bugfixes: tinker a bit with the targets command
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   This program is free software; you can redistribute it and/or modify  *
24  *   it under the terms of the GNU General Public License as published by  *
25  *   the Free Software Foundation; either version 2 of the License, or     *
26  *   (at your option) any later version.                                   *
27  *                                                                         *
28  *   This program is distributed in the hope that it will be useful,       *
29  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
30  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
31  *   GNU General Public License for more details.                          *
32  *                                                                         *
33  *   You should have received a copy of the GNU General Public License     *
34  *   along with this program; if not, write to the                         *
35  *   Free Software Foundation, Inc.,                                       *
36  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
37  ***************************************************************************/
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41
42 #include <helper/time_support.h>
43 #include <jtag/jtag.h>
44 #include <flash/nor/core.h>
45
46 #include "target.h"
47 #include "target_type.h"
48 #include "target_request.h"
49 #include "breakpoints.h"
50 #include "register.h"
51 #include "trace.h"
52 #include "image.h"
53 #include "rtos/rtos.h"
54
55
56 static int target_read_buffer_default(struct target *target, uint32_t address,
57                 uint32_t size, uint8_t *buffer);
58 static int target_write_buffer_default(struct target *target, uint32_t address,
59                 uint32_t size, const uint8_t *buffer);
60 static int target_array2mem(Jim_Interp *interp, struct target *target,
61                 int argc, Jim_Obj *const *argv);
62 static int target_mem2array(Jim_Interp *interp, struct target *target,
63                 int argc, Jim_Obj *const *argv);
64 static int target_register_user_commands(struct command_context *cmd_ctx);
65
66 /* targets */
67 extern struct target_type arm7tdmi_target;
68 extern struct target_type arm720t_target;
69 extern struct target_type arm9tdmi_target;
70 extern struct target_type arm920t_target;
71 extern struct target_type arm966e_target;
72 extern struct target_type arm946e_target;
73 extern struct target_type arm926ejs_target;
74 extern struct target_type fa526_target;
75 extern struct target_type feroceon_target;
76 extern struct target_type dragonite_target;
77 extern struct target_type xscale_target;
78 extern struct target_type cortexm3_target;
79 extern struct target_type cortexa8_target;
80 extern struct target_type arm11_target;
81 extern struct target_type mips_m4k_target;
82 extern struct target_type avr_target;
83 extern struct target_type dsp563xx_target;
84 extern struct target_type dsp5680xx_target;
85 extern struct target_type testee_target;
86 extern struct target_type avr32_ap7k_target;
87
88 static struct target_type *target_types[] =
89 {
90         &arm7tdmi_target,
91         &arm9tdmi_target,
92         &arm920t_target,
93         &arm720t_target,
94         &arm966e_target,
95         &arm946e_target,
96         &arm926ejs_target,
97         &fa526_target,
98         &feroceon_target,
99         &dragonite_target,
100         &xscale_target,
101         &cortexm3_target,
102         &cortexa8_target,
103         &arm11_target,
104         &mips_m4k_target,
105         &avr_target,
106         &dsp563xx_target,
107         &dsp5680xx_target,
108         &testee_target,
109         &avr32_ap7k_target,
110         NULL,
111 };
112
113 struct target *all_targets = NULL;
114 static struct target_event_callback *target_event_callbacks = NULL;
115 static struct target_timer_callback *target_timer_callbacks = NULL;
116 static const int polling_interval = 100;
117
118 static const Jim_Nvp nvp_assert[] = {
119         { .name = "assert", NVP_ASSERT },
120         { .name = "deassert", NVP_DEASSERT },
121         { .name = "T", NVP_ASSERT },
122         { .name = "F", NVP_DEASSERT },
123         { .name = "t", NVP_ASSERT },
124         { .name = "f", NVP_DEASSERT },
125         { .name = NULL, .value = -1 }
126 };
127
128 static const Jim_Nvp nvp_error_target[] = {
129         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
130         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
131         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
132         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
133         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
134         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
135         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
136         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
137         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
138         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
139         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
140         { .value = -1, .name = NULL }
141 };
142
143 static const char *target_strerror_safe(int err)
144 {
145         const Jim_Nvp *n;
146
147         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
148         if (n->name == NULL) {
149                 return "unknown";
150         } else {
151                 return n->name;
152         }
153 }
154
155 static const Jim_Nvp nvp_target_event[] = {
156         { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
157         { .value = TARGET_EVENT_OLD_pre_resume         , .name = "old-pre_resume" },
158
159         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
160         { .value = TARGET_EVENT_HALTED, .name = "halted" },
161         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
162         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
163         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
164
165         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
166         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
167
168         /* historical name */
169
170         { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
171
172         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
173         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
174         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
175         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
176         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
177         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
178         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
179         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
180         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
181         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
182         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
183
184         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
185         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
186
187         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
188         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
189
190         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
191         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
192
193         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
194         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
195
196         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
197         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
198
199         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
200         { .value = TARGET_EVENT_RESUMED     , .name = "resume-ok" },
201         { .value = TARGET_EVENT_RESUME_END  , .name = "resume-end" },
202
203         { .name = NULL, .value = -1 }
204 };
205
206 static const Jim_Nvp nvp_target_state[] = {
207         { .name = "unknown", .value = TARGET_UNKNOWN },
208         { .name = "running", .value = TARGET_RUNNING },
209         { .name = "halted",  .value = TARGET_HALTED },
210         { .name = "reset",   .value = TARGET_RESET },
211         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
212         { .name = NULL, .value = -1 },
213 };
214
215 static const Jim_Nvp nvp_target_debug_reason [] = {
216         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
217         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
218         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
219         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
220         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
221         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
222         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
223         { .name = NULL, .value = -1 },
224 };
225
226 static const Jim_Nvp nvp_target_endian[] = {
227         { .name = "big",    .value = TARGET_BIG_ENDIAN },
228         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
229         { .name = "be",     .value = TARGET_BIG_ENDIAN },
230         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
231         { .name = NULL,     .value = -1 },
232 };
233
234 static const Jim_Nvp nvp_reset_modes[] = {
235         { .name = "unknown", .value = RESET_UNKNOWN },
236         { .name = "run"    , .value = RESET_RUN },
237         { .name = "halt"   , .value = RESET_HALT },
238         { .name = "init"   , .value = RESET_INIT },
239         { .name = NULL     , .value = -1 },
240 };
241
242 const char *debug_reason_name(struct target *t)
243 {
244         const char *cp;
245
246         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
247                         t->debug_reason)->name;
248         if (!cp) {
249                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
250                 cp = "(*BUG*unknown*BUG*)";
251         }
252         return cp;
253 }
254
255 const char *
256 target_state_name( struct target *t )
257 {
258         const char *cp;
259         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
260         if( !cp ){
261                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
262                 cp = "(*BUG*unknown*BUG*)";
263         }
264         return cp;
265 }
266
267 /* determine the number of the new target */
268 static int new_target_number(void)
269 {
270         struct target *t;
271         int x;
272
273         /* number is 0 based */
274         x = -1;
275         t = all_targets;
276         while (t) {
277                 if (x < t->target_number) {
278                         x = t->target_number;
279                 }
280                 t = t->next;
281         }
282         return x + 1;
283 }
284
285 /* read a uint32_t from a buffer in target memory endianness */
286 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
287 {
288         if (target->endianness == TARGET_LITTLE_ENDIAN)
289                 return le_to_h_u32(buffer);
290         else
291                 return be_to_h_u32(buffer);
292 }
293
294 /* read a uint24_t from a buffer in target memory endianness */
295 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
296 {
297         if (target->endianness == TARGET_LITTLE_ENDIAN)
298                 return le_to_h_u24(buffer);
299         else
300                 return be_to_h_u24(buffer);
301 }
302
303 /* read a uint16_t from a buffer in target memory endianness */
304 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
305 {
306         if (target->endianness == TARGET_LITTLE_ENDIAN)
307                 return le_to_h_u16(buffer);
308         else
309                 return be_to_h_u16(buffer);
310 }
311
312 /* read a uint8_t from a buffer in target memory endianness */
313 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
314 {
315         return *buffer & 0x0ff;
316 }
317
318 /* write a uint32_t to a buffer in target memory endianness */
319 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
320 {
321         if (target->endianness == TARGET_LITTLE_ENDIAN)
322                 h_u32_to_le(buffer, value);
323         else
324                 h_u32_to_be(buffer, value);
325 }
326
327 /* write a uint24_t to a buffer in target memory endianness */
328 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
329 {
330         if (target->endianness == TARGET_LITTLE_ENDIAN)
331                 h_u24_to_le(buffer, value);
332         else
333                 h_u24_to_be(buffer, value);
334 }
335
336 /* write a uint16_t to a buffer in target memory endianness */
337 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
338 {
339         if (target->endianness == TARGET_LITTLE_ENDIAN)
340                 h_u16_to_le(buffer, value);
341         else
342                 h_u16_to_be(buffer, value);
343 }
344
345 /* write a uint8_t to a buffer in target memory endianness */
346 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
347 {
348         *buffer = value;
349 }
350
351 /* write a uint32_t array to a buffer in target memory endianness */
352 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
353 {
354         uint32_t i;
355         for(i = 0; i < count; i ++)
356                 dstbuf[i] = target_buffer_get_u32(target,&buffer[i*4]);
357 }
358
359 /* write a uint16_t array to a buffer in target memory endianness */
360 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
361 {
362         uint32_t i;
363         for(i = 0; i < count; i ++)
364                 dstbuf[i] = target_buffer_get_u16(target,&buffer[i*2]);
365 }
366
367 /* write a uint32_t array to a buffer in target memory endianness */
368 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
369 {
370         uint32_t i;
371         for(i = 0; i < count; i ++)
372                 target_buffer_set_u32(target,&buffer[i*4],srcbuf[i]);
373 }
374
375 /* write a uint16_t array to a buffer in target memory endianness */
376 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
377 {
378         uint32_t i;
379         for(i = 0; i < count; i ++)
380                 target_buffer_set_u16(target,&buffer[i*2],srcbuf[i]);
381 }
382
383 /* return a pointer to a configured target; id is name or number */
384 struct target *get_target(const char *id)
385 {
386         struct target *target;
387
388         /* try as tcltarget name */
389         for (target = all_targets; target; target = target->next) {
390                 if (target->cmd_name == NULL)
391                         continue;
392                 if (strcmp(id, target->cmd_name) == 0)
393                         return target;
394         }
395
396         /* It's OK to remove this fallback sometime after August 2010 or so */
397
398         /* no match, try as number */
399         unsigned num;
400         if (parse_uint(id, &num) != ERROR_OK)
401                 return NULL;
402
403         for (target = all_targets; target; target = target->next) {
404                 if (target->target_number == (int)num) {
405                         LOG_WARNING("use '%s' as target identifier, not '%u'",
406                                         target->cmd_name, num);
407                         return target;
408                 }
409         }
410
411         return NULL;
412 }
413
414 /* returns a pointer to the n-th configured target */
415 static struct target *get_target_by_num(int num)
416 {
417         struct target *target = all_targets;
418
419         while (target) {
420                 if (target->target_number == num) {
421                         return target;
422                 }
423                 target = target->next;
424         }
425
426         return NULL;
427 }
428
429 struct target* get_current_target(struct command_context *cmd_ctx)
430 {
431         struct target *target = get_target_by_num(cmd_ctx->current_target);
432
433         if (target == NULL)
434         {
435                 LOG_ERROR("BUG: current_target out of bounds");
436                 exit(-1);
437         }
438
439         return target;
440 }
441
442 int target_poll(struct target *target)
443 {
444         int retval;
445
446         /* We can't poll until after examine */
447         if (!target_was_examined(target))
448         {
449                 /* Fail silently lest we pollute the log */
450                 return ERROR_FAIL;
451         }
452
453         retval = target->type->poll(target);
454         if (retval != ERROR_OK)
455                 return retval;
456
457         if (target->halt_issued)
458         {
459                 if (target->state == TARGET_HALTED)
460                 {
461                         target->halt_issued = false;
462                 } else
463                 {
464                         long long t = timeval_ms() - target->halt_issued_time;
465                         if (t>1000)
466                         {
467                                 target->halt_issued = false;
468                                 LOG_INFO("Halt timed out, wake up GDB.");
469                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
470                         }
471                 }
472         }
473
474         return ERROR_OK;
475 }
476
477 int target_halt(struct target *target)
478 {
479         int retval;
480         /* We can't poll until after examine */
481         if (!target_was_examined(target))
482         {
483                 LOG_ERROR("Target not examined yet");
484                 return ERROR_FAIL;
485         }
486
487         retval = target->type->halt(target);
488         if (retval != ERROR_OK)
489                 return retval;
490
491         target->halt_issued = true;
492         target->halt_issued_time = timeval_ms();
493
494         return ERROR_OK;
495 }
496
497 /**
498  * Make the target (re)start executing using its saved execution
499  * context (possibly with some modifications).
500  *
501  * @param target Which target should start executing.
502  * @param current True to use the target's saved program counter instead
503  *      of the address parameter
504  * @param address Optionally used as the program counter.
505  * @param handle_breakpoints True iff breakpoints at the resumption PC
506  *      should be skipped.  (For example, maybe execution was stopped by
507  *      such a breakpoint, in which case it would be counterprodutive to
508  *      let it re-trigger.
509  * @param debug_execution False if all working areas allocated by OpenOCD
510  *      should be released and/or restored to their original contents.
511  *      (This would for example be true to run some downloaded "helper"
512  *      algorithm code, which resides in one such working buffer and uses
513  *      another for data storage.)
514  *
515  * @todo Resolve the ambiguity about what the "debug_execution" flag
516  * signifies.  For example, Target implementations don't agree on how
517  * it relates to invalidation of the register cache, or to whether
518  * breakpoints and watchpoints should be enabled.  (It would seem wrong
519  * to enable breakpoints when running downloaded "helper" algorithms
520  * (debug_execution true), since the breakpoints would be set to match
521  * target firmware being debugged, not the helper algorithm.... and
522  * enabling them could cause such helpers to malfunction (for example,
523  * by overwriting data with a breakpoint instruction.  On the other
524  * hand the infrastructure for running such helpers might use this
525  * procedure but rely on hardware breakpoint to detect termination.)
526  */
527 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
528 {
529         int retval;
530
531         /* We can't poll until after examine */
532         if (!target_was_examined(target))
533         {
534                 LOG_ERROR("Target not examined yet");
535                 return ERROR_FAIL;
536         }
537
538         /* note that resume *must* be asynchronous. The CPU can halt before
539          * we poll. The CPU can even halt at the current PC as a result of
540          * a software breakpoint being inserted by (a bug?) the application.
541          */
542         if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
543                 return retval;
544
545         return retval;
546 }
547
548 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
549 {
550         char buf[100];
551         int retval;
552         Jim_Nvp *n;
553         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
554         if (n->name == NULL) {
555                 LOG_ERROR("invalid reset mode");
556                 return ERROR_FAIL;
557         }
558
559         /* disable polling during reset to make reset event scripts
560          * more predictable, i.e. dr/irscan & pathmove in events will
561          * not have JTAG operations injected into the middle of a sequence.
562          */
563         bool save_poll = jtag_poll_get_enabled();
564
565         jtag_poll_set_enabled(false);
566
567         sprintf(buf, "ocd_process_reset %s", n->name);
568         retval = Jim_Eval(cmd_ctx->interp, buf);
569
570         jtag_poll_set_enabled(save_poll);
571
572         if (retval != JIM_OK) {
573                 Jim_MakeErrorMessage(cmd_ctx->interp);
574                 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
575                 return ERROR_FAIL;
576         }
577
578         /* We want any events to be processed before the prompt */
579         retval = target_call_timer_callbacks_now();
580
581         struct target *target;
582         for (target = all_targets; target; target = target->next) {
583                 target->type->check_reset(target);
584         }
585
586         return retval;
587 }
588
589 static int identity_virt2phys(struct target *target,
590                 uint32_t virtual, uint32_t *physical)
591 {
592         *physical = virtual;
593         return ERROR_OK;
594 }
595
596 static int no_mmu(struct target *target, int *enabled)
597 {
598         *enabled = 0;
599         return ERROR_OK;
600 }
601
602 static int default_examine(struct target *target)
603 {
604         target_set_examined(target);
605         return ERROR_OK;
606 }
607
608 /* no check by default */
609 static int default_check_reset(struct target *target)
610 {
611         return ERROR_OK;
612 }
613
614 int target_examine_one(struct target *target)
615 {
616         return target->type->examine(target);
617 }
618
619 static int jtag_enable_callback(enum jtag_event event, void *priv)
620 {
621         struct target *target = priv;
622
623         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
624                 return ERROR_OK;
625
626         jtag_unregister_event_callback(jtag_enable_callback, target);
627         return target_examine_one(target);
628 }
629
630
631 /* Targets that correctly implement init + examine, i.e.
632  * no communication with target during init:
633  *
634  * XScale
635  */
636 int target_examine(void)
637 {
638         int retval = ERROR_OK;
639         struct target *target;
640
641         for (target = all_targets; target; target = target->next)
642         {
643                 /* defer examination, but don't skip it */
644                 if (!target->tap->enabled) {
645                         jtag_register_event_callback(jtag_enable_callback,
646                                         target);
647                         continue;
648                 }
649                 if ((retval = target_examine_one(target)) != ERROR_OK)
650                         return retval;
651         }
652         return retval;
653 }
654 const char *target_type_name(struct target *target)
655 {
656         return target->type->name;
657 }
658
659 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
660 {
661         if (!target_was_examined(target))
662         {
663                 LOG_ERROR("Target not examined yet");
664                 return ERROR_FAIL;
665         }
666         return target->type->write_memory_imp(target, address, size, count, buffer);
667 }
668
669 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
670 {
671         if (!target_was_examined(target))
672         {
673                 LOG_ERROR("Target not examined yet");
674                 return ERROR_FAIL;
675         }
676         return target->type->read_memory_imp(target, address, size, count, buffer);
677 }
678
679 static int target_soft_reset_halt_imp(struct target *target)
680 {
681         if (!target_was_examined(target))
682         {
683                 LOG_ERROR("Target not examined yet");
684                 return ERROR_FAIL;
685         }
686         if (!target->type->soft_reset_halt_imp) {
687                 LOG_ERROR("Target %s does not support soft_reset_halt",
688                                 target_name(target));
689                 return ERROR_FAIL;
690         }
691         return target->type->soft_reset_halt_imp(target);
692 }
693
694 /**
695  * Downloads a target-specific native code algorithm to the target,
696  * and executes it.  * Note that some targets may need to set up, enable,
697  * and tear down a breakpoint (hard or * soft) to detect algorithm
698  * termination, while others may support  lower overhead schemes where
699  * soft breakpoints embedded in the algorithm automatically terminate the
700  * algorithm.
701  *
702  * @param target used to run the algorithm
703  * @param arch_info target-specific description of the algorithm.
704  */
705 int target_run_algorithm(struct target *target,
706                 int num_mem_params, struct mem_param *mem_params,
707                 int num_reg_params, struct reg_param *reg_param,
708                 uint32_t entry_point, uint32_t exit_point,
709                 int timeout_ms, void *arch_info)
710 {
711         int retval = ERROR_FAIL;
712
713         if (!target_was_examined(target))
714         {
715                 LOG_ERROR("Target not examined yet");
716                 goto done;
717         }
718         if (!target->type->run_algorithm) {
719                 LOG_ERROR("Target type '%s' does not support %s",
720                                 target_type_name(target), __func__);
721                 goto done;
722         }
723
724         target->running_alg = true;
725         retval = target->type->run_algorithm(target,
726                         num_mem_params, mem_params,
727                         num_reg_params, reg_param,
728                         entry_point, exit_point, timeout_ms, arch_info);
729         target->running_alg = false;
730
731 done:
732         return retval;
733 }
734
735 /**
736  * Downloads a target-specific native code algorithm to the target,
737  * executes and leaves it running.
738  *
739  * @param target used to run the algorithm
740  * @param arch_info target-specific description of the algorithm.
741  */
742 int target_start_algorithm(struct target *target,
743                 int num_mem_params, struct mem_param *mem_params,
744                 int num_reg_params, struct reg_param *reg_params,
745                 uint32_t entry_point, uint32_t exit_point,
746                 void *arch_info)
747 {
748         int retval = ERROR_FAIL;
749
750         if (!target_was_examined(target))
751         {
752                 LOG_ERROR("Target not examined yet");
753                 goto done;
754         }
755         if (!target->type->start_algorithm) {
756                 LOG_ERROR("Target type '%s' does not support %s",
757                                 target_type_name(target), __func__);
758                 goto done;
759         }
760         if (target->running_alg) {
761                 LOG_ERROR("Target is already running an algorithm");
762                 goto done;
763         }
764
765         target->running_alg = true;
766         retval = target->type->start_algorithm(target,
767                         num_mem_params, mem_params,
768                         num_reg_params, reg_params,
769                         entry_point, exit_point, arch_info);
770
771 done:
772         return retval;
773 }
774
775 /**
776  * Waits for an algorithm started with target_start_algorithm() to complete.
777  *
778  * @param target used to run the algorithm
779  * @param arch_info target-specific description of the algorithm.
780  */
781 int target_wait_algorithm(struct target *target,
782                 int num_mem_params, struct mem_param *mem_params,
783                 int num_reg_params, struct reg_param *reg_params,
784                 uint32_t exit_point, int timeout_ms,
785                 void *arch_info)
786 {
787         int retval = ERROR_FAIL;
788
789         if (!target->type->wait_algorithm) {
790                 LOG_ERROR("Target type '%s' does not support %s",
791                                 target_type_name(target), __func__);
792                 goto done;
793         }
794         if (!target->running_alg) {
795                 LOG_ERROR("Target is not running an algorithm");
796                 goto done;
797         }
798
799         retval = target->type->wait_algorithm(target,
800                         num_mem_params, mem_params,
801                         num_reg_params, reg_params,
802                         exit_point, timeout_ms, arch_info);
803         if (retval != ERROR_TARGET_TIMEOUT)
804                 target->running_alg = false;
805
806 done:
807         return retval;
808 }
809
810
811 int target_read_memory(struct target *target,
812                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
813 {
814         return target->type->read_memory(target, address, size, count, buffer);
815 }
816
817 static int target_read_phys_memory(struct target *target,
818                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
819 {
820         return target->type->read_phys_memory(target, address, size, count, buffer);
821 }
822
823 int target_write_memory(struct target *target,
824                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
825 {
826         return target->type->write_memory(target, address, size, count, buffer);
827 }
828
829 static int target_write_phys_memory(struct target *target,
830                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
831 {
832         return target->type->write_phys_memory(target, address, size, count, buffer);
833 }
834
835 int target_bulk_write_memory(struct target *target,
836                 uint32_t address, uint32_t count, const uint8_t *buffer)
837 {
838         return target->type->bulk_write_memory(target, address, count, buffer);
839 }
840
841 int target_add_breakpoint(struct target *target,
842                 struct breakpoint *breakpoint)
843 {
844         if ((target->state != TARGET_HALTED)&&(breakpoint->type!=BKPT_HARD)) {
845                 LOG_WARNING("target %s is not halted", target->cmd_name);
846                 return ERROR_TARGET_NOT_HALTED;
847         }
848         return target->type->add_breakpoint(target, breakpoint);
849 }
850
851 int target_add_context_breakpoint(struct target *target,
852                 struct breakpoint *breakpoint)
853 {
854         if (target->state != TARGET_HALTED) {
855                 LOG_WARNING("target %s is not halted", target->cmd_name);
856                 return ERROR_TARGET_NOT_HALTED;
857         }
858         return target->type->add_context_breakpoint(target, breakpoint);
859 }
860
861 int target_add_hybrid_breakpoint(struct target *target,
862                 struct breakpoint *breakpoint)
863 {
864         if (target->state != TARGET_HALTED) {
865                 LOG_WARNING("target %s is not halted", target->cmd_name);
866                 return ERROR_TARGET_NOT_HALTED;
867         }
868         return target->type->add_hybrid_breakpoint(target, breakpoint);
869 }
870
871 int target_remove_breakpoint(struct target *target,
872                 struct breakpoint *breakpoint)
873 {
874         return target->type->remove_breakpoint(target, breakpoint);
875 }
876
877 int target_add_watchpoint(struct target *target,
878                 struct watchpoint *watchpoint)
879 {
880         if (target->state != TARGET_HALTED) {
881                 LOG_WARNING("target %s is not halted", target->cmd_name);
882                 return ERROR_TARGET_NOT_HALTED;
883         }
884         return target->type->add_watchpoint(target, watchpoint);
885 }
886 int target_remove_watchpoint(struct target *target,
887                 struct watchpoint *watchpoint)
888 {
889         return target->type->remove_watchpoint(target, watchpoint);
890 }
891
892 int target_get_gdb_reg_list(struct target *target,
893                 struct reg **reg_list[], int *reg_list_size)
894 {
895         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
896 }
897 int target_step(struct target *target,
898                 int current, uint32_t address, int handle_breakpoints)
899 {
900         return target->type->step(target, current, address, handle_breakpoints);
901 }
902
903
904 /**
905  * Reset the @c examined flag for the given target.
906  * Pure paranoia -- targets are zeroed on allocation.
907  */
908 static void target_reset_examined(struct target *target)
909 {
910         target->examined = false;
911 }
912
913 static int
914 err_read_phys_memory(struct target *target, uint32_t address,
915                 uint32_t size, uint32_t count, uint8_t *buffer)
916 {
917         LOG_ERROR("Not implemented: %s", __func__);
918         return ERROR_FAIL;
919 }
920
921 static int
922 err_write_phys_memory(struct target *target, uint32_t address,
923                 uint32_t size, uint32_t count, const uint8_t *buffer)
924 {
925         LOG_ERROR("Not implemented: %s", __func__);
926         return ERROR_FAIL;
927 }
928
929 static int handle_target(void *priv);
930
931 static int target_init_one(struct command_context *cmd_ctx,
932                 struct target *target)
933 {
934         target_reset_examined(target);
935
936         struct target_type *type = target->type;
937         if (type->examine == NULL)
938                 type->examine = default_examine;
939
940         if (type->check_reset== NULL)
941                 type->check_reset = default_check_reset;
942
943         int retval = type->init_target(cmd_ctx, target);
944         if (ERROR_OK != retval)
945         {
946                 LOG_ERROR("target '%s' init failed", target_name(target));
947                 return retval;
948         }
949
950         /**
951          * @todo get rid of those *memory_imp() methods, now that all
952          * callers are using target_*_memory() accessors ... and make
953          * sure the "physical" paths handle the same issues.
954          */
955         /* a non-invasive way(in terms of patches) to add some code that
956          * runs before the type->write/read_memory implementation
957          */
958         type->write_memory_imp = target->type->write_memory;
959         type->write_memory = target_write_memory_imp;
960
961         type->read_memory_imp = target->type->read_memory;
962         type->read_memory = target_read_memory_imp;
963
964         type->soft_reset_halt_imp = target->type->soft_reset_halt;
965         type->soft_reset_halt = target_soft_reset_halt_imp;
966
967         /* Sanity-check MMU support ... stub in what we must, to help
968          * implement it in stages, but warn if we need to do so.
969          */
970         if (type->mmu)
971         {
972                 if (type->write_phys_memory == NULL)
973                 {
974                         LOG_ERROR("type '%s' is missing write_phys_memory",
975                                         type->name);
976                         type->write_phys_memory = err_write_phys_memory;
977                 }
978                 if (type->read_phys_memory == NULL)
979                 {
980                         LOG_ERROR("type '%s' is missing read_phys_memory",
981                                         type->name);
982                         type->read_phys_memory = err_read_phys_memory;
983                 }
984                 if (type->virt2phys == NULL)
985                 {
986                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
987                         type->virt2phys = identity_virt2phys;
988                 }
989         }
990         else
991         {
992                 /* Make sure no-MMU targets all behave the same:  make no
993                  * distinction between physical and virtual addresses, and
994                  * ensure that virt2phys() is always an identity mapping.
995                  */
996                 if (type->write_phys_memory || type->read_phys_memory
997                                 || type->virt2phys)
998                 {
999                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1000                 }
1001
1002                 type->mmu = no_mmu;
1003                 type->write_phys_memory = type->write_memory;
1004                 type->read_phys_memory = type->read_memory;
1005                 type->virt2phys = identity_virt2phys;
1006         }
1007
1008         if (target->type->read_buffer == NULL)
1009                 target->type->read_buffer = target_read_buffer_default;
1010
1011         if (target->type->write_buffer == NULL)
1012                 target->type->write_buffer = target_write_buffer_default;
1013
1014         return ERROR_OK;
1015 }
1016
1017 static int target_init(struct command_context *cmd_ctx)
1018 {
1019         struct target *target;
1020         int retval;
1021
1022         for (target = all_targets; target; target = target->next)
1023         {
1024                 retval = target_init_one(cmd_ctx, target);
1025                 if (ERROR_OK != retval)
1026                         return retval;
1027         }
1028
1029         if (!all_targets)
1030                 return ERROR_OK;
1031
1032         retval = target_register_user_commands(cmd_ctx);
1033         if (ERROR_OK != retval)
1034                 return retval;
1035
1036         retval = target_register_timer_callback(&handle_target,
1037                         polling_interval, 1, cmd_ctx->interp);
1038         if (ERROR_OK != retval)
1039                 return retval;
1040
1041         return ERROR_OK;
1042 }
1043
1044 COMMAND_HANDLER(handle_target_init_command)
1045 {
1046         if (CMD_ARGC != 0)
1047                 return ERROR_COMMAND_SYNTAX_ERROR;
1048
1049         static bool target_initialized = false;
1050         if (target_initialized)
1051         {
1052                 LOG_INFO("'target init' has already been called");
1053                 return ERROR_OK;
1054         }
1055         target_initialized = true;
1056
1057         LOG_DEBUG("Initializing targets...");
1058         return target_init(CMD_CTX);
1059 }
1060
1061 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1062 {
1063         struct target_event_callback **callbacks_p = &target_event_callbacks;
1064
1065         if (callback == NULL)
1066         {
1067                 return ERROR_INVALID_ARGUMENTS;
1068         }
1069
1070         if (*callbacks_p)
1071         {
1072                 while ((*callbacks_p)->next)
1073                         callbacks_p = &((*callbacks_p)->next);
1074                 callbacks_p = &((*callbacks_p)->next);
1075         }
1076
1077         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1078         (*callbacks_p)->callback = callback;
1079         (*callbacks_p)->priv = priv;
1080         (*callbacks_p)->next = NULL;
1081
1082         return ERROR_OK;
1083 }
1084
1085 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1086 {
1087         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1088         struct timeval now;
1089
1090         if (callback == NULL)
1091         {
1092                 return ERROR_INVALID_ARGUMENTS;
1093         }
1094
1095         if (*callbacks_p)
1096         {
1097                 while ((*callbacks_p)->next)
1098                         callbacks_p = &((*callbacks_p)->next);
1099                 callbacks_p = &((*callbacks_p)->next);
1100         }
1101
1102         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1103         (*callbacks_p)->callback = callback;
1104         (*callbacks_p)->periodic = periodic;
1105         (*callbacks_p)->time_ms = time_ms;
1106
1107         gettimeofday(&now, NULL);
1108         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1109         time_ms -= (time_ms % 1000);
1110         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1111         if ((*callbacks_p)->when.tv_usec > 1000000)
1112         {
1113                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1114                 (*callbacks_p)->when.tv_sec += 1;
1115         }
1116
1117         (*callbacks_p)->priv = priv;
1118         (*callbacks_p)->next = NULL;
1119
1120         return ERROR_OK;
1121 }
1122
1123 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1124 {
1125         struct target_event_callback **p = &target_event_callbacks;
1126         struct target_event_callback *c = target_event_callbacks;
1127
1128         if (callback == NULL)
1129         {
1130                 return ERROR_INVALID_ARGUMENTS;
1131         }
1132
1133         while (c)
1134         {
1135                 struct target_event_callback *next = c->next;
1136                 if ((c->callback == callback) && (c->priv == priv))
1137                 {
1138                         *p = next;
1139                         free(c);
1140                         return ERROR_OK;
1141                 }
1142                 else
1143                         p = &(c->next);
1144                 c = next;
1145         }
1146
1147         return ERROR_OK;
1148 }
1149
1150 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1151 {
1152         struct target_timer_callback **p = &target_timer_callbacks;
1153         struct target_timer_callback *c = target_timer_callbacks;
1154
1155         if (callback == NULL)
1156         {
1157                 return ERROR_INVALID_ARGUMENTS;
1158         }
1159
1160         while (c)
1161         {
1162                 struct target_timer_callback *next = c->next;
1163                 if ((c->callback == callback) && (c->priv == priv))
1164                 {
1165                         *p = next;
1166                         free(c);
1167                         return ERROR_OK;
1168                 }
1169                 else
1170                         p = &(c->next);
1171                 c = next;
1172         }
1173
1174         return ERROR_OK;
1175 }
1176
1177 int target_call_event_callbacks(struct target *target, enum target_event event)
1178 {
1179         struct target_event_callback *callback = target_event_callbacks;
1180         struct target_event_callback *next_callback;
1181
1182         if (event == TARGET_EVENT_HALTED)
1183         {
1184                 /* execute early halted first */
1185                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1186         }
1187
1188         LOG_DEBUG("target event %i (%s)",
1189                           event,
1190                           Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1191
1192         target_handle_event(target, event);
1193
1194         while (callback)
1195         {
1196                 next_callback = callback->next;
1197                 callback->callback(target, event, callback->priv);
1198                 callback = next_callback;
1199         }
1200
1201         return ERROR_OK;
1202 }
1203
1204 static int target_timer_callback_periodic_restart(
1205                 struct target_timer_callback *cb, struct timeval *now)
1206 {
1207         int time_ms = cb->time_ms;
1208         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1209         time_ms -= (time_ms % 1000);
1210         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1211         if (cb->when.tv_usec > 1000000)
1212         {
1213                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1214                 cb->when.tv_sec += 1;
1215         }
1216         return ERROR_OK;
1217 }
1218
1219 static int target_call_timer_callback(struct target_timer_callback *cb,
1220                 struct timeval *now)
1221 {
1222         cb->callback(cb->priv);
1223
1224         if (cb->periodic)
1225                 return target_timer_callback_periodic_restart(cb, now);
1226
1227         return target_unregister_timer_callback(cb->callback, cb->priv);
1228 }
1229
1230 static int target_call_timer_callbacks_check_time(int checktime)
1231 {
1232         keep_alive();
1233
1234         struct timeval now;
1235         gettimeofday(&now, NULL);
1236
1237         struct target_timer_callback *callback = target_timer_callbacks;
1238         while (callback)
1239         {
1240                 // cleaning up may unregister and free this callback
1241                 struct target_timer_callback *next_callback = callback->next;
1242
1243                 bool call_it = callback->callback &&
1244                         ((!checktime && callback->periodic) ||
1245                           now.tv_sec > callback->when.tv_sec ||
1246                          (now.tv_sec == callback->when.tv_sec &&
1247                           now.tv_usec >= callback->when.tv_usec));
1248
1249                 if (call_it)
1250                 {
1251                         int retval = target_call_timer_callback(callback, &now);
1252                         if (retval != ERROR_OK)
1253                                 return retval;
1254                 }
1255
1256                 callback = next_callback;
1257         }
1258
1259         return ERROR_OK;
1260 }
1261
1262 int target_call_timer_callbacks(void)
1263 {
1264         return target_call_timer_callbacks_check_time(1);
1265 }
1266
1267 /* invoke periodic callbacks immediately */
1268 int target_call_timer_callbacks_now(void)
1269 {
1270         return target_call_timer_callbacks_check_time(0);
1271 }
1272
1273 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1274 {
1275         struct working_area *c = target->working_areas;
1276         struct working_area *new_wa = NULL;
1277
1278         /* Reevaluate working area address based on MMU state*/
1279         if (target->working_areas == NULL)
1280         {
1281                 int retval;
1282                 int enabled;
1283
1284                 retval = target->type->mmu(target, &enabled);
1285                 if (retval != ERROR_OK)
1286                 {
1287                         return retval;
1288                 }
1289
1290                 if (!enabled) {
1291                         if (target->working_area_phys_spec) {
1292                                 LOG_DEBUG("MMU disabled, using physical "
1293                                         "address for working memory 0x%08x",
1294                                         (unsigned)target->working_area_phys);
1295                                 target->working_area = target->working_area_phys;
1296                         } else {
1297                                 LOG_ERROR("No working memory available. "
1298                                         "Specify -work-area-phys to target.");
1299                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1300                         }
1301                 } else {
1302                         if (target->working_area_virt_spec) {
1303                                 LOG_DEBUG("MMU enabled, using virtual "
1304                                         "address for working memory 0x%08x",
1305                                         (unsigned)target->working_area_virt);
1306                                 target->working_area = target->working_area_virt;
1307                         } else {
1308                                 LOG_ERROR("No working memory available. "
1309                                         "Specify -work-area-virt to target.");
1310                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1311                         }
1312                 }
1313         }
1314
1315         /* only allocate multiples of 4 byte */
1316         if (size % 4)
1317         {
1318                 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1319                 size = (size + 3) & (~3);
1320         }
1321
1322         /* see if there's already a matching working area */
1323         while (c)
1324         {
1325                 if ((c->free) && (c->size == size))
1326                 {
1327                         new_wa = c;
1328                         break;
1329                 }
1330                 c = c->next;
1331         }
1332
1333         /* if not, allocate a new one */
1334         if (!new_wa)
1335         {
1336                 struct working_area **p = &target->working_areas;
1337                 uint32_t first_free = target->working_area;
1338                 uint32_t free_size = target->working_area_size;
1339
1340                 c = target->working_areas;
1341                 while (c)
1342                 {
1343                         first_free += c->size;
1344                         free_size -= c->size;
1345                         p = &c->next;
1346                         c = c->next;
1347                 }
1348
1349                 if (free_size < size)
1350                 {
1351                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1352                 }
1353
1354                 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1355
1356                 new_wa = malloc(sizeof(struct working_area));
1357                 new_wa->next = NULL;
1358                 new_wa->size = size;
1359                 new_wa->address = first_free;
1360
1361                 if (target->backup_working_area)
1362                 {
1363                         int retval;
1364                         new_wa->backup = malloc(new_wa->size);
1365                         if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1366                         {
1367                                 free(new_wa->backup);
1368                                 free(new_wa);
1369                                 return retval;
1370                         }
1371                 }
1372                 else
1373                 {
1374                         new_wa->backup = NULL;
1375                 }
1376
1377                 /* put new entry in list */
1378                 *p = new_wa;
1379         }
1380
1381         /* mark as used, and return the new (reused) area */
1382         new_wa->free = false;
1383         *area = new_wa;
1384
1385         /* user pointer */
1386         new_wa->user = area;
1387
1388         return ERROR_OK;
1389 }
1390
1391 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1392 {
1393         int retval;
1394
1395         retval = target_alloc_working_area_try(target, size, area);
1396         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1397         {
1398                 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1399         }
1400         return retval;
1401
1402 }
1403
1404 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1405 {
1406         if (area->free)
1407                 return ERROR_OK;
1408
1409         if (restore && target->backup_working_area)
1410         {
1411                 int retval;
1412                 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1413                         return retval;
1414         }
1415
1416         area->free = true;
1417
1418         /* mark user pointer invalid */
1419         *area->user = NULL;
1420         area->user = NULL;
1421
1422         return ERROR_OK;
1423 }
1424
1425 int target_free_working_area(struct target *target, struct working_area *area)
1426 {
1427         return target_free_working_area_restore(target, area, 1);
1428 }
1429
1430 /* free resources and restore memory, if restoring memory fails,
1431  * free up resources anyway
1432  */
1433 static void target_free_all_working_areas_restore(struct target *target, int restore)
1434 {
1435         struct working_area *c = target->working_areas;
1436
1437         while (c)
1438         {
1439                 struct working_area *next = c->next;
1440                 target_free_working_area_restore(target, c, restore);
1441
1442                 if (c->backup)
1443                         free(c->backup);
1444
1445                 free(c);
1446
1447                 c = next;
1448         }
1449
1450         target->working_areas = NULL;
1451 }
1452
1453 void target_free_all_working_areas(struct target *target)
1454 {
1455         target_free_all_working_areas_restore(target, 1);
1456 }
1457
1458 int target_arch_state(struct target *target)
1459 {
1460         int retval;
1461         if (target == NULL)
1462         {
1463                 LOG_USER("No target has been configured");
1464                 return ERROR_OK;
1465         }
1466
1467         LOG_USER("target state: %s", target_state_name( target ));
1468
1469         if (target->state != TARGET_HALTED)
1470                 return ERROR_OK;
1471
1472         retval = target->type->arch_state(target);
1473         return retval;
1474 }
1475
1476 /* Single aligned words are guaranteed to use 16 or 32 bit access
1477  * mode respectively, otherwise data is handled as quickly as
1478  * possible
1479  */
1480 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1481 {
1482         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1483                   (int)size, (unsigned)address);
1484
1485         if (!target_was_examined(target))
1486         {
1487                 LOG_ERROR("Target not examined yet");
1488                 return ERROR_FAIL;
1489         }
1490
1491         if (size == 0) {
1492                 return ERROR_OK;
1493         }
1494
1495         if ((address + size - 1) < address)
1496         {
1497                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1498                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1499                                   (unsigned)address,
1500                                   (unsigned)size);
1501                 return ERROR_FAIL;
1502         }
1503
1504         return target->type->write_buffer(target, address, size, buffer);
1505 }
1506
1507 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1508 {
1509         int retval = ERROR_OK;
1510
1511         if (((address % 2) == 0) && (size == 2))
1512         {
1513                 return target_write_memory(target, address, 2, 1, buffer);
1514         }
1515
1516         /* handle unaligned head bytes */
1517         if (address % 4)
1518         {
1519                 uint32_t unaligned = 4 - (address % 4);
1520
1521                 if (unaligned > size)
1522                         unaligned = size;
1523
1524                 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1525                         return retval;
1526
1527                 buffer += unaligned;
1528                 address += unaligned;
1529                 size -= unaligned;
1530         }
1531
1532         /* handle aligned words */
1533         if (size >= 4)
1534         {
1535                 int aligned = size - (size % 4);
1536
1537                 /* use bulk writes above a certain limit. This may have to be changed */
1538                 if (aligned > 128)
1539                 {
1540                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1541                                 return retval;
1542                 }
1543                 else
1544                 {
1545                         if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1546                                 return retval;
1547                 }
1548
1549                 buffer += aligned;
1550                 address += aligned;
1551                 size -= aligned;
1552         }
1553
1554         /* handle tail writes of less than 4 bytes */
1555         if (size > 0)
1556         {
1557                 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1558                         return retval;
1559         }
1560
1561         return retval;
1562 }
1563
1564 /* Single aligned words are guaranteed to use 16 or 32 bit access
1565  * mode respectively, otherwise data is handled as quickly as
1566  * possible
1567  */
1568 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1569 {
1570         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1571                           (int)size, (unsigned)address);
1572
1573         if (!target_was_examined(target))
1574         {
1575                 LOG_ERROR("Target not examined yet");
1576                 return ERROR_FAIL;
1577         }
1578
1579         if (size == 0) {
1580                 return ERROR_OK;
1581         }
1582
1583         if ((address + size - 1) < address)
1584         {
1585                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1586                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1587                                   address,
1588                                   size);
1589                 return ERROR_FAIL;
1590         }
1591
1592         return target->type->read_buffer(target, address, size, buffer);
1593 }
1594
1595 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1596 {
1597         int retval = ERROR_OK;
1598
1599         if (((address % 2) == 0) && (size == 2))
1600         {
1601                 return target_read_memory(target, address, 2, 1, buffer);
1602         }
1603
1604         /* handle unaligned head bytes */
1605         if (address % 4)
1606         {
1607                 uint32_t unaligned = 4 - (address % 4);
1608
1609                 if (unaligned > size)
1610                         unaligned = size;
1611
1612                 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1613                         return retval;
1614
1615                 buffer += unaligned;
1616                 address += unaligned;
1617                 size -= unaligned;
1618         }
1619
1620         /* handle aligned words */
1621         if (size >= 4)
1622         {
1623                 int aligned = size - (size % 4);
1624
1625                 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1626                         return retval;
1627
1628                 buffer += aligned;
1629                 address += aligned;
1630                 size -= aligned;
1631         }
1632
1633         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1634         if(size >=2)
1635         {
1636                 int aligned = size - (size%2);
1637                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1638                 if (retval != ERROR_OK)
1639                         return retval;
1640
1641                 buffer += aligned;
1642                 address += aligned;
1643                 size -= aligned;
1644         }
1645         /* handle tail writes of less than 4 bytes */
1646         if (size > 0)
1647         {
1648                 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1649                         return retval;
1650         }
1651
1652         return ERROR_OK;
1653 }
1654
1655 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1656 {
1657         uint8_t *buffer;
1658         int retval;
1659         uint32_t i;
1660         uint32_t checksum = 0;
1661         if (!target_was_examined(target))
1662         {
1663                 LOG_ERROR("Target not examined yet");
1664                 return ERROR_FAIL;
1665         }
1666
1667         if ((retval = target->type->checksum_memory(target, address,
1668                 size, &checksum)) != ERROR_OK)
1669         {
1670                 buffer = malloc(size);
1671                 if (buffer == NULL)
1672                 {
1673                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1674                         return ERROR_INVALID_ARGUMENTS;
1675                 }
1676                 retval = target_read_buffer(target, address, size, buffer);
1677                 if (retval != ERROR_OK)
1678                 {
1679                         free(buffer);
1680                         return retval;
1681                 }
1682
1683                 /* convert to target endianness */
1684                 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1685                 {
1686                         uint32_t target_data;
1687                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1688                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1689                 }
1690
1691                 retval = image_calculate_checksum(buffer, size, &checksum);
1692                 free(buffer);
1693         }
1694
1695         *crc = checksum;
1696
1697         return retval;
1698 }
1699
1700 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1701 {
1702         int retval;
1703         if (!target_was_examined(target))
1704         {
1705                 LOG_ERROR("Target not examined yet");
1706                 return ERROR_FAIL;
1707         }
1708
1709         if (target->type->blank_check_memory == 0)
1710                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1711
1712         retval = target->type->blank_check_memory(target, address, size, blank);
1713
1714         return retval;
1715 }
1716
1717 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1718 {
1719         uint8_t value_buf[4];
1720         if (!target_was_examined(target))
1721         {
1722                 LOG_ERROR("Target not examined yet");
1723                 return ERROR_FAIL;
1724         }
1725
1726         int retval = target_read_memory(target, address, 4, 1, value_buf);
1727
1728         if (retval == ERROR_OK)
1729         {
1730                 *value = target_buffer_get_u32(target, value_buf);
1731                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1732                                   address,
1733                                   *value);
1734         }
1735         else
1736         {
1737                 *value = 0x0;
1738                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1739                                   address);
1740         }
1741
1742         return retval;
1743 }
1744
1745 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1746 {
1747         uint8_t value_buf[2];
1748         if (!target_was_examined(target))
1749         {
1750                 LOG_ERROR("Target not examined yet");
1751                 return ERROR_FAIL;
1752         }
1753
1754         int retval = target_read_memory(target, address, 2, 1, value_buf);
1755
1756         if (retval == ERROR_OK)
1757         {
1758                 *value = target_buffer_get_u16(target, value_buf);
1759                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1760                                   address,
1761                                   *value);
1762         }
1763         else
1764         {
1765                 *value = 0x0;
1766                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1767                                   address);
1768         }
1769
1770         return retval;
1771 }
1772
1773 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1774 {
1775         int retval = target_read_memory(target, address, 1, 1, value);
1776         if (!target_was_examined(target))
1777         {
1778                 LOG_ERROR("Target not examined yet");
1779                 return ERROR_FAIL;
1780         }
1781
1782         if (retval == ERROR_OK)
1783         {
1784                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1785                                   address,
1786                                   *value);
1787         }
1788         else
1789         {
1790                 *value = 0x0;
1791                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1792                                   address);
1793         }
1794
1795         return retval;
1796 }
1797
1798 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1799 {
1800         int retval;
1801         uint8_t value_buf[4];
1802         if (!target_was_examined(target))
1803         {
1804                 LOG_ERROR("Target not examined yet");
1805                 return ERROR_FAIL;
1806         }
1807
1808         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1809                           address,
1810                           value);
1811
1812         target_buffer_set_u32(target, value_buf, value);
1813         if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1814         {
1815                 LOG_DEBUG("failed: %i", retval);
1816         }
1817
1818         return retval;
1819 }
1820
1821 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1822 {
1823         int retval;
1824         uint8_t value_buf[2];
1825         if (!target_was_examined(target))
1826         {
1827                 LOG_ERROR("Target not examined yet");
1828                 return ERROR_FAIL;
1829         }
1830
1831         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1832                           address,
1833                           value);
1834
1835         target_buffer_set_u16(target, value_buf, value);
1836         if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1837         {
1838                 LOG_DEBUG("failed: %i", retval);
1839         }
1840
1841         return retval;
1842 }
1843
1844 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1845 {
1846         int retval;
1847         if (!target_was_examined(target))
1848         {
1849                 LOG_ERROR("Target not examined yet");
1850                 return ERROR_FAIL;
1851         }
1852
1853         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1854                           address, value);
1855
1856         if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1857         {
1858                 LOG_DEBUG("failed: %i", retval);
1859         }
1860
1861         return retval;
1862 }
1863
1864 static int find_target(struct command_context *cmd_ctx, const char *name)
1865 {
1866         struct target *target = get_target(name);
1867         if (target == NULL) {
1868                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
1869                 return ERROR_FAIL;
1870         }
1871         if (!target->tap->enabled) {
1872                 LOG_USER("Target: TAP %s is disabled, "
1873                          "can't be the current target\n",
1874                          target->tap->dotted_name);
1875                 return ERROR_FAIL;
1876         }
1877
1878         cmd_ctx->current_target = target->target_number;
1879         return ERROR_OK;
1880 }
1881
1882
1883 COMMAND_HANDLER(handle_targets_command)
1884 {
1885         int retval = ERROR_OK;
1886         if (CMD_ARGC == 1)
1887         {
1888                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
1889                 if (retval == ERROR_OK) {
1890                         /* we're done! */
1891                         return retval;
1892                 }
1893         }
1894
1895         struct target *target = all_targets;
1896         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
1897         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
1898         while (target)
1899         {
1900                 const char *state;
1901                 char marker = ' ';
1902
1903                 if (target->tap->enabled)
1904                         state = target_state_name( target );
1905                 else
1906                         state = "tap-disabled";
1907
1908                 if (CMD_CTX->current_target == target->target_number)
1909                         marker = '*';
1910
1911                 /* keep columns lined up to match the headers above */
1912                 command_print(CMD_CTX,
1913                                 "%2d%c %-18s %-10s %-6s %-18s %s",
1914                                 target->target_number,
1915                                 marker,
1916                                 target_name(target),
1917                                 target_type_name(target),
1918                                 Jim_Nvp_value2name_simple(nvp_target_endian,
1919                                         target->endianness)->name,
1920                                 target->tap->dotted_name,
1921                                 state);
1922                 target = target->next;
1923         }
1924
1925         return retval;
1926 }
1927
1928 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1929
1930 static int powerDropout;
1931 static int srstAsserted;
1932
1933 static int runPowerRestore;
1934 static int runPowerDropout;
1935 static int runSrstAsserted;
1936 static int runSrstDeasserted;
1937
1938 static int sense_handler(void)
1939 {
1940         static int prevSrstAsserted = 0;
1941         static int prevPowerdropout = 0;
1942
1943         int retval;
1944         if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1945                 return retval;
1946
1947         int powerRestored;
1948         powerRestored = prevPowerdropout && !powerDropout;
1949         if (powerRestored)
1950         {
1951                 runPowerRestore = 1;
1952         }
1953
1954         long long current = timeval_ms();
1955         static long long lastPower = 0;
1956         int waitMore = lastPower + 2000 > current;
1957         if (powerDropout && !waitMore)
1958         {
1959                 runPowerDropout = 1;
1960                 lastPower = current;
1961         }
1962
1963         if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1964                 return retval;
1965
1966         int srstDeasserted;
1967         srstDeasserted = prevSrstAsserted && !srstAsserted;
1968
1969         static long long lastSrst = 0;
1970         waitMore = lastSrst + 2000 > current;
1971         if (srstDeasserted && !waitMore)
1972         {
1973                 runSrstDeasserted = 1;
1974                 lastSrst = current;
1975         }
1976
1977         if (!prevSrstAsserted && srstAsserted)
1978         {
1979                 runSrstAsserted = 1;
1980         }
1981
1982         prevSrstAsserted = srstAsserted;
1983         prevPowerdropout = powerDropout;
1984
1985         if (srstDeasserted || powerRestored)
1986         {
1987                 /* Other than logging the event we can't do anything here.
1988                  * Issuing a reset is a particularly bad idea as we might
1989                  * be inside a reset already.
1990                  */
1991         }
1992
1993         return ERROR_OK;
1994 }
1995
1996 static int backoff_times = 0;
1997 static int backoff_count = 0;
1998
1999 /* process target state changes */
2000 static int handle_target(void *priv)
2001 {
2002         Jim_Interp *interp = (Jim_Interp *)priv;
2003         int retval = ERROR_OK;
2004
2005         if (!is_jtag_poll_safe())
2006         {
2007                 /* polling is disabled currently */
2008                 return ERROR_OK;
2009         }
2010
2011         /* we do not want to recurse here... */
2012         static int recursive = 0;
2013         if (! recursive)
2014         {
2015                 recursive = 1;
2016                 sense_handler();
2017                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2018                  * We need to avoid an infinite loop/recursion here and we do that by
2019                  * clearing the flags after running these events.
2020                  */
2021                 int did_something = 0;
2022                 if (runSrstAsserted)
2023                 {
2024                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2025                         Jim_Eval(interp, "srst_asserted");
2026                         did_something = 1;
2027                 }
2028                 if (runSrstDeasserted)
2029                 {
2030                         Jim_Eval(interp, "srst_deasserted");
2031                         did_something = 1;
2032                 }
2033                 if (runPowerDropout)
2034                 {
2035                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2036                         Jim_Eval(interp, "power_dropout");
2037                         did_something = 1;
2038                 }
2039                 if (runPowerRestore)
2040                 {
2041                         Jim_Eval(interp, "power_restore");
2042                         did_something = 1;
2043                 }
2044
2045                 if (did_something)
2046                 {
2047                         /* clear detect flags */
2048                         sense_handler();
2049                 }
2050
2051                 /* clear action flags */
2052
2053                 runSrstAsserted = 0;
2054                 runSrstDeasserted = 0;
2055                 runPowerRestore = 0;
2056                 runPowerDropout = 0;
2057
2058                 recursive = 0;
2059         }
2060
2061         if (backoff_times > backoff_count)
2062         {
2063                 /* do not poll this time as we failed previously */
2064                 backoff_count++;
2065                 return ERROR_OK;
2066         }
2067         backoff_count = 0;
2068
2069         /* Poll targets for state changes unless that's globally disabled.
2070          * Skip targets that are currently disabled.
2071          */
2072         for (struct target *target = all_targets;
2073                         is_jtag_poll_safe() && target;
2074                         target = target->next)
2075         {
2076                 if (!target->tap->enabled)
2077                         continue;
2078
2079                 /* only poll target if we've got power and srst isn't asserted */
2080                 if (!powerDropout && !srstAsserted)
2081                 {
2082                         /* polling may fail silently until the target has been examined */
2083                         if ((retval = target_poll(target)) != ERROR_OK)
2084                         {
2085                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2086                                 if (backoff_times * polling_interval < 5000)
2087                                 {
2088                                         backoff_times *= 2;
2089                                         backoff_times++;
2090                                 }
2091                                 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);
2092
2093                                 /* Tell GDB to halt the debugger. This allows the user to
2094                                  * run monitor commands to handle the situation.
2095                                  */
2096                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2097                                 return retval;
2098                         }
2099                         /* Since we succeeded, we reset backoff count */
2100                         if (backoff_times > 0)
2101                         {
2102                                 LOG_USER("Polling succeeded again");
2103                         }
2104                         backoff_times = 0;
2105                 }
2106         }
2107
2108         return retval;
2109 }
2110
2111 COMMAND_HANDLER(handle_reg_command)
2112 {
2113         struct target *target;
2114         struct reg *reg = NULL;
2115         unsigned count = 0;
2116         char *value;
2117
2118         LOG_DEBUG("-");
2119
2120         target = get_current_target(CMD_CTX);
2121
2122         /* list all available registers for the current target */
2123         if (CMD_ARGC == 0)
2124         {
2125                 struct reg_cache *cache = target->reg_cache;
2126
2127                 count = 0;
2128                 while (cache)
2129                 {
2130                         unsigned i;
2131
2132                         command_print(CMD_CTX, "===== %s", cache->name);
2133
2134                         for (i = 0, reg = cache->reg_list;
2135                                         i < cache->num_regs;
2136                                         i++, reg++, count++)
2137                         {
2138                                 /* only print cached values if they are valid */
2139                                 if (reg->valid) {
2140                                         value = buf_to_str(reg->value,
2141                                                         reg->size, 16);
2142                                         command_print(CMD_CTX,
2143                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2144                                                         count, reg->name,
2145                                                         reg->size, value,
2146                                                         reg->dirty
2147                                                                 ? " (dirty)"
2148                                                                 : "");
2149                                         free(value);
2150                                 } else {
2151                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2152                                                           count, reg->name,
2153                                                           reg->size) ;
2154                                 }
2155                         }
2156                         cache = cache->next;
2157                 }
2158
2159                 return ERROR_OK;
2160         }
2161
2162         /* access a single register by its ordinal number */
2163         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
2164         {
2165                 unsigned num;
2166                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2167
2168                 struct reg_cache *cache = target->reg_cache;
2169                 count = 0;
2170                 while (cache)
2171                 {
2172                         unsigned i;
2173                         for (i = 0; i < cache->num_regs; i++)
2174                         {
2175                                 if (count++ == num)
2176                                 {
2177                                         reg = &cache->reg_list[i];
2178                                         break;
2179                                 }
2180                         }
2181                         if (reg)
2182                                 break;
2183                         cache = cache->next;
2184                 }
2185
2186                 if (!reg)
2187                 {
2188                         command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
2189                         return ERROR_OK;
2190                 }
2191         } else /* access a single register by its name */
2192         {
2193                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2194
2195                 if (!reg)
2196                 {
2197                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2198                         return ERROR_OK;
2199                 }
2200         }
2201
2202         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2203
2204         /* display a register */
2205         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2206         {
2207                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2208                         reg->valid = 0;
2209
2210                 if (reg->valid == 0)
2211                 {
2212                         reg->type->get(reg);
2213                 }
2214                 value = buf_to_str(reg->value, reg->size, 16);
2215                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2216                 free(value);
2217                 return ERROR_OK;
2218         }
2219
2220         /* set register value */
2221         if (CMD_ARGC == 2)
2222         {
2223                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2224                 if (buf == NULL)
2225                         return ERROR_FAIL;
2226                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2227
2228                 reg->type->set(reg, buf);
2229
2230                 value = buf_to_str(reg->value, reg->size, 16);
2231                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2232                 free(value);
2233
2234                 free(buf);
2235
2236                 return ERROR_OK;
2237         }
2238
2239         command_print(CMD_CTX, "usage: reg <#|name> [value]");
2240
2241         return ERROR_OK;
2242 }
2243
2244 COMMAND_HANDLER(handle_poll_command)
2245 {
2246         int retval = ERROR_OK;
2247         struct target *target = get_current_target(CMD_CTX);
2248
2249         if (CMD_ARGC == 0)
2250         {
2251                 command_print(CMD_CTX, "background polling: %s",
2252                                 jtag_poll_get_enabled() ? "on" : "off");
2253                 command_print(CMD_CTX, "TAP: %s (%s)",
2254                                 target->tap->dotted_name,
2255                                 target->tap->enabled ? "enabled" : "disabled");
2256                 if (!target->tap->enabled)
2257                         return ERROR_OK;
2258                 if ((retval = target_poll(target)) != ERROR_OK)
2259                         return retval;
2260                 if ((retval = target_arch_state(target)) != ERROR_OK)
2261                         return retval;
2262         }
2263         else if (CMD_ARGC == 1)
2264         {
2265                 bool enable;
2266                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2267                 jtag_poll_set_enabled(enable);
2268         }
2269         else
2270         {
2271                 return ERROR_COMMAND_SYNTAX_ERROR;
2272         }
2273
2274         return retval;
2275 }
2276
2277 COMMAND_HANDLER(handle_wait_halt_command)
2278 {
2279         if (CMD_ARGC > 1)
2280                 return ERROR_COMMAND_SYNTAX_ERROR;
2281
2282         unsigned ms = 5000;
2283         if (1 == CMD_ARGC)
2284         {
2285                 int retval = parse_uint(CMD_ARGV[0], &ms);
2286                 if (ERROR_OK != retval)
2287                 {
2288                         command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2289                         return ERROR_COMMAND_SYNTAX_ERROR;
2290                 }
2291                 // convert seconds (given) to milliseconds (needed)
2292                 ms *= 1000;
2293         }
2294
2295         struct target *target = get_current_target(CMD_CTX);
2296         return target_wait_state(target, TARGET_HALTED, ms);
2297 }
2298
2299 /* wait for target state to change. The trick here is to have a low
2300  * latency for short waits and not to suck up all the CPU time
2301  * on longer waits.
2302  *
2303  * After 500ms, keep_alive() is invoked
2304  */
2305 int target_wait_state(struct target *target, enum target_state state, int ms)
2306 {
2307         int retval;
2308         long long then = 0, cur;
2309         int once = 1;
2310
2311         for (;;)
2312         {
2313                 if ((retval = target_poll(target)) != ERROR_OK)
2314                         return retval;
2315                 if (target->state == state)
2316                 {
2317                         break;
2318                 }
2319                 cur = timeval_ms();
2320                 if (once)
2321                 {
2322                         once = 0;
2323                         then = timeval_ms();
2324                         LOG_DEBUG("waiting for target %s...",
2325                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2326                 }
2327
2328                 if (cur-then > 500)
2329                 {
2330                         keep_alive();
2331                 }
2332
2333                 if ((cur-then) > ms)
2334                 {
2335                         LOG_ERROR("timed out while waiting for target %s",
2336                                 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2337                         return ERROR_FAIL;
2338                 }
2339         }
2340
2341         return ERROR_OK;
2342 }
2343
2344 COMMAND_HANDLER(handle_halt_command)
2345 {
2346         LOG_DEBUG("-");
2347
2348         struct target *target = get_current_target(CMD_CTX);
2349         int retval = target_halt(target);
2350         if (ERROR_OK != retval)
2351                 return retval;
2352
2353         if (CMD_ARGC == 1)
2354         {
2355                 unsigned wait_local;
2356                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2357                 if (ERROR_OK != retval)
2358                         return ERROR_COMMAND_SYNTAX_ERROR;
2359                 if (!wait_local)
2360                         return ERROR_OK;
2361         }
2362
2363         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2364 }
2365
2366 COMMAND_HANDLER(handle_soft_reset_halt_command)
2367 {
2368         struct target *target = get_current_target(CMD_CTX);
2369
2370         LOG_USER("requesting target halt and executing a soft reset");
2371
2372         target->type->soft_reset_halt(target);
2373
2374         return ERROR_OK;
2375 }
2376
2377 COMMAND_HANDLER(handle_reset_command)
2378 {
2379         if (CMD_ARGC > 1)
2380                 return ERROR_COMMAND_SYNTAX_ERROR;
2381
2382         enum target_reset_mode reset_mode = RESET_RUN;
2383         if (CMD_ARGC == 1)
2384         {
2385                 const Jim_Nvp *n;
2386                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2387                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2388                         return ERROR_COMMAND_SYNTAX_ERROR;
2389                 }
2390                 reset_mode = n->value;
2391         }
2392
2393         /* reset *all* targets */
2394         return target_process_reset(CMD_CTX, reset_mode);
2395 }
2396
2397
2398 COMMAND_HANDLER(handle_resume_command)
2399 {
2400         int current = 1;
2401         if (CMD_ARGC > 1)
2402                 return ERROR_COMMAND_SYNTAX_ERROR;
2403
2404         struct target *target = get_current_target(CMD_CTX);
2405         target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2406
2407         /* with no CMD_ARGV, resume from current pc, addr = 0,
2408          * with one arguments, addr = CMD_ARGV[0],
2409          * handle breakpoints, not debugging */
2410         uint32_t addr = 0;
2411         if (CMD_ARGC == 1)
2412         {
2413                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2414                 current = 0;
2415         }
2416
2417         return target_resume(target, current, addr, 1, 0);
2418 }
2419
2420 COMMAND_HANDLER(handle_step_command)
2421 {
2422         if (CMD_ARGC > 1)
2423                 return ERROR_COMMAND_SYNTAX_ERROR;
2424
2425         LOG_DEBUG("-");
2426
2427         /* with no CMD_ARGV, step from current pc, addr = 0,
2428          * with one argument addr = CMD_ARGV[0],
2429          * handle breakpoints, debugging */
2430         uint32_t addr = 0;
2431         int current_pc = 1;
2432         if (CMD_ARGC == 1)
2433         {
2434                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2435                 current_pc = 0;
2436         }
2437
2438         struct target *target = get_current_target(CMD_CTX);
2439
2440         return target->type->step(target, current_pc, addr, 1);
2441 }
2442
2443 static void handle_md_output(struct command_context *cmd_ctx,
2444                 struct target *target, uint32_t address, unsigned size,
2445                 unsigned count, const uint8_t *buffer)
2446 {
2447         const unsigned line_bytecnt = 32;
2448         unsigned line_modulo = line_bytecnt / size;
2449
2450         char output[line_bytecnt * 4 + 1];
2451         unsigned output_len = 0;
2452
2453         const char *value_fmt;
2454         switch (size) {
2455         case 4: value_fmt = "%8.8x "; break;
2456         case 2: value_fmt = "%4.4x "; break;
2457         case 1: value_fmt = "%2.2x "; break;
2458         default:
2459                 /* "can't happen", caller checked */
2460                 LOG_ERROR("invalid memory read size: %u", size);
2461                 return;
2462         }
2463
2464         for (unsigned i = 0; i < count; i++)
2465         {
2466                 if (i % line_modulo == 0)
2467                 {
2468                         output_len += snprintf(output + output_len,
2469                                         sizeof(output) - output_len,
2470                                         "0x%8.8x: ",
2471                                         (unsigned)(address + (i*size)));
2472                 }
2473
2474                 uint32_t value = 0;
2475                 const uint8_t *value_ptr = buffer + i * size;
2476                 switch (size) {
2477                 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2478                 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2479                 case 1: value = *value_ptr;
2480                 }
2481                 output_len += snprintf(output + output_len,
2482                                 sizeof(output) - output_len,
2483                                 value_fmt, value);
2484
2485                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2486                 {
2487                         command_print(cmd_ctx, "%s", output);
2488                         output_len = 0;
2489                 }
2490         }
2491 }
2492
2493 COMMAND_HANDLER(handle_md_command)
2494 {
2495         if (CMD_ARGC < 1)
2496                 return ERROR_COMMAND_SYNTAX_ERROR;
2497
2498         unsigned size = 0;
2499         switch (CMD_NAME[2]) {
2500         case 'w': size = 4; break;
2501         case 'h': size = 2; break;
2502         case 'b': size = 1; break;
2503         default: return ERROR_COMMAND_SYNTAX_ERROR;
2504         }
2505
2506         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2507         int (*fn)(struct target *target,
2508                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2509         if (physical)
2510         {
2511                 CMD_ARGC--;
2512                 CMD_ARGV++;
2513                 fn=target_read_phys_memory;
2514         } else
2515         {
2516                 fn=target_read_memory;
2517         }
2518         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2519         {
2520                 return ERROR_COMMAND_SYNTAX_ERROR;
2521         }
2522
2523         uint32_t address;
2524         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2525
2526         unsigned count = 1;
2527         if (CMD_ARGC == 2)
2528                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2529
2530         uint8_t *buffer = calloc(count, size);
2531
2532         struct target *target = get_current_target(CMD_CTX);
2533         int retval = fn(target, address, size, count, buffer);
2534         if (ERROR_OK == retval)
2535                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2536
2537         free(buffer);
2538
2539         return retval;
2540 }
2541
2542 typedef int (*target_write_fn)(struct target *target,
2543                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2544
2545 static int target_write_memory_fast(struct target *target,
2546                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2547 {
2548         return target_write_buffer(target, address, size * count, buffer);
2549 }
2550
2551 static int target_fill_mem(struct target *target,
2552                 uint32_t address,
2553                 target_write_fn fn,
2554                 unsigned data_size,
2555                 /* value */
2556                 uint32_t b,
2557                 /* count */
2558                 unsigned c)
2559 {
2560         /* We have to write in reasonably large chunks to be able
2561          * to fill large memory areas with any sane speed */
2562         const unsigned chunk_size = 16384;
2563         uint8_t *target_buf = malloc(chunk_size * data_size);
2564         if (target_buf == NULL)
2565         {
2566                 LOG_ERROR("Out of memory");
2567                 return ERROR_FAIL;
2568         }
2569
2570         for (unsigned i = 0; i < chunk_size; i ++)
2571         {
2572                 switch (data_size)
2573                 {
2574                 case 4:
2575                         target_buffer_set_u32(target, target_buf + i*data_size, b);
2576                         break;
2577                 case 2:
2578                         target_buffer_set_u16(target, target_buf + i*data_size, b);
2579                         break;
2580                 case 1:
2581                         target_buffer_set_u8(target, target_buf + i*data_size, b);
2582                         break;
2583                 default:
2584                         exit(-1);
2585                 }
2586         }
2587
2588         int retval = ERROR_OK;
2589
2590         for (unsigned x = 0; x < c; x += chunk_size)
2591         {
2592                 unsigned current;
2593                 current = c - x;
2594                 if (current > chunk_size)
2595                 {
2596                         current = chunk_size;
2597                 }
2598                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2599                 if (retval != ERROR_OK)
2600                 {
2601                         break;
2602                 }
2603                 /* avoid GDB timeouts */
2604                 keep_alive();
2605         }
2606         free(target_buf);
2607
2608         return retval;
2609 }
2610
2611
2612 COMMAND_HANDLER(handle_mw_command)
2613 {
2614         if (CMD_ARGC < 2)
2615         {
2616                 return ERROR_COMMAND_SYNTAX_ERROR;
2617         }
2618         bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2619         target_write_fn fn;
2620         if (physical)
2621         {
2622                 CMD_ARGC--;
2623                 CMD_ARGV++;
2624                 fn=target_write_phys_memory;
2625         } else
2626         {
2627                 fn = target_write_memory_fast;
2628         }
2629         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2630                 return ERROR_COMMAND_SYNTAX_ERROR;
2631
2632         uint32_t address;
2633         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2634
2635         uint32_t value;
2636         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2637
2638         unsigned count = 1;
2639         if (CMD_ARGC == 3)
2640                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2641
2642         struct target *target = get_current_target(CMD_CTX);
2643         unsigned wordsize;
2644         switch (CMD_NAME[2])
2645         {
2646                 case 'w':
2647                         wordsize = 4;
2648                         break;
2649                 case 'h':
2650                         wordsize = 2;
2651                         break;
2652                 case 'b':
2653                         wordsize = 1;
2654                         break;
2655                 default:
2656                         return ERROR_COMMAND_SYNTAX_ERROR;
2657         }
2658
2659         return target_fill_mem(target, address, fn, wordsize, value, count);
2660 }
2661
2662 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2663                 uint32_t *min_address, uint32_t *max_address)
2664 {
2665         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2666                 return ERROR_COMMAND_SYNTAX_ERROR;
2667
2668         /* a base address isn't always necessary,
2669          * default to 0x0 (i.e. don't relocate) */
2670         if (CMD_ARGC >= 2)
2671         {
2672                 uint32_t addr;
2673                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2674                 image->base_address = addr;
2675                 image->base_address_set = 1;
2676         }
2677         else
2678                 image->base_address_set = 0;
2679
2680         image->start_address_set = 0;
2681
2682         if (CMD_ARGC >= 4)
2683         {
2684                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2685         }
2686         if (CMD_ARGC == 5)
2687         {
2688                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2689                 // use size (given) to find max (required)
2690                 *max_address += *min_address;
2691         }
2692
2693         if (*min_address > *max_address)
2694                 return ERROR_COMMAND_SYNTAX_ERROR;
2695
2696         return ERROR_OK;
2697 }
2698
2699 COMMAND_HANDLER(handle_load_image_command)
2700 {
2701         uint8_t *buffer;
2702         size_t buf_cnt;
2703         uint32_t image_size;
2704         uint32_t min_address = 0;
2705         uint32_t max_address = 0xffffffff;
2706         int i;
2707         struct image image;
2708
2709         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2710                         &image, &min_address, &max_address);
2711         if (ERROR_OK != retval)
2712                 return retval;
2713
2714         struct target *target = get_current_target(CMD_CTX);
2715
2716         struct duration bench;
2717         duration_start(&bench);
2718
2719         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2720         {
2721                 return ERROR_OK;
2722         }
2723
2724         image_size = 0x0;
2725         retval = ERROR_OK;
2726         for (i = 0; i < image.num_sections; i++)
2727         {
2728                 buffer = malloc(image.sections[i].size);
2729                 if (buffer == NULL)
2730                 {
2731                         command_print(CMD_CTX,
2732                                                   "error allocating buffer for section (%d bytes)",
2733                                                   (int)(image.sections[i].size));
2734                         break;
2735                 }
2736
2737                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2738                 {
2739                         free(buffer);
2740                         break;
2741                 }
2742
2743                 uint32_t offset = 0;
2744                 uint32_t length = buf_cnt;
2745
2746                 /* DANGER!!! beware of unsigned comparision here!!! */
2747
2748                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2749                                 (image.sections[i].base_address < max_address))
2750                 {
2751                         if (image.sections[i].base_address < min_address)
2752                         {
2753                                 /* clip addresses below */
2754                                 offset += min_address-image.sections[i].base_address;
2755                                 length -= offset;
2756                         }
2757
2758                         if (image.sections[i].base_address + buf_cnt > max_address)
2759                         {
2760                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2761                         }
2762
2763                         if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2764                         {
2765                                 free(buffer);
2766                                 break;
2767                         }
2768                         image_size += length;
2769                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2770                                                   (unsigned int)length,
2771                                                   image.sections[i].base_address + offset);
2772                 }
2773
2774                 free(buffer);
2775         }
2776
2777         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2778         {
2779                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2780                                 "in %fs (%0.3f KiB/s)", image_size,
2781                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2782         }
2783
2784         image_close(&image);
2785
2786         return retval;
2787
2788 }
2789
2790 COMMAND_HANDLER(handle_dump_image_command)
2791 {
2792         struct fileio fileio;
2793         uint8_t buffer[560];
2794         int retval, retvaltemp;
2795         uint32_t address, size;
2796         struct duration bench;
2797         struct target *target = get_current_target(CMD_CTX);
2798
2799         if (CMD_ARGC != 3)
2800                 return ERROR_COMMAND_SYNTAX_ERROR;
2801
2802         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2803         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2804
2805         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2806         if (retval != ERROR_OK)
2807                 return retval;
2808
2809         duration_start(&bench);
2810
2811         retval = ERROR_OK;
2812         while (size > 0)
2813         {
2814                 size_t size_written;
2815                 uint32_t this_run_size = (size > 560) ? 560 : size;
2816                 retval = target_read_buffer(target, address, this_run_size, buffer);
2817                 if (retval != ERROR_OK)
2818                 {
2819                         break;
2820                 }
2821
2822                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2823                 if (retval != ERROR_OK)
2824                 {
2825                         break;
2826                 }
2827
2828                 size -= this_run_size;
2829                 address += this_run_size;
2830         }
2831
2832         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2833         {
2834                 int filesize;
2835                 retval = fileio_size(&fileio, &filesize);
2836                 if (retval != ERROR_OK)
2837                         return retval;
2838                 command_print(CMD_CTX,
2839                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2840                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2841         }
2842
2843         if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2844                 return retvaltemp;
2845
2846         return retval;
2847 }
2848
2849 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2850 {
2851         uint8_t *buffer;
2852         size_t buf_cnt;
2853         uint32_t image_size;
2854         int i;
2855         int retval;
2856         uint32_t checksum = 0;
2857         uint32_t mem_checksum = 0;
2858
2859         struct image image;
2860
2861         struct target *target = get_current_target(CMD_CTX);
2862
2863         if (CMD_ARGC < 1)
2864         {
2865                 return ERROR_COMMAND_SYNTAX_ERROR;
2866         }
2867
2868         if (!target)
2869         {
2870                 LOG_ERROR("no target selected");
2871                 return ERROR_FAIL;
2872         }
2873
2874         struct duration bench;
2875         duration_start(&bench);
2876
2877         if (CMD_ARGC >= 2)
2878         {
2879                 uint32_t addr;
2880                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2881                 image.base_address = addr;
2882                 image.base_address_set = 1;
2883         }
2884         else
2885         {
2886                 image.base_address_set = 0;
2887                 image.base_address = 0x0;
2888         }
2889
2890         image.start_address_set = 0;
2891
2892         if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2893         {
2894                 return retval;
2895         }
2896
2897         image_size = 0x0;
2898         int diffs = 0;
2899         retval = ERROR_OK;
2900         for (i = 0; i < image.num_sections; i++)
2901         {
2902                 buffer = malloc(image.sections[i].size);
2903                 if (buffer == NULL)
2904                 {
2905                         command_print(CMD_CTX,
2906                                                   "error allocating buffer for section (%d bytes)",
2907                                                   (int)(image.sections[i].size));
2908                         break;
2909                 }
2910                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2911                 {
2912                         free(buffer);
2913                         break;
2914                 }
2915
2916                 if (verify)
2917                 {
2918                         /* calculate checksum of image */
2919                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2920                         if (retval != ERROR_OK)
2921                         {
2922                                 free(buffer);
2923                                 break;
2924                         }
2925
2926                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2927                         if (retval != ERROR_OK)
2928                         {
2929                                 free(buffer);
2930                                 break;
2931                         }
2932
2933                         if (checksum != mem_checksum)
2934                         {
2935                                 /* failed crc checksum, fall back to a binary compare */
2936                                 uint8_t *data;
2937
2938                                 if (diffs == 0)
2939                                 {
2940                                         LOG_ERROR("checksum mismatch - attempting binary compare");
2941                                 }
2942
2943                                 data = (uint8_t*)malloc(buf_cnt);
2944
2945                                 /* Can we use 32bit word accesses? */
2946                                 int size = 1;
2947                                 int count = buf_cnt;
2948                                 if ((count % 4) == 0)
2949                                 {
2950                                         size *= 4;
2951                                         count /= 4;
2952                                 }
2953                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2954                                 if (retval == ERROR_OK)
2955                                 {
2956                                         uint32_t t;
2957                                         for (t = 0; t < buf_cnt; t++)
2958                                         {
2959                                                 if (data[t] != buffer[t])
2960                                                 {
2961                                                         command_print(CMD_CTX,
2962                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2963                                                                                   diffs,
2964                                                                                   (unsigned)(t + image.sections[i].base_address),
2965                                                                                   data[t],
2966                                                                                   buffer[t]);
2967                                                         if (diffs++ >= 127)
2968                                                         {
2969                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2970                                                                 free(data);
2971                                                                 free(buffer);
2972                                                                 goto done;
2973                                                         }
2974                                                 }
2975                                                 keep_alive();
2976                                         }
2977                                 }
2978                                 free(data);
2979                         }
2980                 } else
2981                 {
2982                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2983                                                   image.sections[i].base_address,
2984                                                   buf_cnt);
2985                 }
2986
2987                 free(buffer);
2988                 image_size += buf_cnt;
2989         }
2990         if (diffs > 0)
2991         {
2992                 command_print(CMD_CTX, "No more differences found.");
2993         }
2994 done:
2995         if (diffs > 0)
2996         {
2997                 retval = ERROR_FAIL;
2998         }
2999         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
3000         {
3001                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3002                                 "in %fs (%0.3f KiB/s)", image_size,
3003                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3004         }
3005
3006         image_close(&image);
3007
3008         return retval;
3009 }
3010
3011 COMMAND_HANDLER(handle_verify_image_command)
3012 {
3013         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3014 }
3015
3016 COMMAND_HANDLER(handle_test_image_command)
3017 {
3018         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3019 }
3020
3021 static int handle_bp_command_list(struct command_context *cmd_ctx)
3022 {
3023         struct target *target = get_current_target(cmd_ctx);
3024         struct breakpoint *breakpoint = target->breakpoints;
3025         while (breakpoint)
3026         {
3027                 if (breakpoint->type == BKPT_SOFT)
3028                 {
3029                         char* buf = buf_to_str(breakpoint->orig_instr,
3030                                         breakpoint->length, 16);
3031                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3032                                         breakpoint->address,
3033                                         breakpoint->length,
3034                                         breakpoint->set, buf);
3035                         free(buf);
3036                 }
3037                 else
3038                 {
3039                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3040                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3041                                                         breakpoint->asid,
3042                                                         breakpoint->length, breakpoint->set);
3043                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0))
3044                         {
3045                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3046                                                         breakpoint->address,
3047                                                         breakpoint->length, breakpoint->set);
3048                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3049                                                         breakpoint->asid);
3050                         }
3051                         else
3052                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3053                                                         breakpoint->address,
3054                                                         breakpoint->length, breakpoint->set);
3055                 }
3056
3057                 breakpoint = breakpoint->next;
3058         }
3059         return ERROR_OK;
3060 }
3061
3062 static int handle_bp_command_set(struct command_context *cmd_ctx,
3063                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3064 {
3065         struct target *target = get_current_target(cmd_ctx);
3066
3067         if (asid == 0)
3068         {
3069                 int retval = breakpoint_add(target, addr, length, hw);
3070                 if (ERROR_OK == retval)
3071                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3072                 else
3073                 {
3074                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3075                         return retval;
3076                 }
3077         }
3078         else if (addr == 0)
3079         {
3080                 int retval = context_breakpoint_add(target, asid, length, hw);
3081                 if (ERROR_OK == retval)
3082                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3083                 else
3084                 {
3085                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3086                         return retval;
3087                 }
3088         }
3089         else
3090         {
3091                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3092                 if(ERROR_OK == retval)
3093                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3094                 else
3095                 {
3096                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3097                         return retval;
3098                 }
3099         }
3100         return ERROR_OK;
3101 }
3102
3103 COMMAND_HANDLER(handle_bp_command)
3104 {
3105         uint32_t addr;
3106         uint32_t asid;
3107         uint32_t length;
3108         int hw = BKPT_SOFT;
3109         switch(CMD_ARGC)
3110         {
3111                 case 0:
3112                         return handle_bp_command_list(CMD_CTX);
3113
3114                 case 2:
3115                         asid = 0;
3116                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3117                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3118                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3119
3120                 case 3:
3121                         if(strcmp(CMD_ARGV[2], "hw") == 0)
3122                         {
3123                                 hw = BKPT_HARD;
3124                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3125
3126                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3127
3128                                 asid = 0;
3129                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3130                         }
3131                         else if(strcmp(CMD_ARGV[2], "hw_ctx") == 0)
3132                         {
3133                                 hw = BKPT_HARD;
3134                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3135                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3136                                 addr = 0;
3137                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3138                         }
3139
3140                 case 4:
3141                         hw = BKPT_HARD;
3142                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3143                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3144                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3145                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3146
3147                 default:
3148                         command_print(CMD_CTX, "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']");
3149                         return ERROR_COMMAND_SYNTAX_ERROR;
3150         }
3151 }
3152
3153 COMMAND_HANDLER(handle_rbp_command)
3154 {
3155         if (CMD_ARGC != 1)
3156                 return ERROR_COMMAND_SYNTAX_ERROR;
3157
3158         uint32_t addr;
3159         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3160
3161         struct target *target = get_current_target(CMD_CTX);
3162         breakpoint_remove(target, addr);
3163
3164         return ERROR_OK;
3165 }
3166
3167 COMMAND_HANDLER(handle_wp_command)
3168 {
3169         struct target *target = get_current_target(CMD_CTX);
3170
3171         if (CMD_ARGC == 0)
3172         {
3173                 struct watchpoint *watchpoint = target->watchpoints;
3174
3175                 while (watchpoint)
3176                 {
3177                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3178                                         ", len: 0x%8.8" PRIx32
3179                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3180                                         ", mask: 0x%8.8" PRIx32,
3181                                         watchpoint->address,
3182                                         watchpoint->length,
3183                                         (int)watchpoint->rw,
3184                                         watchpoint->value,
3185                                         watchpoint->mask);
3186                         watchpoint = watchpoint->next;
3187                 }
3188                 return ERROR_OK;
3189         }
3190
3191         enum watchpoint_rw type = WPT_ACCESS;
3192         uint32_t addr = 0;
3193         uint32_t length = 0;
3194         uint32_t data_value = 0x0;
3195         uint32_t data_mask = 0xffffffff;
3196
3197         switch (CMD_ARGC)
3198         {
3199         case 5:
3200                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3201                 // fall through
3202         case 4:
3203                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3204                 // fall through
3205         case 3:
3206                 switch (CMD_ARGV[2][0])
3207                 {
3208                 case 'r':
3209                         type = WPT_READ;
3210                         break;
3211                 case 'w':
3212                         type = WPT_WRITE;
3213                         break;
3214                 case 'a':
3215                         type = WPT_ACCESS;
3216                         break;
3217                 default:
3218                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3219                         return ERROR_COMMAND_SYNTAX_ERROR;
3220                 }
3221                 // fall through
3222         case 2:
3223                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3224                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3225                 break;
3226
3227         default:
3228                 command_print(CMD_CTX, "usage: wp [address length "
3229                                 "[(r|w|a) [value [mask]]]]");
3230                 return ERROR_COMMAND_SYNTAX_ERROR;
3231         }
3232
3233         int retval = watchpoint_add(target, addr, length, type,
3234                         data_value, data_mask);
3235         if (ERROR_OK != retval)
3236                 LOG_ERROR("Failure setting watchpoints");
3237
3238         return retval;
3239 }
3240
3241 COMMAND_HANDLER(handle_rwp_command)
3242 {
3243         if (CMD_ARGC != 1)
3244                 return ERROR_COMMAND_SYNTAX_ERROR;
3245
3246         uint32_t addr;
3247         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3248
3249         struct target *target = get_current_target(CMD_CTX);
3250         watchpoint_remove(target, addr);
3251
3252         return ERROR_OK;
3253 }
3254
3255
3256 /**
3257  * Translate a virtual address to a physical address.
3258  *
3259  * The low-level target implementation must have logged a detailed error
3260  * which is forwarded to telnet/GDB session.
3261  */
3262 COMMAND_HANDLER(handle_virt2phys_command)
3263 {
3264         if (CMD_ARGC != 1)
3265                 return ERROR_COMMAND_SYNTAX_ERROR;
3266
3267         uint32_t va;
3268         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3269         uint32_t pa;
3270
3271         struct target *target = get_current_target(CMD_CTX);
3272         int retval = target->type->virt2phys(target, va, &pa);
3273         if (retval == ERROR_OK)
3274                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3275
3276         return retval;
3277 }
3278
3279 static void writeData(FILE *f, const void *data, size_t len)
3280 {
3281         size_t written = fwrite(data, 1, len, f);
3282         if (written != len)
3283                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3284 }
3285
3286 static void writeLong(FILE *f, int l)
3287 {
3288         int i;
3289         for (i = 0; i < 4; i++)
3290         {
3291                 char c = (l >> (i*8))&0xff;
3292                 writeData(f, &c, 1);
3293         }
3294
3295 }
3296
3297 static void writeString(FILE *f, char *s)
3298 {
3299         writeData(f, s, strlen(s));
3300 }
3301
3302 /* Dump a gmon.out histogram file. */
3303 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3304 {
3305         uint32_t i;
3306         FILE *f = fopen(filename, "w");
3307         if (f == NULL)
3308                 return;
3309         writeString(f, "gmon");
3310         writeLong(f, 0x00000001); /* Version */
3311         writeLong(f, 0); /* padding */
3312         writeLong(f, 0); /* padding */
3313         writeLong(f, 0); /* padding */
3314
3315         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3316         writeData(f, &zero, 1);
3317
3318         /* figure out bucket size */
3319         uint32_t min = samples[0];
3320         uint32_t max = samples[0];
3321         for (i = 0; i < sampleNum; i++)
3322         {
3323                 if (min > samples[i])
3324                 {
3325                         min = samples[i];
3326                 }
3327                 if (max < samples[i])
3328                 {
3329                         max = samples[i];
3330                 }
3331         }
3332
3333         int addressSpace = (max - min + 1);
3334         assert(addressSpace >= 2);
3335
3336         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3337         uint32_t length = addressSpace;
3338         if (length > maxBuckets)
3339         {
3340                 length = maxBuckets;
3341         }
3342         int *buckets = malloc(sizeof(int)*length);
3343         if (buckets == NULL)
3344         {
3345                 fclose(f);
3346                 return;
3347         }
3348         memset(buckets, 0, sizeof(int)*length);
3349         for (i = 0; i < sampleNum;i++)
3350         {
3351                 uint32_t address = samples[i];
3352                 long long a = address-min;
3353                 long long b = length-1;
3354                 long long c = addressSpace-1;
3355                 int index_t = (a*b)/c; /* danger!!!! int32 overflows */
3356                 buckets[index_t]++;
3357         }
3358
3359         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3360         writeLong(f, min);                      /* low_pc */
3361         writeLong(f, max);                      /* high_pc */
3362         writeLong(f, length);           /* # of samples */
3363         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3364         writeString(f, "seconds");
3365         for (i = 0; i < (15-strlen("seconds")); i++)
3366                 writeData(f, &zero, 1);
3367         writeString(f, "s");
3368
3369         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3370
3371         char *data = malloc(2*length);
3372         if (data != NULL)
3373         {
3374                 for (i = 0; i < length;i++)
3375                 {
3376                         int val;
3377                         val = buckets[i];
3378                         if (val > 65535)
3379                         {
3380                                 val = 65535;
3381                         }
3382                         data[i*2]=val&0xff;
3383                         data[i*2 + 1]=(val >> 8)&0xff;
3384                 }
3385                 free(buckets);
3386                 writeData(f, data, length * 2);
3387                 free(data);
3388         } else
3389         {
3390                 free(buckets);
3391         }
3392
3393         fclose(f);
3394 }
3395
3396 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3397  * which will be used as a random sampling of PC */
3398 COMMAND_HANDLER(handle_profile_command)
3399 {
3400         struct target *target = get_current_target(CMD_CTX);
3401         struct timeval timeout, now;
3402
3403         gettimeofday(&timeout, NULL);
3404         if (CMD_ARGC != 2)
3405         {
3406                 return ERROR_COMMAND_SYNTAX_ERROR;
3407         }
3408         unsigned offset;
3409         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3410
3411         timeval_add_time(&timeout, offset, 0);
3412
3413         /**
3414          * @todo: Some cores let us sample the PC without the
3415          * annoying halt/resume step; for example, ARMv7 PCSR.
3416          * Provide a way to use that more efficient mechanism.
3417          */
3418
3419         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3420
3421         static const int maxSample = 10000;
3422         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3423         if (samples == NULL)
3424                 return ERROR_OK;
3425
3426         int numSamples = 0;
3427         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3428         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3429
3430         int retval = ERROR_OK;
3431         for (;;)
3432         {
3433                 target_poll(target);
3434                 if (target->state == TARGET_HALTED)
3435                 {
3436                         uint32_t t=*((uint32_t *)reg->value);
3437                         samples[numSamples++]=t;
3438                         retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3439                         target_poll(target);
3440                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3441                 } else if (target->state == TARGET_RUNNING)
3442                 {
3443                         /* We want to quickly sample the PC. */
3444                         if ((retval = target_halt(target)) != ERROR_OK)
3445                         {
3446                                 free(samples);
3447                                 return retval;
3448                         }
3449                 } else
3450                 {
3451                         command_print(CMD_CTX, "Target not halted or running");
3452                         retval = ERROR_OK;
3453                         break;
3454                 }
3455                 if (retval != ERROR_OK)
3456                 {
3457                         break;
3458                 }
3459
3460                 gettimeofday(&now, NULL);
3461                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3462                 {
3463                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3464                         if ((retval = target_poll(target)) != ERROR_OK)
3465                         {
3466                                 free(samples);
3467                                 return retval;
3468                         }
3469                         if (target->state == TARGET_HALTED)
3470                         {
3471                                 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3472                         }
3473                         if ((retval = target_poll(target)) != ERROR_OK)
3474                         {
3475                                 free(samples);
3476                                 return retval;
3477                         }
3478                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3479                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3480                         break;
3481                 }
3482         }
3483         free(samples);
3484
3485         return retval;
3486 }
3487
3488 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3489 {
3490         char *namebuf;
3491         Jim_Obj *nameObjPtr, *valObjPtr;
3492         int result;
3493
3494         namebuf = alloc_printf("%s(%d)", varname, idx);
3495         if (!namebuf)
3496                 return JIM_ERR;
3497
3498         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3499         valObjPtr = Jim_NewIntObj(interp, val);
3500         if (!nameObjPtr || !valObjPtr)
3501         {
3502                 free(namebuf);
3503                 return JIM_ERR;
3504         }
3505
3506         Jim_IncrRefCount(nameObjPtr);
3507         Jim_IncrRefCount(valObjPtr);
3508         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3509         Jim_DecrRefCount(interp, nameObjPtr);
3510         Jim_DecrRefCount(interp, valObjPtr);
3511         free(namebuf);
3512         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3513         return result;
3514 }
3515
3516 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3517 {
3518         struct command_context *context;
3519         struct target *target;
3520
3521         context = current_command_context(interp);
3522         assert (context != NULL);
3523
3524         target = get_current_target(context);
3525         if (target == NULL)
3526         {
3527                 LOG_ERROR("mem2array: no current target");
3528                 return JIM_ERR;
3529         }
3530
3531         return  target_mem2array(interp, target, argc-1, argv + 1);
3532 }
3533
3534 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3535 {
3536         long l;
3537         uint32_t width;
3538         int len;
3539         uint32_t addr;
3540         uint32_t count;
3541         uint32_t v;
3542         const char *varname;
3543         int  n, e, retval;
3544         uint32_t i;
3545
3546         /* argv[1] = name of array to receive the data
3547          * argv[2] = desired width
3548          * argv[3] = memory address
3549          * argv[4] = count of times to read
3550          */
3551         if (argc != 4) {
3552                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3553                 return JIM_ERR;
3554         }
3555         varname = Jim_GetString(argv[0], &len);
3556         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3557
3558         e = Jim_GetLong(interp, argv[1], &l);
3559         width = l;
3560         if (e != JIM_OK) {
3561                 return e;
3562         }
3563
3564         e = Jim_GetLong(interp, argv[2], &l);
3565         addr = l;
3566         if (e != JIM_OK) {
3567                 return e;
3568         }
3569         e = Jim_GetLong(interp, argv[3], &l);
3570         len = l;
3571         if (e != JIM_OK) {
3572                 return e;
3573         }
3574         switch (width) {
3575                 case 8:
3576                         width = 1;
3577                         break;
3578                 case 16:
3579                         width = 2;
3580                         break;
3581                 case 32:
3582                         width = 4;
3583                         break;
3584                 default:
3585                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3586                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3587                         return JIM_ERR;
3588         }
3589         if (len == 0) {
3590                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3591                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3592                 return JIM_ERR;
3593         }
3594         if ((addr + (len * width)) < addr) {
3595                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3596                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3597                 return JIM_ERR;
3598         }
3599         /* absurd transfer size? */
3600         if (len > 65536) {
3601                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3602                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3603                 return JIM_ERR;
3604         }
3605
3606         if ((width == 1) ||
3607                 ((width == 2) && ((addr & 1) == 0)) ||
3608                 ((width == 4) && ((addr & 3) == 0))) {
3609                 /* all is well */
3610         } else {
3611                 char buf[100];
3612                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3613                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3614                                 addr,
3615                                 width);
3616                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3617                 return JIM_ERR;
3618         }
3619
3620         /* Transfer loop */
3621
3622         /* index counter */
3623         n = 0;
3624
3625         size_t buffersize = 4096;
3626         uint8_t *buffer = malloc(buffersize);
3627         if (buffer == NULL)
3628                 return JIM_ERR;
3629
3630         /* assume ok */
3631         e = JIM_OK;
3632         while (len) {
3633                 /* Slurp... in buffer size chunks */
3634
3635                 count = len; /* in objects.. */
3636                 if (count > (buffersize/width)) {
3637                         count = (buffersize/width);
3638                 }
3639
3640                 retval = target_read_memory(target, addr, width, count, buffer);
3641                 if (retval != ERROR_OK) {
3642                         /* BOO !*/
3643                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3644                                           (unsigned int)addr,
3645                                           (int)width,
3646                                           (int)count);
3647                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3648                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3649                         e = JIM_ERR;
3650                         break;
3651                 } else {
3652                         v = 0; /* shut up gcc */
3653                         for (i = 0 ;i < count ;i++, n++) {
3654                                 switch (width) {
3655                                         case 4:
3656                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3657                                                 break;
3658                                         case 2:
3659                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3660                                                 break;
3661                                         case 1:
3662                                                 v = buffer[i] & 0x0ff;
3663                                                 break;
3664                                 }
3665                                 new_int_array_element(interp, varname, n, v);
3666                         }
3667                         len -= count;
3668                 }
3669         }
3670
3671         free(buffer);
3672
3673         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3674
3675         return e;
3676 }
3677
3678 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t *val)
3679 {
3680         char *namebuf;
3681         Jim_Obj *nameObjPtr, *valObjPtr;
3682         int result;
3683         long l;
3684
3685         namebuf = alloc_printf("%s(%d)", varname, idx);
3686         if (!namebuf)
3687                 return JIM_ERR;
3688
3689         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3690         if (!nameObjPtr)
3691         {
3692                 free(namebuf);
3693                 return JIM_ERR;
3694         }
3695
3696         Jim_IncrRefCount(nameObjPtr);
3697         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3698         Jim_DecrRefCount(interp, nameObjPtr);
3699         free(namebuf);
3700         if (valObjPtr == NULL)
3701                 return JIM_ERR;
3702
3703         result = Jim_GetLong(interp, valObjPtr, &l);
3704         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3705         *val = l;
3706         return result;
3707 }
3708
3709 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3710 {
3711         struct command_context *context;
3712         struct target *target;
3713
3714         context = current_command_context(interp);
3715         assert (context != NULL);
3716
3717         target = get_current_target(context);
3718         if (target == NULL) {
3719                 LOG_ERROR("array2mem: no current target");
3720                 return JIM_ERR;
3721         }
3722
3723         return target_array2mem(interp,target, argc-1, argv + 1);
3724 }
3725
3726 static int target_array2mem(Jim_Interp *interp, struct target *target,
3727                 int argc, Jim_Obj *const *argv)
3728 {
3729         long l;
3730         uint32_t width;
3731         int len;
3732         uint32_t addr;
3733         uint32_t count;
3734         uint32_t v;
3735         const char *varname;
3736         int  n, e, retval;
3737         uint32_t i;
3738
3739         /* argv[1] = name of array to get the data
3740          * argv[2] = desired width
3741          * argv[3] = memory address
3742          * argv[4] = count to write
3743          */
3744         if (argc != 4) {
3745                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3746                 return JIM_ERR;
3747         }
3748         varname = Jim_GetString(argv[0], &len);
3749         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3750
3751         e = Jim_GetLong(interp, argv[1], &l);
3752         width = l;
3753         if (e != JIM_OK) {
3754                 return e;
3755         }
3756
3757         e = Jim_GetLong(interp, argv[2], &l);
3758         addr = l;
3759         if (e != JIM_OK) {
3760                 return e;
3761         }
3762         e = Jim_GetLong(interp, argv[3], &l);
3763         len = l;
3764         if (e != JIM_OK) {
3765                 return e;
3766         }
3767         switch (width) {
3768                 case 8:
3769                         width = 1;
3770                         break;
3771                 case 16:
3772                         width = 2;
3773                         break;
3774                 case 32:
3775                         width = 4;
3776                         break;
3777                 default:
3778                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3779                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3780                         return JIM_ERR;
3781         }
3782         if (len == 0) {
3783                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3784                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3785                 return JIM_ERR;
3786         }
3787         if ((addr + (len * width)) < addr) {
3788                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3789                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3790                 return JIM_ERR;
3791         }
3792         /* absurd transfer size? */
3793         if (len > 65536) {
3794                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3795                 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3796                 return JIM_ERR;
3797         }
3798
3799         if ((width == 1) ||
3800                 ((width == 2) && ((addr & 1) == 0)) ||
3801                 ((width == 4) && ((addr & 3) == 0))) {
3802                 /* all is well */
3803         } else {
3804                 char buf[100];
3805                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3806                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3807                                 (unsigned int)addr,
3808                                 (int)width);
3809                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3810                 return JIM_ERR;
3811         }
3812
3813         /* Transfer loop */
3814
3815         /* index counter */
3816         n = 0;
3817         /* assume ok */
3818         e = JIM_OK;
3819
3820         size_t buffersize = 4096;
3821         uint8_t *buffer = malloc(buffersize);
3822         if (buffer == NULL)
3823                 return JIM_ERR;
3824
3825         while (len) {
3826                 /* Slurp... in buffer size chunks */
3827
3828                 count = len; /* in objects.. */
3829                 if (count > (buffersize/width)) {
3830                         count = (buffersize/width);
3831                 }
3832
3833                 v = 0; /* shut up gcc */
3834                 for (i = 0 ;i < count ;i++, n++) {
3835                         get_int_array_element(interp, varname, n, &v);
3836                         switch (width) {
3837                         case 4:
3838                                 target_buffer_set_u32(target, &buffer[i*width], v);
3839                                 break;
3840                         case 2:
3841                                 target_buffer_set_u16(target, &buffer[i*width], v);
3842                                 break;
3843                         case 1:
3844                                 buffer[i] = v & 0x0ff;
3845                                 break;
3846                         }
3847                 }
3848                 len -= count;
3849
3850                 retval = target_write_memory(target, addr, width, count, buffer);
3851                 if (retval != ERROR_OK) {
3852                         /* BOO !*/
3853                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3854                                           (unsigned int)addr,
3855                                           (int)width,
3856                                           (int)count);
3857                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3858                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3859                         e = JIM_ERR;
3860                         break;
3861                 }
3862         }
3863
3864         free(buffer);
3865
3866         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3867
3868         return e;
3869 }
3870
3871 /* FIX? should we propagate errors here rather than printing them
3872  * and continuing?
3873  */
3874 void target_handle_event(struct target *target, enum target_event e)
3875 {
3876         struct target_event_action *teap;
3877
3878         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3879                 if (teap->event == e) {
3880                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3881                                            target->target_number,
3882                                            target_name(target),
3883                                            target_type_name(target),
3884                                            e,
3885                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3886                                            Jim_GetString(teap->body, NULL));
3887                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK)
3888                         {
3889                                 Jim_MakeErrorMessage(teap->interp);
3890                                 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3891                         }
3892                 }
3893         }
3894 }
3895
3896 /**
3897  * Returns true only if the target has a handler for the specified event.
3898  */
3899 bool target_has_event_action(struct target *target, enum target_event event)
3900 {
3901         struct target_event_action *teap;
3902
3903         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3904                 if (teap->event == event)
3905                         return true;
3906         }
3907         return false;
3908 }
3909
3910 enum target_cfg_param {
3911         TCFG_TYPE,
3912         TCFG_EVENT,
3913         TCFG_WORK_AREA_VIRT,
3914         TCFG_WORK_AREA_PHYS,
3915         TCFG_WORK_AREA_SIZE,
3916         TCFG_WORK_AREA_BACKUP,
3917         TCFG_ENDIAN,
3918         TCFG_VARIANT,
3919         TCFG_COREID,
3920         TCFG_CHAIN_POSITION,
3921         TCFG_DBGBASE,
3922         TCFG_RTOS,
3923 };
3924
3925 static Jim_Nvp nvp_config_opts[] = {
3926         { .name = "-type",             .value = TCFG_TYPE },
3927         { .name = "-event",            .value = TCFG_EVENT },
3928         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3929         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3930         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3931         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3932         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3933         { .name = "-variant",          .value = TCFG_VARIANT },
3934         { .name = "-coreid",           .value = TCFG_COREID },
3935         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3936         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
3937         { .name = "-rtos",             .value = TCFG_RTOS },
3938         { .name = NULL, .value = -1 }
3939 };
3940
3941 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3942 {
3943         Jim_Nvp *n;
3944         Jim_Obj *o;
3945         jim_wide w;
3946         char *cp;
3947         int e;
3948
3949         /* parse config or cget options ... */
3950         while (goi->argc > 0) {
3951                 Jim_SetEmptyResult(goi->interp);
3952                 /* Jim_GetOpt_Debug(goi); */
3953
3954                 if (target->type->target_jim_configure) {
3955                         /* target defines a configure function */
3956                         /* target gets first dibs on parameters */
3957                         e = (*(target->type->target_jim_configure))(target, goi);
3958                         if (e == JIM_OK) {
3959                                 /* more? */
3960                                 continue;
3961                         }
3962                         if (e == JIM_ERR) {
3963                                 /* An error */
3964                                 return e;
3965                         }
3966                         /* otherwise we 'continue' below */
3967                 }
3968                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3969                 if (e != JIM_OK) {
3970                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3971                         return e;
3972                 }
3973                 switch (n->value) {
3974                 case TCFG_TYPE:
3975                         /* not setable */
3976                         if (goi->isconfigure) {
3977                                 Jim_SetResultFormatted(goi->interp,
3978                                                 "not settable: %s", n->name);
3979                                 return JIM_ERR;
3980                         } else {
3981                         no_params:
3982                                 if (goi->argc != 0) {
3983                                         Jim_WrongNumArgs(goi->interp,
3984                                                         goi->argc, goi->argv,
3985                                                         "NO PARAMS");
3986                                         return JIM_ERR;
3987                                 }
3988                         }
3989                         Jim_SetResultString(goi->interp,
3990                                         target_type_name(target), -1);
3991                         /* loop for more */
3992                         break;
3993                 case TCFG_EVENT:
3994                         if (goi->argc == 0) {
3995                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3996                                 return JIM_ERR;
3997                         }
3998
3999                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4000                         if (e != JIM_OK) {
4001                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4002                                 return e;
4003                         }
4004
4005                         if (goi->isconfigure) {
4006                                 if (goi->argc != 1) {
4007                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4008                                         return JIM_ERR;
4009                                 }
4010                         } else {
4011                                 if (goi->argc != 0) {
4012                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4013                                         return JIM_ERR;
4014                                 }
4015                         }
4016
4017                         {
4018                                 struct target_event_action *teap;
4019
4020                                 teap = target->event_action;
4021                                 /* replace existing? */
4022                                 while (teap) {
4023                                         if (teap->event == (enum target_event)n->value) {
4024                                                 break;
4025                                         }
4026                                         teap = teap->next;
4027                                 }
4028
4029                                 if (goi->isconfigure) {
4030                                         bool replace = true;
4031                                         if (teap == NULL) {
4032                                                 /* create new */
4033                                                 teap = calloc(1, sizeof(*teap));
4034                                                 replace = false;
4035                                         }
4036                                         teap->event = n->value;
4037                                         teap->interp = goi->interp;
4038                                         Jim_GetOpt_Obj(goi, &o);
4039                                         if (teap->body) {
4040                                                 Jim_DecrRefCount(teap->interp, teap->body);
4041                                         }
4042                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4043                                         /*
4044                                          * FIXME:
4045                                          *     Tcl/TK - "tk events" have a nice feature.
4046                                          *     See the "BIND" command.
4047                                          *    We should support that here.
4048                                          *     You can specify %X and %Y in the event code.
4049                                          *     The idea is: %T - target name.
4050                                          *     The idea is: %N - target number
4051                                          *     The idea is: %E - event name.
4052                                          */
4053                                         Jim_IncrRefCount(teap->body);
4054
4055                                         if (!replace)
4056                                         {
4057                                                 /* add to head of event list */
4058                                                 teap->next = target->event_action;
4059                                                 target->event_action = teap;
4060                                         }
4061                                         Jim_SetEmptyResult(goi->interp);
4062                                 } else {
4063                                         /* get */
4064                                         if (teap == NULL) {
4065                                                 Jim_SetEmptyResult(goi->interp);
4066                                         } else {
4067                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4068                                         }
4069                                 }
4070                         }
4071                         /* loop for more */
4072                         break;
4073
4074                 case TCFG_WORK_AREA_VIRT:
4075                         if (goi->isconfigure) {
4076                                 target_free_all_working_areas(target);
4077                                 e = Jim_GetOpt_Wide(goi, &w);
4078                                 if (e != JIM_OK) {
4079                                         return e;
4080                                 }
4081                                 target->working_area_virt = w;
4082                                 target->working_area_virt_spec = true;
4083                         } else {
4084                                 if (goi->argc != 0) {
4085                                         goto no_params;
4086                                 }
4087                         }
4088                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4089                         /* loop for more */
4090                         break;
4091
4092                 case TCFG_WORK_AREA_PHYS:
4093                         if (goi->isconfigure) {
4094                                 target_free_all_working_areas(target);
4095                                 e = Jim_GetOpt_Wide(goi, &w);
4096                                 if (e != JIM_OK) {
4097                                         return e;
4098                                 }
4099                                 target->working_area_phys = w;
4100                                 target->working_area_phys_spec = true;
4101                         } else {
4102                                 if (goi->argc != 0) {
4103                                         goto no_params;
4104                                 }
4105                         }
4106                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4107                         /* loop for more */
4108                         break;
4109
4110                 case TCFG_WORK_AREA_SIZE:
4111                         if (goi->isconfigure) {
4112                                 target_free_all_working_areas(target);
4113                                 e = Jim_GetOpt_Wide(goi, &w);
4114                                 if (e != JIM_OK) {
4115                                         return e;
4116                                 }
4117                                 target->working_area_size = w;
4118                         } else {
4119                                 if (goi->argc != 0) {
4120                                         goto no_params;
4121                                 }
4122                         }
4123                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4124                         /* loop for more */
4125                         break;
4126
4127                 case TCFG_WORK_AREA_BACKUP:
4128                         if (goi->isconfigure) {
4129                                 target_free_all_working_areas(target);
4130                                 e = Jim_GetOpt_Wide(goi, &w);
4131                                 if (e != JIM_OK) {
4132                                         return e;
4133                                 }
4134                                 /* make this exactly 1 or 0 */
4135                                 target->backup_working_area = (!!w);
4136                         } else {
4137                                 if (goi->argc != 0) {
4138                                         goto no_params;
4139                                 }
4140                         }
4141                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4142                         /* loop for more e*/
4143                         break;
4144
4145
4146                 case TCFG_ENDIAN:
4147                         if (goi->isconfigure) {
4148                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4149                                 if (e != JIM_OK) {
4150                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4151                                         return e;
4152                                 }
4153                                 target->endianness = n->value;
4154                         } else {
4155                                 if (goi->argc != 0) {
4156                                         goto no_params;
4157                                 }
4158                         }
4159                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4160                         if (n->name == NULL) {
4161                                 target->endianness = TARGET_LITTLE_ENDIAN;
4162                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4163                         }
4164                         Jim_SetResultString(goi->interp, n->name, -1);
4165                         /* loop for more */
4166                         break;
4167
4168                 case TCFG_VARIANT:
4169                         if (goi->isconfigure) {
4170                                 if (goi->argc < 1) {
4171                                         Jim_SetResultFormatted(goi->interp,
4172                                                                                    "%s ?STRING?",
4173                                                                                    n->name);
4174                                         return JIM_ERR;
4175                                 }
4176                                 if (target->variant) {
4177                                         free((void *)(target->variant));
4178                                 }
4179                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4180                                 if (e != JIM_OK)
4181                                         return e;
4182                                 target->variant = strdup(cp);
4183                         } else {
4184                                 if (goi->argc != 0) {
4185                                         goto no_params;
4186                                 }
4187                         }
4188                         Jim_SetResultString(goi->interp, target->variant,-1);
4189                         /* loop for more */
4190                         break;
4191
4192                 case TCFG_COREID:
4193                         if (goi->isconfigure) {
4194                                 e = Jim_GetOpt_Wide(goi, &w);
4195                                 if (e != JIM_OK) {
4196                                         return e;
4197                                 }
4198                                 target->coreid = (int32_t)w;
4199                         } else {
4200                                 if (goi->argc != 0) {
4201                                         goto no_params;
4202                                 }
4203                         }
4204                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4205                         /* loop for more */
4206                         break;
4207
4208                 case TCFG_CHAIN_POSITION:
4209                         if (goi->isconfigure) {
4210                                 Jim_Obj *o_t;
4211                                 struct jtag_tap *tap;
4212                                 target_free_all_working_areas(target);
4213                                 e = Jim_GetOpt_Obj(goi, &o_t);
4214                                 if (e != JIM_OK) {
4215                                         return e;
4216                                 }
4217                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4218                                 if (tap == NULL) {
4219                                         return JIM_ERR;
4220                                 }
4221                                 /* make this exactly 1 or 0 */
4222                                 target->tap = tap;
4223                         } else {
4224                                 if (goi->argc != 0) {
4225                                         goto no_params;
4226                                 }
4227                         }
4228                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4229                         /* loop for more e*/
4230                         break;
4231                 case TCFG_DBGBASE:
4232                         if (goi->isconfigure) {
4233                                 e = Jim_GetOpt_Wide(goi, &w);
4234                                 if (e != JIM_OK) {
4235                                         return e;
4236                                 }
4237                                 target->dbgbase = (uint32_t)w;
4238                                 target->dbgbase_set = true;
4239                         } else {
4240                                 if (goi->argc != 0) {
4241                                         goto no_params;
4242                                 }
4243                         }
4244                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4245                         /* loop for more */
4246                         break;
4247
4248                 case TCFG_RTOS:
4249                         /* RTOS */
4250                         {
4251                                 int result = rtos_create( goi, target );
4252                                 if ( result != JIM_OK )
4253                                 {
4254                                         return result;
4255                                 }
4256                         }
4257                         /* loop for more */
4258                         break;
4259                 }
4260         } /* while (goi->argc) */
4261
4262
4263                 /* done - we return */
4264         return JIM_OK;
4265 }
4266
4267 static int
4268 jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4269 {
4270         Jim_GetOptInfo goi;
4271
4272         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4273         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4274         int need_args = 1 + goi.isconfigure;
4275         if (goi.argc < need_args)
4276         {
4277                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4278                         goi.isconfigure
4279                                 ? "missing: -option VALUE ..."
4280                                 : "missing: -option ...");
4281                 return JIM_ERR;
4282         }
4283         struct target *target = Jim_CmdPrivData(goi.interp);
4284         return target_configure(&goi, target);
4285 }
4286
4287 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4288 {
4289         const char *cmd_name = Jim_GetString(argv[0], NULL);
4290
4291         Jim_GetOptInfo goi;
4292         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4293
4294         if (goi.argc < 2 || goi.argc > 4)
4295         {
4296                 Jim_SetResultFormatted(goi.interp,
4297                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4298                 return JIM_ERR;
4299         }
4300
4301         target_write_fn fn;
4302         fn = target_write_memory_fast;
4303
4304         int e;
4305         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4306         {
4307                 /* consume it */
4308                 struct Jim_Obj *obj;
4309                 e = Jim_GetOpt_Obj(&goi, &obj);
4310                 if (e != JIM_OK)
4311                         return e;
4312
4313                 fn = target_write_phys_memory;
4314         }
4315
4316         jim_wide a;
4317         e = Jim_GetOpt_Wide(&goi, &a);
4318         if (e != JIM_OK)
4319                 return e;
4320
4321         jim_wide b;
4322         e = Jim_GetOpt_Wide(&goi, &b);
4323         if (e != JIM_OK)
4324                 return e;
4325
4326         jim_wide c = 1;
4327         if (goi.argc == 1)
4328         {
4329                 e = Jim_GetOpt_Wide(&goi, &c);
4330                 if (e != JIM_OK)
4331                         return e;
4332         }
4333
4334         /* all args must be consumed */
4335         if (goi.argc != 0)
4336         {
4337                 return JIM_ERR;
4338         }
4339
4340         struct target *target = Jim_CmdPrivData(goi.interp);
4341         unsigned data_size;
4342         if (strcasecmp(cmd_name, "mww") == 0) {
4343                 data_size = 4;
4344         }
4345         else if (strcasecmp(cmd_name, "mwh") == 0) {
4346                 data_size = 2;
4347         }
4348         else if (strcasecmp(cmd_name, "mwb") == 0) {
4349                 data_size = 1;
4350         } else {
4351                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4352                 return JIM_ERR;
4353         }
4354
4355         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4356 }
4357
4358 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4359 {
4360         const char *cmd_name = Jim_GetString(argv[0], NULL);
4361
4362         Jim_GetOptInfo goi;
4363         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4364
4365         if ((goi.argc < 1) || (goi.argc > 3))
4366         {
4367                 Jim_SetResultFormatted(goi.interp,
4368                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4369                 return JIM_ERR;
4370         }
4371
4372         int (*fn)(struct target *target,
4373                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4374         fn=target_read_memory;
4375
4376         int e;
4377         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0)
4378         {
4379                 /* consume it */
4380                 struct Jim_Obj *obj;
4381                 e = Jim_GetOpt_Obj(&goi, &obj);
4382                 if (e != JIM_OK)
4383                         return e;
4384
4385                 fn=target_read_phys_memory;
4386         }
4387
4388         jim_wide a;
4389         e = Jim_GetOpt_Wide(&goi, &a);
4390         if (e != JIM_OK) {
4391                 return JIM_ERR;
4392         }
4393         jim_wide c;
4394         if (goi.argc == 1) {
4395                 e = Jim_GetOpt_Wide(&goi, &c);
4396                 if (e != JIM_OK) {
4397                         return JIM_ERR;
4398                 }
4399         } else {
4400                 c = 1;
4401         }
4402
4403         /* all args must be consumed */
4404         if (goi.argc != 0)
4405         {
4406                 return JIM_ERR;
4407         }
4408
4409         jim_wide b = 1; /* shut up gcc */
4410         if (strcasecmp(cmd_name, "mdw") == 0)
4411                 b = 4;
4412         else if (strcasecmp(cmd_name, "mdh") == 0)
4413                 b = 2;
4414         else if (strcasecmp(cmd_name, "mdb") == 0)
4415                 b = 1;
4416         else {
4417                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4418                 return JIM_ERR;
4419         }
4420
4421         /* convert count to "bytes" */
4422         c = c * b;
4423
4424         struct target *target = Jim_CmdPrivData(goi.interp);
4425         uint8_t  target_buf[32];
4426         jim_wide x, y, z;
4427         while (c > 0) {
4428                 y = c;
4429                 if (y > 16) {
4430                         y = 16;
4431                 }
4432                 e = fn(target, a, b, y / b, target_buf);
4433                 if (e != ERROR_OK) {
4434                         char tmp[10];
4435                         snprintf(tmp, sizeof(tmp), "%08lx", (long)a);
4436                         Jim_SetResultFormatted(interp, "error reading target @ 0x%s", tmp);
4437                         return JIM_ERR;
4438                 }
4439
4440                 command_print(NULL, "0x%08x ", (int)(a));
4441                 switch (b) {
4442                 case 4:
4443                         for (x = 0; x < 16 && x < y; x += 4)
4444                         {
4445                                 z = target_buffer_get_u32(target, &(target_buf[ x ]));
4446                                 command_print(NULL, "%08x ", (int)(z));
4447                         }
4448                         for (; (x < 16) ; x += 4) {
4449                                 command_print(NULL, "         ");
4450                         }
4451                         break;
4452                 case 2:
4453                         for (x = 0; x < 16 && x < y; x += 2)
4454                         {
4455                                 z = target_buffer_get_u16(target, &(target_buf[ x ]));
4456                                 command_print(NULL, "%04x ", (int)(z));
4457                         }
4458                         for (; (x < 16) ; x += 2) {
4459                                 command_print(NULL, "     ");
4460                         }
4461                         break;
4462                 case 1:
4463                 default:
4464                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4465                                 z = target_buffer_get_u8(target, &(target_buf[ x ]));
4466                                 command_print(NULL, "%02x ", (int)(z));
4467                         }
4468                         for (; (x < 16) ; x += 1) {
4469                                 command_print(NULL, "   ");
4470                         }
4471                         break;
4472                 }
4473                 /* ascii-ify the bytes */
4474                 for (x = 0 ; x < y ; x++) {
4475                         if ((target_buf[x] >= 0x20) &&
4476                                 (target_buf[x] <= 0x7e)) {
4477                                 /* good */
4478                         } else {
4479                                 /* smack it */
4480                                 target_buf[x] = '.';
4481                         }
4482                 }
4483                 /* space pad  */
4484                 while (x < 16) {
4485                         target_buf[x] = ' ';
4486                         x++;
4487                 }
4488                 /* terminate */
4489                 target_buf[16] = 0;
4490                 /* print - with a newline */
4491                 command_print(NULL, "%s\n", target_buf);
4492                 /* NEXT... */
4493                 c -= 16;
4494                 a += 16;
4495         }
4496         return JIM_OK;
4497 }
4498
4499 static int jim_target_mem2array(Jim_Interp *interp,
4500                 int argc, Jim_Obj *const *argv)
4501 {
4502         struct target *target = Jim_CmdPrivData(interp);
4503         return target_mem2array(interp, target, argc - 1, argv + 1);
4504 }
4505
4506 static int jim_target_array2mem(Jim_Interp *interp,
4507                 int argc, Jim_Obj *const *argv)
4508 {
4509         struct target *target = Jim_CmdPrivData(interp);
4510         return target_array2mem(interp, target, argc - 1, argv + 1);
4511 }
4512
4513 static int jim_target_tap_disabled(Jim_Interp *interp)
4514 {
4515         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4516         return JIM_ERR;
4517 }
4518
4519 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4520 {
4521         if (argc != 1)
4522         {
4523                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4524                 return JIM_ERR;
4525         }
4526         struct target *target = Jim_CmdPrivData(interp);
4527         if (!target->tap->enabled)
4528                 return jim_target_tap_disabled(interp);
4529
4530         int e = target->type->examine(target);
4531         if (e != ERROR_OK)
4532         {
4533                 return JIM_ERR;
4534         }
4535         return JIM_OK;
4536 }
4537
4538 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4539 {
4540         if (argc != 1)
4541         {
4542                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4543                 return JIM_ERR;
4544         }
4545         struct target *target = Jim_CmdPrivData(interp);
4546
4547         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4548                 return JIM_ERR;
4549
4550         return JIM_OK;
4551 }
4552
4553 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4554 {
4555         if (argc != 1)
4556         {
4557                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4558                 return JIM_ERR;
4559         }
4560         struct target *target = Jim_CmdPrivData(interp);
4561         if (!target->tap->enabled)
4562                 return jim_target_tap_disabled(interp);
4563
4564         int e;
4565         if (!(target_was_examined(target))) {
4566                 e = ERROR_TARGET_NOT_EXAMINED;
4567         } else {
4568                 e = target->type->poll(target);
4569         }
4570         if (e != ERROR_OK)
4571         {
4572                 return JIM_ERR;
4573         }
4574         return JIM_OK;
4575 }
4576
4577 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4578 {
4579         Jim_GetOptInfo goi;
4580         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4581
4582         if (goi.argc != 2)
4583         {
4584                 Jim_WrongNumArgs(interp, 0, argv,
4585                                 "([tT]|[fF]|assert|deassert) BOOL");
4586                 return JIM_ERR;
4587         }
4588
4589         Jim_Nvp *n;
4590         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4591         if (e != JIM_OK)
4592         {
4593                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4594                 return e;
4595         }
4596         /* the halt or not param */
4597         jim_wide a;
4598         e = Jim_GetOpt_Wide(&goi, &a);
4599         if (e != JIM_OK)
4600                 return e;
4601
4602         struct target *target = Jim_CmdPrivData(goi.interp);
4603         if (!target->tap->enabled)
4604                 return jim_target_tap_disabled(interp);
4605         if (!(target_was_examined(target)))
4606         {
4607                 LOG_ERROR("Target not examined yet");
4608                 return ERROR_TARGET_NOT_EXAMINED;
4609         }
4610         if (!target->type->assert_reset || !target->type->deassert_reset)
4611         {
4612                 Jim_SetResultFormatted(interp,
4613                                 "No target-specific reset for %s",
4614                                 target_name(target));
4615                 return JIM_ERR;
4616         }
4617         /* determine if we should halt or not. */
4618         target->reset_halt = !!a;
4619         /* When this happens - all workareas are invalid. */
4620         target_free_all_working_areas_restore(target, 0);
4621
4622         /* do the assert */
4623         if (n->value == NVP_ASSERT) {
4624                 e = target->type->assert_reset(target);
4625         } else {
4626                 e = target->type->deassert_reset(target);
4627         }
4628         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4629 }
4630
4631 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4632 {
4633         if (argc != 1) {
4634                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4635                 return JIM_ERR;
4636         }
4637         struct target *target = Jim_CmdPrivData(interp);
4638         if (!target->tap->enabled)
4639                 return jim_target_tap_disabled(interp);
4640         int e = target->type->halt(target);
4641         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4642 }
4643
4644 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4645 {
4646         Jim_GetOptInfo goi;
4647         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4648
4649         /* params:  <name>  statename timeoutmsecs */
4650         if (goi.argc != 2)
4651         {
4652                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4653                 Jim_SetResultFormatted(goi.interp,
4654                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4655                 return JIM_ERR;
4656         }
4657
4658         Jim_Nvp *n;
4659         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4660         if (e != JIM_OK) {
4661                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state,1);
4662                 return e;
4663         }
4664         jim_wide a;
4665         e = Jim_GetOpt_Wide(&goi, &a);
4666         if (e != JIM_OK) {
4667                 return e;
4668         }
4669         struct target *target = Jim_CmdPrivData(interp);
4670         if (!target->tap->enabled)
4671                 return jim_target_tap_disabled(interp);
4672
4673         e = target_wait_state(target, n->value, a);
4674         if (e != ERROR_OK)
4675         {
4676                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4677                 Jim_SetResultFormatted(goi.interp,
4678                                 "target: %s wait %s fails (%#s) %s",
4679                                 target_name(target), n->name,
4680                                 eObj, target_strerror_safe(e));
4681                 Jim_FreeNewObj(interp, eObj);
4682                 return JIM_ERR;
4683         }
4684         return JIM_OK;
4685 }
4686 /* List for human, Events defined for this target.
4687  * scripts/programs should use 'name cget -event NAME'
4688  */
4689 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4690 {
4691         struct command_context *cmd_ctx = current_command_context(interp);
4692         assert (cmd_ctx != NULL);
4693
4694         struct target *target = Jim_CmdPrivData(interp);
4695         struct target_event_action *teap = target->event_action;
4696         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4697                                    target->target_number,
4698                                    target_name(target));
4699         command_print(cmd_ctx, "%-25s | Body", "Event");
4700         command_print(cmd_ctx, "------------------------- | "
4701                         "----------------------------------------");
4702         while (teap)
4703         {
4704                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4705                 command_print(cmd_ctx, "%-25s | %s",
4706                                 opt->name, Jim_GetString(teap->body, NULL));
4707                 teap = teap->next;
4708         }
4709         command_print(cmd_ctx, "***END***");
4710         return JIM_OK;
4711 }
4712 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4713 {
4714         if (argc != 1)
4715         {
4716                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4717                 return JIM_ERR;
4718         }
4719         struct target *target = Jim_CmdPrivData(interp);
4720         Jim_SetResultString(interp, target_state_name(target), -1);
4721         return JIM_OK;
4722 }
4723 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4724 {
4725         Jim_GetOptInfo goi;
4726         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4727         if (goi.argc != 1)
4728         {
4729                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4730                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4731                 return JIM_ERR;
4732         }
4733         Jim_Nvp *n;
4734         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4735         if (e != JIM_OK)
4736         {
4737                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4738                 return e;
4739         }
4740         struct target *target = Jim_CmdPrivData(interp);
4741         target_handle_event(target, n->value);
4742         return JIM_OK;
4743 }
4744
4745 static const struct command_registration target_instance_command_handlers[] = {
4746         {
4747                 .name = "configure",
4748                 .mode = COMMAND_CONFIG,
4749                 .jim_handler = jim_target_configure,
4750                 .help  = "configure a new target for use",
4751                 .usage = "[target_attribute ...]",
4752         },
4753         {
4754                 .name = "cget",
4755                 .mode = COMMAND_ANY,
4756                 .jim_handler = jim_target_configure,
4757                 .help  = "returns the specified target attribute",
4758                 .usage = "target_attribute",
4759         },
4760         {
4761                 .name = "mww",
4762                 .mode = COMMAND_EXEC,
4763                 .jim_handler = jim_target_mw,
4764                 .help = "Write 32-bit word(s) to target memory",
4765                 .usage = "address data [count]",
4766         },
4767         {
4768                 .name = "mwh",
4769                 .mode = COMMAND_EXEC,
4770                 .jim_handler = jim_target_mw,
4771                 .help = "Write 16-bit half-word(s) to target memory",
4772                 .usage = "address data [count]",
4773         },
4774         {
4775                 .name = "mwb",
4776                 .mode = COMMAND_EXEC,
4777                 .jim_handler = jim_target_mw,
4778                 .help = "Write byte(s) to target memory",
4779                 .usage = "address data [count]",
4780         },
4781         {
4782                 .name = "mdw",
4783                 .mode = COMMAND_EXEC,
4784                 .jim_handler = jim_target_md,
4785                 .help = "Display target memory as 32-bit words",
4786                 .usage = "address [count]",
4787         },
4788         {
4789                 .name = "mdh",
4790                 .mode = COMMAND_EXEC,
4791                 .jim_handler = jim_target_md,
4792                 .help = "Display target memory as 16-bit half-words",
4793                 .usage = "address [count]",
4794         },
4795         {
4796                 .name = "mdb",
4797                 .mode = COMMAND_EXEC,
4798                 .jim_handler = jim_target_md,
4799                 .help = "Display target memory as 8-bit bytes",
4800                 .usage = "address [count]",
4801         },
4802         {
4803                 .name = "array2mem",
4804                 .mode = COMMAND_EXEC,
4805                 .jim_handler = jim_target_array2mem,
4806                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4807                         "to target memory",
4808                 .usage = "arrayname bitwidth address count",
4809         },
4810         {
4811                 .name = "mem2array",
4812                 .mode = COMMAND_EXEC,
4813                 .jim_handler = jim_target_mem2array,
4814                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4815                         "from target memory",
4816                 .usage = "arrayname bitwidth address count",
4817         },
4818         {
4819                 .name = "eventlist",
4820                 .mode = COMMAND_EXEC,
4821                 .jim_handler = jim_target_event_list,
4822                 .help = "displays a table of events defined for this target",
4823         },
4824         {
4825                 .name = "curstate",
4826                 .mode = COMMAND_EXEC,
4827                 .jim_handler = jim_target_current_state,
4828                 .help = "displays the current state of this target",
4829         },
4830         {
4831                 .name = "arp_examine",
4832                 .mode = COMMAND_EXEC,
4833                 .jim_handler = jim_target_examine,
4834                 .help = "used internally for reset processing",
4835         },
4836         {
4837                 .name = "arp_halt_gdb",
4838                 .mode = COMMAND_EXEC,
4839                 .jim_handler = jim_target_halt_gdb,
4840                 .help = "used internally for reset processing to halt GDB",
4841         },
4842         {
4843                 .name = "arp_poll",
4844                 .mode = COMMAND_EXEC,
4845                 .jim_handler = jim_target_poll,
4846                 .help = "used internally for reset processing",
4847         },
4848         {
4849                 .name = "arp_reset",
4850                 .mode = COMMAND_EXEC,
4851                 .jim_handler = jim_target_reset,
4852                 .help = "used internally for reset processing",
4853         },
4854         {
4855                 .name = "arp_halt",
4856                 .mode = COMMAND_EXEC,
4857                 .jim_handler = jim_target_halt,
4858                 .help = "used internally for reset processing",
4859         },
4860         {
4861                 .name = "arp_waitstate",
4862                 .mode = COMMAND_EXEC,
4863                 .jim_handler = jim_target_wait_state,
4864                 .help = "used internally for reset processing",
4865         },
4866         {
4867                 .name = "invoke-event",
4868                 .mode = COMMAND_EXEC,
4869                 .jim_handler = jim_target_invoke_event,
4870                 .help = "invoke handler for specified event",
4871                 .usage = "event_name",
4872         },
4873         COMMAND_REGISTRATION_DONE
4874 };
4875
4876 static int target_create(Jim_GetOptInfo *goi)
4877 {
4878         Jim_Obj *new_cmd;
4879         Jim_Cmd *cmd;
4880         const char *cp;
4881         char *cp2;
4882         int e;
4883         int x;
4884         struct target *target;
4885         struct command_context *cmd_ctx;
4886
4887         cmd_ctx = current_command_context(goi->interp);
4888         assert (cmd_ctx != NULL);
4889
4890         if (goi->argc < 3) {
4891                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4892                 return JIM_ERR;
4893         }
4894
4895         /* COMMAND */
4896         Jim_GetOpt_Obj(goi, &new_cmd);
4897         /* does this command exist? */
4898         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4899         if (cmd) {
4900                 cp = Jim_GetString(new_cmd, NULL);
4901                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4902                 return JIM_ERR;
4903         }
4904
4905         /* TYPE */
4906         e = Jim_GetOpt_String(goi, &cp2, NULL);
4907         if (e != JIM_OK)
4908                 return e;
4909         cp = cp2;
4910         /* now does target type exist */
4911         for (x = 0 ; target_types[x] ; x++) {
4912                 if (0 == strcmp(cp, target_types[x]->name)) {
4913                         /* found */
4914                         break;
4915                 }
4916         }
4917         if (target_types[x] == NULL) {
4918                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4919                 for (x = 0 ; target_types[x] ; x++) {
4920                         if (target_types[x + 1]) {
4921                                 Jim_AppendStrings(goi->interp,
4922                                                                    Jim_GetResult(goi->interp),
4923                                                                    target_types[x]->name,
4924                                                                    ", ", NULL);
4925                         } else {
4926                                 Jim_AppendStrings(goi->interp,
4927                                                                    Jim_GetResult(goi->interp),
4928                                                                    " or ",
4929                                                                    target_types[x]->name,NULL);
4930                         }
4931                 }
4932                 return JIM_ERR;
4933         }
4934
4935         /* Create it */
4936         target = calloc(1,sizeof(struct target));
4937         /* set target number */
4938         target->target_number = new_target_number();
4939
4940         /* allocate memory for each unique target type */
4941         target->type = (struct target_type*)calloc(1,sizeof(struct target_type));
4942
4943         memcpy(target->type, target_types[x], sizeof(struct target_type));
4944
4945         /* will be set by "-endian" */
4946         target->endianness = TARGET_ENDIAN_UNKNOWN;
4947
4948         /* default to first core, override with -coreid */
4949         target->coreid = 0;
4950
4951         target->working_area        = 0x0;
4952         target->working_area_size   = 0x0;
4953         target->working_areas       = NULL;
4954         target->backup_working_area = 0;
4955
4956         target->state               = TARGET_UNKNOWN;
4957         target->debug_reason        = DBG_REASON_UNDEFINED;
4958         target->reg_cache           = NULL;
4959         target->breakpoints         = NULL;
4960         target->watchpoints         = NULL;
4961         target->next                = NULL;
4962         target->arch_info           = NULL;
4963
4964         target->display             = 1;
4965
4966         target->halt_issued                     = false;
4967
4968         /* initialize trace information */
4969         target->trace_info = malloc(sizeof(struct trace));
4970         target->trace_info->num_trace_points         = 0;
4971         target->trace_info->trace_points_size        = 0;
4972         target->trace_info->trace_points             = NULL;
4973         target->trace_info->trace_history_size       = 0;
4974         target->trace_info->trace_history            = NULL;
4975         target->trace_info->trace_history_pos        = 0;
4976         target->trace_info->trace_history_overflowed = 0;
4977
4978         target->dbgmsg          = NULL;
4979         target->dbg_msg_enabled = 0;
4980
4981         target->endianness = TARGET_ENDIAN_UNKNOWN;
4982
4983         target->rtos = NULL;
4984         target->rtos_auto_detect = false;
4985
4986         /* Do the rest as "configure" options */
4987         goi->isconfigure = 1;
4988         e = target_configure(goi, target);
4989
4990         if (target->tap == NULL)
4991         {
4992                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4993                 e = JIM_ERR;
4994         }
4995
4996         if (e != JIM_OK) {
4997                 free(target->type);
4998                 free(target);
4999                 return e;
5000         }
5001
5002         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5003                 /* default endian to little if not specified */
5004                 target->endianness = TARGET_LITTLE_ENDIAN;
5005         }
5006
5007         /* incase variant is not set */
5008         if (!target->variant)
5009                 target->variant = strdup("");
5010
5011         cp = Jim_GetString(new_cmd, NULL);
5012         target->cmd_name = strdup(cp);
5013
5014         /* create the target specific commands */
5015         if (target->type->commands) {
5016                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5017                 if (ERROR_OK != e)
5018                         LOG_ERROR("unable to register '%s' commands", cp);
5019         }
5020         if (target->type->target_create) {
5021                 (*(target->type->target_create))(target, goi->interp);
5022         }
5023
5024         /* append to end of list */
5025         {
5026                 struct target **tpp;
5027                 tpp = &(all_targets);
5028                 while (*tpp) {
5029                         tpp = &((*tpp)->next);
5030                 }
5031                 *tpp = target;
5032         }
5033
5034         /* now - create the new target name command */
5035         const const struct command_registration target_subcommands[] = {
5036                 {
5037                         .chain = target_instance_command_handlers,
5038                 },
5039                 {
5040                         .chain = target->type->commands,
5041                 },
5042                 COMMAND_REGISTRATION_DONE
5043         };
5044         const const struct command_registration target_commands[] = {
5045                 {
5046                         .name = cp,
5047                         .mode = COMMAND_ANY,
5048                         .help = "target command group",
5049                         .chain = target_subcommands,
5050                 },
5051                 COMMAND_REGISTRATION_DONE
5052         };
5053         e = register_commands(cmd_ctx, NULL, target_commands);
5054         if (ERROR_OK != e)
5055                 return JIM_ERR;
5056
5057         struct command *c = command_find_in_context(cmd_ctx, cp);
5058         assert(c);
5059         command_set_handler_data(c, target);
5060
5061         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5062 }
5063
5064 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5065 {
5066         if (argc != 1)
5067         {
5068                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5069                 return JIM_ERR;
5070         }
5071         struct command_context *cmd_ctx = current_command_context(interp);
5072         assert (cmd_ctx != NULL);
5073
5074         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
5075         return JIM_OK;
5076 }
5077
5078 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5079 {
5080         if (argc != 1)
5081         {
5082                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5083                 return JIM_ERR;
5084         }
5085         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5086         for (unsigned x = 0; NULL != target_types[x]; x++)
5087         {
5088                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5089                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5090         }
5091         return JIM_OK;
5092 }
5093
5094 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5095 {
5096         if (argc != 1)
5097         {
5098                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5099                 return JIM_ERR;
5100         }
5101         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5102         struct target *target = all_targets;
5103         while (target)
5104         {
5105                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5106                         Jim_NewStringObj(interp, target_name(target), -1));
5107                 target = target->next;
5108         }
5109         return JIM_OK;
5110 }
5111
5112 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5113 {
5114         int i;
5115         const char *targetname;
5116         int retval,len;
5117         struct target *target;
5118         struct target_list *head, *curr;
5119     curr = (struct target_list*) NULL;
5120         head = (struct target_list*) NULL;
5121         
5122         retval = 0;
5123         LOG_DEBUG("%d",argc);
5124         /* argv[1] = target to associate in smp
5125          * argv[2] = target to assoicate in smp
5126          * argv[3] ...
5127          */
5128
5129         for(i=1;i<argc;i++)
5130         {
5131
5132                 targetname = Jim_GetString(argv[i], &len);
5133                 target = get_target(targetname);
5134                 LOG_DEBUG("%s ",targetname);
5135                 if (target)
5136                 {
5137                         struct target_list *new;
5138                         new=malloc(sizeof(struct target_list));
5139                         new->target = target;
5140                         new->next = (struct target_list*)NULL;
5141                         if (head == (struct target_list*)NULL)
5142                         {
5143                                 head = new;
5144                                 curr = head;
5145                         }
5146                         else
5147                         {
5148                                 curr->next = new;
5149                                 curr = new;
5150                         }
5151                 }
5152         }
5153     /*  now parse the list of cpu and put the target in smp mode*/
5154         curr=head;
5155
5156     while(curr!=(struct target_list *)NULL)
5157         {
5158     target=curr->target;
5159         target->smp = 1;
5160         target->head = head;
5161         curr=curr->next;
5162         }
5163         return retval;
5164 }
5165
5166
5167 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5168 {
5169         Jim_GetOptInfo goi;
5170         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5171         if (goi.argc < 3)
5172         {
5173                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5174                         "<name> <target_type> [<target_options> ...]");
5175                 return JIM_ERR;
5176         }
5177         return target_create(&goi);
5178 }
5179
5180 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5181 {
5182         Jim_GetOptInfo goi;
5183         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5184
5185         /* It's OK to remove this mechanism sometime after August 2010 or so */
5186         LOG_WARNING("don't use numbers as target identifiers; use names");
5187         if (goi.argc != 1)
5188         {
5189                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5190                 return JIM_ERR;
5191         }
5192         jim_wide w;
5193         int e = Jim_GetOpt_Wide(&goi, &w);
5194         if (e != JIM_OK)
5195                 return JIM_ERR;
5196
5197         struct target *target;
5198         for (target = all_targets; NULL != target; target = target->next)
5199         {
5200                 if (target->target_number != w)
5201                         continue;
5202
5203                 Jim_SetResultString(goi.interp, target_name(target), -1);
5204                 return JIM_OK;
5205         }
5206         {
5207                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5208                 Jim_SetResultFormatted(goi.interp,
5209                         "Target: number %#s does not exist", wObj);
5210                 Jim_FreeNewObj(interp, wObj);
5211         }
5212         return JIM_ERR;
5213 }
5214
5215 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5216 {
5217         if (argc != 1)
5218         {
5219                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5220                 return JIM_ERR;
5221         }
5222         unsigned count = 0;
5223         struct target *target = all_targets;
5224         while (NULL != target)
5225         {
5226                 target = target->next;
5227                 count++;
5228         }
5229         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5230         return JIM_OK;
5231 }
5232
5233 static const struct command_registration target_subcommand_handlers[] = {
5234         {
5235                 .name = "init",
5236                 .mode = COMMAND_CONFIG,
5237                 .handler = handle_target_init_command,
5238                 .help = "initialize targets",
5239         },
5240         {
5241                 .name = "create",
5242                 /* REVISIT this should be COMMAND_CONFIG ... */
5243                 .mode = COMMAND_ANY,
5244                 .jim_handler = jim_target_create,
5245                 .usage = "name type '-chain-position' name [options ...]",
5246                 .help = "Creates and selects a new target",
5247         },
5248         {
5249                 .name = "current",
5250                 .mode = COMMAND_ANY,
5251                 .jim_handler = jim_target_current,
5252                 .help = "Returns the currently selected target",
5253         },
5254         {
5255                 .name = "types",
5256                 .mode = COMMAND_ANY,
5257                 .jim_handler = jim_target_types,
5258                 .help = "Returns the available target types as "
5259                                 "a list of strings",
5260         },
5261         {
5262                 .name = "names",
5263                 .mode = COMMAND_ANY,
5264                 .jim_handler = jim_target_names,
5265                 .help = "Returns the names of all targets as a list of strings",
5266         },
5267         {
5268                 .name = "number",
5269                 .mode = COMMAND_ANY,
5270                 .jim_handler = jim_target_number,
5271                 .usage = "number",
5272                 .help = "Returns the name of the numbered target "
5273                         "(DEPRECATED)",
5274         },
5275         {
5276                 .name = "count",
5277                 .mode = COMMAND_ANY,
5278                 .jim_handler = jim_target_count,
5279                 .help = "Returns the number of targets as an integer "
5280                         "(DEPRECATED)",
5281         },
5282         {
5283                 .name = "smp",
5284                 .mode = COMMAND_ANY,
5285                 .jim_handler = jim_target_smp,
5286                 .usage = "targetname1 targetname2 ...",
5287                 .help = "gather several target in a smp list"
5288         },
5289
5290         COMMAND_REGISTRATION_DONE
5291 };
5292
5293 struct FastLoad
5294 {
5295         uint32_t address;
5296         uint8_t *data;
5297         int length;
5298
5299 };
5300
5301 static int fastload_num;
5302 static struct FastLoad *fastload;
5303
5304 static void free_fastload(void)
5305 {
5306         if (fastload != NULL)
5307         {
5308                 int i;
5309                 for (i = 0; i < fastload_num; i++)
5310                 {
5311                         if (fastload[i].data)
5312                                 free(fastload[i].data);
5313                 }
5314                 free(fastload);
5315                 fastload = NULL;
5316         }
5317 }
5318
5319
5320
5321
5322 COMMAND_HANDLER(handle_fast_load_image_command)
5323 {
5324         uint8_t *buffer;
5325         size_t buf_cnt;
5326         uint32_t image_size;
5327         uint32_t min_address = 0;
5328         uint32_t max_address = 0xffffffff;
5329         int i;
5330
5331         struct image image;
5332
5333         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5334                         &image, &min_address, &max_address);
5335         if (ERROR_OK != retval)
5336                 return retval;
5337
5338         struct duration bench;
5339         duration_start(&bench);
5340
5341         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5342         if (retval != ERROR_OK)
5343         {
5344                 return retval;
5345         }
5346
5347         image_size = 0x0;
5348         retval = ERROR_OK;
5349         fastload_num = image.num_sections;
5350         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5351         if (fastload == NULL)
5352         {
5353                 command_print(CMD_CTX, "out of memory");
5354                 image_close(&image);
5355                 return ERROR_FAIL;
5356         }
5357         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5358         for (i = 0; i < image.num_sections; i++)
5359         {
5360                 buffer = malloc(image.sections[i].size);
5361                 if (buffer == NULL)
5362                 {
5363                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5364                                                   (int)(image.sections[i].size));
5365                         retval = ERROR_FAIL;
5366                         break;
5367                 }
5368
5369                 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
5370                 {
5371                         free(buffer);
5372                         break;
5373                 }
5374
5375                 uint32_t offset = 0;
5376                 uint32_t length = buf_cnt;
5377
5378
5379                 /* DANGER!!! beware of unsigned comparision here!!! */
5380
5381                 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
5382                                 (image.sections[i].base_address < max_address))
5383                 {
5384                         if (image.sections[i].base_address < min_address)
5385                         {
5386                                 /* clip addresses below */
5387                                 offset += min_address-image.sections[i].base_address;
5388                                 length -= offset;
5389                         }
5390
5391                         if (image.sections[i].base_address + buf_cnt > max_address)
5392                         {
5393                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5394                         }
5395
5396                         fastload[i].address = image.sections[i].base_address + offset;
5397                         fastload[i].data = malloc(length);
5398                         if (fastload[i].data == NULL)
5399                         {
5400                                 free(buffer);
5401                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5402                                                           length);
5403                                 retval = ERROR_FAIL;
5404                                 break;
5405                         }
5406                         memcpy(fastload[i].data, buffer + offset, length);
5407                         fastload[i].length = length;
5408
5409                         image_size += length;
5410                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5411                                                   (unsigned int)length,
5412                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5413                 }
5414
5415                 free(buffer);
5416         }
5417
5418         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
5419         {
5420                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5421                                 "in %fs (%0.3f KiB/s)", image_size,
5422                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5423
5424                 command_print(CMD_CTX,
5425                                 "WARNING: image has not been loaded to target!"
5426                                 "You can issue a 'fast_load' to finish loading.");
5427         }
5428
5429         image_close(&image);
5430
5431         if (retval != ERROR_OK)
5432         {
5433                 free_fastload();
5434         }
5435
5436         return retval;
5437 }
5438
5439 COMMAND_HANDLER(handle_fast_load_command)
5440 {
5441         if (CMD_ARGC > 0)
5442                 return ERROR_COMMAND_SYNTAX_ERROR;
5443         if (fastload == NULL)
5444         {
5445                 LOG_ERROR("No image in memory");
5446                 return ERROR_FAIL;
5447         }
5448         int i;
5449         int ms = timeval_ms();
5450         int size = 0;
5451         int retval = ERROR_OK;
5452         for (i = 0; i < fastload_num;i++)
5453         {
5454                 struct target *target = get_current_target(CMD_CTX);
5455                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5456                                           (unsigned int)(fastload[i].address),
5457                                           (unsigned int)(fastload[i].length));
5458                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5459                 if (retval != ERROR_OK)
5460                 {
5461                         break;
5462                 }
5463                 size += fastload[i].length;
5464         }
5465         if (retval == ERROR_OK)
5466         {
5467                 int after = timeval_ms();
5468                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5469         }
5470         return retval;
5471 }
5472
5473 static const struct command_registration target_command_handlers[] = {
5474         {
5475                 .name = "targets",
5476                 .handler = handle_targets_command,
5477                 .mode = COMMAND_ANY,
5478                 .help = "change current default target (one parameter) "
5479                         "or prints table of all targets (no parameters)",
5480                 .usage = "[target]",
5481         },
5482         {
5483                 .name = "target",
5484                 .mode = COMMAND_CONFIG,
5485                 .help = "configure target",
5486
5487                 .chain = target_subcommand_handlers,
5488         },
5489         COMMAND_REGISTRATION_DONE
5490 };
5491
5492 int target_register_commands(struct command_context *cmd_ctx)
5493 {
5494         return register_commands(cmd_ctx, NULL, target_command_handlers);
5495 }
5496
5497 static bool target_reset_nag = true;
5498
5499 bool get_target_reset_nag(void)
5500 {
5501         return target_reset_nag;
5502 }
5503
5504 COMMAND_HANDLER(handle_target_reset_nag)
5505 {
5506         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5507                         &target_reset_nag, "Nag after each reset about options to improve "
5508                         "performance");
5509 }
5510
5511 static const struct command_registration target_exec_command_handlers[] = {
5512         {
5513                 .name = "fast_load_image",
5514                 .handler = handle_fast_load_image_command,
5515                 .mode = COMMAND_ANY,
5516                 .help = "Load image into server memory for later use by "
5517                         "fast_load; primarily for profiling",
5518                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5519                         "[min_address [max_length]]",
5520         },
5521         {
5522                 .name = "fast_load",
5523                 .handler = handle_fast_load_command,
5524                 .mode = COMMAND_EXEC,
5525                 .help = "loads active fast load image to current target "
5526                         "- mainly for profiling purposes",
5527         },
5528         {
5529                 .name = "profile",
5530                 .handler = handle_profile_command,
5531                 .mode = COMMAND_EXEC,
5532                 .help = "profiling samples the CPU PC",
5533         },
5534         /** @todo don't register virt2phys() unless target supports it */
5535         {
5536                 .name = "virt2phys",
5537                 .handler = handle_virt2phys_command,
5538                 .mode = COMMAND_ANY,
5539                 .help = "translate a virtual address into a physical address",
5540                 .usage = "virtual_address",
5541         },
5542         {
5543                 .name = "reg",
5544                 .handler = handle_reg_command,
5545                 .mode = COMMAND_EXEC,
5546                 .help = "display or set a register; with no arguments, "
5547                         "displays all registers and their values",
5548                 .usage = "[(register_name|register_number) [value]]",
5549         },
5550         {
5551                 .name = "poll",
5552                 .handler = handle_poll_command,
5553                 .mode = COMMAND_EXEC,
5554                 .help = "poll target state; or reconfigure background polling",
5555                 .usage = "['on'|'off']",
5556         },
5557         {
5558                 .name = "wait_halt",
5559                 .handler = handle_wait_halt_command,
5560                 .mode = COMMAND_EXEC,
5561                 .help = "wait up to the specified number of milliseconds "
5562                         "(default 5) for a previously requested halt",
5563                 .usage = "[milliseconds]",
5564         },
5565         {
5566                 .name = "halt",
5567                 .handler = handle_halt_command,
5568                 .mode = COMMAND_EXEC,
5569                 .help = "request target to halt, then wait up to the specified"
5570                         "number of milliseconds (default 5) for it to complete",
5571                 .usage = "[milliseconds]",
5572         },
5573         {
5574                 .name = "resume",
5575                 .handler = handle_resume_command,
5576                 .mode = COMMAND_EXEC,
5577                 .help = "resume target execution from current PC or address",
5578                 .usage = "[address]",
5579         },
5580         {
5581                 .name = "reset",
5582                 .handler = handle_reset_command,
5583                 .mode = COMMAND_EXEC,
5584                 .usage = "[run|halt|init]",
5585                 .help = "Reset all targets into the specified mode."
5586                         "Default reset mode is run, if not given.",
5587         },
5588         {
5589                 .name = "soft_reset_halt",
5590                 .handler = handle_soft_reset_halt_command,
5591                 .mode = COMMAND_EXEC,
5592                 .help = "halt the target and do a soft reset",
5593         },
5594         {
5595                 .name = "step",
5596                 .handler = handle_step_command,
5597                 .mode = COMMAND_EXEC,
5598                 .help = "step one instruction from current PC or address",
5599                 .usage = "[address]",
5600         },
5601         {
5602                 .name = "mdw",
5603                 .handler = handle_md_command,
5604                 .mode = COMMAND_EXEC,
5605                 .help = "display memory words",
5606                 .usage = "['phys'] address [count]",
5607         },
5608         {
5609                 .name = "mdh",
5610                 .handler = handle_md_command,
5611                 .mode = COMMAND_EXEC,
5612                 .help = "display memory half-words",
5613                 .usage = "['phys'] address [count]",
5614         },
5615         {
5616                 .name = "mdb",
5617                 .handler = handle_md_command,
5618                 .mode = COMMAND_EXEC,
5619                 .help = "display memory bytes",
5620                 .usage = "['phys'] address [count]",
5621         },
5622         {
5623                 .name = "mww",
5624                 .handler = handle_mw_command,
5625                 .mode = COMMAND_EXEC,
5626                 .help = "write memory word",
5627                 .usage = "['phys'] address value [count]",
5628         },
5629         {
5630                 .name = "mwh",
5631                 .handler = handle_mw_command,
5632                 .mode = COMMAND_EXEC,
5633                 .help = "write memory half-word",
5634                 .usage = "['phys'] address value [count]",
5635         },
5636         {
5637                 .name = "mwb",
5638                 .handler = handle_mw_command,
5639                 .mode = COMMAND_EXEC,
5640                 .help = "write memory byte",
5641                 .usage = "['phys'] address value [count]",
5642         },
5643         {
5644                 .name = "bp",
5645                 .handler = handle_bp_command,
5646                 .mode = COMMAND_EXEC,
5647                 .help = "list or set hardware or software breakpoint",
5648                 .usage = "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']",
5649         },
5650         {
5651                 .name = "rbp",
5652                 .handler = handle_rbp_command,
5653                 .mode = COMMAND_EXEC,
5654                 .help = "remove breakpoint",
5655                 .usage = "address",
5656         },
5657         {
5658                 .name = "wp",
5659                 .handler = handle_wp_command,
5660                 .mode = COMMAND_EXEC,
5661                 .help = "list (no params) or create watchpoints",
5662                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5663         },
5664         {
5665                 .name = "rwp",
5666                 .handler = handle_rwp_command,
5667                 .mode = COMMAND_EXEC,
5668                 .help = "remove watchpoint",
5669                 .usage = "address",
5670         },
5671         {
5672                 .name = "load_image",
5673                 .handler = handle_load_image_command,
5674                 .mode = COMMAND_EXEC,
5675                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5676                         "[min_address] [max_length]",
5677         },
5678         {
5679                 .name = "dump_image",
5680                 .handler = handle_dump_image_command,
5681                 .mode = COMMAND_EXEC,
5682                 .usage = "filename address size",
5683         },
5684         {
5685                 .name = "verify_image",
5686                 .handler = handle_verify_image_command,
5687                 .mode = COMMAND_EXEC,
5688                 .usage = "filename [offset [type]]",
5689         },
5690         {
5691                 .name = "test_image",
5692                 .handler = handle_test_image_command,
5693                 .mode = COMMAND_EXEC,
5694                 .usage = "filename [offset [type]]",
5695         },
5696         {
5697                 .name = "mem2array",
5698                 .mode = COMMAND_EXEC,
5699                 .jim_handler = jim_mem2array,
5700                 .help = "read 8/16/32 bit memory and return as a TCL array "
5701                         "for script processing",
5702                 .usage = "arrayname bitwidth address count",
5703         },
5704         {
5705                 .name = "array2mem",
5706                 .mode = COMMAND_EXEC,
5707                 .jim_handler = jim_array2mem,
5708                 .help = "convert a TCL array to memory locations "
5709                         "and write the 8/16/32 bit values",
5710                 .usage = "arrayname bitwidth address count",
5711         },
5712         {
5713                 .name = "reset_nag",
5714                 .handler = handle_target_reset_nag,
5715                 .mode = COMMAND_ANY,
5716                 .help = "Nag after each reset about options that could have been "
5717                                 "enabled to improve performance. ",
5718                 .usage = "['enable'|'disable']",
5719         },
5720         COMMAND_REGISTRATION_DONE
5721 };
5722 static int target_register_user_commands(struct command_context *cmd_ctx)
5723 {
5724         int retval = ERROR_OK;
5725         if ((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
5726                 return retval;
5727
5728         if ((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
5729                 return retval;
5730
5731
5732         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5733 }