target: remove unused working area 'user' field
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 static int target_read_buffer_default(struct target *target, uint32_t address,
60                 uint32_t size, uint8_t *buffer);
61 static int target_write_buffer_default(struct target *target, uint32_t address,
62                 uint32_t size, const uint8_t *buffer);
63 static int target_array2mem(Jim_Interp *interp, struct target *target,
64                 int argc, Jim_Obj * const *argv);
65 static int target_mem2array(Jim_Interp *interp, struct target *target,
66                 int argc, Jim_Obj * const *argv);
67 static int target_register_user_commands(struct command_context *cmd_ctx);
68
69 /* targets */
70 extern struct target_type arm7tdmi_target;
71 extern struct target_type arm720t_target;
72 extern struct target_type arm9tdmi_target;
73 extern struct target_type arm920t_target;
74 extern struct target_type arm966e_target;
75 extern struct target_type arm946e_target;
76 extern struct target_type arm926ejs_target;
77 extern struct target_type fa526_target;
78 extern struct target_type feroceon_target;
79 extern struct target_type dragonite_target;
80 extern struct target_type xscale_target;
81 extern struct target_type cortexm3_target;
82 extern struct target_type cortexa8_target;
83 extern struct target_type arm11_target;
84 extern struct target_type mips_m4k_target;
85 extern struct target_type avr_target;
86 extern struct target_type dsp563xx_target;
87 extern struct target_type dsp5680xx_target;
88 extern struct target_type testee_target;
89 extern struct target_type avr32_ap7k_target;
90 extern struct target_type stm32_stlink_target;
91
92 static struct target_type *target_types[] = {
93         &arm7tdmi_target,
94         &arm9tdmi_target,
95         &arm920t_target,
96         &arm720t_target,
97         &arm966e_target,
98         &arm946e_target,
99         &arm926ejs_target,
100         &fa526_target,
101         &feroceon_target,
102         &dragonite_target,
103         &xscale_target,
104         &cortexm3_target,
105         &cortexa8_target,
106         &arm11_target,
107         &mips_m4k_target,
108         &avr_target,
109         &dsp563xx_target,
110         &dsp5680xx_target,
111         &testee_target,
112         &avr32_ap7k_target,
113         &stm32_stlink_target,
114         NULL,
115 };
116
117 struct target *all_targets;
118 static struct target_event_callback *target_event_callbacks;
119 static struct target_timer_callback *target_timer_callbacks;
120 static const int polling_interval = 100;
121
122 static const Jim_Nvp nvp_assert[] = {
123         { .name = "assert", NVP_ASSERT },
124         { .name = "deassert", NVP_DEASSERT },
125         { .name = "T", NVP_ASSERT },
126         { .name = "F", NVP_DEASSERT },
127         { .name = "t", NVP_ASSERT },
128         { .name = "f", NVP_DEASSERT },
129         { .name = NULL, .value = -1 }
130 };
131
132 static const Jim_Nvp nvp_error_target[] = {
133         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
134         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
135         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
136         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
137         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
138         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
139         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
140         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
141         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
142         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
143         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
144         { .value = -1, .name = NULL }
145 };
146
147 static const char *target_strerror_safe(int err)
148 {
149         const Jim_Nvp *n;
150
151         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
152         if (n->name == NULL)
153                 return "unknown";
154         else
155                 return n->name;
156 }
157
158 static const Jim_Nvp nvp_target_event[] = {
159
160         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
161         { .value = TARGET_EVENT_HALTED, .name = "halted" },
162         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
163         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
164         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
165
166         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
167         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
168
169         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
170         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
171         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
172         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
174         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
175         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
176         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
177         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
178         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
179         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
180         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
181
182         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
183         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
184
185         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
186         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
187
188         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
189         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
190
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
192         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
193
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
195         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
196
197         { .name = NULL, .value = -1 }
198 };
199
200 static const Jim_Nvp nvp_target_state[] = {
201         { .name = "unknown", .value = TARGET_UNKNOWN },
202         { .name = "running", .value = TARGET_RUNNING },
203         { .name = "halted",  .value = TARGET_HALTED },
204         { .name = "reset",   .value = TARGET_RESET },
205         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
206         { .name = NULL, .value = -1 },
207 };
208
209 static const Jim_Nvp nvp_target_debug_reason[] = {
210         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
211         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
212         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
213         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
214         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
215         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
216         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
217         { .name = NULL, .value = -1 },
218 };
219
220 static const Jim_Nvp nvp_target_endian[] = {
221         { .name = "big",    .value = TARGET_BIG_ENDIAN },
222         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
223         { .name = "be",     .value = TARGET_BIG_ENDIAN },
224         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
225         { .name = NULL,     .value = -1 },
226 };
227
228 static const Jim_Nvp nvp_reset_modes[] = {
229         { .name = "unknown", .value = RESET_UNKNOWN },
230         { .name = "run"    , .value = RESET_RUN },
231         { .name = "halt"   , .value = RESET_HALT },
232         { .name = "init"   , .value = RESET_INIT },
233         { .name = NULL     , .value = -1 },
234 };
235
236 const char *debug_reason_name(struct target *t)
237 {
238         const char *cp;
239
240         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
241                         t->debug_reason)->name;
242         if (!cp) {
243                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
244                 cp = "(*BUG*unknown*BUG*)";
245         }
246         return cp;
247 }
248
249 const char *target_state_name(struct target *t)
250 {
251         const char *cp;
252         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
253         if (!cp) {
254                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
255                 cp = "(*BUG*unknown*BUG*)";
256         }
257         return cp;
258 }
259
260 /* determine the number of the new target */
261 static int new_target_number(void)
262 {
263         struct target *t;
264         int x;
265
266         /* number is 0 based */
267         x = -1;
268         t = all_targets;
269         while (t) {
270                 if (x < t->target_number)
271                         x = t->target_number;
272                 t = t->next;
273         }
274         return x + 1;
275 }
276
277 /* read a uint32_t from a buffer in target memory endianness */
278 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
279 {
280         if (target->endianness == TARGET_LITTLE_ENDIAN)
281                 return le_to_h_u32(buffer);
282         else
283                 return be_to_h_u32(buffer);
284 }
285
286 /* read a uint24_t from a buffer in target memory endianness */
287 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
288 {
289         if (target->endianness == TARGET_LITTLE_ENDIAN)
290                 return le_to_h_u24(buffer);
291         else
292                 return be_to_h_u24(buffer);
293 }
294
295 /* read a uint16_t from a buffer in target memory endianness */
296 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
297 {
298         if (target->endianness == TARGET_LITTLE_ENDIAN)
299                 return le_to_h_u16(buffer);
300         else
301                 return be_to_h_u16(buffer);
302 }
303
304 /* read a uint8_t from a buffer in target memory endianness */
305 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
306 {
307         return *buffer & 0x0ff;
308 }
309
310 /* write a uint32_t to a buffer in target memory endianness */
311 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
312 {
313         if (target->endianness == TARGET_LITTLE_ENDIAN)
314                 h_u32_to_le(buffer, value);
315         else
316                 h_u32_to_be(buffer, value);
317 }
318
319 /* write a uint24_t to a buffer in target memory endianness */
320 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
321 {
322         if (target->endianness == TARGET_LITTLE_ENDIAN)
323                 h_u24_to_le(buffer, value);
324         else
325                 h_u24_to_be(buffer, value);
326 }
327
328 /* write a uint16_t to a buffer in target memory endianness */
329 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
330 {
331         if (target->endianness == TARGET_LITTLE_ENDIAN)
332                 h_u16_to_le(buffer, value);
333         else
334                 h_u16_to_be(buffer, value);
335 }
336
337 /* write a uint8_t to a buffer in target memory endianness */
338 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
339 {
340         *buffer = value;
341 }
342
343 /* write a uint32_t array to a buffer in target memory endianness */
344 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
345 {
346         uint32_t i;
347         for (i = 0; i < count; i++)
348                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
349 }
350
351 /* write a uint16_t array to a buffer in target memory endianness */
352 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
353 {
354         uint32_t i;
355         for (i = 0; i < count; i++)
356                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
357 }
358
359 /* write a uint32_t array to a buffer in target memory endianness */
360 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
361 {
362         uint32_t i;
363         for (i = 0; i < count; i++)
364                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
365 }
366
367 /* write a uint16_t array to a buffer in target memory endianness */
368 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
369 {
370         uint32_t i;
371         for (i = 0; i < count; i++)
372                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
373 }
374
375 /* return a pointer to a configured target; id is name or number */
376 struct target *get_target(const char *id)
377 {
378         struct target *target;
379
380         /* try as tcltarget name */
381         for (target = all_targets; target; target = target->next) {
382                 if (target->cmd_name == NULL)
383                         continue;
384                 if (strcmp(id, target->cmd_name) == 0)
385                         return target;
386         }
387
388         /* It's OK to remove this fallback sometime after August 2010 or so */
389
390         /* no match, try as number */
391         unsigned num;
392         if (parse_uint(id, &num) != ERROR_OK)
393                 return NULL;
394
395         for (target = all_targets; target; target = target->next) {
396                 if (target->target_number == (int)num) {
397                         LOG_WARNING("use '%s' as target identifier, not '%u'",
398                                         target->cmd_name, num);
399                         return target;
400                 }
401         }
402
403         return NULL;
404 }
405
406 /* returns a pointer to the n-th configured target */
407 static struct target *get_target_by_num(int num)
408 {
409         struct target *target = all_targets;
410
411         while (target) {
412                 if (target->target_number == num)
413                         return target;
414                 target = target->next;
415         }
416
417         return NULL;
418 }
419
420 struct target *get_current_target(struct command_context *cmd_ctx)
421 {
422         struct target *target = get_target_by_num(cmd_ctx->current_target);
423
424         if (target == NULL) {
425                 LOG_ERROR("BUG: current_target out of bounds");
426                 exit(-1);
427         }
428
429         return target;
430 }
431
432 int target_poll(struct target *target)
433 {
434         int retval;
435
436         /* We can't poll until after examine */
437         if (!target_was_examined(target)) {
438                 /* Fail silently lest we pollute the log */
439                 return ERROR_FAIL;
440         }
441
442         retval = target->type->poll(target);
443         if (retval != ERROR_OK)
444                 return retval;
445
446         if (target->halt_issued) {
447                 if (target->state == TARGET_HALTED)
448                         target->halt_issued = false;
449                 else {
450                         long long t = timeval_ms() - target->halt_issued_time;
451                         if (t > 1000) {
452                                 target->halt_issued = false;
453                                 LOG_INFO("Halt timed out, wake up GDB.");
454                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
455                         }
456                 }
457         }
458
459         return ERROR_OK;
460 }
461
462 int target_halt(struct target *target)
463 {
464         int retval;
465         /* We can't poll until after examine */
466         if (!target_was_examined(target)) {
467                 LOG_ERROR("Target not examined yet");
468                 return ERROR_FAIL;
469         }
470
471         retval = target->type->halt(target);
472         if (retval != ERROR_OK)
473                 return retval;
474
475         target->halt_issued = true;
476         target->halt_issued_time = timeval_ms();
477
478         return ERROR_OK;
479 }
480
481 /**
482  * Make the target (re)start executing using its saved execution
483  * context (possibly with some modifications).
484  *
485  * @param target Which target should start executing.
486  * @param current True to use the target's saved program counter instead
487  *      of the address parameter
488  * @param address Optionally used as the program counter.
489  * @param handle_breakpoints True iff breakpoints at the resumption PC
490  *      should be skipped.  (For example, maybe execution was stopped by
491  *      such a breakpoint, in which case it would be counterprodutive to
492  *      let it re-trigger.
493  * @param debug_execution False if all working areas allocated by OpenOCD
494  *      should be released and/or restored to their original contents.
495  *      (This would for example be true to run some downloaded "helper"
496  *      algorithm code, which resides in one such working buffer and uses
497  *      another for data storage.)
498  *
499  * @todo Resolve the ambiguity about what the "debug_execution" flag
500  * signifies.  For example, Target implementations don't agree on how
501  * it relates to invalidation of the register cache, or to whether
502  * breakpoints and watchpoints should be enabled.  (It would seem wrong
503  * to enable breakpoints when running downloaded "helper" algorithms
504  * (debug_execution true), since the breakpoints would be set to match
505  * target firmware being debugged, not the helper algorithm.... and
506  * enabling them could cause such helpers to malfunction (for example,
507  * by overwriting data with a breakpoint instruction.  On the other
508  * hand the infrastructure for running such helpers might use this
509  * procedure but rely on hardware breakpoint to detect termination.)
510  */
511 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
512 {
513         int retval;
514
515         /* We can't poll until after examine */
516         if (!target_was_examined(target)) {
517                 LOG_ERROR("Target not examined yet");
518                 return ERROR_FAIL;
519         }
520
521         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
522
523         /* note that resume *must* be asynchronous. The CPU can halt before
524          * we poll. The CPU can even halt at the current PC as a result of
525          * a software breakpoint being inserted by (a bug?) the application.
526          */
527         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
528         if (retval != ERROR_OK)
529                 return retval;
530
531         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
532
533         return retval;
534 }
535
536 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
537 {
538         char buf[100];
539         int retval;
540         Jim_Nvp *n;
541         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
542         if (n->name == NULL) {
543                 LOG_ERROR("invalid reset mode");
544                 return ERROR_FAIL;
545         }
546
547         /* disable polling during reset to make reset event scripts
548          * more predictable, i.e. dr/irscan & pathmove in events will
549          * not have JTAG operations injected into the middle of a sequence.
550          */
551         bool save_poll = jtag_poll_get_enabled();
552
553         jtag_poll_set_enabled(false);
554
555         sprintf(buf, "ocd_process_reset %s", n->name);
556         retval = Jim_Eval(cmd_ctx->interp, buf);
557
558         jtag_poll_set_enabled(save_poll);
559
560         if (retval != JIM_OK) {
561                 Jim_MakeErrorMessage(cmd_ctx->interp);
562                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
563                 return ERROR_FAIL;
564         }
565
566         /* We want any events to be processed before the prompt */
567         retval = target_call_timer_callbacks_now();
568
569         struct target *target;
570         for (target = all_targets; target; target = target->next)
571                 target->type->check_reset(target);
572
573         return retval;
574 }
575
576 static int identity_virt2phys(struct target *target,
577                 uint32_t virtual, uint32_t *physical)
578 {
579         *physical = virtual;
580         return ERROR_OK;
581 }
582
583 static int no_mmu(struct target *target, int *enabled)
584 {
585         *enabled = 0;
586         return ERROR_OK;
587 }
588
589 static int default_examine(struct target *target)
590 {
591         target_set_examined(target);
592         return ERROR_OK;
593 }
594
595 /* no check by default */
596 static int default_check_reset(struct target *target)
597 {
598         return ERROR_OK;
599 }
600
601 int target_examine_one(struct target *target)
602 {
603         return target->type->examine(target);
604 }
605
606 static int jtag_enable_callback(enum jtag_event event, void *priv)
607 {
608         struct target *target = priv;
609
610         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
611                 return ERROR_OK;
612
613         jtag_unregister_event_callback(jtag_enable_callback, target);
614
615         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
616
617         int retval = target_examine_one(target);
618         if (retval != ERROR_OK)
619                 return retval;
620
621         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
622
623         return retval;
624 }
625
626 /* Targets that correctly implement init + examine, i.e.
627  * no communication with target during init:
628  *
629  * XScale
630  */
631 int target_examine(void)
632 {
633         int retval = ERROR_OK;
634         struct target *target;
635
636         for (target = all_targets; target; target = target->next) {
637                 /* defer examination, but don't skip it */
638                 if (!target->tap->enabled) {
639                         jtag_register_event_callback(jtag_enable_callback,
640                                         target);
641                         continue;
642                 }
643
644                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
645
646                 retval = target_examine_one(target);
647                 if (retval != ERROR_OK)
648                         return retval;
649
650                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
651         }
652         return retval;
653 }
654
655 const char *target_type_name(struct target *target)
656 {
657         return target->type->name;
658 }
659
660 static int target_write_memory_imp(struct target *target, uint32_t address,
661                 uint32_t size, uint32_t count, const uint8_t *buffer)
662 {
663         if (!target_was_examined(target)) {
664                 LOG_ERROR("Target not examined yet");
665                 return ERROR_FAIL;
666         }
667         return target->type->write_memory_imp(target, address, size, count, buffer);
668 }
669
670 static int target_read_memory_imp(struct target *target, uint32_t address,
671                 uint32_t size, uint32_t count, uint8_t *buffer)
672 {
673         if (!target_was_examined(target)) {
674                 LOG_ERROR("Target not examined yet");
675                 return ERROR_FAIL;
676         }
677         return target->type->read_memory_imp(target, address, size, count, buffer);
678 }
679
680 static int target_soft_reset_halt_imp(struct target *target)
681 {
682         if (!target_was_examined(target)) {
683                 LOG_ERROR("Target not examined yet");
684                 return ERROR_FAIL;
685         }
686         if (!target->type->soft_reset_halt_imp) {
687                 LOG_ERROR("Target %s does not support soft_reset_halt",
688                                 target_name(target));
689                 return ERROR_FAIL;
690         }
691         return target->type->soft_reset_halt_imp(target);
692 }
693
694 /**
695  * Downloads a target-specific native code algorithm to the target,
696  * and executes it.  * Note that some targets may need to set up, enable,
697  * and tear down a breakpoint (hard or * soft) to detect algorithm
698  * termination, while others may support  lower overhead schemes where
699  * soft breakpoints embedded in the algorithm automatically terminate the
700  * algorithm.
701  *
702  * @param target used to run the algorithm
703  * @param arch_info target-specific description of the algorithm.
704  */
705 int target_run_algorithm(struct target *target,
706                 int num_mem_params, struct mem_param *mem_params,
707                 int num_reg_params, struct reg_param *reg_param,
708                 uint32_t entry_point, uint32_t exit_point,
709                 int timeout_ms, void *arch_info)
710 {
711         int retval = ERROR_FAIL;
712
713         if (!target_was_examined(target)) {
714                 LOG_ERROR("Target not examined yet");
715                 goto done;
716         }
717         if (!target->type->run_algorithm) {
718                 LOG_ERROR("Target type '%s' does not support %s",
719                                 target_type_name(target), __func__);
720                 goto done;
721         }
722
723         target->running_alg = true;
724         retval = target->type->run_algorithm(target,
725                         num_mem_params, mem_params,
726                         num_reg_params, reg_param,
727                         entry_point, exit_point, timeout_ms, arch_info);
728         target->running_alg = false;
729
730 done:
731         return retval;
732 }
733
734 /**
735  * Downloads a target-specific native code algorithm to the target,
736  * executes and leaves it running.
737  *
738  * @param target used to run the algorithm
739  * @param arch_info target-specific description of the algorithm.
740  */
741 int target_start_algorithm(struct target *target,
742                 int num_mem_params, struct mem_param *mem_params,
743                 int num_reg_params, struct reg_param *reg_params,
744                 uint32_t entry_point, uint32_t exit_point,
745                 void *arch_info)
746 {
747         int retval = ERROR_FAIL;
748
749         if (!target_was_examined(target)) {
750                 LOG_ERROR("Target not examined yet");
751                 goto done;
752         }
753         if (!target->type->start_algorithm) {
754                 LOG_ERROR("Target type '%s' does not support %s",
755                                 target_type_name(target), __func__);
756                 goto done;
757         }
758         if (target->running_alg) {
759                 LOG_ERROR("Target is already running an algorithm");
760                 goto done;
761         }
762
763         target->running_alg = true;
764         retval = target->type->start_algorithm(target,
765                         num_mem_params, mem_params,
766                         num_reg_params, reg_params,
767                         entry_point, exit_point, arch_info);
768
769 done:
770         return retval;
771 }
772
773 /**
774  * Waits for an algorithm started with target_start_algorithm() to complete.
775  *
776  * @param target used to run the algorithm
777  * @param arch_info target-specific description of the algorithm.
778  */
779 int target_wait_algorithm(struct target *target,
780                 int num_mem_params, struct mem_param *mem_params,
781                 int num_reg_params, struct reg_param *reg_params,
782                 uint32_t exit_point, int timeout_ms,
783                 void *arch_info)
784 {
785         int retval = ERROR_FAIL;
786
787         if (!target->type->wait_algorithm) {
788                 LOG_ERROR("Target type '%s' does not support %s",
789                                 target_type_name(target), __func__);
790                 goto done;
791         }
792         if (!target->running_alg) {
793                 LOG_ERROR("Target is not running an algorithm");
794                 goto done;
795         }
796
797         retval = target->type->wait_algorithm(target,
798                         num_mem_params, mem_params,
799                         num_reg_params, reg_params,
800                         exit_point, timeout_ms, arch_info);
801         if (retval != ERROR_TARGET_TIMEOUT)
802                 target->running_alg = false;
803
804 done:
805         return retval;
806 }
807
808 /**
809  * Executes a target-specific native code algorithm in the target.
810  * It differs from target_run_algorithm in that the algorithm is asynchronous.
811  * Because of this it requires an compliant algorithm:
812  * see contrib/loaders/flash/stm32f1x.S for example.
813  *
814  * @param target used to run the algorithm
815  */
816
817 int target_run_flash_async_algorithm(struct target *target,
818                 uint8_t *buffer, uint32_t count, int block_size,
819                 int num_mem_params, struct mem_param *mem_params,
820                 int num_reg_params, struct reg_param *reg_params,
821                 uint32_t buffer_start, uint32_t buffer_size,
822                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
823 {
824         int retval;
825
826         /* Set up working area. First word is write pointer, second word is read pointer,
827          * rest is fifo data area. */
828         uint32_t wp_addr = buffer_start;
829         uint32_t rp_addr = buffer_start + 4;
830         uint32_t fifo_start_addr = buffer_start + 8;
831         uint32_t fifo_end_addr = buffer_start + buffer_size;
832
833         uint32_t wp = fifo_start_addr;
834         uint32_t rp = fifo_start_addr;
835
836         /* validate block_size is 2^n */
837         assert(!block_size || !(block_size & (block_size - 1)));
838
839         retval = target_write_u32(target, wp_addr, wp);
840         if (retval != ERROR_OK)
841                 return retval;
842         retval = target_write_u32(target, rp_addr, rp);
843         if (retval != ERROR_OK)
844                 return retval;
845
846         /* Start up algorithm on target and let it idle while writing the first chunk */
847         retval = target_start_algorithm(target, num_mem_params, mem_params,
848                         num_reg_params, reg_params,
849                         entry_point,
850                         exit_point,
851                         arch_info);
852
853         if (retval != ERROR_OK) {
854                 LOG_ERROR("error starting target flash write algorithm");
855                 return retval;
856         }
857
858         while (count > 0) {
859
860                 retval = target_read_u32(target, rp_addr, &rp);
861                 if (retval != ERROR_OK) {
862                         LOG_ERROR("failed to get read pointer");
863                         break;
864                 }
865
866                 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
867
868                 if (rp == 0) {
869                         LOG_ERROR("flash write algorithm aborted by target");
870                         retval = ERROR_FLASH_OPERATION_FAILED;
871                         break;
872                 }
873
874                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
875                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
876                         break;
877                 }
878
879                 /* Count the number of bytes available in the fifo without
880                  * crossing the wrap around. Make sure to not fill it completely,
881                  * because that would make wp == rp and that's the empty condition. */
882                 uint32_t thisrun_bytes;
883                 if (rp > wp)
884                         thisrun_bytes = rp - wp - block_size;
885                 else if (rp > fifo_start_addr)
886                         thisrun_bytes = fifo_end_addr - wp;
887                 else
888                         thisrun_bytes = fifo_end_addr - wp - block_size;
889
890                 if (thisrun_bytes == 0) {
891                         /* Throttle polling a bit if transfer is (much) faster than flash
892                          * programming. The exact delay shouldn't matter as long as it's
893                          * less than buffer size / flash speed. This is very unlikely to
894                          * run when using high latency connections such as USB. */
895                         alive_sleep(10);
896                         continue;
897                 }
898
899                 /* Limit to the amount of data we actually want to write */
900                 if (thisrun_bytes > count * block_size)
901                         thisrun_bytes = count * block_size;
902
903                 /* Write data to fifo */
904                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
905                 if (retval != ERROR_OK)
906                         break;
907
908                 /* Update counters and wrap write pointer */
909                 buffer += thisrun_bytes;
910                 count -= thisrun_bytes / block_size;
911                 wp += thisrun_bytes;
912                 if (wp >= fifo_end_addr)
913                         wp = fifo_start_addr;
914
915                 /* Store updated write pointer to target */
916                 retval = target_write_u32(target, wp_addr, wp);
917                 if (retval != ERROR_OK)
918                         break;
919         }
920
921         if (retval != ERROR_OK) {
922                 /* abort flash write algorithm on target */
923                 target_write_u32(target, wp_addr, 0);
924         }
925
926         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
927                         num_reg_params, reg_params,
928                         exit_point,
929                         10000,
930                         arch_info);
931
932         if (retval2 != ERROR_OK) {
933                 LOG_ERROR("error waiting for target flash write algorithm");
934                 retval = retval2;
935         }
936
937         return retval;
938 }
939
940 int target_read_memory(struct target *target,
941                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
942 {
943         return target->type->read_memory(target, address, size, count, buffer);
944 }
945
946 static int target_read_phys_memory(struct target *target,
947                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
948 {
949         return target->type->read_phys_memory(target, address, size, count, buffer);
950 }
951
952 int target_write_memory(struct target *target,
953                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
954 {
955         return target->type->write_memory(target, address, size, count, buffer);
956 }
957
958 static int target_write_phys_memory(struct target *target,
959                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
960 {
961         return target->type->write_phys_memory(target, address, size, count, buffer);
962 }
963
964 int target_bulk_write_memory(struct target *target,
965                 uint32_t address, uint32_t count, const uint8_t *buffer)
966 {
967         return target->type->bulk_write_memory(target, address, count, buffer);
968 }
969
970 int target_add_breakpoint(struct target *target,
971                 struct breakpoint *breakpoint)
972 {
973         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
974                 LOG_WARNING("target %s is not halted", target->cmd_name);
975                 return ERROR_TARGET_NOT_HALTED;
976         }
977         return target->type->add_breakpoint(target, breakpoint);
978 }
979
980 int target_add_context_breakpoint(struct target *target,
981                 struct breakpoint *breakpoint)
982 {
983         if (target->state != TARGET_HALTED) {
984                 LOG_WARNING("target %s is not halted", target->cmd_name);
985                 return ERROR_TARGET_NOT_HALTED;
986         }
987         return target->type->add_context_breakpoint(target, breakpoint);
988 }
989
990 int target_add_hybrid_breakpoint(struct target *target,
991                 struct breakpoint *breakpoint)
992 {
993         if (target->state != TARGET_HALTED) {
994                 LOG_WARNING("target %s is not halted", target->cmd_name);
995                 return ERROR_TARGET_NOT_HALTED;
996         }
997         return target->type->add_hybrid_breakpoint(target, breakpoint);
998 }
999
1000 int target_remove_breakpoint(struct target *target,
1001                 struct breakpoint *breakpoint)
1002 {
1003         return target->type->remove_breakpoint(target, breakpoint);
1004 }
1005
1006 int target_add_watchpoint(struct target *target,
1007                 struct watchpoint *watchpoint)
1008 {
1009         if (target->state != TARGET_HALTED) {
1010                 LOG_WARNING("target %s is not halted", target->cmd_name);
1011                 return ERROR_TARGET_NOT_HALTED;
1012         }
1013         return target->type->add_watchpoint(target, watchpoint);
1014 }
1015 int target_remove_watchpoint(struct target *target,
1016                 struct watchpoint *watchpoint)
1017 {
1018         return target->type->remove_watchpoint(target, watchpoint);
1019 }
1020
1021 int target_get_gdb_reg_list(struct target *target,
1022                 struct reg **reg_list[], int *reg_list_size)
1023 {
1024         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
1025 }
1026 int target_step(struct target *target,
1027                 int current, uint32_t address, int handle_breakpoints)
1028 {
1029         return target->type->step(target, current, address, handle_breakpoints);
1030 }
1031
1032 /**
1033  * Reset the @c examined flag for the given target.
1034  * Pure paranoia -- targets are zeroed on allocation.
1035  */
1036 static void target_reset_examined(struct target *target)
1037 {
1038         target->examined = false;
1039 }
1040
1041 static int err_read_phys_memory(struct target *target, uint32_t address,
1042                 uint32_t size, uint32_t count, uint8_t *buffer)
1043 {
1044         LOG_ERROR("Not implemented: %s", __func__);
1045         return ERROR_FAIL;
1046 }
1047
1048 static int err_write_phys_memory(struct target *target, uint32_t address,
1049                 uint32_t size, uint32_t count, const uint8_t *buffer)
1050 {
1051         LOG_ERROR("Not implemented: %s", __func__);
1052         return ERROR_FAIL;
1053 }
1054
1055 static int handle_target(void *priv);
1056
1057 static int target_init_one(struct command_context *cmd_ctx,
1058                 struct target *target)
1059 {
1060         target_reset_examined(target);
1061
1062         struct target_type *type = target->type;
1063         if (type->examine == NULL)
1064                 type->examine = default_examine;
1065
1066         if (type->check_reset == NULL)
1067                 type->check_reset = default_check_reset;
1068
1069         assert(type->init_target != NULL);
1070
1071         int retval = type->init_target(cmd_ctx, target);
1072         if (ERROR_OK != retval) {
1073                 LOG_ERROR("target '%s' init failed", target_name(target));
1074                 return retval;
1075         }
1076
1077         /**
1078          * @todo get rid of those *memory_imp() methods, now that all
1079          * callers are using target_*_memory() accessors ... and make
1080          * sure the "physical" paths handle the same issues.
1081          */
1082         /* a non-invasive way(in terms of patches) to add some code that
1083          * runs before the type->write/read_memory implementation
1084          */
1085         type->write_memory_imp = target->type->write_memory;
1086         type->write_memory = target_write_memory_imp;
1087
1088         type->read_memory_imp = target->type->read_memory;
1089         type->read_memory = target_read_memory_imp;
1090
1091         type->soft_reset_halt_imp = target->type->soft_reset_halt;
1092         type->soft_reset_halt = target_soft_reset_halt_imp;
1093
1094         /* Sanity-check MMU support ... stub in what we must, to help
1095          * implement it in stages, but warn if we need to do so.
1096          */
1097         if (type->mmu) {
1098                 if (type->write_phys_memory == NULL) {
1099                         LOG_ERROR("type '%s' is missing write_phys_memory",
1100                                         type->name);
1101                         type->write_phys_memory = err_write_phys_memory;
1102                 }
1103                 if (type->read_phys_memory == NULL) {
1104                         LOG_ERROR("type '%s' is missing read_phys_memory",
1105                                         type->name);
1106                         type->read_phys_memory = err_read_phys_memory;
1107                 }
1108                 if (type->virt2phys == NULL) {
1109                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1110                         type->virt2phys = identity_virt2phys;
1111                 }
1112         } else {
1113                 /* Make sure no-MMU targets all behave the same:  make no
1114                  * distinction between physical and virtual addresses, and
1115                  * ensure that virt2phys() is always an identity mapping.
1116                  */
1117                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1118                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1119
1120                 type->mmu = no_mmu;
1121                 type->write_phys_memory = type->write_memory;
1122                 type->read_phys_memory = type->read_memory;
1123                 type->virt2phys = identity_virt2phys;
1124         }
1125
1126         if (target->type->read_buffer == NULL)
1127                 target->type->read_buffer = target_read_buffer_default;
1128
1129         if (target->type->write_buffer == NULL)
1130                 target->type->write_buffer = target_write_buffer_default;
1131
1132         return ERROR_OK;
1133 }
1134
1135 static int target_init(struct command_context *cmd_ctx)
1136 {
1137         struct target *target;
1138         int retval;
1139
1140         for (target = all_targets; target; target = target->next) {
1141                 retval = target_init_one(cmd_ctx, target);
1142                 if (ERROR_OK != retval)
1143                         return retval;
1144         }
1145
1146         if (!all_targets)
1147                 return ERROR_OK;
1148
1149         retval = target_register_user_commands(cmd_ctx);
1150         if (ERROR_OK != retval)
1151                 return retval;
1152
1153         retval = target_register_timer_callback(&handle_target,
1154                         polling_interval, 1, cmd_ctx->interp);
1155         if (ERROR_OK != retval)
1156                 return retval;
1157
1158         return ERROR_OK;
1159 }
1160
1161 COMMAND_HANDLER(handle_target_init_command)
1162 {
1163         int retval;
1164
1165         if (CMD_ARGC != 0)
1166                 return ERROR_COMMAND_SYNTAX_ERROR;
1167
1168         static bool target_initialized;
1169         if (target_initialized) {
1170                 LOG_INFO("'target init' has already been called");
1171                 return ERROR_OK;
1172         }
1173         target_initialized = true;
1174
1175         retval = command_run_line(CMD_CTX, "init_targets");
1176         if (ERROR_OK != retval)
1177                 return retval;
1178
1179         retval = command_run_line(CMD_CTX, "init_board");
1180         if (ERROR_OK != retval)
1181                 return retval;
1182
1183         LOG_DEBUG("Initializing targets...");
1184         return target_init(CMD_CTX);
1185 }
1186
1187 int target_register_event_callback(int (*callback)(struct target *target,
1188                 enum target_event event, void *priv), void *priv)
1189 {
1190         struct target_event_callback **callbacks_p = &target_event_callbacks;
1191
1192         if (callback == NULL)
1193                 return ERROR_COMMAND_SYNTAX_ERROR;
1194
1195         if (*callbacks_p) {
1196                 while ((*callbacks_p)->next)
1197                         callbacks_p = &((*callbacks_p)->next);
1198                 callbacks_p = &((*callbacks_p)->next);
1199         }
1200
1201         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1202         (*callbacks_p)->callback = callback;
1203         (*callbacks_p)->priv = priv;
1204         (*callbacks_p)->next = NULL;
1205
1206         return ERROR_OK;
1207 }
1208
1209 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1210 {
1211         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1212         struct timeval now;
1213
1214         if (callback == NULL)
1215                 return ERROR_COMMAND_SYNTAX_ERROR;
1216
1217         if (*callbacks_p) {
1218                 while ((*callbacks_p)->next)
1219                         callbacks_p = &((*callbacks_p)->next);
1220                 callbacks_p = &((*callbacks_p)->next);
1221         }
1222
1223         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1224         (*callbacks_p)->callback = callback;
1225         (*callbacks_p)->periodic = periodic;
1226         (*callbacks_p)->time_ms = time_ms;
1227
1228         gettimeofday(&now, NULL);
1229         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1230         time_ms -= (time_ms % 1000);
1231         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1232         if ((*callbacks_p)->when.tv_usec > 1000000) {
1233                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1234                 (*callbacks_p)->when.tv_sec += 1;
1235         }
1236
1237         (*callbacks_p)->priv = priv;
1238         (*callbacks_p)->next = NULL;
1239
1240         return ERROR_OK;
1241 }
1242
1243 int target_unregister_event_callback(int (*callback)(struct target *target,
1244                 enum target_event event, void *priv), void *priv)
1245 {
1246         struct target_event_callback **p = &target_event_callbacks;
1247         struct target_event_callback *c = target_event_callbacks;
1248
1249         if (callback == NULL)
1250                 return ERROR_COMMAND_SYNTAX_ERROR;
1251
1252         while (c) {
1253                 struct target_event_callback *next = c->next;
1254                 if ((c->callback == callback) && (c->priv == priv)) {
1255                         *p = next;
1256                         free(c);
1257                         return ERROR_OK;
1258                 } else
1259                         p = &(c->next);
1260                 c = next;
1261         }
1262
1263         return ERROR_OK;
1264 }
1265
1266 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1267 {
1268         struct target_timer_callback **p = &target_timer_callbacks;
1269         struct target_timer_callback *c = target_timer_callbacks;
1270
1271         if (callback == NULL)
1272                 return ERROR_COMMAND_SYNTAX_ERROR;
1273
1274         while (c) {
1275                 struct target_timer_callback *next = c->next;
1276                 if ((c->callback == callback) && (c->priv == priv)) {
1277                         *p = next;
1278                         free(c);
1279                         return ERROR_OK;
1280                 } else
1281                         p = &(c->next);
1282                 c = next;
1283         }
1284
1285         return ERROR_OK;
1286 }
1287
1288 int target_call_event_callbacks(struct target *target, enum target_event event)
1289 {
1290         struct target_event_callback *callback = target_event_callbacks;
1291         struct target_event_callback *next_callback;
1292
1293         if (event == TARGET_EVENT_HALTED) {
1294                 /* execute early halted first */
1295                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1296         }
1297
1298         LOG_DEBUG("target event %i (%s)", event,
1299                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1300
1301         target_handle_event(target, event);
1302
1303         while (callback) {
1304                 next_callback = callback->next;
1305                 callback->callback(target, event, callback->priv);
1306                 callback = next_callback;
1307         }
1308
1309         return ERROR_OK;
1310 }
1311
1312 static int target_timer_callback_periodic_restart(
1313                 struct target_timer_callback *cb, struct timeval *now)
1314 {
1315         int time_ms = cb->time_ms;
1316         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1317         time_ms -= (time_ms % 1000);
1318         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1319         if (cb->when.tv_usec > 1000000) {
1320                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1321                 cb->when.tv_sec += 1;
1322         }
1323         return ERROR_OK;
1324 }
1325
1326 static int target_call_timer_callback(struct target_timer_callback *cb,
1327                 struct timeval *now)
1328 {
1329         cb->callback(cb->priv);
1330
1331         if (cb->periodic)
1332                 return target_timer_callback_periodic_restart(cb, now);
1333
1334         return target_unregister_timer_callback(cb->callback, cb->priv);
1335 }
1336
1337 static int target_call_timer_callbacks_check_time(int checktime)
1338 {
1339         keep_alive();
1340
1341         struct timeval now;
1342         gettimeofday(&now, NULL);
1343
1344         struct target_timer_callback *callback = target_timer_callbacks;
1345         while (callback) {
1346                 /* cleaning up may unregister and free this callback */
1347                 struct target_timer_callback *next_callback = callback->next;
1348
1349                 bool call_it = callback->callback &&
1350                         ((!checktime && callback->periodic) ||
1351                           now.tv_sec > callback->when.tv_sec ||
1352                          (now.tv_sec == callback->when.tv_sec &&
1353                           now.tv_usec >= callback->when.tv_usec));
1354
1355                 if (call_it) {
1356                         int retval = target_call_timer_callback(callback, &now);
1357                         if (retval != ERROR_OK)
1358                                 return retval;
1359                 }
1360
1361                 callback = next_callback;
1362         }
1363
1364         return ERROR_OK;
1365 }
1366
1367 int target_call_timer_callbacks(void)
1368 {
1369         return target_call_timer_callbacks_check_time(1);
1370 }
1371
1372 /* invoke periodic callbacks immediately */
1373 int target_call_timer_callbacks_now(void)
1374 {
1375         return target_call_timer_callbacks_check_time(0);
1376 }
1377
1378 /* Prints the working area layout for debug purposes */
1379 static void print_wa_layout(struct target *target)
1380 {
1381         struct working_area *c = target->working_areas;
1382
1383         while (c) {
1384                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1385                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1386                         c->address, c->address + c->size - 1, c->size);
1387                 c = c->next;
1388         }
1389 }
1390
1391 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1392 static void target_split_working_area(struct working_area *area, uint32_t size)
1393 {
1394         assert(area->free); /* Shouldn't split an allocated area */
1395         assert(size <= area->size); /* Caller should guarantee this */
1396
1397         /* Split only if not already the right size */
1398         if (size < area->size) {
1399                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1400
1401                 if (new_wa == NULL)
1402                         return;
1403
1404                 new_wa->next = area->next;
1405                 new_wa->size = area->size - size;
1406                 new_wa->address = area->address + size;
1407                 new_wa->backup = NULL;
1408                 new_wa->free = true;
1409
1410                 area->next = new_wa;
1411                 area->size = size;
1412
1413                 /* If backup memory was allocated to this area, it has the wrong size
1414                  * now so free it and it will be reallocated if/when needed */
1415                 if (area->backup) {
1416                         free(area->backup);
1417                         area->backup = NULL;
1418                 }
1419         }
1420 }
1421
1422 /* Merge all adjacent free areas into one */
1423 static void target_merge_working_areas(struct target *target)
1424 {
1425         struct working_area *c = target->working_areas;
1426
1427         while (c && c->next) {
1428                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1429
1430                 /* Find two adjacent free areas */
1431                 if (c->free && c->next->free) {
1432                         /* Merge the last into the first */
1433                         c->size += c->next->size;
1434
1435                         /* Remove the last */
1436                         struct working_area *to_be_freed = c->next;
1437                         c->next = c->next->next;
1438                         if (to_be_freed->backup)
1439                                 free(to_be_freed->backup);
1440                         free(to_be_freed);
1441
1442                         /* If backup memory was allocated to the remaining area, it's has
1443                          * the wrong size now */
1444                         if (c->backup) {
1445                                 free(c->backup);
1446                                 c->backup = NULL;
1447                         }
1448                 } else {
1449                         c = c->next;
1450                 }
1451         }
1452 }
1453
1454 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1455 {
1456         /* Reevaluate working area address based on MMU state*/
1457         if (target->working_areas == NULL) {
1458                 int retval;
1459                 int enabled;
1460
1461                 retval = target->type->mmu(target, &enabled);
1462                 if (retval != ERROR_OK)
1463                         return retval;
1464
1465                 if (!enabled) {
1466                         if (target->working_area_phys_spec) {
1467                                 LOG_DEBUG("MMU disabled, using physical "
1468                                         "address for working memory 0x%08"PRIx32,
1469                                         target->working_area_phys);
1470                                 target->working_area = target->working_area_phys;
1471                         } else {
1472                                 LOG_ERROR("No working memory available. "
1473                                         "Specify -work-area-phys to target.");
1474                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1475                         }
1476                 } else {
1477                         if (target->working_area_virt_spec) {
1478                                 LOG_DEBUG("MMU enabled, using virtual "
1479                                         "address for working memory 0x%08"PRIx32,
1480                                         target->working_area_virt);
1481                                 target->working_area = target->working_area_virt;
1482                         } else {
1483                                 LOG_ERROR("No working memory available. "
1484                                         "Specify -work-area-virt to target.");
1485                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1486                         }
1487                 }
1488
1489                 /* Set up initial working area on first call */
1490                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1491                 if (new_wa) {
1492                         new_wa->next = NULL;
1493                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1494                         new_wa->address = target->working_area;
1495                         new_wa->backup = NULL;
1496                         new_wa->free = true;
1497                 }
1498
1499                 target->working_areas = new_wa;
1500         }
1501
1502         /* only allocate multiples of 4 byte */
1503         if (size % 4)
1504                 size = (size + 3) & (~3UL);
1505
1506         struct working_area *c = target->working_areas;
1507
1508         /* Find the first large enough working area */
1509         while (c) {
1510                 if (c->free && c->size >= size)
1511                         break;
1512                 c = c->next;
1513         }
1514
1515         if (c == NULL)
1516                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1517
1518         /* Split the working area into the requested size */
1519         target_split_working_area(c, size);
1520
1521         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1522
1523         if (target->backup_working_area) {
1524                 if (c->backup == NULL) {
1525                         c->backup = malloc(c->size);
1526                         if (c->backup == NULL)
1527                                 return ERROR_FAIL;
1528                 }
1529
1530                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1531                 if (retval != ERROR_OK)
1532                         return retval;
1533         }
1534
1535         /* mark as used, and return the new (reused) area */
1536         c->free = false;
1537         *area = c;
1538
1539         print_wa_layout(target);
1540
1541         return ERROR_OK;
1542 }
1543
1544 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1545 {
1546         int retval;
1547
1548         retval = target_alloc_working_area_try(target, size, area);
1549         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1550                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1551         return retval;
1552
1553 }
1554
1555 static int target_restore_working_area(struct target *target, struct working_area *area)
1556 {
1557         int retval = ERROR_OK;
1558
1559         if (target->backup_working_area && area->backup != NULL) {
1560                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1561                 if (retval != ERROR_OK)
1562                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1563                                         area->size, area->address);
1564         }
1565
1566         return retval;
1567 }
1568
1569 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1570 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1571 {
1572         int retval = ERROR_OK;
1573
1574         if (area->free)
1575                 return retval;
1576
1577         if (restore) {
1578                 retval = target_restore_working_area(target, area);
1579                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1580                 if (retval != ERROR_OK)
1581                         return retval;
1582         }
1583
1584         area->free = true;
1585
1586         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1587                         area->size, area->address);
1588
1589         target_merge_working_areas(target);
1590
1591         print_wa_layout(target);
1592
1593         return retval;
1594 }
1595
1596 int target_free_working_area(struct target *target, struct working_area *area)
1597 {
1598         return target_free_working_area_restore(target, area, 1);
1599 }
1600
1601 /* free resources and restore memory, if restoring memory fails,
1602  * free up resources anyway
1603  */
1604 static void target_free_all_working_areas_restore(struct target *target, int restore)
1605 {
1606         struct working_area *c = target->working_areas;
1607
1608         LOG_DEBUG("freeing all working areas");
1609
1610         /* Loop through all areas, restoring the allocated ones and marking them as free */
1611         while (c) {
1612                 if (!c->free) {
1613                         if (restore)
1614                                 target_restore_working_area(target, c);
1615                         c->free = true;
1616                 }
1617                 c = c->next;
1618         }
1619
1620         /* Run a merge pass to combine all areas into one */
1621         target_merge_working_areas(target);
1622
1623         print_wa_layout(target);
1624 }
1625
1626 void target_free_all_working_areas(struct target *target)
1627 {
1628         target_free_all_working_areas_restore(target, 1);
1629 }
1630
1631 /* Find the largest number of bytes that can be allocated */
1632 uint32_t target_get_working_area_avail(struct target *target)
1633 {
1634         struct working_area *c = target->working_areas;
1635         uint32_t max_size = 0;
1636
1637         if (c == NULL)
1638                 return target->working_area_size;
1639
1640         while (c) {
1641                 if (c->free && max_size < c->size)
1642                         max_size = c->size;
1643
1644                 c = c->next;
1645         }
1646
1647         return max_size;
1648 }
1649
1650 int target_arch_state(struct target *target)
1651 {
1652         int retval;
1653         if (target == NULL) {
1654                 LOG_USER("No target has been configured");
1655                 return ERROR_OK;
1656         }
1657
1658         LOG_USER("target state: %s", target_state_name(target));
1659
1660         if (target->state != TARGET_HALTED)
1661                 return ERROR_OK;
1662
1663         retval = target->type->arch_state(target);
1664         return retval;
1665 }
1666
1667 /* Single aligned words are guaranteed to use 16 or 32 bit access
1668  * mode respectively, otherwise data is handled as quickly as
1669  * possible
1670  */
1671 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1672 {
1673         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1674                         (int)size, (unsigned)address);
1675
1676         if (!target_was_examined(target)) {
1677                 LOG_ERROR("Target not examined yet");
1678                 return ERROR_FAIL;
1679         }
1680
1681         if (size == 0)
1682                 return ERROR_OK;
1683
1684         if ((address + size - 1) < address) {
1685                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1686                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1687                                   (unsigned)address,
1688                                   (unsigned)size);
1689                 return ERROR_FAIL;
1690         }
1691
1692         return target->type->write_buffer(target, address, size, buffer);
1693 }
1694
1695 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1696 {
1697         int retval = ERROR_OK;
1698
1699         if (((address % 2) == 0) && (size == 2))
1700                 return target_write_memory(target, address, 2, 1, buffer);
1701
1702         /* handle unaligned head bytes */
1703         if (address % 4) {
1704                 uint32_t unaligned = 4 - (address % 4);
1705
1706                 if (unaligned > size)
1707                         unaligned = size;
1708
1709                 retval = target_write_memory(target, address, 1, unaligned, buffer);
1710                 if (retval != ERROR_OK)
1711                         return retval;
1712
1713                 buffer += unaligned;
1714                 address += unaligned;
1715                 size -= unaligned;
1716         }
1717
1718         /* handle aligned words */
1719         if (size >= 4) {
1720                 int aligned = size - (size % 4);
1721
1722                 /* use bulk writes above a certain limit. This may have to be changed */
1723                 if (aligned > 128) {
1724                         retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1725                         if (retval != ERROR_OK)
1726                                 return retval;
1727                 } else {
1728                         retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1729                         if (retval != ERROR_OK)
1730                                 return retval;
1731                 }
1732
1733                 buffer += aligned;
1734                 address += aligned;
1735                 size -= aligned;
1736         }
1737
1738         /* handle tail writes of less than 4 bytes */
1739         if (size > 0) {
1740                 retval = target_write_memory(target, address, 1, size, buffer);
1741                 if (retval != ERROR_OK)
1742                         return retval;
1743         }
1744
1745         return retval;
1746 }
1747
1748 /* Single aligned words are guaranteed to use 16 or 32 bit access
1749  * mode respectively, otherwise data is handled as quickly as
1750  * possible
1751  */
1752 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1753 {
1754         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1755                           (int)size, (unsigned)address);
1756
1757         if (!target_was_examined(target)) {
1758                 LOG_ERROR("Target not examined yet");
1759                 return ERROR_FAIL;
1760         }
1761
1762         if (size == 0)
1763                 return ERROR_OK;
1764
1765         if ((address + size - 1) < address) {
1766                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1767                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1768                                   address,
1769                                   size);
1770                 return ERROR_FAIL;
1771         }
1772
1773         return target->type->read_buffer(target, address, size, buffer);
1774 }
1775
1776 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1777 {
1778         int retval = ERROR_OK;
1779
1780         if (((address % 2) == 0) && (size == 2))
1781                 return target_read_memory(target, address, 2, 1, buffer);
1782
1783         /* handle unaligned head bytes */
1784         if (address % 4) {
1785                 uint32_t unaligned = 4 - (address % 4);
1786
1787                 if (unaligned > size)
1788                         unaligned = size;
1789
1790                 retval = target_read_memory(target, address, 1, unaligned, buffer);
1791                 if (retval != ERROR_OK)
1792                         return retval;
1793
1794                 buffer += unaligned;
1795                 address += unaligned;
1796                 size -= unaligned;
1797         }
1798
1799         /* handle aligned words */
1800         if (size >= 4) {
1801                 int aligned = size - (size % 4);
1802
1803                 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1804                 if (retval != ERROR_OK)
1805                         return retval;
1806
1807                 buffer += aligned;
1808                 address += aligned;
1809                 size -= aligned;
1810         }
1811
1812         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1813         if (size        >= 2) {
1814                 int aligned = size - (size % 2);
1815                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1816                 if (retval != ERROR_OK)
1817                         return retval;
1818
1819                 buffer += aligned;
1820                 address += aligned;
1821                 size -= aligned;
1822         }
1823         /* handle tail writes of less than 4 bytes */
1824         if (size > 0) {
1825                 retval = target_read_memory(target, address, 1, size, buffer);
1826                 if (retval != ERROR_OK)
1827                         return retval;
1828         }
1829
1830         return ERROR_OK;
1831 }
1832
1833 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1834 {
1835         uint8_t *buffer;
1836         int retval;
1837         uint32_t i;
1838         uint32_t checksum = 0;
1839         if (!target_was_examined(target)) {
1840                 LOG_ERROR("Target not examined yet");
1841                 return ERROR_FAIL;
1842         }
1843
1844         retval = target->type->checksum_memory(target, address, size, &checksum);
1845         if (retval != ERROR_OK) {
1846                 buffer = malloc(size);
1847                 if (buffer == NULL) {
1848                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1849                         return ERROR_COMMAND_SYNTAX_ERROR;
1850                 }
1851                 retval = target_read_buffer(target, address, size, buffer);
1852                 if (retval != ERROR_OK) {
1853                         free(buffer);
1854                         return retval;
1855                 }
1856
1857                 /* convert to target endianness */
1858                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1859                         uint32_t target_data;
1860                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1861                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1862                 }
1863
1864                 retval = image_calculate_checksum(buffer, size, &checksum);
1865                 free(buffer);
1866         }
1867
1868         *crc = checksum;
1869
1870         return retval;
1871 }
1872
1873 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1874 {
1875         int retval;
1876         if (!target_was_examined(target)) {
1877                 LOG_ERROR("Target not examined yet");
1878                 return ERROR_FAIL;
1879         }
1880
1881         if (target->type->blank_check_memory == 0)
1882                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1883
1884         retval = target->type->blank_check_memory(target, address, size, blank);
1885
1886         return retval;
1887 }
1888
1889 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1890 {
1891         uint8_t value_buf[4];
1892         if (!target_was_examined(target)) {
1893                 LOG_ERROR("Target not examined yet");
1894                 return ERROR_FAIL;
1895         }
1896
1897         int retval = target_read_memory(target, address, 4, 1, value_buf);
1898
1899         if (retval == ERROR_OK) {
1900                 *value = target_buffer_get_u32(target, value_buf);
1901                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1902                                   address,
1903                                   *value);
1904         } else {
1905                 *value = 0x0;
1906                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1907                                   address);
1908         }
1909
1910         return retval;
1911 }
1912
1913 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1914 {
1915         uint8_t value_buf[2];
1916         if (!target_was_examined(target)) {
1917                 LOG_ERROR("Target not examined yet");
1918                 return ERROR_FAIL;
1919         }
1920
1921         int retval = target_read_memory(target, address, 2, 1, value_buf);
1922
1923         if (retval == ERROR_OK) {
1924                 *value = target_buffer_get_u16(target, value_buf);
1925                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1926                                   address,
1927                                   *value);
1928         } else {
1929                 *value = 0x0;
1930                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1931                                   address);
1932         }
1933
1934         return retval;
1935 }
1936
1937 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1938 {
1939         int retval = target_read_memory(target, address, 1, 1, value);
1940         if (!target_was_examined(target)) {
1941                 LOG_ERROR("Target not examined yet");
1942                 return ERROR_FAIL;
1943         }
1944
1945         if (retval == ERROR_OK) {
1946                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1947                                   address,
1948                                   *value);
1949         } else {
1950                 *value = 0x0;
1951                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1952                                   address);
1953         }
1954
1955         return retval;
1956 }
1957
1958 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1959 {
1960         int retval;
1961         uint8_t value_buf[4];
1962         if (!target_was_examined(target)) {
1963                 LOG_ERROR("Target not examined yet");
1964                 return ERROR_FAIL;
1965         }
1966
1967         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1968                           address,
1969                           value);
1970
1971         target_buffer_set_u32(target, value_buf, value);
1972         retval = target_write_memory(target, address, 4, 1, value_buf);
1973         if (retval != ERROR_OK)
1974                 LOG_DEBUG("failed: %i", retval);
1975
1976         return retval;
1977 }
1978
1979 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1980 {
1981         int retval;
1982         uint8_t value_buf[2];
1983         if (!target_was_examined(target)) {
1984                 LOG_ERROR("Target not examined yet");
1985                 return ERROR_FAIL;
1986         }
1987
1988         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1989                           address,
1990                           value);
1991
1992         target_buffer_set_u16(target, value_buf, value);
1993         retval = target_write_memory(target, address, 2, 1, value_buf);
1994         if (retval != ERROR_OK)
1995                 LOG_DEBUG("failed: %i", retval);
1996
1997         return retval;
1998 }
1999
2000 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2001 {
2002         int retval;
2003         if (!target_was_examined(target)) {
2004                 LOG_ERROR("Target not examined yet");
2005                 return ERROR_FAIL;
2006         }
2007
2008         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2009                           address, value);
2010
2011         retval = target_write_memory(target, address, 1, 1, &value);
2012         if (retval != ERROR_OK)
2013                 LOG_DEBUG("failed: %i", retval);
2014
2015         return retval;
2016 }
2017
2018 static int find_target(struct command_context *cmd_ctx, const char *name)
2019 {
2020         struct target *target = get_target(name);
2021         if (target == NULL) {
2022                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2023                 return ERROR_FAIL;
2024         }
2025         if (!target->tap->enabled) {
2026                 LOG_USER("Target: TAP %s is disabled, "
2027                          "can't be the current target\n",
2028                          target->tap->dotted_name);
2029                 return ERROR_FAIL;
2030         }
2031
2032         cmd_ctx->current_target = target->target_number;
2033         return ERROR_OK;
2034 }
2035
2036
2037 COMMAND_HANDLER(handle_targets_command)
2038 {
2039         int retval = ERROR_OK;
2040         if (CMD_ARGC == 1) {
2041                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2042                 if (retval == ERROR_OK) {
2043                         /* we're done! */
2044                         return retval;
2045                 }
2046         }
2047
2048         struct target *target = all_targets;
2049         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2050         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2051         while (target) {
2052                 const char *state;
2053                 char marker = ' ';
2054
2055                 if (target->tap->enabled)
2056                         state = target_state_name(target);
2057                 else
2058                         state = "tap-disabled";
2059
2060                 if (CMD_CTX->current_target == target->target_number)
2061                         marker = '*';
2062
2063                 /* keep columns lined up to match the headers above */
2064                 command_print(CMD_CTX,
2065                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2066                                 target->target_number,
2067                                 marker,
2068                                 target_name(target),
2069                                 target_type_name(target),
2070                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2071                                         target->endianness)->name,
2072                                 target->tap->dotted_name,
2073                                 state);
2074                 target = target->next;
2075         }
2076
2077         return retval;
2078 }
2079
2080 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2081
2082 static int powerDropout;
2083 static int srstAsserted;
2084
2085 static int runPowerRestore;
2086 static int runPowerDropout;
2087 static int runSrstAsserted;
2088 static int runSrstDeasserted;
2089
2090 static int sense_handler(void)
2091 {
2092         static int prevSrstAsserted;
2093         static int prevPowerdropout;
2094
2095         int retval = jtag_power_dropout(&powerDropout);
2096         if (retval != ERROR_OK)
2097                 return retval;
2098
2099         int powerRestored;
2100         powerRestored = prevPowerdropout && !powerDropout;
2101         if (powerRestored)
2102                 runPowerRestore = 1;
2103
2104         long long current = timeval_ms();
2105         static long long lastPower;
2106         int waitMore = lastPower + 2000 > current;
2107         if (powerDropout && !waitMore) {
2108                 runPowerDropout = 1;
2109                 lastPower = current;
2110         }
2111
2112         retval = jtag_srst_asserted(&srstAsserted);
2113         if (retval != ERROR_OK)
2114                 return retval;
2115
2116         int srstDeasserted;
2117         srstDeasserted = prevSrstAsserted && !srstAsserted;
2118
2119         static long long lastSrst;
2120         waitMore = lastSrst + 2000 > current;
2121         if (srstDeasserted && !waitMore) {
2122                 runSrstDeasserted = 1;
2123                 lastSrst = current;
2124         }
2125
2126         if (!prevSrstAsserted && srstAsserted)
2127                 runSrstAsserted = 1;
2128
2129         prevSrstAsserted = srstAsserted;
2130         prevPowerdropout = powerDropout;
2131
2132         if (srstDeasserted || powerRestored) {
2133                 /* Other than logging the event we can't do anything here.
2134                  * Issuing a reset is a particularly bad idea as we might
2135                  * be inside a reset already.
2136                  */
2137         }
2138
2139         return ERROR_OK;
2140 }
2141
2142 static int backoff_times;
2143 static int backoff_count;
2144
2145 /* process target state changes */
2146 static int handle_target(void *priv)
2147 {
2148         Jim_Interp *interp = (Jim_Interp *)priv;
2149         int retval = ERROR_OK;
2150
2151         if (!is_jtag_poll_safe()) {
2152                 /* polling is disabled currently */
2153                 return ERROR_OK;
2154         }
2155
2156         /* we do not want to recurse here... */
2157         static int recursive;
2158         if (!recursive) {
2159                 recursive = 1;
2160                 sense_handler();
2161                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2162                  * We need to avoid an infinite loop/recursion here and we do that by
2163                  * clearing the flags after running these events.
2164                  */
2165                 int did_something = 0;
2166                 if (runSrstAsserted) {
2167                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2168                         Jim_Eval(interp, "srst_asserted");
2169                         did_something = 1;
2170                 }
2171                 if (runSrstDeasserted) {
2172                         Jim_Eval(interp, "srst_deasserted");
2173                         did_something = 1;
2174                 }
2175                 if (runPowerDropout) {
2176                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2177                         Jim_Eval(interp, "power_dropout");
2178                         did_something = 1;
2179                 }
2180                 if (runPowerRestore) {
2181                         Jim_Eval(interp, "power_restore");
2182                         did_something = 1;
2183                 }
2184
2185                 if (did_something) {
2186                         /* clear detect flags */
2187                         sense_handler();
2188                 }
2189
2190                 /* clear action flags */
2191
2192                 runSrstAsserted = 0;
2193                 runSrstDeasserted = 0;
2194                 runPowerRestore = 0;
2195                 runPowerDropout = 0;
2196
2197                 recursive = 0;
2198         }
2199
2200         if (backoff_times > backoff_count) {
2201                 /* do not poll this time as we failed previously */
2202                 backoff_count++;
2203                 return ERROR_OK;
2204         }
2205         backoff_count = 0;
2206
2207         /* Poll targets for state changes unless that's globally disabled.
2208          * Skip targets that are currently disabled.
2209          */
2210         for (struct target *target = all_targets;
2211                         is_jtag_poll_safe() && target;
2212                         target = target->next) {
2213                 if (!target->tap->enabled)
2214                         continue;
2215
2216                 /* only poll target if we've got power and srst isn't asserted */
2217                 if (!powerDropout && !srstAsserted) {
2218                         /* polling may fail silently until the target has been examined */
2219                         retval = target_poll(target);
2220                         if (retval != ERROR_OK) {
2221                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2222                                 if (backoff_times * polling_interval < 5000) {
2223                                         backoff_times *= 2;
2224                                         backoff_times++;
2225                                 }
2226                                 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms",
2227                                                 backoff_times * polling_interval);
2228
2229                                 /* Tell GDB to halt the debugger. This allows the user to
2230                                  * run monitor commands to handle the situation.
2231                                  */
2232                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2233                                 return retval;
2234                         }
2235                         /* Since we succeeded, we reset backoff count */
2236                         if (backoff_times > 0)
2237                                 LOG_USER("Polling succeeded again");
2238                         backoff_times = 0;
2239                 }
2240         }
2241
2242         return retval;
2243 }
2244
2245 COMMAND_HANDLER(handle_reg_command)
2246 {
2247         struct target *target;
2248         struct reg *reg = NULL;
2249         unsigned count = 0;
2250         char *value;
2251
2252         LOG_DEBUG("-");
2253
2254         target = get_current_target(CMD_CTX);
2255
2256         /* list all available registers for the current target */
2257         if (CMD_ARGC == 0) {
2258                 struct reg_cache *cache = target->reg_cache;
2259
2260                 count = 0;
2261                 while (cache) {
2262                         unsigned i;
2263
2264                         command_print(CMD_CTX, "===== %s", cache->name);
2265
2266                         for (i = 0, reg = cache->reg_list;
2267                                         i < cache->num_regs;
2268                                         i++, reg++, count++) {
2269                                 /* only print cached values if they are valid */
2270                                 if (reg->valid) {
2271                                         value = buf_to_str(reg->value,
2272                                                         reg->size, 16);
2273                                         command_print(CMD_CTX,
2274                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2275                                                         count, reg->name,
2276                                                         reg->size, value,
2277                                                         reg->dirty
2278                                                                 ? " (dirty)"
2279                                                                 : "");
2280                                         free(value);
2281                                 } else {
2282                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2283                                                           count, reg->name,
2284                                                           reg->size) ;
2285                                 }
2286                         }
2287                         cache = cache->next;
2288                 }
2289
2290                 return ERROR_OK;
2291         }
2292
2293         /* access a single register by its ordinal number */
2294         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2295                 unsigned num;
2296                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2297
2298                 struct reg_cache *cache = target->reg_cache;
2299                 count = 0;
2300                 while (cache) {
2301                         unsigned i;
2302                         for (i = 0; i < cache->num_regs; i++) {
2303                                 if (count++ == num) {
2304                                         reg = &cache->reg_list[i];
2305                                         break;
2306                                 }
2307                         }
2308                         if (reg)
2309                                 break;
2310                         cache = cache->next;
2311                 }
2312
2313                 if (!reg) {
2314                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2315                                         "has only %i registers (0 - %i)", num, count, count - 1);
2316                         return ERROR_OK;
2317                 }
2318         } else {
2319                 /* access a single register by its name */
2320                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2321
2322                 if (!reg) {
2323                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2324                         return ERROR_OK;
2325                 }
2326         }
2327
2328         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2329
2330         /* display a register */
2331         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2332                         && (CMD_ARGV[1][0] <= '9')))) {
2333                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2334                         reg->valid = 0;
2335
2336                 if (reg->valid == 0)
2337                         reg->type->get(reg);
2338                 value = buf_to_str(reg->value, reg->size, 16);
2339                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2340                 free(value);
2341                 return ERROR_OK;
2342         }
2343
2344         /* set register value */
2345         if (CMD_ARGC == 2) {
2346                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2347                 if (buf == NULL)
2348                         return ERROR_FAIL;
2349                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2350
2351                 reg->type->set(reg, buf);
2352
2353                 value = buf_to_str(reg->value, reg->size, 16);
2354                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2355                 free(value);
2356
2357                 free(buf);
2358
2359                 return ERROR_OK;
2360         }
2361
2362         return ERROR_COMMAND_SYNTAX_ERROR;
2363 }
2364
2365 COMMAND_HANDLER(handle_poll_command)
2366 {
2367         int retval = ERROR_OK;
2368         struct target *target = get_current_target(CMD_CTX);
2369
2370         if (CMD_ARGC == 0) {
2371                 command_print(CMD_CTX, "background polling: %s",
2372                                 jtag_poll_get_enabled() ? "on" : "off");
2373                 command_print(CMD_CTX, "TAP: %s (%s)",
2374                                 target->tap->dotted_name,
2375                                 target->tap->enabled ? "enabled" : "disabled");
2376                 if (!target->tap->enabled)
2377                         return ERROR_OK;
2378                 retval = target_poll(target);
2379                 if (retval != ERROR_OK)
2380                         return retval;
2381                 retval = target_arch_state(target);
2382                 if (retval != ERROR_OK)
2383                         return retval;
2384         } else if (CMD_ARGC == 1) {
2385                 bool enable;
2386                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2387                 jtag_poll_set_enabled(enable);
2388         } else
2389                 return ERROR_COMMAND_SYNTAX_ERROR;
2390
2391         return retval;
2392 }
2393
2394 COMMAND_HANDLER(handle_wait_halt_command)
2395 {
2396         if (CMD_ARGC > 1)
2397                 return ERROR_COMMAND_SYNTAX_ERROR;
2398
2399         unsigned ms = 5000;
2400         if (1 == CMD_ARGC) {
2401                 int retval = parse_uint(CMD_ARGV[0], &ms);
2402                 if (ERROR_OK != retval)
2403                         return ERROR_COMMAND_SYNTAX_ERROR;
2404                 /* convert seconds (given) to milliseconds (needed) */
2405                 ms *= 1000;
2406         }
2407
2408         struct target *target = get_current_target(CMD_CTX);
2409         return target_wait_state(target, TARGET_HALTED, ms);
2410 }
2411
2412 /* wait for target state to change. The trick here is to have a low
2413  * latency for short waits and not to suck up all the CPU time
2414  * on longer waits.
2415  *
2416  * After 500ms, keep_alive() is invoked
2417  */
2418 int target_wait_state(struct target *target, enum target_state state, int ms)
2419 {
2420         int retval;
2421         long long then = 0, cur;
2422         int once = 1;
2423
2424         for (;;) {
2425                 retval = target_poll(target);
2426                 if (retval != ERROR_OK)
2427                         return retval;
2428                 if (target->state == state)
2429                         break;
2430                 cur = timeval_ms();
2431                 if (once) {
2432                         once = 0;
2433                         then = timeval_ms();
2434                         LOG_DEBUG("waiting for target %s...",
2435                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2436                 }
2437
2438                 if (cur-then > 500)
2439                         keep_alive();
2440
2441                 if ((cur-then) > ms) {
2442                         LOG_ERROR("timed out while waiting for target %s",
2443                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2444                         return ERROR_FAIL;
2445                 }
2446         }
2447
2448         return ERROR_OK;
2449 }
2450
2451 COMMAND_HANDLER(handle_halt_command)
2452 {
2453         LOG_DEBUG("-");
2454
2455         struct target *target = get_current_target(CMD_CTX);
2456         int retval = target_halt(target);
2457         if (ERROR_OK != retval)
2458                 return retval;
2459
2460         if (CMD_ARGC == 1) {
2461                 unsigned wait_local;
2462                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2463                 if (ERROR_OK != retval)
2464                         return ERROR_COMMAND_SYNTAX_ERROR;
2465                 if (!wait_local)
2466                         return ERROR_OK;
2467         }
2468
2469         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2470 }
2471
2472 COMMAND_HANDLER(handle_soft_reset_halt_command)
2473 {
2474         struct target *target = get_current_target(CMD_CTX);
2475
2476         LOG_USER("requesting target halt and executing a soft reset");
2477
2478         target->type->soft_reset_halt(target);
2479
2480         return ERROR_OK;
2481 }
2482
2483 COMMAND_HANDLER(handle_reset_command)
2484 {
2485         if (CMD_ARGC > 1)
2486                 return ERROR_COMMAND_SYNTAX_ERROR;
2487
2488         enum target_reset_mode reset_mode = RESET_RUN;
2489         if (CMD_ARGC == 1) {
2490                 const Jim_Nvp *n;
2491                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2492                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2493                         return ERROR_COMMAND_SYNTAX_ERROR;
2494                 reset_mode = n->value;
2495         }
2496
2497         /* reset *all* targets */
2498         return target_process_reset(CMD_CTX, reset_mode);
2499 }
2500
2501
2502 COMMAND_HANDLER(handle_resume_command)
2503 {
2504         int current = 1;
2505         if (CMD_ARGC > 1)
2506                 return ERROR_COMMAND_SYNTAX_ERROR;
2507
2508         struct target *target = get_current_target(CMD_CTX);
2509
2510         /* with no CMD_ARGV, resume from current pc, addr = 0,
2511          * with one arguments, addr = CMD_ARGV[0],
2512          * handle breakpoints, not debugging */
2513         uint32_t addr = 0;
2514         if (CMD_ARGC == 1) {
2515                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2516                 current = 0;
2517         }
2518
2519         return target_resume(target, current, addr, 1, 0);
2520 }
2521
2522 COMMAND_HANDLER(handle_step_command)
2523 {
2524         if (CMD_ARGC > 1)
2525                 return ERROR_COMMAND_SYNTAX_ERROR;
2526
2527         LOG_DEBUG("-");
2528
2529         /* with no CMD_ARGV, step from current pc, addr = 0,
2530          * with one argument addr = CMD_ARGV[0],
2531          * handle breakpoints, debugging */
2532         uint32_t addr = 0;
2533         int current_pc = 1;
2534         if (CMD_ARGC == 1) {
2535                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2536                 current_pc = 0;
2537         }
2538
2539         struct target *target = get_current_target(CMD_CTX);
2540
2541         return target->type->step(target, current_pc, addr, 1);
2542 }
2543
2544 static void handle_md_output(struct command_context *cmd_ctx,
2545                 struct target *target, uint32_t address, unsigned size,
2546                 unsigned count, const uint8_t *buffer)
2547 {
2548         const unsigned line_bytecnt = 32;
2549         unsigned line_modulo = line_bytecnt / size;
2550
2551         char output[line_bytecnt * 4 + 1];
2552         unsigned output_len = 0;
2553
2554         const char *value_fmt;
2555         switch (size) {
2556         case 4:
2557                 value_fmt = "%8.8x ";
2558                 break;
2559         case 2:
2560                 value_fmt = "%4.4x ";
2561                 break;
2562         case 1:
2563                 value_fmt = "%2.2x ";
2564                 break;
2565         default:
2566                 /* "can't happen", caller checked */
2567                 LOG_ERROR("invalid memory read size: %u", size);
2568                 return;
2569         }
2570
2571         for (unsigned i = 0; i < count; i++) {
2572                 if (i % line_modulo == 0) {
2573                         output_len += snprintf(output + output_len,
2574                                         sizeof(output) - output_len,
2575                                         "0x%8.8x: ",
2576                                         (unsigned)(address + (i*size)));
2577                 }
2578
2579                 uint32_t value = 0;
2580                 const uint8_t *value_ptr = buffer + i * size;
2581                 switch (size) {
2582                 case 4:
2583                         value = target_buffer_get_u32(target, value_ptr);
2584                         break;
2585                 case 2:
2586                         value = target_buffer_get_u16(target, value_ptr);
2587                         break;
2588                 case 1:
2589                         value = *value_ptr;
2590                 }
2591                 output_len += snprintf(output + output_len,
2592                                 sizeof(output) - output_len,
2593                                 value_fmt, value);
2594
2595                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2596                         command_print(cmd_ctx, "%s", output);
2597                         output_len = 0;
2598                 }
2599         }
2600 }
2601
2602 COMMAND_HANDLER(handle_md_command)
2603 {
2604         if (CMD_ARGC < 1)
2605                 return ERROR_COMMAND_SYNTAX_ERROR;
2606
2607         unsigned size = 0;
2608         switch (CMD_NAME[2]) {
2609         case 'w':
2610                 size = 4;
2611                 break;
2612         case 'h':
2613                 size = 2;
2614                 break;
2615         case 'b':
2616                 size = 1;
2617                 break;
2618         default:
2619                 return ERROR_COMMAND_SYNTAX_ERROR;
2620         }
2621
2622         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2623         int (*fn)(struct target *target,
2624                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2625         if (physical) {
2626                 CMD_ARGC--;
2627                 CMD_ARGV++;
2628                 fn = target_read_phys_memory;
2629         } else
2630                 fn = target_read_memory;
2631         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2632                 return ERROR_COMMAND_SYNTAX_ERROR;
2633
2634         uint32_t address;
2635         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2636
2637         unsigned count = 1;
2638         if (CMD_ARGC == 2)
2639                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2640
2641         uint8_t *buffer = calloc(count, size);
2642
2643         struct target *target = get_current_target(CMD_CTX);
2644         int retval = fn(target, address, size, count, buffer);
2645         if (ERROR_OK == retval)
2646                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2647
2648         free(buffer);
2649
2650         return retval;
2651 }
2652
2653 typedef int (*target_write_fn)(struct target *target,
2654                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2655
2656 static int target_write_memory_fast(struct target *target,
2657                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2658 {
2659         return target_write_buffer(target, address, size * count, buffer);
2660 }
2661
2662 static int target_fill_mem(struct target *target,
2663                 uint32_t address,
2664                 target_write_fn fn,
2665                 unsigned data_size,
2666                 /* value */
2667                 uint32_t b,
2668                 /* count */
2669                 unsigned c)
2670 {
2671         /* We have to write in reasonably large chunks to be able
2672          * to fill large memory areas with any sane speed */
2673         const unsigned chunk_size = 16384;
2674         uint8_t *target_buf = malloc(chunk_size * data_size);
2675         if (target_buf == NULL) {
2676                 LOG_ERROR("Out of memory");
2677                 return ERROR_FAIL;
2678         }
2679
2680         for (unsigned i = 0; i < chunk_size; i++) {
2681                 switch (data_size) {
2682                 case 4:
2683                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2684                         break;
2685                 case 2:
2686                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2687                         break;
2688                 case 1:
2689                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2690                         break;
2691                 default:
2692                         exit(-1);
2693                 }
2694         }
2695
2696         int retval = ERROR_OK;
2697
2698         for (unsigned x = 0; x < c; x += chunk_size) {
2699                 unsigned current;
2700                 current = c - x;
2701                 if (current > chunk_size)
2702                         current = chunk_size;
2703                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2704                 if (retval != ERROR_OK)
2705                         break;
2706                 /* avoid GDB timeouts */
2707                 keep_alive();
2708         }
2709         free(target_buf);
2710
2711         return retval;
2712 }
2713
2714
2715 COMMAND_HANDLER(handle_mw_command)
2716 {
2717         if (CMD_ARGC < 2)
2718                 return ERROR_COMMAND_SYNTAX_ERROR;
2719         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2720         target_write_fn fn;
2721         if (physical) {
2722                 CMD_ARGC--;
2723                 CMD_ARGV++;
2724                 fn = target_write_phys_memory;
2725         } else
2726                 fn = target_write_memory_fast;
2727         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2728                 return ERROR_COMMAND_SYNTAX_ERROR;
2729
2730         uint32_t address;
2731         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2732
2733         uint32_t value;
2734         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2735
2736         unsigned count = 1;
2737         if (CMD_ARGC == 3)
2738                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2739
2740         struct target *target = get_current_target(CMD_CTX);
2741         unsigned wordsize;
2742         switch (CMD_NAME[2]) {
2743                 case 'w':
2744                         wordsize = 4;
2745                         break;
2746                 case 'h':
2747                         wordsize = 2;
2748                         break;
2749                 case 'b':
2750                         wordsize = 1;
2751                         break;
2752                 default:
2753                         return ERROR_COMMAND_SYNTAX_ERROR;
2754         }
2755
2756         return target_fill_mem(target, address, fn, wordsize, value, count);
2757 }
2758
2759 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2760                 uint32_t *min_address, uint32_t *max_address)
2761 {
2762         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2763                 return ERROR_COMMAND_SYNTAX_ERROR;
2764
2765         /* a base address isn't always necessary,
2766          * default to 0x0 (i.e. don't relocate) */
2767         if (CMD_ARGC >= 2) {
2768                 uint32_t addr;
2769                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2770                 image->base_address = addr;
2771                 image->base_address_set = 1;
2772         } else
2773                 image->base_address_set = 0;
2774
2775         image->start_address_set = 0;
2776
2777         if (CMD_ARGC >= 4)
2778                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2779         if (CMD_ARGC == 5) {
2780                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2781                 /* use size (given) to find max (required) */
2782                 *max_address += *min_address;
2783         }
2784
2785         if (*min_address > *max_address)
2786                 return ERROR_COMMAND_SYNTAX_ERROR;
2787
2788         return ERROR_OK;
2789 }
2790
2791 COMMAND_HANDLER(handle_load_image_command)
2792 {
2793         uint8_t *buffer;
2794         size_t buf_cnt;
2795         uint32_t image_size;
2796         uint32_t min_address = 0;
2797         uint32_t max_address = 0xffffffff;
2798         int i;
2799         struct image image;
2800
2801         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2802                         &image, &min_address, &max_address);
2803         if (ERROR_OK != retval)
2804                 return retval;
2805
2806         struct target *target = get_current_target(CMD_CTX);
2807
2808         struct duration bench;
2809         duration_start(&bench);
2810
2811         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2812                 return ERROR_OK;
2813
2814         image_size = 0x0;
2815         retval = ERROR_OK;
2816         for (i = 0; i < image.num_sections; i++) {
2817                 buffer = malloc(image.sections[i].size);
2818                 if (buffer == NULL) {
2819                         command_print(CMD_CTX,
2820                                                   "error allocating buffer for section (%d bytes)",
2821                                                   (int)(image.sections[i].size));
2822                         break;
2823                 }
2824
2825                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2826                 if (retval != ERROR_OK) {
2827                         free(buffer);
2828                         break;
2829                 }
2830
2831                 uint32_t offset = 0;
2832                 uint32_t length = buf_cnt;
2833
2834                 /* DANGER!!! beware of unsigned comparision here!!! */
2835
2836                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2837                                 (image.sections[i].base_address < max_address)) {
2838
2839                         if (image.sections[i].base_address < min_address) {
2840                                 /* clip addresses below */
2841                                 offset += min_address-image.sections[i].base_address;
2842                                 length -= offset;
2843                         }
2844
2845                         if (image.sections[i].base_address + buf_cnt > max_address)
2846                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2847
2848                         retval = target_write_buffer(target,
2849                                         image.sections[i].base_address + offset, length, buffer + offset);
2850                         if (retval != ERROR_OK) {
2851                                 free(buffer);
2852                                 break;
2853                         }
2854                         image_size += length;
2855                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2856                                         (unsigned int)length,
2857                                         image.sections[i].base_address + offset);
2858                 }
2859
2860                 free(buffer);
2861         }
2862
2863         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2864                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2865                                 "in %fs (%0.3f KiB/s)", image_size,
2866                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2867         }
2868
2869         image_close(&image);
2870
2871         return retval;
2872
2873 }
2874
2875 COMMAND_HANDLER(handle_dump_image_command)
2876 {
2877         struct fileio fileio;
2878         uint8_t *buffer;
2879         int retval, retvaltemp;
2880         uint32_t address, size;
2881         struct duration bench;
2882         struct target *target = get_current_target(CMD_CTX);
2883
2884         if (CMD_ARGC != 3)
2885                 return ERROR_COMMAND_SYNTAX_ERROR;
2886
2887         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2888         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2889
2890         uint32_t buf_size = (size > 4096) ? 4096 : size;
2891         buffer = malloc(buf_size);
2892         if (!buffer)
2893                 return ERROR_FAIL;
2894
2895         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2896         if (retval != ERROR_OK) {
2897                 free(buffer);
2898                 return retval;
2899         }
2900
2901         duration_start(&bench);
2902
2903         while (size > 0) {
2904                 size_t size_written;
2905                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2906                 retval = target_read_buffer(target, address, this_run_size, buffer);
2907                 if (retval != ERROR_OK)
2908                         break;
2909
2910                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2911                 if (retval != ERROR_OK)
2912                         break;
2913
2914                 size -= this_run_size;
2915                 address += this_run_size;
2916         }
2917
2918         free(buffer);
2919
2920         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2921                 int filesize;
2922                 retval = fileio_size(&fileio, &filesize);
2923                 if (retval != ERROR_OK)
2924                         return retval;
2925                 command_print(CMD_CTX,
2926                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2927                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2928         }
2929
2930         retvaltemp = fileio_close(&fileio);
2931         if (retvaltemp != ERROR_OK)
2932                 return retvaltemp;
2933
2934         return retval;
2935 }
2936
2937 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2938 {
2939         uint8_t *buffer;
2940         size_t buf_cnt;
2941         uint32_t image_size;
2942         int i;
2943         int retval;
2944         uint32_t checksum = 0;
2945         uint32_t mem_checksum = 0;
2946
2947         struct image image;
2948
2949         struct target *target = get_current_target(CMD_CTX);
2950
2951         if (CMD_ARGC < 1)
2952                 return ERROR_COMMAND_SYNTAX_ERROR;
2953
2954         if (!target) {
2955                 LOG_ERROR("no target selected");
2956                 return ERROR_FAIL;
2957         }
2958
2959         struct duration bench;
2960         duration_start(&bench);
2961
2962         if (CMD_ARGC >= 2) {
2963                 uint32_t addr;
2964                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2965                 image.base_address = addr;
2966                 image.base_address_set = 1;
2967         } else {
2968                 image.base_address_set = 0;
2969                 image.base_address = 0x0;
2970         }
2971
2972         image.start_address_set = 0;
2973
2974         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
2975         if (retval != ERROR_OK)
2976                 return retval;
2977
2978         image_size = 0x0;
2979         int diffs = 0;
2980         retval = ERROR_OK;
2981         for (i = 0; i < image.num_sections; i++) {
2982                 buffer = malloc(image.sections[i].size);
2983                 if (buffer == NULL) {
2984                         command_print(CMD_CTX,
2985                                         "error allocating buffer for section (%d bytes)",
2986                                         (int)(image.sections[i].size));
2987                         break;
2988                 }
2989                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2990                 if (retval != ERROR_OK) {
2991                         free(buffer);
2992                         break;
2993                 }
2994
2995                 if (verify) {
2996                         /* calculate checksum of image */
2997                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2998                         if (retval != ERROR_OK) {
2999                                 free(buffer);
3000                                 break;
3001                         }
3002
3003                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3004                         if (retval != ERROR_OK) {
3005                                 free(buffer);
3006                                 break;
3007                         }
3008
3009                         if (checksum != mem_checksum) {
3010                                 /* failed crc checksum, fall back to a binary compare */
3011                                 uint8_t *data;
3012
3013                                 if (diffs == 0)
3014                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3015
3016                                 data = (uint8_t *)malloc(buf_cnt);
3017
3018                                 /* Can we use 32bit word accesses? */
3019                                 int size = 1;
3020                                 int count = buf_cnt;
3021                                 if ((count % 4) == 0) {
3022                                         size *= 4;
3023                                         count /= 4;
3024                                 }
3025                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3026                                 if (retval == ERROR_OK) {
3027                                         uint32_t t;
3028                                         for (t = 0; t < buf_cnt; t++) {
3029                                                 if (data[t] != buffer[t]) {
3030                                                         command_print(CMD_CTX,
3031                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3032                                                                                   diffs,
3033                                                                                   (unsigned)(t + image.sections[i].base_address),
3034                                                                                   data[t],
3035                                                                                   buffer[t]);
3036                                                         if (diffs++ >= 127) {
3037                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3038                                                                 free(data);
3039                                                                 free(buffer);
3040                                                                 goto done;
3041                                                         }
3042                                                 }
3043                                                 keep_alive();
3044                                         }
3045                                 }
3046                                 free(data);
3047                         }
3048                 } else {
3049                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3050                                                   image.sections[i].base_address,
3051                                                   buf_cnt);
3052                 }
3053
3054                 free(buffer);
3055                 image_size += buf_cnt;
3056         }
3057         if (diffs > 0)
3058                 command_print(CMD_CTX, "No more differences found.");
3059 done:
3060         if (diffs > 0)
3061                 retval = ERROR_FAIL;
3062         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3063                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3064                                 "in %fs (%0.3f KiB/s)", image_size,
3065                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3066         }
3067
3068         image_close(&image);
3069
3070         return retval;
3071 }
3072
3073 COMMAND_HANDLER(handle_verify_image_command)
3074 {
3075         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3076 }
3077
3078 COMMAND_HANDLER(handle_test_image_command)
3079 {
3080         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3081 }
3082
3083 static int handle_bp_command_list(struct command_context *cmd_ctx)
3084 {
3085         struct target *target = get_current_target(cmd_ctx);
3086         struct breakpoint *breakpoint = target->breakpoints;
3087         while (breakpoint) {
3088                 if (breakpoint->type == BKPT_SOFT) {
3089                         char *buf = buf_to_str(breakpoint->orig_instr,
3090                                         breakpoint->length, 16);
3091                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3092                                         breakpoint->address,
3093                                         breakpoint->length,
3094                                         breakpoint->set, buf);
3095                         free(buf);
3096                 } else {
3097                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3098                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3099                                                         breakpoint->asid,
3100                                                         breakpoint->length, breakpoint->set);
3101                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3102                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3103                                                         breakpoint->address,
3104                                                         breakpoint->length, breakpoint->set);
3105                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3106                                                         breakpoint->asid);
3107                         } else
3108                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3109                                                         breakpoint->address,
3110                                                         breakpoint->length, breakpoint->set);
3111                 }
3112
3113                 breakpoint = breakpoint->next;
3114         }
3115         return ERROR_OK;
3116 }
3117
3118 static int handle_bp_command_set(struct command_context *cmd_ctx,
3119                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3120 {
3121         struct target *target = get_current_target(cmd_ctx);
3122
3123         if (asid == 0) {
3124                 int retval = breakpoint_add(target, addr, length, hw);
3125                 if (ERROR_OK == retval)
3126                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3127                 else {
3128                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3129                         return retval;
3130                 }
3131         } else if (addr == 0) {
3132                 int retval = context_breakpoint_add(target, asid, length, hw);
3133                 if (ERROR_OK == retval)
3134                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3135                 else {
3136                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3137                         return retval;
3138                 }
3139         } else {
3140                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3141                 if (ERROR_OK == retval)
3142                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3143                 else {
3144                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3145                         return retval;
3146                 }
3147         }
3148         return ERROR_OK;
3149 }
3150
3151 COMMAND_HANDLER(handle_bp_command)
3152 {
3153         uint32_t addr;
3154         uint32_t asid;
3155         uint32_t length;
3156         int hw = BKPT_SOFT;
3157
3158         switch (CMD_ARGC) {
3159                 case 0:
3160                         return handle_bp_command_list(CMD_CTX);
3161
3162                 case 2:
3163                         asid = 0;
3164                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3165                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3166                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3167
3168                 case 3:
3169                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3170                                 hw = BKPT_HARD;
3171                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3172
3173                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3174
3175                                 asid = 0;
3176                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3177                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3178                                 hw = BKPT_HARD;
3179                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3180                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3181                                 addr = 0;
3182                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3183                         }
3184
3185                 case 4:
3186                         hw = BKPT_HARD;
3187                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3188                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3189                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3190                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3191
3192                 default:
3193                         return ERROR_COMMAND_SYNTAX_ERROR;
3194         }
3195 }
3196
3197 COMMAND_HANDLER(handle_rbp_command)
3198 {
3199         if (CMD_ARGC != 1)
3200                 return ERROR_COMMAND_SYNTAX_ERROR;
3201
3202         uint32_t addr;
3203         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3204
3205         struct target *target = get_current_target(CMD_CTX);
3206         breakpoint_remove(target, addr);
3207
3208         return ERROR_OK;
3209 }
3210
3211 COMMAND_HANDLER(handle_wp_command)
3212 {
3213         struct target *target = get_current_target(CMD_CTX);
3214
3215         if (CMD_ARGC == 0) {
3216                 struct watchpoint *watchpoint = target->watchpoints;
3217
3218                 while (watchpoint) {
3219                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3220                                         ", len: 0x%8.8" PRIx32
3221                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3222                                         ", mask: 0x%8.8" PRIx32,
3223                                         watchpoint->address,
3224                                         watchpoint->length,
3225                                         (int)watchpoint->rw,
3226                                         watchpoint->value,
3227                                         watchpoint->mask);
3228                         watchpoint = watchpoint->next;
3229                 }
3230                 return ERROR_OK;
3231         }
3232
3233         enum watchpoint_rw type = WPT_ACCESS;
3234         uint32_t addr = 0;
3235         uint32_t length = 0;
3236         uint32_t data_value = 0x0;
3237         uint32_t data_mask = 0xffffffff;
3238
3239         switch (CMD_ARGC) {
3240         case 5:
3241                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3242                 /* fall through */
3243         case 4:
3244                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3245                 /* fall through */
3246         case 3:
3247                 switch (CMD_ARGV[2][0]) {
3248                 case 'r':
3249                         type = WPT_READ;
3250                         break;
3251                 case 'w':
3252                         type = WPT_WRITE;
3253                         break;
3254                 case 'a':
3255                         type = WPT_ACCESS;
3256                         break;
3257                 default:
3258                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3259                         return ERROR_COMMAND_SYNTAX_ERROR;
3260                 }
3261                 /* fall through */
3262         case 2:
3263                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3264                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3265                 break;
3266
3267         default:
3268                 return ERROR_COMMAND_SYNTAX_ERROR;
3269         }
3270
3271         int retval = watchpoint_add(target, addr, length, type,
3272                         data_value, data_mask);
3273         if (ERROR_OK != retval)
3274                 LOG_ERROR("Failure setting watchpoints");
3275
3276         return retval;
3277 }
3278
3279 COMMAND_HANDLER(handle_rwp_command)
3280 {
3281         if (CMD_ARGC != 1)
3282                 return ERROR_COMMAND_SYNTAX_ERROR;
3283
3284         uint32_t addr;
3285         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3286
3287         struct target *target = get_current_target(CMD_CTX);
3288         watchpoint_remove(target, addr);
3289
3290         return ERROR_OK;
3291 }
3292
3293 /**
3294  * Translate a virtual address to a physical address.
3295  *
3296  * The low-level target implementation must have logged a detailed error
3297  * which is forwarded to telnet/GDB session.
3298  */
3299 COMMAND_HANDLER(handle_virt2phys_command)
3300 {
3301         if (CMD_ARGC != 1)
3302                 return ERROR_COMMAND_SYNTAX_ERROR;
3303
3304         uint32_t va;
3305         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3306         uint32_t pa;
3307
3308         struct target *target = get_current_target(CMD_CTX);
3309         int retval = target->type->virt2phys(target, va, &pa);
3310         if (retval == ERROR_OK)
3311                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3312
3313         return retval;
3314 }
3315
3316 static void writeData(FILE *f, const void *data, size_t len)
3317 {
3318         size_t written = fwrite(data, 1, len, f);
3319         if (written != len)
3320                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3321 }
3322
3323 static void writeLong(FILE *f, int l)
3324 {
3325         int i;
3326         for (i = 0; i < 4; i++) {
3327                 char c = (l >> (i*8))&0xff;
3328                 writeData(f, &c, 1);
3329         }
3330
3331 }
3332
3333 static void writeString(FILE *f, char *s)
3334 {
3335         writeData(f, s, strlen(s));
3336 }
3337
3338 /* Dump a gmon.out histogram file. */
3339 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3340 {
3341         uint32_t i;
3342         FILE *f = fopen(filename, "w");
3343         if (f == NULL)
3344                 return;
3345         writeString(f, "gmon");
3346         writeLong(f, 0x00000001); /* Version */
3347         writeLong(f, 0); /* padding */
3348         writeLong(f, 0); /* padding */
3349         writeLong(f, 0); /* padding */
3350
3351         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3352         writeData(f, &zero, 1);
3353
3354         /* figure out bucket size */
3355         uint32_t min = samples[0];
3356         uint32_t max = samples[0];
3357         for (i = 0; i < sampleNum; i++) {
3358                 if (min > samples[i])
3359                         min = samples[i];
3360                 if (max < samples[i])
3361                         max = samples[i];
3362         }
3363
3364         int addressSpace = (max - min + 1);
3365         assert(addressSpace >= 2);
3366
3367         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3368         uint32_t length = addressSpace;
3369         if (length > maxBuckets)
3370                 length = maxBuckets;
3371         int *buckets = malloc(sizeof(int)*length);
3372         if (buckets == NULL) {
3373                 fclose(f);
3374                 return;
3375         }
3376         memset(buckets, 0, sizeof(int) * length);
3377         for (i = 0; i < sampleNum; i++) {
3378                 uint32_t address = samples[i];
3379                 long long a = address - min;
3380                 long long b = length - 1;
3381                 long long c = addressSpace - 1;
3382                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3383                 buckets[index_t]++;
3384         }
3385
3386         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3387         writeLong(f, min);                      /* low_pc */
3388         writeLong(f, max);                      /* high_pc */
3389         writeLong(f, length);           /* # of samples */
3390         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3391         writeString(f, "seconds");
3392         for (i = 0; i < (15-strlen("seconds")); i++)
3393                 writeData(f, &zero, 1);
3394         writeString(f, "s");
3395
3396         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3397
3398         char *data = malloc(2 * length);
3399         if (data != NULL) {
3400                 for (i = 0; i < length; i++) {
3401                         int val;
3402                         val = buckets[i];
3403                         if (val > 65535)
3404                                 val = 65535;
3405                         data[i * 2] = val&0xff;
3406                         data[i * 2 + 1] = (val >> 8) & 0xff;
3407                 }
3408                 free(buckets);
3409                 writeData(f, data, length * 2);
3410                 free(data);
3411         } else
3412                 free(buckets);
3413
3414         fclose(f);
3415 }
3416
3417 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3418  * which will be used as a random sampling of PC */
3419 COMMAND_HANDLER(handle_profile_command)
3420 {
3421         struct target *target = get_current_target(CMD_CTX);
3422         struct timeval timeout, now;
3423
3424         gettimeofday(&timeout, NULL);
3425         if (CMD_ARGC != 2)
3426                 return ERROR_COMMAND_SYNTAX_ERROR;
3427         unsigned offset;
3428         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3429
3430         timeval_add_time(&timeout, offset, 0);
3431
3432         /**
3433          * @todo: Some cores let us sample the PC without the
3434          * annoying halt/resume step; for example, ARMv7 PCSR.
3435          * Provide a way to use that more efficient mechanism.
3436          */
3437
3438         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3439
3440         static const int maxSample = 10000;
3441         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3442         if (samples == NULL)
3443                 return ERROR_OK;
3444
3445         int numSamples = 0;
3446         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3447         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3448
3449         int retval = ERROR_OK;
3450         for (;;) {
3451                 target_poll(target);
3452                 if (target->state == TARGET_HALTED) {
3453                         uint32_t t = *((uint32_t *)reg->value);
3454                         samples[numSamples++] = t;
3455                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
3456                         retval = target_resume(target, 1, 0, 0, 0);
3457                         target_poll(target);
3458                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3459                 } else if (target->state == TARGET_RUNNING) {
3460                         /* We want to quickly sample the PC. */
3461                         retval = target_halt(target);
3462                         if (retval != ERROR_OK) {
3463                                 free(samples);
3464                                 return retval;
3465                         }
3466                 } else {
3467                         command_print(CMD_CTX, "Target not halted or running");
3468                         retval = ERROR_OK;
3469                         break;
3470                 }
3471                 if (retval != ERROR_OK)
3472                         break;
3473
3474                 gettimeofday(&now, NULL);
3475                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3476                                 && (now.tv_usec >= timeout.tv_usec))) {
3477                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3478                         retval = target_poll(target);
3479                         if (retval != ERROR_OK) {
3480                                 free(samples);
3481                                 return retval;
3482                         }
3483                         if (target->state == TARGET_HALTED) {
3484                                 /* current pc, addr = 0, do not handle
3485                                  * breakpoints, not debugging */
3486                                 target_resume(target, 1, 0, 0, 0);
3487                         }
3488                         retval = target_poll(target);
3489                         if (retval != ERROR_OK) {
3490                                 free(samples);
3491                                 return retval;
3492                         }
3493                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3494                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3495                         break;
3496                 }
3497         }
3498         free(samples);
3499
3500         return retval;
3501 }
3502
3503 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3504 {
3505         char *namebuf;
3506         Jim_Obj *nameObjPtr, *valObjPtr;
3507         int result;
3508
3509         namebuf = alloc_printf("%s(%d)", varname, idx);
3510         if (!namebuf)
3511                 return JIM_ERR;
3512
3513         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3514         valObjPtr = Jim_NewIntObj(interp, val);
3515         if (!nameObjPtr || !valObjPtr) {
3516                 free(namebuf);
3517                 return JIM_ERR;
3518         }
3519
3520         Jim_IncrRefCount(nameObjPtr);
3521         Jim_IncrRefCount(valObjPtr);
3522         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3523         Jim_DecrRefCount(interp, nameObjPtr);
3524         Jim_DecrRefCount(interp, valObjPtr);
3525         free(namebuf);
3526         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3527         return result;
3528 }
3529
3530 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3531 {
3532         struct command_context *context;
3533         struct target *target;
3534
3535         context = current_command_context(interp);
3536         assert(context != NULL);
3537
3538         target = get_current_target(context);
3539         if (target == NULL) {
3540                 LOG_ERROR("mem2array: no current target");
3541                 return JIM_ERR;
3542         }
3543
3544         return target_mem2array(interp, target, argc - 1, argv + 1);
3545 }
3546
3547 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3548 {
3549         long l;
3550         uint32_t width;
3551         int len;
3552         uint32_t addr;
3553         uint32_t count;
3554         uint32_t v;
3555         const char *varname;
3556         int  n, e, retval;
3557         uint32_t i;
3558
3559         /* argv[1] = name of array to receive the data
3560          * argv[2] = desired width
3561          * argv[3] = memory address
3562          * argv[4] = count of times to read
3563          */
3564         if (argc != 4) {
3565                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3566                 return JIM_ERR;
3567         }
3568         varname = Jim_GetString(argv[0], &len);
3569         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3570
3571         e = Jim_GetLong(interp, argv[1], &l);
3572         width = l;
3573         if (e != JIM_OK)
3574                 return e;
3575
3576         e = Jim_GetLong(interp, argv[2], &l);
3577         addr = l;
3578         if (e != JIM_OK)
3579                 return e;
3580         e = Jim_GetLong(interp, argv[3], &l);
3581         len = l;
3582         if (e != JIM_OK)
3583                 return e;
3584         switch (width) {
3585                 case 8:
3586                         width = 1;
3587                         break;
3588                 case 16:
3589                         width = 2;
3590                         break;
3591                 case 32:
3592                         width = 4;
3593                         break;
3594                 default:
3595                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3596                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3597                         return JIM_ERR;
3598         }
3599         if (len == 0) {
3600                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3601                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3602                 return JIM_ERR;
3603         }
3604         if ((addr + (len * width)) < addr) {
3605                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3606                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3607                 return JIM_ERR;
3608         }
3609         /* absurd transfer size? */
3610         if (len > 65536) {
3611                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3612                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3613                 return JIM_ERR;
3614         }
3615
3616         if ((width == 1) ||
3617                 ((width == 2) && ((addr & 1) == 0)) ||
3618                 ((width == 4) && ((addr & 3) == 0))) {
3619                 /* all is well */
3620         } else {
3621                 char buf[100];
3622                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3623                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3624                                 addr,
3625                                 width);
3626                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3627                 return JIM_ERR;
3628         }
3629
3630         /* Transfer loop */
3631
3632         /* index counter */
3633         n = 0;
3634
3635         size_t buffersize = 4096;
3636         uint8_t *buffer = malloc(buffersize);
3637         if (buffer == NULL)
3638                 return JIM_ERR;
3639
3640         /* assume ok */
3641         e = JIM_OK;
3642         while (len) {
3643                 /* Slurp... in buffer size chunks */
3644
3645                 count = len; /* in objects.. */
3646                 if (count > (buffersize / width))
3647                         count = (buffersize / width);
3648
3649                 retval = target_read_memory(target, addr, width, count, buffer);
3650                 if (retval != ERROR_OK) {
3651                         /* BOO !*/
3652                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3653                                           (unsigned int)addr,
3654                                           (int)width,
3655                                           (int)count);
3656                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3657                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3658                         e = JIM_ERR;
3659                         break;
3660                 } else {
3661                         v = 0; /* shut up gcc */
3662                         for (i = 0; i < count ; i++, n++) {
3663                                 switch (width) {
3664                                         case 4:
3665                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3666                                                 break;
3667                                         case 2:
3668                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3669                                                 break;
3670                                         case 1:
3671                                                 v = buffer[i] & 0x0ff;
3672                                                 break;
3673                                 }
3674                                 new_int_array_element(interp, varname, n, v);
3675                         }
3676                         len -= count;
3677                 }
3678         }
3679
3680         free(buffer);
3681
3682         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3683
3684         return e;
3685 }
3686
3687 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3688 {
3689         char *namebuf;
3690         Jim_Obj *nameObjPtr, *valObjPtr;
3691         int result;
3692         long l;
3693
3694         namebuf = alloc_printf("%s(%d)", varname, idx);
3695         if (!namebuf)
3696                 return JIM_ERR;
3697
3698         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3699         if (!nameObjPtr) {
3700                 free(namebuf);
3701                 return JIM_ERR;
3702         }
3703
3704         Jim_IncrRefCount(nameObjPtr);
3705         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3706         Jim_DecrRefCount(interp, nameObjPtr);
3707         free(namebuf);
3708         if (valObjPtr == NULL)
3709                 return JIM_ERR;
3710
3711         result = Jim_GetLong(interp, valObjPtr, &l);
3712         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3713         *val = l;
3714         return result;
3715 }
3716
3717 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3718 {
3719         struct command_context *context;
3720         struct target *target;
3721
3722         context = current_command_context(interp);
3723         assert(context != NULL);
3724
3725         target = get_current_target(context);
3726         if (target == NULL) {
3727                 LOG_ERROR("array2mem: no current target");
3728                 return JIM_ERR;
3729         }
3730
3731         return target_array2mem(interp, target, argc-1, argv + 1);
3732 }
3733
3734 static int target_array2mem(Jim_Interp *interp, struct target *target,
3735                 int argc, Jim_Obj *const *argv)
3736 {
3737         long l;
3738         uint32_t width;
3739         int len;
3740         uint32_t addr;
3741         uint32_t count;
3742         uint32_t v;
3743         const char *varname;
3744         int  n, e, retval;
3745         uint32_t i;
3746
3747         /* argv[1] = name of array to get the data
3748          * argv[2] = desired width
3749          * argv[3] = memory address
3750          * argv[4] = count to write
3751          */
3752         if (argc != 4) {
3753                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3754                 return JIM_ERR;
3755         }
3756         varname = Jim_GetString(argv[0], &len);
3757         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3758
3759         e = Jim_GetLong(interp, argv[1], &l);
3760         width = l;
3761         if (e != JIM_OK)
3762                 return e;
3763
3764         e = Jim_GetLong(interp, argv[2], &l);
3765         addr = l;
3766         if (e != JIM_OK)
3767                 return e;
3768         e = Jim_GetLong(interp, argv[3], &l);
3769         len = l;
3770         if (e != JIM_OK)
3771                 return e;
3772         switch (width) {
3773                 case 8:
3774                         width = 1;
3775                         break;
3776                 case 16:
3777                         width = 2;
3778                         break;
3779                 case 32:
3780                         width = 4;
3781                         break;
3782                 default:
3783                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3784                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3785                                         "Invalid width param, must be 8/16/32", NULL);
3786                         return JIM_ERR;
3787         }
3788         if (len == 0) {
3789                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3790                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3791                                 "array2mem: zero width read?", NULL);
3792                 return JIM_ERR;
3793         }
3794         if ((addr + (len * width)) < addr) {
3795                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3796                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3797                                 "array2mem: addr + len - wraps to zero?", NULL);
3798                 return JIM_ERR;
3799         }
3800         /* absurd transfer size? */
3801         if (len > 65536) {
3802                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3803                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3804                                 "array2mem: absurd > 64K item request", NULL);
3805                 return JIM_ERR;
3806         }
3807
3808         if ((width == 1) ||
3809                 ((width == 2) && ((addr & 1) == 0)) ||
3810                 ((width == 4) && ((addr & 3) == 0))) {
3811                 /* all is well */
3812         } else {
3813                 char buf[100];
3814                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3815                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3816                                 (unsigned int)addr,
3817                                 (int)width);
3818                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3819                 return JIM_ERR;
3820         }
3821
3822         /* Transfer loop */
3823
3824         /* index counter */
3825         n = 0;
3826         /* assume ok */
3827         e = JIM_OK;
3828
3829         size_t buffersize = 4096;
3830         uint8_t *buffer = malloc(buffersize);
3831         if (buffer == NULL)
3832                 return JIM_ERR;
3833
3834         while (len) {
3835                 /* Slurp... in buffer size chunks */
3836
3837                 count = len; /* in objects.. */
3838                 if (count > (buffersize / width))
3839                         count = (buffersize / width);
3840
3841                 v = 0; /* shut up gcc */
3842                 for (i = 0; i < count; i++, n++) {
3843                         get_int_array_element(interp, varname, n, &v);
3844                         switch (width) {
3845                         case 4:
3846                                 target_buffer_set_u32(target, &buffer[i * width], v);
3847                                 break;
3848                         case 2:
3849                                 target_buffer_set_u16(target, &buffer[i * width], v);
3850                                 break;
3851                         case 1:
3852                                 buffer[i] = v & 0x0ff;
3853                                 break;
3854                         }
3855                 }
3856                 len -= count;
3857
3858                 retval = target_write_memory(target, addr, width, count, buffer);
3859                 if (retval != ERROR_OK) {
3860                         /* BOO !*/
3861                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3862                                           (unsigned int)addr,
3863                                           (int)width,
3864                                           (int)count);
3865                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3866                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3867                         e = JIM_ERR;
3868                         break;
3869                 }
3870         }
3871
3872         free(buffer);
3873
3874         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3875
3876         return e;
3877 }
3878
3879 /* FIX? should we propagate errors here rather than printing them
3880  * and continuing?
3881  */
3882 void target_handle_event(struct target *target, enum target_event e)
3883 {
3884         struct target_event_action *teap;
3885
3886         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3887                 if (teap->event == e) {
3888                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3889                                            target->target_number,
3890                                            target_name(target),
3891                                            target_type_name(target),
3892                                            e,
3893                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3894                                            Jim_GetString(teap->body, NULL));
3895                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3896                                 Jim_MakeErrorMessage(teap->interp);
3897                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3898                         }
3899                 }
3900         }
3901 }
3902
3903 /**
3904  * Returns true only if the target has a handler for the specified event.
3905  */
3906 bool target_has_event_action(struct target *target, enum target_event event)
3907 {
3908         struct target_event_action *teap;
3909
3910         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3911                 if (teap->event == event)
3912                         return true;
3913         }
3914         return false;
3915 }
3916
3917 enum target_cfg_param {
3918         TCFG_TYPE,
3919         TCFG_EVENT,
3920         TCFG_WORK_AREA_VIRT,
3921         TCFG_WORK_AREA_PHYS,
3922         TCFG_WORK_AREA_SIZE,
3923         TCFG_WORK_AREA_BACKUP,
3924         TCFG_ENDIAN,
3925         TCFG_VARIANT,
3926         TCFG_COREID,
3927         TCFG_CHAIN_POSITION,
3928         TCFG_DBGBASE,
3929         TCFG_RTOS,
3930 };
3931
3932 static Jim_Nvp nvp_config_opts[] = {
3933         { .name = "-type",             .value = TCFG_TYPE },
3934         { .name = "-event",            .value = TCFG_EVENT },
3935         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3936         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3937         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3938         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3939         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3940         { .name = "-variant",          .value = TCFG_VARIANT },
3941         { .name = "-coreid",           .value = TCFG_COREID },
3942         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3943         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
3944         { .name = "-rtos",             .value = TCFG_RTOS },
3945         { .name = NULL, .value = -1 }
3946 };
3947
3948 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3949 {
3950         Jim_Nvp *n;
3951         Jim_Obj *o;
3952         jim_wide w;
3953         char *cp;
3954         int e;
3955
3956         /* parse config or cget options ... */
3957         while (goi->argc > 0) {
3958                 Jim_SetEmptyResult(goi->interp);
3959                 /* Jim_GetOpt_Debug(goi); */
3960
3961                 if (target->type->target_jim_configure) {
3962                         /* target defines a configure function */
3963                         /* target gets first dibs on parameters */
3964                         e = (*(target->type->target_jim_configure))(target, goi);
3965                         if (e == JIM_OK) {
3966                                 /* more? */
3967                                 continue;
3968                         }
3969                         if (e == JIM_ERR) {
3970                                 /* An error */
3971                                 return e;
3972                         }
3973                         /* otherwise we 'continue' below */
3974                 }
3975                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
3976                 if (e != JIM_OK) {
3977                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
3978                         return e;
3979                 }
3980                 switch (n->value) {
3981                 case TCFG_TYPE:
3982                         /* not setable */
3983                         if (goi->isconfigure) {
3984                                 Jim_SetResultFormatted(goi->interp,
3985                                                 "not settable: %s", n->name);
3986                                 return JIM_ERR;
3987                         } else {
3988 no_params:
3989                                 if (goi->argc != 0) {
3990                                         Jim_WrongNumArgs(goi->interp,
3991                                                         goi->argc, goi->argv,
3992                                                         "NO PARAMS");
3993                                         return JIM_ERR;
3994                                 }
3995                         }
3996                         Jim_SetResultString(goi->interp,
3997                                         target_type_name(target), -1);
3998                         /* loop for more */
3999                         break;
4000                 case TCFG_EVENT:
4001                         if (goi->argc == 0) {
4002                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4003                                 return JIM_ERR;
4004                         }
4005
4006                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4007                         if (e != JIM_OK) {
4008                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4009                                 return e;
4010                         }
4011
4012                         if (goi->isconfigure) {
4013                                 if (goi->argc != 1) {
4014                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4015                                         return JIM_ERR;
4016                                 }
4017                         } else {
4018                                 if (goi->argc != 0) {
4019                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4020                                         return JIM_ERR;
4021                                 }
4022                         }
4023
4024                         {
4025                                 struct target_event_action *teap;
4026
4027                                 teap = target->event_action;
4028                                 /* replace existing? */
4029                                 while (teap) {
4030                                         if (teap->event == (enum target_event)n->value)
4031                                                 break;
4032                                         teap = teap->next;
4033                                 }
4034
4035                                 if (goi->isconfigure) {
4036                                         bool replace = true;
4037                                         if (teap == NULL) {
4038                                                 /* create new */
4039                                                 teap = calloc(1, sizeof(*teap));
4040                                                 replace = false;
4041                                         }
4042                                         teap->event = n->value;
4043                                         teap->interp = goi->interp;
4044                                         Jim_GetOpt_Obj(goi, &o);
4045                                         if (teap->body)
4046                                                 Jim_DecrRefCount(teap->interp, teap->body);
4047                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4048                                         /*
4049                                          * FIXME:
4050                                          *     Tcl/TK - "tk events" have a nice feature.
4051                                          *     See the "BIND" command.
4052                                          *    We should support that here.
4053                                          *     You can specify %X and %Y in the event code.
4054                                          *     The idea is: %T - target name.
4055                                          *     The idea is: %N - target number
4056                                          *     The idea is: %E - event name.
4057                                          */
4058                                         Jim_IncrRefCount(teap->body);
4059
4060                                         if (!replace) {
4061                                                 /* add to head of event list */
4062                                                 teap->next = target->event_action;
4063                                                 target->event_action = teap;
4064                                         }
4065                                         Jim_SetEmptyResult(goi->interp);
4066                                 } else {
4067                                         /* get */
4068                                         if (teap == NULL)
4069                                                 Jim_SetEmptyResult(goi->interp);
4070                                         else
4071                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4072                                 }
4073                         }
4074                         /* loop for more */
4075                         break;
4076
4077                 case TCFG_WORK_AREA_VIRT:
4078                         if (goi->isconfigure) {
4079                                 target_free_all_working_areas(target);
4080                                 e = Jim_GetOpt_Wide(goi, &w);
4081                                 if (e != JIM_OK)
4082                                         return e;
4083                                 target->working_area_virt = w;
4084                                 target->working_area_virt_spec = true;
4085                         } else {
4086                                 if (goi->argc != 0)
4087                                         goto no_params;
4088                         }
4089                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4090                         /* loop for more */
4091                         break;
4092
4093                 case TCFG_WORK_AREA_PHYS:
4094                         if (goi->isconfigure) {
4095                                 target_free_all_working_areas(target);
4096                                 e = Jim_GetOpt_Wide(goi, &w);
4097                                 if (e != JIM_OK)
4098                                         return e;
4099                                 target->working_area_phys = w;
4100                                 target->working_area_phys_spec = true;
4101                         } else {
4102                                 if (goi->argc != 0)
4103                                         goto no_params;
4104                         }
4105                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4106                         /* loop for more */
4107                         break;
4108
4109                 case TCFG_WORK_AREA_SIZE:
4110                         if (goi->isconfigure) {
4111                                 target_free_all_working_areas(target);
4112                                 e = Jim_GetOpt_Wide(goi, &w);
4113                                 if (e != JIM_OK)
4114                                         return e;
4115                                 target->working_area_size = w;
4116                         } else {
4117                                 if (goi->argc != 0)
4118                                         goto no_params;
4119                         }
4120                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4121                         /* loop for more */
4122                         break;
4123
4124                 case TCFG_WORK_AREA_BACKUP:
4125                         if (goi->isconfigure) {
4126                                 target_free_all_working_areas(target);
4127                                 e = Jim_GetOpt_Wide(goi, &w);
4128                                 if (e != JIM_OK)
4129                                         return e;
4130                                 /* make this exactly 1 or 0 */
4131                                 target->backup_working_area = (!!w);
4132                         } else {
4133                                 if (goi->argc != 0)
4134                                         goto no_params;
4135                         }
4136                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4137                         /* loop for more e*/
4138                         break;
4139
4140
4141                 case TCFG_ENDIAN:
4142                         if (goi->isconfigure) {
4143                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4144                                 if (e != JIM_OK) {
4145                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4146                                         return e;
4147                                 }
4148                                 target->endianness = n->value;
4149                         } else {
4150                                 if (goi->argc != 0)
4151                                         goto no_params;
4152                         }
4153                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4154                         if (n->name == NULL) {
4155                                 target->endianness = TARGET_LITTLE_ENDIAN;
4156                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4157                         }
4158                         Jim_SetResultString(goi->interp, n->name, -1);
4159                         /* loop for more */
4160                         break;
4161
4162                 case TCFG_VARIANT:
4163                         if (goi->isconfigure) {
4164                                 if (goi->argc < 1) {
4165                                         Jim_SetResultFormatted(goi->interp,
4166                                                                                    "%s ?STRING?",
4167                                                                                    n->name);
4168                                         return JIM_ERR;
4169                                 }
4170                                 if (target->variant)
4171                                         free((void *)(target->variant));
4172                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4173                                 if (e != JIM_OK)
4174                                         return e;
4175                                 target->variant = strdup(cp);
4176                         } else {
4177                                 if (goi->argc != 0)
4178                                         goto no_params;
4179                         }
4180                         Jim_SetResultString(goi->interp, target->variant, -1);
4181                         /* loop for more */
4182                         break;
4183
4184                 case TCFG_COREID:
4185                         if (goi->isconfigure) {
4186                                 e = Jim_GetOpt_Wide(goi, &w);
4187                                 if (e != JIM_OK)
4188                                         return e;
4189                                 target->coreid = (int32_t)w;
4190                         } else {
4191                                 if (goi->argc != 0)
4192                                         goto no_params;
4193                         }
4194                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4195                         /* loop for more */
4196                         break;
4197
4198                 case TCFG_CHAIN_POSITION:
4199                         if (goi->isconfigure) {
4200                                 Jim_Obj *o_t;
4201                                 struct jtag_tap *tap;
4202                                 target_free_all_working_areas(target);
4203                                 e = Jim_GetOpt_Obj(goi, &o_t);
4204                                 if (e != JIM_OK)
4205                                         return e;
4206                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4207                                 if (tap == NULL)
4208                                         return JIM_ERR;
4209                                 /* make this exactly 1 or 0 */
4210                                 target->tap = tap;
4211                         } else {
4212                                 if (goi->argc != 0)
4213                                         goto no_params;
4214                         }
4215                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4216                         /* loop for more e*/
4217                         break;
4218                 case TCFG_DBGBASE:
4219                         if (goi->isconfigure) {
4220                                 e = Jim_GetOpt_Wide(goi, &w);
4221                                 if (e != JIM_OK)
4222                                         return e;
4223                                 target->dbgbase = (uint32_t)w;
4224                                 target->dbgbase_set = true;
4225                         } else {
4226                                 if (goi->argc != 0)
4227                                         goto no_params;
4228                         }
4229                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4230                         /* loop for more */
4231                         break;
4232
4233                 case TCFG_RTOS:
4234                         /* RTOS */
4235                         {
4236                                 int result = rtos_create(goi, target);
4237                                 if (result != JIM_OK)
4238                                         return result;
4239                         }
4240                         /* loop for more */
4241                         break;
4242                 }
4243         } /* while (goi->argc) */
4244
4245
4246                 /* done - we return */
4247         return JIM_OK;
4248 }
4249
4250 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4251 {
4252         Jim_GetOptInfo goi;
4253
4254         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4255         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4256         int need_args = 1 + goi.isconfigure;
4257         if (goi.argc < need_args) {
4258                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4259                         goi.isconfigure
4260                                 ? "missing: -option VALUE ..."
4261                                 : "missing: -option ...");
4262                 return JIM_ERR;
4263         }
4264         struct target *target = Jim_CmdPrivData(goi.interp);
4265         return target_configure(&goi, target);
4266 }
4267
4268 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4269 {
4270         const char *cmd_name = Jim_GetString(argv[0], NULL);
4271
4272         Jim_GetOptInfo goi;
4273         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4274
4275         if (goi.argc < 2 || goi.argc > 4) {
4276                 Jim_SetResultFormatted(goi.interp,
4277                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4278                 return JIM_ERR;
4279         }
4280
4281         target_write_fn fn;
4282         fn = target_write_memory_fast;
4283
4284         int e;
4285         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4286                 /* consume it */
4287                 struct Jim_Obj *obj;
4288                 e = Jim_GetOpt_Obj(&goi, &obj);
4289                 if (e != JIM_OK)
4290                         return e;
4291
4292                 fn = target_write_phys_memory;
4293         }
4294
4295         jim_wide a;
4296         e = Jim_GetOpt_Wide(&goi, &a);
4297         if (e != JIM_OK)
4298                 return e;
4299
4300         jim_wide b;
4301         e = Jim_GetOpt_Wide(&goi, &b);
4302         if (e != JIM_OK)
4303                 return e;
4304
4305         jim_wide c = 1;
4306         if (goi.argc == 1) {
4307                 e = Jim_GetOpt_Wide(&goi, &c);
4308                 if (e != JIM_OK)
4309                         return e;
4310         }
4311
4312         /* all args must be consumed */
4313         if (goi.argc != 0)
4314                 return JIM_ERR;
4315
4316         struct target *target = Jim_CmdPrivData(goi.interp);
4317         unsigned data_size;
4318         if (strcasecmp(cmd_name, "mww") == 0)
4319                 data_size = 4;
4320         else if (strcasecmp(cmd_name, "mwh") == 0)
4321                 data_size = 2;
4322         else if (strcasecmp(cmd_name, "mwb") == 0)
4323                 data_size = 1;
4324         else {
4325                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4326                 return JIM_ERR;
4327         }
4328
4329         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4330 }
4331
4332 /**
4333 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4334 *
4335 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4336 *         mdh [phys] <address> [<count>] - for 16 bit reads
4337 *         mdb [phys] <address> [<count>] - for  8 bit reads
4338 *
4339 *  Count defaults to 1.
4340 *
4341 *  Calls target_read_memory or target_read_phys_memory depending on
4342 *  the presence of the "phys" argument
4343 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4344 *  to int representation in base16.
4345 *  Also outputs read data in a human readable form using command_print
4346 *
4347 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4348 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4349 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4350 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4351 *  on success, with [<count>] number of elements.
4352 *
4353 *  In case of little endian target:
4354 *      Example1: "mdw 0x00000000"  returns "10123456"
4355 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4356 *      Example3: "mdb 0x00000000" returns "56"
4357 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4358 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4359 **/
4360 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4361 {
4362         const char *cmd_name = Jim_GetString(argv[0], NULL);
4363
4364         Jim_GetOptInfo goi;
4365         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4366
4367         if ((goi.argc < 1) || (goi.argc > 3)) {
4368                 Jim_SetResultFormatted(goi.interp,
4369                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4370                 return JIM_ERR;
4371         }
4372
4373         int (*fn)(struct target *target,
4374                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4375         fn = target_read_memory;
4376
4377         int e;
4378         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4379                 /* consume it */
4380                 struct Jim_Obj *obj;
4381                 e = Jim_GetOpt_Obj(&goi, &obj);
4382                 if (e != JIM_OK)
4383                         return e;
4384
4385                 fn = target_read_phys_memory;
4386         }
4387
4388         /* Read address parameter */
4389         jim_wide addr;
4390         e = Jim_GetOpt_Wide(&goi, &addr);
4391         if (e != JIM_OK)
4392                 return JIM_ERR;
4393
4394         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4395         jim_wide count;
4396         if (goi.argc == 1) {
4397                 e = Jim_GetOpt_Wide(&goi, &count);
4398                 if (e != JIM_OK)
4399                         return JIM_ERR;
4400         } else
4401                 count = 1;
4402
4403         /* all args must be consumed */
4404         if (goi.argc != 0)
4405                 return JIM_ERR;
4406
4407         jim_wide dwidth = 1; /* shut up gcc */
4408         if (strcasecmp(cmd_name, "mdw") == 0)
4409                 dwidth = 4;
4410         else if (strcasecmp(cmd_name, "mdh") == 0)
4411                 dwidth = 2;
4412         else if (strcasecmp(cmd_name, "mdb") == 0)
4413                 dwidth = 1;
4414         else {
4415                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4416                 return JIM_ERR;
4417         }
4418
4419         /* convert count to "bytes" */
4420         int bytes = count * dwidth;
4421
4422         struct target *target = Jim_CmdPrivData(goi.interp);
4423         uint8_t  target_buf[32];
4424         jim_wide x, y, z;
4425         while (bytes > 0) {
4426                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4427
4428                 /* Try to read out next block */
4429                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4430
4431                 if (e != ERROR_OK) {
4432                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4433                         return JIM_ERR;
4434                 }
4435
4436                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4437                 switch (dwidth) {
4438                 case 4:
4439                         for (x = 0; x < 16 && x < y; x += 4) {
4440                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4441                                 command_print_sameline(NULL, "%08x ", (int)(z));
4442                         }
4443                         for (; (x < 16) ; x += 4)
4444                                 command_print_sameline(NULL, "         ");
4445                         break;
4446                 case 2:
4447                         for (x = 0; x < 16 && x < y; x += 2) {
4448                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4449                                 command_print_sameline(NULL, "%04x ", (int)(z));
4450                         }
4451                         for (; (x < 16) ; x += 2)
4452                                 command_print_sameline(NULL, "     ");
4453                         break;
4454                 case 1:
4455                 default:
4456                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4457                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4458                                 command_print_sameline(NULL, "%02x ", (int)(z));
4459                         }
4460                         for (; (x < 16) ; x += 1)
4461                                 command_print_sameline(NULL, "   ");
4462                         break;
4463                 }
4464                 /* ascii-ify the bytes */
4465                 for (x = 0 ; x < y ; x++) {
4466                         if ((target_buf[x] >= 0x20) &&
4467                                 (target_buf[x] <= 0x7e)) {
4468                                 /* good */
4469                         } else {
4470                                 /* smack it */
4471                                 target_buf[x] = '.';
4472                         }
4473                 }
4474                 /* space pad  */
4475                 while (x < 16) {
4476                         target_buf[x] = ' ';
4477                         x++;
4478                 }
4479                 /* terminate */
4480                 target_buf[16] = 0;
4481                 /* print - with a newline */
4482                 command_print_sameline(NULL, "%s\n", target_buf);
4483                 /* NEXT... */
4484                 bytes -= 16;
4485                 addr += 16;
4486         }
4487         return JIM_OK;
4488 }
4489
4490 static int jim_target_mem2array(Jim_Interp *interp,
4491                 int argc, Jim_Obj *const *argv)
4492 {
4493         struct target *target = Jim_CmdPrivData(interp);
4494         return target_mem2array(interp, target, argc - 1, argv + 1);
4495 }
4496
4497 static int jim_target_array2mem(Jim_Interp *interp,
4498                 int argc, Jim_Obj *const *argv)
4499 {
4500         struct target *target = Jim_CmdPrivData(interp);
4501         return target_array2mem(interp, target, argc - 1, argv + 1);
4502 }
4503
4504 static int jim_target_tap_disabled(Jim_Interp *interp)
4505 {
4506         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4507         return JIM_ERR;
4508 }
4509
4510 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4511 {
4512         if (argc != 1) {
4513                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4514                 return JIM_ERR;
4515         }
4516         struct target *target = Jim_CmdPrivData(interp);
4517         if (!target->tap->enabled)
4518                 return jim_target_tap_disabled(interp);
4519
4520         int e = target->type->examine(target);
4521         if (e != ERROR_OK)
4522                 return JIM_ERR;
4523         return JIM_OK;
4524 }
4525
4526 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4527 {
4528         if (argc != 1) {
4529                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4530                 return JIM_ERR;
4531         }
4532         struct target *target = Jim_CmdPrivData(interp);
4533
4534         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4535                 return JIM_ERR;
4536
4537         return JIM_OK;
4538 }
4539
4540 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4541 {
4542         if (argc != 1) {
4543                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4544                 return JIM_ERR;
4545         }
4546         struct target *target = Jim_CmdPrivData(interp);
4547         if (!target->tap->enabled)
4548                 return jim_target_tap_disabled(interp);
4549
4550         int e;
4551         if (!(target_was_examined(target)))
4552                 e = ERROR_TARGET_NOT_EXAMINED;
4553         else
4554                 e = target->type->poll(target);
4555         if (e != ERROR_OK)
4556                 return JIM_ERR;
4557         return JIM_OK;
4558 }
4559
4560 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4561 {
4562         Jim_GetOptInfo goi;
4563         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4564
4565         if (goi.argc != 2) {
4566                 Jim_WrongNumArgs(interp, 0, argv,
4567                                 "([tT]|[fF]|assert|deassert) BOOL");
4568                 return JIM_ERR;
4569         }
4570
4571         Jim_Nvp *n;
4572         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4573         if (e != JIM_OK) {
4574                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4575                 return e;
4576         }
4577         /* the halt or not param */
4578         jim_wide a;
4579         e = Jim_GetOpt_Wide(&goi, &a);
4580         if (e != JIM_OK)
4581                 return e;
4582
4583         struct target *target = Jim_CmdPrivData(goi.interp);
4584         if (!target->tap->enabled)
4585                 return jim_target_tap_disabled(interp);
4586         if (!(target_was_examined(target))) {
4587                 LOG_ERROR("Target not examined yet");
4588                 return ERROR_TARGET_NOT_EXAMINED;
4589         }
4590         if (!target->type->assert_reset || !target->type->deassert_reset) {
4591                 Jim_SetResultFormatted(interp,
4592                                 "No target-specific reset for %s",
4593                                 target_name(target));
4594                 return JIM_ERR;
4595         }
4596         /* determine if we should halt or not. */
4597         target->reset_halt = !!a;
4598         /* When this happens - all workareas are invalid. */
4599         target_free_all_working_areas_restore(target, 0);
4600
4601         /* do the assert */
4602         if (n->value == NVP_ASSERT)
4603                 e = target->type->assert_reset(target);
4604         else
4605                 e = target->type->deassert_reset(target);
4606         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4607 }
4608
4609 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4610 {
4611         if (argc != 1) {
4612                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4613                 return JIM_ERR;
4614         }
4615         struct target *target = Jim_CmdPrivData(interp);
4616         if (!target->tap->enabled)
4617                 return jim_target_tap_disabled(interp);
4618         int e = target->type->halt(target);
4619         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4620 }
4621
4622 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4623 {
4624         Jim_GetOptInfo goi;
4625         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4626
4627         /* params:  <name>  statename timeoutmsecs */
4628         if (goi.argc != 2) {
4629                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4630                 Jim_SetResultFormatted(goi.interp,
4631                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4632                 return JIM_ERR;
4633         }
4634
4635         Jim_Nvp *n;
4636         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4637         if (e != JIM_OK) {
4638                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4639                 return e;
4640         }
4641         jim_wide a;
4642         e = Jim_GetOpt_Wide(&goi, &a);
4643         if (e != JIM_OK)
4644                 return e;
4645         struct target *target = Jim_CmdPrivData(interp);
4646         if (!target->tap->enabled)
4647                 return jim_target_tap_disabled(interp);
4648
4649         e = target_wait_state(target, n->value, a);
4650         if (e != ERROR_OK) {
4651                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4652                 Jim_SetResultFormatted(goi.interp,
4653                                 "target: %s wait %s fails (%#s) %s",
4654                                 target_name(target), n->name,
4655                                 eObj, target_strerror_safe(e));
4656                 Jim_FreeNewObj(interp, eObj);
4657                 return JIM_ERR;
4658         }
4659         return JIM_OK;
4660 }
4661 /* List for human, Events defined for this target.
4662  * scripts/programs should use 'name cget -event NAME'
4663  */
4664 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4665 {
4666         struct command_context *cmd_ctx = current_command_context(interp);
4667         assert(cmd_ctx != NULL);
4668
4669         struct target *target = Jim_CmdPrivData(interp);
4670         struct target_event_action *teap = target->event_action;
4671         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4672                                    target->target_number,
4673                                    target_name(target));
4674         command_print(cmd_ctx, "%-25s | Body", "Event");
4675         command_print(cmd_ctx, "------------------------- | "
4676                         "----------------------------------------");
4677         while (teap) {
4678                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4679                 command_print(cmd_ctx, "%-25s | %s",
4680                                 opt->name, Jim_GetString(teap->body, NULL));
4681                 teap = teap->next;
4682         }
4683         command_print(cmd_ctx, "***END***");
4684         return JIM_OK;
4685 }
4686 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4687 {
4688         if (argc != 1) {
4689                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4690                 return JIM_ERR;
4691         }
4692         struct target *target = Jim_CmdPrivData(interp);
4693         Jim_SetResultString(interp, target_state_name(target), -1);
4694         return JIM_OK;
4695 }
4696 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4697 {
4698         Jim_GetOptInfo goi;
4699         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4700         if (goi.argc != 1) {
4701                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4702                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4703                 return JIM_ERR;
4704         }
4705         Jim_Nvp *n;
4706         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4707         if (e != JIM_OK) {
4708                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4709                 return e;
4710         }
4711         struct target *target = Jim_CmdPrivData(interp);
4712         target_handle_event(target, n->value);
4713         return JIM_OK;
4714 }
4715
4716 static const struct command_registration target_instance_command_handlers[] = {
4717         {
4718                 .name = "configure",
4719                 .mode = COMMAND_CONFIG,
4720                 .jim_handler = jim_target_configure,
4721                 .help  = "configure a new target for use",
4722                 .usage = "[target_attribute ...]",
4723         },
4724         {
4725                 .name = "cget",
4726                 .mode = COMMAND_ANY,
4727                 .jim_handler = jim_target_configure,
4728                 .help  = "returns the specified target attribute",
4729                 .usage = "target_attribute",
4730         },
4731         {
4732                 .name = "mww",
4733                 .mode = COMMAND_EXEC,
4734                 .jim_handler = jim_target_mw,
4735                 .help = "Write 32-bit word(s) to target memory",
4736                 .usage = "address data [count]",
4737         },
4738         {
4739                 .name = "mwh",
4740                 .mode = COMMAND_EXEC,
4741                 .jim_handler = jim_target_mw,
4742                 .help = "Write 16-bit half-word(s) to target memory",
4743                 .usage = "address data [count]",
4744         },
4745         {
4746                 .name = "mwb",
4747                 .mode = COMMAND_EXEC,
4748                 .jim_handler = jim_target_mw,
4749                 .help = "Write byte(s) to target memory",
4750                 .usage = "address data [count]",
4751         },
4752         {
4753                 .name = "mdw",
4754                 .mode = COMMAND_EXEC,
4755                 .jim_handler = jim_target_md,
4756                 .help = "Display target memory as 32-bit words",
4757                 .usage = "address [count]",
4758         },
4759         {
4760                 .name = "mdh",
4761                 .mode = COMMAND_EXEC,
4762                 .jim_handler = jim_target_md,
4763                 .help = "Display target memory as 16-bit half-words",
4764                 .usage = "address [count]",
4765         },
4766         {
4767                 .name = "mdb",
4768                 .mode = COMMAND_EXEC,
4769                 .jim_handler = jim_target_md,
4770                 .help = "Display target memory as 8-bit bytes",
4771                 .usage = "address [count]",
4772         },
4773         {
4774                 .name = "array2mem",
4775                 .mode = COMMAND_EXEC,
4776                 .jim_handler = jim_target_array2mem,
4777                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4778                         "to target memory",
4779                 .usage = "arrayname bitwidth address count",
4780         },
4781         {
4782                 .name = "mem2array",
4783                 .mode = COMMAND_EXEC,
4784                 .jim_handler = jim_target_mem2array,
4785                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4786                         "from target memory",
4787                 .usage = "arrayname bitwidth address count",
4788         },
4789         {
4790                 .name = "eventlist",
4791                 .mode = COMMAND_EXEC,
4792                 .jim_handler = jim_target_event_list,
4793                 .help = "displays a table of events defined for this target",
4794         },
4795         {
4796                 .name = "curstate",
4797                 .mode = COMMAND_EXEC,
4798                 .jim_handler = jim_target_current_state,
4799                 .help = "displays the current state of this target",
4800         },
4801         {
4802                 .name = "arp_examine",
4803                 .mode = COMMAND_EXEC,
4804                 .jim_handler = jim_target_examine,
4805                 .help = "used internally for reset processing",
4806         },
4807         {
4808                 .name = "arp_halt_gdb",
4809                 .mode = COMMAND_EXEC,
4810                 .jim_handler = jim_target_halt_gdb,
4811                 .help = "used internally for reset processing to halt GDB",
4812         },
4813         {
4814                 .name = "arp_poll",
4815                 .mode = COMMAND_EXEC,
4816                 .jim_handler = jim_target_poll,
4817                 .help = "used internally for reset processing",
4818         },
4819         {
4820                 .name = "arp_reset",
4821                 .mode = COMMAND_EXEC,
4822                 .jim_handler = jim_target_reset,
4823                 .help = "used internally for reset processing",
4824         },
4825         {
4826                 .name = "arp_halt",
4827                 .mode = COMMAND_EXEC,
4828                 .jim_handler = jim_target_halt,
4829                 .help = "used internally for reset processing",
4830         },
4831         {
4832                 .name = "arp_waitstate",
4833                 .mode = COMMAND_EXEC,
4834                 .jim_handler = jim_target_wait_state,
4835                 .help = "used internally for reset processing",
4836         },
4837         {
4838                 .name = "invoke-event",
4839                 .mode = COMMAND_EXEC,
4840                 .jim_handler = jim_target_invoke_event,
4841                 .help = "invoke handler for specified event",
4842                 .usage = "event_name",
4843         },
4844         COMMAND_REGISTRATION_DONE
4845 };
4846
4847 static int target_create(Jim_GetOptInfo *goi)
4848 {
4849         Jim_Obj *new_cmd;
4850         Jim_Cmd *cmd;
4851         const char *cp;
4852         char *cp2;
4853         int e;
4854         int x;
4855         struct target *target;
4856         struct command_context *cmd_ctx;
4857
4858         cmd_ctx = current_command_context(goi->interp);
4859         assert(cmd_ctx != NULL);
4860
4861         if (goi->argc < 3) {
4862                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4863                 return JIM_ERR;
4864         }
4865
4866         /* COMMAND */
4867         Jim_GetOpt_Obj(goi, &new_cmd);
4868         /* does this command exist? */
4869         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4870         if (cmd) {
4871                 cp = Jim_GetString(new_cmd, NULL);
4872                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4873                 return JIM_ERR;
4874         }
4875
4876         /* TYPE */
4877         e = Jim_GetOpt_String(goi, &cp2, NULL);
4878         if (e != JIM_OK)
4879                 return e;
4880         cp = cp2;
4881         /* now does target type exist */
4882         for (x = 0 ; target_types[x] ; x++) {
4883                 if (0 == strcmp(cp, target_types[x]->name)) {
4884                         /* found */
4885                         break;
4886                 }
4887         }
4888         if (target_types[x] == NULL) {
4889                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4890                 for (x = 0 ; target_types[x] ; x++) {
4891                         if (target_types[x + 1]) {
4892                                 Jim_AppendStrings(goi->interp,
4893                                                                    Jim_GetResult(goi->interp),
4894                                                                    target_types[x]->name,
4895                                                                    ", ", NULL);
4896                         } else {
4897                                 Jim_AppendStrings(goi->interp,
4898                                                                    Jim_GetResult(goi->interp),
4899                                                                    " or ",
4900                                                                    target_types[x]->name, NULL);
4901                         }
4902                 }
4903                 return JIM_ERR;
4904         }
4905
4906         /* Create it */
4907         target = calloc(1, sizeof(struct target));
4908         /* set target number */
4909         target->target_number = new_target_number();
4910
4911         /* allocate memory for each unique target type */
4912         target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4913
4914         memcpy(target->type, target_types[x], sizeof(struct target_type));
4915
4916         /* will be set by "-endian" */
4917         target->endianness = TARGET_ENDIAN_UNKNOWN;
4918
4919         /* default to first core, override with -coreid */
4920         target->coreid = 0;
4921
4922         target->working_area        = 0x0;
4923         target->working_area_size   = 0x0;
4924         target->working_areas       = NULL;
4925         target->backup_working_area = 0;
4926
4927         target->state               = TARGET_UNKNOWN;
4928         target->debug_reason        = DBG_REASON_UNDEFINED;
4929         target->reg_cache           = NULL;
4930         target->breakpoints         = NULL;
4931         target->watchpoints         = NULL;
4932         target->next                = NULL;
4933         target->arch_info           = NULL;
4934
4935         target->display             = 1;
4936
4937         target->halt_issued                     = false;
4938
4939         /* initialize trace information */
4940         target->trace_info = malloc(sizeof(struct trace));
4941         target->trace_info->num_trace_points         = 0;
4942         target->trace_info->trace_points_size        = 0;
4943         target->trace_info->trace_points             = NULL;
4944         target->trace_info->trace_history_size       = 0;
4945         target->trace_info->trace_history            = NULL;
4946         target->trace_info->trace_history_pos        = 0;
4947         target->trace_info->trace_history_overflowed = 0;
4948
4949         target->dbgmsg          = NULL;
4950         target->dbg_msg_enabled = 0;
4951
4952         target->endianness = TARGET_ENDIAN_UNKNOWN;
4953
4954         target->rtos = NULL;
4955         target->rtos_auto_detect = false;
4956
4957         /* Do the rest as "configure" options */
4958         goi->isconfigure = 1;
4959         e = target_configure(goi, target);
4960
4961         if (target->tap == NULL) {
4962                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4963                 e = JIM_ERR;
4964         }
4965
4966         if (e != JIM_OK) {
4967                 free(target->type);
4968                 free(target);
4969                 return e;
4970         }
4971
4972         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4973                 /* default endian to little if not specified */
4974                 target->endianness = TARGET_LITTLE_ENDIAN;
4975         }
4976
4977         /* incase variant is not set */
4978         if (!target->variant)
4979                 target->variant = strdup("");
4980
4981         cp = Jim_GetString(new_cmd, NULL);
4982         target->cmd_name = strdup(cp);
4983
4984         /* create the target specific commands */
4985         if (target->type->commands) {
4986                 e = register_commands(cmd_ctx, NULL, target->type->commands);
4987                 if (ERROR_OK != e)
4988                         LOG_ERROR("unable to register '%s' commands", cp);
4989         }
4990         if (target->type->target_create)
4991                 (*(target->type->target_create))(target, goi->interp);
4992
4993         /* append to end of list */
4994         {
4995                 struct target **tpp;
4996                 tpp = &(all_targets);
4997                 while (*tpp)
4998                         tpp = &((*tpp)->next);
4999                 *tpp = target;
5000         }
5001
5002         /* now - create the new target name command */
5003         const const struct command_registration target_subcommands[] = {
5004                 {
5005                         .chain = target_instance_command_handlers,
5006                 },
5007                 {
5008                         .chain = target->type->commands,
5009                 },
5010                 COMMAND_REGISTRATION_DONE
5011         };
5012         const const struct command_registration target_commands[] = {
5013                 {
5014                         .name = cp,
5015                         .mode = COMMAND_ANY,
5016                         .help = "target command group",
5017                         .usage = "",
5018                         .chain = target_subcommands,
5019                 },
5020                 COMMAND_REGISTRATION_DONE
5021         };
5022         e = register_commands(cmd_ctx, NULL, target_commands);
5023         if (ERROR_OK != e)
5024                 return JIM_ERR;
5025
5026         struct command *c = command_find_in_context(cmd_ctx, cp);
5027         assert(c);
5028         command_set_handler_data(c, target);
5029
5030         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5031 }
5032
5033 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5034 {
5035         if (argc != 1) {
5036                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5037                 return JIM_ERR;
5038         }
5039         struct command_context *cmd_ctx = current_command_context(interp);
5040         assert(cmd_ctx != NULL);
5041
5042         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
5043         return JIM_OK;
5044 }
5045
5046 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5047 {
5048         if (argc != 1) {
5049                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5050                 return JIM_ERR;
5051         }
5052         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5053         for (unsigned x = 0; NULL != target_types[x]; x++) {
5054                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5055                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5056         }
5057         return JIM_OK;
5058 }
5059
5060 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5061 {
5062         if (argc != 1) {
5063                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5064                 return JIM_ERR;
5065         }
5066         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5067         struct target *target = all_targets;
5068         while (target) {
5069                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5070                         Jim_NewStringObj(interp, target_name(target), -1));
5071                 target = target->next;
5072         }
5073         return JIM_OK;
5074 }
5075
5076 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5077 {
5078         int i;
5079         const char *targetname;
5080         int retval, len;
5081         struct target *target = (struct target *) NULL;
5082         struct target_list *head, *curr, *new;
5083         curr = (struct target_list *) NULL;
5084         head = (struct target_list *) NULL;
5085
5086         retval = 0;
5087         LOG_DEBUG("%d", argc);
5088         /* argv[1] = target to associate in smp
5089          * argv[2] = target to assoicate in smp
5090          * argv[3] ...
5091          */
5092
5093         for (i = 1; i < argc; i++) {
5094
5095                 targetname = Jim_GetString(argv[i], &len);
5096                 target = get_target(targetname);
5097                 LOG_DEBUG("%s ", targetname);
5098                 if (target) {
5099                         new = malloc(sizeof(struct target_list));
5100                         new->target = target;
5101                         new->next = (struct target_list *)NULL;
5102                         if (head == (struct target_list *)NULL) {
5103                                 head = new;
5104                                 curr = head;
5105                         } else {
5106                                 curr->next = new;
5107                                 curr = new;
5108                         }
5109                 }
5110         }
5111         /*  now parse the list of cpu and put the target in smp mode*/
5112         curr = head;
5113
5114         while (curr != (struct target_list *)NULL) {
5115                 target = curr->target;
5116                 target->smp = 1;
5117                 target->head = head;
5118                 curr = curr->next;
5119         }
5120
5121         if (target && target->rtos)
5122                 retval = rtos_smp_init(head->target);
5123
5124         return retval;
5125 }
5126
5127
5128 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5129 {
5130         Jim_GetOptInfo goi;
5131         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5132         if (goi.argc < 3) {
5133                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5134                         "<name> <target_type> [<target_options> ...]");
5135                 return JIM_ERR;
5136         }
5137         return target_create(&goi);
5138 }
5139
5140 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5141 {
5142         Jim_GetOptInfo goi;
5143         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5144
5145         /* It's OK to remove this mechanism sometime after August 2010 or so */
5146         LOG_WARNING("don't use numbers as target identifiers; use names");
5147         if (goi.argc != 1) {
5148                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5149                 return JIM_ERR;
5150         }
5151         jim_wide w;
5152         int e = Jim_GetOpt_Wide(&goi, &w);
5153         if (e != JIM_OK)
5154                 return JIM_ERR;
5155
5156         struct target *target;
5157         for (target = all_targets; NULL != target; target = target->next) {
5158                 if (target->target_number != w)
5159                         continue;
5160
5161                 Jim_SetResultString(goi.interp, target_name(target), -1);
5162                 return JIM_OK;
5163         }
5164         {
5165                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5166                 Jim_SetResultFormatted(goi.interp,
5167                         "Target: number %#s does not exist", wObj);
5168                 Jim_FreeNewObj(interp, wObj);
5169         }
5170         return JIM_ERR;
5171 }
5172
5173 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5174 {
5175         if (argc != 1) {
5176                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5177                 return JIM_ERR;
5178         }
5179         unsigned count = 0;
5180         struct target *target = all_targets;
5181         while (NULL != target) {
5182                 target = target->next;
5183                 count++;
5184         }
5185         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5186         return JIM_OK;
5187 }
5188
5189 static const struct command_registration target_subcommand_handlers[] = {
5190         {
5191                 .name = "init",
5192                 .mode = COMMAND_CONFIG,
5193                 .handler = handle_target_init_command,
5194                 .help = "initialize targets",
5195         },
5196         {
5197                 .name = "create",
5198                 /* REVISIT this should be COMMAND_CONFIG ... */
5199                 .mode = COMMAND_ANY,
5200                 .jim_handler = jim_target_create,
5201                 .usage = "name type '-chain-position' name [options ...]",
5202                 .help = "Creates and selects a new target",
5203         },
5204         {
5205                 .name = "current",
5206                 .mode = COMMAND_ANY,
5207                 .jim_handler = jim_target_current,
5208                 .help = "Returns the currently selected target",
5209         },
5210         {
5211                 .name = "types",
5212                 .mode = COMMAND_ANY,
5213                 .jim_handler = jim_target_types,
5214                 .help = "Returns the available target types as "
5215                                 "a list of strings",
5216         },
5217         {
5218                 .name = "names",
5219                 .mode = COMMAND_ANY,
5220                 .jim_handler = jim_target_names,
5221                 .help = "Returns the names of all targets as a list of strings",
5222         },
5223         {
5224                 .name = "number",
5225                 .mode = COMMAND_ANY,
5226                 .jim_handler = jim_target_number,
5227                 .usage = "number",
5228                 .help = "Returns the name of the numbered target "
5229                         "(DEPRECATED)",
5230         },
5231         {
5232                 .name = "count",
5233                 .mode = COMMAND_ANY,
5234                 .jim_handler = jim_target_count,
5235                 .help = "Returns the number of targets as an integer "
5236                         "(DEPRECATED)",
5237         },
5238         {
5239                 .name = "smp",
5240                 .mode = COMMAND_ANY,
5241                 .jim_handler = jim_target_smp,
5242                 .usage = "targetname1 targetname2 ...",
5243                 .help = "gather several target in a smp list"
5244         },
5245
5246         COMMAND_REGISTRATION_DONE
5247 };
5248
5249 struct FastLoad {
5250         uint32_t address;
5251         uint8_t *data;
5252         int length;
5253
5254 };
5255
5256 static int fastload_num;
5257 static struct FastLoad *fastload;
5258
5259 static void free_fastload(void)
5260 {
5261         if (fastload != NULL) {
5262                 int i;
5263                 for (i = 0; i < fastload_num; i++) {
5264                         if (fastload[i].data)
5265                                 free(fastload[i].data);
5266                 }
5267                 free(fastload);
5268                 fastload = NULL;
5269         }
5270 }
5271
5272 COMMAND_HANDLER(handle_fast_load_image_command)
5273 {
5274         uint8_t *buffer;
5275         size_t buf_cnt;
5276         uint32_t image_size;
5277         uint32_t min_address = 0;
5278         uint32_t max_address = 0xffffffff;
5279         int i;
5280
5281         struct image image;
5282
5283         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5284                         &image, &min_address, &max_address);
5285         if (ERROR_OK != retval)
5286                 return retval;
5287
5288         struct duration bench;
5289         duration_start(&bench);
5290
5291         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5292         if (retval != ERROR_OK)
5293                 return retval;
5294
5295         image_size = 0x0;
5296         retval = ERROR_OK;
5297         fastload_num = image.num_sections;
5298         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5299         if (fastload == NULL) {
5300                 command_print(CMD_CTX, "out of memory");
5301                 image_close(&image);
5302                 return ERROR_FAIL;
5303         }
5304         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5305         for (i = 0; i < image.num_sections; i++) {
5306                 buffer = malloc(image.sections[i].size);
5307                 if (buffer == NULL) {
5308                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5309                                                   (int)(image.sections[i].size));
5310                         retval = ERROR_FAIL;
5311                         break;
5312                 }
5313
5314                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5315                 if (retval != ERROR_OK) {
5316                         free(buffer);
5317                         break;
5318                 }
5319
5320                 uint32_t offset = 0;
5321                 uint32_t length = buf_cnt;
5322
5323                 /* DANGER!!! beware of unsigned comparision here!!! */
5324
5325                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5326                                 (image.sections[i].base_address < max_address)) {
5327                         if (image.sections[i].base_address < min_address) {
5328                                 /* clip addresses below */
5329                                 offset += min_address-image.sections[i].base_address;
5330                                 length -= offset;
5331                         }
5332
5333                         if (image.sections[i].base_address + buf_cnt > max_address)
5334                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5335
5336                         fastload[i].address = image.sections[i].base_address + offset;
5337                         fastload[i].data = malloc(length);
5338                         if (fastload[i].data == NULL) {
5339                                 free(buffer);
5340                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5341                                                           length);
5342                                 retval = ERROR_FAIL;
5343                                 break;
5344                         }
5345                         memcpy(fastload[i].data, buffer + offset, length);
5346                         fastload[i].length = length;
5347
5348                         image_size += length;
5349                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5350                                                   (unsigned int)length,
5351                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5352                 }
5353
5354                 free(buffer);
5355         }
5356
5357         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5358                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5359                                 "in %fs (%0.3f KiB/s)", image_size,
5360                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5361
5362                 command_print(CMD_CTX,
5363                                 "WARNING: image has not been loaded to target!"
5364                                 "You can issue a 'fast_load' to finish loading.");
5365         }
5366
5367         image_close(&image);
5368
5369         if (retval != ERROR_OK)
5370                 free_fastload();
5371
5372         return retval;
5373 }
5374
5375 COMMAND_HANDLER(handle_fast_load_command)
5376 {
5377         if (CMD_ARGC > 0)
5378                 return ERROR_COMMAND_SYNTAX_ERROR;
5379         if (fastload == NULL) {
5380                 LOG_ERROR("No image in memory");
5381                 return ERROR_FAIL;
5382         }
5383         int i;
5384         int ms = timeval_ms();
5385         int size = 0;
5386         int retval = ERROR_OK;
5387         for (i = 0; i < fastload_num; i++) {
5388                 struct target *target = get_current_target(CMD_CTX);
5389                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5390                                           (unsigned int)(fastload[i].address),
5391                                           (unsigned int)(fastload[i].length));
5392                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5393                 if (retval != ERROR_OK)
5394                         break;
5395                 size += fastload[i].length;
5396         }
5397         if (retval == ERROR_OK) {
5398                 int after = timeval_ms();
5399                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5400         }
5401         return retval;
5402 }
5403
5404 static const struct command_registration target_command_handlers[] = {
5405         {
5406                 .name = "targets",
5407                 .handler = handle_targets_command,
5408                 .mode = COMMAND_ANY,
5409                 .help = "change current default target (one parameter) "
5410                         "or prints table of all targets (no parameters)",
5411                 .usage = "[target]",
5412         },
5413         {
5414                 .name = "target",
5415                 .mode = COMMAND_CONFIG,
5416                 .help = "configure target",
5417
5418                 .chain = target_subcommand_handlers,
5419         },
5420         COMMAND_REGISTRATION_DONE
5421 };
5422
5423 int target_register_commands(struct command_context *cmd_ctx)
5424 {
5425         return register_commands(cmd_ctx, NULL, target_command_handlers);
5426 }
5427
5428 static bool target_reset_nag = true;
5429
5430 bool get_target_reset_nag(void)
5431 {
5432         return target_reset_nag;
5433 }
5434
5435 COMMAND_HANDLER(handle_target_reset_nag)
5436 {
5437         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5438                         &target_reset_nag, "Nag after each reset about options to improve "
5439                         "performance");
5440 }
5441
5442 COMMAND_HANDLER(handle_ps_command)
5443 {
5444         struct target *target = get_current_target(CMD_CTX);
5445         char *display;
5446         if (target->state != TARGET_HALTED) {
5447                 LOG_INFO("target not halted !!");
5448                 return ERROR_OK;
5449         }
5450
5451         if ((target->rtos) && (target->rtos->type)
5452                         && (target->rtos->type->ps_command)) {
5453                 display = target->rtos->type->ps_command(target);
5454                 command_print(CMD_CTX, "%s", display);
5455                 free(display);
5456                 return ERROR_OK;
5457         } else {
5458                 LOG_INFO("failed");
5459                 return ERROR_TARGET_FAILURE;
5460         }
5461 }
5462
5463 static const struct command_registration target_exec_command_handlers[] = {
5464         {
5465                 .name = "fast_load_image",
5466                 .handler = handle_fast_load_image_command,
5467                 .mode = COMMAND_ANY,
5468                 .help = "Load image into server memory for later use by "
5469                         "fast_load; primarily for profiling",
5470                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5471                         "[min_address [max_length]]",
5472         },
5473         {
5474                 .name = "fast_load",
5475                 .handler = handle_fast_load_command,
5476                 .mode = COMMAND_EXEC,
5477                 .help = "loads active fast load image to current target "
5478                         "- mainly for profiling purposes",
5479                 .usage = "",
5480         },
5481         {
5482                 .name = "profile",
5483                 .handler = handle_profile_command,
5484                 .mode = COMMAND_EXEC,
5485                 .usage = "seconds filename",
5486                 .help = "profiling samples the CPU PC",
5487         },
5488         /** @todo don't register virt2phys() unless target supports it */
5489         {
5490                 .name = "virt2phys",
5491                 .handler = handle_virt2phys_command,
5492                 .mode = COMMAND_ANY,
5493                 .help = "translate a virtual address into a physical address",
5494                 .usage = "virtual_address",
5495         },
5496         {
5497                 .name = "reg",
5498                 .handler = handle_reg_command,
5499                 .mode = COMMAND_EXEC,
5500                 .help = "display or set a register; with no arguments, "
5501                         "displays all registers and their values",
5502                 .usage = "[(register_name|register_number) [value]]",
5503         },
5504         {
5505                 .name = "poll",
5506                 .handler = handle_poll_command,
5507                 .mode = COMMAND_EXEC,
5508                 .help = "poll target state; or reconfigure background polling",
5509                 .usage = "['on'|'off']",
5510         },
5511         {
5512                 .name = "wait_halt",
5513                 .handler = handle_wait_halt_command,
5514                 .mode = COMMAND_EXEC,
5515                 .help = "wait up to the specified number of milliseconds "
5516                         "(default 5) for a previously requested halt",
5517                 .usage = "[milliseconds]",
5518         },
5519         {
5520                 .name = "halt",
5521                 .handler = handle_halt_command,
5522                 .mode = COMMAND_EXEC,
5523                 .help = "request target to halt, then wait up to the specified"
5524                         "number of milliseconds (default 5) for it to complete",
5525                 .usage = "[milliseconds]",
5526         },
5527         {
5528                 .name = "resume",
5529                 .handler = handle_resume_command,
5530                 .mode = COMMAND_EXEC,
5531                 .help = "resume target execution from current PC or address",
5532                 .usage = "[address]",
5533         },
5534         {
5535                 .name = "reset",
5536                 .handler = handle_reset_command,
5537                 .mode = COMMAND_EXEC,
5538                 .usage = "[run|halt|init]",
5539                 .help = "Reset all targets into the specified mode."
5540                         "Default reset mode is run, if not given.",
5541         },
5542         {
5543                 .name = "soft_reset_halt",
5544                 .handler = handle_soft_reset_halt_command,
5545                 .mode = COMMAND_EXEC,
5546                 .usage = "",
5547                 .help = "halt the target and do a soft reset",
5548         },
5549         {
5550                 .name = "step",
5551                 .handler = handle_step_command,
5552                 .mode = COMMAND_EXEC,
5553                 .help = "step one instruction from current PC or address",
5554                 .usage = "[address]",
5555         },
5556         {
5557                 .name = "mdw",
5558                 .handler = handle_md_command,
5559                 .mode = COMMAND_EXEC,
5560                 .help = "display memory words",
5561                 .usage = "['phys'] address [count]",
5562         },
5563         {
5564                 .name = "mdh",
5565                 .handler = handle_md_command,
5566                 .mode = COMMAND_EXEC,
5567                 .help = "display memory half-words",
5568                 .usage = "['phys'] address [count]",
5569         },
5570         {
5571                 .name = "mdb",
5572                 .handler = handle_md_command,
5573                 .mode = COMMAND_EXEC,
5574                 .help = "display memory bytes",
5575                 .usage = "['phys'] address [count]",
5576         },
5577         {
5578                 .name = "mww",
5579                 .handler = handle_mw_command,
5580                 .mode = COMMAND_EXEC,
5581                 .help = "write memory word",
5582                 .usage = "['phys'] address value [count]",
5583         },
5584         {
5585                 .name = "mwh",
5586                 .handler = handle_mw_command,
5587                 .mode = COMMAND_EXEC,
5588                 .help = "write memory half-word",
5589                 .usage = "['phys'] address value [count]",
5590         },
5591         {
5592                 .name = "mwb",
5593                 .handler = handle_mw_command,
5594                 .mode = COMMAND_EXEC,
5595                 .help = "write memory byte",
5596                 .usage = "['phys'] address value [count]",
5597         },
5598         {
5599                 .name = "bp",
5600                 .handler = handle_bp_command,
5601                 .mode = COMMAND_EXEC,
5602                 .help = "list or set hardware or software breakpoint",
5603                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5604         },
5605         {
5606                 .name = "rbp",
5607                 .handler = handle_rbp_command,
5608                 .mode = COMMAND_EXEC,
5609                 .help = "remove breakpoint",
5610                 .usage = "address",
5611         },
5612         {
5613                 .name = "wp",
5614                 .handler = handle_wp_command,
5615                 .mode = COMMAND_EXEC,
5616                 .help = "list (no params) or create watchpoints",
5617                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5618         },
5619         {
5620                 .name = "rwp",
5621                 .handler = handle_rwp_command,
5622                 .mode = COMMAND_EXEC,
5623                 .help = "remove watchpoint",
5624                 .usage = "address",
5625         },
5626         {
5627                 .name = "load_image",
5628                 .handler = handle_load_image_command,
5629                 .mode = COMMAND_EXEC,
5630                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5631                         "[min_address] [max_length]",
5632         },
5633         {
5634                 .name = "dump_image",
5635                 .handler = handle_dump_image_command,
5636                 .mode = COMMAND_EXEC,
5637                 .usage = "filename address size",
5638         },
5639         {
5640                 .name = "verify_image",
5641                 .handler = handle_verify_image_command,
5642                 .mode = COMMAND_EXEC,
5643                 .usage = "filename [offset [type]]",
5644         },
5645         {
5646                 .name = "test_image",
5647                 .handler = handle_test_image_command,
5648                 .mode = COMMAND_EXEC,
5649                 .usage = "filename [offset [type]]",
5650         },
5651         {
5652                 .name = "mem2array",
5653                 .mode = COMMAND_EXEC,
5654                 .jim_handler = jim_mem2array,
5655                 .help = "read 8/16/32 bit memory and return as a TCL array "
5656                         "for script processing",
5657                 .usage = "arrayname bitwidth address count",
5658         },
5659         {
5660                 .name = "array2mem",
5661                 .mode = COMMAND_EXEC,
5662                 .jim_handler = jim_array2mem,
5663                 .help = "convert a TCL array to memory locations "
5664                         "and write the 8/16/32 bit values",
5665                 .usage = "arrayname bitwidth address count",
5666         },
5667         {
5668                 .name = "reset_nag",
5669                 .handler = handle_target_reset_nag,
5670                 .mode = COMMAND_ANY,
5671                 .help = "Nag after each reset about options that could have been "
5672                                 "enabled to improve performance. ",
5673                 .usage = "['enable'|'disable']",
5674         },
5675         {
5676                 .name = "ps",
5677                 .handler = handle_ps_command,
5678                 .mode = COMMAND_EXEC,
5679                 .help = "list all tasks ",
5680                 .usage = " ",
5681         },
5682
5683         COMMAND_REGISTRATION_DONE
5684 };
5685 static int target_register_user_commands(struct command_context *cmd_ctx)
5686 {
5687         int retval = ERROR_OK;
5688         retval = target_request_register_commands(cmd_ctx);
5689         if (retval != ERROR_OK)
5690                 return retval;
5691
5692         retval = trace_register_commands(cmd_ctx);
5693         if (retval != ERROR_OK)
5694                 return retval;
5695
5696
5697         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5698 }