target: remove handle_profile_command memory leak
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, uint32_t address,
63                 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, uint32_t address,
65                 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67                 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69                 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72                 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74                 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa8_target;
92 extern struct target_type cortexr4_target;
93 extern struct target_type arm11_target;
94 extern struct target_type mips_m4k_target;
95 extern struct target_type avr_target;
96 extern struct target_type dsp563xx_target;
97 extern struct target_type dsp5680xx_target;
98 extern struct target_type testee_target;
99 extern struct target_type avr32_ap7k_target;
100 extern struct target_type hla_target;
101 extern struct target_type nds32_v2_target;
102 extern struct target_type nds32_v3_target;
103 extern struct target_type nds32_v3m_target;
104 extern struct target_type or1k_target;
105 extern struct target_type quark_x10xx_target;
106
107 static struct target_type *target_types[] = {
108         &arm7tdmi_target,
109         &arm9tdmi_target,
110         &arm920t_target,
111         &arm720t_target,
112         &arm966e_target,
113         &arm946e_target,
114         &arm926ejs_target,
115         &fa526_target,
116         &feroceon_target,
117         &dragonite_target,
118         &xscale_target,
119         &cortexm_target,
120         &cortexa8_target,
121         &cortexr4_target,
122         &arm11_target,
123         &mips_m4k_target,
124         &avr_target,
125         &dsp563xx_target,
126         &dsp5680xx_target,
127         &testee_target,
128         &avr32_ap7k_target,
129         &hla_target,
130         &nds32_v2_target,
131         &nds32_v3_target,
132         &nds32_v3m_target,
133         &or1k_target,
134         &quark_x10xx_target,
135         NULL,
136 };
137
138 struct target *all_targets;
139 static struct target_event_callback *target_event_callbacks;
140 static struct target_timer_callback *target_timer_callbacks;
141 static const int polling_interval = 100;
142
143 static const Jim_Nvp nvp_assert[] = {
144         { .name = "assert", NVP_ASSERT },
145         { .name = "deassert", NVP_DEASSERT },
146         { .name = "T", NVP_ASSERT },
147         { .name = "F", NVP_DEASSERT },
148         { .name = "t", NVP_ASSERT },
149         { .name = "f", NVP_DEASSERT },
150         { .name = NULL, .value = -1 }
151 };
152
153 static const Jim_Nvp nvp_error_target[] = {
154         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
155         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
156         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
157         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
158         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
159         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
160         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
161         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
162         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
163         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
164         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
165         { .value = -1, .name = NULL }
166 };
167
168 static const char *target_strerror_safe(int err)
169 {
170         const Jim_Nvp *n;
171
172         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
173         if (n->name == NULL)
174                 return "unknown";
175         else
176                 return n->name;
177 }
178
179 static const Jim_Nvp nvp_target_event[] = {
180
181         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
182         { .value = TARGET_EVENT_HALTED, .name = "halted" },
183         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
184         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
185         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
186
187         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
188         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
189
190         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
191         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
192         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
193         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
194         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
195         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
196         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
197         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
198         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
199         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
200         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
201         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
202
203         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
204         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
205
206         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
207         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
208
209         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
210         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
211
212         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
213         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
214
215         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
216         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
217
218         { .name = NULL, .value = -1 }
219 };
220
221 static const Jim_Nvp nvp_target_state[] = {
222         { .name = "unknown", .value = TARGET_UNKNOWN },
223         { .name = "running", .value = TARGET_RUNNING },
224         { .name = "halted",  .value = TARGET_HALTED },
225         { .name = "reset",   .value = TARGET_RESET },
226         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
227         { .name = NULL, .value = -1 },
228 };
229
230 static const Jim_Nvp nvp_target_debug_reason[] = {
231         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
232         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
233         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
234         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
235         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
236         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
237         { .name = "program-exit"             , .value = DBG_REASON_EXIT },
238         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
239         { .name = NULL, .value = -1 },
240 };
241
242 static const Jim_Nvp nvp_target_endian[] = {
243         { .name = "big",    .value = TARGET_BIG_ENDIAN },
244         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
245         { .name = "be",     .value = TARGET_BIG_ENDIAN },
246         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
247         { .name = NULL,     .value = -1 },
248 };
249
250 static const Jim_Nvp nvp_reset_modes[] = {
251         { .name = "unknown", .value = RESET_UNKNOWN },
252         { .name = "run"    , .value = RESET_RUN },
253         { .name = "halt"   , .value = RESET_HALT },
254         { .name = "init"   , .value = RESET_INIT },
255         { .name = NULL     , .value = -1 },
256 };
257
258 const char *debug_reason_name(struct target *t)
259 {
260         const char *cp;
261
262         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
263                         t->debug_reason)->name;
264         if (!cp) {
265                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
266                 cp = "(*BUG*unknown*BUG*)";
267         }
268         return cp;
269 }
270
271 const char *target_state_name(struct target *t)
272 {
273         const char *cp;
274         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
275         if (!cp) {
276                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
277                 cp = "(*BUG*unknown*BUG*)";
278         }
279         return cp;
280 }
281
282 /* determine the number of the new target */
283 static int new_target_number(void)
284 {
285         struct target *t;
286         int x;
287
288         /* number is 0 based */
289         x = -1;
290         t = all_targets;
291         while (t) {
292                 if (x < t->target_number)
293                         x = t->target_number;
294                 t = t->next;
295         }
296         return x + 1;
297 }
298
299 /* read a uint64_t from a buffer in target memory endianness */
300 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
301 {
302         if (target->endianness == TARGET_LITTLE_ENDIAN)
303                 return le_to_h_u64(buffer);
304         else
305                 return be_to_h_u64(buffer);
306 }
307
308 /* read a uint32_t from a buffer in target memory endianness */
309 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
310 {
311         if (target->endianness == TARGET_LITTLE_ENDIAN)
312                 return le_to_h_u32(buffer);
313         else
314                 return be_to_h_u32(buffer);
315 }
316
317 /* read a uint24_t from a buffer in target memory endianness */
318 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
319 {
320         if (target->endianness == TARGET_LITTLE_ENDIAN)
321                 return le_to_h_u24(buffer);
322         else
323                 return be_to_h_u24(buffer);
324 }
325
326 /* read a uint16_t from a buffer in target memory endianness */
327 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
328 {
329         if (target->endianness == TARGET_LITTLE_ENDIAN)
330                 return le_to_h_u16(buffer);
331         else
332                 return be_to_h_u16(buffer);
333 }
334
335 /* read a uint8_t from a buffer in target memory endianness */
336 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
337 {
338         return *buffer & 0x0ff;
339 }
340
341 /* write a uint64_t to a buffer in target memory endianness */
342 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
343 {
344         if (target->endianness == TARGET_LITTLE_ENDIAN)
345                 h_u64_to_le(buffer, value);
346         else
347                 h_u64_to_be(buffer, value);
348 }
349
350 /* write a uint32_t to a buffer in target memory endianness */
351 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
352 {
353         if (target->endianness == TARGET_LITTLE_ENDIAN)
354                 h_u32_to_le(buffer, value);
355         else
356                 h_u32_to_be(buffer, value);
357 }
358
359 /* write a uint24_t to a buffer in target memory endianness */
360 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
361 {
362         if (target->endianness == TARGET_LITTLE_ENDIAN)
363                 h_u24_to_le(buffer, value);
364         else
365                 h_u24_to_be(buffer, value);
366 }
367
368 /* write a uint16_t to a buffer in target memory endianness */
369 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
370 {
371         if (target->endianness == TARGET_LITTLE_ENDIAN)
372                 h_u16_to_le(buffer, value);
373         else
374                 h_u16_to_be(buffer, value);
375 }
376
377 /* write a uint8_t to a buffer in target memory endianness */
378 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
379 {
380         *buffer = value;
381 }
382
383 /* write a uint64_t array to a buffer in target memory endianness */
384 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
385 {
386         uint32_t i;
387         for (i = 0; i < count; i++)
388                 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
389 }
390
391 /* write a uint32_t array to a buffer in target memory endianness */
392 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
393 {
394         uint32_t i;
395         for (i = 0; i < count; i++)
396                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
397 }
398
399 /* write a uint16_t array to a buffer in target memory endianness */
400 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
401 {
402         uint32_t i;
403         for (i = 0; i < count; i++)
404                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
405 }
406
407 /* write a uint64_t array to a buffer in target memory endianness */
408 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
409 {
410         uint32_t i;
411         for (i = 0; i < count; i++)
412                 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
413 }
414
415 /* write a uint32_t array to a buffer in target memory endianness */
416 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
417 {
418         uint32_t i;
419         for (i = 0; i < count; i++)
420                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
421 }
422
423 /* write a uint16_t array to a buffer in target memory endianness */
424 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
425 {
426         uint32_t i;
427         for (i = 0; i < count; i++)
428                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
429 }
430
431 /* return a pointer to a configured target; id is name or number */
432 struct target *get_target(const char *id)
433 {
434         struct target *target;
435
436         /* try as tcltarget name */
437         for (target = all_targets; target; target = target->next) {
438                 if (target_name(target) == NULL)
439                         continue;
440                 if (strcmp(id, target_name(target)) == 0)
441                         return target;
442         }
443
444         /* It's OK to remove this fallback sometime after August 2010 or so */
445
446         /* no match, try as number */
447         unsigned num;
448         if (parse_uint(id, &num) != ERROR_OK)
449                 return NULL;
450
451         for (target = all_targets; target; target = target->next) {
452                 if (target->target_number == (int)num) {
453                         LOG_WARNING("use '%s' as target identifier, not '%u'",
454                                         target_name(target), num);
455                         return target;
456                 }
457         }
458
459         return NULL;
460 }
461
462 /* returns a pointer to the n-th configured target */
463 static struct target *get_target_by_num(int num)
464 {
465         struct target *target = all_targets;
466
467         while (target) {
468                 if (target->target_number == num)
469                         return target;
470                 target = target->next;
471         }
472
473         return NULL;
474 }
475
476 struct target *get_current_target(struct command_context *cmd_ctx)
477 {
478         struct target *target = get_target_by_num(cmd_ctx->current_target);
479
480         if (target == NULL) {
481                 LOG_ERROR("BUG: current_target out of bounds");
482                 exit(-1);
483         }
484
485         return target;
486 }
487
488 int target_poll(struct target *target)
489 {
490         int retval;
491
492         /* We can't poll until after examine */
493         if (!target_was_examined(target)) {
494                 /* Fail silently lest we pollute the log */
495                 return ERROR_FAIL;
496         }
497
498         retval = target->type->poll(target);
499         if (retval != ERROR_OK)
500                 return retval;
501
502         if (target->halt_issued) {
503                 if (target->state == TARGET_HALTED)
504                         target->halt_issued = false;
505                 else {
506                         long long t = timeval_ms() - target->halt_issued_time;
507                         if (t > DEFAULT_HALT_TIMEOUT) {
508                                 target->halt_issued = false;
509                                 LOG_INFO("Halt timed out, wake up GDB.");
510                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
511                         }
512                 }
513         }
514
515         return ERROR_OK;
516 }
517
518 int target_halt(struct target *target)
519 {
520         int retval;
521         /* We can't poll until after examine */
522         if (!target_was_examined(target)) {
523                 LOG_ERROR("Target not examined yet");
524                 return ERROR_FAIL;
525         }
526
527         retval = target->type->halt(target);
528         if (retval != ERROR_OK)
529                 return retval;
530
531         target->halt_issued = true;
532         target->halt_issued_time = timeval_ms();
533
534         return ERROR_OK;
535 }
536
537 /**
538  * Make the target (re)start executing using its saved execution
539  * context (possibly with some modifications).
540  *
541  * @param target Which target should start executing.
542  * @param current True to use the target's saved program counter instead
543  *      of the address parameter
544  * @param address Optionally used as the program counter.
545  * @param handle_breakpoints True iff breakpoints at the resumption PC
546  *      should be skipped.  (For example, maybe execution was stopped by
547  *      such a breakpoint, in which case it would be counterprodutive to
548  *      let it re-trigger.
549  * @param debug_execution False if all working areas allocated by OpenOCD
550  *      should be released and/or restored to their original contents.
551  *      (This would for example be true to run some downloaded "helper"
552  *      algorithm code, which resides in one such working buffer and uses
553  *      another for data storage.)
554  *
555  * @todo Resolve the ambiguity about what the "debug_execution" flag
556  * signifies.  For example, Target implementations don't agree on how
557  * it relates to invalidation of the register cache, or to whether
558  * breakpoints and watchpoints should be enabled.  (It would seem wrong
559  * to enable breakpoints when running downloaded "helper" algorithms
560  * (debug_execution true), since the breakpoints would be set to match
561  * target firmware being debugged, not the helper algorithm.... and
562  * enabling them could cause such helpers to malfunction (for example,
563  * by overwriting data with a breakpoint instruction.  On the other
564  * hand the infrastructure for running such helpers might use this
565  * procedure but rely on hardware breakpoint to detect termination.)
566  */
567 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
568 {
569         int retval;
570
571         /* We can't poll until after examine */
572         if (!target_was_examined(target)) {
573                 LOG_ERROR("Target not examined yet");
574                 return ERROR_FAIL;
575         }
576
577         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
578
579         /* note that resume *must* be asynchronous. The CPU can halt before
580          * we poll. The CPU can even halt at the current PC as a result of
581          * a software breakpoint being inserted by (a bug?) the application.
582          */
583         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
584         if (retval != ERROR_OK)
585                 return retval;
586
587         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
588
589         return retval;
590 }
591
592 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
593 {
594         char buf[100];
595         int retval;
596         Jim_Nvp *n;
597         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
598         if (n->name == NULL) {
599                 LOG_ERROR("invalid reset mode");
600                 return ERROR_FAIL;
601         }
602
603         /* disable polling during reset to make reset event scripts
604          * more predictable, i.e. dr/irscan & pathmove in events will
605          * not have JTAG operations injected into the middle of a sequence.
606          */
607         bool save_poll = jtag_poll_get_enabled();
608
609         jtag_poll_set_enabled(false);
610
611         sprintf(buf, "ocd_process_reset %s", n->name);
612         retval = Jim_Eval(cmd_ctx->interp, buf);
613
614         jtag_poll_set_enabled(save_poll);
615
616         if (retval != JIM_OK) {
617                 Jim_MakeErrorMessage(cmd_ctx->interp);
618                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
619                 return ERROR_FAIL;
620         }
621
622         /* We want any events to be processed before the prompt */
623         retval = target_call_timer_callbacks_now();
624
625         struct target *target;
626         for (target = all_targets; target; target = target->next) {
627                 target->type->check_reset(target);
628                 target->running_alg = false;
629         }
630
631         return retval;
632 }
633
634 static int identity_virt2phys(struct target *target,
635                 uint32_t virtual, uint32_t *physical)
636 {
637         *physical = virtual;
638         return ERROR_OK;
639 }
640
641 static int no_mmu(struct target *target, int *enabled)
642 {
643         *enabled = 0;
644         return ERROR_OK;
645 }
646
647 static int default_examine(struct target *target)
648 {
649         target_set_examined(target);
650         return ERROR_OK;
651 }
652
653 /* no check by default */
654 static int default_check_reset(struct target *target)
655 {
656         return ERROR_OK;
657 }
658
659 int target_examine_one(struct target *target)
660 {
661         return target->type->examine(target);
662 }
663
664 static int jtag_enable_callback(enum jtag_event event, void *priv)
665 {
666         struct target *target = priv;
667
668         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
669                 return ERROR_OK;
670
671         jtag_unregister_event_callback(jtag_enable_callback, target);
672
673         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
674
675         int retval = target_examine_one(target);
676         if (retval != ERROR_OK)
677                 return retval;
678
679         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
680
681         return retval;
682 }
683
684 /* Targets that correctly implement init + examine, i.e.
685  * no communication with target during init:
686  *
687  * XScale
688  */
689 int target_examine(void)
690 {
691         int retval = ERROR_OK;
692         struct target *target;
693
694         for (target = all_targets; target; target = target->next) {
695                 /* defer examination, but don't skip it */
696                 if (!target->tap->enabled) {
697                         jtag_register_event_callback(jtag_enable_callback,
698                                         target);
699                         continue;
700                 }
701
702                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
703
704                 retval = target_examine_one(target);
705                 if (retval != ERROR_OK)
706                         return retval;
707
708                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
709         }
710         return retval;
711 }
712
713 const char *target_type_name(struct target *target)
714 {
715         return target->type->name;
716 }
717
718 static int target_soft_reset_halt(struct target *target)
719 {
720         if (!target_was_examined(target)) {
721                 LOG_ERROR("Target not examined yet");
722                 return ERROR_FAIL;
723         }
724         if (!target->type->soft_reset_halt) {
725                 LOG_ERROR("Target %s does not support soft_reset_halt",
726                                 target_name(target));
727                 return ERROR_FAIL;
728         }
729         return target->type->soft_reset_halt(target);
730 }
731
732 /**
733  * Downloads a target-specific native code algorithm to the target,
734  * and executes it.  * Note that some targets may need to set up, enable,
735  * and tear down a breakpoint (hard or * soft) to detect algorithm
736  * termination, while others may support  lower overhead schemes where
737  * soft breakpoints embedded in the algorithm automatically terminate the
738  * algorithm.
739  *
740  * @param target used to run the algorithm
741  * @param arch_info target-specific description of the algorithm.
742  */
743 int target_run_algorithm(struct target *target,
744                 int num_mem_params, struct mem_param *mem_params,
745                 int num_reg_params, struct reg_param *reg_param,
746                 uint32_t entry_point, uint32_t exit_point,
747                 int timeout_ms, void *arch_info)
748 {
749         int retval = ERROR_FAIL;
750
751         if (!target_was_examined(target)) {
752                 LOG_ERROR("Target not examined yet");
753                 goto done;
754         }
755         if (!target->type->run_algorithm) {
756                 LOG_ERROR("Target type '%s' does not support %s",
757                                 target_type_name(target), __func__);
758                 goto done;
759         }
760
761         target->running_alg = true;
762         retval = target->type->run_algorithm(target,
763                         num_mem_params, mem_params,
764                         num_reg_params, reg_param,
765                         entry_point, exit_point, timeout_ms, arch_info);
766         target->running_alg = false;
767
768 done:
769         return retval;
770 }
771
772 /**
773  * Downloads a target-specific native code algorithm to the target,
774  * executes and leaves it running.
775  *
776  * @param target used to run the algorithm
777  * @param arch_info target-specific description of the algorithm.
778  */
779 int target_start_algorithm(struct target *target,
780                 int num_mem_params, struct mem_param *mem_params,
781                 int num_reg_params, struct reg_param *reg_params,
782                 uint32_t entry_point, uint32_t exit_point,
783                 void *arch_info)
784 {
785         int retval = ERROR_FAIL;
786
787         if (!target_was_examined(target)) {
788                 LOG_ERROR("Target not examined yet");
789                 goto done;
790         }
791         if (!target->type->start_algorithm) {
792                 LOG_ERROR("Target type '%s' does not support %s",
793                                 target_type_name(target), __func__);
794                 goto done;
795         }
796         if (target->running_alg) {
797                 LOG_ERROR("Target is already running an algorithm");
798                 goto done;
799         }
800
801         target->running_alg = true;
802         retval = target->type->start_algorithm(target,
803                         num_mem_params, mem_params,
804                         num_reg_params, reg_params,
805                         entry_point, exit_point, arch_info);
806
807 done:
808         return retval;
809 }
810
811 /**
812  * Waits for an algorithm started with target_start_algorithm() to complete.
813  *
814  * @param target used to run the algorithm
815  * @param arch_info target-specific description of the algorithm.
816  */
817 int target_wait_algorithm(struct target *target,
818                 int num_mem_params, struct mem_param *mem_params,
819                 int num_reg_params, struct reg_param *reg_params,
820                 uint32_t exit_point, int timeout_ms,
821                 void *arch_info)
822 {
823         int retval = ERROR_FAIL;
824
825         if (!target->type->wait_algorithm) {
826                 LOG_ERROR("Target type '%s' does not support %s",
827                                 target_type_name(target), __func__);
828                 goto done;
829         }
830         if (!target->running_alg) {
831                 LOG_ERROR("Target is not running an algorithm");
832                 goto done;
833         }
834
835         retval = target->type->wait_algorithm(target,
836                         num_mem_params, mem_params,
837                         num_reg_params, reg_params,
838                         exit_point, timeout_ms, arch_info);
839         if (retval != ERROR_TARGET_TIMEOUT)
840                 target->running_alg = false;
841
842 done:
843         return retval;
844 }
845
846 /**
847  * Executes a target-specific native code algorithm in the target.
848  * It differs from target_run_algorithm in that the algorithm is asynchronous.
849  * Because of this it requires an compliant algorithm:
850  * see contrib/loaders/flash/stm32f1x.S for example.
851  *
852  * @param target used to run the algorithm
853  */
854
855 int target_run_flash_async_algorithm(struct target *target,
856                 const uint8_t *buffer, uint32_t count, int block_size,
857                 int num_mem_params, struct mem_param *mem_params,
858                 int num_reg_params, struct reg_param *reg_params,
859                 uint32_t buffer_start, uint32_t buffer_size,
860                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
861 {
862         int retval;
863         int timeout = 0;
864
865         /* Set up working area. First word is write pointer, second word is read pointer,
866          * rest is fifo data area. */
867         uint32_t wp_addr = buffer_start;
868         uint32_t rp_addr = buffer_start + 4;
869         uint32_t fifo_start_addr = buffer_start + 8;
870         uint32_t fifo_end_addr = buffer_start + buffer_size;
871
872         uint32_t wp = fifo_start_addr;
873         uint32_t rp = fifo_start_addr;
874
875         /* validate block_size is 2^n */
876         assert(!block_size || !(block_size & (block_size - 1)));
877
878         retval = target_write_u32(target, wp_addr, wp);
879         if (retval != ERROR_OK)
880                 return retval;
881         retval = target_write_u32(target, rp_addr, rp);
882         if (retval != ERROR_OK)
883                 return retval;
884
885         /* Start up algorithm on target and let it idle while writing the first chunk */
886         retval = target_start_algorithm(target, num_mem_params, mem_params,
887                         num_reg_params, reg_params,
888                         entry_point,
889                         exit_point,
890                         arch_info);
891
892         if (retval != ERROR_OK) {
893                 LOG_ERROR("error starting target flash write algorithm");
894                 return retval;
895         }
896
897         while (count > 0) {
898
899                 retval = target_read_u32(target, rp_addr, &rp);
900                 if (retval != ERROR_OK) {
901                         LOG_ERROR("failed to get read pointer");
902                         break;
903                 }
904
905                 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
906
907                 if (rp == 0) {
908                         LOG_ERROR("flash write algorithm aborted by target");
909                         retval = ERROR_FLASH_OPERATION_FAILED;
910                         break;
911                 }
912
913                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
914                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
915                         break;
916                 }
917
918                 /* Count the number of bytes available in the fifo without
919                  * crossing the wrap around. Make sure to not fill it completely,
920                  * because that would make wp == rp and that's the empty condition. */
921                 uint32_t thisrun_bytes;
922                 if (rp > wp)
923                         thisrun_bytes = rp - wp - block_size;
924                 else if (rp > fifo_start_addr)
925                         thisrun_bytes = fifo_end_addr - wp;
926                 else
927                         thisrun_bytes = fifo_end_addr - wp - block_size;
928
929                 if (thisrun_bytes == 0) {
930                         /* Throttle polling a bit if transfer is (much) faster than flash
931                          * programming. The exact delay shouldn't matter as long as it's
932                          * less than buffer size / flash speed. This is very unlikely to
933                          * run when using high latency connections such as USB. */
934                         alive_sleep(10);
935
936                         /* to stop an infinite loop on some targets check and increment a timeout
937                          * this issue was observed on a stellaris using the new ICDI interface */
938                         if (timeout++ >= 500) {
939                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
940                                 return ERROR_FLASH_OPERATION_FAILED;
941                         }
942                         continue;
943                 }
944
945                 /* reset our timeout */
946                 timeout = 0;
947
948                 /* Limit to the amount of data we actually want to write */
949                 if (thisrun_bytes > count * block_size)
950                         thisrun_bytes = count * block_size;
951
952                 /* Write data to fifo */
953                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
954                 if (retval != ERROR_OK)
955                         break;
956
957                 /* Update counters and wrap write pointer */
958                 buffer += thisrun_bytes;
959                 count -= thisrun_bytes / block_size;
960                 wp += thisrun_bytes;
961                 if (wp >= fifo_end_addr)
962                         wp = fifo_start_addr;
963
964                 /* Store updated write pointer to target */
965                 retval = target_write_u32(target, wp_addr, wp);
966                 if (retval != ERROR_OK)
967                         break;
968         }
969
970         if (retval != ERROR_OK) {
971                 /* abort flash write algorithm on target */
972                 target_write_u32(target, wp_addr, 0);
973         }
974
975         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
976                         num_reg_params, reg_params,
977                         exit_point,
978                         10000,
979                         arch_info);
980
981         if (retval2 != ERROR_OK) {
982                 LOG_ERROR("error waiting for target flash write algorithm");
983                 retval = retval2;
984         }
985
986         return retval;
987 }
988
989 int target_read_memory(struct target *target,
990                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
991 {
992         if (!target_was_examined(target)) {
993                 LOG_ERROR("Target not examined yet");
994                 return ERROR_FAIL;
995         }
996         return target->type->read_memory(target, address, size, count, buffer);
997 }
998
999 int target_read_phys_memory(struct target *target,
1000                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1001 {
1002         if (!target_was_examined(target)) {
1003                 LOG_ERROR("Target not examined yet");
1004                 return ERROR_FAIL;
1005         }
1006         return target->type->read_phys_memory(target, address, size, count, buffer);
1007 }
1008
1009 int target_write_memory(struct target *target,
1010                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1011 {
1012         if (!target_was_examined(target)) {
1013                 LOG_ERROR("Target not examined yet");
1014                 return ERROR_FAIL;
1015         }
1016         return target->type->write_memory(target, address, size, count, buffer);
1017 }
1018
1019 int target_write_phys_memory(struct target *target,
1020                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1021 {
1022         if (!target_was_examined(target)) {
1023                 LOG_ERROR("Target not examined yet");
1024                 return ERROR_FAIL;
1025         }
1026         return target->type->write_phys_memory(target, address, size, count, buffer);
1027 }
1028
1029 int target_add_breakpoint(struct target *target,
1030                 struct breakpoint *breakpoint)
1031 {
1032         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1033                 LOG_WARNING("target %s is not halted", target_name(target));
1034                 return ERROR_TARGET_NOT_HALTED;
1035         }
1036         return target->type->add_breakpoint(target, breakpoint);
1037 }
1038
1039 int target_add_context_breakpoint(struct target *target,
1040                 struct breakpoint *breakpoint)
1041 {
1042         if (target->state != TARGET_HALTED) {
1043                 LOG_WARNING("target %s is not halted", target_name(target));
1044                 return ERROR_TARGET_NOT_HALTED;
1045         }
1046         return target->type->add_context_breakpoint(target, breakpoint);
1047 }
1048
1049 int target_add_hybrid_breakpoint(struct target *target,
1050                 struct breakpoint *breakpoint)
1051 {
1052         if (target->state != TARGET_HALTED) {
1053                 LOG_WARNING("target %s is not halted", target_name(target));
1054                 return ERROR_TARGET_NOT_HALTED;
1055         }
1056         return target->type->add_hybrid_breakpoint(target, breakpoint);
1057 }
1058
1059 int target_remove_breakpoint(struct target *target,
1060                 struct breakpoint *breakpoint)
1061 {
1062         return target->type->remove_breakpoint(target, breakpoint);
1063 }
1064
1065 int target_add_watchpoint(struct target *target,
1066                 struct watchpoint *watchpoint)
1067 {
1068         if (target->state != TARGET_HALTED) {
1069                 LOG_WARNING("target %s is not halted", target_name(target));
1070                 return ERROR_TARGET_NOT_HALTED;
1071         }
1072         return target->type->add_watchpoint(target, watchpoint);
1073 }
1074 int target_remove_watchpoint(struct target *target,
1075                 struct watchpoint *watchpoint)
1076 {
1077         return target->type->remove_watchpoint(target, watchpoint);
1078 }
1079 int target_hit_watchpoint(struct target *target,
1080                 struct watchpoint **hit_watchpoint)
1081 {
1082         if (target->state != TARGET_HALTED) {
1083                 LOG_WARNING("target %s is not halted", target->cmd_name);
1084                 return ERROR_TARGET_NOT_HALTED;
1085         }
1086
1087         if (target->type->hit_watchpoint == NULL) {
1088                 /* For backward compatible, if hit_watchpoint is not implemented,
1089                  * return ERROR_FAIL such that gdb_server will not take the nonsense
1090                  * information. */
1091                 return ERROR_FAIL;
1092         }
1093
1094         return target->type->hit_watchpoint(target, hit_watchpoint);
1095 }
1096
1097 int target_get_gdb_reg_list(struct target *target,
1098                 struct reg **reg_list[], int *reg_list_size,
1099                 enum target_register_class reg_class)
1100 {
1101         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1102 }
1103 int target_step(struct target *target,
1104                 int current, uint32_t address, int handle_breakpoints)
1105 {
1106         return target->type->step(target, current, address, handle_breakpoints);
1107 }
1108
1109 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1110 {
1111         if (target->state != TARGET_HALTED) {
1112                 LOG_WARNING("target %s is not halted", target->cmd_name);
1113                 return ERROR_TARGET_NOT_HALTED;
1114         }
1115         return target->type->get_gdb_fileio_info(target, fileio_info);
1116 }
1117
1118 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1119 {
1120         if (target->state != TARGET_HALTED) {
1121                 LOG_WARNING("target %s is not halted", target->cmd_name);
1122                 return ERROR_TARGET_NOT_HALTED;
1123         }
1124         return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1125 }
1126
1127 int target_profiling(struct target *target, uint32_t *samples,
1128                         uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1129 {
1130         if (target->state != TARGET_HALTED) {
1131                 LOG_WARNING("target %s is not halted", target->cmd_name);
1132                 return ERROR_TARGET_NOT_HALTED;
1133         }
1134         return target->type->profiling(target, samples, max_num_samples,
1135                         num_samples, seconds);
1136 }
1137
1138 /**
1139  * Reset the @c examined flag for the given target.
1140  * Pure paranoia -- targets are zeroed on allocation.
1141  */
1142 static void target_reset_examined(struct target *target)
1143 {
1144         target->examined = false;
1145 }
1146
1147 static int err_read_phys_memory(struct target *target, uint32_t address,
1148                 uint32_t size, uint32_t count, uint8_t *buffer)
1149 {
1150         LOG_ERROR("Not implemented: %s", __func__);
1151         return ERROR_FAIL;
1152 }
1153
1154 static int err_write_phys_memory(struct target *target, uint32_t address,
1155                 uint32_t size, uint32_t count, const uint8_t *buffer)
1156 {
1157         LOG_ERROR("Not implemented: %s", __func__);
1158         return ERROR_FAIL;
1159 }
1160
1161 static int handle_target(void *priv);
1162
1163 static int target_init_one(struct command_context *cmd_ctx,
1164                 struct target *target)
1165 {
1166         target_reset_examined(target);
1167
1168         struct target_type *type = target->type;
1169         if (type->examine == NULL)
1170                 type->examine = default_examine;
1171
1172         if (type->check_reset == NULL)
1173                 type->check_reset = default_check_reset;
1174
1175         assert(type->init_target != NULL);
1176
1177         int retval = type->init_target(cmd_ctx, target);
1178         if (ERROR_OK != retval) {
1179                 LOG_ERROR("target '%s' init failed", target_name(target));
1180                 return retval;
1181         }
1182
1183         /* Sanity-check MMU support ... stub in what we must, to help
1184          * implement it in stages, but warn if we need to do so.
1185          */
1186         if (type->mmu) {
1187                 if (type->write_phys_memory == NULL) {
1188                         LOG_ERROR("type '%s' is missing write_phys_memory",
1189                                         type->name);
1190                         type->write_phys_memory = err_write_phys_memory;
1191                 }
1192                 if (type->read_phys_memory == NULL) {
1193                         LOG_ERROR("type '%s' is missing read_phys_memory",
1194                                         type->name);
1195                         type->read_phys_memory = err_read_phys_memory;
1196                 }
1197                 if (type->virt2phys == NULL) {
1198                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1199                         type->virt2phys = identity_virt2phys;
1200                 }
1201         } else {
1202                 /* Make sure no-MMU targets all behave the same:  make no
1203                  * distinction between physical and virtual addresses, and
1204                  * ensure that virt2phys() is always an identity mapping.
1205                  */
1206                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1207                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1208
1209                 type->mmu = no_mmu;
1210                 type->write_phys_memory = type->write_memory;
1211                 type->read_phys_memory = type->read_memory;
1212                 type->virt2phys = identity_virt2phys;
1213         }
1214
1215         if (target->type->read_buffer == NULL)
1216                 target->type->read_buffer = target_read_buffer_default;
1217
1218         if (target->type->write_buffer == NULL)
1219                 target->type->write_buffer = target_write_buffer_default;
1220
1221         if (target->type->get_gdb_fileio_info == NULL)
1222                 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1223
1224         if (target->type->gdb_fileio_end == NULL)
1225                 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1226
1227         if (target->type->profiling == NULL)
1228                 target->type->profiling = target_profiling_default;
1229
1230         return ERROR_OK;
1231 }
1232
1233 static int target_init(struct command_context *cmd_ctx)
1234 {
1235         struct target *target;
1236         int retval;
1237
1238         for (target = all_targets; target; target = target->next) {
1239                 retval = target_init_one(cmd_ctx, target);
1240                 if (ERROR_OK != retval)
1241                         return retval;
1242         }
1243
1244         if (!all_targets)
1245                 return ERROR_OK;
1246
1247         retval = target_register_user_commands(cmd_ctx);
1248         if (ERROR_OK != retval)
1249                 return retval;
1250
1251         retval = target_register_timer_callback(&handle_target,
1252                         polling_interval, 1, cmd_ctx->interp);
1253         if (ERROR_OK != retval)
1254                 return retval;
1255
1256         return ERROR_OK;
1257 }
1258
1259 COMMAND_HANDLER(handle_target_init_command)
1260 {
1261         int retval;
1262
1263         if (CMD_ARGC != 0)
1264                 return ERROR_COMMAND_SYNTAX_ERROR;
1265
1266         static bool target_initialized;
1267         if (target_initialized) {
1268                 LOG_INFO("'target init' has already been called");
1269                 return ERROR_OK;
1270         }
1271         target_initialized = true;
1272
1273         retval = command_run_line(CMD_CTX, "init_targets");
1274         if (ERROR_OK != retval)
1275                 return retval;
1276
1277         retval = command_run_line(CMD_CTX, "init_board");
1278         if (ERROR_OK != retval)
1279                 return retval;
1280
1281         LOG_DEBUG("Initializing targets...");
1282         return target_init(CMD_CTX);
1283 }
1284
1285 int target_register_event_callback(int (*callback)(struct target *target,
1286                 enum target_event event, void *priv), void *priv)
1287 {
1288         struct target_event_callback **callbacks_p = &target_event_callbacks;
1289
1290         if (callback == NULL)
1291                 return ERROR_COMMAND_SYNTAX_ERROR;
1292
1293         if (*callbacks_p) {
1294                 while ((*callbacks_p)->next)
1295                         callbacks_p = &((*callbacks_p)->next);
1296                 callbacks_p = &((*callbacks_p)->next);
1297         }
1298
1299         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1300         (*callbacks_p)->callback = callback;
1301         (*callbacks_p)->priv = priv;
1302         (*callbacks_p)->next = NULL;
1303
1304         return ERROR_OK;
1305 }
1306
1307 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1308 {
1309         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1310         struct timeval now;
1311
1312         if (callback == NULL)
1313                 return ERROR_COMMAND_SYNTAX_ERROR;
1314
1315         if (*callbacks_p) {
1316                 while ((*callbacks_p)->next)
1317                         callbacks_p = &((*callbacks_p)->next);
1318                 callbacks_p = &((*callbacks_p)->next);
1319         }
1320
1321         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1322         (*callbacks_p)->callback = callback;
1323         (*callbacks_p)->periodic = periodic;
1324         (*callbacks_p)->time_ms = time_ms;
1325
1326         gettimeofday(&now, NULL);
1327         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1328         time_ms -= (time_ms % 1000);
1329         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1330         if ((*callbacks_p)->when.tv_usec > 1000000) {
1331                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1332                 (*callbacks_p)->when.tv_sec += 1;
1333         }
1334
1335         (*callbacks_p)->priv = priv;
1336         (*callbacks_p)->next = NULL;
1337
1338         return ERROR_OK;
1339 }
1340
1341 int target_unregister_event_callback(int (*callback)(struct target *target,
1342                 enum target_event event, void *priv), void *priv)
1343 {
1344         struct target_event_callback **p = &target_event_callbacks;
1345         struct target_event_callback *c = target_event_callbacks;
1346
1347         if (callback == NULL)
1348                 return ERROR_COMMAND_SYNTAX_ERROR;
1349
1350         while (c) {
1351                 struct target_event_callback *next = c->next;
1352                 if ((c->callback == callback) && (c->priv == priv)) {
1353                         *p = next;
1354                         free(c);
1355                         return ERROR_OK;
1356                 } else
1357                         p = &(c->next);
1358                 c = next;
1359         }
1360
1361         return ERROR_OK;
1362 }
1363
1364 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1365 {
1366         struct target_timer_callback **p = &target_timer_callbacks;
1367         struct target_timer_callback *c = target_timer_callbacks;
1368
1369         if (callback == NULL)
1370                 return ERROR_COMMAND_SYNTAX_ERROR;
1371
1372         while (c) {
1373                 struct target_timer_callback *next = c->next;
1374                 if ((c->callback == callback) && (c->priv == priv)) {
1375                         *p = next;
1376                         free(c);
1377                         return ERROR_OK;
1378                 } else
1379                         p = &(c->next);
1380                 c = next;
1381         }
1382
1383         return ERROR_OK;
1384 }
1385
1386 int target_call_event_callbacks(struct target *target, enum target_event event)
1387 {
1388         struct target_event_callback *callback = target_event_callbacks;
1389         struct target_event_callback *next_callback;
1390
1391         if (event == TARGET_EVENT_HALTED) {
1392                 /* execute early halted first */
1393                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1394         }
1395
1396         LOG_DEBUG("target event %i (%s)", event,
1397                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1398
1399         target_handle_event(target, event);
1400
1401         while (callback) {
1402                 next_callback = callback->next;
1403                 callback->callback(target, event, callback->priv);
1404                 callback = next_callback;
1405         }
1406
1407         return ERROR_OK;
1408 }
1409
1410 static int target_timer_callback_periodic_restart(
1411                 struct target_timer_callback *cb, struct timeval *now)
1412 {
1413         int time_ms = cb->time_ms;
1414         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1415         time_ms -= (time_ms % 1000);
1416         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1417         if (cb->when.tv_usec > 1000000) {
1418                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1419                 cb->when.tv_sec += 1;
1420         }
1421         return ERROR_OK;
1422 }
1423
1424 static int target_call_timer_callback(struct target_timer_callback *cb,
1425                 struct timeval *now)
1426 {
1427         cb->callback(cb->priv);
1428
1429         if (cb->periodic)
1430                 return target_timer_callback_periodic_restart(cb, now);
1431
1432         return target_unregister_timer_callback(cb->callback, cb->priv);
1433 }
1434
1435 static int target_call_timer_callbacks_check_time(int checktime)
1436 {
1437         keep_alive();
1438
1439         struct timeval now;
1440         gettimeofday(&now, NULL);
1441
1442         struct target_timer_callback *callback = target_timer_callbacks;
1443         while (callback) {
1444                 /* cleaning up may unregister and free this callback */
1445                 struct target_timer_callback *next_callback = callback->next;
1446
1447                 bool call_it = callback->callback &&
1448                         ((!checktime && callback->periodic) ||
1449                           now.tv_sec > callback->when.tv_sec ||
1450                          (now.tv_sec == callback->when.tv_sec &&
1451                           now.tv_usec >= callback->when.tv_usec));
1452
1453                 if (call_it) {
1454                         int retval = target_call_timer_callback(callback, &now);
1455                         if (retval != ERROR_OK)
1456                                 return retval;
1457                 }
1458
1459                 callback = next_callback;
1460         }
1461
1462         return ERROR_OK;
1463 }
1464
1465 int target_call_timer_callbacks(void)
1466 {
1467         return target_call_timer_callbacks_check_time(1);
1468 }
1469
1470 /* invoke periodic callbacks immediately */
1471 int target_call_timer_callbacks_now(void)
1472 {
1473         return target_call_timer_callbacks_check_time(0);
1474 }
1475
1476 /* Prints the working area layout for debug purposes */
1477 static void print_wa_layout(struct target *target)
1478 {
1479         struct working_area *c = target->working_areas;
1480
1481         while (c) {
1482                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1483                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1484                         c->address, c->address + c->size - 1, c->size);
1485                 c = c->next;
1486         }
1487 }
1488
1489 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1490 static void target_split_working_area(struct working_area *area, uint32_t size)
1491 {
1492         assert(area->free); /* Shouldn't split an allocated area */
1493         assert(size <= area->size); /* Caller should guarantee this */
1494
1495         /* Split only if not already the right size */
1496         if (size < area->size) {
1497                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1498
1499                 if (new_wa == NULL)
1500                         return;
1501
1502                 new_wa->next = area->next;
1503                 new_wa->size = area->size - size;
1504                 new_wa->address = area->address + size;
1505                 new_wa->backup = NULL;
1506                 new_wa->user = NULL;
1507                 new_wa->free = true;
1508
1509                 area->next = new_wa;
1510                 area->size = size;
1511
1512                 /* If backup memory was allocated to this area, it has the wrong size
1513                  * now so free it and it will be reallocated if/when needed */
1514                 if (area->backup) {
1515                         free(area->backup);
1516                         area->backup = NULL;
1517                 }
1518         }
1519 }
1520
1521 /* Merge all adjacent free areas into one */
1522 static void target_merge_working_areas(struct target *target)
1523 {
1524         struct working_area *c = target->working_areas;
1525
1526         while (c && c->next) {
1527                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1528
1529                 /* Find two adjacent free areas */
1530                 if (c->free && c->next->free) {
1531                         /* Merge the last into the first */
1532                         c->size += c->next->size;
1533
1534                         /* Remove the last */
1535                         struct working_area *to_be_freed = c->next;
1536                         c->next = c->next->next;
1537                         if (to_be_freed->backup)
1538                                 free(to_be_freed->backup);
1539                         free(to_be_freed);
1540
1541                         /* If backup memory was allocated to the remaining area, it's has
1542                          * the wrong size now */
1543                         if (c->backup) {
1544                                 free(c->backup);
1545                                 c->backup = NULL;
1546                         }
1547                 } else {
1548                         c = c->next;
1549                 }
1550         }
1551 }
1552
1553 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1554 {
1555         /* Reevaluate working area address based on MMU state*/
1556         if (target->working_areas == NULL) {
1557                 int retval;
1558                 int enabled;
1559
1560                 retval = target->type->mmu(target, &enabled);
1561                 if (retval != ERROR_OK)
1562                         return retval;
1563
1564                 if (!enabled) {
1565                         if (target->working_area_phys_spec) {
1566                                 LOG_DEBUG("MMU disabled, using physical "
1567                                         "address for working memory 0x%08"PRIx32,
1568                                         target->working_area_phys);
1569                                 target->working_area = target->working_area_phys;
1570                         } else {
1571                                 LOG_ERROR("No working memory available. "
1572                                         "Specify -work-area-phys to target.");
1573                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1574                         }
1575                 } else {
1576                         if (target->working_area_virt_spec) {
1577                                 LOG_DEBUG("MMU enabled, using virtual "
1578                                         "address for working memory 0x%08"PRIx32,
1579                                         target->working_area_virt);
1580                                 target->working_area = target->working_area_virt;
1581                         } else {
1582                                 LOG_ERROR("No working memory available. "
1583                                         "Specify -work-area-virt to target.");
1584                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1585                         }
1586                 }
1587
1588                 /* Set up initial working area on first call */
1589                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1590                 if (new_wa) {
1591                         new_wa->next = NULL;
1592                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1593                         new_wa->address = target->working_area;
1594                         new_wa->backup = NULL;
1595                         new_wa->user = NULL;
1596                         new_wa->free = true;
1597                 }
1598
1599                 target->working_areas = new_wa;
1600         }
1601
1602         /* only allocate multiples of 4 byte */
1603         if (size % 4)
1604                 size = (size + 3) & (~3UL);
1605
1606         struct working_area *c = target->working_areas;
1607
1608         /* Find the first large enough working area */
1609         while (c) {
1610                 if (c->free && c->size >= size)
1611                         break;
1612                 c = c->next;
1613         }
1614
1615         if (c == NULL)
1616                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1617
1618         /* Split the working area into the requested size */
1619         target_split_working_area(c, size);
1620
1621         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1622
1623         if (target->backup_working_area) {
1624                 if (c->backup == NULL) {
1625                         c->backup = malloc(c->size);
1626                         if (c->backup == NULL)
1627                                 return ERROR_FAIL;
1628                 }
1629
1630                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1631                 if (retval != ERROR_OK)
1632                         return retval;
1633         }
1634
1635         /* mark as used, and return the new (reused) area */
1636         c->free = false;
1637         *area = c;
1638
1639         /* user pointer */
1640         c->user = area;
1641
1642         print_wa_layout(target);
1643
1644         return ERROR_OK;
1645 }
1646
1647 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1648 {
1649         int retval;
1650
1651         retval = target_alloc_working_area_try(target, size, area);
1652         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1653                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1654         return retval;
1655
1656 }
1657
1658 static int target_restore_working_area(struct target *target, struct working_area *area)
1659 {
1660         int retval = ERROR_OK;
1661
1662         if (target->backup_working_area && area->backup != NULL) {
1663                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1664                 if (retval != ERROR_OK)
1665                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1666                                         area->size, area->address);
1667         }
1668
1669         return retval;
1670 }
1671
1672 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1673 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1674 {
1675         int retval = ERROR_OK;
1676
1677         if (area->free)
1678                 return retval;
1679
1680         if (restore) {
1681                 retval = target_restore_working_area(target, area);
1682                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1683                 if (retval != ERROR_OK)
1684                         return retval;
1685         }
1686
1687         area->free = true;
1688
1689         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1690                         area->size, area->address);
1691
1692         /* mark user pointer invalid */
1693         /* TODO: Is this really safe? It points to some previous caller's memory.
1694          * How could we know that the area pointer is still in that place and not
1695          * some other vital data? What's the purpose of this, anyway? */
1696         *area->user = NULL;
1697         area->user = NULL;
1698
1699         target_merge_working_areas(target);
1700
1701         print_wa_layout(target);
1702
1703         return retval;
1704 }
1705
1706 int target_free_working_area(struct target *target, struct working_area *area)
1707 {
1708         return target_free_working_area_restore(target, area, 1);
1709 }
1710
1711 /* free resources and restore memory, if restoring memory fails,
1712  * free up resources anyway
1713  */
1714 static void target_free_all_working_areas_restore(struct target *target, int restore)
1715 {
1716         struct working_area *c = target->working_areas;
1717
1718         LOG_DEBUG("freeing all working areas");
1719
1720         /* Loop through all areas, restoring the allocated ones and marking them as free */
1721         while (c) {
1722                 if (!c->free) {
1723                         if (restore)
1724                                 target_restore_working_area(target, c);
1725                         c->free = true;
1726                         *c->user = NULL; /* Same as above */
1727                         c->user = NULL;
1728                 }
1729                 c = c->next;
1730         }
1731
1732         /* Run a merge pass to combine all areas into one */
1733         target_merge_working_areas(target);
1734
1735         print_wa_layout(target);
1736 }
1737
1738 void target_free_all_working_areas(struct target *target)
1739 {
1740         target_free_all_working_areas_restore(target, 1);
1741 }
1742
1743 /* Find the largest number of bytes that can be allocated */
1744 uint32_t target_get_working_area_avail(struct target *target)
1745 {
1746         struct working_area *c = target->working_areas;
1747         uint32_t max_size = 0;
1748
1749         if (c == NULL)
1750                 return target->working_area_size;
1751
1752         while (c) {
1753                 if (c->free && max_size < c->size)
1754                         max_size = c->size;
1755
1756                 c = c->next;
1757         }
1758
1759         return max_size;
1760 }
1761
1762 int target_arch_state(struct target *target)
1763 {
1764         int retval;
1765         if (target == NULL) {
1766                 LOG_USER("No target has been configured");
1767                 return ERROR_OK;
1768         }
1769
1770         LOG_USER("target state: %s", target_state_name(target));
1771
1772         if (target->state != TARGET_HALTED)
1773                 return ERROR_OK;
1774
1775         retval = target->type->arch_state(target);
1776         return retval;
1777 }
1778
1779 static int target_get_gdb_fileio_info_default(struct target *target,
1780                 struct gdb_fileio_info *fileio_info)
1781 {
1782         /* If target does not support semi-hosting function, target
1783            has no need to provide .get_gdb_fileio_info callback.
1784            It just return ERROR_FAIL and gdb_server will return "Txx"
1785            as target halted every time.  */
1786         return ERROR_FAIL;
1787 }
1788
1789 static int target_gdb_fileio_end_default(struct target *target,
1790                 int retcode, int fileio_errno, bool ctrl_c)
1791 {
1792         return ERROR_OK;
1793 }
1794
1795 static int target_profiling_default(struct target *target, uint32_t *samples,
1796                 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1797 {
1798         struct timeval timeout, now;
1799
1800         gettimeofday(&timeout, NULL);
1801         timeval_add_time(&timeout, seconds, 0);
1802
1803         LOG_INFO("Starting profiling. Halting and resuming the"
1804                         " target as often as we can...");
1805
1806         uint32_t sample_count = 0;
1807         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
1808         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
1809
1810         int retval = ERROR_OK;
1811         for (;;) {
1812                 target_poll(target);
1813                 if (target->state == TARGET_HALTED) {
1814                         uint32_t t = *((uint32_t *)reg->value);
1815                         samples[sample_count++] = t;
1816                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
1817                         retval = target_resume(target, 1, 0, 0, 0);
1818                         target_poll(target);
1819                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
1820                 } else if (target->state == TARGET_RUNNING) {
1821                         /* We want to quickly sample the PC. */
1822                         retval = target_halt(target);
1823                 } else {
1824                         LOG_INFO("Target not halted or running");
1825                         retval = ERROR_OK;
1826                         break;
1827                 }
1828
1829                 if (retval != ERROR_OK)
1830                         break;
1831
1832                 gettimeofday(&now, NULL);
1833                 if ((sample_count >= max_num_samples) ||
1834                         ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))) {
1835                         LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
1836                         break;
1837                 }
1838         }
1839
1840         *num_samples = sample_count;
1841         return retval;
1842 }
1843
1844 /* Single aligned words are guaranteed to use 16 or 32 bit access
1845  * mode respectively, otherwise data is handled as quickly as
1846  * possible
1847  */
1848 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1849 {
1850         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1851                         (int)size, (unsigned)address);
1852
1853         if (!target_was_examined(target)) {
1854                 LOG_ERROR("Target not examined yet");
1855                 return ERROR_FAIL;
1856         }
1857
1858         if (size == 0)
1859                 return ERROR_OK;
1860
1861         if ((address + size - 1) < address) {
1862                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1863                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1864                                   (unsigned)address,
1865                                   (unsigned)size);
1866                 return ERROR_FAIL;
1867         }
1868
1869         return target->type->write_buffer(target, address, size, buffer);
1870 }
1871
1872 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t count, const uint8_t *buffer)
1873 {
1874         uint32_t size;
1875
1876         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1877          * will have something to do with the size we leave to it. */
1878         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1879                 if (address & size) {
1880                         int retval = target_write_memory(target, address, size, 1, buffer);
1881                         if (retval != ERROR_OK)
1882                                 return retval;
1883                         address += size;
1884                         count -= size;
1885                         buffer += size;
1886                 }
1887         }
1888
1889         /* Write the data with as large access size as possible. */
1890         for (; size > 0; size /= 2) {
1891                 uint32_t aligned = count - count % size;
1892                 if (aligned > 0) {
1893                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
1894                         if (retval != ERROR_OK)
1895                                 return retval;
1896                         address += aligned;
1897                         count -= aligned;
1898                         buffer += aligned;
1899                 }
1900         }
1901
1902         return ERROR_OK;
1903 }
1904
1905 /* Single aligned words are guaranteed to use 16 or 32 bit access
1906  * mode respectively, otherwise data is handled as quickly as
1907  * possible
1908  */
1909 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1910 {
1911         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1912                           (int)size, (unsigned)address);
1913
1914         if (!target_was_examined(target)) {
1915                 LOG_ERROR("Target not examined yet");
1916                 return ERROR_FAIL;
1917         }
1918
1919         if (size == 0)
1920                 return ERROR_OK;
1921
1922         if ((address + size - 1) < address) {
1923                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1924                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1925                                   address,
1926                                   size);
1927                 return ERROR_FAIL;
1928         }
1929
1930         return target->type->read_buffer(target, address, size, buffer);
1931 }
1932
1933 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
1934 {
1935         uint32_t size;
1936
1937         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
1938          * will have something to do with the size we leave to it. */
1939         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
1940                 if (address & size) {
1941                         int retval = target_read_memory(target, address, size, 1, buffer);
1942                         if (retval != ERROR_OK)
1943                                 return retval;
1944                         address += size;
1945                         count -= size;
1946                         buffer += size;
1947                 }
1948         }
1949
1950         /* Read the data with as large access size as possible. */
1951         for (; size > 0; size /= 2) {
1952                 uint32_t aligned = count - count % size;
1953                 if (aligned > 0) {
1954                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
1955                         if (retval != ERROR_OK)
1956                                 return retval;
1957                         address += aligned;
1958                         count -= aligned;
1959                         buffer += aligned;
1960                 }
1961         }
1962
1963         return ERROR_OK;
1964 }
1965
1966 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1967 {
1968         uint8_t *buffer;
1969         int retval;
1970         uint32_t i;
1971         uint32_t checksum = 0;
1972         if (!target_was_examined(target)) {
1973                 LOG_ERROR("Target not examined yet");
1974                 return ERROR_FAIL;
1975         }
1976
1977         retval = target->type->checksum_memory(target, address, size, &checksum);
1978         if (retval != ERROR_OK) {
1979                 buffer = malloc(size);
1980                 if (buffer == NULL) {
1981                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1982                         return ERROR_COMMAND_SYNTAX_ERROR;
1983                 }
1984                 retval = target_read_buffer(target, address, size, buffer);
1985                 if (retval != ERROR_OK) {
1986                         free(buffer);
1987                         return retval;
1988                 }
1989
1990                 /* convert to target endianness */
1991                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1992                         uint32_t target_data;
1993                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1994                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1995                 }
1996
1997                 retval = image_calculate_checksum(buffer, size, &checksum);
1998                 free(buffer);
1999         }
2000
2001         *crc = checksum;
2002
2003         return retval;
2004 }
2005
2006 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
2007 {
2008         int retval;
2009         if (!target_was_examined(target)) {
2010                 LOG_ERROR("Target not examined yet");
2011                 return ERROR_FAIL;
2012         }
2013
2014         if (target->type->blank_check_memory == 0)
2015                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2016
2017         retval = target->type->blank_check_memory(target, address, size, blank);
2018
2019         return retval;
2020 }
2021
2022 int target_read_u64(struct target *target, uint64_t address, uint64_t *value)
2023 {
2024         uint8_t value_buf[8];
2025         if (!target_was_examined(target)) {
2026                 LOG_ERROR("Target not examined yet");
2027                 return ERROR_FAIL;
2028         }
2029
2030         int retval = target_read_memory(target, address, 8, 1, value_buf);
2031
2032         if (retval == ERROR_OK) {
2033                 *value = target_buffer_get_u64(target, value_buf);
2034                 LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2035                                   address,
2036                                   *value);
2037         } else {
2038                 *value = 0x0;
2039                 LOG_DEBUG("address: 0x%" PRIx64 " failed",
2040                                   address);
2041         }
2042
2043         return retval;
2044 }
2045
2046 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
2047 {
2048         uint8_t value_buf[4];
2049         if (!target_was_examined(target)) {
2050                 LOG_ERROR("Target not examined yet");
2051                 return ERROR_FAIL;
2052         }
2053
2054         int retval = target_read_memory(target, address, 4, 1, value_buf);
2055
2056         if (retval == ERROR_OK) {
2057                 *value = target_buffer_get_u32(target, value_buf);
2058                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2059                                   address,
2060                                   *value);
2061         } else {
2062                 *value = 0x0;
2063                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2064                                   address);
2065         }
2066
2067         return retval;
2068 }
2069
2070 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
2071 {
2072         uint8_t value_buf[2];
2073         if (!target_was_examined(target)) {
2074                 LOG_ERROR("Target not examined yet");
2075                 return ERROR_FAIL;
2076         }
2077
2078         int retval = target_read_memory(target, address, 2, 1, value_buf);
2079
2080         if (retval == ERROR_OK) {
2081                 *value = target_buffer_get_u16(target, value_buf);
2082                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
2083                                   address,
2084                                   *value);
2085         } else {
2086                 *value = 0x0;
2087                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2088                                   address);
2089         }
2090
2091         return retval;
2092 }
2093
2094 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
2095 {
2096         if (!target_was_examined(target)) {
2097                 LOG_ERROR("Target not examined yet");
2098                 return ERROR_FAIL;
2099         }
2100
2101         int retval = target_read_memory(target, address, 1, 1, value);
2102
2103         if (retval == ERROR_OK) {
2104                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2105                                   address,
2106                                   *value);
2107         } else {
2108                 *value = 0x0;
2109                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
2110                                   address);
2111         }
2112
2113         return retval;
2114 }
2115
2116 int target_write_u64(struct target *target, uint64_t address, uint64_t value)
2117 {
2118         int retval;
2119         uint8_t value_buf[8];
2120         if (!target_was_examined(target)) {
2121                 LOG_ERROR("Target not examined yet");
2122                 return ERROR_FAIL;
2123         }
2124
2125         LOG_DEBUG("address: 0x%" PRIx64 ", value: 0x%16.16" PRIx64 "",
2126                           address,
2127                           value);
2128
2129         target_buffer_set_u64(target, value_buf, value);
2130         retval = target_write_memory(target, address, 8, 1, value_buf);
2131         if (retval != ERROR_OK)
2132                 LOG_DEBUG("failed: %i", retval);
2133
2134         return retval;
2135 }
2136
2137 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
2138 {
2139         int retval;
2140         uint8_t value_buf[4];
2141         if (!target_was_examined(target)) {
2142                 LOG_ERROR("Target not examined yet");
2143                 return ERROR_FAIL;
2144         }
2145
2146         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
2147                           address,
2148                           value);
2149
2150         target_buffer_set_u32(target, value_buf, value);
2151         retval = target_write_memory(target, address, 4, 1, value_buf);
2152         if (retval != ERROR_OK)
2153                 LOG_DEBUG("failed: %i", retval);
2154
2155         return retval;
2156 }
2157
2158 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2159 {
2160         int retval;
2161         uint8_t value_buf[2];
2162         if (!target_was_examined(target)) {
2163                 LOG_ERROR("Target not examined yet");
2164                 return ERROR_FAIL;
2165         }
2166
2167         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2168                           address,
2169                           value);
2170
2171         target_buffer_set_u16(target, value_buf, value);
2172         retval = target_write_memory(target, address, 2, 1, value_buf);
2173         if (retval != ERROR_OK)
2174                 LOG_DEBUG("failed: %i", retval);
2175
2176         return retval;
2177 }
2178
2179 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2180 {
2181         int retval;
2182         if (!target_was_examined(target)) {
2183                 LOG_ERROR("Target not examined yet");
2184                 return ERROR_FAIL;
2185         }
2186
2187         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2188                           address, value);
2189
2190         retval = target_write_memory(target, address, 1, 1, &value);
2191         if (retval != ERROR_OK)
2192                 LOG_DEBUG("failed: %i", retval);
2193
2194         return retval;
2195 }
2196
2197 static int find_target(struct command_context *cmd_ctx, const char *name)
2198 {
2199         struct target *target = get_target(name);
2200         if (target == NULL) {
2201                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2202                 return ERROR_FAIL;
2203         }
2204         if (!target->tap->enabled) {
2205                 LOG_USER("Target: TAP %s is disabled, "
2206                          "can't be the current target\n",
2207                          target->tap->dotted_name);
2208                 return ERROR_FAIL;
2209         }
2210
2211         cmd_ctx->current_target = target->target_number;
2212         return ERROR_OK;
2213 }
2214
2215
2216 COMMAND_HANDLER(handle_targets_command)
2217 {
2218         int retval = ERROR_OK;
2219         if (CMD_ARGC == 1) {
2220                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2221                 if (retval == ERROR_OK) {
2222                         /* we're done! */
2223                         return retval;
2224                 }
2225         }
2226
2227         struct target *target = all_targets;
2228         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2229         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2230         while (target) {
2231                 const char *state;
2232                 char marker = ' ';
2233
2234                 if (target->tap->enabled)
2235                         state = target_state_name(target);
2236                 else
2237                         state = "tap-disabled";
2238
2239                 if (CMD_CTX->current_target == target->target_number)
2240                         marker = '*';
2241
2242                 /* keep columns lined up to match the headers above */
2243                 command_print(CMD_CTX,
2244                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2245                                 target->target_number,
2246                                 marker,
2247                                 target_name(target),
2248                                 target_type_name(target),
2249                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2250                                         target->endianness)->name,
2251                                 target->tap->dotted_name,
2252                                 state);
2253                 target = target->next;
2254         }
2255
2256         return retval;
2257 }
2258
2259 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2260
2261 static int powerDropout;
2262 static int srstAsserted;
2263
2264 static int runPowerRestore;
2265 static int runPowerDropout;
2266 static int runSrstAsserted;
2267 static int runSrstDeasserted;
2268
2269 static int sense_handler(void)
2270 {
2271         static int prevSrstAsserted;
2272         static int prevPowerdropout;
2273
2274         int retval = jtag_power_dropout(&powerDropout);
2275         if (retval != ERROR_OK)
2276                 return retval;
2277
2278         int powerRestored;
2279         powerRestored = prevPowerdropout && !powerDropout;
2280         if (powerRestored)
2281                 runPowerRestore = 1;
2282
2283         long long current = timeval_ms();
2284         static long long lastPower;
2285         int waitMore = lastPower + 2000 > current;
2286         if (powerDropout && !waitMore) {
2287                 runPowerDropout = 1;
2288                 lastPower = current;
2289         }
2290
2291         retval = jtag_srst_asserted(&srstAsserted);
2292         if (retval != ERROR_OK)
2293                 return retval;
2294
2295         int srstDeasserted;
2296         srstDeasserted = prevSrstAsserted && !srstAsserted;
2297
2298         static long long lastSrst;
2299         waitMore = lastSrst + 2000 > current;
2300         if (srstDeasserted && !waitMore) {
2301                 runSrstDeasserted = 1;
2302                 lastSrst = current;
2303         }
2304
2305         if (!prevSrstAsserted && srstAsserted)
2306                 runSrstAsserted = 1;
2307
2308         prevSrstAsserted = srstAsserted;
2309         prevPowerdropout = powerDropout;
2310
2311         if (srstDeasserted || powerRestored) {
2312                 /* Other than logging the event we can't do anything here.
2313                  * Issuing a reset is a particularly bad idea as we might
2314                  * be inside a reset already.
2315                  */
2316         }
2317
2318         return ERROR_OK;
2319 }
2320
2321 /* process target state changes */
2322 static int handle_target(void *priv)
2323 {
2324         Jim_Interp *interp = (Jim_Interp *)priv;
2325         int retval = ERROR_OK;
2326
2327         if (!is_jtag_poll_safe()) {
2328                 /* polling is disabled currently */
2329                 return ERROR_OK;
2330         }
2331
2332         /* we do not want to recurse here... */
2333         static int recursive;
2334         if (!recursive) {
2335                 recursive = 1;
2336                 sense_handler();
2337                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2338                  * We need to avoid an infinite loop/recursion here and we do that by
2339                  * clearing the flags after running these events.
2340                  */
2341                 int did_something = 0;
2342                 if (runSrstAsserted) {
2343                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2344                         Jim_Eval(interp, "srst_asserted");
2345                         did_something = 1;
2346                 }
2347                 if (runSrstDeasserted) {
2348                         Jim_Eval(interp, "srst_deasserted");
2349                         did_something = 1;
2350                 }
2351                 if (runPowerDropout) {
2352                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2353                         Jim_Eval(interp, "power_dropout");
2354                         did_something = 1;
2355                 }
2356                 if (runPowerRestore) {
2357                         Jim_Eval(interp, "power_restore");
2358                         did_something = 1;
2359                 }
2360
2361                 if (did_something) {
2362                         /* clear detect flags */
2363                         sense_handler();
2364                 }
2365
2366                 /* clear action flags */
2367
2368                 runSrstAsserted = 0;
2369                 runSrstDeasserted = 0;
2370                 runPowerRestore = 0;
2371                 runPowerDropout = 0;
2372
2373                 recursive = 0;
2374         }
2375
2376         /* Poll targets for state changes unless that's globally disabled.
2377          * Skip targets that are currently disabled.
2378          */
2379         for (struct target *target = all_targets;
2380                         is_jtag_poll_safe() && target;
2381                         target = target->next) {
2382
2383                 if (!target_was_examined(target))
2384                         continue;
2385
2386                 if (!target->tap->enabled)
2387                         continue;
2388
2389                 if (target->backoff.times > target->backoff.count) {
2390                         /* do not poll this time as we failed previously */
2391                         target->backoff.count++;
2392                         continue;
2393                 }
2394                 target->backoff.count = 0;
2395
2396                 /* only poll target if we've got power and srst isn't asserted */
2397                 if (!powerDropout && !srstAsserted) {
2398                         /* polling may fail silently until the target has been examined */
2399                         retval = target_poll(target);
2400                         if (retval != ERROR_OK) {
2401                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2402                                 if (target->backoff.times * polling_interval < 5000) {
2403                                         target->backoff.times *= 2;
2404                                         target->backoff.times++;
2405                                 }
2406                                 LOG_USER("Polling target %s failed, GDB will be halted. Polling again in %dms",
2407                                                 target_name(target),
2408                                                 target->backoff.times * polling_interval);
2409
2410                                 /* Tell GDB to halt the debugger. This allows the user to
2411                                  * run monitor commands to handle the situation.
2412                                  */
2413                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2414                                 return retval;
2415                         }
2416                         /* Since we succeeded, we reset backoff count */
2417                         if (target->backoff.times > 0)
2418                                 LOG_USER("Polling target %s succeeded again", target_name(target));
2419                         target->backoff.times = 0;
2420                 }
2421         }
2422
2423         return retval;
2424 }
2425
2426 COMMAND_HANDLER(handle_reg_command)
2427 {
2428         struct target *target;
2429         struct reg *reg = NULL;
2430         unsigned count = 0;
2431         char *value;
2432
2433         LOG_DEBUG("-");
2434
2435         target = get_current_target(CMD_CTX);
2436
2437         /* list all available registers for the current target */
2438         if (CMD_ARGC == 0) {
2439                 struct reg_cache *cache = target->reg_cache;
2440
2441                 count = 0;
2442                 while (cache) {
2443                         unsigned i;
2444
2445                         command_print(CMD_CTX, "===== %s", cache->name);
2446
2447                         for (i = 0, reg = cache->reg_list;
2448                                         i < cache->num_regs;
2449                                         i++, reg++, count++) {
2450                                 /* only print cached values if they are valid */
2451                                 if (reg->valid) {
2452                                         value = buf_to_str(reg->value,
2453                                                         reg->size, 16);
2454                                         command_print(CMD_CTX,
2455                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2456                                                         count, reg->name,
2457                                                         reg->size, value,
2458                                                         reg->dirty
2459                                                                 ? " (dirty)"
2460                                                                 : "");
2461                                         free(value);
2462                                 } else {
2463                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2464                                                           count, reg->name,
2465                                                           reg->size) ;
2466                                 }
2467                         }
2468                         cache = cache->next;
2469                 }
2470
2471                 return ERROR_OK;
2472         }
2473
2474         /* access a single register by its ordinal number */
2475         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2476                 unsigned num;
2477                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2478
2479                 struct reg_cache *cache = target->reg_cache;
2480                 count = 0;
2481                 while (cache) {
2482                         unsigned i;
2483                         for (i = 0; i < cache->num_regs; i++) {
2484                                 if (count++ == num) {
2485                                         reg = &cache->reg_list[i];
2486                                         break;
2487                                 }
2488                         }
2489                         if (reg)
2490                                 break;
2491                         cache = cache->next;
2492                 }
2493
2494                 if (!reg) {
2495                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2496                                         "has only %i registers (0 - %i)", num, count, count - 1);
2497                         return ERROR_OK;
2498                 }
2499         } else {
2500                 /* access a single register by its name */
2501                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2502
2503                 if (!reg) {
2504                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2505                         return ERROR_OK;
2506                 }
2507         }
2508
2509         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2510
2511         /* display a register */
2512         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2513                         && (CMD_ARGV[1][0] <= '9')))) {
2514                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2515                         reg->valid = 0;
2516
2517                 if (reg->valid == 0)
2518                         reg->type->get(reg);
2519                 value = buf_to_str(reg->value, reg->size, 16);
2520                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2521                 free(value);
2522                 return ERROR_OK;
2523         }
2524
2525         /* set register value */
2526         if (CMD_ARGC == 2) {
2527                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2528                 if (buf == NULL)
2529                         return ERROR_FAIL;
2530                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2531
2532                 reg->type->set(reg, buf);
2533
2534                 value = buf_to_str(reg->value, reg->size, 16);
2535                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2536                 free(value);
2537
2538                 free(buf);
2539
2540                 return ERROR_OK;
2541         }
2542
2543         return ERROR_COMMAND_SYNTAX_ERROR;
2544 }
2545
2546 COMMAND_HANDLER(handle_poll_command)
2547 {
2548         int retval = ERROR_OK;
2549         struct target *target = get_current_target(CMD_CTX);
2550
2551         if (CMD_ARGC == 0) {
2552                 command_print(CMD_CTX, "background polling: %s",
2553                                 jtag_poll_get_enabled() ? "on" : "off");
2554                 command_print(CMD_CTX, "TAP: %s (%s)",
2555                                 target->tap->dotted_name,
2556                                 target->tap->enabled ? "enabled" : "disabled");
2557                 if (!target->tap->enabled)
2558                         return ERROR_OK;
2559                 retval = target_poll(target);
2560                 if (retval != ERROR_OK)
2561                         return retval;
2562                 retval = target_arch_state(target);
2563                 if (retval != ERROR_OK)
2564                         return retval;
2565         } else if (CMD_ARGC == 1) {
2566                 bool enable;
2567                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2568                 jtag_poll_set_enabled(enable);
2569         } else
2570                 return ERROR_COMMAND_SYNTAX_ERROR;
2571
2572         return retval;
2573 }
2574
2575 COMMAND_HANDLER(handle_wait_halt_command)
2576 {
2577         if (CMD_ARGC > 1)
2578                 return ERROR_COMMAND_SYNTAX_ERROR;
2579
2580         unsigned ms = DEFAULT_HALT_TIMEOUT;
2581         if (1 == CMD_ARGC) {
2582                 int retval = parse_uint(CMD_ARGV[0], &ms);
2583                 if (ERROR_OK != retval)
2584                         return ERROR_COMMAND_SYNTAX_ERROR;
2585         }
2586
2587         struct target *target = get_current_target(CMD_CTX);
2588         return target_wait_state(target, TARGET_HALTED, ms);
2589 }
2590
2591 /* wait for target state to change. The trick here is to have a low
2592  * latency for short waits and not to suck up all the CPU time
2593  * on longer waits.
2594  *
2595  * After 500ms, keep_alive() is invoked
2596  */
2597 int target_wait_state(struct target *target, enum target_state state, int ms)
2598 {
2599         int retval;
2600         long long then = 0, cur;
2601         int once = 1;
2602
2603         for (;;) {
2604                 retval = target_poll(target);
2605                 if (retval != ERROR_OK)
2606                         return retval;
2607                 if (target->state == state)
2608                         break;
2609                 cur = timeval_ms();
2610                 if (once) {
2611                         once = 0;
2612                         then = timeval_ms();
2613                         LOG_DEBUG("waiting for target %s...",
2614                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2615                 }
2616
2617                 if (cur-then > 500)
2618                         keep_alive();
2619
2620                 if ((cur-then) > ms) {
2621                         LOG_ERROR("timed out while waiting for target %s",
2622                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2623                         return ERROR_FAIL;
2624                 }
2625         }
2626
2627         return ERROR_OK;
2628 }
2629
2630 COMMAND_HANDLER(handle_halt_command)
2631 {
2632         LOG_DEBUG("-");
2633
2634         struct target *target = get_current_target(CMD_CTX);
2635         int retval = target_halt(target);
2636         if (ERROR_OK != retval)
2637                 return retval;
2638
2639         if (CMD_ARGC == 1) {
2640                 unsigned wait_local;
2641                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2642                 if (ERROR_OK != retval)
2643                         return ERROR_COMMAND_SYNTAX_ERROR;
2644                 if (!wait_local)
2645                         return ERROR_OK;
2646         }
2647
2648         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2649 }
2650
2651 COMMAND_HANDLER(handle_soft_reset_halt_command)
2652 {
2653         struct target *target = get_current_target(CMD_CTX);
2654
2655         LOG_USER("requesting target halt and executing a soft reset");
2656
2657         target_soft_reset_halt(target);
2658
2659         return ERROR_OK;
2660 }
2661
2662 COMMAND_HANDLER(handle_reset_command)
2663 {
2664         if (CMD_ARGC > 1)
2665                 return ERROR_COMMAND_SYNTAX_ERROR;
2666
2667         enum target_reset_mode reset_mode = RESET_RUN;
2668         if (CMD_ARGC == 1) {
2669                 const Jim_Nvp *n;
2670                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2671                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2672                         return ERROR_COMMAND_SYNTAX_ERROR;
2673                 reset_mode = n->value;
2674         }
2675
2676         /* reset *all* targets */
2677         return target_process_reset(CMD_CTX, reset_mode);
2678 }
2679
2680
2681 COMMAND_HANDLER(handle_resume_command)
2682 {
2683         int current = 1;
2684         if (CMD_ARGC > 1)
2685                 return ERROR_COMMAND_SYNTAX_ERROR;
2686
2687         struct target *target = get_current_target(CMD_CTX);
2688
2689         /* with no CMD_ARGV, resume from current pc, addr = 0,
2690          * with one arguments, addr = CMD_ARGV[0],
2691          * handle breakpoints, not debugging */
2692         uint32_t addr = 0;
2693         if (CMD_ARGC == 1) {
2694                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2695                 current = 0;
2696         }
2697
2698         return target_resume(target, current, addr, 1, 0);
2699 }
2700
2701 COMMAND_HANDLER(handle_step_command)
2702 {
2703         if (CMD_ARGC > 1)
2704                 return ERROR_COMMAND_SYNTAX_ERROR;
2705
2706         LOG_DEBUG("-");
2707
2708         /* with no CMD_ARGV, step from current pc, addr = 0,
2709          * with one argument addr = CMD_ARGV[0],
2710          * handle breakpoints, debugging */
2711         uint32_t addr = 0;
2712         int current_pc = 1;
2713         if (CMD_ARGC == 1) {
2714                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2715                 current_pc = 0;
2716         }
2717
2718         struct target *target = get_current_target(CMD_CTX);
2719
2720         return target->type->step(target, current_pc, addr, 1);
2721 }
2722
2723 static void handle_md_output(struct command_context *cmd_ctx,
2724                 struct target *target, uint32_t address, unsigned size,
2725                 unsigned count, const uint8_t *buffer)
2726 {
2727         const unsigned line_bytecnt = 32;
2728         unsigned line_modulo = line_bytecnt / size;
2729
2730         char output[line_bytecnt * 4 + 1];
2731         unsigned output_len = 0;
2732
2733         const char *value_fmt;
2734         switch (size) {
2735         case 4:
2736                 value_fmt = "%8.8x ";
2737                 break;
2738         case 2:
2739                 value_fmt = "%4.4x ";
2740                 break;
2741         case 1:
2742                 value_fmt = "%2.2x ";
2743                 break;
2744         default:
2745                 /* "can't happen", caller checked */
2746                 LOG_ERROR("invalid memory read size: %u", size);
2747                 return;
2748         }
2749
2750         for (unsigned i = 0; i < count; i++) {
2751                 if (i % line_modulo == 0) {
2752                         output_len += snprintf(output + output_len,
2753                                         sizeof(output) - output_len,
2754                                         "0x%8.8x: ",
2755                                         (unsigned)(address + (i*size)));
2756                 }
2757
2758                 uint32_t value = 0;
2759                 const uint8_t *value_ptr = buffer + i * size;
2760                 switch (size) {
2761                 case 4:
2762                         value = target_buffer_get_u32(target, value_ptr);
2763                         break;
2764                 case 2:
2765                         value = target_buffer_get_u16(target, value_ptr);
2766                         break;
2767                 case 1:
2768                         value = *value_ptr;
2769                 }
2770                 output_len += snprintf(output + output_len,
2771                                 sizeof(output) - output_len,
2772                                 value_fmt, value);
2773
2774                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2775                         command_print(cmd_ctx, "%s", output);
2776                         output_len = 0;
2777                 }
2778         }
2779 }
2780
2781 COMMAND_HANDLER(handle_md_command)
2782 {
2783         if (CMD_ARGC < 1)
2784                 return ERROR_COMMAND_SYNTAX_ERROR;
2785
2786         unsigned size = 0;
2787         switch (CMD_NAME[2]) {
2788         case 'w':
2789                 size = 4;
2790                 break;
2791         case 'h':
2792                 size = 2;
2793                 break;
2794         case 'b':
2795                 size = 1;
2796                 break;
2797         default:
2798                 return ERROR_COMMAND_SYNTAX_ERROR;
2799         }
2800
2801         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2802         int (*fn)(struct target *target,
2803                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2804         if (physical) {
2805                 CMD_ARGC--;
2806                 CMD_ARGV++;
2807                 fn = target_read_phys_memory;
2808         } else
2809                 fn = target_read_memory;
2810         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2811                 return ERROR_COMMAND_SYNTAX_ERROR;
2812
2813         uint32_t address;
2814         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2815
2816         unsigned count = 1;
2817         if (CMD_ARGC == 2)
2818                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2819
2820         uint8_t *buffer = calloc(count, size);
2821
2822         struct target *target = get_current_target(CMD_CTX);
2823         int retval = fn(target, address, size, count, buffer);
2824         if (ERROR_OK == retval)
2825                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2826
2827         free(buffer);
2828
2829         return retval;
2830 }
2831
2832 typedef int (*target_write_fn)(struct target *target,
2833                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2834
2835 static int target_fill_mem(struct target *target,
2836                 uint32_t address,
2837                 target_write_fn fn,
2838                 unsigned data_size,
2839                 /* value */
2840                 uint32_t b,
2841                 /* count */
2842                 unsigned c)
2843 {
2844         /* We have to write in reasonably large chunks to be able
2845          * to fill large memory areas with any sane speed */
2846         const unsigned chunk_size = 16384;
2847         uint8_t *target_buf = malloc(chunk_size * data_size);
2848         if (target_buf == NULL) {
2849                 LOG_ERROR("Out of memory");
2850                 return ERROR_FAIL;
2851         }
2852
2853         for (unsigned i = 0; i < chunk_size; i++) {
2854                 switch (data_size) {
2855                 case 4:
2856                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2857                         break;
2858                 case 2:
2859                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2860                         break;
2861                 case 1:
2862                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2863                         break;
2864                 default:
2865                         exit(-1);
2866                 }
2867         }
2868
2869         int retval = ERROR_OK;
2870
2871         for (unsigned x = 0; x < c; x += chunk_size) {
2872                 unsigned current;
2873                 current = c - x;
2874                 if (current > chunk_size)
2875                         current = chunk_size;
2876                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2877                 if (retval != ERROR_OK)
2878                         break;
2879                 /* avoid GDB timeouts */
2880                 keep_alive();
2881         }
2882         free(target_buf);
2883
2884         return retval;
2885 }
2886
2887
2888 COMMAND_HANDLER(handle_mw_command)
2889 {
2890         if (CMD_ARGC < 2)
2891                 return ERROR_COMMAND_SYNTAX_ERROR;
2892         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2893         target_write_fn fn;
2894         if (physical) {
2895                 CMD_ARGC--;
2896                 CMD_ARGV++;
2897                 fn = target_write_phys_memory;
2898         } else
2899                 fn = target_write_memory;
2900         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2901                 return ERROR_COMMAND_SYNTAX_ERROR;
2902
2903         uint32_t address;
2904         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2905
2906         uint32_t value;
2907         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2908
2909         unsigned count = 1;
2910         if (CMD_ARGC == 3)
2911                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2912
2913         struct target *target = get_current_target(CMD_CTX);
2914         unsigned wordsize;
2915         switch (CMD_NAME[2]) {
2916                 case 'w':
2917                         wordsize = 4;
2918                         break;
2919                 case 'h':
2920                         wordsize = 2;
2921                         break;
2922                 case 'b':
2923                         wordsize = 1;
2924                         break;
2925                 default:
2926                         return ERROR_COMMAND_SYNTAX_ERROR;
2927         }
2928
2929         return target_fill_mem(target, address, fn, wordsize, value, count);
2930 }
2931
2932 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2933                 uint32_t *min_address, uint32_t *max_address)
2934 {
2935         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2936                 return ERROR_COMMAND_SYNTAX_ERROR;
2937
2938         /* a base address isn't always necessary,
2939          * default to 0x0 (i.e. don't relocate) */
2940         if (CMD_ARGC >= 2) {
2941                 uint32_t addr;
2942                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2943                 image->base_address = addr;
2944                 image->base_address_set = 1;
2945         } else
2946                 image->base_address_set = 0;
2947
2948         image->start_address_set = 0;
2949
2950         if (CMD_ARGC >= 4)
2951                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2952         if (CMD_ARGC == 5) {
2953                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2954                 /* use size (given) to find max (required) */
2955                 *max_address += *min_address;
2956         }
2957
2958         if (*min_address > *max_address)
2959                 return ERROR_COMMAND_SYNTAX_ERROR;
2960
2961         return ERROR_OK;
2962 }
2963
2964 COMMAND_HANDLER(handle_load_image_command)
2965 {
2966         uint8_t *buffer;
2967         size_t buf_cnt;
2968         uint32_t image_size;
2969         uint32_t min_address = 0;
2970         uint32_t max_address = 0xffffffff;
2971         int i;
2972         struct image image;
2973
2974         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2975                         &image, &min_address, &max_address);
2976         if (ERROR_OK != retval)
2977                 return retval;
2978
2979         struct target *target = get_current_target(CMD_CTX);
2980
2981         struct duration bench;
2982         duration_start(&bench);
2983
2984         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2985                 return ERROR_OK;
2986
2987         image_size = 0x0;
2988         retval = ERROR_OK;
2989         for (i = 0; i < image.num_sections; i++) {
2990                 buffer = malloc(image.sections[i].size);
2991                 if (buffer == NULL) {
2992                         command_print(CMD_CTX,
2993                                                   "error allocating buffer for section (%d bytes)",
2994                                                   (int)(image.sections[i].size));
2995                         break;
2996                 }
2997
2998                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2999                 if (retval != ERROR_OK) {
3000                         free(buffer);
3001                         break;
3002                 }
3003
3004                 uint32_t offset = 0;
3005                 uint32_t length = buf_cnt;
3006
3007                 /* DANGER!!! beware of unsigned comparision here!!! */
3008
3009                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
3010                                 (image.sections[i].base_address < max_address)) {
3011
3012                         if (image.sections[i].base_address < min_address) {
3013                                 /* clip addresses below */
3014                                 offset += min_address-image.sections[i].base_address;
3015                                 length -= offset;
3016                         }
3017
3018                         if (image.sections[i].base_address + buf_cnt > max_address)
3019                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
3020
3021                         retval = target_write_buffer(target,
3022                                         image.sections[i].base_address + offset, length, buffer + offset);
3023                         if (retval != ERROR_OK) {
3024                                 free(buffer);
3025                                 break;
3026                         }
3027                         image_size += length;
3028                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
3029                                         (unsigned int)length,
3030                                         image.sections[i].base_address + offset);
3031                 }
3032
3033                 free(buffer);
3034         }
3035
3036         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3037                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
3038                                 "in %fs (%0.3f KiB/s)", image_size,
3039                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3040         }
3041
3042         image_close(&image);
3043
3044         return retval;
3045
3046 }
3047
3048 COMMAND_HANDLER(handle_dump_image_command)
3049 {
3050         struct fileio fileio;
3051         uint8_t *buffer;
3052         int retval, retvaltemp;
3053         uint32_t address, size;
3054         struct duration bench;
3055         struct target *target = get_current_target(CMD_CTX);
3056
3057         if (CMD_ARGC != 3)
3058                 return ERROR_COMMAND_SYNTAX_ERROR;
3059
3060         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
3061         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
3062
3063         uint32_t buf_size = (size > 4096) ? 4096 : size;
3064         buffer = malloc(buf_size);
3065         if (!buffer)
3066                 return ERROR_FAIL;
3067
3068         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
3069         if (retval != ERROR_OK) {
3070                 free(buffer);
3071                 return retval;
3072         }
3073
3074         duration_start(&bench);
3075
3076         while (size > 0) {
3077                 size_t size_written;
3078                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
3079                 retval = target_read_buffer(target, address, this_run_size, buffer);
3080                 if (retval != ERROR_OK)
3081                         break;
3082
3083                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
3084                 if (retval != ERROR_OK)
3085                         break;
3086
3087                 size -= this_run_size;
3088                 address += this_run_size;
3089         }
3090
3091         free(buffer);
3092
3093         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3094                 int filesize;
3095                 retval = fileio_size(&fileio, &filesize);
3096                 if (retval != ERROR_OK)
3097                         return retval;
3098                 command_print(CMD_CTX,
3099                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
3100                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
3101         }
3102
3103         retvaltemp = fileio_close(&fileio);
3104         if (retvaltemp != ERROR_OK)
3105                 return retvaltemp;
3106
3107         return retval;
3108 }
3109
3110 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
3111 {
3112         uint8_t *buffer;
3113         size_t buf_cnt;
3114         uint32_t image_size;
3115         int i;
3116         int retval;
3117         uint32_t checksum = 0;
3118         uint32_t mem_checksum = 0;
3119
3120         struct image image;
3121
3122         struct target *target = get_current_target(CMD_CTX);
3123
3124         if (CMD_ARGC < 1)
3125                 return ERROR_COMMAND_SYNTAX_ERROR;
3126
3127         if (!target) {
3128                 LOG_ERROR("no target selected");
3129                 return ERROR_FAIL;
3130         }
3131
3132         struct duration bench;
3133         duration_start(&bench);
3134
3135         if (CMD_ARGC >= 2) {
3136                 uint32_t addr;
3137                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
3138                 image.base_address = addr;
3139                 image.base_address_set = 1;
3140         } else {
3141                 image.base_address_set = 0;
3142                 image.base_address = 0x0;
3143         }
3144
3145         image.start_address_set = 0;
3146
3147         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3148         if (retval != ERROR_OK)
3149                 return retval;
3150
3151         image_size = 0x0;
3152         int diffs = 0;
3153         retval = ERROR_OK;
3154         for (i = 0; i < image.num_sections; i++) {
3155                 buffer = malloc(image.sections[i].size);
3156                 if (buffer == NULL) {
3157                         command_print(CMD_CTX,
3158                                         "error allocating buffer for section (%d bytes)",
3159                                         (int)(image.sections[i].size));
3160                         break;
3161                 }
3162                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3163                 if (retval != ERROR_OK) {
3164                         free(buffer);
3165                         break;
3166                 }
3167
3168                 if (verify) {
3169                         /* calculate checksum of image */
3170                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3171                         if (retval != ERROR_OK) {
3172                                 free(buffer);
3173                                 break;
3174                         }
3175
3176                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3177                         if (retval != ERROR_OK) {
3178                                 free(buffer);
3179                                 break;
3180                         }
3181
3182                         if (checksum != mem_checksum) {
3183                                 /* failed crc checksum, fall back to a binary compare */
3184                                 uint8_t *data;
3185
3186                                 if (diffs == 0)
3187                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3188
3189                                 data = (uint8_t *)malloc(buf_cnt);
3190
3191                                 /* Can we use 32bit word accesses? */
3192                                 int size = 1;
3193                                 int count = buf_cnt;
3194                                 if ((count % 4) == 0) {
3195                                         size *= 4;
3196                                         count /= 4;
3197                                 }
3198                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3199                                 if (retval == ERROR_OK) {
3200                                         uint32_t t;
3201                                         for (t = 0; t < buf_cnt; t++) {
3202                                                 if (data[t] != buffer[t]) {
3203                                                         command_print(CMD_CTX,
3204                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3205                                                                                   diffs,
3206                                                                                   (unsigned)(t + image.sections[i].base_address),
3207                                                                                   data[t],
3208                                                                                   buffer[t]);
3209                                                         if (diffs++ >= 127) {
3210                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3211                                                                 free(data);
3212                                                                 free(buffer);
3213                                                                 goto done;
3214                                                         }
3215                                                 }
3216                                                 keep_alive();
3217                                         }
3218                                 }
3219                                 free(data);
3220                         }
3221                 } else {
3222                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3223                                                   image.sections[i].base_address,
3224                                                   buf_cnt);
3225                 }
3226
3227                 free(buffer);
3228                 image_size += buf_cnt;
3229         }
3230         if (diffs > 0)
3231                 command_print(CMD_CTX, "No more differences found.");
3232 done:
3233         if (diffs > 0)
3234                 retval = ERROR_FAIL;
3235         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3236                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3237                                 "in %fs (%0.3f KiB/s)", image_size,
3238                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3239         }
3240
3241         image_close(&image);
3242
3243         return retval;
3244 }
3245
3246 COMMAND_HANDLER(handle_verify_image_command)
3247 {
3248         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3249 }
3250
3251 COMMAND_HANDLER(handle_test_image_command)
3252 {
3253         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3254 }
3255
3256 static int handle_bp_command_list(struct command_context *cmd_ctx)
3257 {
3258         struct target *target = get_current_target(cmd_ctx);
3259         struct breakpoint *breakpoint = target->breakpoints;
3260         while (breakpoint) {
3261                 if (breakpoint->type == BKPT_SOFT) {
3262                         char *buf = buf_to_str(breakpoint->orig_instr,
3263                                         breakpoint->length, 16);
3264                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3265                                         breakpoint->address,
3266                                         breakpoint->length,
3267                                         breakpoint->set, buf);
3268                         free(buf);
3269                 } else {
3270                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3271                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3272                                                         breakpoint->asid,
3273                                                         breakpoint->length, breakpoint->set);
3274                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3275                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3276                                                         breakpoint->address,
3277                                                         breakpoint->length, breakpoint->set);
3278                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3279                                                         breakpoint->asid);
3280                         } else
3281                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3282                                                         breakpoint->address,
3283                                                         breakpoint->length, breakpoint->set);
3284                 }
3285
3286                 breakpoint = breakpoint->next;
3287         }
3288         return ERROR_OK;
3289 }
3290
3291 static int handle_bp_command_set(struct command_context *cmd_ctx,
3292                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3293 {
3294         struct target *target = get_current_target(cmd_ctx);
3295
3296         if (asid == 0) {
3297                 int retval = breakpoint_add(target, addr, length, hw);
3298                 if (ERROR_OK == retval)
3299                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3300                 else {
3301                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3302                         return retval;
3303                 }
3304         } else if (addr == 0) {
3305                 int retval = context_breakpoint_add(target, asid, length, hw);
3306                 if (ERROR_OK == retval)
3307                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3308                 else {
3309                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3310                         return retval;
3311                 }
3312         } else {
3313                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3314                 if (ERROR_OK == retval)
3315                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3316                 else {
3317                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3318                         return retval;
3319                 }
3320         }
3321         return ERROR_OK;
3322 }
3323
3324 COMMAND_HANDLER(handle_bp_command)
3325 {
3326         uint32_t addr;
3327         uint32_t asid;
3328         uint32_t length;
3329         int hw = BKPT_SOFT;
3330
3331         switch (CMD_ARGC) {
3332                 case 0:
3333                         return handle_bp_command_list(CMD_CTX);
3334
3335                 case 2:
3336                         asid = 0;
3337                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3338                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3339                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3340
3341                 case 3:
3342                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3343                                 hw = BKPT_HARD;
3344                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3345
3346                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3347
3348                                 asid = 0;
3349                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3350                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3351                                 hw = BKPT_HARD;
3352                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3353                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3354                                 addr = 0;
3355                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3356                         }
3357
3358                 case 4:
3359                         hw = BKPT_HARD;
3360                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3361                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3362                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3363                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3364
3365                 default:
3366                         return ERROR_COMMAND_SYNTAX_ERROR;
3367         }
3368 }
3369
3370 COMMAND_HANDLER(handle_rbp_command)
3371 {
3372         if (CMD_ARGC != 1)
3373                 return ERROR_COMMAND_SYNTAX_ERROR;
3374
3375         uint32_t addr;
3376         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3377
3378         struct target *target = get_current_target(CMD_CTX);
3379         breakpoint_remove(target, addr);
3380
3381         return ERROR_OK;
3382 }
3383
3384 COMMAND_HANDLER(handle_wp_command)
3385 {
3386         struct target *target = get_current_target(CMD_CTX);
3387
3388         if (CMD_ARGC == 0) {
3389                 struct watchpoint *watchpoint = target->watchpoints;
3390
3391                 while (watchpoint) {
3392                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3393                                         ", len: 0x%8.8" PRIx32
3394                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3395                                         ", mask: 0x%8.8" PRIx32,
3396                                         watchpoint->address,
3397                                         watchpoint->length,
3398                                         (int)watchpoint->rw,
3399                                         watchpoint->value,
3400                                         watchpoint->mask);
3401                         watchpoint = watchpoint->next;
3402                 }
3403                 return ERROR_OK;
3404         }
3405
3406         enum watchpoint_rw type = WPT_ACCESS;
3407         uint32_t addr = 0;
3408         uint32_t length = 0;
3409         uint32_t data_value = 0x0;
3410         uint32_t data_mask = 0xffffffff;
3411
3412         switch (CMD_ARGC) {
3413         case 5:
3414                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3415                 /* fall through */
3416         case 4:
3417                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3418                 /* fall through */
3419         case 3:
3420                 switch (CMD_ARGV[2][0]) {
3421                 case 'r':
3422                         type = WPT_READ;
3423                         break;
3424                 case 'w':
3425                         type = WPT_WRITE;
3426                         break;
3427                 case 'a':
3428                         type = WPT_ACCESS;
3429                         break;
3430                 default:
3431                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3432                         return ERROR_COMMAND_SYNTAX_ERROR;
3433                 }
3434                 /* fall through */
3435         case 2:
3436                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3437                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3438                 break;
3439
3440         default:
3441                 return ERROR_COMMAND_SYNTAX_ERROR;
3442         }
3443
3444         int retval = watchpoint_add(target, addr, length, type,
3445                         data_value, data_mask);
3446         if (ERROR_OK != retval)
3447                 LOG_ERROR("Failure setting watchpoints");
3448
3449         return retval;
3450 }
3451
3452 COMMAND_HANDLER(handle_rwp_command)
3453 {
3454         if (CMD_ARGC != 1)
3455                 return ERROR_COMMAND_SYNTAX_ERROR;
3456
3457         uint32_t addr;
3458         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3459
3460         struct target *target = get_current_target(CMD_CTX);
3461         watchpoint_remove(target, addr);
3462
3463         return ERROR_OK;
3464 }
3465
3466 /**
3467  * Translate a virtual address to a physical address.
3468  *
3469  * The low-level target implementation must have logged a detailed error
3470  * which is forwarded to telnet/GDB session.
3471  */
3472 COMMAND_HANDLER(handle_virt2phys_command)
3473 {
3474         if (CMD_ARGC != 1)
3475                 return ERROR_COMMAND_SYNTAX_ERROR;
3476
3477         uint32_t va;
3478         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3479         uint32_t pa;
3480
3481         struct target *target = get_current_target(CMD_CTX);
3482         int retval = target->type->virt2phys(target, va, &pa);
3483         if (retval == ERROR_OK)
3484                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3485
3486         return retval;
3487 }
3488
3489 static void writeData(FILE *f, const void *data, size_t len)
3490 {
3491         size_t written = fwrite(data, 1, len, f);
3492         if (written != len)
3493                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3494 }
3495
3496 static void writeLong(FILE *f, int l)
3497 {
3498         int i;
3499         for (i = 0; i < 4; i++) {
3500                 char c = (l >> (i*8))&0xff;
3501                 writeData(f, &c, 1);
3502         }
3503
3504 }
3505
3506 static void writeString(FILE *f, char *s)
3507 {
3508         writeData(f, s, strlen(s));
3509 }
3510
3511 typedef unsigned char UNIT[2];  /* unit of profiling */
3512
3513 /* Dump a gmon.out histogram file. */
3514 static void write_gmon(uint32_t *samples, uint32_t sampleNum, const char *filename,
3515                 bool with_range, uint32_t start_address, uint32_t end_address)
3516 {
3517         uint32_t i;
3518         FILE *f = fopen(filename, "w");
3519         if (f == NULL)
3520                 return;
3521         writeString(f, "gmon");
3522         writeLong(f, 0x00000001); /* Version */
3523         writeLong(f, 0); /* padding */
3524         writeLong(f, 0); /* padding */
3525         writeLong(f, 0); /* padding */
3526
3527         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3528         writeData(f, &zero, 1);
3529
3530         /* figure out bucket size */
3531         uint32_t min;
3532         uint32_t max;
3533         if (with_range) {
3534                 min = start_address;
3535                 max = end_address;
3536         } else {
3537                 min = samples[0];
3538                 max = samples[0];
3539                 for (i = 0; i < sampleNum; i++) {
3540                         if (min > samples[i])
3541                                 min = samples[i];
3542                         if (max < samples[i])
3543                                 max = samples[i];
3544                 }
3545
3546                 /* max should be (largest sample + 1)
3547                  * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
3548                 max++;
3549         }
3550
3551         int addressSpace = max - min;
3552         assert(addressSpace >= 2);
3553
3554         /* FIXME: What is the reasonable number of buckets?
3555          * The profiling result will be more accurate if there are enough buckets. */
3556         static const uint32_t maxBuckets = 128 * 1024; /* maximum buckets. */
3557         uint32_t numBuckets = addressSpace / sizeof(UNIT);
3558         if (numBuckets > maxBuckets)
3559                 numBuckets = maxBuckets;
3560         int *buckets = malloc(sizeof(int) * numBuckets);
3561         if (buckets == NULL) {
3562                 fclose(f);
3563                 return;
3564         }
3565         memset(buckets, 0, sizeof(int) * numBuckets);
3566         for (i = 0; i < sampleNum; i++) {
3567                 uint32_t address = samples[i];
3568
3569                 if ((address < min) || (max <= address))
3570                         continue;
3571
3572                 long long a = address - min;
3573                 long long b = numBuckets;
3574                 long long c = addressSpace;
3575                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3576                 buckets[index_t]++;
3577         }
3578
3579         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3580         writeLong(f, min);                      /* low_pc */
3581         writeLong(f, max);                      /* high_pc */
3582         writeLong(f, numBuckets);       /* # of buckets */
3583         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3584         writeString(f, "seconds");
3585         for (i = 0; i < (15-strlen("seconds")); i++)
3586                 writeData(f, &zero, 1);
3587         writeString(f, "s");
3588
3589         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3590
3591         char *data = malloc(2 * numBuckets);
3592         if (data != NULL) {
3593                 for (i = 0; i < numBuckets; i++) {
3594                         int val;
3595                         val = buckets[i];
3596                         if (val > 65535)
3597                                 val = 65535;
3598                         data[i * 2] = val&0xff;
3599                         data[i * 2 + 1] = (val >> 8) & 0xff;
3600                 }
3601                 free(buckets);
3602                 writeData(f, data, numBuckets * 2);
3603                 free(data);
3604         } else
3605                 free(buckets);
3606
3607         fclose(f);
3608 }
3609
3610 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3611  * which will be used as a random sampling of PC */
3612 COMMAND_HANDLER(handle_profile_command)
3613 {
3614         struct target *target = get_current_target(CMD_CTX);
3615
3616         if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
3617                 return ERROR_COMMAND_SYNTAX_ERROR;
3618
3619         const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
3620         uint32_t offset;
3621         uint32_t num_of_sampels;
3622         int retval = ERROR_OK;
3623
3624         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
3625
3626         uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
3627         if (samples == NULL) {
3628                 LOG_ERROR("No memory to store samples.");
3629                 return ERROR_FAIL;
3630         }
3631
3632         /**
3633          * Some cores let us sample the PC without the
3634          * annoying halt/resume step; for example, ARMv7 PCSR.
3635          * Provide a way to use that more efficient mechanism.
3636          */
3637         retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
3638                                 &num_of_sampels, offset);
3639         if (retval != ERROR_OK) {
3640                 free(samples);
3641                 return retval;
3642         }
3643
3644         assert(num_of_sampels <= MAX_PROFILE_SAMPLE_NUM);
3645
3646         retval = target_poll(target);
3647         if (retval != ERROR_OK) {
3648                 free(samples);
3649                 return retval;
3650         }
3651         if (target->state == TARGET_RUNNING) {
3652                 retval = target_halt(target);
3653                 if (retval != ERROR_OK) {
3654                         free(samples);
3655                         return retval;
3656                 }
3657         }
3658
3659         retval = target_poll(target);
3660         if (retval != ERROR_OK) {
3661                 free(samples);
3662                 return retval;
3663         }
3664
3665         uint32_t start_address = 0;
3666         uint32_t end_address = 0;
3667         bool with_range = false;
3668         if (CMD_ARGC == 4) {
3669                 with_range = true;
3670                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
3671                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
3672         }
3673
3674         write_gmon(samples, num_of_sampels, CMD_ARGV[1],
3675                         with_range, start_address, end_address);
3676         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3677
3678         free(samples);
3679         return retval;
3680 }
3681
3682 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3683 {
3684         char *namebuf;
3685         Jim_Obj *nameObjPtr, *valObjPtr;
3686         int result;
3687
3688         namebuf = alloc_printf("%s(%d)", varname, idx);
3689         if (!namebuf)
3690                 return JIM_ERR;
3691
3692         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3693         valObjPtr = Jim_NewIntObj(interp, val);
3694         if (!nameObjPtr || !valObjPtr) {
3695                 free(namebuf);
3696                 return JIM_ERR;
3697         }
3698
3699         Jim_IncrRefCount(nameObjPtr);
3700         Jim_IncrRefCount(valObjPtr);
3701         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3702         Jim_DecrRefCount(interp, nameObjPtr);
3703         Jim_DecrRefCount(interp, valObjPtr);
3704         free(namebuf);
3705         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3706         return result;
3707 }
3708
3709 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3710 {
3711         struct command_context *context;
3712         struct target *target;
3713
3714         context = current_command_context(interp);
3715         assert(context != NULL);
3716
3717         target = get_current_target(context);
3718         if (target == NULL) {
3719                 LOG_ERROR("mem2array: no current target");
3720                 return JIM_ERR;
3721         }
3722
3723         return target_mem2array(interp, target, argc - 1, argv + 1);
3724 }
3725
3726 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3727 {
3728         long l;
3729         uint32_t width;
3730         int len;
3731         uint32_t addr;
3732         uint32_t count;
3733         uint32_t v;
3734         const char *varname;
3735         int  n, e, retval;
3736         uint32_t i;
3737
3738         /* argv[1] = name of array to receive the data
3739          * argv[2] = desired width
3740          * argv[3] = memory address
3741          * argv[4] = count of times to read
3742          */
3743         if (argc != 4) {
3744                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3745                 return JIM_ERR;
3746         }
3747         varname = Jim_GetString(argv[0], &len);
3748         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3749
3750         e = Jim_GetLong(interp, argv[1], &l);
3751         width = l;
3752         if (e != JIM_OK)
3753                 return e;
3754
3755         e = Jim_GetLong(interp, argv[2], &l);
3756         addr = l;
3757         if (e != JIM_OK)
3758                 return e;
3759         e = Jim_GetLong(interp, argv[3], &l);
3760         len = l;
3761         if (e != JIM_OK)
3762                 return e;
3763         switch (width) {
3764                 case 8:
3765                         width = 1;
3766                         break;
3767                 case 16:
3768                         width = 2;
3769                         break;
3770                 case 32:
3771                         width = 4;
3772                         break;
3773                 default:
3774                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3775                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3776                         return JIM_ERR;
3777         }
3778         if (len == 0) {
3779                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3780                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3781                 return JIM_ERR;
3782         }
3783         if ((addr + (len * width)) < addr) {
3784                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3785                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3786                 return JIM_ERR;
3787         }
3788         /* absurd transfer size? */
3789         if (len > 65536) {
3790                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3791                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3792                 return JIM_ERR;
3793         }
3794
3795         if ((width == 1) ||
3796                 ((width == 2) && ((addr & 1) == 0)) ||
3797                 ((width == 4) && ((addr & 3) == 0))) {
3798                 /* all is well */
3799         } else {
3800                 char buf[100];
3801                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3802                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3803                                 addr,
3804                                 width);
3805                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3806                 return JIM_ERR;
3807         }
3808
3809         /* Transfer loop */
3810
3811         /* index counter */
3812         n = 0;
3813
3814         size_t buffersize = 4096;
3815         uint8_t *buffer = malloc(buffersize);
3816         if (buffer == NULL)
3817                 return JIM_ERR;
3818
3819         /* assume ok */
3820         e = JIM_OK;
3821         while (len) {
3822                 /* Slurp... in buffer size chunks */
3823
3824                 count = len; /* in objects.. */
3825                 if (count > (buffersize / width))
3826                         count = (buffersize / width);
3827
3828                 retval = target_read_memory(target, addr, width, count, buffer);
3829                 if (retval != ERROR_OK) {
3830                         /* BOO !*/
3831                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3832                                           (unsigned int)addr,
3833                                           (int)width,
3834                                           (int)count);
3835                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3836                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3837                         e = JIM_ERR;
3838                         break;
3839                 } else {
3840                         v = 0; /* shut up gcc */
3841                         for (i = 0; i < count ; i++, n++) {
3842                                 switch (width) {
3843                                         case 4:
3844                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3845                                                 break;
3846                                         case 2:
3847                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3848                                                 break;
3849                                         case 1:
3850                                                 v = buffer[i] & 0x0ff;
3851                                                 break;
3852                                 }
3853                                 new_int_array_element(interp, varname, n, v);
3854                         }
3855                         len -= count;
3856                         addr += count * width;
3857                 }
3858         }
3859
3860         free(buffer);
3861
3862         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3863
3864         return e;
3865 }
3866
3867 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3868 {
3869         char *namebuf;
3870         Jim_Obj *nameObjPtr, *valObjPtr;
3871         int result;
3872         long l;
3873
3874         namebuf = alloc_printf("%s(%d)", varname, idx);
3875         if (!namebuf)
3876                 return JIM_ERR;
3877
3878         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3879         if (!nameObjPtr) {
3880                 free(namebuf);
3881                 return JIM_ERR;
3882         }
3883
3884         Jim_IncrRefCount(nameObjPtr);
3885         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3886         Jim_DecrRefCount(interp, nameObjPtr);
3887         free(namebuf);
3888         if (valObjPtr == NULL)
3889                 return JIM_ERR;
3890
3891         result = Jim_GetLong(interp, valObjPtr, &l);
3892         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3893         *val = l;
3894         return result;
3895 }
3896
3897 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3898 {
3899         struct command_context *context;
3900         struct target *target;
3901
3902         context = current_command_context(interp);
3903         assert(context != NULL);
3904
3905         target = get_current_target(context);
3906         if (target == NULL) {
3907                 LOG_ERROR("array2mem: no current target");
3908                 return JIM_ERR;
3909         }
3910
3911         return target_array2mem(interp, target, argc-1, argv + 1);
3912 }
3913
3914 static int target_array2mem(Jim_Interp *interp, struct target *target,
3915                 int argc, Jim_Obj *const *argv)
3916 {
3917         long l;
3918         uint32_t width;
3919         int len;
3920         uint32_t addr;
3921         uint32_t count;
3922         uint32_t v;
3923         const char *varname;
3924         int  n, e, retval;
3925         uint32_t i;
3926
3927         /* argv[1] = name of array to get the data
3928          * argv[2] = desired width
3929          * argv[3] = memory address
3930          * argv[4] = count to write
3931          */
3932         if (argc != 4) {
3933                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3934                 return JIM_ERR;
3935         }
3936         varname = Jim_GetString(argv[0], &len);
3937         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3938
3939         e = Jim_GetLong(interp, argv[1], &l);
3940         width = l;
3941         if (e != JIM_OK)
3942                 return e;
3943
3944         e = Jim_GetLong(interp, argv[2], &l);
3945         addr = l;
3946         if (e != JIM_OK)
3947                 return e;
3948         e = Jim_GetLong(interp, argv[3], &l);
3949         len = l;
3950         if (e != JIM_OK)
3951                 return e;
3952         switch (width) {
3953                 case 8:
3954                         width = 1;
3955                         break;
3956                 case 16:
3957                         width = 2;
3958                         break;
3959                 case 32:
3960                         width = 4;
3961                         break;
3962                 default:
3963                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3964                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3965                                         "Invalid width param, must be 8/16/32", NULL);
3966                         return JIM_ERR;
3967         }
3968         if (len == 0) {
3969                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3970                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3971                                 "array2mem: zero width read?", NULL);
3972                 return JIM_ERR;
3973         }
3974         if ((addr + (len * width)) < addr) {
3975                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3976                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3977                                 "array2mem: addr + len - wraps to zero?", NULL);
3978                 return JIM_ERR;
3979         }
3980         /* absurd transfer size? */
3981         if (len > 65536) {
3982                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3983                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3984                                 "array2mem: absurd > 64K item request", NULL);
3985                 return JIM_ERR;
3986         }
3987
3988         if ((width == 1) ||
3989                 ((width == 2) && ((addr & 1) == 0)) ||
3990                 ((width == 4) && ((addr & 3) == 0))) {
3991                 /* all is well */
3992         } else {
3993                 char buf[100];
3994                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3995                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3996                                 (unsigned int)addr,
3997                                 (int)width);
3998                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3999                 return JIM_ERR;
4000         }
4001
4002         /* Transfer loop */
4003
4004         /* index counter */
4005         n = 0;
4006         /* assume ok */
4007         e = JIM_OK;
4008
4009         size_t buffersize = 4096;
4010         uint8_t *buffer = malloc(buffersize);
4011         if (buffer == NULL)
4012                 return JIM_ERR;
4013
4014         while (len) {
4015                 /* Slurp... in buffer size chunks */
4016
4017                 count = len; /* in objects.. */
4018                 if (count > (buffersize / width))
4019                         count = (buffersize / width);
4020
4021                 v = 0; /* shut up gcc */
4022                 for (i = 0; i < count; i++, n++) {
4023                         get_int_array_element(interp, varname, n, &v);
4024                         switch (width) {
4025                         case 4:
4026                                 target_buffer_set_u32(target, &buffer[i * width], v);
4027                                 break;
4028                         case 2:
4029                                 target_buffer_set_u16(target, &buffer[i * width], v);
4030                                 break;
4031                         case 1:
4032                                 buffer[i] = v & 0x0ff;
4033                                 break;
4034                         }
4035                 }
4036                 len -= count;
4037
4038                 retval = target_write_memory(target, addr, width, count, buffer);
4039                 if (retval != ERROR_OK) {
4040                         /* BOO !*/
4041                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
4042                                           (unsigned int)addr,
4043                                           (int)width,
4044                                           (int)count);
4045                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4046                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
4047                         e = JIM_ERR;
4048                         break;
4049                 }
4050                 addr += count * width;
4051         }
4052
4053         free(buffer);
4054
4055         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
4056
4057         return e;
4058 }
4059
4060 /* FIX? should we propagate errors here rather than printing them
4061  * and continuing?
4062  */
4063 void target_handle_event(struct target *target, enum target_event e)
4064 {
4065         struct target_event_action *teap;
4066
4067         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4068                 if (teap->event == e) {
4069                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
4070                                            target->target_number,
4071                                            target_name(target),
4072                                            target_type_name(target),
4073                                            e,
4074                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
4075                                            Jim_GetString(teap->body, NULL));
4076                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
4077                                 Jim_MakeErrorMessage(teap->interp);
4078                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
4079                         }
4080                 }
4081         }
4082 }
4083
4084 /**
4085  * Returns true only if the target has a handler for the specified event.
4086  */
4087 bool target_has_event_action(struct target *target, enum target_event event)
4088 {
4089         struct target_event_action *teap;
4090
4091         for (teap = target->event_action; teap != NULL; teap = teap->next) {
4092                 if (teap->event == event)
4093                         return true;
4094         }
4095         return false;
4096 }
4097
4098 enum target_cfg_param {
4099         TCFG_TYPE,
4100         TCFG_EVENT,
4101         TCFG_WORK_AREA_VIRT,
4102         TCFG_WORK_AREA_PHYS,
4103         TCFG_WORK_AREA_SIZE,
4104         TCFG_WORK_AREA_BACKUP,
4105         TCFG_ENDIAN,
4106         TCFG_VARIANT,
4107         TCFG_COREID,
4108         TCFG_CHAIN_POSITION,
4109         TCFG_DBGBASE,
4110         TCFG_RTOS,
4111 };
4112
4113 static Jim_Nvp nvp_config_opts[] = {
4114         { .name = "-type",             .value = TCFG_TYPE },
4115         { .name = "-event",            .value = TCFG_EVENT },
4116         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
4117         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
4118         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
4119         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
4120         { .name = "-endian" ,          .value = TCFG_ENDIAN },
4121         { .name = "-variant",          .value = TCFG_VARIANT },
4122         { .name = "-coreid",           .value = TCFG_COREID },
4123         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
4124         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
4125         { .name = "-rtos",             .value = TCFG_RTOS },
4126         { .name = NULL, .value = -1 }
4127 };
4128
4129 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
4130 {
4131         Jim_Nvp *n;
4132         Jim_Obj *o;
4133         jim_wide w;
4134         char *cp;
4135         int e;
4136
4137         /* parse config or cget options ... */
4138         while (goi->argc > 0) {
4139                 Jim_SetEmptyResult(goi->interp);
4140                 /* Jim_GetOpt_Debug(goi); */
4141
4142                 if (target->type->target_jim_configure) {
4143                         /* target defines a configure function */
4144                         /* target gets first dibs on parameters */
4145                         e = (*(target->type->target_jim_configure))(target, goi);
4146                         if (e == JIM_OK) {
4147                                 /* more? */
4148                                 continue;
4149                         }
4150                         if (e == JIM_ERR) {
4151                                 /* An error */
4152                                 return e;
4153                         }
4154                         /* otherwise we 'continue' below */
4155                 }
4156                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4157                 if (e != JIM_OK) {
4158                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4159                         return e;
4160                 }
4161                 switch (n->value) {
4162                 case TCFG_TYPE:
4163                         /* not setable */
4164                         if (goi->isconfigure) {
4165                                 Jim_SetResultFormatted(goi->interp,
4166                                                 "not settable: %s", n->name);
4167                                 return JIM_ERR;
4168                         } else {
4169 no_params:
4170                                 if (goi->argc != 0) {
4171                                         Jim_WrongNumArgs(goi->interp,
4172                                                         goi->argc, goi->argv,
4173                                                         "NO PARAMS");
4174                                         return JIM_ERR;
4175                                 }
4176                         }
4177                         Jim_SetResultString(goi->interp,
4178                                         target_type_name(target), -1);
4179                         /* loop for more */
4180                         break;
4181                 case TCFG_EVENT:
4182                         if (goi->argc == 0) {
4183                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4184                                 return JIM_ERR;
4185                         }
4186
4187                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4188                         if (e != JIM_OK) {
4189                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4190                                 return e;
4191                         }
4192
4193                         if (goi->isconfigure) {
4194                                 if (goi->argc != 1) {
4195                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4196                                         return JIM_ERR;
4197                                 }
4198                         } else {
4199                                 if (goi->argc != 0) {
4200                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4201                                         return JIM_ERR;
4202                                 }
4203                         }
4204
4205                         {
4206                                 struct target_event_action *teap;
4207
4208                                 teap = target->event_action;
4209                                 /* replace existing? */
4210                                 while (teap) {
4211                                         if (teap->event == (enum target_event)n->value)
4212                                                 break;
4213                                         teap = teap->next;
4214                                 }
4215
4216                                 if (goi->isconfigure) {
4217                                         bool replace = true;
4218                                         if (teap == NULL) {
4219                                                 /* create new */
4220                                                 teap = calloc(1, sizeof(*teap));
4221                                                 replace = false;
4222                                         }
4223                                         teap->event = n->value;
4224                                         teap->interp = goi->interp;
4225                                         Jim_GetOpt_Obj(goi, &o);
4226                                         if (teap->body)
4227                                                 Jim_DecrRefCount(teap->interp, teap->body);
4228                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4229                                         /*
4230                                          * FIXME:
4231                                          *     Tcl/TK - "tk events" have a nice feature.
4232                                          *     See the "BIND" command.
4233                                          *    We should support that here.
4234                                          *     You can specify %X and %Y in the event code.
4235                                          *     The idea is: %T - target name.
4236                                          *     The idea is: %N - target number
4237                                          *     The idea is: %E - event name.
4238                                          */
4239                                         Jim_IncrRefCount(teap->body);
4240
4241                                         if (!replace) {
4242                                                 /* add to head of event list */
4243                                                 teap->next = target->event_action;
4244                                                 target->event_action = teap;
4245                                         }
4246                                         Jim_SetEmptyResult(goi->interp);
4247                                 } else {
4248                                         /* get */
4249                                         if (teap == NULL)
4250                                                 Jim_SetEmptyResult(goi->interp);
4251                                         else
4252                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4253                                 }
4254                         }
4255                         /* loop for more */
4256                         break;
4257
4258                 case TCFG_WORK_AREA_VIRT:
4259                         if (goi->isconfigure) {
4260                                 target_free_all_working_areas(target);
4261                                 e = Jim_GetOpt_Wide(goi, &w);
4262                                 if (e != JIM_OK)
4263                                         return e;
4264                                 target->working_area_virt = w;
4265                                 target->working_area_virt_spec = true;
4266                         } else {
4267                                 if (goi->argc != 0)
4268                                         goto no_params;
4269                         }
4270                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4271                         /* loop for more */
4272                         break;
4273
4274                 case TCFG_WORK_AREA_PHYS:
4275                         if (goi->isconfigure) {
4276                                 target_free_all_working_areas(target);
4277                                 e = Jim_GetOpt_Wide(goi, &w);
4278                                 if (e != JIM_OK)
4279                                         return e;
4280                                 target->working_area_phys = w;
4281                                 target->working_area_phys_spec = true;
4282                         } else {
4283                                 if (goi->argc != 0)
4284                                         goto no_params;
4285                         }
4286                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4287                         /* loop for more */
4288                         break;
4289
4290                 case TCFG_WORK_AREA_SIZE:
4291                         if (goi->isconfigure) {
4292                                 target_free_all_working_areas(target);
4293                                 e = Jim_GetOpt_Wide(goi, &w);
4294                                 if (e != JIM_OK)
4295                                         return e;
4296                                 target->working_area_size = w;
4297                         } else {
4298                                 if (goi->argc != 0)
4299                                         goto no_params;
4300                         }
4301                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4302                         /* loop for more */
4303                         break;
4304
4305                 case TCFG_WORK_AREA_BACKUP:
4306                         if (goi->isconfigure) {
4307                                 target_free_all_working_areas(target);
4308                                 e = Jim_GetOpt_Wide(goi, &w);
4309                                 if (e != JIM_OK)
4310                                         return e;
4311                                 /* make this exactly 1 or 0 */
4312                                 target->backup_working_area = (!!w);
4313                         } else {
4314                                 if (goi->argc != 0)
4315                                         goto no_params;
4316                         }
4317                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4318                         /* loop for more e*/
4319                         break;
4320
4321
4322                 case TCFG_ENDIAN:
4323                         if (goi->isconfigure) {
4324                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4325                                 if (e != JIM_OK) {
4326                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4327                                         return e;
4328                                 }
4329                                 target->endianness = n->value;
4330                         } else {
4331                                 if (goi->argc != 0)
4332                                         goto no_params;
4333                         }
4334                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4335                         if (n->name == NULL) {
4336                                 target->endianness = TARGET_LITTLE_ENDIAN;
4337                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4338                         }
4339                         Jim_SetResultString(goi->interp, n->name, -1);
4340                         /* loop for more */
4341                         break;
4342
4343                 case TCFG_VARIANT:
4344                         if (goi->isconfigure) {
4345                                 if (goi->argc < 1) {
4346                                         Jim_SetResultFormatted(goi->interp,
4347                                                                                    "%s ?STRING?",
4348                                                                                    n->name);
4349                                         return JIM_ERR;
4350                                 }
4351                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4352                                 if (e != JIM_OK)
4353                                         return e;
4354                                 free(target->variant);
4355                                 target->variant = strdup(cp);
4356                         } else {
4357                                 if (goi->argc != 0)
4358                                         goto no_params;
4359                         }
4360                         Jim_SetResultString(goi->interp, target->variant, -1);
4361                         /* loop for more */
4362                         break;
4363
4364                 case TCFG_COREID:
4365                         if (goi->isconfigure) {
4366                                 e = Jim_GetOpt_Wide(goi, &w);
4367                                 if (e != JIM_OK)
4368                                         return e;
4369                                 target->coreid = (int32_t)w;
4370                         } else {
4371                                 if (goi->argc != 0)
4372                                         goto no_params;
4373                         }
4374                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4375                         /* loop for more */
4376                         break;
4377
4378                 case TCFG_CHAIN_POSITION:
4379                         if (goi->isconfigure) {
4380                                 Jim_Obj *o_t;
4381                                 struct jtag_tap *tap;
4382                                 target_free_all_working_areas(target);
4383                                 e = Jim_GetOpt_Obj(goi, &o_t);
4384                                 if (e != JIM_OK)
4385                                         return e;
4386                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4387                                 if (tap == NULL)
4388                                         return JIM_ERR;
4389                                 /* make this exactly 1 or 0 */
4390                                 target->tap = tap;
4391                         } else {
4392                                 if (goi->argc != 0)
4393                                         goto no_params;
4394                         }
4395                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4396                         /* loop for more e*/
4397                         break;
4398                 case TCFG_DBGBASE:
4399                         if (goi->isconfigure) {
4400                                 e = Jim_GetOpt_Wide(goi, &w);
4401                                 if (e != JIM_OK)
4402                                         return e;
4403                                 target->dbgbase = (uint32_t)w;
4404                                 target->dbgbase_set = true;
4405                         } else {
4406                                 if (goi->argc != 0)
4407                                         goto no_params;
4408                         }
4409                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4410                         /* loop for more */
4411                         break;
4412
4413                 case TCFG_RTOS:
4414                         /* RTOS */
4415                         {
4416                                 int result = rtos_create(goi, target);
4417                                 if (result != JIM_OK)
4418                                         return result;
4419                         }
4420                         /* loop for more */
4421                         break;
4422                 }
4423         } /* while (goi->argc) */
4424
4425
4426                 /* done - we return */
4427         return JIM_OK;
4428 }
4429
4430 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4431 {
4432         Jim_GetOptInfo goi;
4433
4434         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4435         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4436         int need_args = 1 + goi.isconfigure;
4437         if (goi.argc < need_args) {
4438                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4439                         goi.isconfigure
4440                                 ? "missing: -option VALUE ..."
4441                                 : "missing: -option ...");
4442                 return JIM_ERR;
4443         }
4444         struct target *target = Jim_CmdPrivData(goi.interp);
4445         return target_configure(&goi, target);
4446 }
4447
4448 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4449 {
4450         const char *cmd_name = Jim_GetString(argv[0], NULL);
4451
4452         Jim_GetOptInfo goi;
4453         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4454
4455         if (goi.argc < 2 || goi.argc > 4) {
4456                 Jim_SetResultFormatted(goi.interp,
4457                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4458                 return JIM_ERR;
4459         }
4460
4461         target_write_fn fn;
4462         fn = target_write_memory;
4463
4464         int e;
4465         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4466                 /* consume it */
4467                 struct Jim_Obj *obj;
4468                 e = Jim_GetOpt_Obj(&goi, &obj);
4469                 if (e != JIM_OK)
4470                         return e;
4471
4472                 fn = target_write_phys_memory;
4473         }
4474
4475         jim_wide a;
4476         e = Jim_GetOpt_Wide(&goi, &a);
4477         if (e != JIM_OK)
4478                 return e;
4479
4480         jim_wide b;
4481         e = Jim_GetOpt_Wide(&goi, &b);
4482         if (e != JIM_OK)
4483                 return e;
4484
4485         jim_wide c = 1;
4486         if (goi.argc == 1) {
4487                 e = Jim_GetOpt_Wide(&goi, &c);
4488                 if (e != JIM_OK)
4489                         return e;
4490         }
4491
4492         /* all args must be consumed */
4493         if (goi.argc != 0)
4494                 return JIM_ERR;
4495
4496         struct target *target = Jim_CmdPrivData(goi.interp);
4497         unsigned data_size;
4498         if (strcasecmp(cmd_name, "mww") == 0)
4499                 data_size = 4;
4500         else if (strcasecmp(cmd_name, "mwh") == 0)
4501                 data_size = 2;
4502         else if (strcasecmp(cmd_name, "mwb") == 0)
4503                 data_size = 1;
4504         else {
4505                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4506                 return JIM_ERR;
4507         }
4508
4509         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4510 }
4511
4512 /**
4513 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4514 *
4515 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4516 *         mdh [phys] <address> [<count>] - for 16 bit reads
4517 *         mdb [phys] <address> [<count>] - for  8 bit reads
4518 *
4519 *  Count defaults to 1.
4520 *
4521 *  Calls target_read_memory or target_read_phys_memory depending on
4522 *  the presence of the "phys" argument
4523 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4524 *  to int representation in base16.
4525 *  Also outputs read data in a human readable form using command_print
4526 *
4527 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4528 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4529 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4530 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4531 *  on success, with [<count>] number of elements.
4532 *
4533 *  In case of little endian target:
4534 *      Example1: "mdw 0x00000000"  returns "10123456"
4535 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4536 *      Example3: "mdb 0x00000000" returns "56"
4537 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4538 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4539 **/
4540 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4541 {
4542         const char *cmd_name = Jim_GetString(argv[0], NULL);
4543
4544         Jim_GetOptInfo goi;
4545         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4546
4547         if ((goi.argc < 1) || (goi.argc > 3)) {
4548                 Jim_SetResultFormatted(goi.interp,
4549                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4550                 return JIM_ERR;
4551         }
4552
4553         int (*fn)(struct target *target,
4554                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4555         fn = target_read_memory;
4556
4557         int e;
4558         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4559                 /* consume it */
4560                 struct Jim_Obj *obj;
4561                 e = Jim_GetOpt_Obj(&goi, &obj);
4562                 if (e != JIM_OK)
4563                         return e;
4564
4565                 fn = target_read_phys_memory;
4566         }
4567
4568         /* Read address parameter */
4569         jim_wide addr;
4570         e = Jim_GetOpt_Wide(&goi, &addr);
4571         if (e != JIM_OK)
4572                 return JIM_ERR;
4573
4574         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4575         jim_wide count;
4576         if (goi.argc == 1) {
4577                 e = Jim_GetOpt_Wide(&goi, &count);
4578                 if (e != JIM_OK)
4579                         return JIM_ERR;
4580         } else
4581                 count = 1;
4582
4583         /* all args must be consumed */
4584         if (goi.argc != 0)
4585                 return JIM_ERR;
4586
4587         jim_wide dwidth = 1; /* shut up gcc */
4588         if (strcasecmp(cmd_name, "mdw") == 0)
4589                 dwidth = 4;
4590         else if (strcasecmp(cmd_name, "mdh") == 0)
4591                 dwidth = 2;
4592         else if (strcasecmp(cmd_name, "mdb") == 0)
4593                 dwidth = 1;
4594         else {
4595                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4596                 return JIM_ERR;
4597         }
4598
4599         /* convert count to "bytes" */
4600         int bytes = count * dwidth;
4601
4602         struct target *target = Jim_CmdPrivData(goi.interp);
4603         uint8_t  target_buf[32];
4604         jim_wide x, y, z;
4605         while (bytes > 0) {
4606                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4607
4608                 /* Try to read out next block */
4609                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4610
4611                 if (e != ERROR_OK) {
4612                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4613                         return JIM_ERR;
4614                 }
4615
4616                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4617                 switch (dwidth) {
4618                 case 4:
4619                         for (x = 0; x < 16 && x < y; x += 4) {
4620                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4621                                 command_print_sameline(NULL, "%08x ", (int)(z));
4622                         }
4623                         for (; (x < 16) ; x += 4)
4624                                 command_print_sameline(NULL, "         ");
4625                         break;
4626                 case 2:
4627                         for (x = 0; x < 16 && x < y; x += 2) {
4628                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4629                                 command_print_sameline(NULL, "%04x ", (int)(z));
4630                         }
4631                         for (; (x < 16) ; x += 2)
4632                                 command_print_sameline(NULL, "     ");
4633                         break;
4634                 case 1:
4635                 default:
4636                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4637                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4638                                 command_print_sameline(NULL, "%02x ", (int)(z));
4639                         }
4640                         for (; (x < 16) ; x += 1)
4641                                 command_print_sameline(NULL, "   ");
4642                         break;
4643                 }
4644                 /* ascii-ify the bytes */
4645                 for (x = 0 ; x < y ; x++) {
4646                         if ((target_buf[x] >= 0x20) &&
4647                                 (target_buf[x] <= 0x7e)) {
4648                                 /* good */
4649                         } else {
4650                                 /* smack it */
4651                                 target_buf[x] = '.';
4652                         }
4653                 }
4654                 /* space pad  */
4655                 while (x < 16) {
4656                         target_buf[x] = ' ';
4657                         x++;
4658                 }
4659                 /* terminate */
4660                 target_buf[16] = 0;
4661                 /* print - with a newline */
4662                 command_print_sameline(NULL, "%s\n", target_buf);
4663                 /* NEXT... */
4664                 bytes -= 16;
4665                 addr += 16;
4666         }
4667         return JIM_OK;
4668 }
4669
4670 static int jim_target_mem2array(Jim_Interp *interp,
4671                 int argc, Jim_Obj *const *argv)
4672 {
4673         struct target *target = Jim_CmdPrivData(interp);
4674         return target_mem2array(interp, target, argc - 1, argv + 1);
4675 }
4676
4677 static int jim_target_array2mem(Jim_Interp *interp,
4678                 int argc, Jim_Obj *const *argv)
4679 {
4680         struct target *target = Jim_CmdPrivData(interp);
4681         return target_array2mem(interp, target, argc - 1, argv + 1);
4682 }
4683
4684 static int jim_target_tap_disabled(Jim_Interp *interp)
4685 {
4686         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4687         return JIM_ERR;
4688 }
4689
4690 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4691 {
4692         if (argc != 1) {
4693                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4694                 return JIM_ERR;
4695         }
4696         struct target *target = Jim_CmdPrivData(interp);
4697         if (!target->tap->enabled)
4698                 return jim_target_tap_disabled(interp);
4699
4700         int e = target->type->examine(target);
4701         if (e != ERROR_OK)
4702                 return JIM_ERR;
4703         return JIM_OK;
4704 }
4705
4706 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4707 {
4708         if (argc != 1) {
4709                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4710                 return JIM_ERR;
4711         }
4712         struct target *target = Jim_CmdPrivData(interp);
4713
4714         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4715                 return JIM_ERR;
4716
4717         return JIM_OK;
4718 }
4719
4720 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4721 {
4722         if (argc != 1) {
4723                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4724                 return JIM_ERR;
4725         }
4726         struct target *target = Jim_CmdPrivData(interp);
4727         if (!target->tap->enabled)
4728                 return jim_target_tap_disabled(interp);
4729
4730         int e;
4731         if (!(target_was_examined(target)))
4732                 e = ERROR_TARGET_NOT_EXAMINED;
4733         else
4734                 e = target->type->poll(target);
4735         if (e != ERROR_OK)
4736                 return JIM_ERR;
4737         return JIM_OK;
4738 }
4739
4740 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4741 {
4742         Jim_GetOptInfo goi;
4743         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4744
4745         if (goi.argc != 2) {
4746                 Jim_WrongNumArgs(interp, 0, argv,
4747                                 "([tT]|[fF]|assert|deassert) BOOL");
4748                 return JIM_ERR;
4749         }
4750
4751         Jim_Nvp *n;
4752         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4753         if (e != JIM_OK) {
4754                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4755                 return e;
4756         }
4757         /* the halt or not param */
4758         jim_wide a;
4759         e = Jim_GetOpt_Wide(&goi, &a);
4760         if (e != JIM_OK)
4761                 return e;
4762
4763         struct target *target = Jim_CmdPrivData(goi.interp);
4764         if (!target->tap->enabled)
4765                 return jim_target_tap_disabled(interp);
4766         if (!(target_was_examined(target))) {
4767                 LOG_ERROR("Target not examined yet");
4768                 return ERROR_TARGET_NOT_EXAMINED;
4769         }
4770         if (!target->type->assert_reset || !target->type->deassert_reset) {
4771                 Jim_SetResultFormatted(interp,
4772                                 "No target-specific reset for %s",
4773                                 target_name(target));
4774                 return JIM_ERR;
4775         }
4776         /* determine if we should halt or not. */
4777         target->reset_halt = !!a;
4778         /* When this happens - all workareas are invalid. */
4779         target_free_all_working_areas_restore(target, 0);
4780
4781         /* do the assert */
4782         if (n->value == NVP_ASSERT)
4783                 e = target->type->assert_reset(target);
4784         else
4785                 e = target->type->deassert_reset(target);
4786         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4787 }
4788
4789 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4790 {
4791         if (argc != 1) {
4792                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4793                 return JIM_ERR;
4794         }
4795         struct target *target = Jim_CmdPrivData(interp);
4796         if (!target->tap->enabled)
4797                 return jim_target_tap_disabled(interp);
4798         int e = target->type->halt(target);
4799         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4800 }
4801
4802 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4803 {
4804         Jim_GetOptInfo goi;
4805         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4806
4807         /* params:  <name>  statename timeoutmsecs */
4808         if (goi.argc != 2) {
4809                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4810                 Jim_SetResultFormatted(goi.interp,
4811                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4812                 return JIM_ERR;
4813         }
4814
4815         Jim_Nvp *n;
4816         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4817         if (e != JIM_OK) {
4818                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4819                 return e;
4820         }
4821         jim_wide a;
4822         e = Jim_GetOpt_Wide(&goi, &a);
4823         if (e != JIM_OK)
4824                 return e;
4825         struct target *target = Jim_CmdPrivData(interp);
4826         if (!target->tap->enabled)
4827                 return jim_target_tap_disabled(interp);
4828
4829         e = target_wait_state(target, n->value, a);
4830         if (e != ERROR_OK) {
4831                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4832                 Jim_SetResultFormatted(goi.interp,
4833                                 "target: %s wait %s fails (%#s) %s",
4834                                 target_name(target), n->name,
4835                                 eObj, target_strerror_safe(e));
4836                 Jim_FreeNewObj(interp, eObj);
4837                 return JIM_ERR;
4838         }
4839         return JIM_OK;
4840 }
4841 /* List for human, Events defined for this target.
4842  * scripts/programs should use 'name cget -event NAME'
4843  */
4844 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4845 {
4846         struct command_context *cmd_ctx = current_command_context(interp);
4847         assert(cmd_ctx != NULL);
4848
4849         struct target *target = Jim_CmdPrivData(interp);
4850         struct target_event_action *teap = target->event_action;
4851         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4852                                    target->target_number,
4853                                    target_name(target));
4854         command_print(cmd_ctx, "%-25s | Body", "Event");
4855         command_print(cmd_ctx, "------------------------- | "
4856                         "----------------------------------------");
4857         while (teap) {
4858                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4859                 command_print(cmd_ctx, "%-25s | %s",
4860                                 opt->name, Jim_GetString(teap->body, NULL));
4861                 teap = teap->next;
4862         }
4863         command_print(cmd_ctx, "***END***");
4864         return JIM_OK;
4865 }
4866 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4867 {
4868         if (argc != 1) {
4869                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4870                 return JIM_ERR;
4871         }
4872         struct target *target = Jim_CmdPrivData(interp);
4873         Jim_SetResultString(interp, target_state_name(target), -1);
4874         return JIM_OK;
4875 }
4876 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4877 {
4878         Jim_GetOptInfo goi;
4879         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4880         if (goi.argc != 1) {
4881                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4882                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4883                 return JIM_ERR;
4884         }
4885         Jim_Nvp *n;
4886         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4887         if (e != JIM_OK) {
4888                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4889                 return e;
4890         }
4891         struct target *target = Jim_CmdPrivData(interp);
4892         target_handle_event(target, n->value);
4893         return JIM_OK;
4894 }
4895
4896 static const struct command_registration target_instance_command_handlers[] = {
4897         {
4898                 .name = "configure",
4899                 .mode = COMMAND_CONFIG,
4900                 .jim_handler = jim_target_configure,
4901                 .help  = "configure a new target for use",
4902                 .usage = "[target_attribute ...]",
4903         },
4904         {
4905                 .name = "cget",
4906                 .mode = COMMAND_ANY,
4907                 .jim_handler = jim_target_configure,
4908                 .help  = "returns the specified target attribute",
4909                 .usage = "target_attribute",
4910         },
4911         {
4912                 .name = "mww",
4913                 .mode = COMMAND_EXEC,
4914                 .jim_handler = jim_target_mw,
4915                 .help = "Write 32-bit word(s) to target memory",
4916                 .usage = "address data [count]",
4917         },
4918         {
4919                 .name = "mwh",
4920                 .mode = COMMAND_EXEC,
4921                 .jim_handler = jim_target_mw,
4922                 .help = "Write 16-bit half-word(s) to target memory",
4923                 .usage = "address data [count]",
4924         },
4925         {
4926                 .name = "mwb",
4927                 .mode = COMMAND_EXEC,
4928                 .jim_handler = jim_target_mw,
4929                 .help = "Write byte(s) to target memory",
4930                 .usage = "address data [count]",
4931         },
4932         {
4933                 .name = "mdw",
4934                 .mode = COMMAND_EXEC,
4935                 .jim_handler = jim_target_md,
4936                 .help = "Display target memory as 32-bit words",
4937                 .usage = "address [count]",
4938         },
4939         {
4940                 .name = "mdh",
4941                 .mode = COMMAND_EXEC,
4942                 .jim_handler = jim_target_md,
4943                 .help = "Display target memory as 16-bit half-words",
4944                 .usage = "address [count]",
4945         },
4946         {
4947                 .name = "mdb",
4948                 .mode = COMMAND_EXEC,
4949                 .jim_handler = jim_target_md,
4950                 .help = "Display target memory as 8-bit bytes",
4951                 .usage = "address [count]",
4952         },
4953         {
4954                 .name = "array2mem",
4955                 .mode = COMMAND_EXEC,
4956                 .jim_handler = jim_target_array2mem,
4957                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4958                         "to target memory",
4959                 .usage = "arrayname bitwidth address count",
4960         },
4961         {
4962                 .name = "mem2array",
4963                 .mode = COMMAND_EXEC,
4964                 .jim_handler = jim_target_mem2array,
4965                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4966                         "from target memory",
4967                 .usage = "arrayname bitwidth address count",
4968         },
4969         {
4970                 .name = "eventlist",
4971                 .mode = COMMAND_EXEC,
4972                 .jim_handler = jim_target_event_list,
4973                 .help = "displays a table of events defined for this target",
4974         },
4975         {
4976                 .name = "curstate",
4977                 .mode = COMMAND_EXEC,
4978                 .jim_handler = jim_target_current_state,
4979                 .help = "displays the current state of this target",
4980         },
4981         {
4982                 .name = "arp_examine",
4983                 .mode = COMMAND_EXEC,
4984                 .jim_handler = jim_target_examine,
4985                 .help = "used internally for reset processing",
4986         },
4987         {
4988                 .name = "arp_halt_gdb",
4989                 .mode = COMMAND_EXEC,
4990                 .jim_handler = jim_target_halt_gdb,
4991                 .help = "used internally for reset processing to halt GDB",
4992         },
4993         {
4994                 .name = "arp_poll",
4995                 .mode = COMMAND_EXEC,
4996                 .jim_handler = jim_target_poll,
4997                 .help = "used internally for reset processing",
4998         },
4999         {
5000                 .name = "arp_reset",
5001                 .mode = COMMAND_EXEC,
5002                 .jim_handler = jim_target_reset,
5003                 .help = "used internally for reset processing",
5004         },
5005         {
5006                 .name = "arp_halt",
5007                 .mode = COMMAND_EXEC,
5008                 .jim_handler = jim_target_halt,
5009                 .help = "used internally for reset processing",
5010         },
5011         {
5012                 .name = "arp_waitstate",
5013                 .mode = COMMAND_EXEC,
5014                 .jim_handler = jim_target_wait_state,
5015                 .help = "used internally for reset processing",
5016         },
5017         {
5018                 .name = "invoke-event",
5019                 .mode = COMMAND_EXEC,
5020                 .jim_handler = jim_target_invoke_event,
5021                 .help = "invoke handler for specified event",
5022                 .usage = "event_name",
5023         },
5024         COMMAND_REGISTRATION_DONE
5025 };
5026
5027 static int target_create(Jim_GetOptInfo *goi)
5028 {
5029         Jim_Obj *new_cmd;
5030         Jim_Cmd *cmd;
5031         const char *cp;
5032         char *cp2;
5033         int e;
5034         int x;
5035         struct target *target;
5036         struct command_context *cmd_ctx;
5037
5038         cmd_ctx = current_command_context(goi->interp);
5039         assert(cmd_ctx != NULL);
5040
5041         if (goi->argc < 3) {
5042                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
5043                 return JIM_ERR;
5044         }
5045
5046         /* COMMAND */
5047         Jim_GetOpt_Obj(goi, &new_cmd);
5048         /* does this command exist? */
5049         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
5050         if (cmd) {
5051                 cp = Jim_GetString(new_cmd, NULL);
5052                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
5053                 return JIM_ERR;
5054         }
5055
5056         /* TYPE */
5057         e = Jim_GetOpt_String(goi, &cp2, NULL);
5058         if (e != JIM_OK)
5059                 return e;
5060         cp = cp2;
5061         /* now does target type exist */
5062         for (x = 0 ; target_types[x] ; x++) {
5063                 if (0 == strcmp(cp, target_types[x]->name)) {
5064                         /* found */
5065                         break;
5066                 }
5067
5068                 /* check for deprecated name */
5069                 if (target_types[x]->deprecated_name) {
5070                         if (0 == strcmp(cp, target_types[x]->deprecated_name)) {
5071                                 /* found */
5072                                 LOG_WARNING("target name is deprecated use: \'%s\'", target_types[x]->name);
5073                                 break;
5074                         }
5075                 }
5076         }
5077         if (target_types[x] == NULL) {
5078                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
5079                 for (x = 0 ; target_types[x] ; x++) {
5080                         if (target_types[x + 1]) {
5081                                 Jim_AppendStrings(goi->interp,
5082                                                                    Jim_GetResult(goi->interp),
5083                                                                    target_types[x]->name,
5084                                                                    ", ", NULL);
5085                         } else {
5086                                 Jim_AppendStrings(goi->interp,
5087                                                                    Jim_GetResult(goi->interp),
5088                                                                    " or ",
5089                                                                    target_types[x]->name, NULL);
5090                         }
5091                 }
5092                 return JIM_ERR;
5093         }
5094
5095         /* Create it */
5096         target = calloc(1, sizeof(struct target));
5097         /* set target number */
5098         target->target_number = new_target_number();
5099
5100         /* allocate memory for each unique target type */
5101         target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
5102
5103         memcpy(target->type, target_types[x], sizeof(struct target_type));
5104
5105         /* will be set by "-endian" */
5106         target->endianness = TARGET_ENDIAN_UNKNOWN;
5107
5108         /* default to first core, override with -coreid */
5109         target->coreid = 0;
5110
5111         target->working_area        = 0x0;
5112         target->working_area_size   = 0x0;
5113         target->working_areas       = NULL;
5114         target->backup_working_area = 0;
5115
5116         target->state               = TARGET_UNKNOWN;
5117         target->debug_reason        = DBG_REASON_UNDEFINED;
5118         target->reg_cache           = NULL;
5119         target->breakpoints         = NULL;
5120         target->watchpoints         = NULL;
5121         target->next                = NULL;
5122         target->arch_info           = NULL;
5123
5124         target->display             = 1;
5125
5126         target->halt_issued                     = false;
5127
5128         /* initialize trace information */
5129         target->trace_info = malloc(sizeof(struct trace));
5130         target->trace_info->num_trace_points         = 0;
5131         target->trace_info->trace_points_size        = 0;
5132         target->trace_info->trace_points             = NULL;
5133         target->trace_info->trace_history_size       = 0;
5134         target->trace_info->trace_history            = NULL;
5135         target->trace_info->trace_history_pos        = 0;
5136         target->trace_info->trace_history_overflowed = 0;
5137
5138         target->dbgmsg          = NULL;
5139         target->dbg_msg_enabled = 0;
5140
5141         target->endianness = TARGET_ENDIAN_UNKNOWN;
5142
5143         target->rtos = NULL;
5144         target->rtos_auto_detect = false;
5145
5146         /* Do the rest as "configure" options */
5147         goi->isconfigure = 1;
5148         e = target_configure(goi, target);
5149
5150         if (target->tap == NULL) {
5151                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
5152                 e = JIM_ERR;
5153         }
5154
5155         if (e != JIM_OK) {
5156                 free(target->type);
5157                 free(target);
5158                 return e;
5159         }
5160
5161         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
5162                 /* default endian to little if not specified */
5163                 target->endianness = TARGET_LITTLE_ENDIAN;
5164         }
5165
5166         /* incase variant is not set */
5167         if (!target->variant)
5168                 target->variant = strdup("");
5169
5170         cp = Jim_GetString(new_cmd, NULL);
5171         target->cmd_name = strdup(cp);
5172
5173         /* create the target specific commands */
5174         if (target->type->commands) {
5175                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5176                 if (ERROR_OK != e)
5177                         LOG_ERROR("unable to register '%s' commands", cp);
5178         }
5179         if (target->type->target_create)
5180                 (*(target->type->target_create))(target, goi->interp);
5181
5182         /* append to end of list */
5183         {
5184                 struct target **tpp;
5185                 tpp = &(all_targets);
5186                 while (*tpp)
5187                         tpp = &((*tpp)->next);
5188                 *tpp = target;
5189         }
5190
5191         /* now - create the new target name command */
5192         const struct command_registration target_subcommands[] = {
5193                 {
5194                         .chain = target_instance_command_handlers,
5195                 },
5196                 {
5197                         .chain = target->type->commands,
5198                 },
5199                 COMMAND_REGISTRATION_DONE
5200         };
5201         const struct command_registration target_commands[] = {
5202                 {
5203                         .name = cp,
5204                         .mode = COMMAND_ANY,
5205                         .help = "target command group",
5206                         .usage = "",
5207                         .chain = target_subcommands,
5208                 },
5209                 COMMAND_REGISTRATION_DONE
5210         };
5211         e = register_commands(cmd_ctx, NULL, target_commands);
5212         if (ERROR_OK != e)
5213                 return JIM_ERR;
5214
5215         struct command *c = command_find_in_context(cmd_ctx, cp);
5216         assert(c);
5217         command_set_handler_data(c, target);
5218
5219         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5220 }
5221
5222 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5223 {
5224         if (argc != 1) {
5225                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5226                 return JIM_ERR;
5227         }
5228         struct command_context *cmd_ctx = current_command_context(interp);
5229         assert(cmd_ctx != NULL);
5230
5231         Jim_SetResultString(interp, target_name(get_current_target(cmd_ctx)), -1);
5232         return JIM_OK;
5233 }
5234
5235 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5236 {
5237         if (argc != 1) {
5238                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5239                 return JIM_ERR;
5240         }
5241         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5242         for (unsigned x = 0; NULL != target_types[x]; x++) {
5243                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5244                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5245         }
5246         return JIM_OK;
5247 }
5248
5249 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5250 {
5251         if (argc != 1) {
5252                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5253                 return JIM_ERR;
5254         }
5255         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5256         struct target *target = all_targets;
5257         while (target) {
5258                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5259                         Jim_NewStringObj(interp, target_name(target), -1));
5260                 target = target->next;
5261         }
5262         return JIM_OK;
5263 }
5264
5265 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5266 {
5267         int i;
5268         const char *targetname;
5269         int retval, len;
5270         struct target *target = (struct target *) NULL;
5271         struct target_list *head, *curr, *new;
5272         curr = (struct target_list *) NULL;
5273         head = (struct target_list *) NULL;
5274
5275         retval = 0;
5276         LOG_DEBUG("%d", argc);
5277         /* argv[1] = target to associate in smp
5278          * argv[2] = target to assoicate in smp
5279          * argv[3] ...
5280          */
5281
5282         for (i = 1; i < argc; i++) {
5283
5284                 targetname = Jim_GetString(argv[i], &len);
5285                 target = get_target(targetname);
5286                 LOG_DEBUG("%s ", targetname);
5287                 if (target) {
5288                         new = malloc(sizeof(struct target_list));
5289                         new->target = target;
5290                         new->next = (struct target_list *)NULL;
5291                         if (head == (struct target_list *)NULL) {
5292                                 head = new;
5293                                 curr = head;
5294                         } else {
5295                                 curr->next = new;
5296                                 curr = new;
5297                         }
5298                 }
5299         }
5300         /*  now parse the list of cpu and put the target in smp mode*/
5301         curr = head;
5302
5303         while (curr != (struct target_list *)NULL) {
5304                 target = curr->target;
5305                 target->smp = 1;
5306                 target->head = head;
5307                 curr = curr->next;
5308         }
5309
5310         if (target && target->rtos)
5311                 retval = rtos_smp_init(head->target);
5312
5313         return retval;
5314 }
5315
5316
5317 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5318 {
5319         Jim_GetOptInfo goi;
5320         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5321         if (goi.argc < 3) {
5322                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5323                         "<name> <target_type> [<target_options> ...]");
5324                 return JIM_ERR;
5325         }
5326         return target_create(&goi);
5327 }
5328
5329 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5330 {
5331         Jim_GetOptInfo goi;
5332         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5333
5334         /* It's OK to remove this mechanism sometime after August 2010 or so */
5335         LOG_WARNING("don't use numbers as target identifiers; use names");
5336         if (goi.argc != 1) {
5337                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5338                 return JIM_ERR;
5339         }
5340         jim_wide w;
5341         int e = Jim_GetOpt_Wide(&goi, &w);
5342         if (e != JIM_OK)
5343                 return JIM_ERR;
5344
5345         struct target *target;
5346         for (target = all_targets; NULL != target; target = target->next) {
5347                 if (target->target_number != w)
5348                         continue;
5349
5350                 Jim_SetResultString(goi.interp, target_name(target), -1);
5351                 return JIM_OK;
5352         }
5353         {
5354                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5355                 Jim_SetResultFormatted(goi.interp,
5356                         "Target: number %#s does not exist", wObj);
5357                 Jim_FreeNewObj(interp, wObj);
5358         }
5359         return JIM_ERR;
5360 }
5361
5362 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5363 {
5364         if (argc != 1) {
5365                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5366                 return JIM_ERR;
5367         }
5368         unsigned count = 0;
5369         struct target *target = all_targets;
5370         while (NULL != target) {
5371                 target = target->next;
5372                 count++;
5373         }
5374         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5375         return JIM_OK;
5376 }
5377
5378 static const struct command_registration target_subcommand_handlers[] = {
5379         {
5380                 .name = "init",
5381                 .mode = COMMAND_CONFIG,
5382                 .handler = handle_target_init_command,
5383                 .help = "initialize targets",
5384         },
5385         {
5386                 .name = "create",
5387                 /* REVISIT this should be COMMAND_CONFIG ... */
5388                 .mode = COMMAND_ANY,
5389                 .jim_handler = jim_target_create,
5390                 .usage = "name type '-chain-position' name [options ...]",
5391                 .help = "Creates and selects a new target",
5392         },
5393         {
5394                 .name = "current",
5395                 .mode = COMMAND_ANY,
5396                 .jim_handler = jim_target_current,
5397                 .help = "Returns the currently selected target",
5398         },
5399         {
5400                 .name = "types",
5401                 .mode = COMMAND_ANY,
5402                 .jim_handler = jim_target_types,
5403                 .help = "Returns the available target types as "
5404                                 "a list of strings",
5405         },
5406         {
5407                 .name = "names",
5408                 .mode = COMMAND_ANY,
5409                 .jim_handler = jim_target_names,
5410                 .help = "Returns the names of all targets as a list of strings",
5411         },
5412         {
5413                 .name = "number",
5414                 .mode = COMMAND_ANY,
5415                 .jim_handler = jim_target_number,
5416                 .usage = "number",
5417                 .help = "Returns the name of the numbered target "
5418                         "(DEPRECATED)",
5419         },
5420         {
5421                 .name = "count",
5422                 .mode = COMMAND_ANY,
5423                 .jim_handler = jim_target_count,
5424                 .help = "Returns the number of targets as an integer "
5425                         "(DEPRECATED)",
5426         },
5427         {
5428                 .name = "smp",
5429                 .mode = COMMAND_ANY,
5430                 .jim_handler = jim_target_smp,
5431                 .usage = "targetname1 targetname2 ...",
5432                 .help = "gather several target in a smp list"
5433         },
5434
5435         COMMAND_REGISTRATION_DONE
5436 };
5437
5438 struct FastLoad {
5439         uint32_t address;
5440         uint8_t *data;
5441         int length;
5442
5443 };
5444
5445 static int fastload_num;
5446 static struct FastLoad *fastload;
5447
5448 static void free_fastload(void)
5449 {
5450         if (fastload != NULL) {
5451                 int i;
5452                 for (i = 0; i < fastload_num; i++) {
5453                         if (fastload[i].data)
5454                                 free(fastload[i].data);
5455                 }
5456                 free(fastload);
5457                 fastload = NULL;
5458         }
5459 }
5460
5461 COMMAND_HANDLER(handle_fast_load_image_command)
5462 {
5463         uint8_t *buffer;
5464         size_t buf_cnt;
5465         uint32_t image_size;
5466         uint32_t min_address = 0;
5467         uint32_t max_address = 0xffffffff;
5468         int i;
5469
5470         struct image image;
5471
5472         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5473                         &image, &min_address, &max_address);
5474         if (ERROR_OK != retval)
5475                 return retval;
5476
5477         struct duration bench;
5478         duration_start(&bench);
5479
5480         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5481         if (retval != ERROR_OK)
5482                 return retval;
5483
5484         image_size = 0x0;
5485         retval = ERROR_OK;
5486         fastload_num = image.num_sections;
5487         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5488         if (fastload == NULL) {
5489                 command_print(CMD_CTX, "out of memory");
5490                 image_close(&image);
5491                 return ERROR_FAIL;
5492         }
5493         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5494         for (i = 0; i < image.num_sections; i++) {
5495                 buffer = malloc(image.sections[i].size);
5496                 if (buffer == NULL) {
5497                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5498                                                   (int)(image.sections[i].size));
5499                         retval = ERROR_FAIL;
5500                         break;
5501                 }
5502
5503                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5504                 if (retval != ERROR_OK) {
5505                         free(buffer);
5506                         break;
5507                 }
5508
5509                 uint32_t offset = 0;
5510                 uint32_t length = buf_cnt;
5511
5512                 /* DANGER!!! beware of unsigned comparision here!!! */
5513
5514                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5515                                 (image.sections[i].base_address < max_address)) {
5516                         if (image.sections[i].base_address < min_address) {
5517                                 /* clip addresses below */
5518                                 offset += min_address-image.sections[i].base_address;
5519                                 length -= offset;
5520                         }
5521
5522                         if (image.sections[i].base_address + buf_cnt > max_address)
5523                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5524
5525                         fastload[i].address = image.sections[i].base_address + offset;
5526                         fastload[i].data = malloc(length);
5527                         if (fastload[i].data == NULL) {
5528                                 free(buffer);
5529                                 command_print(CMD_CTX, "error allocating buffer for section (%" PRIu32 " bytes)",
5530                                                           length);
5531                                 retval = ERROR_FAIL;
5532                                 break;
5533                         }
5534                         memcpy(fastload[i].data, buffer + offset, length);
5535                         fastload[i].length = length;
5536
5537                         image_size += length;
5538                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5539                                                   (unsigned int)length,
5540                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5541                 }
5542
5543                 free(buffer);
5544         }
5545
5546         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5547                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5548                                 "in %fs (%0.3f KiB/s)", image_size,
5549                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5550
5551                 command_print(CMD_CTX,
5552                                 "WARNING: image has not been loaded to target!"
5553                                 "You can issue a 'fast_load' to finish loading.");
5554         }
5555
5556         image_close(&image);
5557
5558         if (retval != ERROR_OK)
5559                 free_fastload();
5560
5561         return retval;
5562 }
5563
5564 COMMAND_HANDLER(handle_fast_load_command)
5565 {
5566         if (CMD_ARGC > 0)
5567                 return ERROR_COMMAND_SYNTAX_ERROR;
5568         if (fastload == NULL) {
5569                 LOG_ERROR("No image in memory");
5570                 return ERROR_FAIL;
5571         }
5572         int i;
5573         int ms = timeval_ms();
5574         int size = 0;
5575         int retval = ERROR_OK;
5576         for (i = 0; i < fastload_num; i++) {
5577                 struct target *target = get_current_target(CMD_CTX);
5578                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5579                                           (unsigned int)(fastload[i].address),
5580                                           (unsigned int)(fastload[i].length));
5581                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5582                 if (retval != ERROR_OK)
5583                         break;
5584                 size += fastload[i].length;
5585         }
5586         if (retval == ERROR_OK) {
5587                 int after = timeval_ms();
5588                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5589         }
5590         return retval;
5591 }
5592
5593 static const struct command_registration target_command_handlers[] = {
5594         {
5595                 .name = "targets",
5596                 .handler = handle_targets_command,
5597                 .mode = COMMAND_ANY,
5598                 .help = "change current default target (one parameter) "
5599                         "or prints table of all targets (no parameters)",
5600                 .usage = "[target]",
5601         },
5602         {
5603                 .name = "target",
5604                 .mode = COMMAND_CONFIG,
5605                 .help = "configure target",
5606
5607                 .chain = target_subcommand_handlers,
5608         },
5609         COMMAND_REGISTRATION_DONE
5610 };
5611
5612 int target_register_commands(struct command_context *cmd_ctx)
5613 {
5614         return register_commands(cmd_ctx, NULL, target_command_handlers);
5615 }
5616
5617 static bool target_reset_nag = true;
5618
5619 bool get_target_reset_nag(void)
5620 {
5621         return target_reset_nag;
5622 }
5623
5624 COMMAND_HANDLER(handle_target_reset_nag)
5625 {
5626         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5627                         &target_reset_nag, "Nag after each reset about options to improve "
5628                         "performance");
5629 }
5630
5631 COMMAND_HANDLER(handle_ps_command)
5632 {
5633         struct target *target = get_current_target(CMD_CTX);
5634         char *display;
5635         if (target->state != TARGET_HALTED) {
5636                 LOG_INFO("target not halted !!");
5637                 return ERROR_OK;
5638         }
5639
5640         if ((target->rtos) && (target->rtos->type)
5641                         && (target->rtos->type->ps_command)) {
5642                 display = target->rtos->type->ps_command(target);
5643                 command_print(CMD_CTX, "%s", display);
5644                 free(display);
5645                 return ERROR_OK;
5646         } else {
5647                 LOG_INFO("failed");
5648                 return ERROR_TARGET_FAILURE;
5649         }
5650 }
5651
5652 static void binprint(struct command_context *cmd_ctx, const char *text, const uint8_t *buf, int size)
5653 {
5654         if (text != NULL)
5655                 command_print_sameline(cmd_ctx, "%s", text);
5656         for (int i = 0; i < size; i++)
5657                 command_print_sameline(cmd_ctx, " %02x", buf[i]);
5658         command_print(cmd_ctx, " ");
5659 }
5660
5661 COMMAND_HANDLER(handle_test_mem_access_command)
5662 {
5663         struct target *target = get_current_target(CMD_CTX);
5664         uint32_t test_size;
5665         int retval = ERROR_OK;
5666
5667         if (target->state != TARGET_HALTED) {
5668                 LOG_INFO("target not halted !!");
5669                 return ERROR_FAIL;
5670         }
5671
5672         if (CMD_ARGC != 1)
5673                 return ERROR_COMMAND_SYNTAX_ERROR;
5674
5675         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
5676
5677         /* Test reads */
5678         size_t num_bytes = test_size + 4;
5679
5680         struct working_area *wa = NULL;
5681         retval = target_alloc_working_area(target, num_bytes, &wa);
5682         if (retval != ERROR_OK) {
5683                 LOG_ERROR("Not enough working area");
5684                 return ERROR_FAIL;
5685         }
5686
5687         uint8_t *test_pattern = malloc(num_bytes);
5688
5689         for (size_t i = 0; i < num_bytes; i++)
5690                 test_pattern[i] = rand();
5691
5692         retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5693         if (retval != ERROR_OK) {
5694                 LOG_ERROR("Test pattern write failed");
5695                 goto out;
5696         }
5697
5698         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5699                 for (int size = 1; size <= 4; size *= 2) {
5700                         for (int offset = 0; offset < 4; offset++) {
5701                                 uint32_t count = test_size / size;
5702                                 size_t host_bufsiz = (count + 2) * size + host_offset;
5703                                 uint8_t *read_ref = malloc(host_bufsiz);
5704                                 uint8_t *read_buf = malloc(host_bufsiz);
5705
5706                                 for (size_t i = 0; i < host_bufsiz; i++) {
5707                                         read_ref[i] = rand();
5708                                         read_buf[i] = read_ref[i];
5709                                 }
5710                                 command_print_sameline(CMD_CTX,
5711                                                 "Test read %d x %d @ %d to %saligned buffer: ", count,
5712                                                 size, offset, host_offset ? "un" : "");
5713
5714                                 struct duration bench;
5715                                 duration_start(&bench);
5716
5717                                 retval = target_read_memory(target, wa->address + offset, size, count,
5718                                                 read_buf + size + host_offset);
5719
5720                                 duration_measure(&bench);
5721
5722                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5723                                         command_print(CMD_CTX, "Unsupported alignment");
5724                                         goto next;
5725                                 } else if (retval != ERROR_OK) {
5726                                         command_print(CMD_CTX, "Memory read failed");
5727                                         goto next;
5728                                 }
5729
5730                                 /* replay on host */
5731                                 memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
5732
5733                                 /* check result */
5734                                 int result = memcmp(read_ref, read_buf, host_bufsiz);
5735                                 if (result == 0) {
5736                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5737                                                         duration_elapsed(&bench),
5738                                                         duration_kbps(&bench, count * size));
5739                                 } else {
5740                                         command_print(CMD_CTX, "Compare failed");
5741                                         binprint(CMD_CTX, "ref:", read_ref, host_bufsiz);
5742                                         binprint(CMD_CTX, "buf:", read_buf, host_bufsiz);
5743                                 }
5744 next:
5745                                 free(read_ref);
5746                                 free(read_buf);
5747                         }
5748                 }
5749         }
5750
5751 out:
5752         free(test_pattern);
5753
5754         if (wa != NULL)
5755                 target_free_working_area(target, wa);
5756
5757         /* Test writes */
5758         num_bytes = test_size + 4 + 4 + 4;
5759
5760         retval = target_alloc_working_area(target, num_bytes, &wa);
5761         if (retval != ERROR_OK) {
5762                 LOG_ERROR("Not enough working area");
5763                 return ERROR_FAIL;
5764         }
5765
5766         test_pattern = malloc(num_bytes);
5767
5768         for (size_t i = 0; i < num_bytes; i++)
5769                 test_pattern[i] = rand();
5770
5771         for (int host_offset = 0; host_offset <= 1; host_offset++) {
5772                 for (int size = 1; size <= 4; size *= 2) {
5773                         for (int offset = 0; offset < 4; offset++) {
5774                                 uint32_t count = test_size / size;
5775                                 size_t host_bufsiz = count * size + host_offset;
5776                                 uint8_t *read_ref = malloc(num_bytes);
5777                                 uint8_t *read_buf = malloc(num_bytes);
5778                                 uint8_t *write_buf = malloc(host_bufsiz);
5779
5780                                 for (size_t i = 0; i < host_bufsiz; i++)
5781                                         write_buf[i] = rand();
5782                                 command_print_sameline(CMD_CTX,
5783                                                 "Test write %d x %d @ %d from %saligned buffer: ", count,
5784                                                 size, offset, host_offset ? "un" : "");
5785
5786                                 retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
5787                                 if (retval != ERROR_OK) {
5788                                         command_print(CMD_CTX, "Test pattern write failed");
5789                                         goto nextw;
5790                                 }
5791
5792                                 /* replay on host */
5793                                 memcpy(read_ref, test_pattern, num_bytes);
5794                                 memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
5795
5796                                 struct duration bench;
5797                                 duration_start(&bench);
5798
5799                                 retval = target_write_memory(target, wa->address + size + offset, size, count,
5800                                                 write_buf + host_offset);
5801
5802                                 duration_measure(&bench);
5803
5804                                 if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
5805                                         command_print(CMD_CTX, "Unsupported alignment");
5806                                         goto nextw;
5807                                 } else if (retval != ERROR_OK) {
5808                                         command_print(CMD_CTX, "Memory write failed");
5809                                         goto nextw;
5810                                 }
5811
5812                                 /* read back */
5813                                 retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
5814                                 if (retval != ERROR_OK) {
5815                                         command_print(CMD_CTX, "Test pattern write failed");
5816                                         goto nextw;
5817                                 }
5818
5819                                 /* check result */
5820                                 int result = memcmp(read_ref, read_buf, num_bytes);
5821                                 if (result == 0) {
5822                                         command_print(CMD_CTX, "Pass in %fs (%0.3f KiB/s)",
5823                                                         duration_elapsed(&bench),
5824                                                         duration_kbps(&bench, count * size));
5825                                 } else {
5826                                         command_print(CMD_CTX, "Compare failed");
5827                                         binprint(CMD_CTX, "ref:", read_ref, num_bytes);
5828                                         binprint(CMD_CTX, "buf:", read_buf, num_bytes);
5829                                 }
5830 nextw:
5831                                 free(read_ref);
5832                                 free(read_buf);
5833                         }
5834                 }
5835         }
5836
5837         free(test_pattern);
5838
5839         if (wa != NULL)
5840                 target_free_working_area(target, wa);
5841         return retval;
5842 }
5843
5844 static const struct command_registration target_exec_command_handlers[] = {
5845         {
5846                 .name = "fast_load_image",
5847                 .handler = handle_fast_load_image_command,
5848                 .mode = COMMAND_ANY,
5849                 .help = "Load image into server memory for later use by "
5850                         "fast_load; primarily for profiling",
5851                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5852                         "[min_address [max_length]]",
5853         },
5854         {
5855                 .name = "fast_load",
5856                 .handler = handle_fast_load_command,
5857                 .mode = COMMAND_EXEC,
5858                 .help = "loads active fast load image to current target "
5859                         "- mainly for profiling purposes",
5860                 .usage = "",
5861         },
5862         {
5863                 .name = "profile",
5864                 .handler = handle_profile_command,
5865                 .mode = COMMAND_EXEC,
5866                 .usage = "seconds filename [start end]",
5867                 .help = "profiling samples the CPU PC",
5868         },
5869         /** @todo don't register virt2phys() unless target supports it */
5870         {
5871                 .name = "virt2phys",
5872                 .handler = handle_virt2phys_command,
5873                 .mode = COMMAND_ANY,
5874                 .help = "translate a virtual address into a physical address",
5875                 .usage = "virtual_address",
5876         },
5877         {
5878                 .name = "reg",
5879                 .handler = handle_reg_command,
5880                 .mode = COMMAND_EXEC,
5881                 .help = "display (reread from target with \"force\") or set a register; "
5882                         "with no arguments, displays all registers and their values",
5883                 .usage = "[(register_number|register_name) [(value|'force')]]",
5884         },
5885         {
5886                 .name = "poll",
5887                 .handler = handle_poll_command,
5888                 .mode = COMMAND_EXEC,
5889                 .help = "poll target state; or reconfigure background polling",
5890                 .usage = "['on'|'off']",
5891         },
5892         {
5893                 .name = "wait_halt",
5894                 .handler = handle_wait_halt_command,
5895                 .mode = COMMAND_EXEC,
5896                 .help = "wait up to the specified number of milliseconds "
5897                         "(default 5000) for a previously requested halt",
5898                 .usage = "[milliseconds]",
5899         },
5900         {
5901                 .name = "halt",
5902                 .handler = handle_halt_command,
5903                 .mode = COMMAND_EXEC,
5904                 .help = "request target to halt, then wait up to the specified"
5905                         "number of milliseconds (default 5000) for it to complete",
5906                 .usage = "[milliseconds]",
5907         },
5908         {
5909                 .name = "resume",
5910                 .handler = handle_resume_command,
5911                 .mode = COMMAND_EXEC,
5912                 .help = "resume target execution from current PC or address",
5913                 .usage = "[address]",
5914         },
5915         {
5916                 .name = "reset",
5917                 .handler = handle_reset_command,
5918                 .mode = COMMAND_EXEC,
5919                 .usage = "[run|halt|init]",
5920                 .help = "Reset all targets into the specified mode."
5921                         "Default reset mode is run, if not given.",
5922         },
5923         {
5924                 .name = "soft_reset_halt",
5925                 .handler = handle_soft_reset_halt_command,
5926                 .mode = COMMAND_EXEC,
5927                 .usage = "",
5928                 .help = "halt the target and do a soft reset",
5929         },
5930         {
5931                 .name = "step",
5932                 .handler = handle_step_command,
5933                 .mode = COMMAND_EXEC,
5934                 .help = "step one instruction from current PC or address",
5935                 .usage = "[address]",
5936         },
5937         {
5938                 .name = "mdw",
5939                 .handler = handle_md_command,
5940                 .mode = COMMAND_EXEC,
5941                 .help = "display memory words",
5942                 .usage = "['phys'] address [count]",
5943         },
5944         {
5945                 .name = "mdh",
5946                 .handler = handle_md_command,
5947                 .mode = COMMAND_EXEC,
5948                 .help = "display memory half-words",
5949                 .usage = "['phys'] address [count]",
5950         },
5951         {
5952                 .name = "mdb",
5953                 .handler = handle_md_command,
5954                 .mode = COMMAND_EXEC,
5955                 .help = "display memory bytes",
5956                 .usage = "['phys'] address [count]",
5957         },
5958         {
5959                 .name = "mww",
5960                 .handler = handle_mw_command,
5961                 .mode = COMMAND_EXEC,
5962                 .help = "write memory word",
5963                 .usage = "['phys'] address value [count]",
5964         },
5965         {
5966                 .name = "mwh",
5967                 .handler = handle_mw_command,
5968                 .mode = COMMAND_EXEC,
5969                 .help = "write memory half-word",
5970                 .usage = "['phys'] address value [count]",
5971         },
5972         {
5973                 .name = "mwb",
5974                 .handler = handle_mw_command,
5975                 .mode = COMMAND_EXEC,
5976                 .help = "write memory byte",
5977                 .usage = "['phys'] address value [count]",
5978         },
5979         {
5980                 .name = "bp",
5981                 .handler = handle_bp_command,
5982                 .mode = COMMAND_EXEC,
5983                 .help = "list or set hardware or software breakpoint",
5984                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5985         },
5986         {
5987                 .name = "rbp",
5988                 .handler = handle_rbp_command,
5989                 .mode = COMMAND_EXEC,
5990                 .help = "remove breakpoint",
5991                 .usage = "address",
5992         },
5993         {
5994                 .name = "wp",
5995                 .handler = handle_wp_command,
5996                 .mode = COMMAND_EXEC,
5997                 .help = "list (no params) or create watchpoints",
5998                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5999         },
6000         {
6001                 .name = "rwp",
6002                 .handler = handle_rwp_command,
6003                 .mode = COMMAND_EXEC,
6004                 .help = "remove watchpoint",
6005                 .usage = "address",
6006         },
6007         {
6008                 .name = "load_image",
6009                 .handler = handle_load_image_command,
6010                 .mode = COMMAND_EXEC,
6011                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
6012                         "[min_address] [max_length]",
6013         },
6014         {
6015                 .name = "dump_image",
6016                 .handler = handle_dump_image_command,
6017                 .mode = COMMAND_EXEC,
6018                 .usage = "filename address size",
6019         },
6020         {
6021                 .name = "verify_image",
6022                 .handler = handle_verify_image_command,
6023                 .mode = COMMAND_EXEC,
6024                 .usage = "filename [offset [type]]",
6025         },
6026         {
6027                 .name = "test_image",
6028                 .handler = handle_test_image_command,
6029                 .mode = COMMAND_EXEC,
6030                 .usage = "filename [offset [type]]",
6031         },
6032         {
6033                 .name = "mem2array",
6034                 .mode = COMMAND_EXEC,
6035                 .jim_handler = jim_mem2array,
6036                 .help = "read 8/16/32 bit memory and return as a TCL array "
6037                         "for script processing",
6038                 .usage = "arrayname bitwidth address count",
6039         },
6040         {
6041                 .name = "array2mem",
6042                 .mode = COMMAND_EXEC,
6043                 .jim_handler = jim_array2mem,
6044                 .help = "convert a TCL array to memory locations "
6045                         "and write the 8/16/32 bit values",
6046                 .usage = "arrayname bitwidth address count",
6047         },
6048         {
6049                 .name = "reset_nag",
6050                 .handler = handle_target_reset_nag,
6051                 .mode = COMMAND_ANY,
6052                 .help = "Nag after each reset about options that could have been "
6053                                 "enabled to improve performance. ",
6054                 .usage = "['enable'|'disable']",
6055         },
6056         {
6057                 .name = "ps",
6058                 .handler = handle_ps_command,
6059                 .mode = COMMAND_EXEC,
6060                 .help = "list all tasks ",
6061                 .usage = " ",
6062         },
6063         {
6064                 .name = "test_mem_access",
6065                 .handler = handle_test_mem_access_command,
6066                 .mode = COMMAND_EXEC,
6067                 .help = "Test the target's memory access functions",
6068                 .usage = "size",
6069         },
6070
6071         COMMAND_REGISTRATION_DONE
6072 };
6073 static int target_register_user_commands(struct command_context *cmd_ctx)
6074 {
6075         int retval = ERROR_OK;
6076         retval = target_request_register_commands(cmd_ctx);
6077         if (retval != ERROR_OK)
6078                 return retval;
6079
6080         retval = trace_register_commands(cmd_ctx);
6081         if (retval != ERROR_OK)
6082                 return retval;
6083
6084
6085         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
6086 }