Restore deleted '!' character
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   This program is free software; you can redistribute it and/or modify  *
18  *   it under the terms of the GNU General Public License as published by  *
19  *   the Free Software Foundation; either version 2 of the License, or     *
20  *   (at your option) any later version.                                   *
21  *                                                                         *
22  *   This program is distributed in the hope that it will be useful,       *
23  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
24  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
25  *   GNU General Public License for more details.                          *
26  *                                                                         *
27  *   You should have received a copy of the GNU General Public License     *
28  *   along with this program; if not, write to the                         *
29  *   Free Software Foundation, Inc.,                                       *
30  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
31  ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include <helper/time_support.h>
37 #include <jtag/jtag.h>
38 #include <flash/nor/core.h>
39
40 #include "target.h"
41 #include "target_type.h"
42 #include "target_request.h"
43 #include "breakpoints.h"
44 #include "register.h"
45 #include "trace.h"
46 #include "image.h"
47
48
49 static int target_array2mem(Jim_Interp *interp, struct target *target,
50                 int argc, Jim_Obj *const *argv);
51 static int target_mem2array(Jim_Interp *interp, struct target *target,
52                 int argc, Jim_Obj *const *argv);
53
54 /* targets */
55 extern struct target_type arm7tdmi_target;
56 extern struct target_type arm720t_target;
57 extern struct target_type arm9tdmi_target;
58 extern struct target_type arm920t_target;
59 extern struct target_type arm966e_target;
60 extern struct target_type arm926ejs_target;
61 extern struct target_type fa526_target;
62 extern struct target_type feroceon_target;
63 extern struct target_type dragonite_target;
64 extern struct target_type xscale_target;
65 extern struct target_type cortexm3_target;
66 extern struct target_type cortexa8_target;
67 extern struct target_type arm11_target;
68 extern struct target_type mips_m4k_target;
69 extern struct target_type avr_target;
70 extern struct target_type dsp563xx_target;
71 extern struct target_type testee_target;
72
73 struct target_type *target_types[] =
74 {
75         &arm7tdmi_target,
76         &arm9tdmi_target,
77         &arm920t_target,
78         &arm720t_target,
79         &arm966e_target,
80         &arm926ejs_target,
81         &fa526_target,
82         &feroceon_target,
83         &dragonite_target,
84         &xscale_target,
85         &cortexm3_target,
86         &cortexa8_target,
87         &arm11_target,
88         &mips_m4k_target,
89         &avr_target,
90         &dsp563xx_target,
91         &testee_target,
92         NULL,
93 };
94
95 struct target *all_targets = NULL;
96 struct target_event_callback *target_event_callbacks = NULL;
97 struct target_timer_callback *target_timer_callbacks = NULL;
98
99 static const Jim_Nvp nvp_assert[] = {
100         { .name = "assert", NVP_ASSERT },
101         { .name = "deassert", NVP_DEASSERT },
102         { .name = "T", NVP_ASSERT },
103         { .name = "F", NVP_DEASSERT },
104         { .name = "t", NVP_ASSERT },
105         { .name = "f", NVP_DEASSERT },
106         { .name = NULL, .value = -1 }
107 };
108
109 static const Jim_Nvp nvp_error_target[] = {
110         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
111         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
112         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
113         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
114         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
115         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
116         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
117         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
118         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
119         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
120         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
121         { .value = -1, .name = NULL }
122 };
123
124 const char *target_strerror_safe(int err)
125 {
126         const Jim_Nvp *n;
127
128         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
129         if (n->name == NULL) {
130                 return "unknown";
131         } else {
132                 return n->name;
133         }
134 }
135
136 static const Jim_Nvp nvp_target_event[] = {
137         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
138         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
139
140         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
141         { .value = TARGET_EVENT_HALTED, .name = "halted" },
142         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
143         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
144         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
145
146         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
147         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
148
149         /* historical name */
150
151         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
152
153         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
154         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
155         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
156         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
157         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
158         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
159         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
160         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
161         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
162         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
163         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
164
165         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
166         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
167
168         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
169         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
170
171         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
172         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
173
174         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
175         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
176
177         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
178         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
179
180         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
181         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
182         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
183
184         { .name = NULL, .value = -1 }
185 };
186
187 static const Jim_Nvp nvp_target_state[] = {
188         { .name = "unknown", .value = TARGET_UNKNOWN },
189         { .name = "running", .value = TARGET_RUNNING },
190         { .name = "halted",  .value = TARGET_HALTED },
191         { .name = "reset",   .value = TARGET_RESET },
192         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
193         { .name = NULL, .value = -1 },
194 };
195
196 static const Jim_Nvp nvp_target_debug_reason [] = {
197         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
198         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
199         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
200         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
201         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
202         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
203         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
204         { .name = NULL, .value = -1 },
205 };
206
207 static const Jim_Nvp nvp_target_endian[] = {
208         { .name = "big",    .value = TARGET_BIG_ENDIAN },
209         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
210         { .name = "be",     .value = TARGET_BIG_ENDIAN },
211         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
212         { .name = NULL,     .value = -1 },
213 };
214
215 static const Jim_Nvp nvp_reset_modes[] = {
216         { .name = "unknown", .value = RESET_UNKNOWN },
217         { .name = "run"    , .value = RESET_RUN },
218         { .name = "halt"   , .value = RESET_HALT },
219         { .name = "init"   , .value = RESET_INIT },
220         { .name = NULL     , .value = -1 },
221 };
222
223 const char *debug_reason_name(struct target *t)
224 {
225         const char *cp;
226
227         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
228                         t->debug_reason)->name;
229         if (!cp) {
230                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
231                 cp = "(*BUG*unknown*BUG*)";
232         }
233         return cp;
234 }
235
236 const char *
237 target_state_name( struct target *t )
238 {
239         const char *cp;
240         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
241         if( !cp ){
242                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
243                 cp = "(*BUG*unknown*BUG*)";
244         }
245         return cp;
246 }
247
248 /* determine the number of the new target */
249 static int new_target_number(void)
250 {
251         struct target *t;
252         int x;
253
254         /* number is 0 based */
255         x = -1;
256         t = all_targets;
257         while (t) {
258                 if (x < t->target_number) {
259                         x = t->target_number;
260                 }
261                 t = t->next;
262         }
263         return x + 1;
264 }
265
266 /* read a uint32_t from a buffer in target memory endianness */
267 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
268 {
269         if (target->endianness == TARGET_LITTLE_ENDIAN)
270                 return le_to_h_u32(buffer);
271         else
272                 return be_to_h_u32(buffer);
273 }
274
275 /* read a uint16_t from a buffer in target memory endianness */
276 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
277 {
278         if (target->endianness == TARGET_LITTLE_ENDIAN)
279                 return le_to_h_u16(buffer);
280         else
281                 return be_to_h_u16(buffer);
282 }
283
284 /* read a uint8_t from a buffer in target memory endianness */
285 uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
286 {
287         return *buffer & 0x0ff;
288 }
289
290 /* write a uint32_t to a buffer in target memory endianness */
291 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
292 {
293         if (target->endianness == TARGET_LITTLE_ENDIAN)
294                 h_u32_to_le(buffer, value);
295         else
296                 h_u32_to_be(buffer, value);
297 }
298
299 /* write a uint16_t to a buffer in target memory endianness */
300 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 h_u16_to_le(buffer, value);
304         else
305                 h_u16_to_be(buffer, value);
306 }
307
308 /* write a uint8_t to a buffer in target memory endianness */
309 void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
310 {
311         *buffer = value;
312 }
313
314 /* return a pointer to a configured target; id is name or number */
315 struct target *get_target(const char *id)
316 {
317         struct target *target;
318
319         /* try as tcltarget name */
320         for (target = all_targets; target; target = target->next) {
321                 if (target->cmd_name == NULL)
322                         continue;
323                 if (strcmp(id, target->cmd_name) == 0)
324                         return target;
325         }
326
327         /* It's OK to remove this fallback sometime after August 2010 or so */
328
329         /* no match, try as number */
330         unsigned num;
331         if (parse_uint(id, &num) != ERROR_OK)
332                 return NULL;
333
334         for (target = all_targets; target; target = target->next) {
335                 if (target->target_number == (int)num) {
336                         LOG_WARNING("use '%s' as target identifier, not '%u'",
337                                         target->cmd_name, num);
338                         return target;
339                 }
340         }
341
342         return NULL;
343 }
344
345 /* returns a pointer to the n-th configured target */
346 static struct target *get_target_by_num(int num)
347 {
348         struct target *target = all_targets;
349
350         while (target) {
351                 if (target->target_number == num) {
352                         return target;
353                 }
354                 target = target->next;
355         }
356
357         return NULL;
358 }
359
360 struct target* get_current_target(struct command_context *cmd_ctx)
361 {
362         struct target *target = get_target_by_num(cmd_ctx->current_target);
363
364         if (target == NULL)
365         {
366                 LOG_ERROR("BUG: current_target out of bounds");
367                 exit(-1);
368         }
369
370         return target;
371 }
372
373 int target_poll(struct target *target)
374 {
375         int retval;
376
377         /* We can't poll until after examine */
378         if (!target_was_examined(target))
379         {
380                 /* Fail silently lest we pollute the log */
381                 return ERROR_FAIL;
382         }
383
384         retval = target->type->poll(target);
385         if (retval != ERROR_OK)
386                 return retval;
387
388         if (target->halt_issued)
389         {
390                 if (target->state == TARGET_HALTED)
391                 {
392                         target->halt_issued = false;
393                 } else
394                 {
395                         long long t = timeval_ms() - target->halt_issued_time;
396                         if (t>1000)
397                         {
398                                 target->halt_issued = false;
399                                 LOG_INFO("Halt timed out, wake up GDB.");
400                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
401                         }
402                 }
403         }
404
405         return ERROR_OK;
406 }
407
408 int target_halt(struct target *target)
409 {
410         int retval;
411         /* We can't poll until after examine */
412         if (!target_was_examined(target))
413         {
414                 LOG_ERROR("Target not examined yet");
415                 return ERROR_FAIL;
416         }
417
418         retval = target->type->halt(target);
419         if (retval != ERROR_OK)
420                 return retval;
421
422         target->halt_issued = true;
423         target->halt_issued_time = timeval_ms();
424
425         return ERROR_OK;
426 }
427
428 /**
429  * Make the target (re)start executing using its saved execution
430  * context (possibly with some modifications).
431  *
432  * @param target Which target should start executing.
433  * @param current True to use the target's saved program counter instead
434  *      of the address parameter
435  * @param address Optionally used as the program counter.
436  * @param handle_breakpoints True iff breakpoints at the resumption PC
437  *      should be skipped.  (For example, maybe execution was stopped by
438  *      such a breakpoint, in which case it would be counterprodutive to
439  *      let it re-trigger.
440  * @param debug_execution False if all working areas allocated by OpenOCD
441  *      should be released and/or restored to their original contents.
442  *      (This would for example be true to run some downloaded "helper"
443  *      algorithm code, which resides in one such working buffer and uses
444  *      another for data storage.)
445  *
446  * @todo Resolve the ambiguity about what the "debug_execution" flag
447  * signifies.  For example, Target implementations don't agree on how
448  * it relates to invalidation of the register cache, or to whether
449  * breakpoints and watchpoints should be enabled.  (It would seem wrong
450  * to enable breakpoints when running downloaded "helper" algorithms
451  * (debug_execution true), since the breakpoints would be set to match
452  * target firmware being debugged, not the helper algorithm.... and
453  * enabling them could cause such helpers to malfunction (for example,
454  * by overwriting data with a breakpoint instruction.  On the other
455  * hand the infrastructure for running such helpers might use this
456  * procedure but rely on hardware breakpoint to detect termination.)
457  */
458 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
459 {
460         int retval;
461
462         /* We can't poll until after examine */
463         if (!target_was_examined(target))
464         {
465                 LOG_ERROR("Target not examined yet");
466                 return ERROR_FAIL;
467         }
468
469         /* note that resume *must* be asynchronous. The CPU can halt before
470          * we poll. The CPU can even halt at the current PC as a result of
471          * a software breakpoint being inserted by (a bug?) the application.
472          */
473         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
474                 return retval;
475
476         /* Invalidate any cached protect/erase/... flash status, since
477          * almost all targets will now be able modify the flash by
478          * themselves.  We want flash drivers and infrastructure to
479          * be able to rely on (non-invalidated) cached state.
480          *
481          * For now we require that algorithms provided by OpenOCD are
482          * used only by code which properly maintains that  cached state.
483          * state
484          *
485          * REVISIT do the same for NAND ; maybe other flash flavors too...
486          */
487                 if (!target->running_alg)
488                 nor_resume(target);
489         return retval;
490 }
491
492 int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
493 {
494         char buf[100];
495         int retval;
496         Jim_Nvp *n;
497         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
498         if (n->name == NULL) {
499                 LOG_ERROR("invalid reset mode");
500                 return ERROR_FAIL;
501         }
502
503         /* disable polling during reset to make reset event scripts
504          * more predictable, i.e. dr/irscan & pathmove in events will
505          * not have JTAG operations injected into the middle of a sequence.
506          */
507         bool save_poll = jtag_poll_get_enabled();
508
509         jtag_poll_set_enabled(false);
510
511         sprintf(buf, "ocd_process_reset %s", n->name);
512         retval = Jim_Eval(cmd_ctx->interp, buf);
513
514         jtag_poll_set_enabled(save_poll);
515
516         if (retval != JIM_OK) {
517                 Jim_PrintErrorMessage(cmd_ctx->interp);
518                 return ERROR_FAIL;
519         }
520
521         /* We want any events to be processed before the prompt */
522         retval = target_call_timer_callbacks_now();
523
524         struct target *target;
525         for (target = all_targets; target; target = target->next) {
526                 target->type->check_reset(target);
527         }
528
529         return retval;
530 }
531
532 static int identity_virt2phys(struct target *target,
533                 uint32_t virtual, uint32_t *physical)
534 {
535         *physical = virtual;
536         return ERROR_OK;
537 }
538
539 static int no_mmu(struct target *target, int *enabled)
540 {
541         *enabled = 0;
542         return ERROR_OK;
543 }
544
545 static int default_examine(struct target *target)
546 {
547         target_set_examined(target);
548         return ERROR_OK;
549 }
550
551 /* no check by default */
552 static int default_check_reset(struct target *target)
553 {
554         return ERROR_OK;
555 }
556
557 int target_examine_one(struct target *target)
558 {
559         return target->type->examine(target);
560 }
561
562 static int jtag_enable_callback(enum jtag_event event, void *priv)
563 {
564         struct target *target = priv;
565
566         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
567                 return ERROR_OK;
568
569         jtag_unregister_event_callback(jtag_enable_callback, target);
570         return target_examine_one(target);
571 }
572
573
574 /* Targets that correctly implement init + examine, i.e.
575  * no communication with target during init:
576  *
577  * XScale
578  */
579 int target_examine(void)
580 {
581         int retval = ERROR_OK;
582         struct target *target;
583
584         for (target = all_targets; target; target = target->next)
585         {
586                 /* defer examination, but don't skip it */
587                 if (!target->tap->enabled) {
588                         jtag_register_event_callback(jtag_enable_callback,
589                                         target);
590                         continue;
591                 }
592                 if ((retval = target_examine_one(target)) != ERROR_OK)
593                         return retval;
594         }
595         return retval;
596 }
597 const char *target_type_name(struct target *target)
598 {
599         return target->type->name;
600 }
601
602 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
603 {
604         if (!target_was_examined(target))
605         {
606                 LOG_ERROR("Target not examined yet");
607                 return ERROR_FAIL;
608         }
609         return target->type->write_memory_imp(target, address, size, count, buffer);
610 }
611
612 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
613 {
614         if (!target_was_examined(target))
615         {
616                 LOG_ERROR("Target not examined yet");
617                 return ERROR_FAIL;
618         }
619         return target->type->read_memory_imp(target, address, size, count, buffer);
620 }
621
622 static int target_soft_reset_halt_imp(struct target *target)
623 {
624         if (!target_was_examined(target))
625         {
626                 LOG_ERROR("Target not examined yet");
627                 return ERROR_FAIL;
628         }
629         if (!target->type->soft_reset_halt_imp) {
630                 LOG_ERROR("Target %s does not support soft_reset_halt",
631                                 target_name(target));
632                 return ERROR_FAIL;
633         }
634         return target->type->soft_reset_halt_imp(target);
635 }
636
637 /**
638  * Downloads a target-specific native code algorithm to the target,
639  * and executes it.  * Note that some targets may need to set up, enable,
640  * and tear down a breakpoint (hard or * soft) to detect algorithm
641  * termination, while others may support  lower overhead schemes where
642  * soft breakpoints embedded in the algorithm automatically terminate the
643  * algorithm.
644  *
645  * @param target used to run the algorithm
646  * @param arch_info target-specific description of the algorithm.
647  */
648 int target_run_algorithm(struct target *target,
649                 int num_mem_params, struct mem_param *mem_params,
650                 int num_reg_params, struct reg_param *reg_param,
651                 uint32_t entry_point, uint32_t exit_point,
652                 int timeout_ms, void *arch_info)
653 {
654         int retval = ERROR_FAIL;
655
656         if (!target_was_examined(target))
657         {
658                 LOG_ERROR("Target not examined yet");
659                 goto done;
660         }
661         if (!target->type->run_algorithm) {
662                 LOG_ERROR("Target type '%s' does not support %s",
663                                 target_type_name(target), __func__);
664                 goto done;
665         }
666
667         target->running_alg = true;
668         retval = target->type->run_algorithm(target,
669                         num_mem_params, mem_params,
670                         num_reg_params, reg_param,
671                         entry_point, exit_point, timeout_ms, arch_info);
672         target->running_alg = false;
673
674 done:
675         return retval;
676 }
677
678
679 int target_read_memory(struct target *target,
680                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
681 {
682         return target->type->read_memory(target, address, size, count, buffer);
683 }
684
685 int target_read_phys_memory(struct target *target,
686                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
687 {
688         return target->type->read_phys_memory(target, address, size, count, buffer);
689 }
690
691 int target_write_memory(struct target *target,
692                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
693 {
694         return target->type->write_memory(target, address, size, count, buffer);
695 }
696
697 int target_write_phys_memory(struct target *target,
698                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
699 {
700         return target->type->write_phys_memory(target, address, size, count, buffer);
701 }
702
703 int target_bulk_write_memory(struct target *target,
704                 uint32_t address, uint32_t count, uint8_t *buffer)
705 {
706         return target->type->bulk_write_memory(target, address, count, buffer);
707 }
708
709 int target_add_breakpoint(struct target *target,
710                 struct breakpoint *breakpoint)
711 {
712         if (target->state != TARGET_HALTED) {
713                 LOG_WARNING("target %s is not halted", target->cmd_name);
714                 return ERROR_TARGET_NOT_HALTED;
715         }
716         return target->type->add_breakpoint(target, breakpoint);
717 }
718 int target_remove_breakpoint(struct target *target,
719                 struct breakpoint *breakpoint)
720 {
721         return target->type->remove_breakpoint(target, breakpoint);
722 }
723
724 int target_add_watchpoint(struct target *target,
725                 struct watchpoint *watchpoint)
726 {
727         if (target->state != TARGET_HALTED) {
728                 LOG_WARNING("target %s is not halted", target->cmd_name);
729                 return ERROR_TARGET_NOT_HALTED;
730         }
731         return target->type->add_watchpoint(target, watchpoint);
732 }
733 int target_remove_watchpoint(struct target *target,
734                 struct watchpoint *watchpoint)
735 {
736         return target->type->remove_watchpoint(target, watchpoint);
737 }
738
739 int target_get_gdb_reg_list(struct target *target,
740                 struct reg **reg_list[], int *reg_list_size)
741 {
742         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
743 }
744 int target_step(struct target *target,
745                 int current, uint32_t address, int handle_breakpoints)
746 {
747         return target->type->step(target, current, address, handle_breakpoints);
748 }
749
750
751 /**
752  * Reset the @c examined flag for the given target.
753  * Pure paranoia -- targets are zeroed on allocation.
754  */
755 static void target_reset_examined(struct target *target)
756 {
757         target->examined = false;
758 }
759
760 static int
761 err_read_phys_memory(struct target *target, uint32_t address,
762                 uint32_t size, uint32_t count, uint8_t *buffer)
763 {
764         LOG_ERROR("Not implemented: %s", __func__);
765         return ERROR_FAIL;
766 }
767
768 static int
769 err_write_phys_memory(struct target *target, uint32_t address,
770                 uint32_t size, uint32_t count, uint8_t *buffer)
771 {
772         LOG_ERROR("Not implemented: %s", __func__);
773         return ERROR_FAIL;
774 }
775
776 static int handle_target(void *priv);
777
778 static int target_init_one(struct command_context *cmd_ctx,
779                 struct target *target)
780 {
781         target_reset_examined(target);
782
783         struct target_type *type = target->type;
784         if (type->examine == NULL)
785                 type->examine = default_examine;
786
787         if (type->check_reset== NULL)
788                 type->check_reset = default_check_reset;
789
790         int retval = type->init_target(cmd_ctx, target);
791         if (ERROR_OK != retval)
792         {
793                 LOG_ERROR("target '%s' init failed", target_name(target));
794                 return retval;
795         }
796
797         /**
798          * @todo get rid of those *memory_imp() methods, now that all
799          * callers are using target_*_memory() accessors ... and make
800          * sure the "physical" paths handle the same issues.
801          */
802         /* a non-invasive way(in terms of patches) to add some code that
803          * runs before the type->write/read_memory implementation
804          */
805         type->write_memory_imp = target->type->write_memory;
806         type->write_memory = target_write_memory_imp;
807
808         type->read_memory_imp = target->type->read_memory;
809         type->read_memory = target_read_memory_imp;
810
811         type->soft_reset_halt_imp = target->type->soft_reset_halt;
812         type->soft_reset_halt = target_soft_reset_halt_imp;
813
814         /* Sanity-check MMU support ... stub in what we must, to help
815          * implement it in stages, but warn if we need to do so.
816          */
817         if (type->mmu)
818         {
819                 if (type->write_phys_memory == NULL)
820                 {
821                         LOG_ERROR("type '%s' is missing write_phys_memory",
822                                         type->name);
823                         type->write_phys_memory = err_write_phys_memory;
824                 }
825                 if (type->read_phys_memory == NULL)
826                 {
827                         LOG_ERROR("type '%s' is missing read_phys_memory",
828                                         type->name);
829                         type->read_phys_memory = err_read_phys_memory;
830                 }
831                 if (type->virt2phys == NULL)
832                 {
833                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
834                         type->virt2phys = identity_virt2phys;
835                 }
836         }
837         else
838         {
839                 /* Make sure no-MMU targets all behave the same:  make no
840                  * distinction between physical and virtual addresses, and
841                  * ensure that virt2phys() is always an identity mapping.
842                  */
843                 if (type->write_phys_memory || type->read_phys_memory
844                                 || type->virt2phys)
845                 {
846                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
847                 }
848
849                 type->mmu = no_mmu;
850                 type->write_phys_memory = type->write_memory;
851                 type->read_phys_memory = type->read_memory;
852                 type->virt2phys = identity_virt2phys;
853         }
854         return ERROR_OK;
855 }
856
857 int target_init(struct command_context *cmd_ctx)
858 {
859         struct target *target;
860         int retval;
861
862         for (target = all_targets; target; target = target->next)
863         {
864                 retval = target_init_one(cmd_ctx, target);
865                 if (ERROR_OK != retval)
866                         return retval;
867         }
868
869         if (!all_targets)
870                 return ERROR_OK;
871
872         retval = target_register_user_commands(cmd_ctx);
873         if (ERROR_OK != retval)
874                 return retval;
875
876         retval = target_register_timer_callback(&handle_target,
877                         100, 1, cmd_ctx->interp);
878         if (ERROR_OK != retval)
879                 return retval;
880
881         return ERROR_OK;
882 }
883
884 COMMAND_HANDLER(handle_target_init_command)
885 {
886         if (CMD_ARGC != 0)
887                 return ERROR_COMMAND_SYNTAX_ERROR;
888
889         static bool target_initialized = false;
890         if (target_initialized)
891         {
892                 LOG_INFO("'target init' has already been called");
893                 return ERROR_OK;
894         }
895         target_initialized = true;
896
897         LOG_DEBUG("Initializing targets...");
898         return target_init(CMD_CTX);
899 }
900
901 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
902 {
903         struct target_event_callback **callbacks_p = &target_event_callbacks;
904
905         if (callback == NULL)
906         {
907                 return ERROR_INVALID_ARGUMENTS;
908         }
909
910         if (*callbacks_p)
911         {
912                 while ((*callbacks_p)->next)
913                         callbacks_p = &((*callbacks_p)->next);
914                 callbacks_p = &((*callbacks_p)->next);
915         }
916
917         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
918         (*callbacks_p)->callback = callback;
919         (*callbacks_p)->priv = priv;
920         (*callbacks_p)->next = NULL;
921
922         return ERROR_OK;
923 }
924
925 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
926 {
927         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
928         struct timeval now;
929
930         if (callback == NULL)
931         {
932                 return ERROR_INVALID_ARGUMENTS;
933         }
934
935         if (*callbacks_p)
936         {
937                 while ((*callbacks_p)->next)
938                         callbacks_p = &((*callbacks_p)->next);
939                 callbacks_p = &((*callbacks_p)->next);
940         }
941
942         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
943         (*callbacks_p)->callback = callback;
944         (*callbacks_p)->periodic = periodic;
945         (*callbacks_p)->time_ms = time_ms;
946
947         gettimeofday(&now, NULL);
948         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
949         time_ms -= (time_ms % 1000);
950         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
951         if ((*callbacks_p)->when.tv_usec > 1000000)
952         {
953                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
954                 (*callbacks_p)->when.tv_sec += 1;
955         }
956
957         (*callbacks_p)->priv = priv;
958         (*callbacks_p)->next = NULL;
959
960         return ERROR_OK;
961 }
962
963 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
964 {
965         struct target_event_callback **p = &target_event_callbacks;
966         struct target_event_callback *c = target_event_callbacks;
967
968         if (callback == NULL)
969         {
970                 return ERROR_INVALID_ARGUMENTS;
971         }
972
973         while (c)
974         {
975                 struct target_event_callback *next = c->next;
976                 if ((c->callback == callback) && (c->priv == priv))
977                 {
978                         *p = next;
979                         free(c);
980                         return ERROR_OK;
981                 }
982                 else
983                         p = &(c->next);
984                 c = next;
985         }
986
987         return ERROR_OK;
988 }
989
990 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
991 {
992         struct target_timer_callback **p = &target_timer_callbacks;
993         struct target_timer_callback *c = target_timer_callbacks;
994
995         if (callback == NULL)
996         {
997                 return ERROR_INVALID_ARGUMENTS;
998         }
999
1000         while (c)
1001         {
1002                 struct target_timer_callback *next = c->next;
1003                 if ((c->callback == callback) && (c->priv == priv))
1004                 {
1005                         *p = next;
1006                         free(c);
1007                         return ERROR_OK;
1008                 }
1009                 else
1010                         p = &(c->next);
1011                 c = next;
1012         }
1013
1014         return ERROR_OK;
1015 }
1016
1017 int target_call_event_callbacks(struct target *target, enum target_event event)
1018 {
1019         struct target_event_callback *callback = target_event_callbacks;
1020         struct target_event_callback *next_callback;
1021
1022         if (event == TARGET_EVENT_HALTED)
1023         {
1024                 /* execute early halted first */
1025                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1026         }
1027
1028         LOG_DEBUG("target event %i (%s)",
1029                           event,
1030                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1031
1032         target_handle_event(target, event);
1033
1034         while (callback)
1035         {
1036                 next_callback = callback->next;
1037                 callback->callback(target, event, callback->priv);
1038                 callback = next_callback;
1039         }
1040
1041         return ERROR_OK;
1042 }
1043
1044 static int target_timer_callback_periodic_restart(
1045                 struct target_timer_callback *cb, struct timeval *now)
1046 {
1047         int time_ms = cb->time_ms;
1048         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1049         time_ms -= (time_ms % 1000);
1050         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1051         if (cb->when.tv_usec > 1000000)
1052         {
1053                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1054                 cb->when.tv_sec += 1;
1055         }
1056         return ERROR_OK;
1057 }
1058
1059 static int target_call_timer_callback(struct target_timer_callback *cb,
1060                 struct timeval *now)
1061 {
1062         cb->callback(cb->priv);
1063
1064         if (cb->periodic)
1065                 return target_timer_callback_periodic_restart(cb, now);
1066
1067         return target_unregister_timer_callback(cb->callback, cb->priv);
1068 }
1069
1070 static int target_call_timer_callbacks_check_time(int checktime)
1071 {
1072         keep_alive();
1073
1074         struct timeval now;
1075         gettimeofday(&now, NULL);
1076
1077         struct target_timer_callback *callback = target_timer_callbacks;
1078         while (callback)
1079         {
1080                 // cleaning up may unregister and free this callback
1081                 struct target_timer_callback *next_callback = callback->next;
1082
1083                 bool call_it = callback->callback &&
1084                         ((!checktime && callback->periodic) ||
1085                           now.tv_sec > callback->when.tv_sec ||
1086                          (now.tv_sec == callback->when.tv_sec &&
1087                           now.tv_usec >= callback->when.tv_usec));
1088
1089                 if (call_it)
1090                 {
1091                         int retval = target_call_timer_callback(callback, &now);
1092                         if (retval != ERROR_OK)
1093                                 return retval;
1094                 }
1095
1096                 callback = next_callback;
1097         }
1098
1099         return ERROR_OK;
1100 }
1101
1102 int target_call_timer_callbacks(void)
1103 {
1104         return target_call_timer_callbacks_check_time(1);
1105 }
1106
1107 /* invoke periodic callbacks immediately */
1108 int target_call_timer_callbacks_now(void)
1109 {
1110         return target_call_timer_callbacks_check_time(0);
1111 }
1112
1113 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1114 {
1115         struct working_area *c = target->working_areas;
1116         struct working_area *new_wa = NULL;
1117
1118         /* Reevaluate working area address based on MMU state*/
1119         if (target->working_areas == NULL)
1120         {
1121                 int retval;
1122                 int enabled;
1123
1124                 retval = target->type->mmu(target, &enabled);
1125                 if (retval != ERROR_OK)
1126                 {
1127                         return retval;
1128                 }
1129
1130                 if (!enabled) {
1131                         if (target->working_area_phys_spec) {
1132                                 LOG_DEBUG("MMU disabled, using physical "
1133                                         "address for working memory 0x%08x",
1134                                         (unsigned)target->working_area_phys);
1135                                 target->working_area = target->working_area_phys;
1136                         } else {
1137                                 LOG_ERROR("No working memory available. "
1138                                         "Specify -work-area-phys to target.");
1139                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1140                         }
1141                 } else {
1142                         if (target->working_area_virt_spec) {
1143                                 LOG_DEBUG("MMU enabled, using virtual "
1144                                         "address for working memory 0x%08x",
1145                                         (unsigned)target->working_area_virt);
1146                                 target->working_area = target->working_area_virt;
1147                         } else {
1148                                 LOG_ERROR("No working memory available. "
1149                                         "Specify -work-area-virt to target.");
1150                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1151                         }
1152                 }
1153         }
1154
1155         /* only allocate multiples of 4 byte */
1156         if (size % 4)
1157         {
1158                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1159                 size = (size + 3) & (~3);
1160         }
1161
1162         /* see if there's already a matching working area */
1163         while (c)
1164         {
1165                 if ((c->free) && (c->size == size))
1166                 {
1167                         new_wa = c;
1168                         break;
1169                 }
1170                 c = c->next;
1171         }
1172
1173         /* if not, allocate a new one */
1174         if (!new_wa)
1175         {
1176                 struct working_area **p = &target->working_areas;
1177                 uint32_t first_free = target->working_area;
1178                 uint32_t free_size = target->working_area_size;
1179
1180                 c = target->working_areas;
1181                 while (c)
1182                 {
1183                         first_free += c->size;
1184                         free_size -= c->size;
1185                         p = &c->next;
1186                         c = c->next;
1187                 }
1188
1189                 if (free_size < size)
1190                 {
1191                         LOG_WARNING("not enough working area available(requested %u, free %u)",
1192                                     (unsigned)(size), (unsigned)(free_size));
1193                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1194                 }
1195
1196                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1197
1198                 new_wa = malloc(sizeof(struct working_area));
1199                 new_wa->next = NULL;
1200                 new_wa->size = size;
1201                 new_wa->address = first_free;
1202
1203                 if (target->backup_working_area)
1204                 {
1205                         int retval;
1206                         new_wa->backup = malloc(new_wa->size);
1207                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1208                         {
1209                                 free(new_wa->backup);
1210                                 free(new_wa);
1211                                 return retval;
1212                         }
1213                 }
1214                 else
1215                 {
1216                         new_wa->backup = NULL;
1217                 }
1218
1219                 /* put new entry in list */
1220                 *p = new_wa;
1221         }
1222
1223         /* mark as used, and return the new (reused) area */
1224         new_wa->free = 0;
1225         *area = new_wa;
1226
1227         /* user pointer */
1228         new_wa->user = area;
1229
1230         return ERROR_OK;
1231 }
1232
1233 int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1234 {
1235         if (area->free)
1236                 return ERROR_OK;
1237
1238         if (restore && target->backup_working_area)
1239         {
1240                 int retval;
1241                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1242                         return retval;
1243         }
1244
1245         area->free = 1;
1246
1247         /* mark user pointer invalid */
1248         *area->user = NULL;
1249         area->user = NULL;
1250
1251         return ERROR_OK;
1252 }
1253
1254 int target_free_working_area(struct target *target, struct working_area *area)
1255 {
1256         return target_free_working_area_restore(target, area, 1);
1257 }
1258
1259 /* free resources and restore memory, if restoring memory fails,
1260  * free up resources anyway
1261  */
1262 void target_free_all_working_areas_restore(struct target *target, int restore)
1263 {
1264         struct working_area *c = target->working_areas;
1265
1266         while (c)
1267         {
1268                 struct working_area *next = c->next;
1269                 target_free_working_area_restore(target, c, restore);
1270
1271                 if (c->backup)
1272                         free(c->backup);
1273
1274                 free(c);
1275
1276                 c = next;
1277         }
1278
1279         target->working_areas = NULL;
1280 }
1281
1282 void target_free_all_working_areas(struct target *target)
1283 {
1284         target_free_all_working_areas_restore(target, 1);
1285 }
1286
1287 int target_arch_state(struct target *target)
1288 {
1289         int retval;
1290         if (target == NULL)
1291         {
1292                 LOG_USER("No target has been configured");
1293                 return ERROR_OK;
1294         }
1295
1296         LOG_USER("target state: %s", target_state_name( target ));
1297
1298         if (target->state != TARGET_HALTED)
1299                 return ERROR_OK;
1300
1301         retval = target->type->arch_state(target);
1302         return retval;
1303 }
1304
1305 /* Single aligned words are guaranteed to use 16 or 32 bit access
1306  * mode respectively, otherwise data is handled as quickly as
1307  * possible
1308  */
1309 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1310 {
1311         int retval;
1312         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1313                   (int)size, (unsigned)address);
1314
1315         if (!target_was_examined(target))
1316         {
1317                 LOG_ERROR("Target not examined yet");
1318                 return ERROR_FAIL;
1319         }
1320
1321         if (size == 0) {
1322                 return ERROR_OK;
1323         }
1324
1325         if ((address + size - 1) < address)
1326         {
1327                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1328                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1329                                   (unsigned)address,
1330                                   (unsigned)size);
1331                 return ERROR_FAIL;
1332         }
1333
1334         if (((address % 2) == 0) && (size == 2))
1335         {
1336                 return target_write_memory(target, address, 2, 1, buffer);
1337         }
1338
1339         /* handle unaligned head bytes */
1340         if (address % 4)
1341         {
1342                 uint32_t unaligned = 4 - (address % 4);
1343
1344                 if (unaligned > size)
1345                         unaligned = size;
1346
1347                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1348                         return retval;
1349
1350                 buffer += unaligned;
1351                 address += unaligned;
1352                 size -= unaligned;
1353         }
1354
1355         /* handle aligned words */
1356         if (size >= 4)
1357         {
1358                 int aligned = size - (size % 4);
1359
1360                 /* use bulk writes above a certain limit. This may have to be changed */
1361                 if (aligned > 128)
1362                 {
1363                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1364                                 return retval;
1365                 }
1366                 else
1367                 {
1368                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1369                                 return retval;
1370                 }
1371
1372                 buffer += aligned;
1373                 address += aligned;
1374                 size -= aligned;
1375         }
1376
1377         /* handle tail writes of less than 4 bytes */
1378         if (size > 0)
1379         {
1380                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1381                         return retval;
1382         }
1383
1384         return ERROR_OK;
1385 }
1386
1387 /* Single aligned words are guaranteed to use 16 or 32 bit access
1388  * mode respectively, otherwise data is handled as quickly as
1389  * possible
1390  */
1391 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1392 {
1393         int retval;
1394         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1395                           (int)size, (unsigned)address);
1396
1397         if (!target_was_examined(target))
1398         {
1399                 LOG_ERROR("Target not examined yet");
1400                 return ERROR_FAIL;
1401         }
1402
1403         if (size == 0) {
1404                 return ERROR_OK;
1405         }
1406
1407         if ((address + size - 1) < address)
1408         {
1409                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1410                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1411                                   address,
1412                                   size);
1413                 return ERROR_FAIL;
1414         }
1415
1416         if (((address % 2) == 0) && (size == 2))
1417         {
1418                 return target_read_memory(target, address, 2, 1, buffer);
1419         }
1420
1421         /* handle unaligned head bytes */
1422         if (address % 4)
1423         {
1424                 uint32_t unaligned = 4 - (address % 4);
1425
1426                 if (unaligned > size)
1427                         unaligned = size;
1428
1429                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1430                         return retval;
1431
1432                 buffer += unaligned;
1433                 address += unaligned;
1434                 size -= unaligned;
1435         }
1436
1437         /* handle aligned words */
1438         if (size >= 4)
1439         {
1440                 int aligned = size - (size % 4);
1441
1442                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1443                         return retval;
1444
1445                 buffer += aligned;
1446                 address += aligned;
1447                 size -= aligned;
1448         }
1449
1450         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1451         if(size >=2)
1452         {
1453                 int aligned = size - (size%2);
1454                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1455                 if (retval != ERROR_OK)
1456                         return retval;
1457
1458                 buffer += aligned;
1459                 address += aligned;
1460                 size -= aligned;
1461         }
1462         /* handle tail writes of less than 4 bytes */
1463         if (size > 0)
1464         {
1465                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1466                         return retval;
1467         }
1468
1469         return ERROR_OK;
1470 }
1471
1472 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1473 {
1474         uint8_t *buffer;
1475         int retval;
1476         uint32_t i;
1477         uint32_t checksum = 0;
1478         if (!target_was_examined(target))
1479         {
1480                 LOG_ERROR("Target not examined yet");
1481                 return ERROR_FAIL;
1482         }
1483
1484         if ((retval = target->type->checksum_memory(target, address,
1485                 size, &checksum)) != ERROR_OK)
1486         {
1487                 buffer = malloc(size);
1488                 if (buffer == NULL)
1489                 {
1490                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1491                         return ERROR_INVALID_ARGUMENTS;
1492                 }
1493                 retval = target_read_buffer(target, address, size, buffer);
1494                 if (retval != ERROR_OK)
1495                 {
1496                         free(buffer);
1497                         return retval;
1498                 }
1499
1500                 /* convert to target endianess */
1501                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1502                 {
1503                         uint32_t target_data;
1504                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1505                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1506                 }
1507
1508                 retval = image_calculate_checksum(buffer, size, &checksum);
1509                 free(buffer);
1510         }
1511
1512         *crc = checksum;
1513
1514         return retval;
1515 }
1516
1517 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1518 {
1519         int retval;
1520         if (!target_was_examined(target))
1521         {
1522                 LOG_ERROR("Target not examined yet");
1523                 return ERROR_FAIL;
1524         }
1525
1526         if (target->type->blank_check_memory == 0)
1527                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1528
1529         retval = target->type->blank_check_memory(target, address, size, blank);
1530
1531         return retval;
1532 }
1533
1534 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1535 {
1536         uint8_t value_buf[4];
1537         if (!target_was_examined(target))
1538         {
1539                 LOG_ERROR("Target not examined yet");
1540                 return ERROR_FAIL;
1541         }
1542
1543         int retval = target_read_memory(target, address, 4, 1, value_buf);
1544
1545         if (retval == ERROR_OK)
1546         {
1547                 *value = target_buffer_get_u32(target, value_buf);
1548                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1549                                   address,
1550                                   *value);
1551         }
1552         else
1553         {
1554                 *value = 0x0;
1555                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1556                                   address);
1557         }
1558
1559         return retval;
1560 }
1561
1562 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1563 {
1564         uint8_t value_buf[2];
1565         if (!target_was_examined(target))
1566         {
1567                 LOG_ERROR("Target not examined yet");
1568                 return ERROR_FAIL;
1569         }
1570
1571         int retval = target_read_memory(target, address, 2, 1, value_buf);
1572
1573         if (retval == ERROR_OK)
1574         {
1575                 *value = target_buffer_get_u16(target, value_buf);
1576                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1577                                   address,
1578                                   *value);
1579         }
1580         else
1581         {
1582                 *value = 0x0;
1583                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1584                                   address);
1585         }
1586
1587         return retval;
1588 }
1589
1590 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1591 {
1592         int retval = target_read_memory(target, address, 1, 1, value);
1593         if (!target_was_examined(target))
1594         {
1595                 LOG_ERROR("Target not examined yet");
1596                 return ERROR_FAIL;
1597         }
1598
1599         if (retval == ERROR_OK)
1600         {
1601                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1602                                   address,
1603                                   *value);
1604         }
1605         else
1606         {
1607                 *value = 0x0;
1608                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1609                                   address);
1610         }
1611
1612         return retval;
1613 }
1614
1615 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1616 {
1617         int retval;
1618         uint8_t value_buf[4];
1619         if (!target_was_examined(target))
1620         {
1621                 LOG_ERROR("Target not examined yet");
1622                 return ERROR_FAIL;
1623         }
1624
1625         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1626                           address,
1627                           value);
1628
1629         target_buffer_set_u32(target, value_buf, value);
1630         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1631         {
1632                 LOG_DEBUG("failed: %i", retval);
1633         }
1634
1635         return retval;
1636 }
1637
1638 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1639 {
1640         int retval;
1641         uint8_t value_buf[2];
1642         if (!target_was_examined(target))
1643         {
1644                 LOG_ERROR("Target not examined yet");
1645                 return ERROR_FAIL;
1646         }
1647
1648         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1649                           address,
1650                           value);
1651
1652         target_buffer_set_u16(target, value_buf, value);
1653         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1654         {
1655                 LOG_DEBUG("failed: %i", retval);
1656         }
1657
1658         return retval;
1659 }
1660
1661 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1662 {
1663         int retval;
1664         if (!target_was_examined(target))
1665         {
1666                 LOG_ERROR("Target not examined yet");
1667                 return ERROR_FAIL;
1668         }
1669
1670         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1671                           address, value);
1672
1673         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1674         {
1675                 LOG_DEBUG("failed: %i", retval);
1676         }
1677
1678         return retval;
1679 }
1680
1681 COMMAND_HANDLER(handle_targets_command)
1682 {
1683         struct target *target = all_targets;
1684
1685         if (CMD_ARGC == 1)
1686         {
1687                 target = get_target(CMD_ARGV[0]);
1688                 if (target == NULL) {
1689                         command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1690                         goto DumpTargets;
1691                 }
1692                 if (!target->tap->enabled) {
1693                         command_print(CMD_CTX,"Target: TAP %s is disabled, "
1694                                         "can't be the current target\n",
1695                                         target->tap->dotted_name);
1696                         return ERROR_FAIL;
1697                 }
1698
1699                 CMD_CTX->current_target = target->target_number;
1700                 return ERROR_OK;
1701         }
1702 DumpTargets:
1703
1704         target = all_targets;
1705         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1706         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1707         while (target)
1708         {
1709                 const char *state;
1710                 char marker = ' ';
1711
1712                 if (target->tap->enabled)
1713                         state = target_state_name( target );
1714                 else
1715                         state = "tap-disabled";
1716
1717                 if (CMD_CTX->current_target == target->target_number)
1718                         marker = '*';
1719
1720                 /* keep columns lined up to match the headers above */
1721                 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1722                                           target->target_number,
1723                                           marker,
1724                                           target_name(target),
1725                                           target_type_name(target),
1726                                           Jim_Nvp_value2name_simple(nvp_target_endian,
1727                                                                 target->endianness)->name,
1728                                           target->tap->dotted_name,
1729                                           state);
1730                 target = target->next;
1731         }
1732
1733         return ERROR_OK;
1734 }
1735
1736 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1737
1738 static int powerDropout;
1739 static int srstAsserted;
1740
1741 static int runPowerRestore;
1742 static int runPowerDropout;
1743 static int runSrstAsserted;
1744 static int runSrstDeasserted;
1745
1746 static int sense_handler(void)
1747 {
1748         static int prevSrstAsserted = 0;
1749         static int prevPowerdropout = 0;
1750
1751         int retval;
1752         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1753                 return retval;
1754
1755         int powerRestored;
1756         powerRestored = prevPowerdropout && !powerDropout;
1757         if (powerRestored)
1758         {
1759                 runPowerRestore = 1;
1760         }
1761
1762         long long current = timeval_ms();
1763         static long long lastPower = 0;
1764         int waitMore = lastPower + 2000 > current;
1765         if (powerDropout && !waitMore)
1766         {
1767                 runPowerDropout = 1;
1768                 lastPower = current;
1769         }
1770
1771         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1772                 return retval;
1773
1774         int srstDeasserted;
1775         srstDeasserted = prevSrstAsserted && !srstAsserted;
1776
1777         static long long lastSrst = 0;
1778         waitMore = lastSrst + 2000 > current;
1779         if (srstDeasserted && !waitMore)
1780         {
1781                 runSrstDeasserted = 1;
1782                 lastSrst = current;
1783         }
1784
1785         if (!prevSrstAsserted && srstAsserted)
1786         {
1787                 runSrstAsserted = 1;
1788         }
1789
1790         prevSrstAsserted = srstAsserted;
1791         prevPowerdropout = powerDropout;
1792
1793         if (srstDeasserted || powerRestored)
1794         {
1795                 /* Other than logging the event we can't do anything here.
1796                  * Issuing a reset is a particularly bad idea as we might
1797                  * be inside a reset already.
1798                  */
1799         }
1800
1801         return ERROR_OK;
1802 }
1803
1804 /* process target state changes */
1805 static int handle_target(void *priv)
1806 {
1807         Jim_Interp *interp = (Jim_Interp *)priv;
1808         int retval = ERROR_OK;
1809
1810         if (!is_jtag_poll_safe())
1811         {
1812                 /* polling is disabled currently */
1813                 return ERROR_OK;
1814         }
1815
1816         /* we do not want to recurse here... */
1817         static int recursive = 0;
1818         if (! recursive)
1819         {
1820                 recursive = 1;
1821                 sense_handler();
1822                 /* danger! running these procedures can trigger srst assertions and power dropouts.
1823                  * We need to avoid an infinite loop/recursion here and we do that by
1824                  * clearing the flags after running these events.
1825                  */
1826                 int did_something = 0;
1827                 if (runSrstAsserted)
1828                 {
1829                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
1830                         Jim_Eval(interp, "srst_asserted");
1831                         did_something = 1;
1832                 }
1833                 if (runSrstDeasserted)
1834                 {
1835                         Jim_Eval(interp, "srst_deasserted");
1836                         did_something = 1;
1837                 }
1838                 if (runPowerDropout)
1839                 {
1840                         LOG_INFO("Power dropout detected, running power_dropout proc.");
1841                         Jim_Eval(interp, "power_dropout");
1842                         did_something = 1;
1843                 }
1844                 if (runPowerRestore)
1845                 {
1846                         Jim_Eval(interp, "power_restore");
1847                         did_something = 1;
1848                 }
1849
1850                 if (did_something)
1851                 {
1852                         /* clear detect flags */
1853                         sense_handler();
1854                 }
1855
1856                 /* clear action flags */
1857
1858                 runSrstAsserted = 0;
1859                 runSrstDeasserted = 0;
1860                 runPowerRestore = 0;
1861                 runPowerDropout = 0;
1862
1863                 recursive = 0;
1864         }
1865
1866         /* Poll targets for state changes unless that's globally disabled.
1867          * Skip targets that are currently disabled.
1868          */
1869         for (struct target *target = all_targets;
1870                         is_jtag_poll_safe() && target;
1871                         target = target->next)
1872         {
1873                 if (!target->tap->enabled)
1874                         continue;
1875
1876                 /* only poll target if we've got power and srst isn't asserted */
1877                 if (!powerDropout && !srstAsserted)
1878                 {
1879                         /* polling may fail silently until the target has been examined */
1880                         if ((retval = target_poll(target)) != ERROR_OK)
1881                         {
1882                                 /* FIX!!!!! If we add a LOG_INFO() here to output a line in GDB
1883                                  * *why* we are aborting GDB, then we'll spam telnet when the
1884                                  * poll is failing persistently.
1885                                  *
1886                                  * If we could implement an event that detected the
1887                                  * target going from non-pollable to pollable, we could issue
1888                                  * an error only upon the transition.
1889                                  */
1890                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1891                                 return retval;
1892                         }
1893                 }
1894         }
1895
1896         return retval;
1897 }
1898
1899 COMMAND_HANDLER(handle_reg_command)
1900 {
1901         struct target *target;
1902         struct reg *reg = NULL;
1903         unsigned count = 0;
1904         char *value;
1905
1906         LOG_DEBUG("-");
1907
1908         target = get_current_target(CMD_CTX);
1909
1910         /* list all available registers for the current target */
1911         if (CMD_ARGC == 0)
1912         {
1913                 struct reg_cache *cache = target->reg_cache;
1914
1915                 count = 0;
1916                 while (cache)
1917                 {
1918                         unsigned i;
1919
1920                         command_print(CMD_CTX, "===== %s", cache->name);
1921
1922                         for (i = 0, reg = cache->reg_list;
1923                                         i < cache->num_regs;
1924                                         i++, reg++, count++)
1925                         {
1926                                 /* only print cached values if they are valid */
1927                                 if (reg->valid) {
1928                                         value = buf_to_str(reg->value,
1929                                                         reg->size, 16);
1930                                         command_print(CMD_CTX,
1931                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
1932                                                         count, reg->name,
1933                                                         reg->size, value,
1934                                                         reg->dirty
1935                                                                 ? " (dirty)"
1936                                                                 : "");
1937                                         free(value);
1938                                 } else {
1939                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
1940                                                           count, reg->name,
1941                                                           reg->size) ;
1942                                 }
1943                         }
1944                         cache = cache->next;
1945                 }
1946
1947                 return ERROR_OK;
1948         }
1949
1950         /* access a single register by its ordinal number */
1951         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
1952         {
1953                 unsigned num;
1954                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
1955
1956                 struct reg_cache *cache = target->reg_cache;
1957                 count = 0;
1958                 while (cache)
1959                 {
1960                         unsigned i;
1961                         for (i = 0; i < cache->num_regs; i++)
1962                         {
1963                                 if (count++ == num)
1964                                 {
1965                                         reg = &cache->reg_list[i];
1966                                         break;
1967                                 }
1968                         }
1969                         if (reg)
1970                                 break;
1971                         cache = cache->next;
1972                 }
1973
1974                 if (!reg)
1975                 {
1976                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1977                         return ERROR_OK;
1978                 }
1979         } else /* access a single register by its name */
1980         {
1981                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
1982
1983                 if (!reg)
1984                 {
1985                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
1986                         return ERROR_OK;
1987                 }
1988         }
1989
1990         /* display a register */
1991         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
1992         {
1993                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
1994                         reg->valid = 0;
1995
1996                 if (reg->valid == 0)
1997                 {
1998                         reg->type->get(reg);
1999                 }
2000                 value = buf_to_str(reg->value, reg->size, 16);
2001                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2002                 free(value);
2003                 return ERROR_OK;
2004         }
2005
2006         /* set register value */
2007         if (CMD_ARGC == 2)
2008         {
2009                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2010                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2011
2012                 reg->type->set(reg, buf);
2013
2014                 value = buf_to_str(reg->value, reg->size, 16);
2015                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2016                 free(value);
2017
2018                 free(buf);
2019
2020                 return ERROR_OK;
2021         }
2022
2023         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2024
2025         return ERROR_OK;
2026 }
2027
2028 COMMAND_HANDLER(handle_poll_command)
2029 {
2030         int retval = ERROR_OK;
2031         struct target *target = get_current_target(CMD_CTX);
2032
2033         if (CMD_ARGC == 0)
2034         {
2035                 command_print(CMD_CTX, "background polling: %s",
2036                                 jtag_poll_get_enabled() ? "on" : "off");
2037                 command_print(CMD_CTX, "TAP: %s (%s)",
2038                                 target->tap->dotted_name,
2039                                 target->tap->enabled ? "enabled" : "disabled");
2040                 if (!target->tap->enabled)
2041                         return ERROR_OK;
2042                 if ((retval = target_poll(target)) != ERROR_OK)
2043                         return retval;
2044                 if ((retval = target_arch_state(target)) != ERROR_OK)
2045                         return retval;
2046         }
2047         else if (CMD_ARGC == 1)
2048         {
2049                 bool enable;
2050                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2051                 jtag_poll_set_enabled(enable);
2052         }
2053         else
2054         {
2055                 return ERROR_COMMAND_SYNTAX_ERROR;
2056         }
2057
2058         return retval;
2059 }
2060
2061 COMMAND_HANDLER(handle_wait_halt_command)
2062 {
2063         if (CMD_ARGC > 1)
2064                 return ERROR_COMMAND_SYNTAX_ERROR;
2065
2066         unsigned ms = 5000;
2067         if (1 == CMD_ARGC)
2068         {
2069                 int retval = parse_uint(CMD_ARGV[0], &ms);
2070                 if (ERROR_OK != retval)
2071                 {
2072                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2073                         return ERROR_COMMAND_SYNTAX_ERROR;
2074                 }
2075                 // convert seconds (given) to milliseconds (needed)
2076                 ms *= 1000;
2077         }
2078
2079         struct target *target = get_current_target(CMD_CTX);
2080         return target_wait_state(target, TARGET_HALTED, ms);
2081 }
2082
2083 /* wait for target state to change. The trick here is to have a low
2084  * latency for short waits and not to suck up all the CPU time
2085  * on longer waits.
2086  *
2087  * After 500ms, keep_alive() is invoked
2088  */
2089 int target_wait_state(struct target *target, enum target_state state, int ms)
2090 {
2091         int retval;
2092         long long then = 0, cur;
2093         int once = 1;
2094
2095         for (;;)
2096         {
2097                 if ((retval = target_poll(target)) != ERROR_OK)
2098                         return retval;
2099                 if (target->state == state)
2100                 {
2101                         break;
2102                 }
2103                 cur = timeval_ms();
2104                 if (once)
2105                 {
2106                         once = 0;
2107                         then = timeval_ms();
2108                         LOG_DEBUG("waiting for target %s...",
2109                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2110                 }
2111
2112                 if (cur-then > 500)
2113                 {
2114                         keep_alive();
2115                 }
2116
2117                 if ((cur-then) > ms)
2118                 {
2119                         LOG_ERROR("timed out while waiting for target %s",
2120                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2121                         return ERROR_FAIL;
2122                 }
2123         }
2124
2125         return ERROR_OK;
2126 }
2127
2128 COMMAND_HANDLER(handle_halt_command)
2129 {
2130         LOG_DEBUG("-");
2131
2132         struct target *target = get_current_target(CMD_CTX);
2133         int retval = target_halt(target);
2134         if (ERROR_OK != retval)
2135                 return retval;
2136
2137         if (CMD_ARGC == 1)
2138         {
2139                 unsigned wait;
2140                 retval = parse_uint(CMD_ARGV[0], &wait);
2141                 if (ERROR_OK != retval)
2142                         return ERROR_COMMAND_SYNTAX_ERROR;
2143                 if (!wait)
2144                         return ERROR_OK;
2145         }
2146
2147         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2148 }
2149
2150 COMMAND_HANDLER(handle_soft_reset_halt_command)
2151 {
2152         struct target *target = get_current_target(CMD_CTX);
2153
2154         LOG_USER("requesting target halt and executing a soft reset");
2155
2156         target->type->soft_reset_halt(target);
2157
2158         return ERROR_OK;
2159 }
2160
2161 COMMAND_HANDLER(handle_reset_command)
2162 {
2163         if (CMD_ARGC > 1)
2164                 return ERROR_COMMAND_SYNTAX_ERROR;
2165
2166         enum target_reset_mode reset_mode = RESET_RUN;
2167         if (CMD_ARGC == 1)
2168         {
2169                 const Jim_Nvp *n;
2170                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2171                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2172                         return ERROR_COMMAND_SYNTAX_ERROR;
2173                 }
2174                 reset_mode = n->value;
2175         }
2176
2177         /* reset *all* targets */
2178         return target_process_reset(CMD_CTX, reset_mode);
2179 }
2180
2181
2182 COMMAND_HANDLER(handle_resume_command)
2183 {
2184         int current = 1;
2185         if (CMD_ARGC > 1)
2186                 return ERROR_COMMAND_SYNTAX_ERROR;
2187
2188         struct target *target = get_current_target(CMD_CTX);
2189         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2190
2191         /* with no CMD_ARGV, resume from current pc, addr = 0,
2192          * with one arguments, addr = CMD_ARGV[0],
2193          * handle breakpoints, not debugging */
2194         uint32_t addr = 0;
2195         if (CMD_ARGC == 1)
2196         {
2197                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2198                 current = 0;
2199         }
2200
2201         return target_resume(target, current, addr, 1, 0);
2202 }
2203
2204 COMMAND_HANDLER(handle_step_command)
2205 {
2206         if (CMD_ARGC > 1)
2207                 return ERROR_COMMAND_SYNTAX_ERROR;
2208
2209         LOG_DEBUG("-");
2210
2211         /* with no CMD_ARGV, step from current pc, addr = 0,
2212          * with one argument addr = CMD_ARGV[0],
2213          * handle breakpoints, debugging */
2214         uint32_t addr = 0;
2215         int current_pc = 1;
2216         if (CMD_ARGC == 1)
2217         {
2218                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2219                 current_pc = 0;
2220         }
2221
2222         struct target *target = get_current_target(CMD_CTX);
2223
2224         return target->type->step(target, current_pc, addr, 1);
2225 }
2226
2227 static void handle_md_output(struct command_context *cmd_ctx,
2228                 struct target *target, uint32_t address, unsigned size,
2229                 unsigned count, const uint8_t *buffer)
2230 {
2231         const unsigned line_bytecnt = 32;
2232         unsigned line_modulo = line_bytecnt / size;
2233
2234         char output[line_bytecnt * 4 + 1];
2235         unsigned output_len = 0;
2236
2237         const char *value_fmt;
2238         switch (size) {
2239         case 4: value_fmt = "%8.8x "; break;
2240         case 2: value_fmt = "%4.4x "; break;
2241         case 1: value_fmt = "%2.2x "; break;
2242         default:
2243                 /* "can't happen", caller checked */
2244                 LOG_ERROR("invalid memory read size: %u", size);
2245                 return;
2246         }
2247
2248         for (unsigned i = 0; i < count; i++)
2249         {
2250                 if (i % line_modulo == 0)
2251                 {
2252                         output_len += snprintf(output + output_len,
2253                                         sizeof(output) - output_len,
2254                                         "0x%8.8x: ",
2255                                         (unsigned)(address + (i*size)));
2256                 }
2257
2258                 uint32_t value = 0;
2259                 const uint8_t *value_ptr = buffer + i * size;
2260                 switch (size) {
2261                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2262                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2263                 case 1: value = *value_ptr;
2264                 }
2265                 output_len += snprintf(output + output_len,
2266                                 sizeof(output) - output_len,
2267                                 value_fmt, value);
2268
2269                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2270                 {
2271                         command_print(cmd_ctx, "%s", output);
2272                         output_len = 0;
2273                 }
2274         }
2275 }
2276
2277 COMMAND_HANDLER(handle_md_command)
2278 {
2279         if (CMD_ARGC < 1)
2280                 return ERROR_COMMAND_SYNTAX_ERROR;
2281
2282         unsigned size = 0;
2283         switch (CMD_NAME[2]) {
2284         case 'w': size = 4; break;
2285         case 'h': size = 2; break;
2286         case 'b': size = 1; break;
2287         default: return ERROR_COMMAND_SYNTAX_ERROR;
2288         }
2289
2290         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2291         int (*fn)(struct target *target,
2292                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2293         if (physical)
2294         {
2295                 CMD_ARGC--;
2296                 CMD_ARGV++;
2297                 fn=target_read_phys_memory;
2298         } else
2299         {
2300                 fn=target_read_memory;
2301         }
2302         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2303         {
2304                 return ERROR_COMMAND_SYNTAX_ERROR;
2305         }
2306
2307         uint32_t address;
2308         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2309
2310         unsigned count = 1;
2311         if (CMD_ARGC == 2)
2312                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2313
2314         uint8_t *buffer = calloc(count, size);
2315
2316         struct target *target = get_current_target(CMD_CTX);
2317         int retval = fn(target, address, size, count, buffer);
2318         if (ERROR_OK == retval)
2319                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2320
2321         free(buffer);
2322
2323         return retval;
2324 }
2325
2326 typedef int (*target_write_fn)(struct target *target,
2327                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2328
2329 static int target_write_memory_fast(struct target *target,
2330                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2331 {
2332         return target_write_buffer(target, address, size * count, buffer);
2333 }
2334
2335 static int target_fill_mem(struct target *target,
2336                 uint32_t address,
2337                 target_write_fn fn,
2338                 unsigned data_size,
2339                 /* value */
2340                 uint32_t b,
2341                 /* count */
2342                 unsigned c)
2343 {
2344         /* We have to write in reasonably large chunks to be able
2345          * to fill large memory areas with any sane speed */
2346         const unsigned chunk_size = 16384;
2347         uint8_t *target_buf = malloc(chunk_size * data_size);
2348         if (target_buf == NULL)
2349         {
2350                 LOG_ERROR("Out of memory");
2351                 return ERROR_FAIL;
2352         }
2353
2354         for (unsigned i = 0; i < chunk_size; i ++)
2355         {
2356                 switch (data_size)
2357                 {
2358                 case 4:
2359                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2360                         break;
2361                 case 2:
2362                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2363                         break;
2364                 case 1:
2365                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2366                         break;
2367                 default:
2368                         exit(-1);
2369                 }
2370         }
2371
2372         int retval = ERROR_OK;
2373
2374         for (unsigned x = 0; x < c; x += chunk_size)
2375         {
2376                 unsigned current;
2377                 current = c - x;
2378                 if (current > chunk_size)
2379                 {
2380                         current = chunk_size;
2381                 }
2382                 int retval = fn(target, address + x * data_size, data_size, current, target_buf);
2383                 if (retval != ERROR_OK)
2384                 {
2385                         break;
2386                 }
2387                 /* avoid GDB timeouts */
2388                 keep_alive();
2389         }
2390         free(target_buf);
2391
2392         return retval;
2393 }
2394
2395
2396 COMMAND_HANDLER(handle_mw_command)
2397 {
2398         if (CMD_ARGC < 2)
2399         {
2400                 return ERROR_COMMAND_SYNTAX_ERROR;
2401         }
2402         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2403         target_write_fn fn;
2404         if (physical)
2405         {
2406                 CMD_ARGC--;
2407                 CMD_ARGV++;
2408                 fn=target_write_phys_memory;
2409         } else
2410         {
2411                 fn = target_write_memory_fast;
2412         }
2413         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2414                 return ERROR_COMMAND_SYNTAX_ERROR;
2415
2416         uint32_t address;
2417         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2418
2419         uint32_t value;
2420         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2421
2422         unsigned count = 1;
2423         if (CMD_ARGC == 3)
2424                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2425
2426         struct target *target = get_current_target(CMD_CTX);
2427         unsigned wordsize;
2428         switch (CMD_NAME[2])
2429         {
2430                 case 'w':
2431                         wordsize = 4;
2432                         break;
2433                 case 'h':
2434                         wordsize = 2;
2435                         break;
2436                 case 'b':
2437                         wordsize = 1;
2438                         break;
2439                 default:
2440                         return ERROR_COMMAND_SYNTAX_ERROR;
2441         }
2442
2443         return target_fill_mem(target, address, fn, wordsize, value, count);
2444 }
2445
2446 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2447                 uint32_t *min_address, uint32_t *max_address)
2448 {
2449         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2450                 return ERROR_COMMAND_SYNTAX_ERROR;
2451
2452         /* a base address isn't always necessary,
2453          * default to 0x0 (i.e. don't relocate) */
2454         if (CMD_ARGC >= 2)
2455         {
2456                 uint32_t addr;
2457                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2458                 image->base_address = addr;
2459                 image->base_address_set = 1;
2460         }
2461         else
2462                 image->base_address_set = 0;
2463
2464         image->start_address_set = 0;
2465
2466         if (CMD_ARGC >= 4)
2467         {
2468                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2469         }
2470         if (CMD_ARGC == 5)
2471         {
2472                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2473                 // use size (given) to find max (required)
2474                 *max_address += *min_address;
2475         }
2476
2477         if (*min_address > *max_address)
2478                 return ERROR_COMMAND_SYNTAX_ERROR;
2479
2480         return ERROR_OK;
2481 }
2482
2483 COMMAND_HANDLER(handle_load_image_command)
2484 {
2485         uint8_t *buffer;
2486         size_t buf_cnt;
2487         uint32_t image_size;
2488         uint32_t min_address = 0;
2489         uint32_t max_address = 0xffffffff;
2490         int i;
2491         struct image image;
2492
2493         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2494                         &image, &min_address, &max_address);
2495         if (ERROR_OK != retval)
2496                 return retval;
2497
2498         struct target *target = get_current_target(CMD_CTX);
2499
2500         struct duration bench;
2501         duration_start(&bench);
2502
2503         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2504         {
2505                 return ERROR_OK;
2506         }
2507
2508         image_size = 0x0;
2509         retval = ERROR_OK;
2510         for (i = 0; i < image.num_sections; i++)
2511         {
2512                 buffer = malloc(image.sections[i].size);
2513                 if (buffer == NULL)
2514                 {
2515                         command_print(CMD_CTX,
2516                                                   "error allocating buffer for section (%d bytes)",
2517                                                   (int)(image.sections[i].size));
2518                         break;
2519                 }
2520
2521                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2522                 {
2523                         free(buffer);
2524                         break;
2525                 }
2526
2527                 uint32_t offset = 0;
2528                 uint32_t length = buf_cnt;
2529
2530                 /* DANGER!!! beware of unsigned comparision here!!! */
2531
2532                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2533                                 (image.sections[i].base_address < max_address))
2534                 {
2535                         if (image.sections[i].base_address < min_address)
2536                         {
2537                                 /* clip addresses below */
2538                                 offset += min_address-image.sections[i].base_address;
2539                                 length -= offset;
2540                         }
2541
2542                         if (image.sections[i].base_address + buf_cnt > max_address)
2543                         {
2544                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2545                         }
2546
2547                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2548                         {
2549                                 free(buffer);
2550                                 break;
2551                         }
2552                         image_size += length;
2553                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2554                                                   (unsigned int)length,
2555                                                   image.sections[i].base_address + offset);
2556                 }
2557
2558                 free(buffer);
2559         }
2560
2561         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2562         {
2563                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2564                                 "in %fs (%0.3f kb/s)", image_size,
2565                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2566         }
2567
2568         image_close(&image);
2569
2570         return retval;
2571
2572 }
2573
2574 COMMAND_HANDLER(handle_dump_image_command)
2575 {
2576         struct fileio fileio;
2577
2578         uint8_t buffer[560];
2579         int retvaltemp;
2580
2581
2582         struct target *target = get_current_target(CMD_CTX);
2583
2584         if (CMD_ARGC != 3)
2585         {
2586                 command_print(CMD_CTX, "usage: dump_image <filename> <address> <size>");
2587                 return ERROR_OK;
2588         }
2589
2590         uint32_t address;
2591         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2592         uint32_t size;
2593         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2594
2595         if (fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2596         {
2597                 return ERROR_OK;
2598         }
2599
2600         struct duration bench;
2601         duration_start(&bench);
2602
2603         int retval = ERROR_OK;
2604         while (size > 0)
2605         {
2606                 size_t size_written;
2607                 uint32_t this_run_size = (size > 560) ? 560 : size;
2608                 retval = target_read_buffer(target, address, this_run_size, buffer);
2609                 if (retval != ERROR_OK)
2610                 {
2611                         break;
2612                 }
2613
2614                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2615                 if (retval != ERROR_OK)
2616                 {
2617                         break;
2618                 }
2619
2620                 size -= this_run_size;
2621                 address += this_run_size;
2622         }
2623
2624         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2625                 return retvaltemp;
2626
2627         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2628         {
2629                 command_print(CMD_CTX,
2630                                 "dumped %ld bytes in %fs (%0.3f kb/s)", (long)fileio.size,
2631                                 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2632         }
2633
2634         return retval;
2635 }
2636
2637 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2638 {
2639         uint8_t *buffer;
2640         size_t buf_cnt;
2641         uint32_t image_size;
2642         int i;
2643         int retval;
2644         uint32_t checksum = 0;
2645         uint32_t mem_checksum = 0;
2646
2647         struct image image;
2648
2649         struct target *target = get_current_target(CMD_CTX);
2650
2651         if (CMD_ARGC < 1)
2652         {
2653                 return ERROR_COMMAND_SYNTAX_ERROR;
2654         }
2655
2656         if (!target)
2657         {
2658                 LOG_ERROR("no target selected");
2659                 return ERROR_FAIL;
2660         }
2661
2662         struct duration bench;
2663         duration_start(&bench);
2664
2665         if (CMD_ARGC >= 2)
2666         {
2667                 uint32_t addr;
2668                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2669                 image.base_address = addr;
2670                 image.base_address_set = 1;
2671         }
2672         else
2673         {
2674                 image.base_address_set = 0;
2675                 image.base_address = 0x0;
2676         }
2677
2678         image.start_address_set = 0;
2679
2680         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2681         {
2682                 return retval;
2683         }
2684
2685         image_size = 0x0;
2686         retval = ERROR_OK;
2687         for (i = 0; i < image.num_sections; i++)
2688         {
2689                 buffer = malloc(image.sections[i].size);
2690                 if (buffer == NULL)
2691                 {
2692                         command_print(CMD_CTX,
2693                                                   "error allocating buffer for section (%d bytes)",
2694                                                   (int)(image.sections[i].size));
2695                         break;
2696                 }
2697                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2698                 {
2699                         free(buffer);
2700                         break;
2701                 }
2702
2703                 if (verify)
2704                 {
2705                         /* calculate checksum of image */
2706                         image_calculate_checksum(buffer, buf_cnt, &checksum);
2707
2708                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2709                         if (retval != ERROR_OK)
2710                         {
2711                                 free(buffer);
2712                                 break;
2713                         }
2714
2715                         if (checksum != mem_checksum)
2716                         {
2717                                 /* failed crc checksum, fall back to a binary compare */
2718                                 uint8_t *data;
2719
2720                                 command_print(CMD_CTX, "checksum mismatch - attempting binary compare");
2721
2722                                 data = (uint8_t*)malloc(buf_cnt);
2723
2724                                 /* Can we use 32bit word accesses? */
2725                                 int size = 1;
2726                                 int count = buf_cnt;
2727                                 if ((count % 4) == 0)
2728                                 {
2729                                         size *= 4;
2730                                         count /= 4;
2731                                 }
2732                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2733                                 if (retval == ERROR_OK)
2734                                 {
2735                                         uint32_t t;
2736                                         for (t = 0; t < buf_cnt; t++)
2737                                         {
2738                                                 if (data[t] != buffer[t])
2739                                                 {
2740                                                         command_print(CMD_CTX,
2741                                                                                   "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2742                                                                                   (unsigned)(t + image.sections[i].base_address),
2743                                                                                   data[t],
2744                                                                                   buffer[t]);
2745                                                         free(data);
2746                                                         free(buffer);
2747                                                         retval = ERROR_FAIL;
2748                                                         goto done;
2749                                                 }
2750                                                 if ((t%16384) == 0)
2751                                                 {
2752                                                         keep_alive();
2753                                                 }
2754                                         }
2755                                 }
2756
2757                                 free(data);
2758                         }
2759                 } else
2760                 {
2761                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2762                                                   image.sections[i].base_address,
2763                                                   buf_cnt);
2764                 }
2765
2766                 free(buffer);
2767                 image_size += buf_cnt;
2768         }
2769 done:
2770         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2771         {
2772                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2773                                 "in %fs (%0.3f kb/s)", image_size,
2774                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2775         }
2776
2777         image_close(&image);
2778
2779         return retval;
2780 }
2781
2782 COMMAND_HANDLER(handle_verify_image_command)
2783 {
2784         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
2785 }
2786
2787 COMMAND_HANDLER(handle_test_image_command)
2788 {
2789         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
2790 }
2791
2792 static int handle_bp_command_list(struct command_context *cmd_ctx)
2793 {
2794         struct target *target = get_current_target(cmd_ctx);
2795         struct breakpoint *breakpoint = target->breakpoints;
2796         while (breakpoint)
2797         {
2798                 if (breakpoint->type == BKPT_SOFT)
2799                 {
2800                         char* buf = buf_to_str(breakpoint->orig_instr,
2801                                         breakpoint->length, 16);
2802                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2803                                         breakpoint->address,
2804                                         breakpoint->length,
2805                                         breakpoint->set, buf);
2806                         free(buf);
2807                 }
2808                 else
2809                 {
2810                         command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2811                                                   breakpoint->address,
2812                                                   breakpoint->length, breakpoint->set);
2813                 }
2814
2815                 breakpoint = breakpoint->next;
2816         }
2817         return ERROR_OK;
2818 }
2819
2820 static int handle_bp_command_set(struct command_context *cmd_ctx,
2821                 uint32_t addr, uint32_t length, int hw)
2822 {
2823         struct target *target = get_current_target(cmd_ctx);
2824         int retval = breakpoint_add(target, addr, length, hw);
2825         if (ERROR_OK == retval)
2826                 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2827         else
2828                 LOG_ERROR("Failure setting breakpoint");
2829         return retval;
2830 }
2831
2832 COMMAND_HANDLER(handle_bp_command)
2833 {
2834         if (CMD_ARGC == 0)
2835                 return handle_bp_command_list(CMD_CTX);
2836
2837         if (CMD_ARGC < 2 || CMD_ARGC > 3)
2838         {
2839                 command_print(CMD_CTX, "usage: bp <address> <length> ['hw']");
2840                 return ERROR_COMMAND_SYNTAX_ERROR;
2841         }
2842
2843         uint32_t addr;
2844         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2845         uint32_t length;
2846         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2847
2848         int hw = BKPT_SOFT;
2849         if (CMD_ARGC == 3)
2850         {
2851                 if (strcmp(CMD_ARGV[2], "hw") == 0)
2852                         hw = BKPT_HARD;
2853                 else
2854                         return ERROR_COMMAND_SYNTAX_ERROR;
2855         }
2856
2857         return handle_bp_command_set(CMD_CTX, addr, length, hw);
2858 }
2859
2860 COMMAND_HANDLER(handle_rbp_command)
2861 {
2862         if (CMD_ARGC != 1)
2863                 return ERROR_COMMAND_SYNTAX_ERROR;
2864
2865         uint32_t addr;
2866         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2867
2868         struct target *target = get_current_target(CMD_CTX);
2869         breakpoint_remove(target, addr);
2870
2871         return ERROR_OK;
2872 }
2873
2874 COMMAND_HANDLER(handle_wp_command)
2875 {
2876         struct target *target = get_current_target(CMD_CTX);
2877
2878         if (CMD_ARGC == 0)
2879         {
2880                 struct watchpoint *watchpoint = target->watchpoints;
2881
2882                 while (watchpoint)
2883                 {
2884                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
2885                                         ", len: 0x%8.8" PRIx32
2886                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
2887                                         ", mask: 0x%8.8" PRIx32,
2888                                         watchpoint->address,
2889                                         watchpoint->length,
2890                                         (int)watchpoint->rw,
2891                                         watchpoint->value,
2892                                         watchpoint->mask);
2893                         watchpoint = watchpoint->next;
2894                 }
2895                 return ERROR_OK;
2896         }
2897
2898         enum watchpoint_rw type = WPT_ACCESS;
2899         uint32_t addr = 0;
2900         uint32_t length = 0;
2901         uint32_t data_value = 0x0;
2902         uint32_t data_mask = 0xffffffff;
2903
2904         switch (CMD_ARGC)
2905         {
2906         case 5:
2907                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
2908                 // fall through
2909         case 4:
2910                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
2911                 // fall through
2912         case 3:
2913                 switch (CMD_ARGV[2][0])
2914                 {
2915                 case 'r':
2916                         type = WPT_READ;
2917                         break;
2918                 case 'w':
2919                         type = WPT_WRITE;
2920                         break;
2921                 case 'a':
2922                         type = WPT_ACCESS;
2923                         break;
2924                 default:
2925                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
2926                         return ERROR_COMMAND_SYNTAX_ERROR;
2927                 }
2928                 // fall through
2929         case 2:
2930                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
2931                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2932                 break;
2933
2934         default:
2935                 command_print(CMD_CTX, "usage: wp [address length "
2936                                 "[(r|w|a) [value [mask]]]]");
2937                 return ERROR_COMMAND_SYNTAX_ERROR;
2938         }
2939
2940         int retval = watchpoint_add(target, addr, length, type,
2941                         data_value, data_mask);
2942         if (ERROR_OK != retval)
2943                 LOG_ERROR("Failure setting watchpoints");
2944
2945         return retval;
2946 }
2947
2948 COMMAND_HANDLER(handle_rwp_command)
2949 {
2950         if (CMD_ARGC != 1)
2951                 return ERROR_COMMAND_SYNTAX_ERROR;
2952
2953         uint32_t addr;
2954         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2955
2956         struct target *target = get_current_target(CMD_CTX);
2957         watchpoint_remove(target, addr);
2958
2959         return ERROR_OK;
2960 }
2961
2962
2963 /**
2964  * Translate a virtual address to a physical address.
2965  *
2966  * The low-level target implementation must have logged a detailed error
2967  * which is forwarded to telnet/GDB session.
2968  */
2969 COMMAND_HANDLER(handle_virt2phys_command)
2970 {
2971         if (CMD_ARGC != 1)
2972                 return ERROR_COMMAND_SYNTAX_ERROR;
2973
2974         uint32_t va;
2975         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
2976         uint32_t pa;
2977
2978         struct target *target = get_current_target(CMD_CTX);
2979         int retval = target->type->virt2phys(target, va, &pa);
2980         if (retval == ERROR_OK)
2981                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
2982
2983         return retval;
2984 }
2985
2986 static void writeData(FILE *f, const void *data, size_t len)
2987 {
2988         size_t written = fwrite(data, 1, len, f);
2989         if (written != len)
2990                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2991 }
2992
2993 static void writeLong(FILE *f, int l)
2994 {
2995         int i;
2996         for (i = 0; i < 4; i++)
2997         {
2998                 char c = (l >> (i*8))&0xff;
2999                 writeData(f, &c, 1);
3000         }
3001
3002 }
3003
3004 static void writeString(FILE *f, char *s)
3005 {
3006         writeData(f, s, strlen(s));
3007 }
3008
3009 /* Dump a gmon.out histogram file. */
3010 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3011 {
3012         uint32_t i;
3013         FILE *f = fopen(filename, "w");
3014         if (f == NULL)
3015                 return;
3016         writeString(f, "gmon");
3017         writeLong(f, 0x00000001); /* Version */
3018         writeLong(f, 0); /* padding */
3019         writeLong(f, 0); /* padding */
3020         writeLong(f, 0); /* padding */
3021
3022         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3023         writeData(f, &zero, 1);
3024
3025         /* figure out bucket size */
3026         uint32_t min = samples[0];
3027         uint32_t max = samples[0];
3028         for (i = 0; i < sampleNum; i++)
3029         {
3030                 if (min > samples[i])
3031                 {
3032                         min = samples[i];
3033                 }
3034                 if (max < samples[i])
3035                 {
3036                         max = samples[i];
3037                 }
3038         }
3039
3040         int addressSpace = (max-min + 1);
3041
3042         static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
3043         uint32_t length = addressSpace;
3044         if (length > maxBuckets)
3045         {
3046                 length = maxBuckets;
3047         }
3048         int *buckets = malloc(sizeof(int)*length);
3049         if (buckets == NULL)
3050         {
3051                 fclose(f);
3052                 return;
3053         }
3054         memset(buckets, 0, sizeof(int)*length);
3055         for (i = 0; i < sampleNum;i++)
3056         {
3057                 uint32_t address = samples[i];
3058                 long long a = address-min;
3059                 long long b = length-1;
3060                 long long c = addressSpace-1;
3061                 int index = (a*b)/c; /* danger!!!! int32 overflows */
3062                 buckets[index]++;
3063         }
3064
3065         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3066         writeLong(f, min);                      /* low_pc */
3067         writeLong(f, max);                      /* high_pc */
3068         writeLong(f, length);           /* # of samples */
3069         writeLong(f, 64000000);         /* 64MHz */
3070         writeString(f, "seconds");
3071         for (i = 0; i < (15-strlen("seconds")); i++)
3072                 writeData(f, &zero, 1);
3073         writeString(f, "s");
3074
3075         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3076
3077         char *data = malloc(2*length);
3078         if (data != NULL)
3079         {
3080                 for (i = 0; i < length;i++)
3081                 {
3082                         int val;
3083                         val = buckets[i];
3084                         if (val > 65535)
3085                         {
3086                                 val = 65535;
3087                         }
3088                         data[i*2]=val&0xff;
3089                         data[i*2 + 1]=(val >> 8)&0xff;
3090                 }
3091                 free(buckets);
3092                 writeData(f, data, length * 2);
3093                 free(data);
3094         } else
3095         {
3096                 free(buckets);
3097         }
3098
3099         fclose(f);
3100 }
3101
3102 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3103  * which will be used as a random sampling of PC */
3104 COMMAND_HANDLER(handle_profile_command)
3105 {
3106         struct target *target = get_current_target(CMD_CTX);
3107         struct timeval timeout, now;
3108
3109         gettimeofday(&timeout, NULL);
3110         if (CMD_ARGC != 2)
3111         {
3112                 return ERROR_COMMAND_SYNTAX_ERROR;
3113         }
3114         unsigned offset;
3115         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3116
3117         timeval_add_time(&timeout, offset, 0);
3118
3119         /**
3120          * @todo: Some cores let us sample the PC without the
3121          * annoying halt/resume step; for example, ARMv7 PCSR.
3122          * Provide a way to use that more efficient mechanism.
3123          */
3124
3125         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3126
3127         static const int maxSample = 10000;
3128         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3129         if (samples == NULL)
3130                 return ERROR_OK;
3131
3132         int numSamples = 0;
3133         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3134         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3135
3136         for (;;)
3137         {
3138                 int retval;
3139                 target_poll(target);
3140                 if (target->state == TARGET_HALTED)
3141                 {
3142                         uint32_t t=*((uint32_t *)reg->value);
3143                         samples[numSamples++]=t;
3144                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3145                         target_poll(target);
3146                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3147                 } else if (target->state == TARGET_RUNNING)
3148                 {
3149                         /* We want to quickly sample the PC. */
3150                         if ((retval = target_halt(target)) != ERROR_OK)
3151                         {
3152                                 free(samples);
3153                                 return retval;
3154                         }
3155                 } else
3156                 {
3157                         command_print(CMD_CTX, "Target not halted or running");
3158                         retval = ERROR_OK;
3159                         break;
3160                 }
3161                 if (retval != ERROR_OK)
3162                 {
3163                         break;
3164                 }
3165
3166                 gettimeofday(&now, NULL);
3167                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3168                 {
3169                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3170                         if ((retval = target_poll(target)) != ERROR_OK)
3171                         {
3172                                 free(samples);
3173                                 return retval;
3174                         }
3175                         if (target->state == TARGET_HALTED)
3176                         {
3177                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3178                         }
3179                         if ((retval = target_poll(target)) != ERROR_OK)
3180                         {
3181                                 free(samples);
3182                                 return retval;
3183                         }
3184                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3185                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3186                         break;
3187                 }
3188         }
3189         free(samples);
3190
3191         return ERROR_OK;
3192 }
3193
3194 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3195 {
3196         char *namebuf;
3197         Jim_Obj *nameObjPtr, *valObjPtr;
3198         int result;
3199
3200         namebuf = alloc_printf("%s(%d)", varname, idx);
3201         if (!namebuf)
3202                 return JIM_ERR;
3203
3204         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3205         valObjPtr = Jim_NewIntObj(interp, val);
3206         if (!nameObjPtr || !valObjPtr)
3207         {
3208                 free(namebuf);
3209                 return JIM_ERR;
3210         }
3211
3212         Jim_IncrRefCount(nameObjPtr);
3213         Jim_IncrRefCount(valObjPtr);
3214         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3215         Jim_DecrRefCount(interp, nameObjPtr);
3216         Jim_DecrRefCount(interp, valObjPtr);
3217         free(namebuf);
3218         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3219         return result;
3220 }
3221
3222 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3223 {
3224         struct command_context *context;
3225         struct target *target;
3226
3227         context = Jim_GetAssocData(interp, "context");
3228         if (context == NULL)
3229         {
3230                 LOG_ERROR("mem2array: no command context");
3231                 return JIM_ERR;
3232         }
3233         target = get_current_target(context);
3234         if (target == NULL)
3235         {
3236                 LOG_ERROR("mem2array: no current target");
3237                 return JIM_ERR;
3238         }
3239
3240         return  target_mem2array(interp, target, argc-1, argv + 1);
3241 }
3242
3243 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3244 {
3245         long l;
3246         uint32_t width;
3247         int len;
3248         uint32_t addr;
3249         uint32_t count;
3250         uint32_t v;
3251         const char *varname;
3252         int  n, e, retval;
3253         uint32_t i;
3254
3255         /* argv[1] = name of array to receive the data
3256          * argv[2] = desired width
3257          * argv[3] = memory address
3258          * argv[4] = count of times to read
3259          */
3260         if (argc != 4) {
3261                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3262                 return JIM_ERR;
3263         }
3264         varname = Jim_GetString(argv[0], &len);
3265         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3266
3267         e = Jim_GetLong(interp, argv[1], &l);
3268         width = l;
3269         if (e != JIM_OK) {
3270                 return e;
3271         }
3272
3273         e = Jim_GetLong(interp, argv[2], &l);
3274         addr = l;
3275         if (e != JIM_OK) {
3276                 return e;
3277         }
3278         e = Jim_GetLong(interp, argv[3], &l);
3279         len = l;
3280         if (e != JIM_OK) {
3281                 return e;
3282         }
3283         switch (width) {
3284                 case 8:
3285                         width = 1;
3286                         break;
3287                 case 16:
3288                         width = 2;
3289                         break;
3290                 case 32:
3291                         width = 4;
3292                         break;
3293                 default:
3294                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3295                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3296                         return JIM_ERR;
3297         }
3298         if (len == 0) {
3299                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3300                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3301                 return JIM_ERR;
3302         }
3303         if ((addr + (len * width)) < addr) {
3304                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3305                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3306                 return JIM_ERR;
3307         }
3308         /* absurd transfer size? */
3309         if (len > 65536) {
3310                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3311                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3312                 return JIM_ERR;
3313         }
3314
3315         if ((width == 1) ||
3316                 ((width == 2) && ((addr & 1) == 0)) ||
3317                 ((width == 4) && ((addr & 3) == 0))) {
3318                 /* all is well */
3319         } else {
3320                 char buf[100];
3321                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3322                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3323                                 addr,
3324                                 width);
3325                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3326                 return JIM_ERR;
3327         }
3328
3329         /* Transfer loop */
3330
3331         /* index counter */
3332         n = 0;
3333
3334         size_t buffersize = 4096;
3335         uint8_t *buffer = malloc(buffersize);
3336         if (buffer == NULL)
3337                 return JIM_ERR;
3338
3339         /* assume ok */
3340         e = JIM_OK;
3341         while (len) {
3342                 /* Slurp... in buffer size chunks */
3343
3344                 count = len; /* in objects.. */
3345                 if (count > (buffersize/width)) {
3346                         count = (buffersize/width);
3347                 }
3348
3349                 retval = target_read_memory(target, addr, width, count, buffer);
3350                 if (retval != ERROR_OK) {
3351                         /* BOO !*/
3352                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3353                                           (unsigned int)addr,
3354                                           (int)width,
3355                                           (int)count);
3356                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3357                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3358                         e = JIM_ERR;
3359                         len = 0;
3360                 } else {
3361                         v = 0; /* shut up gcc */
3362                         for (i = 0 ;i < count ;i++, n++) {
3363                                 switch (width) {
3364                                         case 4:
3365                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3366                                                 break;
3367                                         case 2:
3368                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3369                                                 break;
3370                                         case 1:
3371                                                 v = buffer[i] & 0x0ff;
3372                                                 break;
3373                                 }
3374                                 new_int_array_element(interp, varname, n, v);
3375                         }
3376                         len -= count;
3377                 }
3378         }
3379
3380         free(buffer);
3381
3382         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3383
3384         return JIM_OK;
3385 }
3386
3387 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3388 {
3389         char *namebuf;
3390         Jim_Obj *nameObjPtr, *valObjPtr;
3391         int result;
3392         long l;
3393
3394         namebuf = alloc_printf("%s(%d)", varname, idx);
3395         if (!namebuf)
3396                 return JIM_ERR;
3397
3398         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3399         if (!nameObjPtr)
3400         {
3401                 free(namebuf);
3402                 return JIM_ERR;
3403         }
3404
3405         Jim_IncrRefCount(nameObjPtr);
3406         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3407         Jim_DecrRefCount(interp, nameObjPtr);
3408         free(namebuf);
3409         if (valObjPtr == NULL)
3410                 return JIM_ERR;
3411
3412         result = Jim_GetLong(interp, valObjPtr, &l);
3413         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3414         *val = l;
3415         return result;
3416 }
3417
3418 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3419 {
3420         struct command_context *context;
3421         struct target *target;
3422
3423         context = Jim_GetAssocData(interp, "context");
3424         if (context == NULL) {
3425                 LOG_ERROR("array2mem: no command context");
3426                 return JIM_ERR;
3427         }
3428         target = get_current_target(context);
3429         if (target == NULL) {
3430                 LOG_ERROR("array2mem: no current target");
3431                 return JIM_ERR;
3432         }
3433
3434         return target_array2mem(interp,target, argc-1, argv + 1);
3435 }
3436
3437 static int target_array2mem(Jim_Interp *interp, struct target *target,
3438                 int argc, Jim_Obj *const *argv)
3439 {
3440         long l;
3441         uint32_t width;
3442         int len;
3443         uint32_t addr;
3444         uint32_t count;
3445         uint32_t v;
3446         const char *varname;
3447         int  n, e, retval;
3448         uint32_t i;
3449
3450         /* argv[1] = name of array to get the data
3451          * argv[2] = desired width
3452          * argv[3] = memory address
3453          * argv[4] = count to write
3454          */
3455         if (argc != 4) {
3456                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3457                 return JIM_ERR;
3458         }
3459         varname = Jim_GetString(argv[0], &len);
3460         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3461
3462         e = Jim_GetLong(interp, argv[1], &l);
3463         width = l;
3464         if (e != JIM_OK) {
3465                 return e;
3466         }
3467
3468         e = Jim_GetLong(interp, argv[2], &l);
3469         addr = l;
3470         if (e != JIM_OK) {
3471                 return e;
3472         }
3473         e = Jim_GetLong(interp, argv[3], &l);
3474         len = l;
3475         if (e != JIM_OK) {
3476                 return e;
3477         }
3478         switch (width) {
3479                 case 8:
3480                         width = 1;
3481                         break;
3482                 case 16:
3483                         width = 2;
3484                         break;
3485                 case 32:
3486                         width = 4;
3487                         break;
3488                 default:
3489                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3490                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3491                         return JIM_ERR;
3492         }
3493         if (len == 0) {
3494                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3495                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3496                 return JIM_ERR;
3497         }
3498         if ((addr + (len * width)) < addr) {
3499                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3500                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3501                 return JIM_ERR;
3502         }
3503         /* absurd transfer size? */
3504         if (len > 65536) {
3505                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3506                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3507                 return JIM_ERR;
3508         }
3509
3510         if ((width == 1) ||
3511                 ((width == 2) && ((addr & 1) == 0)) ||
3512                 ((width == 4) && ((addr & 3) == 0))) {
3513                 /* all is well */
3514         } else {
3515                 char buf[100];
3516                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3517                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3518                                 (unsigned int)addr,
3519                                 (int)width);
3520                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3521                 return JIM_ERR;
3522         }
3523
3524         /* Transfer loop */
3525
3526         /* index counter */
3527         n = 0;
3528         /* assume ok */
3529         e = JIM_OK;
3530
3531         size_t buffersize = 4096;
3532         uint8_t *buffer = malloc(buffersize);
3533         if (buffer == NULL)
3534                 return JIM_ERR;
3535
3536         while (len) {
3537                 /* Slurp... in buffer size chunks */
3538
3539                 count = len; /* in objects.. */
3540                 if (count > (buffersize/width)) {
3541                         count = (buffersize/width);
3542                 }
3543
3544                 v = 0; /* shut up gcc */
3545                 for (i = 0 ;i < count ;i++, n++) {
3546                         get_int_array_element(interp, varname, n, &v);
3547                         switch (width) {
3548                         case 4:
3549                                 target_buffer_set_u32(target, &buffer[i*width], v);
3550                                 break;
3551                         case 2:
3552                                 target_buffer_set_u16(target, &buffer[i*width], v);
3553                                 break;
3554                         case 1:
3555                                 buffer[i] = v & 0x0ff;
3556                                 break;
3557                         }
3558                 }
3559                 len -= count;
3560
3561                 retval = target_write_memory(target, addr, width, count, buffer);
3562                 if (retval != ERROR_OK) {
3563                         /* BOO !*/
3564                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3565                                           (unsigned int)addr,
3566                                           (int)width,
3567                                           (int)count);
3568                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3569                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3570                         e = JIM_ERR;
3571                         len = 0;
3572                 }
3573         }
3574
3575         free(buffer);
3576
3577         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3578
3579         return JIM_OK;
3580 }
3581
3582 void target_all_handle_event(enum target_event e)
3583 {
3584         struct target *target;
3585
3586         LOG_DEBUG("**all*targets: event: %d, %s",
3587                            (int)e,
3588                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name);
3589
3590         target = all_targets;
3591         while (target) {
3592                 target_handle_event(target, e);
3593                 target = target->next;
3594         }
3595 }
3596
3597
3598 /* FIX? should we propagate errors here rather than printing them
3599  * and continuing?
3600  */
3601 void target_handle_event(struct target *target, enum target_event e)
3602 {
3603         struct target_event_action *teap;
3604
3605         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3606                 if (teap->event == e) {
3607                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3608                                            target->target_number,
3609                                            target_name(target),
3610                                            target_type_name(target),
3611                                            e,
3612                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3613                                            Jim_GetString(teap->body, NULL));
3614                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3615                         {
3616                                 Jim_PrintErrorMessage(teap->interp);
3617                         }
3618                 }
3619         }
3620 }
3621
3622 /**
3623  * Returns true only if the target has a handler for the specified event.
3624  */
3625 bool target_has_event_action(struct target *target, enum target_event event)
3626 {
3627         struct target_event_action *teap;
3628
3629         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3630                 if (teap->event == event)
3631                         return true;
3632         }
3633         return false;
3634 }
3635
3636 enum target_cfg_param {
3637         TCFG_TYPE,
3638         TCFG_EVENT,
3639         TCFG_WORK_AREA_VIRT,
3640         TCFG_WORK_AREA_PHYS,
3641         TCFG_WORK_AREA_SIZE,
3642         TCFG_WORK_AREA_BACKUP,
3643         TCFG_ENDIAN,
3644         TCFG_VARIANT,
3645         TCFG_CHAIN_POSITION,
3646 };
3647
3648 static Jim_Nvp nvp_config_opts[] = {
3649         { .name = "-type",             .value = TCFG_TYPE },
3650         { .name = "-event",            .value = TCFG_EVENT },
3651         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3652         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3653         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3654         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3655         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3656         { .name = "-variant",          .value = TCFG_VARIANT },
3657         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3658
3659         { .name = NULL, .value = -1 }
3660 };
3661
3662 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3663 {
3664         Jim_Nvp *n;
3665         Jim_Obj *o;
3666         jim_wide w;
3667         char *cp;
3668         int e;
3669
3670         /* parse config or cget options ... */
3671         while (goi->argc > 0) {
3672                 Jim_SetEmptyResult(goi->interp);
3673                 /* Jim_GetOpt_Debug(goi); */
3674
3675                 if (target->type->target_jim_configure) {
3676                         /* target defines a configure function */
3677                         /* target gets first dibs on parameters */
3678                         e = (*(target->type->target_jim_configure))(target, goi);
3679                         if (e == JIM_OK) {
3680                                 /* more? */
3681                                 continue;
3682                         }
3683                         if (e == JIM_ERR) {
3684                                 /* An error */
3685                                 return e;
3686                         }
3687                         /* otherwise we 'continue' below */
3688                 }
3689                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3690                 if (e != JIM_OK) {
3691                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3692                         return e;
3693                 }
3694                 switch (n->value) {
3695                 case TCFG_TYPE:
3696                         /* not setable */
3697                         if (goi->isconfigure) {
3698                                 Jim_SetResult_sprintf(goi->interp,
3699                                                 "not settable: %s", n->name);
3700                                 return JIM_ERR;
3701                         } else {
3702                         no_params:
3703                                 if (goi->argc != 0) {
3704                                         Jim_WrongNumArgs(goi->interp,
3705                                                         goi->argc, goi->argv,
3706                                                         "NO PARAMS");
3707                                         return JIM_ERR;
3708                                 }
3709                         }
3710                         Jim_SetResultString(goi->interp,
3711                                         target_type_name(target), -1);
3712                         /* loop for more */
3713                         break;
3714                 case TCFG_EVENT:
3715                         if (goi->argc == 0) {
3716                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3717                                 return JIM_ERR;
3718                         }
3719
3720                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
3721                         if (e != JIM_OK) {
3722                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
3723                                 return e;
3724                         }
3725
3726                         if (goi->isconfigure) {
3727                                 if (goi->argc != 1) {
3728                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3729                                         return JIM_ERR;
3730                                 }
3731                         } else {
3732                                 if (goi->argc != 0) {
3733                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3734                                         return JIM_ERR;
3735                                 }
3736                         }
3737
3738                         {
3739                                 struct target_event_action *teap;
3740
3741                                 teap = target->event_action;
3742                                 /* replace existing? */
3743                                 while (teap) {
3744                                         if (teap->event == (enum target_event)n->value) {
3745                                                 break;
3746                                         }
3747                                         teap = teap->next;
3748                                 }
3749
3750                                 if (goi->isconfigure) {
3751                                         bool replace = true;
3752                                         if (teap == NULL) {
3753                                                 /* create new */
3754                                                 teap = calloc(1, sizeof(*teap));
3755                                                 replace = false;
3756                                         }
3757                                         teap->event = n->value;
3758                                         teap->interp = goi->interp;
3759                                         Jim_GetOpt_Obj(goi, &o);
3760                                         if (teap->body) {
3761                                                 Jim_DecrRefCount(teap->interp, teap->body);
3762                                         }
3763                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
3764                                         /*
3765                                          * FIXME:
3766                                          *     Tcl/TK - "tk events" have a nice feature.
3767                                          *     See the "BIND" command.
3768                                          *    We should support that here.
3769                                          *     You can specify %X and %Y in the event code.
3770                                          *     The idea is: %T - target name.
3771                                          *     The idea is: %N - target number
3772                                          *     The idea is: %E - event name.
3773                                          */
3774                                         Jim_IncrRefCount(teap->body);
3775
3776                                         if (!replace)
3777                                         {
3778                                                 /* add to head of event list */
3779                                                 teap->next = target->event_action;
3780                                                 target->event_action = teap;
3781                                         }
3782                                         Jim_SetEmptyResult(goi->interp);
3783                                 } else {
3784                                         /* get */
3785                                         if (teap == NULL) {
3786                                                 Jim_SetEmptyResult(goi->interp);
3787                                         } else {
3788                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
3789                                         }
3790                                 }
3791                         }
3792                         /* loop for more */
3793                         break;
3794
3795                 case TCFG_WORK_AREA_VIRT:
3796                         if (goi->isconfigure) {
3797                                 target_free_all_working_areas(target);
3798                                 e = Jim_GetOpt_Wide(goi, &w);
3799                                 if (e != JIM_OK) {
3800                                         return e;
3801                                 }
3802                                 target->working_area_virt = w;
3803                                 target->working_area_virt_spec = true;
3804                         } else {
3805                                 if (goi->argc != 0) {
3806                                         goto no_params;
3807                                 }
3808                         }
3809                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
3810                         /* loop for more */
3811                         break;
3812
3813                 case TCFG_WORK_AREA_PHYS:
3814                         if (goi->isconfigure) {
3815                                 target_free_all_working_areas(target);
3816                                 e = Jim_GetOpt_Wide(goi, &w);
3817                                 if (e != JIM_OK) {
3818                                         return e;
3819                                 }
3820                                 target->working_area_phys = w;
3821                                 target->working_area_phys_spec = true;
3822                         } else {
3823                                 if (goi->argc != 0) {
3824                                         goto no_params;
3825                                 }
3826                         }
3827                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
3828                         /* loop for more */
3829                         break;
3830
3831                 case TCFG_WORK_AREA_SIZE:
3832                         if (goi->isconfigure) {
3833                                 target_free_all_working_areas(target);
3834                                 e = Jim_GetOpt_Wide(goi, &w);
3835                                 if (e != JIM_OK) {
3836                                         return e;
3837                                 }
3838                                 target->working_area_size = w;
3839                         } else {
3840                                 if (goi->argc != 0) {
3841                                         goto no_params;
3842                                 }
3843                         }
3844                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
3845                         /* loop for more */
3846                         break;
3847
3848                 case TCFG_WORK_AREA_BACKUP:
3849                         if (goi->isconfigure) {
3850                                 target_free_all_working_areas(target);
3851                                 e = Jim_GetOpt_Wide(goi, &w);
3852                                 if (e != JIM_OK) {
3853                                         return e;
3854                                 }
3855                                 /* make this exactly 1 or 0 */
3856                                 target->backup_working_area = (!!w);
3857                         } else {
3858                                 if (goi->argc != 0) {
3859                                         goto no_params;
3860                                 }
3861                         }
3862                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3863                         /* loop for more e*/
3864                         break;
3865
3866                 case TCFG_ENDIAN:
3867                         if (goi->isconfigure) {
3868                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
3869                                 if (e != JIM_OK) {
3870                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
3871                                         return e;
3872                                 }
3873                                 target->endianness = n->value;
3874                         } else {
3875                                 if (goi->argc != 0) {
3876                                         goto no_params;
3877                                 }
3878                         }
3879                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3880                         if (n->name == NULL) {
3881                                 target->endianness = TARGET_LITTLE_ENDIAN;
3882                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
3883                         }
3884                         Jim_SetResultString(goi->interp, n->name, -1);
3885                         /* loop for more */
3886                         break;
3887
3888                 case TCFG_VARIANT:
3889                         if (goi->isconfigure) {
3890                                 if (goi->argc < 1) {
3891                                         Jim_SetResult_sprintf(goi->interp,
3892                                                                                    "%s ?STRING?",
3893                                                                                    n->name);
3894                                         return JIM_ERR;
3895                                 }
3896                                 if (target->variant) {
3897                                         free((void *)(target->variant));
3898                                 }
3899                                 e = Jim_GetOpt_String(goi, &cp, NULL);
3900                                 target->variant = strdup(cp);
3901                         } else {
3902                                 if (goi->argc != 0) {
3903                                         goto no_params;
3904                                 }
3905                         }
3906                         Jim_SetResultString(goi->interp, target->variant,-1);
3907                         /* loop for more */
3908                         break;
3909                 case TCFG_CHAIN_POSITION:
3910                         if (goi->isconfigure) {
3911                                 Jim_Obj *o;
3912                                 struct jtag_tap *tap;
3913                                 target_free_all_working_areas(target);
3914                                 e = Jim_GetOpt_Obj(goi, &o);
3915                                 if (e != JIM_OK) {
3916                                         return e;
3917                                 }
3918                                 tap = jtag_tap_by_jim_obj(goi->interp, o);
3919                                 if (tap == NULL) {
3920                                         return JIM_ERR;
3921                                 }
3922                                 /* make this exactly 1 or 0 */
3923                                 target->tap = tap;
3924                         } else {
3925                                 if (goi->argc != 0) {
3926                                         goto no_params;
3927                                 }
3928                         }
3929                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
3930                         /* loop for more e*/
3931                         break;
3932                 }
3933         } /* while (goi->argc) */
3934
3935
3936                 /* done - we return */
3937         return JIM_OK;
3938 }
3939
3940 static int
3941 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3942 {
3943         Jim_GetOptInfo goi;
3944
3945         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3946         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
3947         int need_args = 1 + goi.isconfigure;
3948         if (goi.argc < need_args)
3949         {
3950                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
3951                         goi.isconfigure
3952                                 ? "missing: -option VALUE ..."
3953                                 : "missing: -option ...");
3954                 return JIM_ERR;
3955         }
3956         struct target *target = Jim_CmdPrivData(goi.interp);
3957         return target_configure(&goi, target);
3958 }
3959
3960 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3961 {
3962         const char *cmd_name = Jim_GetString(argv[0], NULL);
3963
3964         Jim_GetOptInfo goi;
3965         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
3966
3967         /* danger! goi.argc will be modified below! */
3968         argc = goi.argc;
3969
3970         if (argc != 2 && argc != 3)
3971         {
3972                 Jim_SetResult_sprintf(goi.interp,
3973                                 "usage: %s <address> <data> [<count>]", cmd_name);
3974                 return JIM_ERR;
3975         }
3976
3977
3978         jim_wide a;
3979         int e = Jim_GetOpt_Wide(&goi, &a);
3980         if (e != JIM_OK)
3981                 return e;
3982
3983         jim_wide b;
3984         e = Jim_GetOpt_Wide(&goi, &b);
3985         if (e != JIM_OK)
3986                 return e;
3987
3988         jim_wide c = 1;
3989         if (argc == 3)
3990         {
3991                 e = Jim_GetOpt_Wide(&goi, &c);
3992                 if (e != JIM_OK)
3993                         return e;
3994         }
3995
3996         struct target *target = Jim_CmdPrivData(goi.interp);
3997         unsigned data_size;
3998         if (strcasecmp(cmd_name, "mww") == 0) {
3999                 data_size = 4;
4000         }
4001         else if (strcasecmp(cmd_name, "mwh") == 0) {
4002                 data_size = 2;
4003         }
4004         else if (strcasecmp(cmd_name, "mwb") == 0) {
4005                 data_size = 1;
4006         } else {
4007                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4008                 return JIM_ERR;
4009         }
4010
4011         return (target_fill_mem(target, a, target_write_memory_fast, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4012 }
4013
4014 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4015 {
4016         const char *cmd_name = Jim_GetString(argv[0], NULL);
4017
4018         Jim_GetOptInfo goi;
4019         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4020
4021         /* danger! goi.argc will be modified below! */
4022         argc = goi.argc;
4023
4024         if ((argc != 1) && (argc != 2))
4025         {
4026                 Jim_SetResult_sprintf(goi.interp,
4027                                 "usage: %s <address> [<count>]", cmd_name);
4028                 return JIM_ERR;
4029         }
4030
4031         jim_wide a;
4032         int e = Jim_GetOpt_Wide(&goi, &a);
4033         if (e != JIM_OK) {
4034                 return JIM_ERR;
4035         }
4036         jim_wide c;
4037         if (argc == 2) {
4038                 e = Jim_GetOpt_Wide(&goi, &c);
4039                 if (e != JIM_OK) {
4040                         return JIM_ERR;
4041                 }
4042         } else {
4043                 c = 1;
4044         }
4045         jim_wide b = 1; /* shut up gcc */
4046         if (strcasecmp(cmd_name, "mdw") == 0)
4047                 b = 4;
4048         else if (strcasecmp(cmd_name, "mdh") == 0)
4049                 b = 2;
4050         else if (strcasecmp(cmd_name, "mdb") == 0)
4051                 b = 1;
4052         else {
4053                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4054                 return JIM_ERR;
4055         }
4056
4057         /* convert count to "bytes" */
4058         c = c * b;
4059
4060         struct target *target = Jim_CmdPrivData(goi.interp);
4061         uint8_t  target_buf[32];
4062         jim_wide x, y, z;
4063         while (c > 0) {
4064                 y = c;
4065                 if (y > 16) {
4066                         y = 16;
4067                 }
4068                 e = target_read_memory(target, a, b, y / b, target_buf);
4069                 if (e != ERROR_OK) {
4070                         Jim_SetResult_sprintf(interp, "error reading target @ 0x%08lx", (int)(a));
4071                         return JIM_ERR;
4072                 }
4073
4074                 Jim_fprintf(interp, interp->cookie_stdout, "0x%08x ", (int)(a));
4075                 switch (b) {
4076                 case 4:
4077                         for (x = 0; x < 16 && x < y; x += 4)
4078                         {
4079                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4080                                 Jim_fprintf(interp, interp->cookie_stdout, "%08x ", (int)(z));
4081                         }
4082                         for (; (x < 16) ; x += 4) {
4083                                 Jim_fprintf(interp, interp->cookie_stdout, "         ");
4084                         }
4085                         break;
4086                 case 2:
4087                         for (x = 0; x < 16 && x < y; x += 2)
4088                         {
4089                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4090                                 Jim_fprintf(interp, interp->cookie_stdout, "%04x ", (int)(z));
4091                         }
4092                         for (; (x < 16) ; x += 2) {
4093                                 Jim_fprintf(interp, interp->cookie_stdout, "     ");
4094                         }
4095                         break;
4096                 case 1:
4097                 default:
4098                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4099                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4100                                 Jim_fprintf(interp, interp->cookie_stdout, "%02x ", (int)(z));
4101                         }
4102                         for (; (x < 16) ; x += 1) {
4103                                 Jim_fprintf(interp, interp->cookie_stdout, "   ");
4104                         }
4105                         break;
4106                 }
4107                 /* ascii-ify the bytes */
4108                 for (x = 0 ; x < y ; x++) {
4109                         if ((target_buf[x] >= 0x20) &&
4110                                 (target_buf[x] <= 0x7e)) {
4111                                 /* good */
4112                         } else {
4113                                 /* smack it */
4114                                 target_buf[x] = '.';
4115                         }
4116                 }
4117                 /* space pad  */
4118                 while (x < 16) {
4119                         target_buf[x] = ' ';
4120                         x++;
4121                 }
4122                 /* terminate */
4123                 target_buf[16] = 0;
4124                 /* print - with a newline */
4125                 Jim_fprintf(interp, interp->cookie_stdout, "%s\n", target_buf);
4126                 /* NEXT... */
4127                 c -= 16;
4128                 a += 16;
4129         }
4130         return JIM_OK;
4131 }
4132
4133 static int jim_target_mem2array(Jim_Interp *interp,
4134                 int argc, Jim_Obj *const *argv)
4135 {
4136         struct target *target = Jim_CmdPrivData(interp);
4137         return target_mem2array(interp, target, argc - 1, argv + 1);
4138 }
4139
4140 static int jim_target_array2mem(Jim_Interp *interp,
4141                 int argc, Jim_Obj *const *argv)
4142 {
4143         struct target *target = Jim_CmdPrivData(interp);
4144         return target_array2mem(interp, target, argc - 1, argv + 1);
4145 }
4146
4147 static int jim_target_tap_disabled(Jim_Interp *interp)
4148 {
4149         Jim_SetResult_sprintf(interp, "[TAP is disabled]");
4150         return JIM_ERR;
4151 }
4152
4153 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4154 {
4155         if (argc != 1)
4156         {
4157                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4158                 return JIM_ERR;
4159         }
4160         struct target *target = Jim_CmdPrivData(interp);
4161         if (!target->tap->enabled)
4162                 return jim_target_tap_disabled(interp);
4163
4164         int e = target->type->examine(target);
4165         if (e != ERROR_OK)
4166         {
4167                 Jim_SetResult_sprintf(interp, "examine-fails: %d", e);
4168                 return JIM_ERR;
4169         }
4170         return JIM_OK;
4171 }
4172
4173 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4174 {
4175         if (argc != 1)
4176         {
4177                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4178                 return JIM_ERR;
4179         }
4180         struct target *target = Jim_CmdPrivData(interp);
4181
4182         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4183                 return JIM_ERR;
4184
4185         return JIM_OK;
4186 }
4187
4188 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4189 {
4190         if (argc != 1)
4191         {
4192                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4193                 return JIM_ERR;
4194         }
4195         struct target *target = Jim_CmdPrivData(interp);
4196         if (!target->tap->enabled)
4197                 return jim_target_tap_disabled(interp);
4198
4199         int e;
4200         if (!(target_was_examined(target))) {
4201                 e = ERROR_TARGET_NOT_EXAMINED;
4202         } else {
4203                 e = target->type->poll(target);
4204         }
4205         if (e != ERROR_OK)
4206         {
4207                 Jim_SetResult_sprintf(interp, "poll-fails: %d", e);
4208                 return JIM_ERR;
4209         }
4210         return JIM_OK;
4211 }
4212
4213 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4214 {
4215         Jim_GetOptInfo goi;
4216         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4217
4218         if (goi.argc != 2)
4219         {
4220                 Jim_WrongNumArgs(interp, 0, argv,
4221                                 "([tT]|[fF]|assert|deassert) BOOL");
4222                 return JIM_ERR;
4223         }
4224
4225         Jim_Nvp *n;
4226         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4227         if (e != JIM_OK)
4228         {
4229                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4230                 return e;
4231         }
4232         /* the halt or not param */
4233         jim_wide a;
4234         e = Jim_GetOpt_Wide(&goi, &a);
4235         if (e != JIM_OK)
4236                 return e;
4237
4238         struct target *target = Jim_CmdPrivData(goi.interp);
4239         if (!target->tap->enabled)
4240                 return jim_target_tap_disabled(interp);
4241         if (!(target_was_examined(target)))
4242         {
4243                 LOG_ERROR("Target not examined yet");
4244                 return ERROR_TARGET_NOT_EXAMINED;
4245         }
4246         if (!target->type->assert_reset || !target->type->deassert_reset)
4247         {
4248                 Jim_SetResult_sprintf(interp,
4249                                 "No target-specific reset for %s",
4250                                 target_name(target));
4251                 return JIM_ERR;
4252         }
4253         /* determine if we should halt or not. */
4254         target->reset_halt = !!a;
4255         /* When this happens - all workareas are invalid. */
4256         target_free_all_working_areas_restore(target, 0);
4257
4258         /* do the assert */
4259         if (n->value == NVP_ASSERT) {
4260                 e = target->type->assert_reset(target);
4261         } else {
4262                 e = target->type->deassert_reset(target);
4263         }
4264         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4265 }
4266
4267 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4268 {
4269         if (argc != 1) {
4270                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4271                 return JIM_ERR;
4272         }
4273         struct target *target = Jim_CmdPrivData(interp);
4274         if (!target->tap->enabled)
4275                 return jim_target_tap_disabled(interp);
4276         int e = target->type->halt(target);
4277         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4278 }
4279
4280 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4281 {
4282         Jim_GetOptInfo goi;
4283         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4284
4285         /* params:  <name>  statename timeoutmsecs */
4286         if (goi.argc != 2)
4287         {
4288                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4289                 Jim_SetResult_sprintf(goi.interp,
4290                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4291                 return JIM_ERR;
4292         }
4293
4294         Jim_Nvp *n;
4295         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4296         if (e != JIM_OK) {
4297                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4298                 return e;
4299         }
4300         jim_wide a;
4301         e = Jim_GetOpt_Wide(&goi, &a);
4302         if (e != JIM_OK) {
4303                 return e;
4304         }
4305         struct target *target = Jim_CmdPrivData(interp);
4306         if (!target->tap->enabled)
4307                 return jim_target_tap_disabled(interp);
4308
4309         e = target_wait_state(target, n->value, a);
4310         if (e != ERROR_OK)
4311         {
4312                 Jim_SetResult_sprintf(goi.interp,
4313                                 "target: %s wait %s fails (%d) %s",
4314                                 target_name(target), n->name,
4315                                 e, target_strerror_safe(e));
4316                 return JIM_ERR;
4317         }
4318         return JIM_OK;
4319 }
4320 /* List for human, Events defined for this target.
4321  * scripts/programs should use 'name cget -event NAME'
4322  */
4323 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4324 {
4325         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4326         struct target *target = Jim_CmdPrivData(interp);
4327         struct target_event_action *teap = target->event_action;
4328         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4329                                    target->target_number,
4330                                    target_name(target));
4331         command_print(cmd_ctx, "%-25s | Body", "Event");
4332         command_print(cmd_ctx, "------------------------- | "
4333                         "----------------------------------------");
4334         while (teap)
4335         {
4336                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4337                 command_print(cmd_ctx, "%-25s | %s",
4338                                 opt->name, Jim_GetString(teap->body, NULL));
4339                 teap = teap->next;
4340         }
4341         command_print(cmd_ctx, "***END***");
4342         return JIM_OK;
4343 }
4344 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4345 {
4346         if (argc != 1)
4347         {
4348                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4349                 return JIM_ERR;
4350         }
4351         struct target *target = Jim_CmdPrivData(interp);
4352         Jim_SetResultString(interp, target_state_name(target), -1);
4353         return JIM_OK;
4354 }
4355 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4356 {
4357         Jim_GetOptInfo goi;
4358         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4359         if (goi.argc != 1)
4360         {
4361                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4362                 Jim_SetResult_sprintf(goi.interp, "%s <eventname>", cmd_name);
4363                 return JIM_ERR;
4364         }
4365         Jim_Nvp *n;
4366         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4367         if (e != JIM_OK)
4368         {
4369                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4370                 return e;
4371         }
4372         struct target *target = Jim_CmdPrivData(interp);
4373         target_handle_event(target, n->value);
4374         return JIM_OK;
4375 }
4376
4377 static const struct command_registration target_instance_command_handlers[] = {
4378         {
4379                 .name = "configure",
4380                 .mode = COMMAND_CONFIG,
4381                 .jim_handler = jim_target_configure,
4382                 .help  = "configure a new target for use",
4383                 .usage = "[target_attribute ...]",
4384         },
4385         {
4386                 .name = "cget",
4387                 .mode = COMMAND_ANY,
4388                 .jim_handler = jim_target_configure,
4389                 .help  = "returns the specified target attribute",
4390                 .usage = "target_attribute",
4391         },
4392         {
4393                 .name = "mww",
4394                 .mode = COMMAND_EXEC,
4395                 .jim_handler = jim_target_mw,
4396                 .help = "Write 32-bit word(s) to target memory",
4397                 .usage = "address data [count]",
4398         },
4399         {
4400                 .name = "mwh",
4401                 .mode = COMMAND_EXEC,
4402                 .jim_handler = jim_target_mw,
4403                 .help = "Write 16-bit half-word(s) to target memory",
4404                 .usage = "address data [count]",
4405         },
4406         {
4407                 .name = "mwb",
4408                 .mode = COMMAND_EXEC,
4409                 .jim_handler = jim_target_mw,
4410                 .help = "Write byte(s) to target memory",
4411                 .usage = "address data [count]",
4412         },
4413         {
4414                 .name = "mdw",
4415                 .mode = COMMAND_EXEC,
4416                 .jim_handler = jim_target_md,
4417                 .help = "Display target memory as 32-bit words",
4418                 .usage = "address [count]",
4419         },
4420         {
4421                 .name = "mdh",
4422                 .mode = COMMAND_EXEC,
4423                 .jim_handler = jim_target_md,
4424                 .help = "Display target memory as 16-bit half-words",
4425                 .usage = "address [count]",
4426         },
4427         {
4428                 .name = "mdb",
4429                 .mode = COMMAND_EXEC,
4430                 .jim_handler = jim_target_md,
4431                 .help = "Display target memory as 8-bit bytes",
4432                 .usage = "address [count]",
4433         },
4434         {
4435                 .name = "array2mem",
4436                 .mode = COMMAND_EXEC,
4437                 .jim_handler = jim_target_array2mem,
4438                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4439                         "to target memory",
4440                 .usage = "arrayname bitwidth address count",
4441         },
4442         {
4443                 .name = "mem2array",
4444                 .mode = COMMAND_EXEC,
4445                 .jim_handler = jim_target_mem2array,
4446                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4447                         "from target memory",
4448                 .usage = "arrayname bitwidth address count",
4449         },
4450         {
4451                 .name = "eventlist",
4452                 .mode = COMMAND_EXEC,
4453                 .jim_handler = jim_target_event_list,
4454                 .help = "displays a table of events defined for this target",
4455         },
4456         {
4457                 .name = "curstate",
4458                 .mode = COMMAND_EXEC,
4459                 .jim_handler = jim_target_current_state,
4460                 .help = "displays the current state of this target",
4461         },
4462         {
4463                 .name = "arp_examine",
4464                 .mode = COMMAND_EXEC,
4465                 .jim_handler = jim_target_examine,
4466                 .help = "used internally for reset processing",
4467         },
4468         {
4469                 .name = "arp_halt_gdb",
4470                 .mode = COMMAND_EXEC,
4471                 .jim_handler = jim_target_halt_gdb,
4472                 .help = "used internally for reset processing to halt GDB",
4473         },
4474         {
4475                 .name = "arp_poll",
4476                 .mode = COMMAND_EXEC,
4477                 .jim_handler = jim_target_poll,
4478                 .help = "used internally for reset processing",
4479         },
4480         {
4481                 .name = "arp_reset",
4482                 .mode = COMMAND_EXEC,
4483                 .jim_handler = jim_target_reset,
4484                 .help = "used internally for reset processing",
4485         },
4486         {
4487                 .name = "arp_halt",
4488                 .mode = COMMAND_EXEC,
4489                 .jim_handler = jim_target_halt,
4490                 .help = "used internally for reset processing",
4491         },
4492         {
4493                 .name = "arp_waitstate",
4494                 .mode = COMMAND_EXEC,
4495                 .jim_handler = jim_target_wait_state,
4496                 .help = "used internally for reset processing",
4497         },
4498         {
4499                 .name = "invoke-event",
4500                 .mode = COMMAND_EXEC,
4501                 .jim_handler = jim_target_invoke_event,
4502                 .help = "invoke handler for specified event",
4503                 .usage = "event_name",
4504         },
4505         COMMAND_REGISTRATION_DONE
4506 };
4507
4508 static int target_create(Jim_GetOptInfo *goi)
4509 {
4510         Jim_Obj *new_cmd;
4511         Jim_Cmd *cmd;
4512         const char *cp;
4513         char *cp2;
4514         int e;
4515         int x;
4516         struct target *target;
4517         struct command_context *cmd_ctx;
4518
4519         cmd_ctx = Jim_GetAssocData(goi->interp, "context");
4520         if (goi->argc < 3) {
4521                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4522                 return JIM_ERR;
4523         }
4524
4525         /* COMMAND */
4526         Jim_GetOpt_Obj(goi, &new_cmd);
4527         /* does this command exist? */
4528         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4529         if (cmd) {
4530                 cp = Jim_GetString(new_cmd, NULL);
4531                 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
4532                 return JIM_ERR;
4533         }
4534
4535         /* TYPE */
4536         e = Jim_GetOpt_String(goi, &cp2, NULL);
4537         cp = cp2;
4538         /* now does target type exist */
4539         for (x = 0 ; target_types[x] ; x++) {
4540                 if (0 == strcmp(cp, target_types[x]->name)) {
4541                         /* found */
4542                         break;
4543                 }
4544         }
4545         if (target_types[x] == NULL) {
4546                 Jim_SetResult_sprintf(goi->interp, "Unknown target type %s, try one of ", cp);
4547                 for (x = 0 ; target_types[x] ; x++) {
4548                         if (target_types[x + 1]) {
4549                                 Jim_AppendStrings(goi->interp,
4550                                                                    Jim_GetResult(goi->interp),
4551                                                                    target_types[x]->name,
4552                                                                    ", ", NULL);
4553                         } else {
4554                                 Jim_AppendStrings(goi->interp,
4555                                                                    Jim_GetResult(goi->interp),
4556                                                                    " or ",
4557                                                                    target_types[x]->name,NULL);
4558                         }
4559                 }
4560                 return JIM_ERR;
4561         }
4562
4563         /* Create it */
4564         target = calloc(1,sizeof(struct target));
4565         /* set target number */
4566         target->target_number = new_target_number();
4567
4568         /* allocate memory for each unique target type */
4569         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4570
4571         memcpy(target->type, target_types[x], sizeof(struct target_type));
4572
4573         /* will be set by "-endian" */
4574         target->endianness = TARGET_ENDIAN_UNKNOWN;
4575
4576         target->working_area        = 0x0;
4577         target->working_area_size   = 0x0;
4578         target->working_areas       = NULL;
4579         target->backup_working_area = 0;
4580
4581         target->state               = TARGET_UNKNOWN;
4582         target->debug_reason        = DBG_REASON_UNDEFINED;
4583         target->reg_cache           = NULL;
4584         target->breakpoints         = NULL;
4585         target->watchpoints         = NULL;
4586         target->next                = NULL;
4587         target->arch_info           = NULL;
4588
4589         target->display             = 1;
4590
4591         target->halt_issued                     = false;
4592
4593         /* initialize trace information */
4594         target->trace_info = malloc(sizeof(struct trace));
4595         target->trace_info->num_trace_points         = 0;
4596         target->trace_info->trace_points_size        = 0;
4597         target->trace_info->trace_points             = NULL;
4598         target->trace_info->trace_history_size       = 0;
4599         target->trace_info->trace_history            = NULL;
4600         target->trace_info->trace_history_pos        = 0;
4601         target->trace_info->trace_history_overflowed = 0;
4602
4603         target->dbgmsg          = NULL;
4604         target->dbg_msg_enabled = 0;
4605
4606         target->endianness = TARGET_ENDIAN_UNKNOWN;
4607
4608         /* Do the rest as "configure" options */
4609         goi->isconfigure = 1;
4610         e = target_configure(goi, target);
4611
4612         if (target->tap == NULL)
4613         {
4614                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4615                 e = JIM_ERR;
4616         }
4617
4618         if (e != JIM_OK) {
4619                 free(target->type);
4620                 free(target);
4621                 return e;
4622         }
4623
4624         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4625                 /* default endian to little if not specified */
4626                 target->endianness = TARGET_LITTLE_ENDIAN;
4627         }
4628
4629         /* incase variant is not set */
4630         if (!target->variant)
4631                 target->variant = strdup("");
4632
4633         cp = Jim_GetString(new_cmd, NULL);
4634         target->cmd_name = strdup(cp);
4635
4636         /* create the target specific commands */
4637         if (target->type->commands) {
4638                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4639                 if (ERROR_OK != e)
4640                         LOG_ERROR("unable to register '%s' commands", cp);
4641         }
4642         if (target->type->target_create) {
4643                 (*(target->type->target_create))(target, goi->interp);
4644         }
4645
4646         /* append to end of list */
4647         {
4648                 struct target **tpp;
4649                 tpp = &(all_targets);
4650                 while (*tpp) {
4651                         tpp = &((*tpp)->next);
4652                 }
4653                 *tpp = target;
4654         }
4655
4656         /* now - create the new target name command */
4657         const const struct command_registration target_subcommands[] = {
4658                 {
4659                         .chain = target_instance_command_handlers,
4660                 },
4661                 {
4662                         .chain = target->type->commands,
4663                 },
4664                 COMMAND_REGISTRATION_DONE
4665         };
4666         const const struct command_registration target_commands[] = {
4667                 {
4668                         .name = cp,
4669                         .mode = COMMAND_ANY,
4670                         .help = "target command group",
4671                         .chain = target_subcommands,
4672                 },
4673                 COMMAND_REGISTRATION_DONE
4674         };
4675         e = register_commands(cmd_ctx, NULL, target_commands);
4676         if (ERROR_OK != e)
4677                 return JIM_ERR;
4678
4679         struct command *c = command_find_in_context(cmd_ctx, cp);
4680         assert(c);
4681         command_set_handler_data(c, target);
4682
4683         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
4684 }
4685
4686 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4687 {
4688         if (argc != 1)
4689         {
4690                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4691                 return JIM_ERR;
4692         }
4693         struct command_context *cmd_ctx = Jim_GetAssocData(interp, "context");
4694         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
4695         return JIM_OK;
4696 }
4697
4698 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4699 {
4700         if (argc != 1)
4701         {
4702                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4703                 return JIM_ERR;
4704         }
4705         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4706         for (unsigned x = 0; NULL != target_types[x]; x++)
4707         {
4708                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4709                         Jim_NewStringObj(interp, target_types[x]->name, -1));
4710         }
4711         return JIM_OK;
4712 }
4713
4714 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4715 {
4716         if (argc != 1)
4717         {
4718                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
4719                 return JIM_ERR;
4720         }
4721         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
4722         struct target *target = all_targets;
4723         while (target)
4724         {
4725                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
4726                         Jim_NewStringObj(interp, target_name(target), -1));
4727                 target = target->next;
4728         }
4729         return JIM_OK;
4730 }
4731
4732 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4733 {
4734         Jim_GetOptInfo goi;
4735         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4736         if (goi.argc < 3)
4737         {
4738                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4739                         "<name> <target_type> [<target_options> ...]");
4740                 return JIM_ERR;
4741         }
4742         return target_create(&goi);
4743 }
4744
4745 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4746 {
4747         Jim_GetOptInfo goi;
4748         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4749
4750         /* It's OK to remove this mechanism sometime after August 2010 or so */
4751         LOG_WARNING("don't use numbers as target identifiers; use names");
4752         if (goi.argc != 1)
4753         {
4754                 Jim_SetResult_sprintf(goi.interp, "usage: target number <number>");
4755                 return JIM_ERR;
4756         }
4757         jim_wide w;
4758         int e = Jim_GetOpt_Wide(&goi, &w);
4759         if (e != JIM_OK)
4760                 return JIM_ERR;
4761
4762         struct target *target;
4763         for (target = all_targets; NULL != target; target = target->next)
4764         {
4765                 if (target->target_number != w)
4766                         continue;
4767
4768                 Jim_SetResultString(goi.interp, target_name(target), -1);
4769                 return JIM_OK;
4770         }
4771         Jim_SetResult_sprintf(goi.interp,
4772                         "Target: number %d does not exist", (int)(w));
4773         return JIM_ERR;
4774 }
4775
4776 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4777 {
4778         if (argc != 1)
4779         {
4780                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
4781                 return JIM_ERR;
4782         }
4783         unsigned count = 0;
4784         struct target *target = all_targets;
4785         while (NULL != target)
4786         {
4787                 target = target->next;
4788                 count++;
4789         }
4790         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
4791         return JIM_OK;
4792 }
4793
4794 static const struct command_registration target_subcommand_handlers[] = {
4795         {
4796                 .name = "init",
4797                 .mode = COMMAND_CONFIG,
4798                 .handler = handle_target_init_command,
4799                 .help = "initialize targets",
4800         },
4801         {
4802                 .name = "create",
4803                 /* REVISIT this should be COMMAND_CONFIG ... */
4804                 .mode = COMMAND_ANY,
4805                 .jim_handler = jim_target_create,
4806                 .usage = "name type '-chain-position' name [options ...]",
4807                 .help = "Creates and selects a new target",
4808         },
4809         {
4810                 .name = "current",
4811                 .mode = COMMAND_ANY,
4812                 .jim_handler = jim_target_current,
4813                 .help = "Returns the currently selected target",
4814         },
4815         {
4816                 .name = "types",
4817                 .mode = COMMAND_ANY,
4818                 .jim_handler = jim_target_types,
4819                 .help = "Returns the available target types as "
4820                                 "a list of strings",
4821         },
4822         {
4823                 .name = "names",
4824                 .mode = COMMAND_ANY,
4825                 .jim_handler = jim_target_names,
4826                 .help = "Returns the names of all targets as a list of strings",
4827         },
4828         {
4829                 .name = "number",
4830                 .mode = COMMAND_ANY,
4831                 .jim_handler = jim_target_number,
4832                 .usage = "number",
4833                 .help = "Returns the name of the numbered target "
4834                         "(DEPRECATED)",
4835         },
4836         {
4837                 .name = "count",
4838                 .mode = COMMAND_ANY,
4839                 .jim_handler = jim_target_count,
4840                 .help = "Returns the number of targets as an integer "
4841                         "(DEPRECATED)",
4842         },
4843         COMMAND_REGISTRATION_DONE
4844 };
4845
4846 struct FastLoad
4847 {
4848         uint32_t address;
4849         uint8_t *data;
4850         int length;
4851
4852 };
4853
4854 static int fastload_num;
4855 static struct FastLoad *fastload;
4856
4857 static void free_fastload(void)
4858 {
4859         if (fastload != NULL)
4860         {
4861                 int i;
4862                 for (i = 0; i < fastload_num; i++)
4863                 {
4864                         if (fastload[i].data)
4865                                 free(fastload[i].data);
4866                 }
4867                 free(fastload);
4868                 fastload = NULL;
4869         }
4870 }
4871
4872
4873
4874
4875 COMMAND_HANDLER(handle_fast_load_image_command)
4876 {
4877         uint8_t *buffer;
4878         size_t buf_cnt;
4879         uint32_t image_size;
4880         uint32_t min_address = 0;
4881         uint32_t max_address = 0xffffffff;
4882         int i;
4883
4884         struct image image;
4885
4886         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
4887                         &image, &min_address, &max_address);
4888         if (ERROR_OK != retval)
4889                 return retval;
4890
4891         struct duration bench;
4892         duration_start(&bench);
4893
4894         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
4895         {
4896                 return ERROR_OK;
4897         }
4898
4899         image_size = 0x0;
4900         retval = ERROR_OK;
4901         fastload_num = image.num_sections;
4902         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4903         if (fastload == NULL)
4904         {
4905                 image_close(&image);
4906                 return ERROR_FAIL;
4907         }
4908         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4909         for (i = 0; i < image.num_sections; i++)
4910         {
4911                 buffer = malloc(image.sections[i].size);
4912                 if (buffer == NULL)
4913                 {
4914                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
4915                                                   (int)(image.sections[i].size));
4916                         break;
4917                 }
4918
4919                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4920                 {
4921                         free(buffer);
4922                         break;
4923                 }
4924
4925                 uint32_t offset = 0;
4926                 uint32_t length = buf_cnt;
4927
4928
4929                 /* DANGER!!! beware of unsigned comparision here!!! */
4930
4931                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
4932                                 (image.sections[i].base_address < max_address))
4933                 {
4934                         if (image.sections[i].base_address < min_address)
4935                         {
4936                                 /* clip addresses below */
4937                                 offset += min_address-image.sections[i].base_address;
4938                                 length -= offset;
4939                         }
4940
4941                         if (image.sections[i].base_address + buf_cnt > max_address)
4942                         {
4943                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
4944                         }
4945
4946                         fastload[i].address = image.sections[i].base_address + offset;
4947                         fastload[i].data = malloc(length);
4948                         if (fastload[i].data == NULL)
4949                         {
4950                                 free(buffer);
4951                                 break;
4952                         }
4953                         memcpy(fastload[i].data, buffer + offset, length);
4954                         fastload[i].length = length;
4955
4956                         image_size += length;
4957                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
4958                                                   (unsigned int)length,
4959                                                   ((unsigned int)(image.sections[i].base_address + offset)));
4960                 }
4961
4962                 free(buffer);
4963         }
4964
4965         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
4966         {
4967                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
4968                                 "in %fs (%0.3f kb/s)", image_size, 
4969                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
4970
4971                 command_print(CMD_CTX,
4972                                 "WARNING: image has not been loaded to target!"
4973                                 "You can issue a 'fast_load' to finish loading.");
4974         }
4975
4976         image_close(&image);
4977
4978         if (retval != ERROR_OK)
4979         {
4980                 free_fastload();
4981         }
4982
4983         return retval;
4984 }
4985
4986 COMMAND_HANDLER(handle_fast_load_command)
4987 {
4988         if (CMD_ARGC > 0)
4989                 return ERROR_COMMAND_SYNTAX_ERROR;
4990         if (fastload == NULL)
4991         {
4992                 LOG_ERROR("No image in memory");
4993                 return ERROR_FAIL;
4994         }
4995         int i;
4996         int ms = timeval_ms();
4997         int size = 0;
4998         int retval = ERROR_OK;
4999         for (i = 0; i < fastload_num;i++)
5000         {
5001                 struct target *target = get_current_target(CMD_CTX);
5002                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5003                                           (unsigned int)(fastload[i].address),
5004                                           (unsigned int)(fastload[i].length));
5005                 if (retval == ERROR_OK)
5006                 {
5007                         retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5008                 }
5009                 size += fastload[i].length;
5010         }
5011         int after = timeval_ms();
5012         command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5013         return retval;
5014 }
5015
5016 static const struct command_registration target_command_handlers[] = {
5017         {
5018                 .name = "targets",
5019                 .handler = handle_targets_command,
5020                 .mode = COMMAND_ANY,
5021                 .help = "change current default target (one parameter) "
5022                         "or prints table of all targets (no parameters)",
5023                 .usage = "[target]",
5024         },
5025         {
5026                 .name = "target",
5027                 .mode = COMMAND_CONFIG,
5028                 .help = "configure target",
5029
5030                 .chain = target_subcommand_handlers,
5031         },
5032         COMMAND_REGISTRATION_DONE
5033 };
5034
5035 int target_register_commands(struct command_context *cmd_ctx)
5036 {
5037         return register_commands(cmd_ctx, NULL, target_command_handlers);
5038 }
5039
5040 static bool target_reset_nag = true;
5041
5042 bool get_target_reset_nag(void)
5043 {
5044         return target_reset_nag;
5045 }
5046
5047 COMMAND_HANDLER(handle_target_reset_nag)
5048 {
5049         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5050                         &target_reset_nag, "Nag after each reset about options to improve "
5051                         "performance");
5052 }
5053
5054 static const struct command_registration target_exec_command_handlers[] = {
5055         {
5056                 .name = "fast_load_image",
5057                 .handler = handle_fast_load_image_command,
5058                 .mode = COMMAND_ANY,
5059                 .help = "Load image into server memory for later use by "
5060                         "fast_load; primarily for profiling",
5061                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5062                         "[min_address [max_length]]",
5063         },
5064         {
5065                 .name = "fast_load",
5066                 .handler = handle_fast_load_command,
5067                 .mode = COMMAND_EXEC,
5068                 .help = "loads active fast load image to current target "
5069                         "- mainly for profiling purposes",
5070         },
5071         {
5072                 .name = "profile",
5073                 .handler = handle_profile_command,
5074                 .mode = COMMAND_EXEC,
5075                 .help = "profiling samples the CPU PC",
5076         },
5077         /** @todo don't register virt2phys() unless target supports it */
5078         {
5079                 .name = "virt2phys",
5080                 .handler = handle_virt2phys_command,
5081                 .mode = COMMAND_ANY,
5082                 .help = "translate a virtual address into a physical address",
5083                 .usage = "virtual_address",
5084         },
5085         {
5086                 .name = "reg",
5087                 .handler = handle_reg_command,
5088                 .mode = COMMAND_EXEC,
5089                 .help = "display or set a register; with no arguments, "
5090                         "displays all registers and their values",
5091                 .usage = "[(register_name|register_number) [value]]",
5092         },
5093         {
5094                 .name = "poll",
5095                 .handler = handle_poll_command,
5096                 .mode = COMMAND_EXEC,
5097                 .help = "poll target state; or reconfigure background polling",
5098                 .usage = "['on'|'off']",
5099         },
5100         {
5101                 .name = "wait_halt",
5102                 .handler = handle_wait_halt_command,
5103                 .mode = COMMAND_EXEC,
5104                 .help = "wait up to the specified number of milliseconds "
5105                         "(default 5) for a previously requested halt",
5106                 .usage = "[milliseconds]",
5107         },
5108         {
5109                 .name = "halt",
5110                 .handler = handle_halt_command,
5111                 .mode = COMMAND_EXEC,
5112                 .help = "request target to halt, then wait up to the specified"
5113                         "number of milliseconds (default 5) for it to complete",
5114                 .usage = "[milliseconds]",
5115         },
5116         {
5117                 .name = "resume",
5118                 .handler = handle_resume_command,
5119                 .mode = COMMAND_EXEC,
5120                 .help = "resume target execution from current PC or address",
5121                 .usage = "[address]",
5122         },
5123         {
5124                 .name = "reset",
5125                 .handler = handle_reset_command,
5126                 .mode = COMMAND_EXEC,
5127                 .usage = "[run|halt|init]",
5128                 .help = "Reset all targets into the specified mode."
5129                         "Default reset mode is run, if not given.",
5130         },
5131         {
5132                 .name = "soft_reset_halt",
5133                 .handler = handle_soft_reset_halt_command,
5134                 .mode = COMMAND_EXEC,
5135                 .help = "halt the target and do a soft reset",
5136         },
5137         {
5138                 .name = "step",
5139                 .handler = handle_step_command,
5140                 .mode = COMMAND_EXEC,
5141                 .help = "step one instruction from current PC or address",
5142                 .usage = "[address]",
5143         },
5144         {
5145                 .name = "mdw",
5146                 .handler = handle_md_command,
5147                 .mode = COMMAND_EXEC,
5148                 .help = "display memory words",
5149                 .usage = "['phys'] address [count]",
5150         },
5151         {
5152                 .name = "mdh",
5153                 .handler = handle_md_command,
5154                 .mode = COMMAND_EXEC,
5155                 .help = "display memory half-words",
5156                 .usage = "['phys'] address [count]",
5157         },
5158         {
5159                 .name = "mdb",
5160                 .handler = handle_md_command,
5161                 .mode = COMMAND_EXEC,
5162                 .help = "display memory bytes",
5163                 .usage = "['phys'] address [count]",
5164         },
5165         {
5166                 .name = "mww",
5167                 .handler = handle_mw_command,
5168                 .mode = COMMAND_EXEC,
5169                 .help = "write memory word",
5170                 .usage = "['phys'] address value [count]",
5171         },
5172         {
5173                 .name = "mwh",
5174                 .handler = handle_mw_command,
5175                 .mode = COMMAND_EXEC,
5176                 .help = "write memory half-word",
5177                 .usage = "['phys'] address value [count]",
5178         },
5179         {
5180                 .name = "mwb",
5181                 .handler = handle_mw_command,
5182                 .mode = COMMAND_EXEC,
5183                 .help = "write memory byte",
5184                 .usage = "['phys'] address value [count]",
5185         },
5186         {
5187                 .name = "bp",
5188                 .handler = handle_bp_command,
5189                 .mode = COMMAND_EXEC,
5190                 .help = "list or set hardware or software breakpoint",
5191                 .usage = "[address length ['hw']]",
5192         },
5193         {
5194                 .name = "rbp",
5195                 .handler = handle_rbp_command,
5196                 .mode = COMMAND_EXEC,
5197                 .help = "remove breakpoint",
5198                 .usage = "address",
5199         },
5200         {
5201                 .name = "wp",
5202                 .handler = handle_wp_command,
5203                 .mode = COMMAND_EXEC,
5204                 .help = "list (no params) or create watchpoints",
5205                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5206         },
5207         {
5208                 .name = "rwp",
5209                 .handler = handle_rwp_command,
5210                 .mode = COMMAND_EXEC,
5211                 .help = "remove watchpoint",
5212                 .usage = "address",
5213         },
5214         {
5215                 .name = "load_image",
5216                 .handler = handle_load_image_command,
5217                 .mode = COMMAND_EXEC,
5218                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5219                         "[min_address] [max_length]",
5220         },
5221         {
5222                 .name = "dump_image",
5223                 .handler = handle_dump_image_command,
5224                 .mode = COMMAND_EXEC,
5225                 .usage = "filename address size",
5226         },
5227         {
5228                 .name = "verify_image",
5229                 .handler = handle_verify_image_command,
5230                 .mode = COMMAND_EXEC,
5231                 .usage = "filename [offset [type]]",
5232         },
5233         {
5234                 .name = "test_image",
5235                 .handler = handle_test_image_command,
5236                 .mode = COMMAND_EXEC,
5237                 .usage = "filename [offset [type]]",
5238         },
5239         {
5240                 .name = "ocd_mem2array",
5241                 .mode = COMMAND_EXEC,
5242                 .jim_handler = jim_mem2array,
5243                 .help = "read 8/16/32 bit memory and return as a TCL array "
5244                         "for script processing",
5245                 .usage = "arrayname bitwidth address count",
5246         },
5247         {
5248                 .name = "ocd_array2mem",
5249                 .mode = COMMAND_EXEC,
5250                 .jim_handler = jim_array2mem,
5251                 .help = "convert a TCL array to memory locations "
5252                         "and write the 8/16/32 bit values",
5253                 .usage = "arrayname bitwidth address count",
5254         },
5255         {
5256                 .name = "reset_nag",
5257                 .handler = handle_target_reset_nag,
5258                 .mode = COMMAND_ANY,
5259                 .help = "Nag after each reset about options that could have been "
5260                                 "enabled to improve performance. ",
5261                 .usage = "['enable'|'disable']",
5262         },
5263         COMMAND_REGISTRATION_DONE
5264 };
5265 int target_register_user_commands(struct command_context *cmd_ctx)
5266 {
5267         int retval = ERROR_OK;
5268         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5269                 return retval;
5270
5271         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5272                 return retval;
5273
5274
5275         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5276 }