8c6d97dfc6cbeec0259fe543e2c2cdb429127d93
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   This program is free software; you can redistribute it and/or modify  *
6  *   it under the terms of the GNU General Public License as published by  *
7  *   the Free Software Foundation; either version 2 of the License, or     *
8  *   (at your option) any later version.                                   *
9  *                                                                         *
10  *   This program is distributed in the hope that it will be useful,       *
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
13  *   GNU General Public License for more details.                          *
14  *                                                                         *
15  *   You should have received a copy of the GNU General Public License     *
16  *   along with this program; if not, write to the                         *
17  *   Free Software Foundation, Inc.,                                       *
18  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
19  ***************************************************************************/
20 #ifdef HAVE_CONFIG_H
21 #include "config.h"
22 #endif
23
24 #include "replacements.h"
25 #include "target.h"
26
27 #include "log.h"
28 #include "configuration.h"
29 #include "binarybuffer.h"
30 #include "jtag.h"
31
32 #include <string.h>
33 #include <stdlib.h>
34
35 #include <sys/types.h>
36 #include <sys/stat.h>
37 #include <unistd.h>
38 #include <errno.h>
39
40 #include <sys/time.h>
41 #include <time.h>
42
43 #include <time_support.h>
44
45 int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
46
47 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
48 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50
51 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54
55 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 int handle_load_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 int handle_dump_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
67 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
71
72 /* targets
73  */
74 extern target_type_t arm7tdmi_target;
75 extern target_type_t arm720t_target;
76 extern target_type_t arm9tdmi_target;
77 extern target_type_t arm920t_target;
78 extern target_type_t arm966e_target;
79
80 target_type_t *target_types[] =
81 {
82         &arm7tdmi_target,
83         &arm9tdmi_target,
84         &arm920t_target,
85         &arm720t_target,
86         &arm966e_target,
87         NULL,
88 };
89
90 target_t *targets = NULL;
91 target_event_callback_t *target_event_callbacks = NULL;
92 target_timer_callback_t *target_timer_callbacks = NULL;
93
94 char *target_state_strings[] =
95 {
96         "unknown",
97         "running",
98         "halted",
99         "reset",
100         "debug_running",
101 };
102
103 char *target_debug_reason_strings[] =
104 {
105         "debug request", "breakpoint", "watchpoint",
106         "watchpoint and breakpoint", "single step",
107         "target not halted"
108 };
109
110 char *target_endianess_strings[] =
111 {
112         "big endian",
113         "little endian",
114 };
115
116 enum daemon_startup_mode startup_mode = DAEMON_ATTACH;
117
118 static int target_continous_poll = 1;
119
120 /* read a u32 from a buffer in target memory endianness */
121 u32 target_buffer_get_u32(target_t *target, u8 *buffer)
122 {
123         if (target->endianness == TARGET_LITTLE_ENDIAN)
124                 return le_to_h_u32(buffer);
125         else
126                 return be_to_h_u32(buffer);
127 }
128
129 /* read a u16 from a buffer in target memory endianness */
130 u16 target_buffer_get_u16(target_t *target, u8 *buffer)
131 {
132         if (target->endianness == TARGET_LITTLE_ENDIAN)
133                 return le_to_h_u16(buffer);
134         else
135                 return be_to_h_u16(buffer);
136 }
137
138 /* write a u32 to a buffer in target memory endianness */
139 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
140 {
141         if (target->endianness == TARGET_LITTLE_ENDIAN)
142                 h_u32_to_le(buffer, value);
143         else
144                 h_u32_to_be(buffer, value);
145 }
146
147 /* write a u16 to a buffer in target memory endianness */
148 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
149 {
150         if (target->endianness == TARGET_LITTLE_ENDIAN)
151                 h_u16_to_le(buffer, value);
152         else
153                 h_u16_to_be(buffer, value);
154 }
155
156 /* returns a pointer to the n-th configured target */
157 target_t* get_target_by_num(int num)
158 {
159         target_t *target = targets;
160         int i = 0;
161
162         while (target)
163         {
164                 if (num == i)
165                         return target;
166                 target = target->next;
167                 i++;
168         }
169
170         return NULL;
171 }
172
173 int get_num_by_target(target_t *query_target)
174 {
175         target_t *target = targets;
176         int i = 0;      
177         
178         while (target)
179         {
180                 if (target == query_target)
181                         return i;
182                 target = target->next;
183                 i++;
184         }
185         
186         return -1;
187 }
188
189 target_t* get_current_target(command_context_t *cmd_ctx)
190 {
191         target_t *target = get_target_by_num(cmd_ctx->current_target);
192         
193         if (target == NULL)
194         {
195                 ERROR("BUG: current_target out of bounds");
196                 exit(-1);
197         }
198         
199         return target;
200 }
201
202 /* Process target initialization, when target entered debug out of reset
203  * the handler is unregistered at the end of this function, so it's only called once
204  */
205 int target_init_handler(struct target_s *target, enum target_event event, void *priv)
206 {
207         FILE *script;
208         struct command_context_s *cmd_ctx = priv;
209         
210         if ((event == TARGET_EVENT_HALTED) && (target->reset_script))
211         {
212                 target_unregister_event_callback(target_init_handler, priv);
213
214                 script = fopen(target->reset_script, "r");
215                 if (!script)
216                 {
217                         ERROR("couldn't open script file %s", target->reset_script);
218                                 return ERROR_OK;
219                 }
220
221                 INFO("executing reset script '%s'", target->reset_script);
222                 command_run_file(cmd_ctx, script, COMMAND_EXEC);
223                 fclose(script);
224
225                 jtag_execute_queue();
226         }
227         
228         return ERROR_OK;
229 }
230
231 int target_run_and_halt_handler(void *priv)
232 {
233         target_t *target = priv;
234         
235         target->type->halt(target);
236         
237         return ERROR_OK;
238 }
239
240 int target_process_reset(struct command_context_s *cmd_ctx)
241 {
242         int retval = ERROR_OK;
243         target_t *target;
244          
245         target = targets;
246         while (target)
247         {
248                 target->type->assert_reset(target);
249                 target = target->next;
250         }
251         jtag_execute_queue();
252         
253         /* request target halt if necessary, and schedule further action */
254         target = targets;
255         while (target)
256         {
257                 switch (target->reset_mode)
258                 {
259                         case RESET_RUN:
260                                 /* nothing to do if target just wants to be run */
261                                 break;
262                         case RESET_RUN_AND_HALT:
263                                 /* schedule halt */
264                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
265                                 break;
266                         case RESET_RUN_AND_INIT:
267                                 /* schedule halt */
268                                 target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
269                                 target_register_event_callback(target_init_handler, cmd_ctx);
270                                 break;
271                         case RESET_HALT:
272                                 target->type->halt(target);
273                                 break;
274                         case RESET_INIT:
275                                 target->type->halt(target);
276                                 target_register_event_callback(target_init_handler, cmd_ctx);
277                                 break;
278                         default:
279                                 ERROR("BUG: unknown target->reset_mode");
280                 }
281                 target = target->next;
282         }
283         
284         target = targets;
285         while (target)
286         {
287                 target->type->deassert_reset(target);
288                 target = target->next;
289         }
290         jtag_execute_queue();
291         
292         return retval;
293 }       
294
295 int target_init(struct command_context_s *cmd_ctx)
296 {
297         target_t *target = targets;
298         
299         while (target)
300         {
301                 if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
302                 {
303                         ERROR("target '%s' init failed", target->type->name);
304                         exit(-1);
305                 }
306                 target = target->next;
307         }
308         
309         if (targets)
310         {
311                 target_register_user_commands(cmd_ctx);
312                 target_register_timer_callback(handle_target, 100, 1, NULL);
313         }
314                 
315         if (startup_mode == DAEMON_RESET)
316                 target_process_reset(cmd_ctx);
317         
318         return ERROR_OK;
319 }
320
321 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
322 {
323         target_event_callback_t **callbacks_p = &target_event_callbacks;
324         
325         if (callback == NULL)
326         {
327                 return ERROR_INVALID_ARGUMENTS;
328         }
329         
330         if (*callbacks_p)
331         {
332                 while ((*callbacks_p)->next)
333                         callbacks_p = &((*callbacks_p)->next);
334                 callbacks_p = &((*callbacks_p)->next);
335         }
336         
337         (*callbacks_p) = malloc(sizeof(target_event_callback_t));
338         (*callbacks_p)->callback = callback;
339         (*callbacks_p)->priv = priv;
340         (*callbacks_p)->next = NULL;
341         
342         return ERROR_OK;
343 }
344
345 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
346 {
347         target_timer_callback_t **callbacks_p = &target_timer_callbacks;
348         struct timeval now;
349         
350         if (callback == NULL)
351         {
352                 return ERROR_INVALID_ARGUMENTS;
353         }
354         
355         if (*callbacks_p)
356         {
357                 while ((*callbacks_p)->next)
358                         callbacks_p = &((*callbacks_p)->next);
359                 callbacks_p = &((*callbacks_p)->next);
360         }
361         
362         (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
363         (*callbacks_p)->callback = callback;
364         (*callbacks_p)->periodic = periodic;
365         (*callbacks_p)->time_ms = time_ms;
366         
367         gettimeofday(&now, NULL);
368         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
369         time_ms -= (time_ms % 1000);
370         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
371         if ((*callbacks_p)->when.tv_usec > 1000000)
372         {
373                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
374                 (*callbacks_p)->when.tv_sec += 1;
375         }
376         
377         (*callbacks_p)->priv = priv;
378         (*callbacks_p)->next = NULL;
379         
380         return ERROR_OK;
381 }
382
383 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
384 {
385         target_event_callback_t **p = &target_event_callbacks;
386         target_event_callback_t *c = target_event_callbacks;
387         
388         if (callback == NULL)
389         {
390                 return ERROR_INVALID_ARGUMENTS;
391         }
392                 
393         while (c)
394         {
395                 target_event_callback_t *next = c->next;
396                 if ((c->callback == callback) && (c->priv == priv))
397                 {
398                         *p = next;
399                         free(c);
400                         return ERROR_OK;
401                 }
402                 else
403                         p = &(c->next);
404                 c = next;
405         }
406         
407         return ERROR_OK;
408 }
409
410 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
411 {
412         target_timer_callback_t **p = &target_timer_callbacks;
413         target_timer_callback_t *c = target_timer_callbacks;
414         
415         if (callback == NULL)
416         {
417                 return ERROR_INVALID_ARGUMENTS;
418         }
419                 
420         while (c)
421         {
422                 target_timer_callback_t *next = c->next;
423                 if ((c->callback == callback) && (c->priv == priv))
424                 {
425                         *p = next;
426                         free(c);
427                         return ERROR_OK;
428                 }
429                 else
430                         p = &(c->next);
431                 c = next;
432         }
433         
434         return ERROR_OK;
435 }
436
437 int target_call_event_callbacks(target_t *target, enum target_event event)
438 {
439         target_event_callback_t *callback = target_event_callbacks;
440         target_event_callback_t *next_callback;
441         
442         DEBUG("target event %i", event);
443         
444         while (callback)
445         {
446                 next_callback = callback->next;
447                 callback->callback(target, event, callback->priv);
448                 callback = next_callback;
449         }
450         
451         return ERROR_OK;
452 }
453
454 int target_call_timer_callbacks()
455 {
456         target_timer_callback_t *callback = target_timer_callbacks;
457         target_timer_callback_t *next_callback;
458         struct timeval now;
459
460         gettimeofday(&now, NULL);
461         
462         while (callback)
463         {
464                 next_callback = callback->next;
465                 
466                 if (((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
467                         || (now.tv_sec > callback->when.tv_sec))
468                 {
469                         callback->callback(callback->priv);
470                         if (callback->periodic)
471                         {
472                                 int time_ms = callback->time_ms;
473                                 callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
474                                 time_ms -= (time_ms % 1000);
475                                 callback->when.tv_sec = now.tv_sec + time_ms / 1000;
476                                 if (callback->when.tv_usec > 1000000)
477                                 {
478                                         callback->when.tv_usec = callback->when.tv_usec - 1000000;
479                                         callback->when.tv_sec += 1;
480                                 }
481                         }
482                         else
483                                 target_unregister_timer_callback(callback->callback, callback->priv);
484                 }
485                         
486                 callback = next_callback;
487         }
488         
489         return ERROR_OK;
490 }
491
492 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
493 {
494         working_area_t *c = target->working_areas;
495         working_area_t *new_wa = NULL;
496         
497         /* only allocate multiples of 4 byte */
498         if (size % 4)
499         {
500                 ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
501                 size = CEIL(size, 4);
502         }
503         
504         /* see if there's already a matching working area */
505         while (c)
506         {
507                 if ((c->free) && (c->size == size))
508                 {
509                         new_wa = c;
510                         break;
511                 }
512                 c = c->next;
513         }
514         
515         /* if not, allocate a new one */
516         if (!new_wa)
517         {
518                 working_area_t **p = &target->working_areas;
519                 u32 first_free = target->working_area;
520                 u32 free_size = target->working_area_size;
521                 
522                 DEBUG("allocating new working area");
523                 
524                 c = target->working_areas;
525                 while (c)
526                 {
527                         first_free += c->size;
528                         free_size -= c->size;
529                         p = &c->next;
530                         c = c->next;
531                 }
532                 
533                 if (free_size < size)
534                 {
535                         WARNING("not enough working area available");
536                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
537                 }
538                 
539                 new_wa = malloc(sizeof(working_area_t));
540                 new_wa->next = NULL;
541                 new_wa->size = size;
542                 new_wa->address = first_free;
543                 
544                 if (target->backup_working_area)
545                 {
546                         new_wa->backup = malloc(new_wa->size);
547                         target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
548                 }
549                 else
550                 {
551                         new_wa->backup = NULL;
552                 }
553                 
554                 /* put new entry in list */
555                 *p = new_wa;
556         }
557         
558         /* mark as used, and return the new (reused) area */
559         new_wa->free = 0;
560         *area = new_wa;
561         
562         /* user pointer */
563         new_wa->user = area;
564         
565         return ERROR_OK;
566 }
567
568 int target_free_working_area(struct target_s *target, working_area_t *area)
569 {
570         if (area->free)
571                 return ERROR_OK;
572         
573         if (target->backup_working_area)
574                 target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
575         
576         area->free = 1;
577         
578         /* mark user pointer invalid */
579         *area->user = NULL;
580         area->user = NULL;
581         
582         return ERROR_OK;
583 }
584
585 int target_free_all_working_areas(struct target_s *target)
586 {
587         working_area_t *c = target->working_areas;
588
589         while (c)
590         {
591                 working_area_t *next = c->next;
592                 target_free_working_area(target, c);
593                 
594                 if (c->backup)
595                         free(c->backup);
596                 
597                 free(c);
598                 
599                 c = next;
600         }
601         
602         target->working_areas = NULL;
603         
604         return ERROR_OK;
605 }
606
607 int target_register_commands(struct command_context_s *cmd_ctx)
608 {
609         register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, NULL);
610         register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
611         register_command(cmd_ctx, NULL, "daemon_startup", handle_daemon_startup_command, COMMAND_CONFIG, NULL);
612         register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG, NULL);
613         register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, NULL);
614         register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_CONFIG, NULL);
615
616         return ERROR_OK;
617 }
618
619 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
620 {
621         int retval;
622         
623         DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
624         
625         /* handle writes of less than 4 byte */
626         if (size < 4)
627         {
628                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
629                         return retval;
630         }
631         
632         /* handle unaligned head bytes */
633         if (address % 4)
634         {
635                 int unaligned = 4 - (address % 4);
636                 
637                 if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
638                         return retval;
639                 
640                 buffer += unaligned;
641                 address += unaligned;
642                 size -= unaligned;
643         }
644                 
645         /* handle aligned words */
646         if (size >= 4)
647         {
648                 int aligned = size - (size % 4);
649         
650                 /* use bulk writes above a certain limit. This may have to be changed */
651                 if (aligned > 128)
652                 {
653                         if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
654                                 return retval;
655                 }
656                 else
657                 {
658                         if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
659                                 return retval;
660                 }
661                 
662                 buffer += aligned;
663                 address += aligned;
664                 size -= aligned;
665         }
666         
667         /* handle tail writes of less than 4 bytes */
668         if (size > 0)
669         {
670                 if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
671                         return retval;
672         }
673         
674         return ERROR_OK;
675 }
676
677 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
678 {
679         int retval;
680         
681         DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
682         
683         /* handle reads of less than 4 byte */
684         if (size < 4)
685         {
686                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
687                         return retval;
688         }
689         
690         /* handle unaligned head bytes */
691         if (address % 4)
692         {
693                 int unaligned = 4 - (address % 4);
694                 
695                 if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
696                         return retval;
697                 
698                 buffer += unaligned;
699                 address += unaligned;
700                 size -= unaligned;
701         }
702                 
703         /* handle aligned words */
704         if (size >= 4)
705         {
706                 int aligned = size - (size % 4);
707         
708                 if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
709                         return retval;
710                 
711                 buffer += aligned;
712                 address += aligned;
713                 size -= aligned;
714         }
715         
716         /* handle tail writes of less than 4 bytes */
717         if (size > 0)
718         {
719                 if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
720                         return retval;
721         }
722         
723         return ERROR_OK;
724 }
725
726 void target_read_u32(struct target_s *target, u32 address, u32 *value)
727 {
728         u8 value_buf[4];
729         
730         target->type->read_memory(target, address, 4, 1, value_buf);
731         
732         *value = target_buffer_get_u32(target, value_buf);
733 }
734
735 void target_read_u16(struct target_s *target, u32 address, u16 *value)
736 {
737         u8 value_buf[2];
738         
739         target->type->read_memory(target, address, 2, 1, value_buf);
740         
741         *value = target_buffer_get_u16(target, value_buf);
742 }
743
744 void target_read_u8(struct target_s *target, u32 address, u8 *value)
745 {
746         target->type->read_memory(target, address, 1, 1, value);
747 }
748
749 void target_write_u32(struct target_s *target, u32 address, u32 value)
750 {
751         u8 value_buf[4];
752
753         target_buffer_set_u32(target, value_buf, value);        
754         target->type->write_memory(target, address, 4, 1, value_buf);
755 }
756
757 void target_write_u16(struct target_s *target, u32 address, u16 value)
758 {
759         u8 value_buf[2];
760         
761         target_buffer_set_u16(target, value_buf, value);        
762         target->type->write_memory(target, address, 2, 1, value_buf);
763 }
764
765 void target_write_u8(struct target_s *target, u32 address, u8 value)
766 {
767         target->type->read_memory(target, address, 1, 1, &value);
768 }
769
770 int target_register_user_commands(struct command_context_s *cmd_ctx)
771 {
772         register_command(cmd_ctx,  NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
773         register_command(cmd_ctx,  NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
774         register_command(cmd_ctx,  NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt");
775         register_command(cmd_ctx,  NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
776         register_command(cmd_ctx,  NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
777         register_command(cmd_ctx,  NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction");
778         register_command(cmd_ctx,  NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
779         register_command(cmd_ctx,  NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
780
781         register_command(cmd_ctx,  NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
782         register_command(cmd_ctx,  NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
783         register_command(cmd_ctx,  NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
784         
785         register_command(cmd_ctx,  NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value>");
786         register_command(cmd_ctx,  NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value>");
787         register_command(cmd_ctx,  NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value>");
788         
789         register_command(cmd_ctx,  NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");      
790         register_command(cmd_ctx,  NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
791         register_command(cmd_ctx,  NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");    
792         register_command(cmd_ctx,  NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
793         
794         register_command(cmd_ctx,  NULL, "load_binary", handle_load_binary_command, COMMAND_EXEC, "load binary <file> <address>");
795         register_command(cmd_ctx,  NULL, "dump_binary", handle_dump_binary_command, COMMAND_EXEC, "dump binary <file> <address> <size>");
796         
797         return ERROR_OK;
798 }
799
800 int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
801 {
802         target_t *target = targets;
803         int count = 0;
804         
805         if (argc == 1)
806         {
807                 int num = strtoul(args[0], NULL, 0);
808                 
809                 while (target)
810                 {
811                         count++;
812                         target = target->next;
813                 }
814                 
815                 if (num < count)
816                         cmd_ctx->current_target = num;
817                 else
818                         command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
819                         
820                 return ERROR_OK;
821         }
822                 
823         while (target)
824         {
825                 command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
826                 target = target->next;
827         }
828         
829         return ERROR_OK;
830 }
831
832 int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
833 {
834         int i;
835         int found = 0;
836         
837         if (argc < 3)
838         {
839                 ERROR("target command requires at least three arguments: <type> <endianess> <reset_mode>");
840                 exit(-1);
841         }
842         
843         /* search for the specified target */
844         if (args[0] && (args[0][0] != 0))
845         {
846                 for (i = 0; target_types[i]; i++)
847                 {
848                         if (strcmp(args[0], target_types[i]->name) == 0)
849                         {
850                                 target_t **last_target_p = &targets;
851                                 
852                                 /* register target specific commands */
853                                 if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
854                                 {
855                                         ERROR("couldn't register '%s' commands", args[0]);
856                                         exit(-1);
857                                 }
858
859                                 if (*last_target_p)
860                                 {
861                                         while ((*last_target_p)->next)
862                                                 last_target_p = &((*last_target_p)->next);
863                                         last_target_p = &((*last_target_p)->next);
864                                 }
865
866                                 *last_target_p = malloc(sizeof(target_t));
867                                 
868                                 (*last_target_p)->type = target_types[i];
869                                 
870                                 if (strcmp(args[1], "big") == 0)
871                                         (*last_target_p)->endianness = TARGET_BIG_ENDIAN;
872                                 else if (strcmp(args[1], "little") == 0)
873                                         (*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
874                                 else
875                                 {
876                                         ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
877                                         exit(-1);
878                                 }
879                                 
880                                 /* what to do on a target reset */
881                                 if (strcmp(args[2], "reset_halt") == 0)
882                                         (*last_target_p)->reset_mode = RESET_HALT;
883                                 else if (strcmp(args[2], "reset_run") == 0)
884                                         (*last_target_p)->reset_mode = RESET_RUN;
885                                 else if (strcmp(args[2], "reset_init") == 0)
886                                         (*last_target_p)->reset_mode = RESET_INIT;
887                                 else if (strcmp(args[2], "run_and_halt") == 0)
888                                         (*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
889                                 else if (strcmp(args[2], "run_and_init") == 0)
890                                         (*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
891                                 else
892                                 {
893                                         ERROR("unknown target startup mode %s", args[2]);
894                                         exit(-1);
895                                 }
896                                 (*last_target_p)->run_and_halt_time = 1000; /* default 1s */
897                                 
898                                 (*last_target_p)->reset_script = NULL;
899                                 (*last_target_p)->post_halt_script = NULL;
900                                 (*last_target_p)->pre_resume_script = NULL;
901                                 
902                                 (*last_target_p)->working_area = 0x0;
903                                 (*last_target_p)->working_area_size = 0x0;
904                                 (*last_target_p)->working_areas = NULL;
905                                 (*last_target_p)->backup_working_area = 0;
906                                 
907                                 (*last_target_p)->state = TARGET_UNKNOWN;
908                                 (*last_target_p)->reg_cache = NULL;
909                                 (*last_target_p)->breakpoints = NULL;
910                                 (*last_target_p)->watchpoints = NULL;
911                                 (*last_target_p)->next = NULL;
912                                 (*last_target_p)->arch_info = NULL;
913                                 
914                                 (*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
915                                 
916                                 found = 1;
917                                 break;
918                         }
919                 }
920         }
921         
922         /* no matching target found */
923         if (!found)
924         {
925                 ERROR("target '%s' not found", args[0]);
926                 exit(-1);
927         }
928
929         return ERROR_OK;
930 }
931
932 /* usage: target_script <target#> <event> <script_file> */
933 int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
934 {
935         target_t *target = NULL;
936         
937         if (argc < 3)
938         {
939                 ERROR("incomplete target_script command");
940                 exit(-1);
941         }
942         
943         target = get_target_by_num(strtoul(args[0], NULL, 0));
944         
945         if (!target)
946         {
947                 ERROR("target number '%s' not defined", args[0]);
948                 exit(-1);
949         }
950         
951         if (strcmp(args[1], "reset") == 0)
952         {
953                 if (target->reset_script)
954                         free(target->reset_script);
955                 target->reset_script = strdup(args[2]);
956         }
957         else if (strcmp(args[1], "post_halt") == 0)
958         {
959                 if (target->post_halt_script)
960                         free(target->post_halt_script);
961                 target->post_halt_script = strdup(args[2]);
962         }
963         else if (strcmp(args[1], "pre_resume") == 0)
964         {
965                 if (target->pre_resume_script)
966                         free(target->pre_resume_script);
967                 target->pre_resume_script = strdup(args[2]);
968         }
969         else
970         {
971                 ERROR("unknown event type: '%s", args[1]);
972                 exit(-1);       
973         }
974         
975         return ERROR_OK;
976 }
977
978 int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
979 {
980         target_t *target = NULL;
981         
982         if (argc < 2)
983         {
984                 ERROR("incomplete run_and_halt_time command");
985                 exit(-1);
986         }
987         
988         target = get_target_by_num(strtoul(args[0], NULL, 0));
989         
990         if (!target)
991         {
992                 ERROR("target number '%s' not defined", args[0]);
993                 exit(-1);
994         }
995         
996         target->run_and_halt_time = strtoul(args[1], NULL, 0);
997         
998         return ERROR_OK;
999 }
1000
1001 int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1002 {
1003         target_t *target = NULL;
1004         
1005         if (argc < 4)
1006         {
1007                 ERROR("incomplete working_area command. usage: working_area <target#> <address> <size> <'backup'|'nobackup'>");
1008                 exit(-1);
1009         }
1010         
1011         target = get_target_by_num(strtoul(args[0], NULL, 0));
1012         
1013         if (!target)
1014         {
1015                 ERROR("target number '%s' not defined", args[0]);
1016                 exit(-1);
1017         }
1018         
1019         target->working_area = strtoul(args[1], NULL, 0);
1020         target->working_area_size = strtoul(args[2], NULL, 0);
1021         
1022         if (strcmp(args[3], "backup") == 0)
1023         {
1024                 target->backup_working_area = 1;
1025         }
1026         else if (strcmp(args[3], "nobackup") == 0)
1027         {
1028                 target->backup_working_area = 0;
1029         }
1030         else
1031         {
1032                 ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
1033                 exit(-1);
1034         }
1035         
1036         return ERROR_OK;
1037 }
1038
1039
1040 /* process target state changes */
1041 int handle_target(void *priv)
1042 {
1043         int retval;
1044         target_t *target = targets;
1045         
1046         while (target)
1047         {
1048                 /* only poll if target isn't already halted */
1049                 if (target->state != TARGET_HALTED)
1050                 {
1051                         if (target_continous_poll)
1052                                 if ((retval = target->type->poll(target)) < 0)
1053                                 {
1054                                         ERROR("couldn't poll target, exiting");
1055                                         exit(-1);
1056                                 }
1057                 }
1058         
1059                 target = target->next;
1060         }
1061         
1062         return ERROR_OK;
1063 }
1064
1065 int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1066 {
1067         target_t *target;
1068         reg_t *reg = NULL;
1069         int count = 0;
1070         char *value;
1071         
1072         DEBUG("");
1073         
1074         target = get_current_target(cmd_ctx);
1075         
1076         /* list all available registers for the current target */
1077         if (argc == 0)
1078         {
1079                 reg_cache_t *cache = target->reg_cache;
1080                 
1081                 count = 0;
1082                 while(cache)
1083                 {
1084                         int i;
1085                         for (i = 0; i < cache->num_regs; i++)
1086                         {
1087                                 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1088                                 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1089                                 free(value);
1090                         }
1091                         cache = cache->next;
1092                 }
1093                 
1094                 return ERROR_OK;
1095         }
1096         
1097         /* access a single register by its ordinal number */
1098         if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1099         {
1100                 int num = strtoul(args[0], NULL, 0);
1101                 reg_cache_t *cache = target->reg_cache;
1102                 
1103                 count = 0;
1104                 while(cache)
1105                 {
1106                         int i;
1107                         for (i = 0; i < cache->num_regs; i++)
1108                         {
1109                                 if (count++ == num)
1110                                 {
1111                                         reg = &cache->reg_list[i];
1112                                         break;
1113                                 }
1114                         }
1115                         if (reg)
1116                                 break;
1117                         cache = cache->next;
1118                 }
1119                 
1120                 if (!reg)
1121                 {
1122                         command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1123                         return ERROR_OK;
1124                 }
1125         } else /* access a single register by its name */
1126         {
1127                 reg = register_get_by_name(target->reg_cache, args[0], 1);
1128                 
1129                 if (!reg)
1130                 {
1131                         command_print(cmd_ctx, "register %s not found in current target", args[0]);
1132                         return ERROR_OK;
1133                 }
1134         }
1135
1136         /* display a register */
1137         if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1138         {
1139                 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1140                         reg->valid = 0;
1141                 
1142                 if (reg->valid == 0)
1143                 {
1144                         reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1145                         if (arch_type == NULL)
1146                         {
1147                                 ERROR("BUG: encountered unregistered arch type");
1148                                 return ERROR_OK;
1149                         }
1150                         arch_type->get(reg);
1151                 }
1152                 value = buf_to_str(reg->value, reg->size, 16);
1153                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1154                 free(value);
1155                 return ERROR_OK;
1156         }
1157         
1158         /* set register value */
1159         if (argc == 2)
1160         {
1161                 u8 *buf = malloc(CEIL(reg->size, 8));
1162                 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1163
1164                 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1165                 if (arch_type == NULL)
1166                 {
1167                         ERROR("BUG: encountered unregistered arch type");
1168                         return ERROR_OK;
1169                 }
1170                 
1171                 arch_type->set(reg, buf);
1172                 
1173                 value = buf_to_str(reg->value, reg->size, 16);
1174                 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1175                 free(value);
1176                 
1177                 free(buf);
1178                 
1179                 return ERROR_OK;
1180         }
1181         
1182         command_print(cmd_ctx, "usage: reg <#|name> [value]");
1183         
1184         return ERROR_OK;
1185 }
1186
1187 int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1188 {
1189         target_t *target = get_current_target(cmd_ctx);
1190         char buffer[512];
1191
1192         if (argc == 0)
1193         {
1194                 command_print(cmd_ctx, "target state: %s", target_state_strings[target->type->poll(target)]);
1195                 if (target->state == TARGET_HALTED)
1196                 {
1197                         target->type->arch_state(target, buffer, 512);
1198                         buffer[511] = 0;
1199                         command_print(cmd_ctx, "%s", buffer);
1200                 }
1201         }
1202         else
1203         {
1204                 if (strcmp(args[0], "on") == 0)
1205                 {
1206                         target_continous_poll = 1;
1207                 }
1208                 else if (strcmp(args[0], "off") == 0)
1209                 {
1210                         target_continous_poll = 0;
1211                 }
1212         }
1213         
1214         
1215         return ERROR_OK;
1216 }
1217
1218 int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1219 {
1220         target_t *target = get_current_target(cmd_ctx);
1221         struct timeval timeout, now;
1222         
1223         gettimeofday(&timeout, NULL);
1224         timeval_add_time(&timeout, 5, 0);
1225
1226         command_print(cmd_ctx, "waiting for target halted...");
1227
1228         while(target->type->poll(target))
1229         {
1230                 if (target->state == TARGET_HALTED)
1231                 {
1232                         command_print(cmd_ctx, "target halted");
1233                         break;
1234                 }
1235                 target_call_timer_callbacks();
1236                 
1237                 gettimeofday(&now, NULL);
1238                 if ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec))
1239                 {
1240                         command_print(cmd_ctx, "timed out while waiting for target halt");
1241                         ERROR("timed out while waiting for target halt");
1242                         break;
1243                 }
1244         }
1245         
1246         return ERROR_OK;
1247 }
1248
1249 int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1250 {
1251         int retval;
1252         target_t *target = get_current_target(cmd_ctx);
1253
1254         DEBUG("");
1255         
1256         command_print(cmd_ctx, "requesting target halt...");
1257
1258         if ((retval = target->type->halt(target)) != ERROR_OK)
1259         {       
1260                 switch (retval)
1261                 {
1262                         case ERROR_TARGET_ALREADY_HALTED:
1263                                 command_print(cmd_ctx, "target already halted");
1264                                 break;
1265                         case ERROR_TARGET_TIMEOUT:
1266                                 command_print(cmd_ctx, "target timed out... shutting down");
1267                                 exit(-1);
1268                         default:
1269                                 command_print(cmd_ctx, "unknown error... shutting down");
1270                                 exit(-1);
1271                 }
1272         }
1273         
1274         return ERROR_OK;
1275
1276 }
1277
1278 /* what to do on daemon startup */
1279 int handle_daemon_startup_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1280 {
1281         if (argc == 1)
1282         {
1283                 if (strcmp(args[0], "attach") == 0)
1284                 {
1285                         startup_mode = DAEMON_ATTACH;
1286                         return ERROR_OK;
1287                 }
1288                 else if (strcmp(args[0], "reset") == 0)
1289                 {
1290                         startup_mode = DAEMON_RESET;
1291                         return ERROR_OK;
1292                 }
1293         }
1294         
1295         WARNING("invalid daemon_startup configuration directive: %s", args[0]);
1296         return ERROR_OK;
1297
1298 }
1299                 
1300 int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1301 {
1302         target_t *target = get_current_target(cmd_ctx);
1303         int retval;
1304         
1305         command_print(cmd_ctx, "requesting target halt and executing a soft reset");
1306         
1307         if ((retval = target->type->soft_reset_halt(target)) != ERROR_OK)
1308         {       
1309                 switch (retval)
1310                 {
1311                         case ERROR_TARGET_TIMEOUT:
1312                                 command_print(cmd_ctx, "target timed out... shutting down");
1313                                 exit(-1);
1314                         default:
1315                                 command_print(cmd_ctx, "unknown error... shutting down");
1316                                 exit(-1);
1317                 }
1318         }
1319         
1320         return ERROR_OK;
1321 }
1322
1323 int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1324 {
1325         target_t *target = get_current_target(cmd_ctx);
1326         enum target_reset_mode reset_mode = RESET_RUN;
1327         
1328         DEBUG("");
1329         
1330         if (argc >= 1)
1331         {
1332                 if (strcmp("run", args[0]) == 0)
1333                         reset_mode = RESET_RUN;
1334                 else if (strcmp("halt", args[0]) == 0)
1335                         reset_mode = RESET_HALT;
1336                 else if (strcmp("init", args[0]) == 0)
1337                         reset_mode = RESET_INIT;
1338                 else if (strcmp("run_and_halt", args[0]) == 0)
1339                 {
1340                         reset_mode = RESET_RUN_AND_HALT;
1341                         if (argc >= 2)
1342                         {
1343                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1344                         }
1345                 }
1346                 else if (strcmp("run_and_init", args[0]) == 0)
1347                 {
1348                         reset_mode = RESET_RUN_AND_INIT;
1349                         if (argc >= 2)
1350                         {
1351                                 target->run_and_halt_time = strtoul(args[1], NULL, 0);
1352                         }
1353                 }
1354                 else
1355                 {
1356                         command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
1357                         return ERROR_OK;
1358                 }
1359                 target->reset_mode = reset_mode;
1360         }
1361         
1362         target_process_reset(cmd_ctx);
1363         
1364         return ERROR_OK;
1365 }
1366
1367 int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1368 {
1369         int retval;
1370         target_t *target = get_current_target(cmd_ctx);
1371         
1372         DEBUG("");
1373         
1374         if (argc == 0)
1375                 retval = target->type->resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
1376         else if (argc == 1)
1377                 retval = target->type->resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
1378         else
1379         {
1380                 command_print(cmd_ctx, "usage: resume [address]");
1381                 return ERROR_OK;
1382         }
1383         
1384         if (retval != ERROR_OK)
1385         {       
1386                 switch (retval)
1387                 {
1388                         case ERROR_TARGET_NOT_HALTED:
1389                                 command_print(cmd_ctx, "target not halted");
1390                                 break;
1391                         default:
1392                                 command_print(cmd_ctx, "unknown error... shutting down");
1393                                 exit(-1);
1394                 }
1395         }
1396
1397         return ERROR_OK;
1398 }
1399
1400 int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1401 {
1402         target_t *target = get_current_target(cmd_ctx);
1403         
1404         DEBUG("");
1405         
1406         if (argc == 0)
1407                 target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
1408
1409         if (argc == 1)
1410                 target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
1411         
1412         return ERROR_OK;
1413 }
1414
1415 int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1416 {
1417         int count = 1;
1418         int size = 4;
1419         u32 address = 0;
1420         int i;
1421
1422         char output[128];
1423         int output_len;
1424
1425         int retval;
1426
1427         u8 *buffer;
1428         target_t *target = get_current_target(cmd_ctx);
1429
1430         if (argc < 1)
1431                 return ERROR_OK;
1432
1433         if (argc == 2)
1434                 count = strtoul(args[1], NULL, 0);
1435
1436         address = strtoul(args[0], NULL, 0);
1437         
1438
1439         switch (cmd[2])
1440         {
1441                 case 'w':
1442                         size = 4;
1443                         break;
1444                 case 'h':
1445                         size = 2;
1446                         break;
1447                 case 'b':
1448                         size = 1;
1449                         break;
1450                 default:
1451                         return ERROR_OK;
1452         }
1453
1454         buffer = calloc(count, size);
1455         if ((retval  = target->type->read_memory(target, address, size, count, buffer)) != ERROR_OK)
1456         {
1457                 switch (retval)
1458                 {
1459                         case ERROR_TARGET_UNALIGNED_ACCESS:
1460                                 command_print(cmd_ctx, "error: address not aligned");
1461                                 break;
1462                         case ERROR_TARGET_NOT_HALTED:
1463                                 command_print(cmd_ctx, "error: target must be halted for memory accesses");
1464                                 break;                  
1465                         case ERROR_TARGET_DATA_ABORT:
1466                                 command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1467                                 break;
1468                         default:
1469                                 command_print(cmd_ctx, "error: unknown error");
1470                                 break;
1471                 }
1472                 return ERROR_OK;
1473         }
1474
1475         output_len = 0;
1476
1477         for (i = 0; i < count; i++)
1478         {
1479                 if (i%8 == 0)
1480                         output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
1481                 
1482                 switch (size)
1483                 {
1484                         case 4:
1485                                 output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
1486                                 break;
1487                         case 2:
1488                                 output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
1489                                 break;
1490                         case 1:
1491                                 output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
1492                                 break;
1493                 }
1494
1495                 if ((i%8 == 7) || (i == count - 1))
1496                 {
1497                         command_print(cmd_ctx, output);
1498                         output_len = 0;
1499                 }
1500         }
1501
1502         free(buffer);
1503         
1504         return ERROR_OK;
1505 }
1506
1507 int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1508 {
1509         u32 address = 0;
1510         u32 value = 0;
1511         int retval;
1512         target_t *target = get_current_target(cmd_ctx);
1513         u8 value_buf[4];
1514
1515         if (argc < 2)
1516                 return ERROR_OK;
1517
1518         address = strtoul(args[0], NULL, 0);
1519         value = strtoul(args[1], NULL, 0);
1520
1521         switch (cmd[2])
1522         {
1523                 case 'w':
1524                         target_buffer_set_u32(target, value_buf, value);
1525                         retval = target->type->write_memory(target, address, 4, 1, value_buf);
1526                         break;
1527                 case 'h':
1528                         target_buffer_set_u16(target, value_buf, value);
1529                         retval = target->type->write_memory(target, address, 2, 1, value_buf);
1530                         break;
1531                 case 'b':
1532                         value_buf[0] = value;
1533                         retval = target->type->write_memory(target, address, 1, 1, value_buf);
1534                         break;
1535                 default:
1536                         return ERROR_OK;
1537         }
1538
1539         switch (retval)
1540         {
1541                 case ERROR_TARGET_UNALIGNED_ACCESS:
1542                         command_print(cmd_ctx, "error: address not aligned");
1543                         break;
1544                 case ERROR_TARGET_DATA_ABORT:
1545                         command_print(cmd_ctx, "error: access caused data abort, system possibly corrupted");
1546                         break;
1547                 case ERROR_TARGET_NOT_HALTED:
1548                         command_print(cmd_ctx, "error: target must be halted for memory accesses");
1549                         break;
1550                 case ERROR_OK:
1551                         break;
1552                 default:
1553                         command_print(cmd_ctx, "error: unknown error");
1554                         break;
1555         }
1556
1557         return ERROR_OK;
1558
1559 }
1560
1561 int handle_load_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1562 {
1563         FILE *binary;
1564         u32 address;
1565         struct stat binary_stat;
1566         u32 binary_size;
1567
1568         u8 *buffer;
1569         u32 buf_cnt;
1570         
1571         struct timeval start, end, duration;
1572                 
1573         target_t *target = get_current_target(cmd_ctx);
1574
1575         if (argc != 2)
1576         {
1577                 command_print(cmd_ctx, "usage: load_binary <filename> <address>");
1578                 return ERROR_OK;
1579         }
1580
1581         address = strtoul(args[1], NULL, 0);
1582
1583         if (stat(args[0], &binary_stat) == -1)
1584         {
1585                 ERROR("couldn't stat() %s: %s", args[0], strerror(errno));
1586                 command_print(cmd_ctx, "error accessing file %s", args[0]);
1587                 return ERROR_OK;
1588         }
1589
1590         if (!(binary = fopen(args[0], "rb")))
1591         {
1592                 ERROR("couldn't open %s: %s", args[0], strerror(errno));
1593                 command_print(cmd_ctx, "error accessing file %s", args[0]);
1594                 return ERROR_OK;
1595         }
1596         
1597         buffer = malloc(128 * 1024);
1598
1599         gettimeofday(&start, NULL);     
1600
1601         binary_size = binary_stat.st_size;
1602         while (binary_size > 0)
1603         {
1604                 buf_cnt = fread(buffer, 1, 128*1024, binary);
1605                 target_write_buffer(target, address, buf_cnt, buffer);
1606                 address += buf_cnt;
1607                 binary_size -= buf_cnt;
1608         }
1609
1610         gettimeofday(&end, NULL);       
1611
1612         free(buffer);
1613         
1614         timeval_subtract(&duration, &end, &start);
1615         command_print(cmd_ctx, "downloaded %lli byte in %is %ius", (long long) binary_stat.st_size, duration.tv_sec, duration.tv_usec);
1616         
1617         fclose(binary);
1618
1619         return ERROR_OK;
1620
1621 }
1622
1623 int handle_dump_binary_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1624 {
1625         FILE *binary;
1626         u32 address;
1627         u32 size;
1628         u8 buffer[560];
1629         
1630         struct timeval start, end, duration;
1631         
1632         target_t *target = get_current_target(cmd_ctx);
1633
1634         if (argc != 3)
1635         {
1636                 command_print(cmd_ctx, "usage: dump_binary <filename> <address> <size>");
1637                 return ERROR_OK;
1638         }
1639
1640         address = strtoul(args[1], NULL, 0);
1641         size = strtoul(args[2], NULL, 0);
1642
1643         if (!(binary = fopen(args[0], "wb")))
1644         {
1645                 ERROR("couldn't open %s for writing: %s", args[0], strerror(errno));
1646                 command_print(cmd_ctx, "error accessing file %s", args[0]);
1647                 return ERROR_OK;
1648         }
1649
1650         if ((address & 3) || (size & 3))
1651         {
1652                 command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
1653                 return ERROR_OK;
1654         }
1655
1656         gettimeofday(&start, NULL);     
1657         
1658         while (size > 0)
1659         {
1660                 u32 this_run_size = (size > 560) ? 560 : size;
1661                 target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
1662                 fwrite(buffer, 1, this_run_size, binary);
1663                 size -= this_run_size;
1664                 address += this_run_size;
1665         }
1666
1667         fclose(binary);
1668
1669         gettimeofday(&end, NULL);       
1670
1671         timeval_subtract(&duration, &end, &start);
1672         command_print(cmd_ctx, "dumped %i byte in %is %ius", strtoul(args[2], NULL, 0), duration.tv_sec, duration.tv_usec);
1673         
1674         return ERROR_OK;
1675
1676 }
1677
1678 int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1679 {
1680         int retval;
1681         target_t *target = get_current_target(cmd_ctx);
1682
1683         if (argc == 0)
1684         {
1685                 breakpoint_t *breakpoint = target->breakpoints;
1686
1687                 while (breakpoint)
1688                 {
1689                         if (breakpoint->type == BKPT_SOFT)
1690                         {
1691                                 char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
1692                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
1693                                 free(buf);
1694                         }
1695                         else
1696                         {
1697                                 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
1698                         }
1699                         breakpoint = breakpoint->next;
1700                 }
1701         }
1702         else if (argc >= 2)
1703         {
1704                 int hw = BKPT_SOFT;
1705                 u32 length = 0;
1706
1707                 length = strtoul(args[1], NULL, 0);
1708                 
1709                 if (argc >= 3)
1710                         if (strcmp(args[2], "hw") == 0)
1711                                 hw = BKPT_HARD;
1712
1713                 if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
1714                 {
1715                         switch (retval)
1716                         {
1717                                 case ERROR_TARGET_NOT_HALTED:
1718                                         command_print(cmd_ctx, "target must be halted to set breakpoints");
1719                                         break;
1720                                 case ERROR_TARGET_RESOURCE_NOT_AVAILABLE:
1721                                         command_print(cmd_ctx, "no more breakpoints available");
1722                                         break;
1723                                 default:
1724                                         command_print(cmd_ctx, "unknown error, breakpoint not set");
1725                                         break;
1726                         }
1727                 }
1728                 else
1729                 {
1730                         command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
1731                 }
1732         }
1733         else
1734         {
1735                 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
1736         }
1737
1738         return ERROR_OK;
1739 }
1740
1741 int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1742 {
1743         target_t *target = get_current_target(cmd_ctx);
1744
1745         if (argc > 0)
1746                 breakpoint_remove(target, strtoul(args[0], NULL, 0));
1747
1748         return ERROR_OK;
1749 }
1750
1751 int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1752 {
1753         target_t *target = get_current_target(cmd_ctx);
1754
1755         if (argc == 0)
1756         {
1757                 watchpoint_t *watchpoint = target->watchpoints;
1758
1759                 while (watchpoint)
1760                 {
1761                         command_print(cmd_ctx, "address: 0x%8.8x, mask: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
1762                         watchpoint = watchpoint->next;
1763                 }
1764         } 
1765         else if (argc >= 2)
1766         {
1767                 enum watchpoint_rw type = WPT_ACCESS;
1768                 u32 data_value = 0x0;
1769                 u32 data_mask = 0xffffffff;
1770                 
1771                 if (argc >= 3)
1772                 {
1773                         switch(args[2][0])
1774                         {
1775                                 case 'r':
1776                                         type = WPT_READ;
1777                                         break;
1778                                 case 'w':
1779                                         type = WPT_WRITE;
1780                                         break;
1781                                 case 'a':
1782                                         type = WPT_ACCESS;
1783                                         break;
1784                                 default:
1785                                         command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
1786                                         return ERROR_OK;
1787                         }
1788                 }
1789                 if (argc >= 4)
1790                 {
1791                         data_value = strtoul(args[3], NULL, 0);
1792                 }
1793                 if (argc >= 5)
1794                 {
1795                         data_mask = strtoul(args[4], NULL, 0);
1796                 }
1797                 watchpoint_add(target, strtoul(args[0], NULL, 0), strtoul(args[1], NULL, 0), type, data_value, data_mask);
1798         }
1799         else
1800         {
1801                 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
1802         }
1803                 
1804         return ERROR_OK;
1805 }
1806
1807 int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1808 {
1809         target_t *target = get_current_target(cmd_ctx);
1810
1811         if (argc > 0)
1812                 watchpoint_remove(target, strtoul(args[0], NULL, 0));
1813         
1814         return ERROR_OK;
1815 }
1816