
5002                 struct target *target = get_current_target(CMD_CTX);
5003                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5004                                           (unsigned int)(fastload[i].address),
5005                                           (unsigned int)(fastload[i].length));
5006                 if (retval == ERROR_OK)
5007                 {
5008                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5009                 }
5010                 size += fastload[i].length;
5011         }
5012         int after = timeval_ms();
5013         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5014         return retval;
5015 }
5016
5017 static const struct command_registration target_command_handlers[] = {
5018         {
5019                 .name = "targets",
5020                 .handler = handle_targets_command,
5021                 .mode = COMMAND_ANY,
5022                 .help = "change current default target (one parameter) "
5023                         "or prints table of all targets (no parameters)",
5024                 .usage = "[target]",
5025         },
5026         {
5027                 .name = "target",
5028                 .mode = COMMAND_CONFIG,
5029                 .help = "configure target",
5030
5031                 .chain = target_subcommand_handlers,
5032         },
5033         COMMAND_REGISTRATION_DONE
5034 };
5035
5036 int target_register_commands(struct command_context *cmd_ctx)
5037 {
5038         return register_commands(cmd_ctx, NULL, target_command_handlers);
5039 }
5040
5041 static bool target_reset_nag = true;
5042
5043 bool get_target_reset_nag(void)
5044 {
5045         return target_reset_nag;
5046 }
5047
5048 COMMAND_HANDLER(handle_target_reset_nag)
5049 {
5050         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5051                         &target_reset_nag, "Nag after each reset about options to improve "
5052                         "performance");
5053 }
5054
5055 static const struct command_registration target_exec_command_handlers[] = {
5056         {
5057                 .name = "fast_load_image",
5058                 .handler = handle_fast_load_image_command,
5059                 .mode = COMMAND_ANY,
5060                 .help = "Load image into server memory for later use by "
5061                         "fast_load; primarily for profiling",
5062                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5063                         "[min_address [max_length]]",
5064         },
5065         {
5066                 .name = "fast_load",
5067                 .handler = handle_fast_load_command,
5068                 .mode = COMMAND_EXEC,
5069                 .help = "loads active fast load image to current target "
5070                         "- mainly for profiling purposes",
5071         },
5072         {
5073                 .name = "profile",
5074                 .handler = handle_profile_command,
5075                 .mode = COMMAND_EXEC,
5076                 .help = "profiling samples the CPU PC",
5077         },
5078         /** @todo don't register virt2phys() unless target supports it */
5079         {
5080                 .name = "virt2phys",
5081                 .handler = handle_virt2phys_command,
5082                 .mode = COMMAND_ANY,
5083                 .help = "translate a virtual address into a physical address",
5084                 .usage = "virtual_address",
5085         },
5086         {
5087                 .name = "reg",
5088                 .handler = handle_reg_command,
5089                 .mode = COMMAND_EXEC,
5090                 .help = "display or set a register; with no arguments, "
5091                         "displays all registers and their values",
5092                 .usage = "[(register_name|register_number) [value]]",
5093         },
5094         {
5095                 .name = "poll",
5096                 .handler = handle_poll_command,
5097                 .mode = COMMAND_EXEC,
5098                 .help = "poll target state; or reconfigure background polling",
5099                 .usage = "['on'|'off']",
5100         },
5101         {
5102                 .name = "wait_halt",
5103                 .handler = handle_wait_halt_command,
5104                 .mode = COMMAND_EXEC,
5105                 .help = "wait up to the specified number of milliseconds "
5106                         "(default 5) for a previously requested halt",
5107                 .usage = "[milliseconds]",
5108         },
5109         {
5110                 .name = "halt",
5111                 .handler = handle_halt_command,
5112                 .mode = COMMAND_EXEC,
5113                 .help = "request target to halt, then wait up to the specified"
5114                         "number of milliseconds (default 5) for it to complete",
5115                 .usage = "[milliseconds]",
5116         },
5117         {
5118                 .name = "resume",
5119                 .handler = handle_resume_command,
5120                 .mode = COMMAND_EXEC,
5121                 .help = "resume target execution from current PC or address",
5122                 .usage = "[address]",
5123         },
5124         {
5125                 .name = "reset",
5126                 .handler = handle_reset_command,
5127                 .mode = COMMAND_EXEC,
5128                 .usage = "[run|halt|init]",
5129                 .help = "Reset all targets into the specified mode."
5130                         "Default reset mode is run, if not given.",
5131         },
5132         {
5133                 .name = "soft_reset_halt",
5134                 .handler = handle_soft_reset_halt_command,
5135                 .mode = COMMAND_EXEC,
5136                 .help = "halt the target and do a soft reset",
5137         },
5138         {
5139                 .name = "step",
5140                 .handler = handle_step_command,
5141                 .mode = COMMAND_EXEC,
5142                 .help = "step one instruction from current PC or address",
5143                 .usage = "[address]",
5144         },
5145         {
5146                 .name = "mdw",
5147                 .handler = handle_md_command,
5148                 .mode = COMMAND_EXEC,
5149                 .help = "display memory words",
5150                 .usage = "['phys'] address [count]",
5151         },
5152         {
5153                 .name = "mdh",
5154                 .handler = handle_md_command,
5155                 .mode = COMMAND_EXEC,
5156                 .help = "display memory half-words",
5157                 .usage = "['phys'] address [count]",
5158         },
5159         {
5160                 .name = "mdb",
5161                 .handler = handle_md_command,
5162                 .mode = COMMAND_EXEC,
5163                 .help = "display memory bytes",
5164                 .usage = "['phys'] address [count]",
5165         },
5166         {
5167                 .name = "mww",
5168                 .handler = handle_mw_command,
5169                 .mode = COMMAND_EXEC,
5170                 .help = "write memory word",
5171                 .usage = "['phys'] address value [count]",
5172         },
5173         {
5174                 .name = "mwh",
5175                 .handler = handle_mw_command,
5176                 .mode = COMMAND_EXEC,
5177                 .help = "write memory half-word",
5178                 .usage = "['phys'] address value [count]",
5179         },
5180         {
5181                 .name = "mwb",
5182                 .handler = handle_mw_command,
5183                 .mode = COMMAND_EXEC,
5184                 .help = "write memory byte",
5185                 .usage = "['phys'] address value [count]",
5186         },
5187         {
5188                 .name = "bp",
5189                 .handler = handle_bp_command,
5190                 .mode = COMMAND_EXEC,
5191                 .help = "list or set hardware or software breakpoint",
5192                 .usage = "[address length ['hw']]",
5193         },
5194         {
5195                 .name = "rbp",
5196                 .handler = handle_rbp_command,
5197                 .mode = COMMAND_EXEC,
5198                 .help = "remove breakpoint",
5199                 .usage = "address",
5200         },
5201         {
5202                 .name = "wp",
5203                 .handler = handle_wp_command,
5204                 .mode = COMMAND_EXEC,
5205                 .help = "list (no params) or create watchpoints",
5206                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5207         },
5208         {
5209                 .name = "rwp",
5210                 .handler = handle_rwp_command,
5211                 .mode = COMMAND_EXEC,
5212                 .help = "remove watchpoint",
5213                 .usage = "address",
5214         },
5215         {
5216                 .name = "load_image",
5217                 .handler = handle_load_image_command,
5218                 .mode = COMMAND_EXEC,
5219                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5220                         "[min_address] [max_length]",
5221         },
5222         {
5223                 .name = "dump_image",
5224                 .handler = handle_dump_image_command,
5225                 .mode = COMMAND_EXEC,
5226                 .usage = "filename address size",
5227         },
5228         {
5229                 .name = "verify_image",
5230                 .handler = handle_verify_image_command,
5231                 .mode = COMMAND_EXEC,
5232                 .usage = "filename [offset [type]]",
5233         },
5234         {
5235                 .name = "test_image",
5236                 .handler = handle_test_image_command,
5237                 .mode = COMMAND_EXEC,
5238                 .usage = "filename [offset [type]]",
5239         },
5240         {
5241                 .name = "ocd_mem2array",
5242                 .mode = COMMAND_EXEC,
5243                 .jim_handler = jim_mem2array,
5244                 .help = "read 8/16/32 bit memory and return as a TCL array "
5245                         "for script processing",
5246                 .usage = "arrayname bitwidth address count",
5247         },
5248         {
5249                 .name = "ocd_array2mem",
5250                 .mode = COMMAND_EXEC,
5251                 .jim_handler = jim_array2mem,
5252                 .help = "convert a TCL array to memory locations "
5253                         "and write the 8/16/32 bit values",
5254                 .usage = "arrayname bitwidth address count",
5255         },
5256         {
5257                 .name = "reset_nag",
5258                 .handler = handle_target_reset_nag,
5259                 .mode = COMMAND_ANY,
5260                 .help = "Nag after each reset about options that could have been "
5261                                 "enabled to improve performance. ",
5262                 .usage = "['enable'|'disable']",
5263         },
5264         COMMAND_REGISTRATION_DONE
5265 };
5266 static int target_register_user_commands(struct command_context *cmd_ctx)
5267 {
5268         int retval = ERROR_OK;
5269         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5270                 return retval;
5271
5272         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5273                 return retval;
5274
5275
5276         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5277 }