TARGET: fix segfault in handle_dump_image_command()
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
39
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
47
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50                 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52                 int argc, Jim_Obj *const *argv);
53 static int target_register_user_commands(struct command_context *cmd_ctx);
54
55 /* targets */
56 extern struct target_type arm7tdmi_target;
57 extern struct target_type arm720t_target;
58 extern struct target_type arm9tdmi_target;
59 extern struct target_type arm920t_target;
60 extern struct target_type arm966e_target;
61 extern struct target_type arm926ejs_target;
62 extern struct target_type fa526_target;
63 extern struct target_type feroceon_target;
64 extern struct target_type dragonite_target;
65 extern struct target_type xscale_target;
66 extern struct target_type cortexm3_target;
67 extern struct target_type cortexa8_target;
68 extern struct target_type arm11_target;
69 extern struct target_type mips_m4k_target;
70 extern struct target_type avr_target;
71 extern struct target_type dsp563xx_target;
72 extern struct target_type testee_target;
73 extern struct target_type avr32_ap7k_target;
74
75 static struct target_type *target_types[] =
76 {
77         &arm7tdmi_target,
78         &arm9tdmi_target,
79         &arm920t_target,
80         &arm720t_target,
81         &arm966e_target,
82         &arm926ejs_target,
83         &fa526_target,
84         &feroceon_target,
85         &dragonite_target,
86         &xscale_target,
87         &cortexm3_target,
88         &cortexa8_target,
89         &arm11_target,
90         &mips_m4k_target,
91         &avr_target,
92         &dsp563xx_target,
93         &testee_target,
94         &avr32_ap7k_target,
95         NULL,
96 };
97
98 struct target *all_targets = NULL;
99 static struct target_event_callback *target_event_callbacks = NULL;
100 static struct target_timer_callback *target_timer_callbacks = NULL;
101 static const int polling_interval = 100;
102
103 static const Jim_Nvp nvp_assert[] = {
104         { .name = "assert", NVP_ASSERT },
105         { .name = "deassert", NVP_DEASSERT },
106         { .name = "T", NVP_ASSERT },
107         { .name = "F", NVP_DEASSERT },
108         { .name = "t", NVP_ASSERT },
109         { .name = "f", NVP_DEASSERT },
110         { .name = NULL, .value = -1 }
111 };
112
113 static const Jim_Nvp nvp_error_target[] = {
114         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
115         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
116         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
117         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
118         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
119         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
120         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
121         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
122         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
123         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
124         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
125         { .value = -1, .name = NULL }
126 };
127
128 static const char *target_strerror_safe(int err)
129 {
130         const Jim_Nvp *n;
131
132         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
133         if (n->name == NULL) {
134                 return "unknown";
135         } else {
136                 return n->name;
137         }
138 }
139
140 static const Jim_Nvp nvp_target_event[] = {
141         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
142         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
143
144         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
145         { .value = TARGET_EVENT_HALTED, .name = "halted" },
146         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
147         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
148         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
149
150         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
151         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
152
153         /* historical name */
154
155         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
156
157         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
158         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
159         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
160         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
161         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
162         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
163         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
164         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
165         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
166         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
167         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
168
169         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
170         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
171
172         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
173         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
174
175         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
176         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
177
178         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
179         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
180
181         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
182         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
183
184         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
185         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
186         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
187
188         { .name = NULL, .value = -1 }
189 };
190
191 static const Jim_Nvp nvp_target_state[] = {
192         { .name = "unknown", .value = TARGET_UNKNOWN },
193         { .name = "running", .value = TARGET_RUNNING },
194         { .name = "halted",  .value = TARGET_HALTED },
195         { .name = "reset",   .value = TARGET_RESET },
196         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
197         { .name = NULL, .value = -1 },
198 };
199
200 static const Jim_Nvp nvp_target_debug_reason [] = {
201         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
202         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
203         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
204         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
205         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
206         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
207         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
208         { .name = NULL, .value = -1 },
209 };
210
211 static const Jim_Nvp nvp_target_endian[] = {
212         { .name = "big",    .value = TARGET_BIG_ENDIAN },
213         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
214         { .name = "be",     .value = TARGET_BIG_ENDIAN },
215         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
216         { .name = NULL,     .value = -1 },
217 };
218
219 static const Jim_Nvp nvp_reset_modes[] = {
220         { .name = "unknown", .value = RESET_UNKNOWN },
221         { .name = "run"    , .value = RESET_RUN },
222         { .name = "halt"   , .value = RESET_HALT },
223         { .name = "init"   , .value = RESET_INIT },
224         { .name = NULL     , .value = -1 },
225 };
226
227 const char *debug_reason_name(struct target *t)
228 {
229         const char *cp;
230
231         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
232                         t->debug_reason)->name;
233         if (!cp) {
234                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
235                 cp = "(*BUG*unknown*BUG*)";
236         }
237         return cp;
238 }
239
240 const char *
241 target_state_name( struct target *t )
242 {
243         const char *cp;
244         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
245         if( !cp ){
246                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
247                 cp = "(*BUG*unknown*BUG*)";
248         }
249         return cp;
250 }
251
252 /* determine the number of the new target */
253 static int new_target_number(void)
254 {
255         struct target *t;
256         int x;
257
258         /* number is 0 based */
259         x = -1;
260         t = all_targets;
261         while (t) {
262                 if (x < t->target_number) {
263                         x = t->target_number;
264                 }
265                 t = t->next;
266         }
267         return x + 1;
268 }
269
270 /* read a uint32_t from a buffer in target memory endianness */
271 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
272 {
273         if (target->endianness == TARGET_LITTLE_ENDIAN)
274                 return le_to_h_u32(buffer);
275         else
276                 return be_to_h_u32(buffer);
277 }
278
279 /* read a uint16_t from a buffer in target memory endianness */
280 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
281 {
282         if (target->endianness == TARGET_LITTLE_ENDIAN)
283                 return le_to_h_u16(buffer);
284         else
285                 return be_to_h_u16(buffer);
286 }
287
288 /* read a uint8_t from a buffer in target memory endianness */
289 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
290 {
291         return *buffer & 0x0ff;
292 }
293
294 /* write a uint32_t to a buffer in target memory endianness */
295 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
296 {
297         if (target->endianness == TARGET_LITTLE_ENDIAN)
298                 h_u32_to_le(buffer, value);
299         else
300                 h_u32_to_be(buffer, value);
301 }
302
303 /* write a uint16_t to a buffer in target memory endianness */
304 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
305 {
306         if (target->endianness == TARGET_LITTLE_ENDIAN)
307                 h_u16_to_le(buffer, value);
308         else
309                 h_u16_to_be(buffer, value);
310 }
311
312 /* write a uint8_t to a buffer in target memory endianness */
313 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
314 {
315         *buffer = value;
316 }
317
318 /* return a pointer to a configured target; id is name or number */
319 struct target *get_target(const char *id)
320 {
321         struct target *target;
322
323         /* try as tcltarget name */
324         for (target = all_targets; target; target = target->next) {
325                 if (target->cmd_name == NULL)
326                         continue;
327                 if (strcmp(id, target->cmd_name) == 0)
328                         return target;
329         }
330
331         /* It's OK to remove this fallback sometime after August 2010 or so */
332
333         /* no match, try as number */
334         unsigned num;
335         if (parse_uint(id, &num) != ERROR_OK)
336                 return NULL;
337
338         for (target = all_targets; target; target = target->next) {
339                 if (target->target_number == (int)num) {
340                         LOG_WARNING("use '%s' as target identifier, not '%u'",
341                                         target->cmd_name, num);
342                         return target;
343                 }
344         }
345
346         return NULL;
347 }
348
349 /* returns a pointer to the n-th configured target */
350 static struct target *get_target_by_num(int num)
351 {
352         struct target *target = all_targets;
353
354         while (target) {
355                 if (target->target_number == num) {
356                         return target;
357                 }
358                 target = target->next;
359         }
360
361         return NULL;
362 }
363
364 struct target* get_current_target(struct command_context *cmd_ctx)
365 {
366         struct target *target = get_target_by_num(cmd_ctx->current_target);
367
368         if (target == NULL)
369         {
370                 LOG_ERROR("BUG: current_target out of bounds");
371                 exit(-1);
372         }
373
374         return target;
375 }
376
377 int target_poll(struct target *target)
378 {
379         int retval;
380
381         /* We can't poll until after examine */
382         if (!target_was_examined(target))
383         {
384                 /* Fail silently lest we pollute the log */
385                 return ERROR_FAIL;
386         }
387
388         retval = target->type->poll(target);
389         if (retval != ERROR_OK)
390                 return retval;
391
392         if (target->halt_issued)
393         {
394                 if (target->state == TARGET_HALTED)
395                 {
396                         target->halt_issued = false;
397                 } else
398                 {
399                         long long t = timeval_ms() - target->halt_issued_time;
400                         if (t>1000)
401                         {
402                                 target->halt_issued = false;
403                                 LOG_INFO("Halt timed out, wake up GDB.");
404                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
405                         }
406                 }
407         }
408
409         return ERROR_OK;
410 }
411
412 int target_halt(struct target *target)
413 {
414         int retval;
415         /* We can't poll until after examine */
416         if (!target_was_examined(target))
417         {
418                 LOG_ERROR("Target not examined yet");
419                 return ERROR_FAIL;
420         }
421
422         retval = target->type->halt(target);
423         if (retval != ERROR_OK)
424                 return retval;
425
426         target->halt_issued = true;
427         target->halt_issued_time = timeval_ms();
428
429         return ERROR_OK;
430 }
431
432 /**
433  * Make the target (re)start executing using its saved execution
434  * context (possibly with some modifications).
435  *
436  * @param target Which target should start executing.
437  * @param current True to use the target's saved program counter instead
438  *      of the address parameter
439  * @param address Optionally used as the program counter.
440  * @param handle_breakpoints True iff breakpoints at the resumption PC
441  *      should be skipped.  (For example, maybe execution was stopped by
442  *      such a breakpoint, in which case it would be counterprodutive to
443  *      let it re-trigger.
444  * @param debug_execution False if all working areas allocated by OpenOCD
445  *      should be released and/or restored to their original contents.
446  *      (This would for example be true to run some downloaded "helper"
447  *      algorithm code, which resides in one such working buffer and uses
448  *      another for data storage.)
449  *
450  * @todo Resolve the ambiguity about what the "debug_execution" flag
451  * signifies.  For example, Target implementations don't agree on how
452  * it relates to invalidation of the register cache, or to whether
453  * breakpoints and watchpoints should be enabled.  (It would seem wrong
454  * to enable breakpoints when running downloaded "helper" algorithms
455  * (debug_execution true), since the breakpoints would be set to match
456  * target firmware being debugged, not the helper algorithm.... and
457  * enabling them could cause such helpers to malfunction (for example,
458  * by overwriting data with a breakpoint instruction.  On the other
459  * hand the infrastructure for running such helpers might use this
460  * procedure but rely on hardware breakpoint to detect termination.)
461  */
462 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
463 {
464         int retval;
465
466         /* We can't poll until after examine */
467         if (!target_was_examined(target))
468         {
469                 LOG_ERROR("Target not examined yet");
470                 return ERROR_FAIL;
471         }
472
473         /* note that resume *must* be asynchronous. The CPU can halt before
474          * we poll. The CPU can even halt at the current PC as a result of
475          * a software breakpoint being inserted by (a bug?) the application.
476          */
477         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
478                 return retval;
479
480         return retval;
481 }
482
483 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
484 {
485         char buf[100];
486         int retval;
487         Jim_Nvp *n;
488         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
489         if (n->name == NULL) {
490                 LOG_ERROR("invalid reset mode");
491                 return ERROR_FAIL;
492         }
493
494         /* disable polling during reset to make reset event scripts
495          * more predictable, i.e. dr/irscan & pathmove in events will
496          * not have JTAG operations injected into the middle of a sequence.
497          */
498         bool save_poll = jtag_poll_get_enabled();
499
500         jtag_poll_set_enabled(false);
501
502         sprintf(buf, "ocd_process_reset %s", n->name);
503         retval = Jim_Eval(cmd_ctx->interp, buf);
504
505         jtag_poll_set_enabled(save_poll);
506
507         if (retval != JIM_OK) {
508                 Jim_PrintErrorMessage(cmd_ctx->interp);
509                 return ERROR_FAIL;
510         }
511
512         /* We want any events to be processed before the prompt */
513         retval = target_call_timer_callbacks_now();
514
515         struct target *target;
516         for (target = all_targets; target; target = target->next) {
517                 target->type->check_reset(target);
518         }
519
520         return retval;
521 }
522
523 static int identity_virt2phys(struct target *target,
524                 uint32_t virtual, uint32_t *physical)
525 {
526         *physical = virtual;
527         return ERROR_OK;
528 }
529
530 static int no_mmu(struct target *target, int *enabled)
531 {
532         *enabled = 0;
533         return ERROR_OK;
534 }
535
536 static int default_examine(struct target *target)
537 {
538         target_set_examined(target);
539         return ERROR_OK;
540 }
541
542 /* no check by default */
543 static int default_check_reset(struct target *target)
544 {
545         return ERROR_OK;
546 }
547
548 int target_examine_one(struct target *target)
549 {
550         return target->type->examine(target);
551 }
552
553 static int jtag_enable_callback(enum jtag_event event, void *priv)
554 {
555         struct target *target = priv;
556
557         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
558                 return ERROR_OK;
559
560         jtag_unregister_event_callback(jtag_enable_callback, target);
561         return target_examine_one(target);
562 }
563
564
565 /* Targets that correctly implement init + examine, i.e.
566  * no communication with target during init:
567  *
568  * XScale
569  */
570 int target_examine(void)
571 {
572         int retval = ERROR_OK;
573         struct target *target;
574
575         for (target = all_targets; target; target = target->next)
576         {
577                 /* defer examination, but don't skip it */
578                 if (!target->tap->enabled) {
579                         jtag_register_event_callback(jtag_enable_callback,
580                                         target);
581                         continue;
582                 }
583                 if ((retval = target_examine_one(target)) != ERROR_OK)
584                         return retval;
585         }
586         return retval;
587 }
588 const char *target_type_name(struct target *target)
589 {
590         return target->type->name;
591 }
592
593 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
594 {
595         if (!target_was_examined(target))
596         {
597                 LOG_ERROR("Target not examined yet");
598                 return ERROR_FAIL;
599         }
600         return target->type->write_memory_imp(target, address, size, count, buffer);
601 }
602
603 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
604 {
605         if (!target_was_examined(target))
606         {
607                 LOG_ERROR("Target not examined yet");
608                 return ERROR_FAIL;
609         }
610         return target->type->read_memory_imp(target, address, size, count, buffer);
611 }
612
613 static int target_soft_reset_halt_imp(struct target *target)
614 {
615         if (!target_was_examined(target))
616         {
617                 LOG_ERROR("Target not examined yet");
618                 return ERROR_FAIL;
619         }
620         if (!target->type->soft_reset_halt_imp) {
621                 LOG_ERROR("Target %s does not support soft_reset_halt",
622                                 target_name(target));
623                 return ERROR_FAIL;
624         }
625         return target->type->soft_reset_halt_imp(target);
626 }
627
628 /**
629  * Downloads a target-specific native code algorithm to the target,
630  * and executes it.  * Note that some targets may need to set up, enable,
631  * and tear down a breakpoint (hard or * soft) to detect algorithm
632  * termination, while others may support  lower overhead schemes where
633  * soft breakpoints embedded in the algorithm automatically terminate the
634  * algorithm.
635  *
636  * @param target used to run the algorithm
637  * @param arch_info target-specific description of the algorithm.
638  */
639 int target_run_algorithm(struct target *target,
640                 int num_mem_params, struct mem_param *mem_params,
641                 int num_reg_params, struct reg_param *reg_param,
642                 uint32_t entry_point, uint32_t exit_point,
643                 int timeout_ms, void *arch_info)
644 {
645         int retval = ERROR_FAIL;
646
647         if (!target_was_examined(target))
648         {
649                 LOG_ERROR("Target not examined yet");
650                 goto done;
651         }
652         if (!target->type->run_algorithm) {
653                 LOG_ERROR("Target type '%s' does not support %s",
654                                 target_type_name(target), __func__);
655                 goto done;
656         }
657
658         target->running_alg = true;
659         retval = target->type->run_algorithm(target,
660                         num_mem_params, mem_params,
661                         num_reg_params, reg_param,
662                         entry_point, exit_point, timeout_ms, arch_info);
663         target->running_alg = false;
664
665 done:
666         return retval;
667 }
668
669
670 int target_read_memory(struct target *target,
671                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
672 {
673         return target->type->read_memory(target, address, size, count, buffer);
674 }
675
676 static int target_read_phys_memory(struct target *target,
677                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
678 {
679         return target->type->read_phys_memory(target, address, size, count, buffer);
680 }
681
682 int target_write_memory(struct target *target,
683                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
684 {
685         return target->type->write_memory(target, address, size, count, buffer);
686 }
687
688 static int target_write_phys_memory(struct target *target,
689                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
690 {
691         return target->type->write_phys_memory(target, address, size, count, buffer);
692 }
693
694 int target_bulk_write_memory(struct target *target,
695                 uint32_t address, uint32_t count, uint8_t *buffer)
696 {
697         return target->type->bulk_write_memory(target, address, count, buffer);
698 }
699
700 int target_add_breakpoint(struct target *target,
701                 struct breakpoint *breakpoint)
702 {
703         if (target->state != TARGET_HALTED) {
704                 LOG_WARNING("target %s is not halted", target->cmd_name);
705                 return ERROR_TARGET_NOT_HALTED;
706         }
707         return target->type->add_breakpoint(target, breakpoint);
708 }
709 int target_remove_breakpoint(struct target *target,
710                 struct breakpoint *breakpoint)
711 {
712         return target->type->remove_breakpoint(target, breakpoint);
713 }
714
715 int target_add_watchpoint(struct target *target,
716                 struct watchpoint *watchpoint)
717 {
718         if (target->state != TARGET_HALTED) {
719                 LOG_WARNING("target %s is not halted", target->cmd_name);
720                 return ERROR_TARGET_NOT_HALTED;
721         }
722         return target->type->add_watchpoint(target, watchpoint);
723 }
724 int target_remove_watchpoint(struct target *target,
725                 struct watchpoint *watchpoint)
726 {
727         return target->type->remove_watchpoint(target, watchpoint);
728 }
729
730 int target_get_gdb_reg_list(struct target *target,
731                 struct reg **reg_list[], int *reg_list_size)
732 {
733         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
734 }
735 int target_step(struct target *target,
736                 int current, uint32_t address, int handle_breakpoints)
737 {
738         return target->type->step(target, current, address, handle_breakpoints);
739 }
740
741
742 /**
743  * Reset the @c examined flag for the given target.
744  * Pure paranoia -- targets are zeroed on allocation.
745  */
746 static void target_reset_examined(struct target *target)
747 {
748         target->examined = false;
749 }
750
751 static int
752 err_read_phys_memory(struct target *target, uint32_t address,
753                 uint32_t size, uint32_t count, uint8_t *buffer)
754 {
755         LOG_ERROR("Not implemented: %s", __func__);
756         return ERROR_FAIL;
757 }
758
759 static int
760 err_write_phys_memory(struct target *target, uint32_t address,
761                 uint32_t size, uint32_t count, uint8_t *buffer)
762 {
763         LOG_ERROR("Not implemented: %s", __func__);
764         return ERROR_FAIL;
765 }
766
767 static int handle_target(void *priv);
768
769 static int target_init_one(struct command_context *cmd_ctx,
770                 struct target *target)
771 {
772         target_reset_examined(target);
773
774         struct target_type *type = target->type;
775         if (type->examine == NULL)
776                 type->examine = default_examine;
777
778         if (type->check_reset== NULL)
779                 type->check_reset = default_check_reset;
780
781         int retval = type->init_target(cmd_ctx, target);
782         if (ERROR_OK != retval)
783         {
784                 LOG_ERROR("target '%s' init failed", target_name(target));
785                 return retval;
786         }
787
788         /**
789          * @todo get rid of those *memory_imp() methods, now that all
790          * callers are using target_*_memory() accessors ... and make
791          * sure the "physical" paths handle the same issues.
792          */
793         /* a non-invasive way(in terms of patches) to add some code that
794          * runs before the type->write/read_memory implementation
795          */
796         type->write_memory_imp = target->type->write_memory;
797         type->write_memory = target_write_memory_imp;
798
799         type->read_memory_imp = target->type->read_memory;
800         type->read_memory = target_read_memory_imp;
801
802         type->soft_reset_halt_imp = target->type->soft_reset_halt;
803         type->soft_reset_halt = target_soft_reset_halt_imp;
804
805         /* Sanity-check MMU support ... stub in what we must, to help
806          * implement it in stages, but warn if we need to do so.
807          */
808         if (type->mmu)
809         {
810                 if (type->write_phys_memory == NULL)
811                 {
812                         LOG_ERROR("type '%s' is missing write_phys_memory",
813                                         type->name);
814                         type->write_phys_memory = err_write_phys_memory;
815                 }
816                 if (type->read_phys_memory == NULL)
817                 {
818                         LOG_ERROR("type '%s' is missing read_phys_memory",
819                                         type->name);
820                         type->read_phys_memory = err_read_phys_memory;
821                 }
822                 if (type->virt2phys == NULL)
823                 {
824                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
825                         type->virt2phys = identity_virt2phys;
826                 }
827         }
828         else
829         {
830                 /* Make sure no-MMU targets all behave the same:  make no
831                  * distinction between physical and virtual addresses, and
832                  * ensure that virt2phys() is always an identity mapping.
833                  */
834                 if (type->write_phys_memory || type->read_phys_memory
835                                 || type->virt2phys)
836                 {
837                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
838                 }
839
840                 type->mmu = no_mmu;
841                 type->write_phys_memory = type->write_memory;
842                 type->read_phys_memory = type->read_memory;
843                 type->virt2phys = identity_virt2phys;
844         }
845         return ERROR_OK;
846 }
847
848 static int target_init(struct command_context *cmd_ctx)
849 {
850         struct target *target;
851         int retval;
852
853         for (target = all_targets; target; target = target->next)
854         {
855                 retval = target_init_one(cmd_ctx, target);
856                 if (ERROR_OK != retval)
857                         return retval;
858         }
859
860         if (!all_targets)
861                 return ERROR_OK;
862
863         retval = target_register_user_commands(cmd_ctx);
864         if (ERROR_OK != retval)
865                 return retval;
866
867         retval = target_register_timer_callback(&handle_target,
868                         polling_interval, 1, cmd_ctx->interp);
869         if (ERROR_OK != retval)
870                 return retval;
871
872         return ERROR_OK;
873 }
874
875 COMMAND_HANDLER(handle_target_init_command)
876 {
877         if (CMD_ARGC != 0)
878                 return ERROR_COMMAND_SYNTAX_ERROR;
879
880         static bool target_initialized = false;
881         if (target_initialized)
882         {
883                 LOG_INFO("'target init' has already been called");
884                 return ERROR_OK;
885         }
886         target_initialized = true;
887
888         LOG_DEBUG("Initializing targets...");
889         return target_init(CMD_CTX);
890 }
891
892 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
893 {
894         struct target_event_callback **callbacks_p = &target_event_callbacks;
895
896         if (callback == NULL)
897         {
898                 return ERROR_INVALID_ARGUMENTS;
899         }
900
901         if (*callbacks_p)
902         {
903                 while ((*callbacks_p)->next)
904                         callbacks_p = &((*callbacks_p)->next);
905                 callbacks_p = &((*callbacks_p)->next);
906         }
907
908         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
909         (*callbacks_p)->callback = callback;
910         (*callbacks_p)->priv = priv;
911         (*callbacks_p)->next = NULL;
912
913         return ERROR_OK;
914 }
915
916 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
917 {
918         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
919         struct timeval now;
920
921         if (callback == NULL)
922         {
923                 return ERROR_INVALID_ARGUMENTS;
924         }
925
926         if (*callbacks_p)
927         {
928                 while ((*callbacks_p)->next)
929                         callbacks_p = &((*callbacks_p)->next);
930                 callbacks_p = &((*callbacks_p)->next);
931         }
932
933         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
934         (*callbacks_p)->callback = callback;
935         (*callbacks_p)->periodic = periodic;
936         (*callbacks_p)->time_ms = time_ms;
937
938         gettimeofday(&now, NULL);
939         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
940         time_ms -= (time_ms % 1000);
941         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
942         if ((*callbacks_p)->when.tv_usec > 1000000)
943         {
944                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
945                 (*callbacks_p)->when.tv_sec += 1;
946         }
947
948         (*callbacks_p)->priv = priv;
949         (*callbacks_p)->next = NULL;
950
951         return ERROR_OK;
952 }
953
954 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
955 {
956         struct target_event_callback **p = &target_event_callbacks;
957         struct target_event_callback *c = target_event_callbacks;
958
959         if (callback == NULL)
960         {
961                 return ERROR_INVALID_ARGUMENTS;
962         }
963
964         while (c)
965         {
966                 struct target_event_callback *next = c->next;
967                 if ((c->callback == callback) && (c->priv == priv))
968                 {
969                         *p = next;
970                         free(c);
971                         return ERROR_OK;
972                 }
973                 else
974                         p = &(c->next);
975                 c = next;
976         }
977
978         return ERROR_OK;
979 }
980
981 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
982 {
983         struct target_timer_callback **p = &target_timer_callbacks;
984         struct target_timer_callback *c = target_timer_callbacks;
985
986         if (callback == NULL)
987         {
988                 return ERROR_INVALID_ARGUMENTS;
989         }
990
991         while (c)
992         {
993                 struct target_timer_callback *next = c->next;
994                 if ((c->callback == callback) && (c->priv == priv))
995                 {
996                         *p = next;
997                         free(c);
998                         return ERROR_OK;
999                 }
1000                 else
1001                         p = &(c->next);
1002                 c = next;
1003         }
1004
1005         return ERROR_OK;
1006 }
1007
1008 int target_call_event_callbacks(struct target *target, enum target_event event)
1009 {
1010         struct target_event_callback *callback = target_event_callbacks;
1011         struct target_event_callback *next_callback;
1012
1013         if (event == TARGET_EVENT_HALTED)
1014         {
1015                 /* execute early halted first */
1016                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1017         }
1018
1019         LOG_DEBUG("target event %i (%s)",
1020                           event,
1021                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1022
1023         target_handle_event(target, event);
1024
1025         while (callback)
1026         {
1027                 next_callback = callback->next;
1028                 callback->callback(target, event, callback->priv);
1029                 callback = next_callback;
1030         }
1031
1032         return ERROR_OK;
1033 }
1034
1035 static int target_timer_callback_periodic_restart(
1036                 struct target_timer_callback *cb, struct timeval *now)
1037 {
1038         int time_ms = cb->time_ms;
1039         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1040         time_ms -= (time_ms % 1000);
1041         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1042         if (cb->when.tv_usec > 1000000)
1043         {
1044                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1045                 cb->when.tv_sec += 1;
1046         }
1047         return ERROR_OK;
1048 }
1049
1050 static int target_call_timer_callback(struct target_timer_callback *cb,
1051                 struct timeval *now)
1052 {
1053         cb->callback(cb->priv);
1054
1055         if (cb->periodic)
1056                 return target_timer_callback_periodic_restart(cb, now);
1057
1058         return target_unregister_timer_callback(cb->callback, cb->priv);
1059 }
1060
1061 static int target_call_timer_callbacks_check_time(int checktime)
1062 {
1063         keep_alive();
1064
1065         struct timeval now;
1066         gettimeofday(&now, NULL);
1067
1068         struct target_timer_callback *callback = target_timer_callbacks;
1069         while (callback)
1070         {
1071                 // cleaning up may unregister and free this callback
1072                 struct target_timer_callback *next_callback = callback->next;
1073
1074                 bool call_it = callback->callback &&
1075                         ((!checktime && callback->periodic) ||
1076                           now.tv_sec > callback->when.tv_sec ||
1077                          (now.tv_sec == callback->when.tv_sec &&
1078                           now.tv_usec >= callback->when.tv_usec));
1079
1080                 if (call_it)
1081                 {
1082                         int retval = target_call_timer_callback(callback, &now);
1083                         if (retval != ERROR_OK)
1084                                 return retval;
1085                 }
1086
1087                 callback = next_callback;
1088         }
1089
1090         return ERROR_OK;
1091 }
1092
1093 int target_call_timer_callbacks(void)
1094 {
1095         return target_call_timer_callbacks_check_time(1);
1096 }
1097
1098 /* invoke periodic callbacks immediately */
1099 int target_call_timer_callbacks_now(void)
1100 {
1101         return target_call_timer_callbacks_check_time(0);
1102 }
1103
1104 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1105 {
1106         struct working_area *c = target->working_areas;
1107         struct working_area *new_wa = NULL;
1108
1109         /* Reevaluate working area address based on MMU state*/
1110         if (target->working_areas == NULL)
1111         {
1112                 int retval;
1113                 int enabled;
1114
1115                 retval = target->type->mmu(target, &enabled);
1116                 if (retval != ERROR_OK)
1117                 {
1118                         return retval;
1119                 }
1120
1121                 if (!enabled) {
1122                         if (target->working_area_phys_spec) {
1123                                 LOG_DEBUG("MMU disabled, using physical "
1124                                         "address for working memory 0x%08x",
1125                                         (unsigned)target->working_area_phys);
1126                                 target->working_area = target->working_area_phys;
1127                         } else {
1128                                 LOG_ERROR("No working memory available. "
1129                                         "Specify -work-area-phys to target.");
1130                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1131                         }
1132                 } else {
1133                         if (target->working_area_virt_spec) {
1134                                 LOG_DEBUG("MMU enabled, using virtual "
1135                                         "address for working memory 0x%08x",
1136                                         (unsigned)target->working_area_virt);
1137                                 target->working_area = target->working_area_virt;
1138                         } else {
1139                                 LOG_ERROR("No working memory available. "
1140                                         "Specify -work-area-virt to target.");
1141                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1142                         }
1143                 }
1144         }
1145
1146         /* only allocate multiples of 4 byte */
1147         if (size % 4)
1148         {
1149                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1150                 size = (size + 3) & (~3);
1151         }
1152
1153         /* see if there's already a matching working area */
1154         while (c)
1155         {
1156                 if ((c->free) && (c->size == size))
1157                 {
1158                         new_wa = c;
1159                         break;
1160                 }
1161                 c = c->next;
1162         }
1163
1164         /* if not, allocate a new one */
1165         if (!new_wa)
1166         {
1167                 struct working_area **p = &target->working_areas;
1168                 uint32_t first_free = target->working_area;
1169                 uint32_t free_size = target->working_area_size;
1170
1171                 c = target->working_areas;
1172                 while (c)
1173                 {
1174                         first_free += c->size;
1175                         free_size -= c->size;
1176                         p = &c->next;
1177                         c = c->next;
1178                 }
1179
1180                 if (free_size < size)
1181                 {
1182                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1183                 }
1184
1185                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1186
1187                 new_wa = malloc(sizeof(struct working_area));
1188                 new_wa->next = NULL;
1189                 new_wa->size = size;
1190                 new_wa->address = first_free;
1191
1192                 if (target->backup_working_area)
1193                 {
1194                         int retval;
1195                         new_wa->backup = malloc(new_wa->size);
1196                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1197                         {
1198                                 free(new_wa->backup);
1199                                 free(new_wa);
1200                                 return retval;
1201                         }
1202                 }
1203                 else
1204                 {
1205                         new_wa->backup = NULL;
1206                 }
1207
1208                 /* put new entry in list */
1209                 *p = new_wa;
1210         }
1211
1212         /* mark as used, and return the new (reused) area */
1213         new_wa->free = 0;
1214         *area = new_wa;
1215
1216         /* user pointer */
1217         new_wa->user = area;
1218
1219         return ERROR_OK;
1220 }
1221
1222 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1223 {
1224         int retval;
1225
1226         retval = target_alloc_working_area_try(target, size, area);
1227         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1228         {
1229                 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1230         }
1231         return retval;
1232
1233 }
1234
1235 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1236 {
1237         if (area->free)
1238                 return ERROR_OK;
1239
1240         if (restore && target->backup_working_area)
1241         {
1242                 int retval;
1243                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1244                         return retval;
1245         }
1246
1247         area->free = 1;
1248
1249         /* mark user pointer invalid */
1250         *area->user = NULL;
1251         area->user = NULL;
1252
1253         return ERROR_OK;
1254 }
1255
1256 int target_free_working_area(struct target *target, struct working_area *area)
1257 {
1258         return target_free_working_area_restore(target, area, 1);
1259 }
1260
1261 /* free resources and restore memory, if restoring memory fails,
1262  * free up resources anyway
1263  */
1264 static void target_free_all_working_areas_restore(struct target *target, int restore)
1265 {
1266         struct working_area *c = target->working_areas;
1267
1268         while (c)
1269         {
1270                 struct working_area *next = c->next;
1271                 target_free_working_area_restore(target, c, restore);
1272
1273                 if (c->backup)
1274                         free(c->backup);
1275
1276                 free(c);
1277
1278                 c = next;
1279         }
1280
1281         target->working_areas = NULL;
1282 }
1283
1284 void target_free_all_working_areas(struct target *target)
1285 {
1286         target_free_all_working_areas_restore(target, 1);
1287 }
1288
1289 int target_arch_state(struct target *target)
1290 {
1291         int retval;
1292         if (target == NULL)
1293         {
1294                 LOG_USER("No target has been configured");
1295                 return ERROR_OK;
1296         }
1297
1298         LOG_USER("target state: %s", target_state_name( target ));
1299
1300         if (target->state != TARGET_HALTED)
1301                 return ERROR_OK;
1302
1303         retval = target->type->arch_state(target);
1304         return retval;
1305 }
1306
1307 /* Single aligned words are guaranteed to use 16 or 32 bit access
1308  * mode respectively, otherwise data is handled as quickly as
1309  * possible
1310  */
1311 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1312 {
1313         int retval;
1314         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1315                   (int)size, (unsigned)address);
1316
1317         if (!target_was_examined(target))
1318         {
1319                 LOG_ERROR("Target not examined yet");
1320                 return ERROR_FAIL;
1321         }
1322
1323         if (size == 0) {
1324                 return ERROR_OK;
1325         }
1326
1327         if ((address + size - 1) < address)
1328         {
1329                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1330                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1331                                   (unsigned)address,
1332                                   (unsigned)size);
1333                 return ERROR_FAIL;
1334         }
1335
1336         if (((address % 2) == 0) && (size == 2))
1337         {
1338                 return target_write_memory(target, address, 2, 1, buffer);
1339         }
1340
1341         /* handle unaligned head bytes */
1342         if (address % 4)
1343         {
1344                 uint32_t unaligned = 4 - (address % 4);
1345
1346                 if (unaligned > size)
1347                         unaligned = size;
1348
1349                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1350                         return retval;
1351
1352                 buffer += unaligned;
1353                 address += unaligned;
1354                 size -= unaligned;
1355         }
1356
1357         /* handle aligned words */
1358         if (size >= 4)
1359         {
1360                 int aligned = size - (size % 4);
1361
1362                 /* use bulk writes above a certain limit. This may have to be changed */
1363                 if (aligned > 128)
1364                 {
1365                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1366                                 return retval;
1367                 }
1368                 else
1369                 {
1370                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1371                                 return retval;
1372                 }
1373
1374                 buffer += aligned;
1375                 address += aligned;
1376                 size -= aligned;
1377         }
1378
1379         /* handle tail writes of less than 4 bytes */
1380         if (size > 0)
1381         {
1382                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1383                         return retval;
1384         }
1385
1386         return ERROR_OK;
1387 }
1388
1389 /* Single aligned words are guaranteed to use 16 or 32 bit access
1390  * mode respectively, otherwise data is handled as quickly as
1391  * possible
1392  */
1393 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1394 {
1395         int retval;
1396         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1397                           (int)size, (unsigned)address);
1398
1399         if (!target_was_examined(target))
1400         {
1401                 LOG_ERROR("Target not examined yet");
1402                 return ERROR_FAIL;
1403         }
1404
1405         if (size == 0) {
1406                 return ERROR_OK;
1407         }
1408
1409         if ((address + size - 1) < address)
1410         {
1411                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1412                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1413                                   address,
1414                                   size);
1415                 return ERROR_FAIL;
1416         }
1417
1418         if (((address % 2) == 0) && (size == 2))
1419         {
1420                 return target_read_memory(target, address, 2, 1, buffer);
1421         }
1422
1423         /* handle unaligned head bytes */
1424         if (address % 4)
1425         {
1426                 uint32_t unaligned = 4 - (address % 4);
1427
1428                 if (unaligned > size)
1429                         unaligned = size;
1430
1431                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1432                         return retval;
1433
1434                 buffer += unaligned;
1435                 address += unaligned;
1436                 size -= unaligned;
1437         }
1438
1439         /* handle aligned words */
1440         if (size >= 4)
1441         {
1442                 int aligned = size - (size % 4);
1443
1444                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1445                         return retval;
1446
1447                 buffer += aligned;
1448                 address += aligned;
1449                 size -= aligned;
1450         }
1451
1452         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1453         if(size >=2)
1454         {
1455                 int aligned = size - (size%2);
1456                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1457                 if (retval != ERROR_OK)
1458                         return retval;
1459
1460                 buffer += aligned;
1461                 address += aligned;
1462                 size -= aligned;
1463         }
1464         /* handle tail writes of less than 4 bytes */
1465         if (size > 0)
1466         {
1467                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1468                         return retval;
1469         }
1470
1471         return ERROR_OK;
1472 }
1473
1474 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1475 {
1476         uint8_t *buffer;
1477         int retval;
1478         uint32_t i;
1479         uint32_t checksum = 0;
1480         if (!target_was_examined(target))
1481         {
1482                 LOG_ERROR("Target not examined yet");
1483                 return ERROR_FAIL;
1484         }
1485
1486         if ((retval = target->type->checksum_memory(target, address,
1487                 size, &checksum)) != ERROR_OK)
1488         {
1489                 buffer = malloc(size);
1490                 if (buffer == NULL)
1491                 {
1492                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1493                         return ERROR_INVALID_ARGUMENTS;
1494                 }
1495                 retval = target_read_buffer(target, address, size, buffer);
1496                 if (retval != ERROR_OK)
1497                 {
1498                         free(buffer);
1499                         return retval;
1500                 }
1501
1502                 /* convert to target endianess */
1503                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1504                 {
1505                         uint32_t target_data;
1506                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1507                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1508                 }
1509
1510                 retval = image_calculate_checksum(buffer, size, &checksum);
1511                 free(buffer);
1512         }
1513
1514         *crc = checksum;
1515
1516         return retval;
1517 }
1518
1519 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1520 {
1521         int retval;
1522         if (!target_was_examined(target))
1523         {
1524                 LOG_ERROR("Target not examined yet");
1525                 return ERROR_FAIL;
1526         }
1527
1528         if (target->type->blank_check_memory == 0)
1529                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1530
1531         retval = target->type->blank_check_memory(target, address, size, blank);
1532
1533         return retval;
1534 }
1535
1536 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1537 {
1538         uint8_t value_buf[4];
1539         if (!target_was_examined(target))
1540         {
1541                 LOG_ERROR("Target not examined yet");
1542                 return ERROR_FAIL;
1543         }
1544
1545         int retval = target_read_memory(target, address, 4, 1, value_buf);
1546
1547         if (retval == ERROR_OK)
1548         {
1549                 *value = target_buffer_get_u32(target, value_buf);
1550                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1551                                   address,
1552                                   *value);
1553         }
1554         else
1555         {
1556                 *value = 0x0;
1557                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1558                                   address);
1559         }
1560
1561         return retval;
1562 }
1563
1564 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1565 {
1566         uint8_t value_buf[2];
1567         if (!target_was_examined(target))
1568         {
1569                 LOG_ERROR("Target not examined yet");
1570                 return ERROR_FAIL;
1571         }
1572
1573         int retval = target_read_memory(target, address, 2, 1, value_buf);
1574
1575         if (retval == ERROR_OK)
1576         {
1577                 *value = target_buffer_get_u16(target, value_buf);
1578                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1579                                   address,
1580                                   *value);
1581         }
1582         else
1583         {
1584                 *value = 0x0;
1585                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1586                                   address);
1587         }
1588
1589         return retval;
1590 }
1591
1592 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1593 {
1594         int retval = target_read_memory(target, address, 1, 1, value);
1595         if (!target_was_examined(target))
1596         {
1597                 LOG_ERROR("Target not examined yet");
1598                 return ERROR_FAIL;
1599         }
1600
1601         if (retval == ERROR_OK)
1602         {
1603                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1604                                   address,
1605                                   *value);
1606         }
1607         else
1608         {
1609                 *value = 0x0;
1610                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1611                                   address);
1612         }
1613
1614         return retval;
1615 }
1616
1617 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1618 {
1619         int retval;
1620         uint8_t value_buf[4];
1621         if (!target_was_examined(target))
1622         {
1623                 LOG_ERROR("Target not examined yet");
1624                 return ERROR_FAIL;
1625         }
1626
1627         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1628                           address,
1629                           value);
1630
1631         target_buffer_set_u32(target, value_buf, value);
1632         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1633         {
1634                 LOG_DEBUG("failed: %i", retval);
1635         }
1636
1637         return retval;
1638 }
1639
1640 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1641 {
1642         int retval;
1643         uint8_t value_buf[2];
1644         if (!target_was_examined(target))
1645         {
1646                 LOG_ERROR("Target not examined yet");
1647                 return ERROR_FAIL;
1648         }
1649
1650         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1651                           address,
1652                           value);
1653
1654         target_buffer_set_u16(target, value_buf, value);
1655         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1656         {
1657                 LOG_DEBUG("failed: %i", retval);
1658         }
1659
1660         return retval;
1661 }
1662
1663 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1664 {
1665         int retval;
1666         if (!target_was_examined(target))
1667         {
1668                 LOG_ERROR("Target not examined yet");
1669                 return ERROR_FAIL;
1670         }
1671
1672         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1673                           address, value);
1674
1675         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1676         {
1677                 LOG_DEBUG("failed: %i", retval);
1678         }
1679
1680         return retval;
1681 }
1682
1683 COMMAND_HANDLER(handle_targets_command)
1684 {
1685         struct target *target = all_targets;
1686
1687         if (CMD_ARGC == 1)
1688         {
1689                 target = get_target(CMD_ARGV[0]);
1690                 if (target == NULL) {
1691                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1692                         goto DumpTargets;
1693                 }
1694                 if (!target->tap->enabled) {
1695                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1696                                         "can't be the current target\n",
1697                                         target->tap->dotted_name);
1698                         return ERROR_FAIL;
1699                 }
1700
1701                 CMD_CTX->current_target = target->target_number;
1702                 return ERROR_OK;
1703         }
1704 DumpTargets:
1705
1706         target = all_targets;
1707         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1708         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1709         while (target)
1710         {
1711                 const char *state;
1712                 char marker = ' ';
1713
1714                 if (target->tap->enabled)
1715                         state = target_state_name( target );
1716                 else
1717                         state = "tap-disabled";
1718
1719                 if (CMD_CTX->current_target == target->target_number)
1720                         marker = '*';
1721
1722                 /* keep columns lined up to match the headers above */
1723                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1724                                           target->target_number,
1725                                           marker,
1726                                           target_name(target),
1727                                           target_type_name(target),
1728                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1729                                                                 target->endianness)->name,
1730                                           target->tap->dotted_name,
1731                                           state);
1732                 target = target->next;
1733         }
1734
1735         return ERROR_OK;
1736 }
1737
1738 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1739
1740 static int powerDropout;
1741 static int srstAsserted;
1742
1743 static int runPowerRestore;
1744 static int runPowerDropout;
1745 static int runSrstAsserted;
1746 static int runSrstDeasserted;
1747
1748 static int sense_handler(void)
1749 {
1750         static int prevSrstAsserted = 0;
1751         static int prevPowerdropout = 0;
1752
1753         int retval;
1754         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1755                 return retval;
1756
1757         int powerRestored;
1758         powerRestored = prevPowerdropout && !powerDropout;
1759         if (powerRestored)
1760         {
1761                 runPowerRestore = 1;
1762         }
1763
1764         long long current = timeval_ms();
1765         static long long lastPower = 0;
1766         int waitMore = lastPower + 2000 > current;
1767         if (powerDropout && !waitMore)
1768         {
1769                 runPowerDropout = 1;
1770                 lastPower = current;
1771         }
1772
1773         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1774                 return retval;
1775
1776         int srstDeasserted;
1777         srstDeasserted = prevSrstAsserted && !srstAsserted;
1778
1779         static long long lastSrst = 0;
1780         waitMore = lastSrst + 2000 > current;
1781         if (srstDeasserted && !waitMore)
1782         {
1783                 runSrstDeasserted = 1;
1784                 lastSrst = current;
1785         }
1786
1787         if (!prevSrstAsserted && srstAsserted)
1788         {
1789                 runSrstAsserted = 1;
1790         }
1791
1792         prevSrstAsserted = srstAsserted;
1793         prevPowerdropout = powerDropout;
1794
1795         if (srstDeasserted || powerRestored)
1796         {
1797                 /* Other than logging the event we can't do anything here.
1798                  * Issuing a reset is a particularly bad idea as we might
1799                  * be inside a reset already.
1800                  */
1801         }
1802
1803         return ERROR_OK;
1804 }
1805
1806 static int backoff_times = 0;
1807 static int backoff_count = 0;
1808
1809 /* process target state changes */
1810 static int handle_target(void *priv)
1811 {
1812         Jim_Interp *interp = (Jim_Interp *)priv;
1813         int retval = ERROR_OK;
1814
1815         if (!is_jtag_poll_safe())
1816         {
1817                 /* polling is disabled currently */
1818                 return ERROR_OK;
1819         }
1820
1821         /* we do not want to recurse here... */
1822         static int recursive = 0;
1823         if (! recursive)
1824         {
1825                 recursive = 1;
1826                 sense_handler();
1827                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1828                  * We need to avoid an infinite loop/recursion here and we do that by
1829                  * clearing the flags after running these events.
1830                  */
1831                 int did_something = 0;
1832                 if (runSrstAsserted)
1833                 {
1834                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
1835                         Jim_Eval(interp, "srst_asserted");
1836                         did_something = 1;
1837                 }
1838                 if (runSrstDeasserted)
1839                 {
1840                         Jim_Eval(interp, "srst_deasserted");
1841                         did_something = 1;
1842                 }
1843                 if (runPowerDropout)
1844                 {
1845                         LOG_INFO("Power dropout detected, running power_dropout proc.");
1846                         Jim_Eval(interp, "power_dropout");
1847                         did_something = 1;
1848                 }
1849                 if (runPowerRestore)
1850                 {
1851                         Jim_Eval(interp, "power_restore");
1852                         did_something = 1;
1853                 }
1854
1855                 if (did_something)
1856                 {
1857                         /* clear detect flags */
1858                         sense_handler();
1859                 }
1860
1861                 /* clear action flags */
1862
1863                 runSrstAsserted = 0;
1864                 runSrstDeasserted = 0;
1865                 runPowerRestore = 0;
1866                 runPowerDropout = 0;
1867
1868                 recursive = 0;
1869         }
1870
1871         if (backoff_times > backoff_count)
1872         {
1873                 /* do not poll this time as we failed previously */
1874                 backoff_count++;
1875                 return ERROR_OK;
1876         }
1877         backoff_count = 0;
1878
1879         /* Poll targets for state changes unless that's globally disabled.
1880          * Skip targets that are currently disabled.
1881          */
1882         for (struct target *target = all_targets;
1883                         is_jtag_poll_safe() && target;
1884                         target = target->next)
1885         {
1886                 if (!target->tap->enabled)
1887                         continue;
1888
1889                 /* only poll target if we've got power and srst isn't asserted */
1890                 if (!powerDropout && !srstAsserted)
1891                 {
1892                         /* polling may fail silently until the target has been examined */
1893                         if ((retval = target_poll(target)) != ERROR_OK)
1894                         {
1895                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
1896                                 if (backoff_times * polling_interval < 5000)
1897                                 {
1898                                         backoff_times *= 2;
1899                                         backoff_times++;
1900                                 }
1901                                 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);
1902
1903                                 /* Tell GDB to halt the debugger. This allows the user to
1904                                  * run monitor commands to handle the situation.
1905                                  */
1906                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1907                                 return retval;
1908                         }
1909                         /* Since we succeeded, we reset backoff count */
1910                         if (backoff_times > 0)
1911                         {
1912                                 LOG_USER("Polling succeeded again");
1913                         }
1914                         backoff_times = 0;
1915                 }
1916         }
1917
1918         return retval;
1919 }
1920
1921 COMMAND_HANDLER(handle_reg_command)
1922 {
1923         struct target *target;
1924         struct reg *reg = NULL;
1925         unsigned count = 0;
1926         char *value;
1927
1928         LOG_DEBUG("-");
1929
1930         target = get_current_target(CMD_CTX);
1931
1932         /* list all available registers for the current target */
1933         if (CMD_ARGC == 0)
1934         {
1935                 struct reg_cache *cache = target->reg_cache;
1936
1937                 count = 0;
1938                 while (cache)
1939                 {
1940                         unsigned i;
1941
1942                         command_print(CMD_CTX, "===== %s", cache->name);
1943
1944                         for (i = 0, reg = cache->reg_list;
1945                                         i < cache->num_regs;
1946                                         i++, reg++, count++)
1947                         {
1948                                 /* only print cached values if they are valid */
1949                                 if (reg->valid) {
1950                                         value = buf_to_str(reg->value,
1951                                                         reg->size, 16);
1952                                         command_print(CMD_CTX,
1953                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1954                                                         count, reg->name,
1955                                                         reg->size, value,
1956                                                         reg->dirty
1957                                                                 ? " (dirty)"
1958                                                                 : "");
1959                                         free(value);
1960                                 } else {
1961                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1962                                                           count, reg->name,
1963                                                           reg->size) ;
1964                                 }
1965                         }
1966                         cache = cache->next;
1967                 }
1968
1969                 return ERROR_OK;
1970         }
1971
1972         /* access a single register by its ordinal number */
1973         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1974         {
1975                 unsigned num;
1976                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1977
1978                 struct reg_cache *cache = target->reg_cache;
1979                 count = 0;
1980                 while (cache)
1981                 {
1982                         unsigned i;
1983                         for (i = 0; i < cache->num_regs; i++)
1984                         {
1985                                 if (count++ == num)
1986                                 {
1987                                         reg = &cache->reg_list[i];
1988                                         break;
1989                                 }
1990                         }
1991                         if (reg)
1992                                 break;
1993                         cache = cache->next;
1994                 }
1995
1996                 if (!reg)
1997                 {
1998                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1999                         return ERROR_OK;
2000                 }
2001         } else /* access a single register by its name */
2002         {
2003                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2004
2005                 if (!reg)
2006                 {
2007                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2008                         return ERROR_OK;
2009                 }
2010         }
2011
2012         /* display a register */
2013         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2014         {
2015                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2016                         reg->valid = 0;
2017
2018                 if (reg->valid == 0)
2019                 {
2020                         reg->type->get(reg);
2021                 }
2022                 value = buf_to_str(reg->value, reg->size, 16);
2023                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2024                 free(value);
2025                 return ERROR_OK;
2026         }
2027
2028         /* set register value */
2029         if (CMD_ARGC == 2)
2030         {
2031                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2032                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2033
2034                 reg->type->set(reg, buf);
2035
2036                 value = buf_to_str(reg->value, reg->size, 16);
2037                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2038                 free(value);
2039
2040                 free(buf);
2041
2042                 return ERROR_OK;
2043         }
2044
2045         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2046
2047         return ERROR_OK;
2048 }
2049
2050 COMMAND_HANDLER(handle_poll_command)
2051 {
2052         int retval = ERROR_OK;
2053         struct target *target = get_current_target(CMD_CTX);
2054
2055         if (CMD_ARGC == 0)
2056         {
2057                 command_print(CMD_CTX, "background polling: %s",
2058                                 jtag_poll_get_enabled() ? "on" : "off");
2059                 command_print(CMD_CTX, "TAP: %s (%s)",
2060                                 target->tap->dotted_name,
2061                                 target->tap->enabled ? "enabled" : "disabled");
2062                 if (!target->tap->enabled)
2063                         return ERROR_OK;
2064                 if ((retval = target_poll(target)) != ERROR_OK)
2065                         return retval;
2066                 if ((retval = target_arch_state(target)) != ERROR_OK)
2067                         return retval;
2068         }
2069         else if (CMD_ARGC == 1)
2070         {
2071                 bool enable;
2072                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2073                 jtag_poll_set_enabled(enable);
2074         }
2075         else
2076         {
2077                 return ERROR_COMMAND_SYNTAX_ERROR;
2078         }
2079
2080         return retval;
2081 }
2082
2083 COMMAND_HANDLER(handle_wait_halt_command)
2084 {
2085         if (CMD_ARGC > 1)
2086                 return ERROR_COMMAND_SYNTAX_ERROR;
2087
2088         unsigned ms = 5000;
2089         if (1 == CMD_ARGC)
2090         {
2091                 int retval = parse_uint(CMD_ARGV[0], &ms);
2092                 if (ERROR_OK != retval)
2093                 {
2094                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2095                         return ERROR_COMMAND_SYNTAX_ERROR;
2096                 }
2097                 // convert seconds (given) to milliseconds (needed)
2098                 ms *= 1000;
2099         }
2100
2101         struct target *target = get_current_target(CMD_CTX);
2102         return target_wait_state(target, TARGET_HALTED, ms);
2103 }
2104
2105 /* wait for target state to change. The trick here is to have a low
2106  * latency for short waits and not to suck up all the CPU time
2107  * on longer waits.
2108  *
2109  * After 500ms, keep_alive() is invoked
2110  */
2111 int target_wait_state(struct target *target, enum target_state state, int ms)
2112 {
2113         int retval;
2114         long long then = 0, cur;
2115         int once = 1;
2116
2117         for (;;)
2118         {
2119                 if ((retval = target_poll(target)) != ERROR_OK)
2120                         return retval;
2121                 if (target->state == state)
2122                 {
2123                         break;
2124                 }
2125                 cur = timeval_ms();
2126                 if (once)
2127                 {
2128                         once = 0;
2129                         then = timeval_ms();
2130                         LOG_DEBUG("waiting for target %s...",
2131                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2132                 }
2133
2134                 if (cur-then > 500)
2135                 {
2136                         keep_alive();
2137                 }
2138
2139                 if ((cur-then) > ms)
2140                 {
2141                         LOG_ERROR("timed out while waiting for target %s",
2142                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2143                         return ERROR_FAIL;
2144                 }
2145         }
2146
2147         return ERROR_OK;
2148 }
2149
2150 COMMAND_HANDLER(handle_halt_command)
2151 {
2152         LOG_DEBUG("-");
2153
2154         struct target *target = get_current_target(CMD_CTX);
2155         int retval = target_halt(target);
2156         if (ERROR_OK != retval)
2157                 return retval;
2158
2159         if (CMD_ARGC == 1)
2160         {
2161                 unsigned wait_local;
2162                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2163                 if (ERROR_OK != retval)
2164                         return ERROR_COMMAND_SYNTAX_ERROR;
2165                 if (!wait_local)
2166                         return ERROR_OK;
2167         }
2168
2169         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2170 }
2171
2172 COMMAND_HANDLER(handle_soft_reset_halt_command)
2173 {
2174         struct target *target = get_current_target(CMD_CTX);
2175
2176         LOG_USER("requesting target halt and executing a soft reset");
2177
2178         target->type->soft_reset_halt(target);
2179
2180         return ERROR_OK;
2181 }
2182
2183 COMMAND_HANDLER(handle_reset_command)
2184 {
2185         if (CMD_ARGC > 1)
2186                 return ERROR_COMMAND_SYNTAX_ERROR;
2187
2188         enum target_reset_mode reset_mode = RESET_RUN;
2189         if (CMD_ARGC == 1)
2190         {
2191                 const Jim_Nvp *n;
2192                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2193                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2194                         return ERROR_COMMAND_SYNTAX_ERROR;
2195                 }
2196                 reset_mode = n->value;
2197         }
2198
2199         /* reset *all* targets */
2200         return target_process_reset(CMD_CTX, reset_mode);
2201 }
2202
2203
2204 COMMAND_HANDLER(handle_resume_command)
2205 {
2206         int current = 1;
2207         if (CMD_ARGC > 1)
2208                 return ERROR_COMMAND_SYNTAX_ERROR;
2209
2210         struct target *target = get_current_target(CMD_CTX);
2211         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2212
2213         /* with no CMD_ARGV, resume from current pc, addr = 0,
2214          * with one arguments, addr = CMD_ARGV[0],
2215          * handle breakpoints, not debugging */
2216         uint32_t addr = 0;
2217         if (CMD_ARGC == 1)
2218         {
2219                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2220                 current = 0;
2221         }
2222
2223         return target_resume(target, current, addr, 1, 0);
2224 }
2225
2226 COMMAND_HANDLER(handle_step_command)
2227 {
2228         if (CMD_ARGC > 1)
2229                 return ERROR_COMMAND_SYNTAX_ERROR;
2230
2231         LOG_DEBUG("-");
2232
2233         /* with no CMD_ARGV, step from current pc, addr = 0,
2234          * with one argument addr = CMD_ARGV[0],
2235          * handle breakpoints, debugging */
2236         uint32_t addr = 0;
2237         int current_pc = 1;
2238         if (CMD_ARGC == 1)
2239         {
2240                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2241                 current_pc = 0;
2242         }
2243
2244         struct target *target = get_current_target(CMD_CTX);
2245
2246         return target->type->step(target, current_pc, addr, 1);
2247 }
2248
2249 static void handle_md_output(struct command_context *cmd_ctx,
2250                 struct target *target, uint32_t address, unsigned size,
2251                 unsigned count, const uint8_t *buffer)
2252 {
2253         const unsigned line_bytecnt = 32;
2254         unsigned line_modulo = line_bytecnt / size;
2255
2256         char output[line_bytecnt * 4 + 1];
2257         unsigned output_len = 0;
2258
2259         const char *value_fmt;
2260         switch (size) {
2261         case 4: value_fmt = "%8.8x "; break;
2262         case 2: value_fmt = "%4.4x "; break;
2263         case 1: value_fmt = "%2.2x "; break;
2264         default:
2265                 /* "can't happen", caller checked */
2266                 LOG_ERROR("invalid memory read size: %u", size);
2267                 return;
2268         }
2269
2270         for (unsigned i = 0; i < count; i++)
2271         {
2272                 if (i % line_modulo == 0)
2273                 {
2274                         output_len += snprintf(output + output_len,
2275                                         sizeof(output) - output_len,
2276                                         "0x%8.8x: ",
2277                                         (unsigned)(address + (i*size)));
2278                 }
2279
2280                 uint32_t value = 0;
2281                 const uint8_t *value_ptr = buffer + i * size;
2282                 switch (size) {
2283                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2284                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2285                 case 1: value = *value_ptr;
2286                 }
2287                 output_len += snprintf(output + output_len,
2288                                 sizeof(output) - output_len,
2289                                 value_fmt, value);
2290
2291                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2292                 {
2293                         command_print(cmd_ctx, "%s", output);
2294                         output_len = 0;
2295                 }
2296         }
2297 }
2298
2299 COMMAND_HANDLER(handle_md_command)
2300 {
2301         if (CMD_ARGC < 1)
2302                 return ERROR_COMMAND_SYNTAX_ERROR;
2303
2304         unsigned size = 0;
2305         switch (CMD_NAME[2]) {
2306         case 'w': size = 4; break;
2307         case 'h': size = 2; break;
2308         case 'b': size = 1; break;
2309         default: return ERROR_COMMAND_SYNTAX_ERROR;
2310         }
2311
2312         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2313         int (*fn)(struct target *target,
2314                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2315         if (physical)
2316         {
2317                 CMD_ARGC--;
2318                 CMD_ARGV++;
2319                 fn=target_read_phys_memory;
2320         } else
2321         {
2322                 fn=target_read_memory;
2323         }
2324         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2325         {
2326                 return ERROR_COMMAND_SYNTAX_ERROR;
2327         }
2328
2329         uint32_t address;
2330         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2331
2332         unsigned count = 1;
2333         if (CMD_ARGC == 2)
2334                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2335
2336         uint8_t *buffer = calloc(count, size);
2337
2338         struct target *target = get_current_target(CMD_CTX);
2339         int retval = fn(target, address, size, count, buffer);
2340         if (ERROR_OK == retval)
2341                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2342
2343         free(buffer);
2344
2345         return retval;
2346 }
2347
2348 typedef int (*target_write_fn)(struct target *target,
2349                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2350
2351 static int target_write_memory_fast(struct target *target,
2352                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2353 {
2354         return target_write_buffer(target, address, size * count, buffer);
2355 }
2356
2357 static int target_fill_mem(struct target *target,
2358                 uint32_t address,
2359                 target_write_fn fn,
2360                 unsigned data_size,
2361                 /* value */
2362                 uint32_t b,
2363                 /* count */
2364                 unsigned c)
2365 {
2366         /* We have to write in reasonably large chunks to be able
2367          * to fill large memory areas with any sane speed */
2368         const unsigned chunk_size = 16384;
2369         uint8_t *target_buf = malloc(chunk_size * data_size);
2370         if (target_buf == NULL)
2371         {
2372                 LOG_ERROR("Out of memory");
2373                 return ERROR_FAIL;
2374         }
2375
2376         for (unsigned i = 0; i < chunk_size; i ++)
2377         {
2378                 switch (data_size)
2379                 {
2380                 case 4:
2381                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2382                         break;
2383                 case 2:
2384                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2385                         break;
2386                 case 1:
2387                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2388                         break;
2389                 default:
2390                         exit(-1);
2391                 }
2392         }
2393
2394         int retval = ERROR_OK;
2395
2396         for (unsigned x = 0; x < c; x += chunk_size)
2397         {
2398                 unsigned current;
2399                 current = c - x;
2400                 if (current > chunk_size)
2401                 {
2402                         current = chunk_size;
2403                 }
2404                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2405                 if (retval != ERROR_OK)
2406                 {
2407                         break;
2408                 }
2409                 /* avoid GDB timeouts */
2410                 keep_alive();
2411         }
2412         free(target_buf);
2413
2414         return retval;
2415 }
2416
2417
2418 COMMAND_HANDLER(handle_mw_command)
2419 {
2420         if (CMD_ARGC < 2)
2421         {
2422                 return ERROR_COMMAND_SYNTAX_ERROR;
2423         }
2424         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2425         target_write_fn fn;
2426         if (physical)
2427         {
2428                 CMD_ARGC--;
2429                 CMD_ARGV++;
2430                 fn=target_write_phys_memory;
2431         } else
2432         {
2433                 fn = target_write_memory_fast;
2434         }
2435         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2436                 return ERROR_COMMAND_SYNTAX_ERROR;
2437
2438         uint32_t address;
2439         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2440
2441         uint32_t value;
2442         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2443
2444         unsigned count = 1;
2445         if (CMD_ARGC == 3)
2446                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2447
2448         struct target *target = get_current_target(CMD_CTX);
2449         unsigned wordsize;
2450         switch (CMD_NAME[2])
2451         {
2452                 case 'w':
2453                         wordsize = 4;
2454                         break;
2455                 case 'h':
2456                         wordsize = 2;
2457                         break;
2458                 case 'b':
2459                         wordsize = 1;
2460                         break;
2461                 default:
2462                         return ERROR_COMMAND_SYNTAX_ERROR;
2463         }
2464
2465         return target_fill_mem(target, address, fn, wordsize, value, count);
2466 }
2467
2468 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2469                 uint32_t *min_address, uint32_t *max_address)
2470 {
2471         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2472                 return ERROR_COMMAND_SYNTAX_ERROR;
2473
2474         /* a base address isn't always necessary,
2475          * default to 0x0 (i.e. don't relocate) */
2476         if (CMD_ARGC >= 2)
2477         {
2478                 uint32_t addr;
2479                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2480                 image->base_address = addr;
2481                 image->base_address_set = 1;
2482         }
2483         else
2484                 image->base_address_set = 0;
2485
2486         image->start_address_set = 0;
2487
2488         if (CMD_ARGC >= 4)
2489         {
2490                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2491         }
2492         if (CMD_ARGC == 5)
2493         {
2494                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2495                 // use size (given) to find max (required)
2496                 *max_address += *min_address;
2497         }
2498
2499         if (*min_address > *max_address)
2500                 return ERROR_COMMAND_SYNTAX_ERROR;
2501
2502         return ERROR_OK;
2503 }
2504
2505 COMMAND_HANDLER(handle_load_image_command)
2506 {
2507         uint8_t *buffer;
2508         size_t buf_cnt;
2509         uint32_t image_size;
2510         uint32_t min_address = 0;
2511         uint32_t max_address = 0xffffffff;
2512         int i;
2513         struct image image;
2514
2515         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2516                         &image, &min_address, &max_address);
2517         if (ERROR_OK != retval)
2518                 return retval;
2519
2520         struct target *target = get_current_target(CMD_CTX);
2521
2522         struct duration bench;
2523         duration_start(&bench);
2524
2525         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2526         {
2527                 return ERROR_OK;
2528         }
2529
2530         image_size = 0x0;
2531         retval = ERROR_OK;
2532         for (i = 0; i < image.num_sections; i++)
2533         {
2534                 buffer = malloc(image.sections[i].size);
2535                 if (buffer == NULL)
2536                 {
2537                         command_print(CMD_CTX,
2538                                                   "error allocating buffer for section (%d bytes)",
2539                                                   (int)(image.sections[i].size));
2540                         break;
2541                 }
2542
2543                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2544                 {
2545                         free(buffer);
2546                         break;
2547                 }
2548
2549                 uint32_t offset = 0;
2550                 uint32_t length = buf_cnt;
2551
2552                 /* DANGER!!! beware of unsigned comparision here!!! */
2553
2554                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2555                                 (image.sections[i].base_address < max_address))
2556                 {
2557                         if (image.sections[i].base_address < min_address)
2558                         {
2559                                 /* clip addresses below */
2560                                 offset += min_address-image.sections[i].base_address;
2561                                 length -= offset;
2562                         }
2563
2564                         if (image.sections[i].base_address + buf_cnt > max_address)
2565                         {
2566                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2567                         }
2568
2569                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2570                         {
2571                                 free(buffer);
2572                                 break;
2573                         }
2574                         image_size += length;
2575                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2576                                                   (unsigned int)length,
2577                                                   image.sections[i].base_address + offset);
2578                 }
2579
2580                 free(buffer);
2581         }
2582
2583         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2584         {
2585                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2586                                 "in %fs (%0.3f KiB/s)", image_size,
2587                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2588         }
2589
2590         image_close(&image);
2591
2592         return retval;
2593
2594 }
2595
2596 COMMAND_HANDLER(handle_dump_image_command)
2597 {
2598         struct fileio fileio;
2599
2600         uint8_t buffer[560];
2601         int retvaltemp;
2602
2603
2604         struct target *target = get_current_target(CMD_CTX);
2605
2606         if (CMD_ARGC != 3)
2607         {
2608                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2609                 return ERROR_OK;
2610         }
2611
2612         uint32_t address;
2613         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2614         uint32_t size;
2615         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2616
2617         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2618         {
2619                 return ERROR_OK;
2620         }
2621
2622         struct duration bench;
2623         duration_start(&bench);
2624
2625         int retval = ERROR_OK;
2626         while (size > 0)
2627         {
2628                 size_t size_written;
2629                 uint32_t this_run_size = (size > 560) ? 560 : size;
2630                 retval = target_read_buffer(target, address, this_run_size, buffer);
2631                 if (retval != ERROR_OK)
2632                 {
2633                         break;
2634                 }
2635
2636                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2637                 if (retval != ERROR_OK)
2638                 {
2639                         break;
2640                 }
2641
2642                 size -= this_run_size;
2643                 address += this_run_size;
2644         }
2645
2646         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2647         {
2648                 int filesize;
2649                 retval = fileio_size(&fileio, &filesize);
2650                 if (retval != ERROR_OK)
2651                         return retval;
2652                 command_print(CMD_CTX,
2653                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2654                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2655         }
2656
2657         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2658                 return retvaltemp;
2659
2660         return retval;
2661 }
2662
2663 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2664 {
2665         uint8_t *buffer;
2666         size_t buf_cnt;
2667         uint32_t image_size;
2668         int i;
2669         int retval;
2670         uint32_t checksum = 0;
2671         uint32_t mem_checksum = 0;
2672
2673         struct image image;
2674
2675         struct target *target = get_current_target(CMD_CTX);
2676
2677         if (CMD_ARGC < 1)
2678         {
2679                 return ERROR_COMMAND_SYNTAX_ERROR;
2680         }
2681
2682         if (!target)
2683         {
2684                 LOG_ERROR("no target selected");
2685                 return ERROR_FAIL;
2686         }
2687
2688         struct duration bench;
2689         duration_start(&bench);
2690
2691         if (CMD_ARGC >= 2)
2692         {
2693                 uint32_t addr;
2694                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2695                 image.base_address = addr;
2696                 image.base_address_set = 1;
2697         }
2698         else
2699         {
2700                 image.base_address_set = 0;
2701                 image.base_address = 0x0;
2702         }
2703
2704         image.start_address_set = 0;
2705
2706         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2707         {
2708                 return retval;
2709         }
2710
2711         image_size = 0x0;
2712         int diffs = 0;
2713         retval = ERROR_OK;
2714         for (i = 0; i < image.num_sections; i++)
2715         {
2716                 buffer = malloc(image.sections[i].size);
2717                 if (buffer == NULL)
2718                 {
2719                         command_print(CMD_CTX,
2720                                                   "error allocating buffer for section (%d bytes)",
2721                                                   (int)(image.sections[i].size));
2722                         break;
2723                 }
2724                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2725                 {
2726                         free(buffer);
2727                         break;
2728                 }
2729
2730                 if (verify)
2731                 {
2732                         /* calculate checksum of image */
2733                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2734                         if (retval != ERROR_OK)
2735                         {
2736                                 free(buffer);
2737                                 break;
2738                         }
2739
2740                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2741                         if (retval != ERROR_OK)
2742                         {
2743                                 free(buffer);
2744                                 break;
2745                         }
2746
2747                         if (checksum != mem_checksum)
2748                         {
2749                                 /* failed crc checksum, fall back to a binary compare */
2750                                 uint8_t *data;
2751
2752                                 if (diffs == 0)
2753                                 {
2754                                         LOG_ERROR("checksum mismatch - attempting binary compare");
2755                                 }
2756
2757                                 data = (uint8_t*)malloc(buf_cnt);
2758
2759                                 /* Can we use 32bit word accesses? */
2760                                 int size = 1;
2761                                 int count = buf_cnt;
2762                                 if ((count % 4) == 0)
2763                                 {
2764                                         size *= 4;
2765                                         count /= 4;
2766                                 }
2767                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2768                                 if (retval == ERROR_OK)
2769                                 {
2770                                         uint32_t t;
2771                                         for (t = 0; t < buf_cnt; t++)
2772                                         {
2773                                                 if (data[t] != buffer[t])
2774                                                 {
2775                                                         command_print(CMD_CTX,
2776                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2777                                                                                   diffs,
2778                                                                                   (unsigned)(t + image.sections[i].base_address),
2779                                                                                   data[t],
2780                                                                                   buffer[t]);
2781                                                         if (diffs++ >= 127)
2782                                                         {
2783                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2784                                                                 free(data);
2785                                                                 free(buffer);
2786                                                                 goto done;
2787                                                         }
2788                                                 }
2789                                                 keep_alive();
2790                                         }
2791                                 }
2792                                 free(data);
2793                         }
2794                 } else
2795                 {
2796                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2797                                                   image.sections[i].base_address,
2798                                                   buf_cnt);
2799                 }
2800
2801                 free(buffer);
2802                 image_size += buf_cnt;
2803         }
2804         if (diffs > 0)
2805         {
2806                 command_print(CMD_CTX, "No more differences found.");
2807         }
2808 done:
2809         if (diffs > 0)
2810         {
2811                 retval = ERROR_FAIL;
2812         }
2813         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2814         {
2815                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2816                                 "in %fs (%0.3f KiB/s)", image_size,
2817                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2818         }
2819
2820         image_close(&image);
2821
2822         return retval;
2823 }
2824
2825 COMMAND_HANDLER(handle_verify_image_command)
2826 {
2827         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2828 }
2829
2830 COMMAND_HANDLER(handle_test_image_command)
2831 {
2832         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2833 }
2834
2835 static int handle_bp_command_list(struct command_context *cmd_ctx)
2836 {
2837         struct target *target = get_current_target(cmd_ctx);
2838         struct breakpoint *breakpoint = target->breakpoints;
2839         while (breakpoint)
2840         {
2841                 if (breakpoint->type == BKPT_SOFT)
2842                 {
2843                         char* buf = buf_to_str(breakpoint->orig_instr,
2844                                         breakpoint->length, 16);
2845                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2846                                         breakpoint->address,
2847                                         breakpoint->length,
2848                                         breakpoint->set, buf);
2849                         free(buf);
2850                 }
2851                 else
2852                 {
2853                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2854                                                   breakpoint->address,
2855                                                   breakpoint->length, breakpoint->set);
2856                 }
2857
2858                 breakpoint = breakpoint->next;
2859         }
2860         return ERROR_OK;
2861 }
2862
2863 static int handle_bp_command_set(struct command_context *cmd_ctx,
2864                 uint32_t addr, uint32_t length, int hw)
2865 {
2866         struct target *target = get_current_target(cmd_ctx);
2867         int retval = breakpoint_add(target, addr, length, hw);
2868         if (ERROR_OK == retval)
2869                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2870         else
2871                 LOG_ERROR("Failure setting breakpoint");
2872         return retval;
2873 }
2874
2875 COMMAND_HANDLER(handle_bp_command)
2876 {
2877         if (CMD_ARGC == 0)
2878                 return handle_bp_command_list(CMD_CTX);
2879
2880         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2881         {
2882                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2883                 return ERROR_COMMAND_SYNTAX_ERROR;
2884         }
2885
2886         uint32_t addr;
2887         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2888         uint32_t length;
2889         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2890
2891         int hw = BKPT_SOFT;
2892         if (CMD_ARGC == 3)
2893         {
2894                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2895                         hw = BKPT_HARD;
2896                 else
2897                         return ERROR_COMMAND_SYNTAX_ERROR;
2898         }
2899
2900         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2901 }
2902
2903 COMMAND_HANDLER(handle_rbp_command)
2904 {
2905         if (CMD_ARGC != 1)
2906                 return ERROR_COMMAND_SYNTAX_ERROR;
2907
2908         uint32_t addr;
2909         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2910
2911         struct target *target = get_current_target(CMD_CTX);
2912         breakpoint_remove(target, addr);
2913
2914         return ERROR_OK;
2915 }
2916
2917 COMMAND_HANDLER(handle_wp_command)
2918 {
2919         struct target *target = get_current_target(CMD_CTX);
2920
2921         if (CMD_ARGC == 0)
2922         {
2923                 struct watchpoint *watchpoint = target->watchpoints;
2924
2925                 while (watchpoint)
2926                 {
2927                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2928                                         ", len: 0x%8.8" PRIx32
2929                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2930                                         ", mask: 0x%8.8" PRIx32,
2931                                         watchpoint->address,
2932                                         watchpoint->length,
2933                                         (int)watchpoint->rw,
2934                                         watchpoint->value,
2935                                         watchpoint->mask);
2936                         watchpoint = watchpoint->next;
2937                 }
2938                 return ERROR_OK;
2939         }
2940
2941         enum watchpoint_rw type = WPT_ACCESS;
2942         uint32_t addr = 0;
2943         uint32_t length = 0;
2944         uint32_t data_value = 0x0;
2945         uint32_t data_mask = 0xffffffff;
2946
2947         switch (CMD_ARGC)
2948         {
2949         case 5:
2950                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2951                 // fall through
2952         case 4:
2953                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2954                 // fall through
2955         case 3:
2956                 switch (CMD_ARGV[2][0])
2957                 {
2958                 case 'r':
2959                         type = WPT_READ;
2960                         break;
2961                 case 'w':
2962                         type = WPT_WRITE;
2963                         break;
2964                 case 'a':
2965                         type = WPT_ACCESS;
2966                         break;
2967                 default:
2968                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2969                         return ERROR_COMMAND_SYNTAX_ERROR;
2970                 }
2971                 // fall through
2972         case 2:
2973                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2974                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2975                 break;
2976
2977         default:
2978                 command_print(CMD_CTX, "usage: wp [address length "
2979                                 "[(r|w|a) [value [mask]]]]");
2980                 return ERROR_COMMAND_SYNTAX_ERROR;
2981         }
2982
2983         int retval = watchpoint_add(target, addr, length, type,
2984                         data_value, data_mask);
2985         if (ERROR_OK != retval)
2986                 LOG_ERROR("Failure setting watchpoints");
2987
2988         return retval;
2989 }
2990
2991 COMMAND_HANDLER(handle_rwp_command)
2992 {
2993         if (CMD_ARGC != 1)
2994                 return ERROR_COMMAND_SYNTAX_ERROR;
2995
2996         uint32_t addr;
2997         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2998
2999         struct target *target = get_current_target(CMD_CTX);
3000         watchpoint_remove(target, addr);
3001
3002         return ERROR_OK;
3003 }
3004
3005
3006 /**
3007  * Translate a virtual address to a physical address.
3008  *
3009  * The low-level target implementation must have logged a detailed error
3010  * which is forwarded to telnet/GDB session.
3011  */
3012 COMMAND_HANDLER(handle_virt2phys_command)
3013 {
3014         if (CMD_ARGC != 1)
3015                 return ERROR_COMMAND_SYNTAX_ERROR;
3016
3017         uint32_t va;
3018         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3019         uint32_t pa;
3020
3021         struct target *target = get_current_target(CMD_CTX);
3022         int retval = target->type->virt2phys(target, va, &pa);
3023         if (retval == ERROR_OK)
3024                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3025
3026         return retval;
3027 }
3028
3029 static void writeData(FILE *f, const void *data, size_t len)
3030 {
3031         size_t written = fwrite(data, 1, len, f);
3032         if (written != len)
3033                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3034 }
3035
3036 static void writeLong(FILE *f, int l)
3037 {
3038         int i;
3039         for (i = 0; i < 4; i++)
3040         {
3041                 char c = (l >> (i*8))&0xff;
3042                 writeData(f, &c, 1);
3043         }
3044
3045 }
3046
3047 static void writeString(FILE *f, char *s)
3048 {
3049         writeData(f, s, strlen(s));
3050 }
3051
3052 /* Dump a gmon.out histogram file. */
3053 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3054 {
3055         uint32_t i;
3056         FILE *f = fopen(filename, "w");
3057         if (f == NULL)
3058                 return;
3059         writeString(f, "gmon");
3060         writeLong(f, 0x00000001); /* Version */
3061         writeLong(f, 0); /* padding */
3062         writeLong(f, 0); /* padding */
3063         writeLong(f, 0); /* padding */
3064
3065         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3066         writeData(f, &zero, 1);
3067
3068         /* figure out bucket size */
3069         uint32_t min = samples[0];
3070         uint32_t max = samples[0];
3071         for (i = 0; i < sampleNum; i++)
3072         {
3073                 if (min > samples[i])
3074                 {
3075                         min = samples[i];
3076                 }
3077                 if (max < samples[i])
3078                 {
3079                         max = samples[i];
3080                 }
3081         }
3082
3083         int addressSpace = (max-min + 1);
3084
3085         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3086         uint32_t length = addressSpace;
3087         if (length > maxBuckets)
3088         {
3089                 length = maxBuckets;
3090         }
3091         int *buckets = malloc(sizeof(int)*length);
3092         if (buckets == NULL)
3093         {
3094                 fclose(f);
3095                 return;
3096         }
3097         memset(buckets, 0, sizeof(int)*length);
3098         for (i = 0; i < sampleNum;i++)
3099         {
3100                 uint32_t address = samples[i];
3101                 long long a = address-min;
3102                 long long b = length-1;
3103                 long long c = addressSpace-1;
3104                 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3105                 buckets[index_t]++;
3106         }
3107
3108         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3109         writeLong(f, min);                      /* low_pc */
3110         writeLong(f, max);                      /* high_pc */
3111         writeLong(f, length);           /* # of samples */
3112         writeLong(f, 64000000);         /* 64MHz */
3113         writeString(f, "seconds");
3114         for (i = 0; i < (15-strlen("seconds")); i++)
3115                 writeData(f, &zero, 1);
3116         writeString(f, "s");
3117
3118         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3119
3120         char *data = malloc(2*length);
3121         if (data != NULL)
3122         {
3123                 for (i = 0; i < length;i++)
3124                 {
3125                         int val;
3126                         val = buckets[i];
3127                         if (val > 65535)
3128                         {
3129                                 val = 65535;
3130                         }
3131                         data[i*2]=val&0xff;
3132                         data[i*2 + 1]=(val >> 8)&0xff;
3133                 }
3134                 free(buckets);
3135                 writeData(f, data, length * 2);
3136                 free(data);
3137         } else
3138         {
3139                 free(buckets);
3140         }
3141
3142         fclose(f);
3143 }
3144
3145 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3146  * which will be used as a random sampling of PC */
3147 COMMAND_HANDLER(handle_profile_command)
3148 {
3149         struct target *target = get_current_target(CMD_CTX);
3150         struct timeval timeout, now;
3151
3152         gettimeofday(&timeout, NULL);
3153         if (CMD_ARGC != 2)
3154         {
3155                 return ERROR_COMMAND_SYNTAX_ERROR;
3156         }
3157         unsigned offset;
3158         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3159
3160         timeval_add_time(&timeout, offset, 0);
3161
3162         /**
3163          * @todo: Some cores let us sample the PC without the
3164          * annoying halt/resume step; for example, ARMv7 PCSR.
3165          * Provide a way to use that more efficient mechanism.
3166          */
3167
3168         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3169
3170         static const int maxSample = 10000;
3171         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3172         if (samples == NULL)
3173                 return ERROR_OK;
3174
3175         int numSamples = 0;
3176         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3177         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3178
3179         for (;;)
3180         {
3181                 int retval;
3182                 target_poll(target);
3183                 if (target->state == TARGET_HALTED)
3184                 {
3185                         uint32_t t=*((uint32_t *)reg->value);
3186                         samples[numSamples++]=t;
3187                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3188                         target_poll(target);
3189                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3190                 } else if (target->state == TARGET_RUNNING)
3191                 {
3192                         /* We want to quickly sample the PC. */
3193                         if ((retval = target_halt(target)) != ERROR_OK)
3194                         {
3195                                 free(samples);
3196                                 return retval;
3197                         }
3198                 } else
3199                 {
3200                         command_print(CMD_CTX, "Target not halted or running");
3201                         retval = ERROR_OK;
3202                         break;
3203                 }
3204                 if (retval != ERROR_OK)
3205                 {
3206                         break;
3207                 }
3208
3209                 gettimeofday(&now, NULL);
3210                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3211                 {
3212                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3213                         if ((retval = target_poll(target)) != ERROR_OK)
3214                         {
3215                                 free(samples);
3216                                 return retval;
3217                         }
3218                         if (target->state == TARGET_HALTED)
3219                         {
3220                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3221                         }
3222                         if ((retval = target_poll(target)) != ERROR_OK)
3223                         {
3224                                 free(samples);
3225                                 return retval;
3226                         }
3227                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3228                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3229                         break;
3230                 }
3231         }
3232         free(samples);
3233
3234         return ERROR_OK;
3235 }
3236
3237 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3238 {
3239         char *namebuf;
3240         Jim_Obj *nameObjPtr, *valObjPtr;
3241         int result;
3242
3243         namebuf = alloc_printf("%s(%d)", varname, idx);
3244         if (!namebuf)
3245                 return JIM_ERR;
3246
3247         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3248         valObjPtr = Jim_NewIntObj(interp, val);
3249         if (!nameObjPtr || !valObjPtr)
3250         {
3251                 free(namebuf);
3252                 return JIM_ERR;
3253         }
3254
3255         Jim_IncrRefCount(nameObjPtr);
3256         Jim_IncrRefCount(valObjPtr);
3257         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3258         Jim_DecrRefCount(interp, nameObjPtr);
3259         Jim_DecrRefCount(interp, valObjPtr);
3260         free(namebuf);
3261         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3262         return result;
3263 }
3264
3265 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3266 {
3267         struct command_context *context;
3268         struct target *target;
3269
3270         context = current_command_context(interp);
3271         assert (context != NULL);
3272
3273         target = get_current_target(context);
3274         if (target == NULL)
3275         {
3276                 LOG_ERROR("mem2array: no current target");
3277                 return JIM_ERR;
3278         }
3279
3280         return  target_mem2array(interp, target, argc-1, argv + 1);
3281 }
3282
3283 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3284 {
3285         long l;
3286         uint32_t width;
3287         int len;
3288         uint32_t addr;
3289         uint32_t count;
3290         uint32_t v;
3291         const char *varname;
3292         int  n, e, retval;
3293         uint32_t i;
3294
3295         /* argv[1] = name of array to receive the data
3296          * argv[2] = desired width
3297          * argv[3] = memory address
3298          * argv[4] = count of times to read
3299          */
3300         if (argc != 4) {
3301                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3302                 return JIM_ERR;
3303         }
3304         varname = Jim_GetString(argv[0], &len);
3305         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3306
3307         e = Jim_GetLong(interp, argv[1], &l);
3308         width = l;
3309         if (e != JIM_OK) {
3310                 return e;
3311         }
3312
3313         e = Jim_GetLong(interp, argv[2], &l);
3314         addr = l;
3315         if (e != JIM_OK) {
3316                 return e;
3317         }
3318         e = Jim_GetLong(interp, argv[3], &l);
3319         len = l;
3320         if (e != JIM_OK) {
3321                 return e;
3322         }
3323         switch (width) {
3324                 case 8:
3325                         width = 1;
3326                         break;
3327                 case 16:
3328                         width = 2;
3329                         break;
3330                 case 32:
3331                         width = 4;
3332                         break;
3333                 default:
3334                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3335                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3336                         return JIM_ERR;
3337         }
3338         if (len == 0) {
3339                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3340                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3341                 return JIM_ERR;
3342         }
3343         if ((addr + (len * width)) < addr) {
3344                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3345                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3346                 return JIM_ERR;
3347         }
3348         /* absurd transfer size? */
3349         if (len > 65536) {
3350                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3351                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3352                 return JIM_ERR;
3353         }
3354
3355         if ((width == 1) ||
3356                 ((width == 2) && ((addr & 1) == 0)) ||
3357                 ((width == 4) && ((addr & 3) == 0))) {
3358                 /* all is well */
3359         } else {
3360                 char buf[100];
3361                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3362                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3363                                 addr,
3364                                 width);
3365                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3366                 return JIM_ERR;
3367         }
3368
3369         /* Transfer loop */
3370
3371         /* index counter */
3372         n = 0;
3373
3374         size_t buffersize = 4096;
3375         uint8_t *buffer = malloc(buffersize);
3376         if (buffer == NULL)
3377                 return JIM_ERR;
3378
3379         /* assume ok */
3380         e = JIM_OK;
3381         while (len) {
3382                 /* Slurp... in buffer size chunks */
3383
3384                 count = len; /* in objects.. */
3385                 if (count > (buffersize/width)) {
3386                         count = (buffersize/width);
3387                 }
3388
3389                 retval = target_read_memory(target, addr, width, count, buffer);
3390                 if (retval != ERROR_OK) {
3391                         /* BOO !*/
3392                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3393                                           (unsigned int)addr,
3394                                           (int)width,
3395                                           (int)count);
3396                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3397                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3398                         e = JIM_ERR;
3399                         len = 0;
3400                 } else {
3401                         v = 0; /* shut up gcc */
3402                         for (i = 0 ;i < count ;i++, n++) {
3403                                 switch (width) {
3404                                         case 4:
3405                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3406                                                 break;
3407                                         case 2:
3408                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3409                                                 break;
3410                                         case 1:
3411                                                 v = buffer[i] & 0x0ff;
3412                                                 break;
3413                                 }
3414                                 new_int_array_element(interp, varname, n, v);
3415                         }
3416                         len -= count;
3417                 }
3418         }
3419
3420         free(buffer);
3421
3422         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3423
3424         return JIM_OK;
3425 }
3426
3427 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3428 {
3429         char *namebuf;
3430         Jim_Obj *nameObjPtr, *valObjPtr;
3431         int result;
3432         long l;
3433
3434         namebuf = alloc_printf("%s(%d)", varname, idx);
3435         if (!namebuf)
3436                 return JIM_ERR;
3437
3438         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3439         if (!nameObjPtr)
3440         {
3441                 free(namebuf);
3442                 return JIM_ERR;
3443         }
3444
3445         Jim_IncrRefCount(nameObjPtr);
3446         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3447         Jim_DecrRefCount(interp, nameObjPtr);
3448         free(namebuf);
3449         if (valObjPtr == NULL)
3450                 return JIM_ERR;
3451
3452         result = Jim_GetLong(interp, valObjPtr, &l);
3453         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3454         *val = l;
3455         return result;
3456 }
3457
3458 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3459 {
3460         struct command_context *context;
3461         struct target *target;
3462
3463         context = current_command_context(interp);
3464         assert (context != NULL);
3465
3466         target = get_current_target(context);
3467         if (target == NULL) {
3468                 LOG_ERROR("array2mem: no current target");
3469                 return JIM_ERR;
3470         }
3471
3472         return target_array2mem(interp,target, argc-1, argv + 1);
3473 }
3474
3475 static int target_array2mem(Jim_Interp *interp, struct target *target,
3476                 int argc, Jim_Obj *const *argv)
3477 {
3478         long l;
3479         uint32_t width;
3480         int len;
3481         uint32_t addr;
3482         uint32_t count;
3483         uint32_t v;
3484         const char *varname;
3485         int  n, e, retval;
3486         uint32_t i;
3487
3488         /* argv[1] = name of array to get the data
3489          * argv[2] = desired width
3490          * argv[3] = memory address
3491          * argv[4] = count to write
3492          */
3493         if (argc != 4) {
3494                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3495                 return JIM_ERR;
3496         }
3497         varname = Jim_GetString(argv[0], &len);
3498         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3499
3500         e = Jim_GetLong(interp, argv[1], &l);
3501         width = l;
3502         if (e != JIM_OK) {
3503                 return e;
3504         }
3505
3506         e = Jim_GetLong(interp, argv[2], &l);
3507         addr = l;
3508         if (e != JIM_OK) {
3509                 return e;
3510         }
3511         e = Jim_GetLong(interp, argv[3], &l);
3512         len = l;
3513         if (e != JIM_OK) {
3514                 return e;
3515         }
3516         switch (width) {
3517                 case 8:
3518                         width = 1;
3519                         break;
3520                 case 16:
3521                         width = 2;
3522                         break;
3523                 case 32:
3524                         width = 4;
3525                         break;
3526                 default:
3527                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3528                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3529                         return JIM_ERR;
3530         }
3531         if (len == 0) {
3532                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3533                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3534                 return JIM_ERR;
3535         }
3536         if ((addr + (len * width)) < addr) {
3537                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3538                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3539                 return JIM_ERR;
3540         }
3541         /* absurd transfer size? */
3542         if (len > 65536) {
3543                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3544                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3545                 return JIM_ERR;
3546         }
3547
3548         if ((width == 1) ||
3549                 ((width == 2) && ((addr & 1) == 0)) ||
3550                 ((width == 4) && ((addr & 3) == 0))) {
3551                 /* all is well */
3552         } else {
3553                 char buf[100];
3554                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3555                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3556                                 (unsigned int)addr,
3557                                 (int)width);
3558                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3559                 return JIM_ERR;
3560         }
3561
3562         /* Transfer loop */
3563
3564         /* index counter */
3565         n = 0;
3566         /* assume ok */
3567         e = JIM_OK;
3568
3569         size_t buffersize = 4096;
3570         uint8_t *buffer = malloc(buffersize);
3571         if (buffer == NULL)
3572                 return JIM_ERR;
3573
3574         while (len) {
3575                 /* Slurp... in buffer size chunks */
3576
3577                 count = len; /* in objects.. */
3578                 if (count > (buffersize/width)) {
3579                         count = (buffersize/width);
3580                 }
3581
3582                 v = 0; /* shut up gcc */
3583                 for (i = 0 ;i < count ;i++, n++) {
3584                         get_int_array_element(interp, varname, n, &v);
3585                         switch (width) {
3586                         case 4:
3587                                 target_buffer_set_u32(target, &buffer[i*width], v);
3588                                 break;
3589                         case 2:
3590                                 target_buffer_set_u16(target, &buffer[i*width], v);
3591                                 break;
3592                         case 1:
3593                                 buffer[i] = v & 0x0ff;
3594                                 break;
3595                         }
3596                 }
3597                 len -= count;
3598
3599                 retval = target_write_memory(target, addr, width, count, buffer);
3600                 if (retval != ERROR_OK) {
3601                         /* BOO !*/
3602                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3603                                           (unsigned int)addr,
3604                                           (int)width,
3605                                           (int)count);
3606                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3607                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3608                         e = JIM_ERR;
3609                         len = 0;
3610                 }
3611         }
3612
3613         free(buffer);
3614
3615         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3616
3617         return JIM_OK;
3618 }
3619
3620 /* FIX? should we propagate errors here rather than printing them
3621  * and continuing?
3622  */
3623 void target_handle_event(struct target *target, enum target_event e)
3624 {
3625         struct target_event_action *teap;
3626
3627         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3628                 if (teap->event == e) {
3629                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3630                                            target->target_number,
3631                                            target_name(target),
3632                                            target_type_name(target),
3633                                            e,
3634                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3635                                            Jim_GetString(teap->body, NULL));
3636                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3637                         {
3638                                 Jim_PrintErrorMessage(teap->interp);
3639                         }
3640                 }
3641         }
3642 }
3643
3644 /**
3645  * Returns true only if the target has a handler for the specified event.
3646  */
3647 bool target_has_event_action(struct target *target, enum target_event event)
3648 {
3649         struct target_event_action *teap;
3650
3651         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3652                 if (teap->event == event)
3653                         return true;
3654         }
3655         return false;
3656 }
3657
3658 enum target_cfg_param {
3659         TCFG_TYPE,
3660         TCFG_EVENT,
3661         TCFG_WORK_AREA_VIRT,
3662         TCFG_WORK_AREA_PHYS,
3663         TCFG_WORK_AREA_SIZE,
3664         TCFG_WORK_AREA_BACKUP,
3665         TCFG_ENDIAN,
3666         TCFG_VARIANT,
3667         TCFG_CHAIN_POSITION,
3668 };
3669
3670 static Jim_Nvp nvp_config_opts[] = {
3671         { .name = "-type",             .value = TCFG_TYPE },
3672         { .name = "-event",            .value = TCFG_EVENT },
3673         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3674         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3675         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3676         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3677         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3678         { .name = "-variant",          .value = TCFG_VARIANT },
3679         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3680
3681         { .name = NULL, .value = -1 }
3682 };
3683
3684 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3685 {
3686         Jim_Nvp *n;
3687         Jim_Obj *o;
3688         jim_wide w;
3689         char *cp;
3690         int e;
3691
3692         /* parse config or cget options ... */
3693         while (goi->argc > 0) {
3694                 Jim_SetEmptyResult(goi->interp);
3695                 /* Jim_GetOpt_Debug(goi); */
3696
3697                 if (target->type->target_jim_configure) {
3698                         /* target defines a configure function */
3699                         /* target gets first dibs on parameters */
3700                         e = (*(target->type->target_jim_configure))(target, goi);
3701                         if (e == JIM_OK) {
3702                                 /* more? */
3703                                 continue;
3704                         }
3705                         if (e == JIM_ERR) {
3706                                 /* An error */
3707                                 return e;
3708                         }
3709                         /* otherwise we 'continue' below */
3710                 }
3711                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3712                 if (e != JIM_OK) {
3713                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3714                         return e;
3715                 }
3716                 switch (n->value) {
3717                 case TCFG_TYPE:
3718                         /* not setable */
3719                         if (goi->isconfigure) {
3720                                 Jim_SetResult_sprintf(goi->interp,
3721                                                 "not settable: %s", n->name);
3722                                 return JIM_ERR;
3723                         } else {
3724                         no_params:
3725                                 if (goi->argc != 0) {
3726                                         Jim_WrongNumArgs(goi->interp,
3727                                                         goi->argc, goi->argv,
3728                                                         "NO PARAMS");
3729                                         return JIM_ERR;
3730                                 }
3731                         }
3732                         Jim_SetResultString(goi->interp,
3733                                         target_type_name(target), -1);
3734                         /* loop for more */
3735                         break;
3736                 case TCFG_EVENT:
3737                         if (goi->argc == 0) {
3738                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3739                                 return JIM_ERR;
3740                         }
3741
3742                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3743                         if (e != JIM_OK) {
3744                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3745                                 return e;
3746                         }
3747
3748                         if (goi->isconfigure) {
3749                                 if (goi->argc != 1) {
3750                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3751                                         return JIM_ERR;
3752                                 }
3753                         } else {
3754                                 if (goi->argc != 0) {
3755                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3756                                         return JIM_ERR;
3757                                 }
3758                         }
3759
3760                         {
3761                                 struct target_event_action *teap;
3762
3763                                 teap = target->event_action;
3764                                 /* replace existing? */
3765                                 while (teap) {
3766                                         if (teap->event == (enum target_event)n->value) {
3767                                                 break;
3768                                         }
3769                                         teap = teap->next;
3770                                 }
3771
3772                                 if (goi->isconfigure) {
3773                                         bool replace = true;
3774                                         if (teap == NULL) {
3775                                                 /* create new */
3776                                                 teap = calloc(1, sizeof(*teap));
3777                                                 replace = false;
3778                                         }
3779                                         teap->event = n->value;
3780                                         teap->interp = goi->interp;
3781                                         Jim_GetOpt_Obj(goi, &o);
3782                                         if (teap->body) {
3783                                                 Jim_DecrRefCount(teap->interp, teap->body);
3784                                         }
3785                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3786                                         /*
3787                                          * FIXME:
3788                                          *     Tcl/TK - "tk events" have a nice feature.
3789                                          *     See the "BIND" command.
3790                                          *    We should support that here.
3791                                          *     You can specify %X and %Y in the event code.
3792                                          *     The idea is: %T - target name.
3793                                          *     The idea is: %N - target number
3794                                          *     The idea is: %E - event name.
3795                                          */
3796                                         Jim_IncrRefCount(teap->body);
3797
3798                                         if (!replace)
3799                                         {
3800                                                 /* add to head of event list */
3801                                                 teap->next = target->event_action;
3802                                                 target->event_action = teap;
3803                                         }
3804                                         Jim_SetEmptyResult(goi->interp);
3805                                 } else {
3806                                         /* get */
3807                                         if (teap == NULL) {
3808                                                 Jim_SetEmptyResult(goi->interp);
3809                                         } else {
3810                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3811                                         }
3812                                 }
3813                         }
3814                         /* loop for more */
3815                         break;
3816
3817                 case TCFG_WORK_AREA_VIRT:
3818                         if (goi->isconfigure) {
3819                                 target_free_all_working_areas(target);
3820                                 e = Jim_GetOpt_Wide(goi, &w);
3821                                 if (e != JIM_OK) {
3822                                         return e;
3823                                 }
3824                                 target->working_area_virt = w;
3825                                 target->working_area_virt_spec = true;
3826                         } else {
3827                                 if (goi->argc != 0) {
3828                                         goto no_params;
3829                                 }
3830                         }
3831                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3832                         /* loop for more */
3833                         break;
3834
3835                 case TCFG_WORK_AREA_PHYS:
3836                         if (goi->isconfigure) {
3837                                 target_free_all_working_areas(target);
3838                                 e = Jim_GetOpt_Wide(goi, &w);
3839                                 if (e != JIM_OK) {
3840                                         return e;
3841                                 }
3842                                 target->working_area_phys = w;
3843                                 target->working_area_phys_spec = true;
3844                         } else {
3845                                 if (goi->argc != 0) {
3846                                         goto no_params;
3847                                 }
3848                         }
3849                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3850                         /* loop for more */
3851                         break;
3852
3853                 case TCFG_WORK_AREA_SIZE:
3854                         if (goi->isconfigure) {
3855                                 target_free_all_working_areas(target);
3856                                 e = Jim_GetOpt_Wide(goi, &w);
3857                                 if (e != JIM_OK) {
3858                                         return e;
3859                                 }
3860                                 target->working_area_size = w;
3861                         } else {
3862                                 if (goi->argc != 0) {
3863                                         goto no_params;
3864                                 }
3865                         }
3866                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3867                         /* loop for more */
3868                         break;
3869
3870                 case TCFG_WORK_AREA_BACKUP:
3871                         if (goi->isconfigure) {
3872                                 target_free_all_working_areas(target);
3873                                 e = Jim_GetOpt_Wide(goi, &w);
3874                                 if (e != JIM_OK) {
3875                                         return e;
3876                                 }
3877                                 /* make this exactly 1 or 0 */
3878                                 target->backup_working_area = (!!w);
3879                         } else {
3880                                 if (goi->argc != 0) {
3881                                         goto no_params;
3882                                 }
3883                         }
3884                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3885                         /* loop for more e*/
3886                         break;
3887
3888                 case TCFG_ENDIAN:
3889                         if (goi->isconfigure) {
3890                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3891                                 if (e != JIM_OK) {
3892                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3893                                         return e;
3894                                 }
3895                                 target->endianness = n->value;
3896                         } else {
3897                                 if (goi->argc != 0) {
3898                                         goto no_params;
3899                                 }
3900                         }
3901                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3902                         if (n->name == NULL) {
3903                                 target->endianness = TARGET_LITTLE_ENDIAN;
3904                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3905                         }
3906                         Jim_SetResultString(goi->interp, n->name, -1);
3907                         /* loop for more */
3908                         break;
3909
3910                 case TCFG_VARIANT:
3911                         if (goi->isconfigure) {
3912                                 if (goi->argc < 1) {
3913                                         Jim_SetResult_sprintf(goi->interp,
3914                                                                                    "%s ?STRING?",
3915                                                                                    n->name);
3916                                         return JIM_ERR;
3917                                 }
3918                                 if (target->variant) {
3919                                         free((void *)(target->variant));
3920                                 }
3921                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3922                                 target->variant = strdup(cp);
3923                         } else {
3924                                 if (goi->argc != 0) {
3925                                         goto no_params;
3926                                 }
3927                         }
3928                         Jim_SetResultString(goi->interp, target->variant,-1);
3929                         /* loop for more */
3930                         break;
3931                 case TCFG_CHAIN_POSITION:
3932                         if (goi->isconfigure) {
3933                                 Jim_Obj *o_t;
3934                                 struct jtag_tap *tap;
3935                                 target_free_all_working_areas(target);
3936                                 e = Jim_GetOpt_Obj(goi, &o_t);
3937                                 if (e != JIM_OK) {
3938                                         return e;
3939                                 }
3940                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
3941                                 if (tap == NULL) {
3942                                         return JIM_ERR;
3943                                 }
3944                                 /* make this exactly 1 or 0 */
3945                                 target->tap = tap;
3946                         } else {
3947                                 if (goi->argc != 0) {
3948                                         goto no_params;
3949                                 }
3950                         }
3951                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3952                         /* loop for more e*/
3953                         break;
3954                 }
3955         } /* while (goi->argc) */
3956
3957
3958                 /* done - we return */
3959         return JIM_OK;
3960 }
3961
3962 static int
3963 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3964 {
3965         Jim_GetOptInfo goi;
3966
3967         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3968         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3969         int need_args = 1 + goi.isconfigure;
3970         if (goi.argc < need_args)
3971         {
3972                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3973                         goi.isconfigure
3974                                 ? "missing: -option VALUE ..."
3975                                 : "missing: -option ...");
3976                 return JIM_ERR;
3977         }
3978         struct target *target = Jim_CmdPrivData(goi.interp);
3979         return target_configure(&goi, target);
3980 }
3981
3982 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3983 {
3984         const char *cmd_name = Jim_GetString(argv[0], NULL);
3985
3986         Jim_GetOptInfo goi;
3987         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3988
3989         if (goi.argc < 2 || goi.argc > 4)
3990         {
3991                 Jim_SetResult_sprintf(goi.interp,
3992                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
3993                 return JIM_ERR;
3994         }
3995
3996         target_write_fn fn;
3997         fn = target_write_memory_fast;
3998
3999         int e;
4000         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4001         {
4002                 /* consume it */
4003                 struct Jim_Obj *obj;
4004                 e = Jim_GetOpt_Obj(&goi, &obj);
4005                 if (e != JIM_OK)
4006                         return e;
4007
4008                 fn = target_write_phys_memory;
4009         }
4010
4011         jim_wide a;
4012         e = Jim_GetOpt_Wide(&goi, &a);
4013         if (e != JIM_OK)
4014                 return e;
4015
4016         jim_wide b;
4017         e = Jim_GetOpt_Wide(&goi, &b);
4018         if (e != JIM_OK)
4019                 return e;
4020
4021         jim_wide c = 1;
4022         if (goi.argc == 1)
4023         {
4024                 e = Jim_GetOpt_Wide(&goi, &c);
4025                 if (e != JIM_OK)
4026                         return e;
4027         }
4028
4029         /* all args must be consumed */
4030         if (goi.argc != 0)
4031         {
4032                 return JIM_ERR;
4033         }
4034
4035         struct target *target = Jim_CmdPrivData(goi.interp);
4036         unsigned data_size;
4037         if (strcasecmp(cmd_name, "mww") == 0) {
4038                 data_size = 4;
4039         }
4040         else if (strcasecmp(cmd_name, "mwh") == 0) {
4041                 data_size = 2;
4042         }
4043         else if (strcasecmp(cmd_name, "mwb") == 0) {
4044                 data_size = 1;
4045         } else {
4046                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4047                 return JIM_ERR;
4048         }
4049
4050         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4051 }
4052
4053 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4054 {
4055         const char *cmd_name = Jim_GetString(argv[0], NULL);
4056
4057         Jim_GetOptInfo goi;
4058         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4059
4060         if ((goi.argc < 1) || (goi.argc > 3))
4061         {
4062                 Jim_SetResult_sprintf(goi.interp,
4063                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4064                 return JIM_ERR;
4065         }
4066
4067         int (*fn)(struct target *target,
4068                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4069         fn=target_read_memory;
4070
4071         int e;
4072         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4073         {
4074                 /* consume it */
4075                 struct Jim_Obj *obj;
4076                 e = Jim_GetOpt_Obj(&goi, &obj);
4077                 if (e != JIM_OK)
4078                         return e;
4079
4080                 fn=target_read_phys_memory;
4081         }
4082
4083         jim_wide a;
4084         e = Jim_GetOpt_Wide(&goi, &a);
4085         if (e != JIM_OK) {
4086                 return JIM_ERR;
4087         }
4088         jim_wide c;
4089         if (goi.argc == 1) {
4090                 e = Jim_GetOpt_Wide(&goi, &c);
4091                 if (e != JIM_OK) {
4092                         return JIM_ERR;
4093                 }
4094         } else {
4095                 c = 1;
4096         }
4097
4098         /* all args must be consumed */
4099         if (goi.argc != 0)
4100         {
4101                 return JIM_ERR;
4102         }
4103
4104         jim_wide b = 1; /* shut up gcc */
4105         if (strcasecmp(cmd_name, "mdw") == 0)
4106                 b = 4;
4107         else if (strcasecmp(cmd_name, "mdh") == 0)
4108                 b = 2;
4109         else if (strcasecmp(cmd_name, "mdb") == 0)
4110                 b = 1;
4111         else {
4112                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4113                 return JIM_ERR;
4114         }
4115
4116         /* convert count to "bytes" */
4117         c = c * b;
4118
4119         struct target *target = Jim_CmdPrivData(goi.interp);
4120         uint8_t  target_buf[32];
4121         jim_wide x, y, z;
4122         while (c > 0) {
4123                 y = c;
4124                 if (y > 16) {
4125                         y = 16;
4126                 }
4127                 e = fn(target, a, b, y / b, target_buf);
4128                 if (e != ERROR_OK) {
4129                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4130                         return JIM_ERR;
4131                 }
4132
4133                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4134                 switch (b) {
4135                 case 4:
4136                         for (x = 0; x < 16 && x < y; x += 4)
4137                         {
4138                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4139                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4140                         }
4141                         for (; (x < 16) ; x += 4) {
4142                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
4143                         }
4144                         break;
4145                 case 2:
4146                         for (x = 0; x < 16 && x < y; x += 2)
4147                         {
4148                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4149                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4150                         }
4151                         for (; (x < 16) ; x += 2) {
4152                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
4153                         }
4154                         break;
4155                 case 1:
4156                 default:
4157                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4158                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4159                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4160                         }
4161                         for (; (x < 16) ; x += 1) {
4162                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
4163                         }
4164                         break;
4165                 }
4166                 /* ascii-ify the bytes */
4167                 for (x = 0 ; x < y ; x++) {
4168                         if ((target_buf[x] >= 0x20) &&
4169                                 (target_buf[x] <= 0x7e)) {
4170                                 /* good */
4171                         } else {
4172                                 /* smack it */
4173                                 target_buf[x] = '.';
4174                         }
4175                 }
4176                 /* space pad  */
4177                 while (x < 16) {
4178                         target_buf[x] = ' ';
4179                         x++;
4180                 }
4181                 /* terminate */
4182                 target_buf[16] = 0;
4183                 /* print - with a newline */
4184                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4185                 /* NEXT... */
4186                 c -= 16;
4187                 a += 16;
4188         }
4189         return JIM_OK;
4190 }
4191
4192 static int jim_target_mem2array(Jim_Interp *interp,
4193                 int argc, Jim_Obj *const *argv)
4194 {
4195         struct target *target = Jim_CmdPrivData(interp);
4196         return target_mem2array(interp, target, argc - 1, argv + 1);
4197 }
4198
4199 static int jim_target_array2mem(Jim_Interp *interp,
4200                 int argc, Jim_Obj *const *argv)
4201 {
4202         struct target *target = Jim_CmdPrivData(interp);
4203         return target_array2mem(interp, target, argc - 1, argv + 1);
4204 }
4205
4206 static int jim_target_tap_disabled(Jim_Interp *interp)
4207 {
4208         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4209         return JIM_ERR;
4210 }
4211
4212 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4213 {
4214         if (argc != 1)
4215         {
4216                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4217                 return JIM_ERR;
4218         }
4219         struct target *target = Jim_CmdPrivData(interp);
4220         if (!target->tap->enabled)
4221                 return jim_target_tap_disabled(interp);
4222
4223         int e = target->type->examine(target);
4224         if (e != ERROR_OK)
4225         {
4226                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4227                 return JIM_ERR;
4228         }
4229         return JIM_OK;
4230 }
4231
4232 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4233 {
4234         if (argc != 1)
4235         {
4236                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4237                 return JIM_ERR;
4238         }
4239         struct target *target = Jim_CmdPrivData(interp);
4240
4241         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4242                 return JIM_ERR;
4243
4244         return JIM_OK;
4245 }
4246
4247 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4248 {
4249         if (argc != 1)
4250         {
4251                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4252                 return JIM_ERR;
4253         }
4254         struct target *target = Jim_CmdPrivData(interp);
4255         if (!target->tap->enabled)
4256                 return jim_target_tap_disabled(interp);
4257
4258         int e;
4259         if (!(target_was_examined(target))) {
4260                 e = ERROR_TARGET_NOT_EXAMINED;
4261         } else {
4262                 e = target->type->poll(target);
4263         }
4264         if (e != ERROR_OK)
4265         {
4266                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4267                 return JIM_ERR;
4268         }
4269         return JIM_OK;
4270 }
4271
4272 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4273 {
4274         Jim_GetOptInfo goi;
4275         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4276
4277         if (goi.argc != 2)
4278         {
4279                 Jim_WrongNumArgs(interp, 0, argv,
4280                                 "([tT]|[fF]|assert|deassert) BOOL");
4281                 return JIM_ERR;
4282         }
4283
4284         Jim_Nvp *n;
4285         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4286         if (e != JIM_OK)
4287         {
4288                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4289                 return e;
4290         }
4291         /* the halt or not param */
4292         jim_wide a;
4293         e = Jim_GetOpt_Wide(&goi, &a);
4294         if (e != JIM_OK)
4295                 return e;
4296
4297         struct target *target = Jim_CmdPrivData(goi.interp);
4298         if (!target->tap->enabled)
4299                 return jim_target_tap_disabled(interp);
4300         if (!(target_was_examined(target)))
4301         {
4302                 LOG_ERROR("Target not examined yet");
4303                 return ERROR_TARGET_NOT_EXAMINED;
4304         }
4305         if (!target->type->assert_reset || !target->type->deassert_reset)
4306         {
4307                 Jim_SetResult_sprintf(interp,
4308                                 "No target-specific reset for %s",
4309                                 target_name(target));
4310                 return JIM_ERR;
4311         }
4312         /* determine if we should halt or not. */
4313         target->reset_halt = !!a;
4314         /* When this happens - all workareas are invalid. */
4315         target_free_all_working_areas_restore(target, 0);
4316
4317         /* do the assert */
4318         if (n->value == NVP_ASSERT) {
4319                 e = target->type->assert_reset(target);
4320         } else {
4321                 e = target->type->deassert_reset(target);
4322         }
4323         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4324 }
4325
4326 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4327 {
4328         if (argc != 1) {
4329                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4330                 return JIM_ERR;
4331         }
4332         struct target *target = Jim_CmdPrivData(interp);
4333         if (!target->tap->enabled)
4334                 return jim_target_tap_disabled(interp);
4335         int e = target->type->halt(target);
4336         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4337 }
4338
4339 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4340 {
4341         Jim_GetOptInfo goi;
4342         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4343
4344         /* params:  <name>  statename timeoutmsecs */
4345         if (goi.argc != 2)
4346         {
4347                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4348                 Jim_SetResult_sprintf(goi.interp,
4349                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4350                 return JIM_ERR;
4351         }
4352
4353         Jim_Nvp *n;
4354         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4355         if (e != JIM_OK) {
4356                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4357                 return e;
4358         }
4359         jim_wide a;
4360         e = Jim_GetOpt_Wide(&goi, &a);
4361         if (e != JIM_OK) {
4362                 return e;
4363         }
4364         struct target *target = Jim_CmdPrivData(interp);
4365         if (!target->tap->enabled)
4366                 return jim_target_tap_disabled(interp);
4367
4368         e = target_wait_state(target, n->value, a);
4369         if (e != ERROR_OK)
4370         {
4371                 Jim_SetResult_sprintf(goi.interp,
4372                                 "target: %s wait %s fails (%d) %s",
4373                                 target_name(target), n->name,
4374                                 e, target_strerror_safe(e));
4375                 return JIM_ERR;
4376         }
4377         return JIM_OK;
4378 }
4379 /* List for human, Events defined for this target.
4380  * scripts/programs should use 'name cget -event NAME'
4381  */
4382 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4383 {
4384         struct command_context *cmd_ctx = current_command_context(interp);
4385         assert (cmd_ctx != NULL);
4386
4387         struct target *target = Jim_CmdPrivData(interp);
4388         struct target_event_action *teap = target->event_action;
4389         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4390                                    target->target_number,
4391                                    target_name(target));
4392         command_print(cmd_ctx, "%-25s | Body", "Event");
4393         command_print(cmd_ctx, "------------------------- | "
4394                         "----------------------------------------");
4395         while (teap)
4396         {
4397                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4398                 command_print(cmd_ctx, "%-25s | %s",
4399                                 opt->name, Jim_GetString(teap->body, NULL));
4400                 teap = teap->next;
4401         }
4402         command_print(cmd_ctx, "***END***");
4403         return JIM_OK;
4404 }
4405 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4406 {
4407         if (argc != 1)
4408         {
4409                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4410                 return JIM_ERR;
4411         }
4412         struct target *target = Jim_CmdPrivData(interp);
4413         Jim_SetResultString(interp, target_state_name(target), -1);
4414         return JIM_OK;
4415 }
4416 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4417 {
4418         Jim_GetOptInfo goi;
4419         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4420         if (goi.argc != 1)
4421         {
4422                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4423                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4424                 return JIM_ERR;
4425         }
4426         Jim_Nvp *n;
4427         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4428         if (e != JIM_OK)
4429         {
4430                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4431                 return e;
4432         }
4433         struct target *target = Jim_CmdPrivData(interp);
4434         target_handle_event(target, n->value);
4435         return JIM_OK;
4436 }
4437
4438 static const struct command_registration target_instance_command_handlers[] = {
4439         {
4440                 .name = "configure",
4441                 .mode = COMMAND_CONFIG,
4442                 .jim_handler = jim_target_configure,
4443                 .help  = "configure a new target for use",
4444                 .usage = "[target_attribute ...]",
4445         },
4446         {
4447                 .name = "cget",
4448                 .mode = COMMAND_ANY,
4449                 .jim_handler = jim_target_configure,
4450                 .help  = "returns the specified target attribute",
4451                 .usage = "target_attribute",
4452         },
4453         {
4454                 .name = "mww",
4455                 .mode = COMMAND_EXEC,
4456                 .jim_handler = jim_target_mw,
4457                 .help = "Write 32-bit word(s) to target memory",
4458                 .usage = "address data [count]",
4459         },
4460         {
4461                 .name = "mwh",
4462                 .mode = COMMAND_EXEC,
4463                 .jim_handler = jim_target_mw,
4464                 .help = "Write 16-bit half-word(s) to target memory",
4465                 .usage = "address data [count]",
4466         },
4467         {
4468                 .name = "mwb",
4469                 .mode = COMMAND_EXEC,
4470                 .jim_handler = jim_target_mw,
4471                 .help = "Write byte(s) to target memory",
4472                 .usage = "address data [count]",
4473         },
4474         {
4475                 .name = "mdw",
4476                 .mode = COMMAND_EXEC,
4477                 .jim_handler = jim_target_md,
4478                 .help = "Display target memory as 32-bit words",
4479                 .usage = "address [count]",
4480         },
4481         {
4482                 .name = "mdh",
4483                 .mode = COMMAND_EXEC,
4484                 .jim_handler = jim_target_md,
4485                 .help = "Display target memory as 16-bit half-words",
4486                 .usage = "address [count]",
4487         },
4488         {
4489                 .name = "mdb",
4490                 .mode = COMMAND_EXEC,
4491                 .jim_handler = jim_target_md,
4492                 .help = "Display target memory as 8-bit bytes",
4493                 .usage = "address [count]",
4494         },
4495         {
4496                 .name = "array2mem",
4497                 .mode = COMMAND_EXEC,
4498                 .jim_handler = jim_target_array2mem,
4499                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4500                         "to target memory",
4501                 .usage = "arrayname bitwidth address count",
4502         },
4503         {
4504                 .name = "mem2array",
4505                 .mode = COMMAND_EXEC,
4506                 .jim_handler = jim_target_mem2array,
4507                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4508                         "from target memory",
4509                 .usage = "arrayname bitwidth address count",
4510         },
4511         {
4512                 .name = "eventlist",
4513                 .mode = COMMAND_EXEC,
4514                 .jim_handler = jim_target_event_list,
4515                 .help = "displays a table of events defined for this target",
4516         },
4517         {
4518                 .name = "curstate",
4519                 .mode = COMMAND_EXEC,
4520                 .jim_handler = jim_target_current_state,
4521                 .help = "displays the current state of this target",
4522         },
4523         {
4524                 .name = "arp_examine",
4525                 .mode = COMMAND_EXEC,
4526                 .jim_handler = jim_target_examine,
4527                 .help = "used internally for reset processing",
4528         },
4529         {
4530                 .name = "arp_halt_gdb",
4531                 .mode = COMMAND_EXEC,
4532                 .jim_handler = jim_target_halt_gdb,
4533                 .help = "used internally for reset processing to halt GDB",
4534         },
4535         {
4536                 .name = "arp_poll",
4537                 .mode = COMMAND_EXEC,
4538                 .jim_handler = jim_target_poll,
4539                 .help = "used internally for reset processing",
4540         },
4541         {
4542                 .name = "arp_reset",
4543                 .mode = COMMAND_EXEC,
4544                 .jim_handler = jim_target_reset,
4545                 .help = "used internally for reset processing",
4546         },
4547         {
4548                 .name = "arp_halt",
4549                 .mode = COMMAND_EXEC,
4550                 .jim_handler = jim_target_halt,
4551                 .help = "used internally for reset processing",
4552         },
4553         {
4554                 .name = "arp_waitstate",
4555                 .mode = COMMAND_EXEC,
4556                 .jim_handler = jim_target_wait_state,
4557                 .help = "used internally for reset processing",
4558         },
4559         {
4560                 .name = "invoke-event",
4561                 .mode = COMMAND_EXEC,
4562                 .jim_handler = jim_target_invoke_event,
4563                 .help = "invoke handler for specified event",
4564                 .usage = "event_name",
4565         },
4566         COMMAND_REGISTRATION_DONE
4567 };
4568
4569 static int target_create(Jim_GetOptInfo *goi)
4570 {
4571         Jim_Obj *new_cmd;
4572         Jim_Cmd *cmd;
4573         const char *cp;
4574         char *cp2;
4575         int e;
4576         int x;
4577         struct target *target;
4578         struct command_context *cmd_ctx;
4579
4580         cmd_ctx = current_command_context(goi->interp);
4581         assert (cmd_ctx != NULL);
4582
4583         if (goi->argc < 3) {
4584                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4585                 return JIM_ERR;
4586         }
4587
4588         /* COMMAND */
4589         Jim_GetOpt_Obj(goi, &new_cmd);
4590         /* does this command exist? */
4591         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4592         if (cmd) {
4593                 cp = Jim_GetString(new_cmd, NULL);
4594                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4595                 return JIM_ERR;
4596         }
4597
4598         /* TYPE */
4599         e = Jim_GetOpt_String(goi, &cp2, NULL);
4600         cp = cp2;
4601         /* now does target type exist */
4602         for (x = 0 ; target_types[x] ; x++) {
4603                 if (0 == strcmp(cp, target_types[x]->name)) {
4604                         /* found */
4605                         break;
4606                 }
4607         }
4608         if (target_types[x] == NULL) {
4609                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4610                 for (x = 0 ; target_types[x] ; x++) {
4611                         if (target_types[x + 1]) {
4612                                 Jim_AppendStrings(goi->interp,
4613                                                                    Jim_GetResult(goi->interp),
4614                                                                    target_types[x]->name,
4615                                                                    ", ", NULL);
4616                         } else {
4617                                 Jim_AppendStrings(goi->interp,
4618                                                                    Jim_GetResult(goi->interp),
4619                                                                    " or ",
4620                                                                    target_types[x]->name,NULL);
4621                         }
4622                 }
4623                 return JIM_ERR;
4624         }
4625
4626         /* Create it */
4627         target = calloc(1,sizeof(struct target));
4628         /* set target number */
4629         target->target_number = new_target_number();
4630
4631         /* allocate memory for each unique target type */
4632         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4633
4634         memcpy(target->type, target_types[x], sizeof(struct target_type));
4635
4636         /* will be set by "-endian" */
4637         target->endianness = TARGET_ENDIAN_UNKNOWN;
4638
4639         target->working_area        = 0x0;
4640         target->working_area_size   = 0x0;
4641         target->working_areas       = NULL;
4642         target->backup_working_area = 0;
4643
4644         target->state               = TARGET_UNKNOWN;
4645         target->debug_reason        = DBG_REASON_UNDEFINED;
4646         target->reg_cache           = NULL;
4647         target->breakpoints         = NULL;
4648         target->watchpoints         = NULL;
4649         target->next                = NULL;
4650         target->arch_info           = NULL;
4651
4652         target->display             = 1;
4653
4654         target->halt_issued                     = false;
4655
4656         /* initialize trace information */
4657         target->trace_info = malloc(sizeof(struct trace));
4658         target->trace_info->num_trace_points         = 0;
4659         target->trace_info->trace_points_size        = 0;
4660         target->trace_info->trace_points             = NULL;
4661         target->trace_info->trace_history_size       = 0;
4662         target->trace_info->trace_history            = NULL;
4663         target->trace_info->trace_history_pos        = 0;
4664         target->trace_info->trace_history_overflowed = 0;
4665
4666         target->dbgmsg          = NULL;
4667         target->dbg_msg_enabled = 0;
4668
4669         target->endianness = TARGET_ENDIAN_UNKNOWN;
4670
4671         /* Do the rest as "configure" options */
4672         goi->isconfigure = 1;
4673         e = target_configure(goi, target);
4674
4675         if (target->tap == NULL)
4676         {
4677                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4678                 e = JIM_ERR;
4679         }
4680
4681         if (e != JIM_OK) {
4682                 free(target->type);
4683                 free(target);
4684                 return e;
4685         }
4686
4687         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4688                 /* default endian to little if not specified */
4689                 target->endianness = TARGET_LITTLE_ENDIAN;
4690         }
4691
4692         /* incase variant is not set */
4693         if (!target->variant)
4694                 target->variant = strdup("");
4695
4696         cp = Jim_GetString(new_cmd, NULL);
4697         target->cmd_name = strdup(cp);
4698
4699         /* create the target specific commands */
4700         if (target->type->commands) {
4701                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4702                 if (ERROR_OK != e)
4703                         LOG_ERROR("unable to register '%s' commands", cp);
4704         }
4705         if (target->type->target_create) {
4706                 (*(target->type->target_create))(target, goi->interp);
4707         }
4708
4709         /* append to end of list */
4710         {
4711                 struct target **tpp;
4712                 tpp = &(all_targets);
4713                 while (*tpp) {
4714                         tpp = &((*tpp)->next);
4715                 }
4716                 *tpp = target;
4717         }
4718
4719         /* now - create the new target name command */
4720         const const struct command_registration target_subcommands[] = {
4721                 {
4722                         .chain = target_instance_command_handlers,
4723                 },
4724                 {
4725                         .chain = target->type->commands,
4726                 },
4727                 COMMAND_REGISTRATION_DONE
4728         };
4729         const const struct command_registration target_commands[] = {
4730                 {
4731                         .name = cp,
4732                         .mode = COMMAND_ANY,
4733                         .help = "target command group",
4734                         .chain = target_subcommands,
4735                 },
4736                 COMMAND_REGISTRATION_DONE
4737         };
4738         e = register_commands(cmd_ctx, NULL, target_commands);
4739         if (ERROR_OK != e)
4740                 return JIM_ERR;
4741
4742         struct command *c = command_find_in_context(cmd_ctx, cp);
4743         assert(c);
4744         command_set_handler_data(c, target);
4745
4746         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4747 }
4748
4749 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4750 {
4751         if (argc != 1)
4752         {
4753                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4754                 return JIM_ERR;
4755         }
4756         struct command_context *cmd_ctx = current_command_context(interp);
4757         assert (cmd_ctx != NULL);
4758
4759         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4760         return JIM_OK;
4761 }
4762
4763 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4764 {
4765         if (argc != 1)
4766         {
4767                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4768                 return JIM_ERR;
4769         }
4770         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4771         for (unsigned x = 0; NULL != target_types[x]; x++)
4772         {
4773                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4774                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4775         }
4776         return JIM_OK;
4777 }
4778
4779 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4780 {
4781         if (argc != 1)
4782         {
4783                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4784                 return JIM_ERR;
4785         }
4786         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4787         struct target *target = all_targets;
4788         while (target)
4789         {
4790                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4791                         Jim_NewStringObj(interp, target_name(target), -1));
4792                 target = target->next;
4793         }
4794         return JIM_OK;
4795 }
4796
4797 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4798 {
4799         Jim_GetOptInfo goi;
4800         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4801         if (goi.argc < 3)
4802         {
4803                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4804                         "<name> <target_type> [<target_options> ...]");
4805                 return JIM_ERR;
4806         }
4807         return target_create(&goi);
4808 }
4809
4810 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4811 {
4812         Jim_GetOptInfo goi;
4813         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4814
4815         /* It's OK to remove this mechanism sometime after August 2010 or so */
4816         LOG_WARNING("don't use numbers as target identifiers; use names");
4817         if (goi.argc != 1)
4818         {
4819                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4820                 return JIM_ERR;
4821         }
4822         jim_wide w;
4823         int e = Jim_GetOpt_Wide(&goi, &w);
4824         if (e != JIM_OK)
4825                 return JIM_ERR;
4826
4827         struct target *target;
4828         for (target = all_targets; NULL != target; target = target->next)
4829         {
4830                 if (target->target_number != w)
4831                         continue;
4832
4833                 Jim_SetResultString(goi.interp, target_name(target), -1);
4834                 return JIM_OK;
4835         }
4836         Jim_SetResult_sprintf(goi.interp,
4837                         "Target: number %d does not exist", (int)(w));
4838         return JIM_ERR;
4839 }
4840
4841 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4842 {
4843         if (argc != 1)
4844         {
4845                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4846                 return JIM_ERR;
4847         }
4848         unsigned count = 0;
4849         struct target *target = all_targets;
4850         while (NULL != target)
4851         {
4852                 target = target->next;
4853                 count++;
4854         }
4855         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4856         return JIM_OK;
4857 }
4858
4859 static const struct command_registration target_subcommand_handlers[] = {
4860         {
4861                 .name = "init",
4862                 .mode = COMMAND_CONFIG,
4863                 .handler = handle_target_init_command,
4864                 .help = "initialize targets",
4865         },
4866         {
4867                 .name = "create",
4868                 /* REVISIT this should be COMMAND_CONFIG ... */
4869                 .mode = COMMAND_ANY,
4870                 .jim_handler = jim_target_create,
4871                 .usage = "name type '-chain-position' name [options ...]",
4872                 .help = "Creates and selects a new target",
4873         },
4874         {
4875                 .name = "current",
4876                 .mode = COMMAND_ANY,
4877                 .jim_handler = jim_target_current,
4878                 .help = "Returns the currently selected target",
4879         },
4880         {
4881                 .name = "types",
4882                 .mode = COMMAND_ANY,
4883                 .jim_handler = jim_target_types,
4884                 .help = "Returns the available target types as "
4885                                 "a list of strings",
4886         },
4887         {
4888                 .name = "names",
4889                 .mode = COMMAND_ANY,
4890                 .jim_handler = jim_target_names,
4891                 .help = "Returns the names of all targets as a list of strings",
4892         },
4893         {
4894                 .name = "number",
4895                 .mode = COMMAND_ANY,
4896                 .jim_handler = jim_target_number,
4897                 .usage = "number",
4898                 .help = "Returns the name of the numbered target "
4899                         "(DEPRECATED)",
4900         },
4901         {
4902                 .name = "count",
4903                 .mode = COMMAND_ANY,
4904                 .jim_handler = jim_target_count,
4905                 .help = "Returns the number of targets as an integer "
4906                         "(DEPRECATED)",
4907         },
4908         COMMAND_REGISTRATION_DONE
4909 };
4910
4911 struct FastLoad
4912 {
4913         uint32_t address;
4914         uint8_t *data;
4915         int length;
4916
4917 };
4918
4919 static int fastload_num;
4920 static struct FastLoad *fastload;
4921
4922 static void free_fastload(void)
4923 {
4924         if (fastload != NULL)
4925         {
4926                 int i;
4927                 for (i = 0; i < fastload_num; i++)
4928                 {
4929                         if (fastload[i].data)
4930                                 free(fastload[i].data);
4931                 }
4932                 free(fastload);
4933                 fastload = NULL;
4934         }
4935 }
4936
4937
4938
4939
4940 COMMAND_HANDLER(handle_fast_load_image_command)
4941 {
4942         uint8_t *buffer;
4943         size_t buf_cnt;
4944         uint32_t image_size;
4945         uint32_t min_address = 0;
4946         uint32_t max_address = 0xffffffff;
4947         int i;
4948
4949         struct image image;
4950
4951         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4952                         &image, &min_address, &max_address);
4953         if (ERROR_OK != retval)
4954                 return retval;
4955
4956         struct duration bench;
4957         duration_start(&bench);
4958
4959         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4960         {
4961                 return ERROR_OK;
4962         }
4963
4964         image_size = 0x0;
4965         retval = ERROR_OK;
4966         fastload_num = image.num_sections;
4967         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4968         if (fastload == NULL)
4969         {
4970                 image_close(&image);
4971                 return ERROR_FAIL;
4972         }
4973         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4974         for (i = 0; i < image.num_sections; i++)
4975         {
4976                 buffer = malloc(image.sections[i].size);
4977                 if (buffer == NULL)
4978                 {
4979                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4980                                                   (int)(image.sections[i].size));
4981                         break;
4982                 }
4983
4984                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4985                 {
4986                         free(buffer);
4987                         break;
4988                 }
4989
4990                 uint32_t offset = 0;
4991                 uint32_t length = buf_cnt;
4992
4993
4994                 /* DANGER!!! beware of unsigned comparision here!!! */
4995
4996                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4997                                 (image.sections[i].base_address < max_address))
4998                 {
4999                         if (image.sections[i].base_address < min_address)
5000                         {
5001                                 /* clip addresses below */
5002                                 offset += min_address-image.sections[i].base_address;
5003                                 length -= offset;
5004                         }
5005
5006                         if (image.sections[i].base_address + buf_cnt > max_address)
5007                         {
5008                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5009                         }
5010
5011                         fastload[i].address = image.sections[i].base_address + offset;
5012                         fastload[i].data = malloc(length);
5013                         if (fastload[i].data == NULL)
5014                         {
5015                                 free(buffer);
5016                                 break;
5017                         }
5018                         memcpy(fastload[i].data, buffer + offset, length);
5019                         fastload[i].length = length;
5020
5021                         image_size += length;
5022                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5023                                                   (unsigned int)length,
5024                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5025                 }
5026
5027                 free(buffer);
5028         }
5029
5030         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
5031         {
5032                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5033                                 "in %fs (%0.3f KiB/s)", image_size,
5034                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5035
5036                 command_print(CMD_CTX,
5037                                 "WARNING: image has not been loaded to target!"
5038                                 "You can issue a 'fast_load' to finish loading.");
5039         }
5040
5041         image_close(&image);
5042
5043         if (retval != ERROR_OK)
5044         {
5045                 free_fastload();
5046         }
5047
5048         return retval;
5049 }
5050
5051 COMMAND_HANDLER(handle_fast_load_command)
5052 {
5053         if (CMD_ARGC > 0)
5054                 return ERROR_COMMAND_SYNTAX_ERROR;
5055         if (fastload == NULL)
5056         {
5057                 LOG_ERROR("No image in memory");
5058                 return ERROR_FAIL;
5059         }
5060         int i;
5061         int ms = timeval_ms();
5062         int size = 0;
5063         int retval = ERROR_OK;
5064         for (i = 0; i < fastload_num;i++)
5065         {
5066                 struct target *target = get_current_target(CMD_CTX);
5067                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5068                                           (unsigned int)(fastload[i].address),
5069                                           (unsigned int)(fastload[i].length));
5070                 if (retval == ERROR_OK)
5071                 {
5072                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5073                 }
5074                 size += fastload[i].length;
5075         }
5076         int after = timeval_ms();
5077         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5078         return retval;
5079 }
5080
5081 static const struct command_registration target_command_handlers[] = {
5082         {
5083                 .name = "targets",
5084                 .handler = handle_targets_command,
5085                 .mode = COMMAND_ANY,
5086                 .help = "change current default target (one parameter) "
5087                         "or prints table of all targets (no parameters)",
5088                 .usage = "[target]",
5089         },
5090         {
5091                 .name = "target",
5092                 .mode = COMMAND_CONFIG,
5093                 .help = "configure target",
5094
5095                 .chain = target_subcommand_handlers,
5096         },
5097         COMMAND_REGISTRATION_DONE
5098 };
5099
5100 int target_register_commands(struct command_context *cmd_ctx)
5101 {
5102         return register_commands(cmd_ctx, NULL, target_command_handlers);
5103 }
5104
5105 static bool target_reset_nag = true;
5106
5107 bool get_target_reset_nag(void)
5108 {
5109         return target_reset_nag;
5110 }
5111
5112 COMMAND_HANDLER(handle_target_reset_nag)
5113 {
5114         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5115                         &target_reset_nag, "Nag after each reset about options to improve "
5116                         "performance");
5117 }
5118
5119 static const struct command_registration target_exec_command_handlers[] = {
5120         {
5121                 .name = "fast_load_image",
5122                 .handler = handle_fast_load_image_command,
5123                 .mode = COMMAND_ANY,
5124                 .help = "Load image into server memory for later use by "
5125                         "fast_load; primarily for profiling",
5126                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5127                         "[min_address [max_length]]",
5128         },
5129         {
5130                 .name = "fast_load",
5131                 .handler = handle_fast_load_command,
5132                 .mode = COMMAND_EXEC,
5133                 .help = "loads active fast load image to current target "
5134                         "- mainly for profiling purposes",
5135         },
5136         {
5137                 .name = "profile",
5138                 .handler = handle_profile_command,
5139                 .mode = COMMAND_EXEC,
5140                 .help = "profiling samples the CPU PC",
5141         },
5142         /** @todo don't register virt2phys() unless target supports it */
5143         {
5144                 .name = "virt2phys",
5145                 .handler = handle_virt2phys_command,
5146                 .mode = COMMAND_ANY,
5147                 .help = "translate a virtual address into a physical address",
5148                 .usage = "virtual_address",
5149         },
5150         {
5151                 .name = "reg",
5152                 .handler = handle_reg_command,
5153                 .mode = COMMAND_EXEC,
5154                 .help = "display or set a register; with no arguments, "
5155                         "displays all registers and their values",
5156                 .usage = "[(register_name|register_number) [value]]",
5157         },
5158         {
5159                 .name = "poll",
5160                 .handler = handle_poll_command,
5161                 .mode = COMMAND_EXEC,
5162                 .help = "poll target state; or reconfigure background polling",
5163                 .usage = "['on'|'off']",
5164         },
5165         {
5166                 .name = "wait_halt",
5167                 .handler = handle_wait_halt_command,
5168                 .mode = COMMAND_EXEC,
5169                 .help = "wait up to the specified number of milliseconds "
5170                         "(default 5) for a previously requested halt",
5171                 .usage = "[milliseconds]",
5172         },
5173         {
5174                 .name = "halt",
5175                 .handler = handle_halt_command,
5176                 .mode = COMMAND_EXEC,
5177                 .help = "request target to halt, then wait up to the specified"
5178                         "number of milliseconds (default 5) for it to complete",
5179                 .usage = "[milliseconds]",
5180         },
5181         {
5182                 .name = "resume",
5183                 .handler = handle_resume_command,
5184                 .mode = COMMAND_EXEC,
5185                 .help = "resume target execution from current PC or address",
5186                 .usage = "[address]",
5187         },
5188         {
5189                 .name = "reset",
5190                 .handler = handle_reset_command,
5191                 .mode = COMMAND_EXEC,
5192                 .usage = "[run|halt|init]",
5193                 .help = "Reset all targets into the specified mode."
5194                         "Default reset mode is run, if not given.",
5195         },
5196         {
5197                 .name = "soft_reset_halt",
5198                 .handler = handle_soft_reset_halt_command,
5199                 .mode = COMMAND_EXEC,
5200                 .help = "halt the target and do a soft reset",
5201         },
5202         {
5203                 .name = "step",
5204                 .handler = handle_step_command,
5205                 .mode = COMMAND_EXEC,
5206                 .help = "step one instruction from current PC or address",
5207                 .usage = "[address]",
5208         },
5209         {
5210                 .name = "mdw",
5211                 .handler = handle_md_command,
5212                 .mode = COMMAND_EXEC,
5213                 .help = "display memory words",
5214                 .usage = "['phys'] address [count]",
5215         },
5216         {
5217                 .name = "mdh",
5218                 .handler = handle_md_command,
5219                 .mode = COMMAND_EXEC,
5220                 .help = "display memory half-words",
5221                 .usage = "['phys'] address [count]",
5222         },
5223         {
5224                 .name = "mdb",
5225                 .handler = handle_md_command,
5226                 .mode = COMMAND_EXEC,
5227                 .help = "display memory bytes",
5228                 .usage = "['phys'] address [count]",
5229         },
5230         {
5231                 .name = "mww",
5232                 .handler = handle_mw_command,
5233                 .mode = COMMAND_EXEC,
5234                 .help = "write memory word",
5235                 .usage = "['phys'] address value [count]",
5236         },
5237         {
5238                 .name = "mwh",
5239                 .handler = handle_mw_command,
5240                 .mode = COMMAND_EXEC,
5241                 .help = "write memory half-word",
5242                 .usage = "['phys'] address value [count]",
5243         },
5244         {
5245                 .name = "mwb",
5246                 .handler = handle_mw_command,
5247                 .mode = COMMAND_EXEC,
5248                 .help = "write memory byte",
5249                 .usage = "['phys'] address value [count]",
5250         },
5251         {
5252                 .name = "bp",
5253                 .handler = handle_bp_command,
5254                 .mode = COMMAND_EXEC,
5255                 .help = "list or set hardware or software breakpoint",
5256                 .usage = "[address length ['hw']]",
5257         },
5258         {
5259                 .name = "rbp",
5260                 .handler = handle_rbp_command,
5261                 .mode = COMMAND_EXEC,
5262                 .help = "remove breakpoint",
5263                 .usage = "address",
5264         },
5265         {
5266                 .name = "wp",
5267                 .handler = handle_wp_command,
5268                 .mode = COMMAND_EXEC,
5269                 .help = "list (no params) or create watchpoints",
5270                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5271         },
5272         {
5273                 .name = "rwp",
5274                 .handler = handle_rwp_command,
5275                 .mode = COMMAND_EXEC,
5276                 .help = "remove watchpoint",
5277                 .usage = "address",
5278         },
5279         {
5280                 .name = "load_image",
5281                 .handler = handle_load_image_command,
5282                 .mode = COMMAND_EXEC,
5283                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5284                         "[min_address] [max_length]",
5285         },
5286         {
5287                 .name = "dump_image",
5288                 .handler = handle_dump_image_command,
5289                 .mode = COMMAND_EXEC,
5290                 .usage = "filename address size",
5291         },
5292         {
5293                 .name = "verify_image",
5294                 .handler = handle_verify_image_command,
5295                 .mode = COMMAND_EXEC,
5296                 .usage = "filename [offset [type]]",
5297         },
5298         {
5299                 .name = "test_image",
5300                 .handler = handle_test_image_command,
5301                 .mode = COMMAND_EXEC,
5302                 .usage = "filename [offset [type]]",
5303         },
5304         {
5305                 .name = "mem2array",
5306                 .mode = COMMAND_EXEC,
5307                 .jim_handler = jim_mem2array,
5308                 .help = "read 8/16/32 bit memory and return as a TCL array "
5309                         "for script processing",
5310                 .usage = "arrayname bitwidth address count",
5311         },
5312         {
5313                 .name = "array2mem",
5314                 .mode = COMMAND_EXEC,
5315                 .jim_handler = jim_array2mem,
5316                 .help = "convert a TCL array to memory locations "
5317                         "and write the 8/16/32 bit values",
5318                 .usage = "arrayname bitwidth address count",
5319         },
5320         {
5321                 .name = "reset_nag",
5322                 .handler = handle_target_reset_nag,
5323                 .mode = COMMAND_ANY,
5324                 .help = "Nag after each reset about options that could have been "
5325                                 "enabled to improve performance. ",
5326                 .usage = "['enable'|'disable']",
5327         },
5328         COMMAND_REGISTRATION_DONE
5329 };
5330 static int target_register_user_commands(struct command_context *cmd_ctx)
5331 {
5332         int retval = ERROR_OK;
5333         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5334                 return retval;
5335
5336         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5337                 return retval;
5338
5339
5340         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5341 }