target: add async algorithm timeout
[fw/openocd] / src / target / target.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008, Duane Ellis                                       *
9  *   openocd@duaneeellis.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2008 by Spencer Oliver                                  *
12  *   spen@spen-soft.co.uk                                                  *
13  *                                                                         *
14  *   Copyright (C) 2008 by Rick Altherr                                    *
15  *   kc8apf@kc8apf.net>                                                    *
16  *                                                                         *
17  *   Copyright (C) 2011 by Broadcom Corporation                            *
18  *   Evan Hunter - ehunter@broadcom.com                                    *
19  *                                                                         *
20  *   Copyright (C) ST-Ericsson SA 2011                                     *
21  *   michel.jaouen@stericsson.com : smp minimum support                    *
22  *                                                                         *
23  *   Copyright (C) 2011 Andreas Fritiofson                                 *
24  *   andreas.fritiofson@gmail.com                                          *
25  *                                                                         *
26  *   This program is free software; you can redistribute it and/or modify  *
27  *   it under the terms of the GNU General Public License as published by  *
28  *   the Free Software Foundation; either version 2 of the License, or     *
29  *   (at your option) any later version.                                   *
30  *                                                                         *
31  *   This program is distributed in the hope that it will be useful,       *
32  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
33  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
34  *   GNU General Public License for more details.                          *
35  *                                                                         *
36  *   You should have received a copy of the GNU General Public License     *
37  *   along with this program; if not, write to the                         *
38  *   Free Software Foundation, Inc.,                                       *
39  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
40  ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 static int target_read_buffer_default(struct target *target, uint32_t address,
60                 uint32_t size, uint8_t *buffer);
61 static int target_write_buffer_default(struct target *target, uint32_t address,
62                 uint32_t size, const uint8_t *buffer);
63 static int target_array2mem(Jim_Interp *interp, struct target *target,
64                 int argc, Jim_Obj * const *argv);
65 static int target_mem2array(Jim_Interp *interp, struct target *target,
66                 int argc, Jim_Obj * const *argv);
67 static int target_register_user_commands(struct command_context *cmd_ctx);
68
69 /* targets */
70 extern struct target_type arm7tdmi_target;
71 extern struct target_type arm720t_target;
72 extern struct target_type arm9tdmi_target;
73 extern struct target_type arm920t_target;
74 extern struct target_type arm966e_target;
75 extern struct target_type arm946e_target;
76 extern struct target_type arm926ejs_target;
77 extern struct target_type fa526_target;
78 extern struct target_type feroceon_target;
79 extern struct target_type dragonite_target;
80 extern struct target_type xscale_target;
81 extern struct target_type cortexm3_target;
82 extern struct target_type cortexa8_target;
83 extern struct target_type arm11_target;
84 extern struct target_type mips_m4k_target;
85 extern struct target_type avr_target;
86 extern struct target_type dsp563xx_target;
87 extern struct target_type dsp5680xx_target;
88 extern struct target_type testee_target;
89 extern struct target_type avr32_ap7k_target;
90 extern struct target_type stm32_stlink_target;
91
92 static struct target_type *target_types[] = {
93         &arm7tdmi_target,
94         &arm9tdmi_target,
95         &arm920t_target,
96         &arm720t_target,
97         &arm966e_target,
98         &arm946e_target,
99         &arm926ejs_target,
100         &fa526_target,
101         &feroceon_target,
102         &dragonite_target,
103         &xscale_target,
104         &cortexm3_target,
105         &cortexa8_target,
106         &arm11_target,
107         &mips_m4k_target,
108         &avr_target,
109         &dsp563xx_target,
110         &dsp5680xx_target,
111         &testee_target,
112         &avr32_ap7k_target,
113         &stm32_stlink_target,
114         NULL,
115 };
116
117 struct target *all_targets;
118 static struct target_event_callback *target_event_callbacks;
119 static struct target_timer_callback *target_timer_callbacks;
120 static const int polling_interval = 100;
121
122 static const Jim_Nvp nvp_assert[] = {
123         { .name = "assert", NVP_ASSERT },
124         { .name = "deassert", NVP_DEASSERT },
125         { .name = "T", NVP_ASSERT },
126         { .name = "F", NVP_DEASSERT },
127         { .name = "t", NVP_ASSERT },
128         { .name = "f", NVP_DEASSERT },
129         { .name = NULL, .value = -1 }
130 };
131
132 static const Jim_Nvp nvp_error_target[] = {
133         { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
134         { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
135         { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
136         { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
137         { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
138         { .value = ERROR_TARGET_UNALIGNED_ACCESS   , .name = "err-unaligned-access" },
139         { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
140         { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
141         { .value = ERROR_TARGET_TRANSLATION_FAULT  , .name = "err-translation-fault" },
142         { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
143         { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
144         { .value = -1, .name = NULL }
145 };
146
147 static const char *target_strerror_safe(int err)
148 {
149         const Jim_Nvp *n;
150
151         n = Jim_Nvp_value2name_simple(nvp_error_target, err);
152         if (n->name == NULL)
153                 return "unknown";
154         else
155                 return n->name;
156 }
157
158 static const Jim_Nvp nvp_target_event[] = {
159
160         { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
161         { .value = TARGET_EVENT_HALTED, .name = "halted" },
162         { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
163         { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
164         { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
165
166         { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
167         { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
168
169         { .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
170         { .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
171         { .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
172         { .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
173         { .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
174         { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
175         { .value = TARGET_EVENT_RESET_HALT_PRE,      .name = "reset-halt-pre" },
176         { .value = TARGET_EVENT_RESET_HALT_POST,     .name = "reset-halt-post" },
177         { .value = TARGET_EVENT_RESET_WAIT_PRE,      .name = "reset-wait-pre" },
178         { .value = TARGET_EVENT_RESET_WAIT_POST,     .name = "reset-wait-post" },
179         { .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
180         { .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },
181
182         { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
183         { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
184
185         { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
186         { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
187
188         { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
189         { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
190
191         { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
192         { .value = TARGET_EVENT_GDB_FLASH_WRITE_END  , .name = "gdb-flash-write-end"   },
193
194         { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
195         { .value = TARGET_EVENT_GDB_FLASH_ERASE_END  , .name = "gdb-flash-erase-end" },
196
197         { .name = NULL, .value = -1 }
198 };
199
200 static const Jim_Nvp nvp_target_state[] = {
201         { .name = "unknown", .value = TARGET_UNKNOWN },
202         { .name = "running", .value = TARGET_RUNNING },
203         { .name = "halted",  .value = TARGET_HALTED },
204         { .name = "reset",   .value = TARGET_RESET },
205         { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
206         { .name = NULL, .value = -1 },
207 };
208
209 static const Jim_Nvp nvp_target_debug_reason[] = {
210         { .name = "debug-request"            , .value = DBG_REASON_DBGRQ },
211         { .name = "breakpoint"               , .value = DBG_REASON_BREAKPOINT },
212         { .name = "watchpoint"               , .value = DBG_REASON_WATCHPOINT },
213         { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
214         { .name = "single-step"              , .value = DBG_REASON_SINGLESTEP },
215         { .name = "target-not-halted"        , .value = DBG_REASON_NOTHALTED  },
216         { .name = "undefined"                , .value = DBG_REASON_UNDEFINED },
217         { .name = NULL, .value = -1 },
218 };
219
220 static const Jim_Nvp nvp_target_endian[] = {
221         { .name = "big",    .value = TARGET_BIG_ENDIAN },
222         { .name = "little", .value = TARGET_LITTLE_ENDIAN },
223         { .name = "be",     .value = TARGET_BIG_ENDIAN },
224         { .name = "le",     .value = TARGET_LITTLE_ENDIAN },
225         { .name = NULL,     .value = -1 },
226 };
227
228 static const Jim_Nvp nvp_reset_modes[] = {
229         { .name = "unknown", .value = RESET_UNKNOWN },
230         { .name = "run"    , .value = RESET_RUN },
231         { .name = "halt"   , .value = RESET_HALT },
232         { .name = "init"   , .value = RESET_INIT },
233         { .name = NULL     , .value = -1 },
234 };
235
236 const char *debug_reason_name(struct target *t)
237 {
238         const char *cp;
239
240         cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
241                         t->debug_reason)->name;
242         if (!cp) {
243                 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
244                 cp = "(*BUG*unknown*BUG*)";
245         }
246         return cp;
247 }
248
249 const char *target_state_name(struct target *t)
250 {
251         const char *cp;
252         cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
253         if (!cp) {
254                 LOG_ERROR("Invalid target state: %d", (int)(t->state));
255                 cp = "(*BUG*unknown*BUG*)";
256         }
257         return cp;
258 }
259
260 /* determine the number of the new target */
261 static int new_target_number(void)
262 {
263         struct target *t;
264         int x;
265
266         /* number is 0 based */
267         x = -1;
268         t = all_targets;
269         while (t) {
270                 if (x < t->target_number)
271                         x = t->target_number;
272                 t = t->next;
273         }
274         return x + 1;
275 }
276
277 /* read a uint32_t from a buffer in target memory endianness */
278 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
279 {
280         if (target->endianness == TARGET_LITTLE_ENDIAN)
281                 return le_to_h_u32(buffer);
282         else
283                 return be_to_h_u32(buffer);
284 }
285
286 /* read a uint24_t from a buffer in target memory endianness */
287 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
288 {
289         if (target->endianness == TARGET_LITTLE_ENDIAN)
290                 return le_to_h_u24(buffer);
291         else
292                 return be_to_h_u24(buffer);
293 }
294
295 /* read a uint16_t from a buffer in target memory endianness */
296 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
297 {
298         if (target->endianness == TARGET_LITTLE_ENDIAN)
299                 return le_to_h_u16(buffer);
300         else
301                 return be_to_h_u16(buffer);
302 }
303
304 /* read a uint8_t from a buffer in target memory endianness */
305 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
306 {
307         return *buffer & 0x0ff;
308 }
309
310 /* write a uint32_t to a buffer in target memory endianness */
311 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
312 {
313         if (target->endianness == TARGET_LITTLE_ENDIAN)
314                 h_u32_to_le(buffer, value);
315         else
316                 h_u32_to_be(buffer, value);
317 }
318
319 /* write a uint24_t to a buffer in target memory endianness */
320 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
321 {
322         if (target->endianness == TARGET_LITTLE_ENDIAN)
323                 h_u24_to_le(buffer, value);
324         else
325                 h_u24_to_be(buffer, value);
326 }
327
328 /* write a uint16_t to a buffer in target memory endianness */
329 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
330 {
331         if (target->endianness == TARGET_LITTLE_ENDIAN)
332                 h_u16_to_le(buffer, value);
333         else
334                 h_u16_to_be(buffer, value);
335 }
336
337 /* write a uint8_t to a buffer in target memory endianness */
338 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
339 {
340         *buffer = value;
341 }
342
343 /* write a uint32_t array to a buffer in target memory endianness */
344 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
345 {
346         uint32_t i;
347         for (i = 0; i < count; i++)
348                 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
349 }
350
351 /* write a uint16_t array to a buffer in target memory endianness */
352 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
353 {
354         uint32_t i;
355         for (i = 0; i < count; i++)
356                 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
357 }
358
359 /* write a uint32_t array to a buffer in target memory endianness */
360 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
361 {
362         uint32_t i;
363         for (i = 0; i < count; i++)
364                 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
365 }
366
367 /* write a uint16_t array to a buffer in target memory endianness */
368 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
369 {
370         uint32_t i;
371         for (i = 0; i < count; i++)
372                 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
373 }
374
375 /* return a pointer to a configured target; id is name or number */
376 struct target *get_target(const char *id)
377 {
378         struct target *target;
379
380         /* try as tcltarget name */
381         for (target = all_targets; target; target = target->next) {
382                 if (target->cmd_name == NULL)
383                         continue;
384                 if (strcmp(id, target->cmd_name) == 0)
385                         return target;
386         }
387
388         /* It's OK to remove this fallback sometime after August 2010 or so */
389
390         /* no match, try as number */
391         unsigned num;
392         if (parse_uint(id, &num) != ERROR_OK)
393                 return NULL;
394
395         for (target = all_targets; target; target = target->next) {
396                 if (target->target_number == (int)num) {
397                         LOG_WARNING("use '%s' as target identifier, not '%u'",
398                                         target->cmd_name, num);
399                         return target;
400                 }
401         }
402
403         return NULL;
404 }
405
406 /* returns a pointer to the n-th configured target */
407 static struct target *get_target_by_num(int num)
408 {
409         struct target *target = all_targets;
410
411         while (target) {
412                 if (target->target_number == num)
413                         return target;
414                 target = target->next;
415         }
416
417         return NULL;
418 }
419
420 struct target *get_current_target(struct command_context *cmd_ctx)
421 {
422         struct target *target = get_target_by_num(cmd_ctx->current_target);
423
424         if (target == NULL) {
425                 LOG_ERROR("BUG: current_target out of bounds");
426                 exit(-1);
427         }
428
429         return target;
430 }
431
432 int target_poll(struct target *target)
433 {
434         int retval;
435
436         /* We can't poll until after examine */
437         if (!target_was_examined(target)) {
438                 /* Fail silently lest we pollute the log */
439                 return ERROR_FAIL;
440         }
441
442         retval = target->type->poll(target);
443         if (retval != ERROR_OK)
444                 return retval;
445
446         if (target->halt_issued) {
447                 if (target->state == TARGET_HALTED)
448                         target->halt_issued = false;
449                 else {
450                         long long t = timeval_ms() - target->halt_issued_time;
451                         if (t > 1000) {
452                                 target->halt_issued = false;
453                                 LOG_INFO("Halt timed out, wake up GDB.");
454                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
455                         }
456                 }
457         }
458
459         return ERROR_OK;
460 }
461
462 int target_halt(struct target *target)
463 {
464         int retval;
465         /* We can't poll until after examine */
466         if (!target_was_examined(target)) {
467                 LOG_ERROR("Target not examined yet");
468                 return ERROR_FAIL;
469         }
470
471         retval = target->type->halt(target);
472         if (retval != ERROR_OK)
473                 return retval;
474
475         target->halt_issued = true;
476         target->halt_issued_time = timeval_ms();
477
478         return ERROR_OK;
479 }
480
481 /**
482  * Make the target (re)start executing using its saved execution
483  * context (possibly with some modifications).
484  *
485  * @param target Which target should start executing.
486  * @param current True to use the target's saved program counter instead
487  *      of the address parameter
488  * @param address Optionally used as the program counter.
489  * @param handle_breakpoints True iff breakpoints at the resumption PC
490  *      should be skipped.  (For example, maybe execution was stopped by
491  *      such a breakpoint, in which case it would be counterprodutive to
492  *      let it re-trigger.
493  * @param debug_execution False if all working areas allocated by OpenOCD
494  *      should be released and/or restored to their original contents.
495  *      (This would for example be true to run some downloaded "helper"
496  *      algorithm code, which resides in one such working buffer and uses
497  *      another for data storage.)
498  *
499  * @todo Resolve the ambiguity about what the "debug_execution" flag
500  * signifies.  For example, Target implementations don't agree on how
501  * it relates to invalidation of the register cache, or to whether
502  * breakpoints and watchpoints should be enabled.  (It would seem wrong
503  * to enable breakpoints when running downloaded "helper" algorithms
504  * (debug_execution true), since the breakpoints would be set to match
505  * target firmware being debugged, not the helper algorithm.... and
506  * enabling them could cause such helpers to malfunction (for example,
507  * by overwriting data with a breakpoint instruction.  On the other
508  * hand the infrastructure for running such helpers might use this
509  * procedure but rely on hardware breakpoint to detect termination.)
510  */
511 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
512 {
513         int retval;
514
515         /* We can't poll until after examine */
516         if (!target_was_examined(target)) {
517                 LOG_ERROR("Target not examined yet");
518                 return ERROR_FAIL;
519         }
520
521         target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
522
523         /* note that resume *must* be asynchronous. The CPU can halt before
524          * we poll. The CPU can even halt at the current PC as a result of
525          * a software breakpoint being inserted by (a bug?) the application.
526          */
527         retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
528         if (retval != ERROR_OK)
529                 return retval;
530
531         target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
532
533         return retval;
534 }
535
536 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
537 {
538         char buf[100];
539         int retval;
540         Jim_Nvp *n;
541         n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
542         if (n->name == NULL) {
543                 LOG_ERROR("invalid reset mode");
544                 return ERROR_FAIL;
545         }
546
547         /* disable polling during reset to make reset event scripts
548          * more predictable, i.e. dr/irscan & pathmove in events will
549          * not have JTAG operations injected into the middle of a sequence.
550          */
551         bool save_poll = jtag_poll_get_enabled();
552
553         jtag_poll_set_enabled(false);
554
555         sprintf(buf, "ocd_process_reset %s", n->name);
556         retval = Jim_Eval(cmd_ctx->interp, buf);
557
558         jtag_poll_set_enabled(save_poll);
559
560         if (retval != JIM_OK) {
561                 Jim_MakeErrorMessage(cmd_ctx->interp);
562                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
563                 return ERROR_FAIL;
564         }
565
566         /* We want any events to be processed before the prompt */
567         retval = target_call_timer_callbacks_now();
568
569         struct target *target;
570         for (target = all_targets; target; target = target->next)
571                 target->type->check_reset(target);
572
573         return retval;
574 }
575
576 static int identity_virt2phys(struct target *target,
577                 uint32_t virtual, uint32_t *physical)
578 {
579         *physical = virtual;
580         return ERROR_OK;
581 }
582
583 static int no_mmu(struct target *target, int *enabled)
584 {
585         *enabled = 0;
586         return ERROR_OK;
587 }
588
589 static int default_examine(struct target *target)
590 {
591         target_set_examined(target);
592         return ERROR_OK;
593 }
594
595 /* no check by default */
596 static int default_check_reset(struct target *target)
597 {
598         return ERROR_OK;
599 }
600
601 int target_examine_one(struct target *target)
602 {
603         return target->type->examine(target);
604 }
605
606 static int jtag_enable_callback(enum jtag_event event, void *priv)
607 {
608         struct target *target = priv;
609
610         if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
611                 return ERROR_OK;
612
613         jtag_unregister_event_callback(jtag_enable_callback, target);
614
615         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
616
617         int retval = target_examine_one(target);
618         if (retval != ERROR_OK)
619                 return retval;
620
621         target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
622
623         return retval;
624 }
625
626 /* Targets that correctly implement init + examine, i.e.
627  * no communication with target during init:
628  *
629  * XScale
630  */
631 int target_examine(void)
632 {
633         int retval = ERROR_OK;
634         struct target *target;
635
636         for (target = all_targets; target; target = target->next) {
637                 /* defer examination, but don't skip it */
638                 if (!target->tap->enabled) {
639                         jtag_register_event_callback(jtag_enable_callback,
640                                         target);
641                         continue;
642                 }
643
644                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
645
646                 retval = target_examine_one(target);
647                 if (retval != ERROR_OK)
648                         return retval;
649
650                 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
651         }
652         return retval;
653 }
654
655 const char *target_type_name(struct target *target)
656 {
657         return target->type->name;
658 }
659
660 static int target_write_memory_imp(struct target *target, uint32_t address,
661                 uint32_t size, uint32_t count, const uint8_t *buffer)
662 {
663         if (!target_was_examined(target)) {
664                 LOG_ERROR("Target not examined yet");
665                 return ERROR_FAIL;
666         }
667         return target->type->write_memory_imp(target, address, size, count, buffer);
668 }
669
670 static int target_read_memory_imp(struct target *target, uint32_t address,
671                 uint32_t size, uint32_t count, uint8_t *buffer)
672 {
673         if (!target_was_examined(target)) {
674                 LOG_ERROR("Target not examined yet");
675                 return ERROR_FAIL;
676         }
677         return target->type->read_memory_imp(target, address, size, count, buffer);
678 }
679
680 static int target_soft_reset_halt_imp(struct target *target)
681 {
682         if (!target_was_examined(target)) {
683                 LOG_ERROR("Target not examined yet");
684                 return ERROR_FAIL;
685         }
686         if (!target->type->soft_reset_halt_imp) {
687                 LOG_ERROR("Target %s does not support soft_reset_halt",
688                                 target_name(target));
689                 return ERROR_FAIL;
690         }
691         return target->type->soft_reset_halt_imp(target);
692 }
693
694 /**
695  * Downloads a target-specific native code algorithm to the target,
696  * and executes it.  * Note that some targets may need to set up, enable,
697  * and tear down a breakpoint (hard or * soft) to detect algorithm
698  * termination, while others may support  lower overhead schemes where
699  * soft breakpoints embedded in the algorithm automatically terminate the
700  * algorithm.
701  *
702  * @param target used to run the algorithm
703  * @param arch_info target-specific description of the algorithm.
704  */
705 int target_run_algorithm(struct target *target,
706                 int num_mem_params, struct mem_param *mem_params,
707                 int num_reg_params, struct reg_param *reg_param,
708                 uint32_t entry_point, uint32_t exit_point,
709                 int timeout_ms, void *arch_info)
710 {
711         int retval = ERROR_FAIL;
712
713         if (!target_was_examined(target)) {
714                 LOG_ERROR("Target not examined yet");
715                 goto done;
716         }
717         if (!target->type->run_algorithm) {
718                 LOG_ERROR("Target type '%s' does not support %s",
719                                 target_type_name(target), __func__);
720                 goto done;
721         }
722
723         target->running_alg = true;
724         retval = target->type->run_algorithm(target,
725                         num_mem_params, mem_params,
726                         num_reg_params, reg_param,
727                         entry_point, exit_point, timeout_ms, arch_info);
728         target->running_alg = false;
729
730 done:
731         return retval;
732 }
733
734 /**
735  * Downloads a target-specific native code algorithm to the target,
736  * executes and leaves it running.
737  *
738  * @param target used to run the algorithm
739  * @param arch_info target-specific description of the algorithm.
740  */
741 int target_start_algorithm(struct target *target,
742                 int num_mem_params, struct mem_param *mem_params,
743                 int num_reg_params, struct reg_param *reg_params,
744                 uint32_t entry_point, uint32_t exit_point,
745                 void *arch_info)
746 {
747         int retval = ERROR_FAIL;
748
749         if (!target_was_examined(target)) {
750                 LOG_ERROR("Target not examined yet");
751                 goto done;
752         }
753         if (!target->type->start_algorithm) {
754                 LOG_ERROR("Target type '%s' does not support %s",
755                                 target_type_name(target), __func__);
756                 goto done;
757         }
758         if (target->running_alg) {
759                 LOG_ERROR("Target is already running an algorithm");
760                 goto done;
761         }
762
763         target->running_alg = true;
764         retval = target->type->start_algorithm(target,
765                         num_mem_params, mem_params,
766                         num_reg_params, reg_params,
767                         entry_point, exit_point, arch_info);
768
769 done:
770         return retval;
771 }
772
773 /**
774  * Waits for an algorithm started with target_start_algorithm() to complete.
775  *
776  * @param target used to run the algorithm
777  * @param arch_info target-specific description of the algorithm.
778  */
779 int target_wait_algorithm(struct target *target,
780                 int num_mem_params, struct mem_param *mem_params,
781                 int num_reg_params, struct reg_param *reg_params,
782                 uint32_t exit_point, int timeout_ms,
783                 void *arch_info)
784 {
785         int retval = ERROR_FAIL;
786
787         if (!target->type->wait_algorithm) {
788                 LOG_ERROR("Target type '%s' does not support %s",
789                                 target_type_name(target), __func__);
790                 goto done;
791         }
792         if (!target->running_alg) {
793                 LOG_ERROR("Target is not running an algorithm");
794                 goto done;
795         }
796
797         retval = target->type->wait_algorithm(target,
798                         num_mem_params, mem_params,
799                         num_reg_params, reg_params,
800                         exit_point, timeout_ms, arch_info);
801         if (retval != ERROR_TARGET_TIMEOUT)
802                 target->running_alg = false;
803
804 done:
805         return retval;
806 }
807
808 /**
809  * Executes a target-specific native code algorithm in the target.
810  * It differs from target_run_algorithm in that the algorithm is asynchronous.
811  * Because of this it requires an compliant algorithm:
812  * see contrib/loaders/flash/stm32f1x.S for example.
813  *
814  * @param target used to run the algorithm
815  */
816
817 int target_run_flash_async_algorithm(struct target *target,
818                 uint8_t *buffer, uint32_t count, int block_size,
819                 int num_mem_params, struct mem_param *mem_params,
820                 int num_reg_params, struct reg_param *reg_params,
821                 uint32_t buffer_start, uint32_t buffer_size,
822                 uint32_t entry_point, uint32_t exit_point, void *arch_info)
823 {
824         int retval;
825         int timeout = 0;
826
827         /* Set up working area. First word is write pointer, second word is read pointer,
828          * rest is fifo data area. */
829         uint32_t wp_addr = buffer_start;
830         uint32_t rp_addr = buffer_start + 4;
831         uint32_t fifo_start_addr = buffer_start + 8;
832         uint32_t fifo_end_addr = buffer_start + buffer_size;
833
834         uint32_t wp = fifo_start_addr;
835         uint32_t rp = fifo_start_addr;
836
837         /* validate block_size is 2^n */
838         assert(!block_size || !(block_size & (block_size - 1)));
839
840         retval = target_write_u32(target, wp_addr, wp);
841         if (retval != ERROR_OK)
842                 return retval;
843         retval = target_write_u32(target, rp_addr, rp);
844         if (retval != ERROR_OK)
845                 return retval;
846
847         /* Start up algorithm on target and let it idle while writing the first chunk */
848         retval = target_start_algorithm(target, num_mem_params, mem_params,
849                         num_reg_params, reg_params,
850                         entry_point,
851                         exit_point,
852                         arch_info);
853
854         if (retval != ERROR_OK) {
855                 LOG_ERROR("error starting target flash write algorithm");
856                 return retval;
857         }
858
859         while (count > 0) {
860
861                 retval = target_read_u32(target, rp_addr, &rp);
862                 if (retval != ERROR_OK) {
863                         LOG_ERROR("failed to get read pointer");
864                         break;
865                 }
866
867                 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
868
869                 if (rp == 0) {
870                         LOG_ERROR("flash write algorithm aborted by target");
871                         retval = ERROR_FLASH_OPERATION_FAILED;
872                         break;
873                 }
874
875                 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
876                         LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
877                         break;
878                 }
879
880                 /* Count the number of bytes available in the fifo without
881                  * crossing the wrap around. Make sure to not fill it completely,
882                  * because that would make wp == rp and that's the empty condition. */
883                 uint32_t thisrun_bytes;
884                 if (rp > wp)
885                         thisrun_bytes = rp - wp - block_size;
886                 else if (rp > fifo_start_addr)
887                         thisrun_bytes = fifo_end_addr - wp;
888                 else
889                         thisrun_bytes = fifo_end_addr - wp - block_size;
890
891                 if (thisrun_bytes == 0) {
892                         /* Throttle polling a bit if transfer is (much) faster than flash
893                          * programming. The exact delay shouldn't matter as long as it's
894                          * less than buffer size / flash speed. This is very unlikely to
895                          * run when using high latency connections such as USB. */
896                         alive_sleep(10);
897
898                         /* to stop an infinite loop on some targets check and increment a timeout
899                          * this issue was observed on a stellaris using the new ICDI interface */
900                         if (timeout++ >= 500) {
901                                 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
902                                 return ERROR_FLASH_OPERATION_FAILED;
903                         }
904                         continue;
905                 }
906
907                 /* reset our timeout */
908                 timeout = 0;
909
910                 /* Limit to the amount of data we actually want to write */
911                 if (thisrun_bytes > count * block_size)
912                         thisrun_bytes = count * block_size;
913
914                 /* Write data to fifo */
915                 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
916                 if (retval != ERROR_OK)
917                         break;
918
919                 /* Update counters and wrap write pointer */
920                 buffer += thisrun_bytes;
921                 count -= thisrun_bytes / block_size;
922                 wp += thisrun_bytes;
923                 if (wp >= fifo_end_addr)
924                         wp = fifo_start_addr;
925
926                 /* Store updated write pointer to target */
927                 retval = target_write_u32(target, wp_addr, wp);
928                 if (retval != ERROR_OK)
929                         break;
930         }
931
932         if (retval != ERROR_OK) {
933                 /* abort flash write algorithm on target */
934                 target_write_u32(target, wp_addr, 0);
935         }
936
937         int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
938                         num_reg_params, reg_params,
939                         exit_point,
940                         10000,
941                         arch_info);
942
943         if (retval2 != ERROR_OK) {
944                 LOG_ERROR("error waiting for target flash write algorithm");
945                 retval = retval2;
946         }
947
948         return retval;
949 }
950
951 int target_read_memory(struct target *target,
952                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
953 {
954         return target->type->read_memory(target, address, size, count, buffer);
955 }
956
957 static int target_read_phys_memory(struct target *target,
958                 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
959 {
960         return target->type->read_phys_memory(target, address, size, count, buffer);
961 }
962
963 int target_write_memory(struct target *target,
964                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
965 {
966         return target->type->write_memory(target, address, size, count, buffer);
967 }
968
969 static int target_write_phys_memory(struct target *target,
970                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
971 {
972         return target->type->write_phys_memory(target, address, size, count, buffer);
973 }
974
975 int target_bulk_write_memory(struct target *target,
976                 uint32_t address, uint32_t count, const uint8_t *buffer)
977 {
978         return target->type->bulk_write_memory(target, address, count, buffer);
979 }
980
981 int target_add_breakpoint(struct target *target,
982                 struct breakpoint *breakpoint)
983 {
984         if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
985                 LOG_WARNING("target %s is not halted", target->cmd_name);
986                 return ERROR_TARGET_NOT_HALTED;
987         }
988         return target->type->add_breakpoint(target, breakpoint);
989 }
990
991 int target_add_context_breakpoint(struct target *target,
992                 struct breakpoint *breakpoint)
993 {
994         if (target->state != TARGET_HALTED) {
995                 LOG_WARNING("target %s is not halted", target->cmd_name);
996                 return ERROR_TARGET_NOT_HALTED;
997         }
998         return target->type->add_context_breakpoint(target, breakpoint);
999 }
1000
1001 int target_add_hybrid_breakpoint(struct target *target,
1002                 struct breakpoint *breakpoint)
1003 {
1004         if (target->state != TARGET_HALTED) {
1005                 LOG_WARNING("target %s is not halted", target->cmd_name);
1006                 return ERROR_TARGET_NOT_HALTED;
1007         }
1008         return target->type->add_hybrid_breakpoint(target, breakpoint);
1009 }
1010
1011 int target_remove_breakpoint(struct target *target,
1012                 struct breakpoint *breakpoint)
1013 {
1014         return target->type->remove_breakpoint(target, breakpoint);
1015 }
1016
1017 int target_add_watchpoint(struct target *target,
1018                 struct watchpoint *watchpoint)
1019 {
1020         if (target->state != TARGET_HALTED) {
1021                 LOG_WARNING("target %s is not halted", target->cmd_name);
1022                 return ERROR_TARGET_NOT_HALTED;
1023         }
1024         return target->type->add_watchpoint(target, watchpoint);
1025 }
1026 int target_remove_watchpoint(struct target *target,
1027                 struct watchpoint *watchpoint)
1028 {
1029         return target->type->remove_watchpoint(target, watchpoint);
1030 }
1031
1032 int target_get_gdb_reg_list(struct target *target,
1033                 struct reg **reg_list[], int *reg_list_size)
1034 {
1035         return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
1036 }
1037 int target_step(struct target *target,
1038                 int current, uint32_t address, int handle_breakpoints)
1039 {
1040         return target->type->step(target, current, address, handle_breakpoints);
1041 }
1042
1043 /**
1044  * Reset the @c examined flag for the given target.
1045  * Pure paranoia -- targets are zeroed on allocation.
1046  */
1047 static void target_reset_examined(struct target *target)
1048 {
1049         target->examined = false;
1050 }
1051
1052 static int err_read_phys_memory(struct target *target, uint32_t address,
1053                 uint32_t size, uint32_t count, uint8_t *buffer)
1054 {
1055         LOG_ERROR("Not implemented: %s", __func__);
1056         return ERROR_FAIL;
1057 }
1058
1059 static int err_write_phys_memory(struct target *target, uint32_t address,
1060                 uint32_t size, uint32_t count, const uint8_t *buffer)
1061 {
1062         LOG_ERROR("Not implemented: %s", __func__);
1063         return ERROR_FAIL;
1064 }
1065
1066 static int handle_target(void *priv);
1067
1068 static int target_init_one(struct command_context *cmd_ctx,
1069                 struct target *target)
1070 {
1071         target_reset_examined(target);
1072
1073         struct target_type *type = target->type;
1074         if (type->examine == NULL)
1075                 type->examine = default_examine;
1076
1077         if (type->check_reset == NULL)
1078                 type->check_reset = default_check_reset;
1079
1080         assert(type->init_target != NULL);
1081
1082         int retval = type->init_target(cmd_ctx, target);
1083         if (ERROR_OK != retval) {
1084                 LOG_ERROR("target '%s' init failed", target_name(target));
1085                 return retval;
1086         }
1087
1088         /**
1089          * @todo get rid of those *memory_imp() methods, now that all
1090          * callers are using target_*_memory() accessors ... and make
1091          * sure the "physical" paths handle the same issues.
1092          */
1093         /* a non-invasive way(in terms of patches) to add some code that
1094          * runs before the type->write/read_memory implementation
1095          */
1096         type->write_memory_imp = target->type->write_memory;
1097         type->write_memory = target_write_memory_imp;
1098
1099         type->read_memory_imp = target->type->read_memory;
1100         type->read_memory = target_read_memory_imp;
1101
1102         type->soft_reset_halt_imp = target->type->soft_reset_halt;
1103         type->soft_reset_halt = target_soft_reset_halt_imp;
1104
1105         /* Sanity-check MMU support ... stub in what we must, to help
1106          * implement it in stages, but warn if we need to do so.
1107          */
1108         if (type->mmu) {
1109                 if (type->write_phys_memory == NULL) {
1110                         LOG_ERROR("type '%s' is missing write_phys_memory",
1111                                         type->name);
1112                         type->write_phys_memory = err_write_phys_memory;
1113                 }
1114                 if (type->read_phys_memory == NULL) {
1115                         LOG_ERROR("type '%s' is missing read_phys_memory",
1116                                         type->name);
1117                         type->read_phys_memory = err_read_phys_memory;
1118                 }
1119                 if (type->virt2phys == NULL) {
1120                         LOG_ERROR("type '%s' is missing virt2phys", type->name);
1121                         type->virt2phys = identity_virt2phys;
1122                 }
1123         } else {
1124                 /* Make sure no-MMU targets all behave the same:  make no
1125                  * distinction between physical and virtual addresses, and
1126                  * ensure that virt2phys() is always an identity mapping.
1127                  */
1128                 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1129                         LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1130
1131                 type->mmu = no_mmu;
1132                 type->write_phys_memory = type->write_memory;
1133                 type->read_phys_memory = type->read_memory;
1134                 type->virt2phys = identity_virt2phys;
1135         }
1136
1137         if (target->type->read_buffer == NULL)
1138                 target->type->read_buffer = target_read_buffer_default;
1139
1140         if (target->type->write_buffer == NULL)
1141                 target->type->write_buffer = target_write_buffer_default;
1142
1143         return ERROR_OK;
1144 }
1145
1146 static int target_init(struct command_context *cmd_ctx)
1147 {
1148         struct target *target;
1149         int retval;
1150
1151         for (target = all_targets; target; target = target->next) {
1152                 retval = target_init_one(cmd_ctx, target);
1153                 if (ERROR_OK != retval)
1154                         return retval;
1155         }
1156
1157         if (!all_targets)
1158                 return ERROR_OK;
1159
1160         retval = target_register_user_commands(cmd_ctx);
1161         if (ERROR_OK != retval)
1162                 return retval;
1163
1164         retval = target_register_timer_callback(&handle_target,
1165                         polling_interval, 1, cmd_ctx->interp);
1166         if (ERROR_OK != retval)
1167                 return retval;
1168
1169         return ERROR_OK;
1170 }
1171
1172 COMMAND_HANDLER(handle_target_init_command)
1173 {
1174         int retval;
1175
1176         if (CMD_ARGC != 0)
1177                 return ERROR_COMMAND_SYNTAX_ERROR;
1178
1179         static bool target_initialized;
1180         if (target_initialized) {
1181                 LOG_INFO("'target init' has already been called");
1182                 return ERROR_OK;
1183         }
1184         target_initialized = true;
1185
1186         retval = command_run_line(CMD_CTX, "init_targets");
1187         if (ERROR_OK != retval)
1188                 return retval;
1189
1190         retval = command_run_line(CMD_CTX, "init_board");
1191         if (ERROR_OK != retval)
1192                 return retval;
1193
1194         LOG_DEBUG("Initializing targets...");
1195         return target_init(CMD_CTX);
1196 }
1197
1198 int target_register_event_callback(int (*callback)(struct target *target,
1199                 enum target_event event, void *priv), void *priv)
1200 {
1201         struct target_event_callback **callbacks_p = &target_event_callbacks;
1202
1203         if (callback == NULL)
1204                 return ERROR_COMMAND_SYNTAX_ERROR;
1205
1206         if (*callbacks_p) {
1207                 while ((*callbacks_p)->next)
1208                         callbacks_p = &((*callbacks_p)->next);
1209                 callbacks_p = &((*callbacks_p)->next);
1210         }
1211
1212         (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1213         (*callbacks_p)->callback = callback;
1214         (*callbacks_p)->priv = priv;
1215         (*callbacks_p)->next = NULL;
1216
1217         return ERROR_OK;
1218 }
1219
1220 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1221 {
1222         struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1223         struct timeval now;
1224
1225         if (callback == NULL)
1226                 return ERROR_COMMAND_SYNTAX_ERROR;
1227
1228         if (*callbacks_p) {
1229                 while ((*callbacks_p)->next)
1230                         callbacks_p = &((*callbacks_p)->next);
1231                 callbacks_p = &((*callbacks_p)->next);
1232         }
1233
1234         (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1235         (*callbacks_p)->callback = callback;
1236         (*callbacks_p)->periodic = periodic;
1237         (*callbacks_p)->time_ms = time_ms;
1238
1239         gettimeofday(&now, NULL);
1240         (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1241         time_ms -= (time_ms % 1000);
1242         (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1243         if ((*callbacks_p)->when.tv_usec > 1000000) {
1244                 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1245                 (*callbacks_p)->when.tv_sec += 1;
1246         }
1247
1248         (*callbacks_p)->priv = priv;
1249         (*callbacks_p)->next = NULL;
1250
1251         return ERROR_OK;
1252 }
1253
1254 int target_unregister_event_callback(int (*callback)(struct target *target,
1255                 enum target_event event, void *priv), void *priv)
1256 {
1257         struct target_event_callback **p = &target_event_callbacks;
1258         struct target_event_callback *c = target_event_callbacks;
1259
1260         if (callback == NULL)
1261                 return ERROR_COMMAND_SYNTAX_ERROR;
1262
1263         while (c) {
1264                 struct target_event_callback *next = c->next;
1265                 if ((c->callback == callback) && (c->priv == priv)) {
1266                         *p = next;
1267                         free(c);
1268                         return ERROR_OK;
1269                 } else
1270                         p = &(c->next);
1271                 c = next;
1272         }
1273
1274         return ERROR_OK;
1275 }
1276
1277 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1278 {
1279         struct target_timer_callback **p = &target_timer_callbacks;
1280         struct target_timer_callback *c = target_timer_callbacks;
1281
1282         if (callback == NULL)
1283                 return ERROR_COMMAND_SYNTAX_ERROR;
1284
1285         while (c) {
1286                 struct target_timer_callback *next = c->next;
1287                 if ((c->callback == callback) && (c->priv == priv)) {
1288                         *p = next;
1289                         free(c);
1290                         return ERROR_OK;
1291                 } else
1292                         p = &(c->next);
1293                 c = next;
1294         }
1295
1296         return ERROR_OK;
1297 }
1298
1299 int target_call_event_callbacks(struct target *target, enum target_event event)
1300 {
1301         struct target_event_callback *callback = target_event_callbacks;
1302         struct target_event_callback *next_callback;
1303
1304         if (event == TARGET_EVENT_HALTED) {
1305                 /* execute early halted first */
1306                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1307         }
1308
1309         LOG_DEBUG("target event %i (%s)", event,
1310                         Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1311
1312         target_handle_event(target, event);
1313
1314         while (callback) {
1315                 next_callback = callback->next;
1316                 callback->callback(target, event, callback->priv);
1317                 callback = next_callback;
1318         }
1319
1320         return ERROR_OK;
1321 }
1322
1323 static int target_timer_callback_periodic_restart(
1324                 struct target_timer_callback *cb, struct timeval *now)
1325 {
1326         int time_ms = cb->time_ms;
1327         cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1328         time_ms -= (time_ms % 1000);
1329         cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1330         if (cb->when.tv_usec > 1000000) {
1331                 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1332                 cb->when.tv_sec += 1;
1333         }
1334         return ERROR_OK;
1335 }
1336
1337 static int target_call_timer_callback(struct target_timer_callback *cb,
1338                 struct timeval *now)
1339 {
1340         cb->callback(cb->priv);
1341
1342         if (cb->periodic)
1343                 return target_timer_callback_periodic_restart(cb, now);
1344
1345         return target_unregister_timer_callback(cb->callback, cb->priv);
1346 }
1347
1348 static int target_call_timer_callbacks_check_time(int checktime)
1349 {
1350         keep_alive();
1351
1352         struct timeval now;
1353         gettimeofday(&now, NULL);
1354
1355         struct target_timer_callback *callback = target_timer_callbacks;
1356         while (callback) {
1357                 /* cleaning up may unregister and free this callback */
1358                 struct target_timer_callback *next_callback = callback->next;
1359
1360                 bool call_it = callback->callback &&
1361                         ((!checktime && callback->periodic) ||
1362                           now.tv_sec > callback->when.tv_sec ||
1363                          (now.tv_sec == callback->when.tv_sec &&
1364                           now.tv_usec >= callback->when.tv_usec));
1365
1366                 if (call_it) {
1367                         int retval = target_call_timer_callback(callback, &now);
1368                         if (retval != ERROR_OK)
1369                                 return retval;
1370                 }
1371
1372                 callback = next_callback;
1373         }
1374
1375         return ERROR_OK;
1376 }
1377
1378 int target_call_timer_callbacks(void)
1379 {
1380         return target_call_timer_callbacks_check_time(1);
1381 }
1382
1383 /* invoke periodic callbacks immediately */
1384 int target_call_timer_callbacks_now(void)
1385 {
1386         return target_call_timer_callbacks_check_time(0);
1387 }
1388
1389 /* Prints the working area layout for debug purposes */
1390 static void print_wa_layout(struct target *target)
1391 {
1392         struct working_area *c = target->working_areas;
1393
1394         while (c) {
1395                 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1396                         c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1397                         c->address, c->address + c->size - 1, c->size);
1398                 c = c->next;
1399         }
1400 }
1401
1402 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1403 static void target_split_working_area(struct working_area *area, uint32_t size)
1404 {
1405         assert(area->free); /* Shouldn't split an allocated area */
1406         assert(size <= area->size); /* Caller should guarantee this */
1407
1408         /* Split only if not already the right size */
1409         if (size < area->size) {
1410                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1411
1412                 if (new_wa == NULL)
1413                         return;
1414
1415                 new_wa->next = area->next;
1416                 new_wa->size = area->size - size;
1417                 new_wa->address = area->address + size;
1418                 new_wa->backup = NULL;
1419                 new_wa->user = NULL;
1420                 new_wa->free = true;
1421
1422                 area->next = new_wa;
1423                 area->size = size;
1424
1425                 /* If backup memory was allocated to this area, it has the wrong size
1426                  * now so free it and it will be reallocated if/when needed */
1427                 if (area->backup) {
1428                         free(area->backup);
1429                         area->backup = NULL;
1430                 }
1431         }
1432 }
1433
1434 /* Merge all adjacent free areas into one */
1435 static void target_merge_working_areas(struct target *target)
1436 {
1437         struct working_area *c = target->working_areas;
1438
1439         while (c && c->next) {
1440                 assert(c->next->address == c->address + c->size); /* This is an invariant */
1441
1442                 /* Find two adjacent free areas */
1443                 if (c->free && c->next->free) {
1444                         /* Merge the last into the first */
1445                         c->size += c->next->size;
1446
1447                         /* Remove the last */
1448                         struct working_area *to_be_freed = c->next;
1449                         c->next = c->next->next;
1450                         if (to_be_freed->backup)
1451                                 free(to_be_freed->backup);
1452                         free(to_be_freed);
1453
1454                         /* If backup memory was allocated to the remaining area, it's has
1455                          * the wrong size now */
1456                         if (c->backup) {
1457                                 free(c->backup);
1458                                 c->backup = NULL;
1459                         }
1460                 } else {
1461                         c = c->next;
1462                 }
1463         }
1464 }
1465
1466 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1467 {
1468         /* Reevaluate working area address based on MMU state*/
1469         if (target->working_areas == NULL) {
1470                 int retval;
1471                 int enabled;
1472
1473                 retval = target->type->mmu(target, &enabled);
1474                 if (retval != ERROR_OK)
1475                         return retval;
1476
1477                 if (!enabled) {
1478                         if (target->working_area_phys_spec) {
1479                                 LOG_DEBUG("MMU disabled, using physical "
1480                                         "address for working memory 0x%08"PRIx32,
1481                                         target->working_area_phys);
1482                                 target->working_area = target->working_area_phys;
1483                         } else {
1484                                 LOG_ERROR("No working memory available. "
1485                                         "Specify -work-area-phys to target.");
1486                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1487                         }
1488                 } else {
1489                         if (target->working_area_virt_spec) {
1490                                 LOG_DEBUG("MMU enabled, using virtual "
1491                                         "address for working memory 0x%08"PRIx32,
1492                                         target->working_area_virt);
1493                                 target->working_area = target->working_area_virt;
1494                         } else {
1495                                 LOG_ERROR("No working memory available. "
1496                                         "Specify -work-area-virt to target.");
1497                                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1498                         }
1499                 }
1500
1501                 /* Set up initial working area on first call */
1502                 struct working_area *new_wa = malloc(sizeof(*new_wa));
1503                 if (new_wa) {
1504                         new_wa->next = NULL;
1505                         new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1506                         new_wa->address = target->working_area;
1507                         new_wa->backup = NULL;
1508                         new_wa->user = NULL;
1509                         new_wa->free = true;
1510                 }
1511
1512                 target->working_areas = new_wa;
1513         }
1514
1515         /* only allocate multiples of 4 byte */
1516         if (size % 4)
1517                 size = (size + 3) & (~3UL);
1518
1519         struct working_area *c = target->working_areas;
1520
1521         /* Find the first large enough working area */
1522         while (c) {
1523                 if (c->free && c->size >= size)
1524                         break;
1525                 c = c->next;
1526         }
1527
1528         if (c == NULL)
1529                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1530
1531         /* Split the working area into the requested size */
1532         target_split_working_area(c, size);
1533
1534         LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1535
1536         if (target->backup_working_area) {
1537                 if (c->backup == NULL) {
1538                         c->backup = malloc(c->size);
1539                         if (c->backup == NULL)
1540                                 return ERROR_FAIL;
1541                 }
1542
1543                 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1544                 if (retval != ERROR_OK)
1545                         return retval;
1546         }
1547
1548         /* mark as used, and return the new (reused) area */
1549         c->free = false;
1550         *area = c;
1551
1552         /* user pointer */
1553         c->user = area;
1554
1555         print_wa_layout(target);
1556
1557         return ERROR_OK;
1558 }
1559
1560 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1561 {
1562         int retval;
1563
1564         retval = target_alloc_working_area_try(target, size, area);
1565         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1566                 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1567         return retval;
1568
1569 }
1570
1571 static int target_restore_working_area(struct target *target, struct working_area *area)
1572 {
1573         int retval = ERROR_OK;
1574
1575         if (target->backup_working_area && area->backup != NULL) {
1576                 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1577                 if (retval != ERROR_OK)
1578                         LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1579                                         area->size, area->address);
1580         }
1581
1582         return retval;
1583 }
1584
1585 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1586 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1587 {
1588         int retval = ERROR_OK;
1589
1590         if (area->free)
1591                 return retval;
1592
1593         if (restore) {
1594                 retval = target_restore_working_area(target, area);
1595                 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1596                 if (retval != ERROR_OK)
1597                         return retval;
1598         }
1599
1600         area->free = true;
1601
1602         LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1603                         area->size, area->address);
1604
1605         /* mark user pointer invalid */
1606         /* TODO: Is this really safe? It points to some previous caller's memory.
1607          * How could we know that the area pointer is still in that place and not
1608          * some other vital data? What's the purpose of this, anyway? */
1609         *area->user = NULL;
1610         area->user = NULL;
1611
1612         target_merge_working_areas(target);
1613
1614         print_wa_layout(target);
1615
1616         return retval;
1617 }
1618
1619 int target_free_working_area(struct target *target, struct working_area *area)
1620 {
1621         return target_free_working_area_restore(target, area, 1);
1622 }
1623
1624 /* free resources and restore memory, if restoring memory fails,
1625  * free up resources anyway
1626  */
1627 static void target_free_all_working_areas_restore(struct target *target, int restore)
1628 {
1629         struct working_area *c = target->working_areas;
1630
1631         LOG_DEBUG("freeing all working areas");
1632
1633         /* Loop through all areas, restoring the allocated ones and marking them as free */
1634         while (c) {
1635                 if (!c->free) {
1636                         if (restore)
1637                                 target_restore_working_area(target, c);
1638                         c->free = true;
1639                         *c->user = NULL; /* Same as above */
1640                         c->user = NULL;
1641                 }
1642                 c = c->next;
1643         }
1644
1645         /* Run a merge pass to combine all areas into one */
1646         target_merge_working_areas(target);
1647
1648         print_wa_layout(target);
1649 }
1650
1651 void target_free_all_working_areas(struct target *target)
1652 {
1653         target_free_all_working_areas_restore(target, 1);
1654 }
1655
1656 /* Find the largest number of bytes that can be allocated */
1657 uint32_t target_get_working_area_avail(struct target *target)
1658 {
1659         struct working_area *c = target->working_areas;
1660         uint32_t max_size = 0;
1661
1662         if (c == NULL)
1663                 return target->working_area_size;
1664
1665         while (c) {
1666                 if (c->free && max_size < c->size)
1667                         max_size = c->size;
1668
1669                 c = c->next;
1670         }
1671
1672         return max_size;
1673 }
1674
1675 int target_arch_state(struct target *target)
1676 {
1677         int retval;
1678         if (target == NULL) {
1679                 LOG_USER("No target has been configured");
1680                 return ERROR_OK;
1681         }
1682
1683         LOG_USER("target state: %s", target_state_name(target));
1684
1685         if (target->state != TARGET_HALTED)
1686                 return ERROR_OK;
1687
1688         retval = target->type->arch_state(target);
1689         return retval;
1690 }
1691
1692 /* Single aligned words are guaranteed to use 16 or 32 bit access
1693  * mode respectively, otherwise data is handled as quickly as
1694  * possible
1695  */
1696 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1697 {
1698         LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1699                         (int)size, (unsigned)address);
1700
1701         if (!target_was_examined(target)) {
1702                 LOG_ERROR("Target not examined yet");
1703                 return ERROR_FAIL;
1704         }
1705
1706         if (size == 0)
1707                 return ERROR_OK;
1708
1709         if ((address + size - 1) < address) {
1710                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1711                 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1712                                   (unsigned)address,
1713                                   (unsigned)size);
1714                 return ERROR_FAIL;
1715         }
1716
1717         return target->type->write_buffer(target, address, size, buffer);
1718 }
1719
1720 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1721 {
1722         int retval = ERROR_OK;
1723
1724         if (((address % 2) == 0) && (size == 2))
1725                 return target_write_memory(target, address, 2, 1, buffer);
1726
1727         /* handle unaligned head bytes */
1728         if (address % 4) {
1729                 uint32_t unaligned = 4 - (address % 4);
1730
1731                 if (unaligned > size)
1732                         unaligned = size;
1733
1734                 retval = target_write_memory(target, address, 1, unaligned, buffer);
1735                 if (retval != ERROR_OK)
1736                         return retval;
1737
1738                 buffer += unaligned;
1739                 address += unaligned;
1740                 size -= unaligned;
1741         }
1742
1743         /* handle aligned words */
1744         if (size >= 4) {
1745                 int aligned = size - (size % 4);
1746
1747                 /* use bulk writes above a certain limit. This may have to be changed */
1748                 if (aligned > 128) {
1749                         retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1750                         if (retval != ERROR_OK)
1751                                 return retval;
1752                 } else {
1753                         retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1754                         if (retval != ERROR_OK)
1755                                 return retval;
1756                 }
1757
1758                 buffer += aligned;
1759                 address += aligned;
1760                 size -= aligned;
1761         }
1762
1763         /* handle tail writes of less than 4 bytes */
1764         if (size > 0) {
1765                 retval = target_write_memory(target, address, 1, size, buffer);
1766                 if (retval != ERROR_OK)
1767                         return retval;
1768         }
1769
1770         return retval;
1771 }
1772
1773 /* Single aligned words are guaranteed to use 16 or 32 bit access
1774  * mode respectively, otherwise data is handled as quickly as
1775  * possible
1776  */
1777 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1778 {
1779         LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1780                           (int)size, (unsigned)address);
1781
1782         if (!target_was_examined(target)) {
1783                 LOG_ERROR("Target not examined yet");
1784                 return ERROR_FAIL;
1785         }
1786
1787         if (size == 0)
1788                 return ERROR_OK;
1789
1790         if ((address + size - 1) < address) {
1791                 /* GDB can request this when e.g. PC is 0xfffffffc*/
1792                 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1793                                   address,
1794                                   size);
1795                 return ERROR_FAIL;
1796         }
1797
1798         return target->type->read_buffer(target, address, size, buffer);
1799 }
1800
1801 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1802 {
1803         int retval = ERROR_OK;
1804
1805         if (((address % 2) == 0) && (size == 2))
1806                 return target_read_memory(target, address, 2, 1, buffer);
1807
1808         /* handle unaligned head bytes */
1809         if (address % 4) {
1810                 uint32_t unaligned = 4 - (address % 4);
1811
1812                 if (unaligned > size)
1813                         unaligned = size;
1814
1815                 retval = target_read_memory(target, address, 1, unaligned, buffer);
1816                 if (retval != ERROR_OK)
1817                         return retval;
1818
1819                 buffer += unaligned;
1820                 address += unaligned;
1821                 size -= unaligned;
1822         }
1823
1824         /* handle aligned words */
1825         if (size >= 4) {
1826                 int aligned = size - (size % 4);
1827
1828                 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1829                 if (retval != ERROR_OK)
1830                         return retval;
1831
1832                 buffer += aligned;
1833                 address += aligned;
1834                 size -= aligned;
1835         }
1836
1837         /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1838         if (size        >= 2) {
1839                 int aligned = size - (size % 2);
1840                 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1841                 if (retval != ERROR_OK)
1842                         return retval;
1843
1844                 buffer += aligned;
1845                 address += aligned;
1846                 size -= aligned;
1847         }
1848         /* handle tail writes of less than 4 bytes */
1849         if (size > 0) {
1850                 retval = target_read_memory(target, address, 1, size, buffer);
1851                 if (retval != ERROR_OK)
1852                         return retval;
1853         }
1854
1855         return ERROR_OK;
1856 }
1857
1858 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1859 {
1860         uint8_t *buffer;
1861         int retval;
1862         uint32_t i;
1863         uint32_t checksum = 0;
1864         if (!target_was_examined(target)) {
1865                 LOG_ERROR("Target not examined yet");
1866                 return ERROR_FAIL;
1867         }
1868
1869         retval = target->type->checksum_memory(target, address, size, &checksum);
1870         if (retval != ERROR_OK) {
1871                 buffer = malloc(size);
1872                 if (buffer == NULL) {
1873                         LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1874                         return ERROR_COMMAND_SYNTAX_ERROR;
1875                 }
1876                 retval = target_read_buffer(target, address, size, buffer);
1877                 if (retval != ERROR_OK) {
1878                         free(buffer);
1879                         return retval;
1880                 }
1881
1882                 /* convert to target endianness */
1883                 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1884                         uint32_t target_data;
1885                         target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1886                         target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1887                 }
1888
1889                 retval = image_calculate_checksum(buffer, size, &checksum);
1890                 free(buffer);
1891         }
1892
1893         *crc = checksum;
1894
1895         return retval;
1896 }
1897
1898 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1899 {
1900         int retval;
1901         if (!target_was_examined(target)) {
1902                 LOG_ERROR("Target not examined yet");
1903                 return ERROR_FAIL;
1904         }
1905
1906         if (target->type->blank_check_memory == 0)
1907                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1908
1909         retval = target->type->blank_check_memory(target, address, size, blank);
1910
1911         return retval;
1912 }
1913
1914 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1915 {
1916         uint8_t value_buf[4];
1917         if (!target_was_examined(target)) {
1918                 LOG_ERROR("Target not examined yet");
1919                 return ERROR_FAIL;
1920         }
1921
1922         int retval = target_read_memory(target, address, 4, 1, value_buf);
1923
1924         if (retval == ERROR_OK) {
1925                 *value = target_buffer_get_u32(target, value_buf);
1926                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1927                                   address,
1928                                   *value);
1929         } else {
1930                 *value = 0x0;
1931                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1932                                   address);
1933         }
1934
1935         return retval;
1936 }
1937
1938 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1939 {
1940         uint8_t value_buf[2];
1941         if (!target_was_examined(target)) {
1942                 LOG_ERROR("Target not examined yet");
1943                 return ERROR_FAIL;
1944         }
1945
1946         int retval = target_read_memory(target, address, 2, 1, value_buf);
1947
1948         if (retval == ERROR_OK) {
1949                 *value = target_buffer_get_u16(target, value_buf);
1950                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1951                                   address,
1952                                   *value);
1953         } else {
1954                 *value = 0x0;
1955                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1956                                   address);
1957         }
1958
1959         return retval;
1960 }
1961
1962 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1963 {
1964         int retval = target_read_memory(target, address, 1, 1, value);
1965         if (!target_was_examined(target)) {
1966                 LOG_ERROR("Target not examined yet");
1967                 return ERROR_FAIL;
1968         }
1969
1970         if (retval == ERROR_OK) {
1971                 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1972                                   address,
1973                                   *value);
1974         } else {
1975                 *value = 0x0;
1976                 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1977                                   address);
1978         }
1979
1980         return retval;
1981 }
1982
1983 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1984 {
1985         int retval;
1986         uint8_t value_buf[4];
1987         if (!target_was_examined(target)) {
1988                 LOG_ERROR("Target not examined yet");
1989                 return ERROR_FAIL;
1990         }
1991
1992         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1993                           address,
1994                           value);
1995
1996         target_buffer_set_u32(target, value_buf, value);
1997         retval = target_write_memory(target, address, 4, 1, value_buf);
1998         if (retval != ERROR_OK)
1999                 LOG_DEBUG("failed: %i", retval);
2000
2001         return retval;
2002 }
2003
2004 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
2005 {
2006         int retval;
2007         uint8_t value_buf[2];
2008         if (!target_was_examined(target)) {
2009                 LOG_ERROR("Target not examined yet");
2010                 return ERROR_FAIL;
2011         }
2012
2013         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
2014                           address,
2015                           value);
2016
2017         target_buffer_set_u16(target, value_buf, value);
2018         retval = target_write_memory(target, address, 2, 1, value_buf);
2019         if (retval != ERROR_OK)
2020                 LOG_DEBUG("failed: %i", retval);
2021
2022         return retval;
2023 }
2024
2025 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2026 {
2027         int retval;
2028         if (!target_was_examined(target)) {
2029                 LOG_ERROR("Target not examined yet");
2030                 return ERROR_FAIL;
2031         }
2032
2033         LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2034                           address, value);
2035
2036         retval = target_write_memory(target, address, 1, 1, &value);
2037         if (retval != ERROR_OK)
2038                 LOG_DEBUG("failed: %i", retval);
2039
2040         return retval;
2041 }
2042
2043 static int find_target(struct command_context *cmd_ctx, const char *name)
2044 {
2045         struct target *target = get_target(name);
2046         if (target == NULL) {
2047                 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2048                 return ERROR_FAIL;
2049         }
2050         if (!target->tap->enabled) {
2051                 LOG_USER("Target: TAP %s is disabled, "
2052                          "can't be the current target\n",
2053                          target->tap->dotted_name);
2054                 return ERROR_FAIL;
2055         }
2056
2057         cmd_ctx->current_target = target->target_number;
2058         return ERROR_OK;
2059 }
2060
2061
2062 COMMAND_HANDLER(handle_targets_command)
2063 {
2064         int retval = ERROR_OK;
2065         if (CMD_ARGC == 1) {
2066                 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2067                 if (retval == ERROR_OK) {
2068                         /* we're done! */
2069                         return retval;
2070                 }
2071         }
2072
2073         struct target *target = all_targets;
2074         command_print(CMD_CTX, "    TargetName         Type       Endian TapName            State       ");
2075         command_print(CMD_CTX, "--  ------------------ ---------- ------ ------------------ ------------");
2076         while (target) {
2077                 const char *state;
2078                 char marker = ' ';
2079
2080                 if (target->tap->enabled)
2081                         state = target_state_name(target);
2082                 else
2083                         state = "tap-disabled";
2084
2085                 if (CMD_CTX->current_target == target->target_number)
2086                         marker = '*';
2087
2088                 /* keep columns lined up to match the headers above */
2089                 command_print(CMD_CTX,
2090                                 "%2d%c %-18s %-10s %-6s %-18s %s",
2091                                 target->target_number,
2092                                 marker,
2093                                 target_name(target),
2094                                 target_type_name(target),
2095                                 Jim_Nvp_value2name_simple(nvp_target_endian,
2096                                         target->endianness)->name,
2097                                 target->tap->dotted_name,
2098                                 state);
2099                 target = target->next;
2100         }
2101
2102         return retval;
2103 }
2104
2105 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2106
2107 static int powerDropout;
2108 static int srstAsserted;
2109
2110 static int runPowerRestore;
2111 static int runPowerDropout;
2112 static int runSrstAsserted;
2113 static int runSrstDeasserted;
2114
2115 static int sense_handler(void)
2116 {
2117         static int prevSrstAsserted;
2118         static int prevPowerdropout;
2119
2120         int retval = jtag_power_dropout(&powerDropout);
2121         if (retval != ERROR_OK)
2122                 return retval;
2123
2124         int powerRestored;
2125         powerRestored = prevPowerdropout && !powerDropout;
2126         if (powerRestored)
2127                 runPowerRestore = 1;
2128
2129         long long current = timeval_ms();
2130         static long long lastPower;
2131         int waitMore = lastPower + 2000 > current;
2132         if (powerDropout && !waitMore) {
2133                 runPowerDropout = 1;
2134                 lastPower = current;
2135         }
2136
2137         retval = jtag_srst_asserted(&srstAsserted);
2138         if (retval != ERROR_OK)
2139                 return retval;
2140
2141         int srstDeasserted;
2142         srstDeasserted = prevSrstAsserted && !srstAsserted;
2143
2144         static long long lastSrst;
2145         waitMore = lastSrst + 2000 > current;
2146         if (srstDeasserted && !waitMore) {
2147                 runSrstDeasserted = 1;
2148                 lastSrst = current;
2149         }
2150
2151         if (!prevSrstAsserted && srstAsserted)
2152                 runSrstAsserted = 1;
2153
2154         prevSrstAsserted = srstAsserted;
2155         prevPowerdropout = powerDropout;
2156
2157         if (srstDeasserted || powerRestored) {
2158                 /* Other than logging the event we can't do anything here.
2159                  * Issuing a reset is a particularly bad idea as we might
2160                  * be inside a reset already.
2161                  */
2162         }
2163
2164         return ERROR_OK;
2165 }
2166
2167 static int backoff_times;
2168 static int backoff_count;
2169
2170 /* process target state changes */
2171 static int handle_target(void *priv)
2172 {
2173         Jim_Interp *interp = (Jim_Interp *)priv;
2174         int retval = ERROR_OK;
2175
2176         if (!is_jtag_poll_safe()) {
2177                 /* polling is disabled currently */
2178                 return ERROR_OK;
2179         }
2180
2181         /* we do not want to recurse here... */
2182         static int recursive;
2183         if (!recursive) {
2184                 recursive = 1;
2185                 sense_handler();
2186                 /* danger! running these procedures can trigger srst assertions and power dropouts.
2187                  * We need to avoid an infinite loop/recursion here and we do that by
2188                  * clearing the flags after running these events.
2189                  */
2190                 int did_something = 0;
2191                 if (runSrstAsserted) {
2192                         LOG_INFO("srst asserted detected, running srst_asserted proc.");
2193                         Jim_Eval(interp, "srst_asserted");
2194                         did_something = 1;
2195                 }
2196                 if (runSrstDeasserted) {
2197                         Jim_Eval(interp, "srst_deasserted");
2198                         did_something = 1;
2199                 }
2200                 if (runPowerDropout) {
2201                         LOG_INFO("Power dropout detected, running power_dropout proc.");
2202                         Jim_Eval(interp, "power_dropout");
2203                         did_something = 1;
2204                 }
2205                 if (runPowerRestore) {
2206                         Jim_Eval(interp, "power_restore");
2207                         did_something = 1;
2208                 }
2209
2210                 if (did_something) {
2211                         /* clear detect flags */
2212                         sense_handler();
2213                 }
2214
2215                 /* clear action flags */
2216
2217                 runSrstAsserted = 0;
2218                 runSrstDeasserted = 0;
2219                 runPowerRestore = 0;
2220                 runPowerDropout = 0;
2221
2222                 recursive = 0;
2223         }
2224
2225         if (backoff_times > backoff_count) {
2226                 /* do not poll this time as we failed previously */
2227                 backoff_count++;
2228                 return ERROR_OK;
2229         }
2230         backoff_count = 0;
2231
2232         /* Poll targets for state changes unless that's globally disabled.
2233          * Skip targets that are currently disabled.
2234          */
2235         for (struct target *target = all_targets;
2236                         is_jtag_poll_safe() && target;
2237                         target = target->next) {
2238                 if (!target->tap->enabled)
2239                         continue;
2240
2241                 /* only poll target if we've got power and srst isn't asserted */
2242                 if (!powerDropout && !srstAsserted) {
2243                         /* polling may fail silently until the target has been examined */
2244                         retval = target_poll(target);
2245                         if (retval != ERROR_OK) {
2246                                 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2247                                 if (backoff_times * polling_interval < 5000) {
2248                                         backoff_times *= 2;
2249                                         backoff_times++;
2250                                 }
2251                                 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms",
2252                                                 backoff_times * polling_interval);
2253
2254                                 /* Tell GDB to halt the debugger. This allows the user to
2255                                  * run monitor commands to handle the situation.
2256                                  */
2257                                 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2258                                 return retval;
2259                         }
2260                         /* Since we succeeded, we reset backoff count */
2261                         if (backoff_times > 0)
2262                                 LOG_USER("Polling succeeded again");
2263                         backoff_times = 0;
2264                 }
2265         }
2266
2267         return retval;
2268 }
2269
2270 COMMAND_HANDLER(handle_reg_command)
2271 {
2272         struct target *target;
2273         struct reg *reg = NULL;
2274         unsigned count = 0;
2275         char *value;
2276
2277         LOG_DEBUG("-");
2278
2279         target = get_current_target(CMD_CTX);
2280
2281         /* list all available registers for the current target */
2282         if (CMD_ARGC == 0) {
2283                 struct reg_cache *cache = target->reg_cache;
2284
2285                 count = 0;
2286                 while (cache) {
2287                         unsigned i;
2288
2289                         command_print(CMD_CTX, "===== %s", cache->name);
2290
2291                         for (i = 0, reg = cache->reg_list;
2292                                         i < cache->num_regs;
2293                                         i++, reg++, count++) {
2294                                 /* only print cached values if they are valid */
2295                                 if (reg->valid) {
2296                                         value = buf_to_str(reg->value,
2297                                                         reg->size, 16);
2298                                         command_print(CMD_CTX,
2299                                                         "(%i) %s (/%" PRIu32 "): 0x%s%s",
2300                                                         count, reg->name,
2301                                                         reg->size, value,
2302                                                         reg->dirty
2303                                                                 ? " (dirty)"
2304                                                                 : "");
2305                                         free(value);
2306                                 } else {
2307                                         command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2308                                                           count, reg->name,
2309                                                           reg->size) ;
2310                                 }
2311                         }
2312                         cache = cache->next;
2313                 }
2314
2315                 return ERROR_OK;
2316         }
2317
2318         /* access a single register by its ordinal number */
2319         if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2320                 unsigned num;
2321                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2322
2323                 struct reg_cache *cache = target->reg_cache;
2324                 count = 0;
2325                 while (cache) {
2326                         unsigned i;
2327                         for (i = 0; i < cache->num_regs; i++) {
2328                                 if (count++ == num) {
2329                                         reg = &cache->reg_list[i];
2330                                         break;
2331                                 }
2332                         }
2333                         if (reg)
2334                                 break;
2335                         cache = cache->next;
2336                 }
2337
2338                 if (!reg) {
2339                         command_print(CMD_CTX, "%i is out of bounds, the current target "
2340                                         "has only %i registers (0 - %i)", num, count, count - 1);
2341                         return ERROR_OK;
2342                 }
2343         } else {
2344                 /* access a single register by its name */
2345                 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2346
2347                 if (!reg) {
2348                         command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2349                         return ERROR_OK;
2350                 }
2351         }
2352
2353         assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2354
2355         /* display a register */
2356         if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2357                         && (CMD_ARGV[1][0] <= '9')))) {
2358                 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2359                         reg->valid = 0;
2360
2361                 if (reg->valid == 0)
2362                         reg->type->get(reg);
2363                 value = buf_to_str(reg->value, reg->size, 16);
2364                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2365                 free(value);
2366                 return ERROR_OK;
2367         }
2368
2369         /* set register value */
2370         if (CMD_ARGC == 2) {
2371                 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2372                 if (buf == NULL)
2373                         return ERROR_FAIL;
2374                 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2375
2376                 reg->type->set(reg, buf);
2377
2378                 value = buf_to_str(reg->value, reg->size, 16);
2379                 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2380                 free(value);
2381
2382                 free(buf);
2383
2384                 return ERROR_OK;
2385         }
2386
2387         return ERROR_COMMAND_SYNTAX_ERROR;
2388 }
2389
2390 COMMAND_HANDLER(handle_poll_command)
2391 {
2392         int retval = ERROR_OK;
2393         struct target *target = get_current_target(CMD_CTX);
2394
2395         if (CMD_ARGC == 0) {
2396                 command_print(CMD_CTX, "background polling: %s",
2397                                 jtag_poll_get_enabled() ? "on" : "off");
2398                 command_print(CMD_CTX, "TAP: %s (%s)",
2399                                 target->tap->dotted_name,
2400                                 target->tap->enabled ? "enabled" : "disabled");
2401                 if (!target->tap->enabled)
2402                         return ERROR_OK;
2403                 retval = target_poll(target);
2404                 if (retval != ERROR_OK)
2405                         return retval;
2406                 retval = target_arch_state(target);
2407                 if (retval != ERROR_OK)
2408                         return retval;
2409         } else if (CMD_ARGC == 1) {
2410                 bool enable;
2411                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2412                 jtag_poll_set_enabled(enable);
2413         } else
2414                 return ERROR_COMMAND_SYNTAX_ERROR;
2415
2416         return retval;
2417 }
2418
2419 COMMAND_HANDLER(handle_wait_halt_command)
2420 {
2421         if (CMD_ARGC > 1)
2422                 return ERROR_COMMAND_SYNTAX_ERROR;
2423
2424         unsigned ms = 5000;
2425         if (1 == CMD_ARGC) {
2426                 int retval = parse_uint(CMD_ARGV[0], &ms);
2427                 if (ERROR_OK != retval)
2428                         return ERROR_COMMAND_SYNTAX_ERROR;
2429                 /* convert seconds (given) to milliseconds (needed) */
2430                 ms *= 1000;
2431         }
2432
2433         struct target *target = get_current_target(CMD_CTX);
2434         return target_wait_state(target, TARGET_HALTED, ms);
2435 }
2436
2437 /* wait for target state to change. The trick here is to have a low
2438  * latency for short waits and not to suck up all the CPU time
2439  * on longer waits.
2440  *
2441  * After 500ms, keep_alive() is invoked
2442  */
2443 int target_wait_state(struct target *target, enum target_state state, int ms)
2444 {
2445         int retval;
2446         long long then = 0, cur;
2447         int once = 1;
2448
2449         for (;;) {
2450                 retval = target_poll(target);
2451                 if (retval != ERROR_OK)
2452                         return retval;
2453                 if (target->state == state)
2454                         break;
2455                 cur = timeval_ms();
2456                 if (once) {
2457                         once = 0;
2458                         then = timeval_ms();
2459                         LOG_DEBUG("waiting for target %s...",
2460                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2461                 }
2462
2463                 if (cur-then > 500)
2464                         keep_alive();
2465
2466                 if ((cur-then) > ms) {
2467                         LOG_ERROR("timed out while waiting for target %s",
2468                                 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2469                         return ERROR_FAIL;
2470                 }
2471         }
2472
2473         return ERROR_OK;
2474 }
2475
2476 COMMAND_HANDLER(handle_halt_command)
2477 {
2478         LOG_DEBUG("-");
2479
2480         struct target *target = get_current_target(CMD_CTX);
2481         int retval = target_halt(target);
2482         if (ERROR_OK != retval)
2483                 return retval;
2484
2485         if (CMD_ARGC == 1) {
2486                 unsigned wait_local;
2487                 retval = parse_uint(CMD_ARGV[0], &wait_local);
2488                 if (ERROR_OK != retval)
2489                         return ERROR_COMMAND_SYNTAX_ERROR;
2490                 if (!wait_local)
2491                         return ERROR_OK;
2492         }
2493
2494         return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2495 }
2496
2497 COMMAND_HANDLER(handle_soft_reset_halt_command)
2498 {
2499         struct target *target = get_current_target(CMD_CTX);
2500
2501         LOG_USER("requesting target halt and executing a soft reset");
2502
2503         target->type->soft_reset_halt(target);
2504
2505         return ERROR_OK;
2506 }
2507
2508 COMMAND_HANDLER(handle_reset_command)
2509 {
2510         if (CMD_ARGC > 1)
2511                 return ERROR_COMMAND_SYNTAX_ERROR;
2512
2513         enum target_reset_mode reset_mode = RESET_RUN;
2514         if (CMD_ARGC == 1) {
2515                 const Jim_Nvp *n;
2516                 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2517                 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2518                         return ERROR_COMMAND_SYNTAX_ERROR;
2519                 reset_mode = n->value;
2520         }
2521
2522         /* reset *all* targets */
2523         return target_process_reset(CMD_CTX, reset_mode);
2524 }
2525
2526
2527 COMMAND_HANDLER(handle_resume_command)
2528 {
2529         int current = 1;
2530         if (CMD_ARGC > 1)
2531                 return ERROR_COMMAND_SYNTAX_ERROR;
2532
2533         struct target *target = get_current_target(CMD_CTX);
2534
2535         /* with no CMD_ARGV, resume from current pc, addr = 0,
2536          * with one arguments, addr = CMD_ARGV[0],
2537          * handle breakpoints, not debugging */
2538         uint32_t addr = 0;
2539         if (CMD_ARGC == 1) {
2540                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2541                 current = 0;
2542         }
2543
2544         return target_resume(target, current, addr, 1, 0);
2545 }
2546
2547 COMMAND_HANDLER(handle_step_command)
2548 {
2549         if (CMD_ARGC > 1)
2550                 return ERROR_COMMAND_SYNTAX_ERROR;
2551
2552         LOG_DEBUG("-");
2553
2554         /* with no CMD_ARGV, step from current pc, addr = 0,
2555          * with one argument addr = CMD_ARGV[0],
2556          * handle breakpoints, debugging */
2557         uint32_t addr = 0;
2558         int current_pc = 1;
2559         if (CMD_ARGC == 1) {
2560                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2561                 current_pc = 0;
2562         }
2563
2564         struct target *target = get_current_target(CMD_CTX);
2565
2566         return target->type->step(target, current_pc, addr, 1);
2567 }
2568
2569 static void handle_md_output(struct command_context *cmd_ctx,
2570                 struct target *target, uint32_t address, unsigned size,
2571                 unsigned count, const uint8_t *buffer)
2572 {
2573         const unsigned line_bytecnt = 32;
2574         unsigned line_modulo = line_bytecnt / size;
2575
2576         char output[line_bytecnt * 4 + 1];
2577         unsigned output_len = 0;
2578
2579         const char *value_fmt;
2580         switch (size) {
2581         case 4:
2582                 value_fmt = "%8.8x ";
2583                 break;
2584         case 2:
2585                 value_fmt = "%4.4x ";
2586                 break;
2587         case 1:
2588                 value_fmt = "%2.2x ";
2589                 break;
2590         default:
2591                 /* "can't happen", caller checked */
2592                 LOG_ERROR("invalid memory read size: %u", size);
2593                 return;
2594         }
2595
2596         for (unsigned i = 0; i < count; i++) {
2597                 if (i % line_modulo == 0) {
2598                         output_len += snprintf(output + output_len,
2599                                         sizeof(output) - output_len,
2600                                         "0x%8.8x: ",
2601                                         (unsigned)(address + (i*size)));
2602                 }
2603
2604                 uint32_t value = 0;
2605                 const uint8_t *value_ptr = buffer + i * size;
2606                 switch (size) {
2607                 case 4:
2608                         value = target_buffer_get_u32(target, value_ptr);
2609                         break;
2610                 case 2:
2611                         value = target_buffer_get_u16(target, value_ptr);
2612                         break;
2613                 case 1:
2614                         value = *value_ptr;
2615                 }
2616                 output_len += snprintf(output + output_len,
2617                                 sizeof(output) - output_len,
2618                                 value_fmt, value);
2619
2620                 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2621                         command_print(cmd_ctx, "%s", output);
2622                         output_len = 0;
2623                 }
2624         }
2625 }
2626
2627 COMMAND_HANDLER(handle_md_command)
2628 {
2629         if (CMD_ARGC < 1)
2630                 return ERROR_COMMAND_SYNTAX_ERROR;
2631
2632         unsigned size = 0;
2633         switch (CMD_NAME[2]) {
2634         case 'w':
2635                 size = 4;
2636                 break;
2637         case 'h':
2638                 size = 2;
2639                 break;
2640         case 'b':
2641                 size = 1;
2642                 break;
2643         default:
2644                 return ERROR_COMMAND_SYNTAX_ERROR;
2645         }
2646
2647         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2648         int (*fn)(struct target *target,
2649                         uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2650         if (physical) {
2651                 CMD_ARGC--;
2652                 CMD_ARGV++;
2653                 fn = target_read_phys_memory;
2654         } else
2655                 fn = target_read_memory;
2656         if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2657                 return ERROR_COMMAND_SYNTAX_ERROR;
2658
2659         uint32_t address;
2660         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2661
2662         unsigned count = 1;
2663         if (CMD_ARGC == 2)
2664                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2665
2666         uint8_t *buffer = calloc(count, size);
2667
2668         struct target *target = get_current_target(CMD_CTX);
2669         int retval = fn(target, address, size, count, buffer);
2670         if (ERROR_OK == retval)
2671                 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2672
2673         free(buffer);
2674
2675         return retval;
2676 }
2677
2678 typedef int (*target_write_fn)(struct target *target,
2679                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2680
2681 static int target_write_memory_fast(struct target *target,
2682                 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2683 {
2684         return target_write_buffer(target, address, size * count, buffer);
2685 }
2686
2687 static int target_fill_mem(struct target *target,
2688                 uint32_t address,
2689                 target_write_fn fn,
2690                 unsigned data_size,
2691                 /* value */
2692                 uint32_t b,
2693                 /* count */
2694                 unsigned c)
2695 {
2696         /* We have to write in reasonably large chunks to be able
2697          * to fill large memory areas with any sane speed */
2698         const unsigned chunk_size = 16384;
2699         uint8_t *target_buf = malloc(chunk_size * data_size);
2700         if (target_buf == NULL) {
2701                 LOG_ERROR("Out of memory");
2702                 return ERROR_FAIL;
2703         }
2704
2705         for (unsigned i = 0; i < chunk_size; i++) {
2706                 switch (data_size) {
2707                 case 4:
2708                         target_buffer_set_u32(target, target_buf + i * data_size, b);
2709                         break;
2710                 case 2:
2711                         target_buffer_set_u16(target, target_buf + i * data_size, b);
2712                         break;
2713                 case 1:
2714                         target_buffer_set_u8(target, target_buf + i * data_size, b);
2715                         break;
2716                 default:
2717                         exit(-1);
2718                 }
2719         }
2720
2721         int retval = ERROR_OK;
2722
2723         for (unsigned x = 0; x < c; x += chunk_size) {
2724                 unsigned current;
2725                 current = c - x;
2726                 if (current > chunk_size)
2727                         current = chunk_size;
2728                 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2729                 if (retval != ERROR_OK)
2730                         break;
2731                 /* avoid GDB timeouts */
2732                 keep_alive();
2733         }
2734         free(target_buf);
2735
2736         return retval;
2737 }
2738
2739
2740 COMMAND_HANDLER(handle_mw_command)
2741 {
2742         if (CMD_ARGC < 2)
2743                 return ERROR_COMMAND_SYNTAX_ERROR;
2744         bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2745         target_write_fn fn;
2746         if (physical) {
2747                 CMD_ARGC--;
2748                 CMD_ARGV++;
2749                 fn = target_write_phys_memory;
2750         } else
2751                 fn = target_write_memory_fast;
2752         if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2753                 return ERROR_COMMAND_SYNTAX_ERROR;
2754
2755         uint32_t address;
2756         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2757
2758         uint32_t value;
2759         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2760
2761         unsigned count = 1;
2762         if (CMD_ARGC == 3)
2763                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2764
2765         struct target *target = get_current_target(CMD_CTX);
2766         unsigned wordsize;
2767         switch (CMD_NAME[2]) {
2768                 case 'w':
2769                         wordsize = 4;
2770                         break;
2771                 case 'h':
2772                         wordsize = 2;
2773                         break;
2774                 case 'b':
2775                         wordsize = 1;
2776                         break;
2777                 default:
2778                         return ERROR_COMMAND_SYNTAX_ERROR;
2779         }
2780
2781         return target_fill_mem(target, address, fn, wordsize, value, count);
2782 }
2783
2784 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2785                 uint32_t *min_address, uint32_t *max_address)
2786 {
2787         if (CMD_ARGC < 1 || CMD_ARGC > 5)
2788                 return ERROR_COMMAND_SYNTAX_ERROR;
2789
2790         /* a base address isn't always necessary,
2791          * default to 0x0 (i.e. don't relocate) */
2792         if (CMD_ARGC >= 2) {
2793                 uint32_t addr;
2794                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2795                 image->base_address = addr;
2796                 image->base_address_set = 1;
2797         } else
2798                 image->base_address_set = 0;
2799
2800         image->start_address_set = 0;
2801
2802         if (CMD_ARGC >= 4)
2803                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2804         if (CMD_ARGC == 5) {
2805                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2806                 /* use size (given) to find max (required) */
2807                 *max_address += *min_address;
2808         }
2809
2810         if (*min_address > *max_address)
2811                 return ERROR_COMMAND_SYNTAX_ERROR;
2812
2813         return ERROR_OK;
2814 }
2815
2816 COMMAND_HANDLER(handle_load_image_command)
2817 {
2818         uint8_t *buffer;
2819         size_t buf_cnt;
2820         uint32_t image_size;
2821         uint32_t min_address = 0;
2822         uint32_t max_address = 0xffffffff;
2823         int i;
2824         struct image image;
2825
2826         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2827                         &image, &min_address, &max_address);
2828         if (ERROR_OK != retval)
2829                 return retval;
2830
2831         struct target *target = get_current_target(CMD_CTX);
2832
2833         struct duration bench;
2834         duration_start(&bench);
2835
2836         if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2837                 return ERROR_OK;
2838
2839         image_size = 0x0;
2840         retval = ERROR_OK;
2841         for (i = 0; i < image.num_sections; i++) {
2842                 buffer = malloc(image.sections[i].size);
2843                 if (buffer == NULL) {
2844                         command_print(CMD_CTX,
2845                                                   "error allocating buffer for section (%d bytes)",
2846                                                   (int)(image.sections[i].size));
2847                         break;
2848                 }
2849
2850                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2851                 if (retval != ERROR_OK) {
2852                         free(buffer);
2853                         break;
2854                 }
2855
2856                 uint32_t offset = 0;
2857                 uint32_t length = buf_cnt;
2858
2859                 /* DANGER!!! beware of unsigned comparision here!!! */
2860
2861                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2862                                 (image.sections[i].base_address < max_address)) {
2863
2864                         if (image.sections[i].base_address < min_address) {
2865                                 /* clip addresses below */
2866                                 offset += min_address-image.sections[i].base_address;
2867                                 length -= offset;
2868                         }
2869
2870                         if (image.sections[i].base_address + buf_cnt > max_address)
2871                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2872
2873                         retval = target_write_buffer(target,
2874                                         image.sections[i].base_address + offset, length, buffer + offset);
2875                         if (retval != ERROR_OK) {
2876                                 free(buffer);
2877                                 break;
2878                         }
2879                         image_size += length;
2880                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2881                                         (unsigned int)length,
2882                                         image.sections[i].base_address + offset);
2883                 }
2884
2885                 free(buffer);
2886         }
2887
2888         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2889                 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2890                                 "in %fs (%0.3f KiB/s)", image_size,
2891                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2892         }
2893
2894         image_close(&image);
2895
2896         return retval;
2897
2898 }
2899
2900 COMMAND_HANDLER(handle_dump_image_command)
2901 {
2902         struct fileio fileio;
2903         uint8_t *buffer;
2904         int retval, retvaltemp;
2905         uint32_t address, size;
2906         struct duration bench;
2907         struct target *target = get_current_target(CMD_CTX);
2908
2909         if (CMD_ARGC != 3)
2910                 return ERROR_COMMAND_SYNTAX_ERROR;
2911
2912         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2913         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2914
2915         uint32_t buf_size = (size > 4096) ? 4096 : size;
2916         buffer = malloc(buf_size);
2917         if (!buffer)
2918                 return ERROR_FAIL;
2919
2920         retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2921         if (retval != ERROR_OK) {
2922                 free(buffer);
2923                 return retval;
2924         }
2925
2926         duration_start(&bench);
2927
2928         while (size > 0) {
2929                 size_t size_written;
2930                 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2931                 retval = target_read_buffer(target, address, this_run_size, buffer);
2932                 if (retval != ERROR_OK)
2933                         break;
2934
2935                 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2936                 if (retval != ERROR_OK)
2937                         break;
2938
2939                 size -= this_run_size;
2940                 address += this_run_size;
2941         }
2942
2943         free(buffer);
2944
2945         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2946                 int filesize;
2947                 retval = fileio_size(&fileio, &filesize);
2948                 if (retval != ERROR_OK)
2949                         return retval;
2950                 command_print(CMD_CTX,
2951                                 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2952                                 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2953         }
2954
2955         retvaltemp = fileio_close(&fileio);
2956         if (retvaltemp != ERROR_OK)
2957                 return retvaltemp;
2958
2959         return retval;
2960 }
2961
2962 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2963 {
2964         uint8_t *buffer;
2965         size_t buf_cnt;
2966         uint32_t image_size;
2967         int i;
2968         int retval;
2969         uint32_t checksum = 0;
2970         uint32_t mem_checksum = 0;
2971
2972         struct image image;
2973
2974         struct target *target = get_current_target(CMD_CTX);
2975
2976         if (CMD_ARGC < 1)
2977                 return ERROR_COMMAND_SYNTAX_ERROR;
2978
2979         if (!target) {
2980                 LOG_ERROR("no target selected");
2981                 return ERROR_FAIL;
2982         }
2983
2984         struct duration bench;
2985         duration_start(&bench);
2986
2987         if (CMD_ARGC >= 2) {
2988                 uint32_t addr;
2989                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2990                 image.base_address = addr;
2991                 image.base_address_set = 1;
2992         } else {
2993                 image.base_address_set = 0;
2994                 image.base_address = 0x0;
2995         }
2996
2997         image.start_address_set = 0;
2998
2999         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
3000         if (retval != ERROR_OK)
3001                 return retval;
3002
3003         image_size = 0x0;
3004         int diffs = 0;
3005         retval = ERROR_OK;
3006         for (i = 0; i < image.num_sections; i++) {
3007                 buffer = malloc(image.sections[i].size);
3008                 if (buffer == NULL) {
3009                         command_print(CMD_CTX,
3010                                         "error allocating buffer for section (%d bytes)",
3011                                         (int)(image.sections[i].size));
3012                         break;
3013                 }
3014                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
3015                 if (retval != ERROR_OK) {
3016                         free(buffer);
3017                         break;
3018                 }
3019
3020                 if (verify) {
3021                         /* calculate checksum of image */
3022                         retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3023                         if (retval != ERROR_OK) {
3024                                 free(buffer);
3025                                 break;
3026                         }
3027
3028                         retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3029                         if (retval != ERROR_OK) {
3030                                 free(buffer);
3031                                 break;
3032                         }
3033
3034                         if (checksum != mem_checksum) {
3035                                 /* failed crc checksum, fall back to a binary compare */
3036                                 uint8_t *data;
3037
3038                                 if (diffs == 0)
3039                                         LOG_ERROR("checksum mismatch - attempting binary compare");
3040
3041                                 data = (uint8_t *)malloc(buf_cnt);
3042
3043                                 /* Can we use 32bit word accesses? */
3044                                 int size = 1;
3045                                 int count = buf_cnt;
3046                                 if ((count % 4) == 0) {
3047                                         size *= 4;
3048                                         count /= 4;
3049                                 }
3050                                 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3051                                 if (retval == ERROR_OK) {
3052                                         uint32_t t;
3053                                         for (t = 0; t < buf_cnt; t++) {
3054                                                 if (data[t] != buffer[t]) {
3055                                                         command_print(CMD_CTX,
3056                                                                                   "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3057                                                                                   diffs,
3058                                                                                   (unsigned)(t + image.sections[i].base_address),
3059                                                                                   data[t],
3060                                                                                   buffer[t]);
3061                                                         if (diffs++ >= 127) {
3062                                                                 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3063                                                                 free(data);
3064                                                                 free(buffer);
3065                                                                 goto done;
3066                                                         }
3067                                                 }
3068                                                 keep_alive();
3069                                         }
3070                                 }
3071                                 free(data);
3072                         }
3073                 } else {
3074                         command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3075                                                   image.sections[i].base_address,
3076                                                   buf_cnt);
3077                 }
3078
3079                 free(buffer);
3080                 image_size += buf_cnt;
3081         }
3082         if (diffs > 0)
3083                 command_print(CMD_CTX, "No more differences found.");
3084 done:
3085         if (diffs > 0)
3086                 retval = ERROR_FAIL;
3087         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3088                 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3089                                 "in %fs (%0.3f KiB/s)", image_size,
3090                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3091         }
3092
3093         image_close(&image);
3094
3095         return retval;
3096 }
3097
3098 COMMAND_HANDLER(handle_verify_image_command)
3099 {
3100         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3101 }
3102
3103 COMMAND_HANDLER(handle_test_image_command)
3104 {
3105         return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3106 }
3107
3108 static int handle_bp_command_list(struct command_context *cmd_ctx)
3109 {
3110         struct target *target = get_current_target(cmd_ctx);
3111         struct breakpoint *breakpoint = target->breakpoints;
3112         while (breakpoint) {
3113                 if (breakpoint->type == BKPT_SOFT) {
3114                         char *buf = buf_to_str(breakpoint->orig_instr,
3115                                         breakpoint->length, 16);
3116                         command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3117                                         breakpoint->address,
3118                                         breakpoint->length,
3119                                         breakpoint->set, buf);
3120                         free(buf);
3121                 } else {
3122                         if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3123                                 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3124                                                         breakpoint->asid,
3125                                                         breakpoint->length, breakpoint->set);
3126                         else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3127                                 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3128                                                         breakpoint->address,
3129                                                         breakpoint->length, breakpoint->set);
3130                                 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3131                                                         breakpoint->asid);
3132                         } else
3133                                 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3134                                                         breakpoint->address,
3135                                                         breakpoint->length, breakpoint->set);
3136                 }
3137
3138                 breakpoint = breakpoint->next;
3139         }
3140         return ERROR_OK;
3141 }
3142
3143 static int handle_bp_command_set(struct command_context *cmd_ctx,
3144                 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3145 {
3146         struct target *target = get_current_target(cmd_ctx);
3147
3148         if (asid == 0) {
3149                 int retval = breakpoint_add(target, addr, length, hw);
3150                 if (ERROR_OK == retval)
3151                         command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3152                 else {
3153                         LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3154                         return retval;
3155                 }
3156         } else if (addr == 0) {
3157                 int retval = context_breakpoint_add(target, asid, length, hw);
3158                 if (ERROR_OK == retval)
3159                         command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3160                 else {
3161                         LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3162                         return retval;
3163                 }
3164         } else {
3165                 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3166                 if (ERROR_OK == retval)
3167                         command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3168                 else {
3169                         LOG_ERROR("Failure setting breakpoint, the same address is already used");
3170                         return retval;
3171                 }
3172         }
3173         return ERROR_OK;
3174 }
3175
3176 COMMAND_HANDLER(handle_bp_command)
3177 {
3178         uint32_t addr;
3179         uint32_t asid;
3180         uint32_t length;
3181         int hw = BKPT_SOFT;
3182
3183         switch (CMD_ARGC) {
3184                 case 0:
3185                         return handle_bp_command_list(CMD_CTX);
3186
3187                 case 2:
3188                         asid = 0;
3189                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3190                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3191                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3192
3193                 case 3:
3194                         if (strcmp(CMD_ARGV[2], "hw") == 0) {
3195                                 hw = BKPT_HARD;
3196                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3197
3198                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3199
3200                                 asid = 0;
3201                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3202                         } else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
3203                                 hw = BKPT_HARD;
3204                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3205                                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3206                                 addr = 0;
3207                                 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3208                         }
3209
3210                 case 4:
3211                         hw = BKPT_HARD;
3212                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3213                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3214                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3215                         return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3216
3217                 default:
3218                         return ERROR_COMMAND_SYNTAX_ERROR;
3219         }
3220 }
3221
3222 COMMAND_HANDLER(handle_rbp_command)
3223 {
3224         if (CMD_ARGC != 1)
3225                 return ERROR_COMMAND_SYNTAX_ERROR;
3226
3227         uint32_t addr;
3228         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3229
3230         struct target *target = get_current_target(CMD_CTX);
3231         breakpoint_remove(target, addr);
3232
3233         return ERROR_OK;
3234 }
3235
3236 COMMAND_HANDLER(handle_wp_command)
3237 {
3238         struct target *target = get_current_target(CMD_CTX);
3239
3240         if (CMD_ARGC == 0) {
3241                 struct watchpoint *watchpoint = target->watchpoints;
3242
3243                 while (watchpoint) {
3244                         command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3245                                         ", len: 0x%8.8" PRIx32
3246                                         ", r/w/a: %i, value: 0x%8.8" PRIx32
3247                                         ", mask: 0x%8.8" PRIx32,
3248                                         watchpoint->address,
3249                                         watchpoint->length,
3250                                         (int)watchpoint->rw,
3251                                         watchpoint->value,
3252                                         watchpoint->mask);
3253                         watchpoint = watchpoint->next;
3254                 }
3255                 return ERROR_OK;
3256         }
3257
3258         enum watchpoint_rw type = WPT_ACCESS;
3259         uint32_t addr = 0;
3260         uint32_t length = 0;
3261         uint32_t data_value = 0x0;
3262         uint32_t data_mask = 0xffffffff;
3263
3264         switch (CMD_ARGC) {
3265         case 5:
3266                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3267                 /* fall through */
3268         case 4:
3269                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3270                 /* fall through */
3271         case 3:
3272                 switch (CMD_ARGV[2][0]) {
3273                 case 'r':
3274                         type = WPT_READ;
3275                         break;
3276                 case 'w':
3277                         type = WPT_WRITE;
3278                         break;
3279                 case 'a':
3280                         type = WPT_ACCESS;
3281                         break;
3282                 default:
3283                         LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3284                         return ERROR_COMMAND_SYNTAX_ERROR;
3285                 }
3286                 /* fall through */
3287         case 2:
3288                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3289                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3290                 break;
3291
3292         default:
3293                 return ERROR_COMMAND_SYNTAX_ERROR;
3294         }
3295
3296         int retval = watchpoint_add(target, addr, length, type,
3297                         data_value, data_mask);
3298         if (ERROR_OK != retval)
3299                 LOG_ERROR("Failure setting watchpoints");
3300
3301         return retval;
3302 }
3303
3304 COMMAND_HANDLER(handle_rwp_command)
3305 {
3306         if (CMD_ARGC != 1)
3307                 return ERROR_COMMAND_SYNTAX_ERROR;
3308
3309         uint32_t addr;
3310         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3311
3312         struct target *target = get_current_target(CMD_CTX);
3313         watchpoint_remove(target, addr);
3314
3315         return ERROR_OK;
3316 }
3317
3318 /**
3319  * Translate a virtual address to a physical address.
3320  *
3321  * The low-level target implementation must have logged a detailed error
3322  * which is forwarded to telnet/GDB session.
3323  */
3324 COMMAND_HANDLER(handle_virt2phys_command)
3325 {
3326         if (CMD_ARGC != 1)
3327                 return ERROR_COMMAND_SYNTAX_ERROR;
3328
3329         uint32_t va;
3330         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], va);
3331         uint32_t pa;
3332
3333         struct target *target = get_current_target(CMD_CTX);
3334         int retval = target->type->virt2phys(target, va, &pa);
3335         if (retval == ERROR_OK)
3336                 command_print(CMD_CTX, "Physical address 0x%08" PRIx32 "", pa);
3337
3338         return retval;
3339 }
3340
3341 static void writeData(FILE *f, const void *data, size_t len)
3342 {
3343         size_t written = fwrite(data, 1, len, f);
3344         if (written != len)
3345                 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
3346 }
3347
3348 static void writeLong(FILE *f, int l)
3349 {
3350         int i;
3351         for (i = 0; i < 4; i++) {
3352                 char c = (l >> (i*8))&0xff;
3353                 writeData(f, &c, 1);
3354         }
3355
3356 }
3357
3358 static void writeString(FILE *f, char *s)
3359 {
3360         writeData(f, s, strlen(s));
3361 }
3362
3363 /* Dump a gmon.out histogram file. */
3364 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
3365 {
3366         uint32_t i;
3367         FILE *f = fopen(filename, "w");
3368         if (f == NULL)
3369                 return;
3370         writeString(f, "gmon");
3371         writeLong(f, 0x00000001); /* Version */
3372         writeLong(f, 0); /* padding */
3373         writeLong(f, 0); /* padding */
3374         writeLong(f, 0); /* padding */
3375
3376         uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
3377         writeData(f, &zero, 1);
3378
3379         /* figure out bucket size */
3380         uint32_t min = samples[0];
3381         uint32_t max = samples[0];
3382         for (i = 0; i < sampleNum; i++) {
3383                 if (min > samples[i])
3384                         min = samples[i];
3385                 if (max < samples[i])
3386                         max = samples[i];
3387         }
3388
3389         int addressSpace = (max - min + 1);
3390         assert(addressSpace >= 2);
3391
3392         static const uint32_t maxBuckets = 16 * 1024; /* maximum buckets. */
3393         uint32_t length = addressSpace;
3394         if (length > maxBuckets)
3395                 length = maxBuckets;
3396         int *buckets = malloc(sizeof(int)*length);
3397         if (buckets == NULL) {
3398                 fclose(f);
3399                 return;
3400         }
3401         memset(buckets, 0, sizeof(int) * length);
3402         for (i = 0; i < sampleNum; i++) {
3403                 uint32_t address = samples[i];
3404                 long long a = address - min;
3405                 long long b = length - 1;
3406                 long long c = addressSpace - 1;
3407                 int index_t = (a * b) / c; /* danger!!!! int32 overflows */
3408                 buckets[index_t]++;
3409         }
3410
3411         /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
3412         writeLong(f, min);                      /* low_pc */
3413         writeLong(f, max);                      /* high_pc */
3414         writeLong(f, length);           /* # of samples */
3415         writeLong(f, 100);                      /* KLUDGE! We lie, ca. 100Hz best case. */
3416         writeString(f, "seconds");
3417         for (i = 0; i < (15-strlen("seconds")); i++)
3418                 writeData(f, &zero, 1);
3419         writeString(f, "s");
3420
3421         /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
3422
3423         char *data = malloc(2 * length);
3424         if (data != NULL) {
3425                 for (i = 0; i < length; i++) {
3426                         int val;
3427                         val = buckets[i];
3428                         if (val > 65535)
3429                                 val = 65535;
3430                         data[i * 2] = val&0xff;
3431                         data[i * 2 + 1] = (val >> 8) & 0xff;
3432                 }
3433                 free(buckets);
3434                 writeData(f, data, length * 2);
3435                 free(data);
3436         } else
3437                 free(buckets);
3438
3439         fclose(f);
3440 }
3441
3442 /* profiling samples the CPU PC as quickly as OpenOCD is able,
3443  * which will be used as a random sampling of PC */
3444 COMMAND_HANDLER(handle_profile_command)
3445 {
3446         struct target *target = get_current_target(CMD_CTX);
3447         struct timeval timeout, now;
3448
3449         gettimeofday(&timeout, NULL);
3450         if (CMD_ARGC != 2)
3451                 return ERROR_COMMAND_SYNTAX_ERROR;
3452         unsigned offset;
3453         COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], offset);
3454
3455         timeval_add_time(&timeout, offset, 0);
3456
3457         /**
3458          * @todo: Some cores let us sample the PC without the
3459          * annoying halt/resume step; for example, ARMv7 PCSR.
3460          * Provide a way to use that more efficient mechanism.
3461          */
3462
3463         command_print(CMD_CTX, "Starting profiling. Halting and resuming the target as often as we can...");
3464
3465         static const int maxSample = 10000;
3466         uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3467         if (samples == NULL)
3468                 return ERROR_OK;
3469
3470         int numSamples = 0;
3471         /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3472         struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
3473
3474         int retval = ERROR_OK;
3475         for (;;) {
3476                 target_poll(target);
3477                 if (target->state == TARGET_HALTED) {
3478                         uint32_t t = *((uint32_t *)reg->value);
3479                         samples[numSamples++] = t;
3480                         /* current pc, addr = 0, do not handle breakpoints, not debugging */
3481                         retval = target_resume(target, 1, 0, 0, 0);
3482                         target_poll(target);
3483                         alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3484                 } else if (target->state == TARGET_RUNNING) {
3485                         /* We want to quickly sample the PC. */
3486                         retval = target_halt(target);
3487                         if (retval != ERROR_OK) {
3488                                 free(samples);
3489                                 return retval;
3490                         }
3491                 } else {
3492                         command_print(CMD_CTX, "Target not halted or running");
3493                         retval = ERROR_OK;
3494                         break;
3495                 }
3496                 if (retval != ERROR_OK)
3497                         break;
3498
3499                 gettimeofday(&now, NULL);
3500                 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec)
3501                                 && (now.tv_usec >= timeout.tv_usec))) {
3502                         command_print(CMD_CTX, "Profiling completed. %d samples.", numSamples);
3503                         retval = target_poll(target);
3504                         if (retval != ERROR_OK) {
3505                                 free(samples);
3506                                 return retval;
3507                         }
3508                         if (target->state == TARGET_HALTED) {
3509                                 /* current pc, addr = 0, do not handle
3510                                  * breakpoints, not debugging */
3511                                 target_resume(target, 1, 0, 0, 0);
3512                         }
3513                         retval = target_poll(target);
3514                         if (retval != ERROR_OK) {
3515                                 free(samples);
3516                                 return retval;
3517                         }
3518                         writeGmon(samples, numSamples, CMD_ARGV[1]);
3519                         command_print(CMD_CTX, "Wrote %s", CMD_ARGV[1]);
3520                         break;
3521                 }
3522         }
3523         free(samples);
3524
3525         return retval;
3526 }
3527
3528 static int new_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t val)
3529 {
3530         char *namebuf;
3531         Jim_Obj *nameObjPtr, *valObjPtr;
3532         int result;
3533
3534         namebuf = alloc_printf("%s(%d)", varname, idx);
3535         if (!namebuf)
3536                 return JIM_ERR;
3537
3538         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3539         valObjPtr = Jim_NewIntObj(interp, val);
3540         if (!nameObjPtr || !valObjPtr) {
3541                 free(namebuf);
3542                 return JIM_ERR;
3543         }
3544
3545         Jim_IncrRefCount(nameObjPtr);
3546         Jim_IncrRefCount(valObjPtr);
3547         result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3548         Jim_DecrRefCount(interp, nameObjPtr);
3549         Jim_DecrRefCount(interp, valObjPtr);
3550         free(namebuf);
3551         /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3552         return result;
3553 }
3554
3555 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3556 {
3557         struct command_context *context;
3558         struct target *target;
3559
3560         context = current_command_context(interp);
3561         assert(context != NULL);
3562
3563         target = get_current_target(context);
3564         if (target == NULL) {
3565                 LOG_ERROR("mem2array: no current target");
3566                 return JIM_ERR;
3567         }
3568
3569         return target_mem2array(interp, target, argc - 1, argv + 1);
3570 }
3571
3572 static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
3573 {
3574         long l;
3575         uint32_t width;
3576         int len;
3577         uint32_t addr;
3578         uint32_t count;
3579         uint32_t v;
3580         const char *varname;
3581         int  n, e, retval;
3582         uint32_t i;
3583
3584         /* argv[1] = name of array to receive the data
3585          * argv[2] = desired width
3586          * argv[3] = memory address
3587          * argv[4] = count of times to read
3588          */
3589         if (argc != 4) {
3590                 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3591                 return JIM_ERR;
3592         }
3593         varname = Jim_GetString(argv[0], &len);
3594         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3595
3596         e = Jim_GetLong(interp, argv[1], &l);
3597         width = l;
3598         if (e != JIM_OK)
3599                 return e;
3600
3601         e = Jim_GetLong(interp, argv[2], &l);
3602         addr = l;
3603         if (e != JIM_OK)
3604                 return e;
3605         e = Jim_GetLong(interp, argv[3], &l);
3606         len = l;
3607         if (e != JIM_OK)
3608                 return e;
3609         switch (width) {
3610                 case 8:
3611                         width = 1;
3612                         break;
3613                 case 16:
3614                         width = 2;
3615                         break;
3616                 case 32:
3617                         width = 4;
3618                         break;
3619                 default:
3620                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3621                         Jim_AppendStrings(interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL);
3622                         return JIM_ERR;
3623         }
3624         if (len == 0) {
3625                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3626                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
3627                 return JIM_ERR;
3628         }
3629         if ((addr + (len * width)) < addr) {
3630                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3631                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
3632                 return JIM_ERR;
3633         }
3634         /* absurd transfer size? */
3635         if (len > 65536) {
3636                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3637                 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
3638                 return JIM_ERR;
3639         }
3640
3641         if ((width == 1) ||
3642                 ((width == 2) && ((addr & 1) == 0)) ||
3643                 ((width == 4) && ((addr & 3) == 0))) {
3644                 /* all is well */
3645         } else {
3646                 char buf[100];
3647                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3648                 sprintf(buf, "mem2array address: 0x%08" PRIx32 " is not aligned for %" PRId32 " byte reads",
3649                                 addr,
3650                                 width);
3651                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3652                 return JIM_ERR;
3653         }
3654
3655         /* Transfer loop */
3656
3657         /* index counter */
3658         n = 0;
3659
3660         size_t buffersize = 4096;
3661         uint8_t *buffer = malloc(buffersize);
3662         if (buffer == NULL)
3663                 return JIM_ERR;
3664
3665         /* assume ok */
3666         e = JIM_OK;
3667         while (len) {
3668                 /* Slurp... in buffer size chunks */
3669
3670                 count = len; /* in objects.. */
3671                 if (count > (buffersize / width))
3672                         count = (buffersize / width);
3673
3674                 retval = target_read_memory(target, addr, width, count, buffer);
3675                 if (retval != ERROR_OK) {
3676                         /* BOO !*/
3677                         LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed",
3678                                           (unsigned int)addr,
3679                                           (int)width,
3680                                           (int)count);
3681                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3682                         Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3683                         e = JIM_ERR;
3684                         break;
3685                 } else {
3686                         v = 0; /* shut up gcc */
3687                         for (i = 0; i < count ; i++, n++) {
3688                                 switch (width) {
3689                                         case 4:
3690                                                 v = target_buffer_get_u32(target, &buffer[i*width]);
3691                                                 break;
3692                                         case 2:
3693                                                 v = target_buffer_get_u16(target, &buffer[i*width]);
3694                                                 break;
3695                                         case 1:
3696                                                 v = buffer[i] & 0x0ff;
3697                                                 break;
3698                                 }
3699                                 new_int_array_element(interp, varname, n, v);
3700                         }
3701                         len -= count;
3702                 }
3703         }
3704
3705         free(buffer);
3706
3707         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3708
3709         return e;
3710 }
3711
3712 static int get_int_array_element(Jim_Interp *interp, const char *varname, int idx, uint32_t *val)
3713 {
3714         char *namebuf;
3715         Jim_Obj *nameObjPtr, *valObjPtr;
3716         int result;
3717         long l;
3718
3719         namebuf = alloc_printf("%s(%d)", varname, idx);
3720         if (!namebuf)
3721                 return JIM_ERR;
3722
3723         nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3724         if (!nameObjPtr) {
3725                 free(namebuf);
3726                 return JIM_ERR;
3727         }
3728
3729         Jim_IncrRefCount(nameObjPtr);
3730         valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3731         Jim_DecrRefCount(interp, nameObjPtr);
3732         free(namebuf);
3733         if (valObjPtr == NULL)
3734                 return JIM_ERR;
3735
3736         result = Jim_GetLong(interp, valObjPtr, &l);
3737         /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3738         *val = l;
3739         return result;
3740 }
3741
3742 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3743 {
3744         struct command_context *context;
3745         struct target *target;
3746
3747         context = current_command_context(interp);
3748         assert(context != NULL);
3749
3750         target = get_current_target(context);
3751         if (target == NULL) {
3752                 LOG_ERROR("array2mem: no current target");
3753                 return JIM_ERR;
3754         }
3755
3756         return target_array2mem(interp, target, argc-1, argv + 1);
3757 }
3758
3759 static int target_array2mem(Jim_Interp *interp, struct target *target,
3760                 int argc, Jim_Obj *const *argv)
3761 {
3762         long l;
3763         uint32_t width;
3764         int len;
3765         uint32_t addr;
3766         uint32_t count;
3767         uint32_t v;
3768         const char *varname;
3769         int  n, e, retval;
3770         uint32_t i;
3771
3772         /* argv[1] = name of array to get the data
3773          * argv[2] = desired width
3774          * argv[3] = memory address
3775          * argv[4] = count to write
3776          */
3777         if (argc != 4) {
3778                 Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems");
3779                 return JIM_ERR;
3780         }
3781         varname = Jim_GetString(argv[0], &len);
3782         /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3783
3784         e = Jim_GetLong(interp, argv[1], &l);
3785         width = l;
3786         if (e != JIM_OK)
3787                 return e;
3788
3789         e = Jim_GetLong(interp, argv[2], &l);
3790         addr = l;
3791         if (e != JIM_OK)
3792                 return e;
3793         e = Jim_GetLong(interp, argv[3], &l);
3794         len = l;
3795         if (e != JIM_OK)
3796                 return e;
3797         switch (width) {
3798                 case 8:
3799                         width = 1;
3800                         break;
3801                 case 16:
3802                         width = 2;
3803                         break;
3804                 case 32:
3805                         width = 4;
3806                         break;
3807                 default:
3808                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3809                         Jim_AppendStrings(interp, Jim_GetResult(interp),
3810                                         "Invalid width param, must be 8/16/32", NULL);
3811                         return JIM_ERR;
3812         }
3813         if (len == 0) {
3814                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3815                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3816                                 "array2mem: zero width read?", NULL);
3817                 return JIM_ERR;
3818         }
3819         if ((addr + (len * width)) < addr) {
3820                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3821                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3822                                 "array2mem: addr + len - wraps to zero?", NULL);
3823                 return JIM_ERR;
3824         }
3825         /* absurd transfer size? */
3826         if (len > 65536) {
3827                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3828                 Jim_AppendStrings(interp, Jim_GetResult(interp),
3829                                 "array2mem: absurd > 64K item request", NULL);
3830                 return JIM_ERR;
3831         }
3832
3833         if ((width == 1) ||
3834                 ((width == 2) && ((addr & 1) == 0)) ||
3835                 ((width == 4) && ((addr & 3) == 0))) {
3836                 /* all is well */
3837         } else {
3838                 char buf[100];
3839                 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3840                 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads",
3841                                 (unsigned int)addr,
3842                                 (int)width);
3843                 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3844                 return JIM_ERR;
3845         }
3846
3847         /* Transfer loop */
3848
3849         /* index counter */
3850         n = 0;
3851         /* assume ok */
3852         e = JIM_OK;
3853
3854         size_t buffersize = 4096;
3855         uint8_t *buffer = malloc(buffersize);
3856         if (buffer == NULL)
3857                 return JIM_ERR;
3858
3859         while (len) {
3860                 /* Slurp... in buffer size chunks */
3861
3862                 count = len; /* in objects.. */
3863                 if (count > (buffersize / width))
3864                         count = (buffersize / width);
3865
3866                 v = 0; /* shut up gcc */
3867                 for (i = 0; i < count; i++, n++) {
3868                         get_int_array_element(interp, varname, n, &v);
3869                         switch (width) {
3870                         case 4:
3871                                 target_buffer_set_u32(target, &buffer[i * width], v);
3872                                 break;
3873                         case 2:
3874                                 target_buffer_set_u16(target, &buffer[i * width], v);
3875                                 break;
3876                         case 1:
3877                                 buffer[i] = v & 0x0ff;
3878                                 break;
3879                         }
3880                 }
3881                 len -= count;
3882
3883                 retval = target_write_memory(target, addr, width, count, buffer);
3884                 if (retval != ERROR_OK) {
3885                         /* BOO !*/
3886                         LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed",
3887                                           (unsigned int)addr,
3888                                           (int)width,
3889                                           (int)count);
3890                         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3891                         Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3892                         e = JIM_ERR;
3893                         break;
3894                 }
3895         }
3896
3897         free(buffer);
3898
3899         Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3900
3901         return e;
3902 }
3903
3904 /* FIX? should we propagate errors here rather than printing them
3905  * and continuing?
3906  */
3907 void target_handle_event(struct target *target, enum target_event e)
3908 {
3909         struct target_event_action *teap;
3910
3911         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3912                 if (teap->event == e) {
3913                         LOG_DEBUG("target: (%d) %s (%s) event: %d (%s) action: %s",
3914                                            target->target_number,
3915                                            target_name(target),
3916                                            target_type_name(target),
3917                                            e,
3918                                            Jim_Nvp_value2name_simple(nvp_target_event, e)->name,
3919                                            Jim_GetString(teap->body, NULL));
3920                         if (Jim_EvalObj(teap->interp, teap->body) != JIM_OK) {
3921                                 Jim_MakeErrorMessage(teap->interp);
3922                                 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(teap->interp), NULL));
3923                         }
3924                 }
3925         }
3926 }
3927
3928 /**
3929  * Returns true only if the target has a handler for the specified event.
3930  */
3931 bool target_has_event_action(struct target *target, enum target_event event)
3932 {
3933         struct target_event_action *teap;
3934
3935         for (teap = target->event_action; teap != NULL; teap = teap->next) {
3936                 if (teap->event == event)
3937                         return true;
3938         }
3939         return false;
3940 }
3941
3942 enum target_cfg_param {
3943         TCFG_TYPE,
3944         TCFG_EVENT,
3945         TCFG_WORK_AREA_VIRT,
3946         TCFG_WORK_AREA_PHYS,
3947         TCFG_WORK_AREA_SIZE,
3948         TCFG_WORK_AREA_BACKUP,
3949         TCFG_ENDIAN,
3950         TCFG_VARIANT,
3951         TCFG_COREID,
3952         TCFG_CHAIN_POSITION,
3953         TCFG_DBGBASE,
3954         TCFG_RTOS,
3955 };
3956
3957 static Jim_Nvp nvp_config_opts[] = {
3958         { .name = "-type",             .value = TCFG_TYPE },
3959         { .name = "-event",            .value = TCFG_EVENT },
3960         { .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
3961         { .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
3962         { .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
3963         { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3964         { .name = "-endian" ,          .value = TCFG_ENDIAN },
3965         { .name = "-variant",          .value = TCFG_VARIANT },
3966         { .name = "-coreid",           .value = TCFG_COREID },
3967         { .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
3968         { .name = "-dbgbase",          .value = TCFG_DBGBASE },
3969         { .name = "-rtos",             .value = TCFG_RTOS },
3970         { .name = NULL, .value = -1 }
3971 };
3972
3973 static int target_configure(Jim_GetOptInfo *goi, struct target *target)
3974 {
3975         Jim_Nvp *n;
3976         Jim_Obj *o;
3977         jim_wide w;
3978         char *cp;
3979         int e;
3980
3981         /* parse config or cget options ... */
3982         while (goi->argc > 0) {
3983                 Jim_SetEmptyResult(goi->interp);
3984                 /* Jim_GetOpt_Debug(goi); */
3985
3986                 if (target->type->target_jim_configure) {
3987                         /* target defines a configure function */
3988                         /* target gets first dibs on parameters */
3989                         e = (*(target->type->target_jim_configure))(target, goi);
3990                         if (e == JIM_OK) {
3991                                 /* more? */
3992                                 continue;
3993                         }
3994                         if (e == JIM_ERR) {
3995                                 /* An error */
3996                                 return e;
3997                         }
3998                         /* otherwise we 'continue' below */
3999                 }
4000                 e = Jim_GetOpt_Nvp(goi, nvp_config_opts, &n);
4001                 if (e != JIM_OK) {
4002                         Jim_GetOpt_NvpUnknown(goi, nvp_config_opts, 0);
4003                         return e;
4004                 }
4005                 switch (n->value) {
4006                 case TCFG_TYPE:
4007                         /* not setable */
4008                         if (goi->isconfigure) {
4009                                 Jim_SetResultFormatted(goi->interp,
4010                                                 "not settable: %s", n->name);
4011                                 return JIM_ERR;
4012                         } else {
4013 no_params:
4014                                 if (goi->argc != 0) {
4015                                         Jim_WrongNumArgs(goi->interp,
4016                                                         goi->argc, goi->argv,
4017                                                         "NO PARAMS");
4018                                         return JIM_ERR;
4019                                 }
4020                         }
4021                         Jim_SetResultString(goi->interp,
4022                                         target_type_name(target), -1);
4023                         /* loop for more */
4024                         break;
4025                 case TCFG_EVENT:
4026                         if (goi->argc == 0) {
4027                                 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
4028                                 return JIM_ERR;
4029                         }
4030
4031                         e = Jim_GetOpt_Nvp(goi, nvp_target_event, &n);
4032                         if (e != JIM_OK) {
4033                                 Jim_GetOpt_NvpUnknown(goi, nvp_target_event, 1);
4034                                 return e;
4035                         }
4036
4037                         if (goi->isconfigure) {
4038                                 if (goi->argc != 1) {
4039                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
4040                                         return JIM_ERR;
4041                                 }
4042                         } else {
4043                                 if (goi->argc != 0) {
4044                                         Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
4045                                         return JIM_ERR;
4046                                 }
4047                         }
4048
4049                         {
4050                                 struct target_event_action *teap;
4051
4052                                 teap = target->event_action;
4053                                 /* replace existing? */
4054                                 while (teap) {
4055                                         if (teap->event == (enum target_event)n->value)
4056                                                 break;
4057                                         teap = teap->next;
4058                                 }
4059
4060                                 if (goi->isconfigure) {
4061                                         bool replace = true;
4062                                         if (teap == NULL) {
4063                                                 /* create new */
4064                                                 teap = calloc(1, sizeof(*teap));
4065                                                 replace = false;
4066                                         }
4067                                         teap->event = n->value;
4068                                         teap->interp = goi->interp;
4069                                         Jim_GetOpt_Obj(goi, &o);
4070                                         if (teap->body)
4071                                                 Jim_DecrRefCount(teap->interp, teap->body);
4072                                         teap->body  = Jim_DuplicateObj(goi->interp, o);
4073                                         /*
4074                                          * FIXME:
4075                                          *     Tcl/TK - "tk events" have a nice feature.
4076                                          *     See the "BIND" command.
4077                                          *    We should support that here.
4078                                          *     You can specify %X and %Y in the event code.
4079                                          *     The idea is: %T - target name.
4080                                          *     The idea is: %N - target number
4081                                          *     The idea is: %E - event name.
4082                                          */
4083                                         Jim_IncrRefCount(teap->body);
4084
4085                                         if (!replace) {
4086                                                 /* add to head of event list */
4087                                                 teap->next = target->event_action;
4088                                                 target->event_action = teap;
4089                                         }
4090                                         Jim_SetEmptyResult(goi->interp);
4091                                 } else {
4092                                         /* get */
4093                                         if (teap == NULL)
4094                                                 Jim_SetEmptyResult(goi->interp);
4095                                         else
4096                                                 Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
4097                                 }
4098                         }
4099                         /* loop for more */
4100                         break;
4101
4102                 case TCFG_WORK_AREA_VIRT:
4103                         if (goi->isconfigure) {
4104                                 target_free_all_working_areas(target);
4105                                 e = Jim_GetOpt_Wide(goi, &w);
4106                                 if (e != JIM_OK)
4107                                         return e;
4108                                 target->working_area_virt = w;
4109                                 target->working_area_virt_spec = true;
4110                         } else {
4111                                 if (goi->argc != 0)
4112                                         goto no_params;
4113                         }
4114                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
4115                         /* loop for more */
4116                         break;
4117
4118                 case TCFG_WORK_AREA_PHYS:
4119                         if (goi->isconfigure) {
4120                                 target_free_all_working_areas(target);
4121                                 e = Jim_GetOpt_Wide(goi, &w);
4122                                 if (e != JIM_OK)
4123                                         return e;
4124                                 target->working_area_phys = w;
4125                                 target->working_area_phys_spec = true;
4126                         } else {
4127                                 if (goi->argc != 0)
4128                                         goto no_params;
4129                         }
4130                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
4131                         /* loop for more */
4132                         break;
4133
4134                 case TCFG_WORK_AREA_SIZE:
4135                         if (goi->isconfigure) {
4136                                 target_free_all_working_areas(target);
4137                                 e = Jim_GetOpt_Wide(goi, &w);
4138                                 if (e != JIM_OK)
4139                                         return e;
4140                                 target->working_area_size = w;
4141                         } else {
4142                                 if (goi->argc != 0)
4143                                         goto no_params;
4144                         }
4145                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4146                         /* loop for more */
4147                         break;
4148
4149                 case TCFG_WORK_AREA_BACKUP:
4150                         if (goi->isconfigure) {
4151                                 target_free_all_working_areas(target);
4152                                 e = Jim_GetOpt_Wide(goi, &w);
4153                                 if (e != JIM_OK)
4154                                         return e;
4155                                 /* make this exactly 1 or 0 */
4156                                 target->backup_working_area = (!!w);
4157                         } else {
4158                                 if (goi->argc != 0)
4159                                         goto no_params;
4160                         }
4161                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
4162                         /* loop for more e*/
4163                         break;
4164
4165
4166                 case TCFG_ENDIAN:
4167                         if (goi->isconfigure) {
4168                                 e = Jim_GetOpt_Nvp(goi, nvp_target_endian, &n);
4169                                 if (e != JIM_OK) {
4170                                         Jim_GetOpt_NvpUnknown(goi, nvp_target_endian, 1);
4171                                         return e;
4172                                 }
4173                                 target->endianness = n->value;
4174                         } else {
4175                                 if (goi->argc != 0)
4176                                         goto no_params;
4177                         }
4178                         n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4179                         if (n->name == NULL) {
4180                                 target->endianness = TARGET_LITTLE_ENDIAN;
4181                                 n = Jim_Nvp_value2name_simple(nvp_target_endian, target->endianness);
4182                         }
4183                         Jim_SetResultString(goi->interp, n->name, -1);
4184                         /* loop for more */
4185                         break;
4186
4187                 case TCFG_VARIANT:
4188                         if (goi->isconfigure) {
4189                                 if (goi->argc < 1) {
4190                                         Jim_SetResultFormatted(goi->interp,
4191                                                                                    "%s ?STRING?",
4192                                                                                    n->name);
4193                                         return JIM_ERR;
4194                                 }
4195                                 if (target->variant)
4196                                         free((void *)(target->variant));
4197                                 e = Jim_GetOpt_String(goi, &cp, NULL);
4198                                 if (e != JIM_OK)
4199                                         return e;
4200                                 target->variant = strdup(cp);
4201                         } else {
4202                                 if (goi->argc != 0)
4203                                         goto no_params;
4204                         }
4205                         Jim_SetResultString(goi->interp, target->variant, -1);
4206                         /* loop for more */
4207                         break;
4208
4209                 case TCFG_COREID:
4210                         if (goi->isconfigure) {
4211                                 e = Jim_GetOpt_Wide(goi, &w);
4212                                 if (e != JIM_OK)
4213                                         return e;
4214                                 target->coreid = (int32_t)w;
4215                         } else {
4216                                 if (goi->argc != 0)
4217                                         goto no_params;
4218                         }
4219                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
4220                         /* loop for more */
4221                         break;
4222
4223                 case TCFG_CHAIN_POSITION:
4224                         if (goi->isconfigure) {
4225                                 Jim_Obj *o_t;
4226                                 struct jtag_tap *tap;
4227                                 target_free_all_working_areas(target);
4228                                 e = Jim_GetOpt_Obj(goi, &o_t);
4229                                 if (e != JIM_OK)
4230                                         return e;
4231                                 tap = jtag_tap_by_jim_obj(goi->interp, o_t);
4232                                 if (tap == NULL)
4233                                         return JIM_ERR;
4234                                 /* make this exactly 1 or 0 */
4235                                 target->tap = tap;
4236                         } else {
4237                                 if (goi->argc != 0)
4238                                         goto no_params;
4239                         }
4240                         Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
4241                         /* loop for more e*/
4242                         break;
4243                 case TCFG_DBGBASE:
4244                         if (goi->isconfigure) {
4245                                 e = Jim_GetOpt_Wide(goi, &w);
4246                                 if (e != JIM_OK)
4247                                         return e;
4248                                 target->dbgbase = (uint32_t)w;
4249                                 target->dbgbase_set = true;
4250                         } else {
4251                                 if (goi->argc != 0)
4252                                         goto no_params;
4253                         }
4254                         Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
4255                         /* loop for more */
4256                         break;
4257
4258                 case TCFG_RTOS:
4259                         /* RTOS */
4260                         {
4261                                 int result = rtos_create(goi, target);
4262                                 if (result != JIM_OK)
4263                                         return result;
4264                         }
4265                         /* loop for more */
4266                         break;
4267                 }
4268         } /* while (goi->argc) */
4269
4270
4271                 /* done - we return */
4272         return JIM_OK;
4273 }
4274
4275 static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
4276 {
4277         Jim_GetOptInfo goi;
4278
4279         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4280         goi.isconfigure = !strcmp(Jim_GetString(argv[0], NULL), "configure");
4281         int need_args = 1 + goi.isconfigure;
4282         if (goi.argc < need_args) {
4283                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
4284                         goi.isconfigure
4285                                 ? "missing: -option VALUE ..."
4286                                 : "missing: -option ...");
4287                 return JIM_ERR;
4288         }
4289         struct target *target = Jim_CmdPrivData(goi.interp);
4290         return target_configure(&goi, target);
4291 }
4292
4293 static int jim_target_mw(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4294 {
4295         const char *cmd_name = Jim_GetString(argv[0], NULL);
4296
4297         Jim_GetOptInfo goi;
4298         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4299
4300         if (goi.argc < 2 || goi.argc > 4) {
4301                 Jim_SetResultFormatted(goi.interp,
4302                                 "usage: %s [phys] <address> <data> [<count>]", cmd_name);
4303                 return JIM_ERR;
4304         }
4305
4306         target_write_fn fn;
4307         fn = target_write_memory_fast;
4308
4309         int e;
4310         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4311                 /* consume it */
4312                 struct Jim_Obj *obj;
4313                 e = Jim_GetOpt_Obj(&goi, &obj);
4314                 if (e != JIM_OK)
4315                         return e;
4316
4317                 fn = target_write_phys_memory;
4318         }
4319
4320         jim_wide a;
4321         e = Jim_GetOpt_Wide(&goi, &a);
4322         if (e != JIM_OK)
4323                 return e;
4324
4325         jim_wide b;
4326         e = Jim_GetOpt_Wide(&goi, &b);
4327         if (e != JIM_OK)
4328                 return e;
4329
4330         jim_wide c = 1;
4331         if (goi.argc == 1) {
4332                 e = Jim_GetOpt_Wide(&goi, &c);
4333                 if (e != JIM_OK)
4334                         return e;
4335         }
4336
4337         /* all args must be consumed */
4338         if (goi.argc != 0)
4339                 return JIM_ERR;
4340
4341         struct target *target = Jim_CmdPrivData(goi.interp);
4342         unsigned data_size;
4343         if (strcasecmp(cmd_name, "mww") == 0)
4344                 data_size = 4;
4345         else if (strcasecmp(cmd_name, "mwh") == 0)
4346                 data_size = 2;
4347         else if (strcasecmp(cmd_name, "mwb") == 0)
4348                 data_size = 1;
4349         else {
4350                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4351                 return JIM_ERR;
4352         }
4353
4354         return (target_fill_mem(target, a, fn, data_size, b, c) == ERROR_OK) ? JIM_OK : JIM_ERR;
4355 }
4356
4357 /**
4358 *  @brief Reads an array of words/halfwords/bytes from target memory starting at specified address.
4359 *
4360 *  Usage: mdw [phys] <address> [<count>] - for 32 bit reads
4361 *         mdh [phys] <address> [<count>] - for 16 bit reads
4362 *         mdb [phys] <address> [<count>] - for  8 bit reads
4363 *
4364 *  Count defaults to 1.
4365 *
4366 *  Calls target_read_memory or target_read_phys_memory depending on
4367 *  the presence of the "phys" argument
4368 *  Reads the target memory in blocks of max. 32 bytes, and returns an array of ints formatted
4369 *  to int representation in base16.
4370 *  Also outputs read data in a human readable form using command_print
4371 *
4372 *  @param phys if present target_read_phys_memory will be used instead of target_read_memory
4373 *  @param address address where to start the read. May be specified in decimal or hex using the standard "0x" prefix
4374 *  @param count optional count parameter to read an array of values. If not specified, defaults to 1.
4375 *  @returns:  JIM_ERR on error or JIM_OK on success and sets the result string to an array of ascii formatted numbers
4376 *  on success, with [<count>] number of elements.
4377 *
4378 *  In case of little endian target:
4379 *      Example1: "mdw 0x00000000"  returns "10123456"
4380 *      Exmaple2: "mdh 0x00000000 1" returns "3456"
4381 *      Example3: "mdb 0x00000000" returns "56"
4382 *      Example4: "mdh 0x00000000 2" returns "3456 1012"
4383 *      Example5: "mdb 0x00000000 3" returns "56 34 12"
4384 **/
4385 static int jim_target_md(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4386 {
4387         const char *cmd_name = Jim_GetString(argv[0], NULL);
4388
4389         Jim_GetOptInfo goi;
4390         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4391
4392         if ((goi.argc < 1) || (goi.argc > 3)) {
4393                 Jim_SetResultFormatted(goi.interp,
4394                                 "usage: %s [phys] <address> [<count>]", cmd_name);
4395                 return JIM_ERR;
4396         }
4397
4398         int (*fn)(struct target *target,
4399                         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
4400         fn = target_read_memory;
4401
4402         int e;
4403         if (strcmp(Jim_GetString(argv[1], NULL), "phys") == 0) {
4404                 /* consume it */
4405                 struct Jim_Obj *obj;
4406                 e = Jim_GetOpt_Obj(&goi, &obj);
4407                 if (e != JIM_OK)
4408                         return e;
4409
4410                 fn = target_read_phys_memory;
4411         }
4412
4413         /* Read address parameter */
4414         jim_wide addr;
4415         e = Jim_GetOpt_Wide(&goi, &addr);
4416         if (e != JIM_OK)
4417                 return JIM_ERR;
4418
4419         /* If next parameter exists, read it out as the count parameter, if not, set it to 1 (default) */
4420         jim_wide count;
4421         if (goi.argc == 1) {
4422                 e = Jim_GetOpt_Wide(&goi, &count);
4423                 if (e != JIM_OK)
4424                         return JIM_ERR;
4425         } else
4426                 count = 1;
4427
4428         /* all args must be consumed */
4429         if (goi.argc != 0)
4430                 return JIM_ERR;
4431
4432         jim_wide dwidth = 1; /* shut up gcc */
4433         if (strcasecmp(cmd_name, "mdw") == 0)
4434                 dwidth = 4;
4435         else if (strcasecmp(cmd_name, "mdh") == 0)
4436                 dwidth = 2;
4437         else if (strcasecmp(cmd_name, "mdb") == 0)
4438                 dwidth = 1;
4439         else {
4440                 LOG_ERROR("command '%s' unknown: ", cmd_name);
4441                 return JIM_ERR;
4442         }
4443
4444         /* convert count to "bytes" */
4445         int bytes = count * dwidth;
4446
4447         struct target *target = Jim_CmdPrivData(goi.interp);
4448         uint8_t  target_buf[32];
4449         jim_wide x, y, z;
4450         while (bytes > 0) {
4451                 y = (bytes < 16) ? bytes : 16; /* y = min(bytes, 16); */
4452
4453                 /* Try to read out next block */
4454                 e = fn(target, addr, dwidth, y / dwidth, target_buf);
4455
4456                 if (e != ERROR_OK) {
4457                         Jim_SetResultFormatted(interp, "error reading target @ 0x%08lx", (long)addr);
4458                         return JIM_ERR;
4459                 }
4460
4461                 command_print_sameline(NULL, "0x%08x ", (int)(addr));
4462                 switch (dwidth) {
4463                 case 4:
4464                         for (x = 0; x < 16 && x < y; x += 4) {
4465                                 z = target_buffer_get_u32(target, &(target_buf[x]));
4466                                 command_print_sameline(NULL, "%08x ", (int)(z));
4467                         }
4468                         for (; (x < 16) ; x += 4)
4469                                 command_print_sameline(NULL, "         ");
4470                         break;
4471                 case 2:
4472                         for (x = 0; x < 16 && x < y; x += 2) {
4473                                 z = target_buffer_get_u16(target, &(target_buf[x]));
4474                                 command_print_sameline(NULL, "%04x ", (int)(z));
4475                         }
4476                         for (; (x < 16) ; x += 2)
4477                                 command_print_sameline(NULL, "     ");
4478                         break;
4479                 case 1:
4480                 default:
4481                         for (x = 0 ; (x < 16) && (x < y) ; x += 1) {
4482                                 z = target_buffer_get_u8(target, &(target_buf[x]));
4483                                 command_print_sameline(NULL, "%02x ", (int)(z));
4484                         }
4485                         for (; (x < 16) ; x += 1)
4486                                 command_print_sameline(NULL, "   ");
4487                         break;
4488                 }
4489                 /* ascii-ify the bytes */
4490                 for (x = 0 ; x < y ; x++) {
4491                         if ((target_buf[x] >= 0x20) &&
4492                                 (target_buf[x] <= 0x7e)) {
4493                                 /* good */
4494                         } else {
4495                                 /* smack it */
4496                                 target_buf[x] = '.';
4497                         }
4498                 }
4499                 /* space pad  */
4500                 while (x < 16) {
4501                         target_buf[x] = ' ';
4502                         x++;
4503                 }
4504                 /* terminate */
4505                 target_buf[16] = 0;
4506                 /* print - with a newline */
4507                 command_print_sameline(NULL, "%s\n", target_buf);
4508                 /* NEXT... */
4509                 bytes -= 16;
4510                 addr += 16;
4511         }
4512         return JIM_OK;
4513 }
4514
4515 static int jim_target_mem2array(Jim_Interp *interp,
4516                 int argc, Jim_Obj *const *argv)
4517 {
4518         struct target *target = Jim_CmdPrivData(interp);
4519         return target_mem2array(interp, target, argc - 1, argv + 1);
4520 }
4521
4522 static int jim_target_array2mem(Jim_Interp *interp,
4523                 int argc, Jim_Obj *const *argv)
4524 {
4525         struct target *target = Jim_CmdPrivData(interp);
4526         return target_array2mem(interp, target, argc - 1, argv + 1);
4527 }
4528
4529 static int jim_target_tap_disabled(Jim_Interp *interp)
4530 {
4531         Jim_SetResultFormatted(interp, "[TAP is disabled]");
4532         return JIM_ERR;
4533 }
4534
4535 static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4536 {
4537         if (argc != 1) {
4538                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4539                 return JIM_ERR;
4540         }
4541         struct target *target = Jim_CmdPrivData(interp);
4542         if (!target->tap->enabled)
4543                 return jim_target_tap_disabled(interp);
4544
4545         int e = target->type->examine(target);
4546         if (e != ERROR_OK)
4547                 return JIM_ERR;
4548         return JIM_OK;
4549 }
4550
4551 static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4552 {
4553         if (argc != 1) {
4554                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4555                 return JIM_ERR;
4556         }
4557         struct target *target = Jim_CmdPrivData(interp);
4558
4559         if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
4560                 return JIM_ERR;
4561
4562         return JIM_OK;
4563 }
4564
4565 static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4566 {
4567         if (argc != 1) {
4568                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4569                 return JIM_ERR;
4570         }
4571         struct target *target = Jim_CmdPrivData(interp);
4572         if (!target->tap->enabled)
4573                 return jim_target_tap_disabled(interp);
4574
4575         int e;
4576         if (!(target_was_examined(target)))
4577                 e = ERROR_TARGET_NOT_EXAMINED;
4578         else
4579                 e = target->type->poll(target);
4580         if (e != ERROR_OK)
4581                 return JIM_ERR;
4582         return JIM_OK;
4583 }
4584
4585 static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4586 {
4587         Jim_GetOptInfo goi;
4588         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4589
4590         if (goi.argc != 2) {
4591                 Jim_WrongNumArgs(interp, 0, argv,
4592                                 "([tT]|[fF]|assert|deassert) BOOL");
4593                 return JIM_ERR;
4594         }
4595
4596         Jim_Nvp *n;
4597         int e = Jim_GetOpt_Nvp(&goi, nvp_assert, &n);
4598         if (e != JIM_OK) {
4599                 Jim_GetOpt_NvpUnknown(&goi, nvp_assert, 1);
4600                 return e;
4601         }
4602         /* the halt or not param */
4603         jim_wide a;
4604         e = Jim_GetOpt_Wide(&goi, &a);
4605         if (e != JIM_OK)
4606                 return e;
4607
4608         struct target *target = Jim_CmdPrivData(goi.interp);
4609         if (!target->tap->enabled)
4610                 return jim_target_tap_disabled(interp);
4611         if (!(target_was_examined(target))) {
4612                 LOG_ERROR("Target not examined yet");
4613                 return ERROR_TARGET_NOT_EXAMINED;
4614         }
4615         if (!target->type->assert_reset || !target->type->deassert_reset) {
4616                 Jim_SetResultFormatted(interp,
4617                                 "No target-specific reset for %s",
4618                                 target_name(target));
4619                 return JIM_ERR;
4620         }
4621         /* determine if we should halt or not. */
4622         target->reset_halt = !!a;
4623         /* When this happens - all workareas are invalid. */
4624         target_free_all_working_areas_restore(target, 0);
4625
4626         /* do the assert */
4627         if (n->value == NVP_ASSERT)
4628                 e = target->type->assert_reset(target);
4629         else
4630                 e = target->type->deassert_reset(target);
4631         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4632 }
4633
4634 static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4635 {
4636         if (argc != 1) {
4637                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4638                 return JIM_ERR;
4639         }
4640         struct target *target = Jim_CmdPrivData(interp);
4641         if (!target->tap->enabled)
4642                 return jim_target_tap_disabled(interp);
4643         int e = target->type->halt(target);
4644         return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
4645 }
4646
4647 static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4648 {
4649         Jim_GetOptInfo goi;
4650         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4651
4652         /* params:  <name>  statename timeoutmsecs */
4653         if (goi.argc != 2) {
4654                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4655                 Jim_SetResultFormatted(goi.interp,
4656                                 "%s <state_name> <timeout_in_msec>", cmd_name);
4657                 return JIM_ERR;
4658         }
4659
4660         Jim_Nvp *n;
4661         int e = Jim_GetOpt_Nvp(&goi, nvp_target_state, &n);
4662         if (e != JIM_OK) {
4663                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_state, 1);
4664                 return e;
4665         }
4666         jim_wide a;
4667         e = Jim_GetOpt_Wide(&goi, &a);
4668         if (e != JIM_OK)
4669                 return e;
4670         struct target *target = Jim_CmdPrivData(interp);
4671         if (!target->tap->enabled)
4672                 return jim_target_tap_disabled(interp);
4673
4674         e = target_wait_state(target, n->value, a);
4675         if (e != ERROR_OK) {
4676                 Jim_Obj *eObj = Jim_NewIntObj(interp, e);
4677                 Jim_SetResultFormatted(goi.interp,
4678                                 "target: %s wait %s fails (%#s) %s",
4679                                 target_name(target), n->name,
4680                                 eObj, target_strerror_safe(e));
4681                 Jim_FreeNewObj(interp, eObj);
4682                 return JIM_ERR;
4683         }
4684         return JIM_OK;
4685 }
4686 /* List for human, Events defined for this target.
4687  * scripts/programs should use 'name cget -event NAME'
4688  */
4689 static int jim_target_event_list(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4690 {
4691         struct command_context *cmd_ctx = current_command_context(interp);
4692         assert(cmd_ctx != NULL);
4693
4694         struct target *target = Jim_CmdPrivData(interp);
4695         struct target_event_action *teap = target->event_action;
4696         command_print(cmd_ctx, "Event actions for target (%d) %s\n",
4697                                    target->target_number,
4698                                    target_name(target));
4699         command_print(cmd_ctx, "%-25s | Body", "Event");
4700         command_print(cmd_ctx, "------------------------- | "
4701                         "----------------------------------------");
4702         while (teap) {
4703                 Jim_Nvp *opt = Jim_Nvp_value2name_simple(nvp_target_event, teap->event);
4704                 command_print(cmd_ctx, "%-25s | %s",
4705                                 opt->name, Jim_GetString(teap->body, NULL));
4706                 teap = teap->next;
4707         }
4708         command_print(cmd_ctx, "***END***");
4709         return JIM_OK;
4710 }
4711 static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4712 {
4713         if (argc != 1) {
4714                 Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
4715                 return JIM_ERR;
4716         }
4717         struct target *target = Jim_CmdPrivData(interp);
4718         Jim_SetResultString(interp, target_state_name(target), -1);
4719         return JIM_OK;
4720 }
4721 static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
4722 {
4723         Jim_GetOptInfo goi;
4724         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
4725         if (goi.argc != 1) {
4726                 const char *cmd_name = Jim_GetString(argv[0], NULL);
4727                 Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
4728                 return JIM_ERR;
4729         }
4730         Jim_Nvp *n;
4731         int e = Jim_GetOpt_Nvp(&goi, nvp_target_event, &n);
4732         if (e != JIM_OK) {
4733                 Jim_GetOpt_NvpUnknown(&goi, nvp_target_event, 1);
4734                 return e;
4735         }
4736         struct target *target = Jim_CmdPrivData(interp);
4737         target_handle_event(target, n->value);
4738         return JIM_OK;
4739 }
4740
4741 static const struct command_registration target_instance_command_handlers[] = {
4742         {
4743                 .name = "configure",
4744                 .mode = COMMAND_CONFIG,
4745                 .jim_handler = jim_target_configure,
4746                 .help  = "configure a new target for use",
4747                 .usage = "[target_attribute ...]",
4748         },
4749         {
4750                 .name = "cget",
4751                 .mode = COMMAND_ANY,
4752                 .jim_handler = jim_target_configure,
4753                 .help  = "returns the specified target attribute",
4754                 .usage = "target_attribute",
4755         },
4756         {
4757                 .name = "mww",
4758                 .mode = COMMAND_EXEC,
4759                 .jim_handler = jim_target_mw,
4760                 .help = "Write 32-bit word(s) to target memory",
4761                 .usage = "address data [count]",
4762         },
4763         {
4764                 .name = "mwh",
4765                 .mode = COMMAND_EXEC,
4766                 .jim_handler = jim_target_mw,
4767                 .help = "Write 16-bit half-word(s) to target memory",
4768                 .usage = "address data [count]",
4769         },
4770         {
4771                 .name = "mwb",
4772                 .mode = COMMAND_EXEC,
4773                 .jim_handler = jim_target_mw,
4774                 .help = "Write byte(s) to target memory",
4775                 .usage = "address data [count]",
4776         },
4777         {
4778                 .name = "mdw",
4779                 .mode = COMMAND_EXEC,
4780                 .jim_handler = jim_target_md,
4781                 .help = "Display target memory as 32-bit words",
4782                 .usage = "address [count]",
4783         },
4784         {
4785                 .name = "mdh",
4786                 .mode = COMMAND_EXEC,
4787                 .jim_handler = jim_target_md,
4788                 .help = "Display target memory as 16-bit half-words",
4789                 .usage = "address [count]",
4790         },
4791         {
4792                 .name = "mdb",
4793                 .mode = COMMAND_EXEC,
4794                 .jim_handler = jim_target_md,
4795                 .help = "Display target memory as 8-bit bytes",
4796                 .usage = "address [count]",
4797         },
4798         {
4799                 .name = "array2mem",
4800                 .mode = COMMAND_EXEC,
4801                 .jim_handler = jim_target_array2mem,
4802                 .help = "Writes Tcl array of 8/16/32 bit numbers "
4803                         "to target memory",
4804                 .usage = "arrayname bitwidth address count",
4805         },
4806         {
4807                 .name = "mem2array",
4808                 .mode = COMMAND_EXEC,
4809                 .jim_handler = jim_target_mem2array,
4810                 .help = "Loads Tcl array of 8/16/32 bit numbers "
4811                         "from target memory",
4812                 .usage = "arrayname bitwidth address count",
4813         },
4814         {
4815                 .name = "eventlist",
4816                 .mode = COMMAND_EXEC,
4817                 .jim_handler = jim_target_event_list,
4818                 .help = "displays a table of events defined for this target",
4819         },
4820         {
4821                 .name = "curstate",
4822                 .mode = COMMAND_EXEC,
4823                 .jim_handler = jim_target_current_state,
4824                 .help = "displays the current state of this target",
4825         },
4826         {
4827                 .name = "arp_examine",
4828                 .mode = COMMAND_EXEC,
4829                 .jim_handler = jim_target_examine,
4830                 .help = "used internally for reset processing",
4831         },
4832         {
4833                 .name = "arp_halt_gdb",
4834                 .mode = COMMAND_EXEC,
4835                 .jim_handler = jim_target_halt_gdb,
4836                 .help = "used internally for reset processing to halt GDB",
4837         },
4838         {
4839                 .name = "arp_poll",
4840                 .mode = COMMAND_EXEC,
4841                 .jim_handler = jim_target_poll,
4842                 .help = "used internally for reset processing",
4843         },
4844         {
4845                 .name = "arp_reset",
4846                 .mode = COMMAND_EXEC,
4847                 .jim_handler = jim_target_reset,
4848                 .help = "used internally for reset processing",
4849         },
4850         {
4851                 .name = "arp_halt",
4852                 .mode = COMMAND_EXEC,
4853                 .jim_handler = jim_target_halt,
4854                 .help = "used internally for reset processing",
4855         },
4856         {
4857                 .name = "arp_waitstate",
4858                 .mode = COMMAND_EXEC,
4859                 .jim_handler = jim_target_wait_state,
4860                 .help = "used internally for reset processing",
4861         },
4862         {
4863                 .name = "invoke-event",
4864                 .mode = COMMAND_EXEC,
4865                 .jim_handler = jim_target_invoke_event,
4866                 .help = "invoke handler for specified event",
4867                 .usage = "event_name",
4868         },
4869         COMMAND_REGISTRATION_DONE
4870 };
4871
4872 static int target_create(Jim_GetOptInfo *goi)
4873 {
4874         Jim_Obj *new_cmd;
4875         Jim_Cmd *cmd;
4876         const char *cp;
4877         char *cp2;
4878         int e;
4879         int x;
4880         struct target *target;
4881         struct command_context *cmd_ctx;
4882
4883         cmd_ctx = current_command_context(goi->interp);
4884         assert(cmd_ctx != NULL);
4885
4886         if (goi->argc < 3) {
4887                 Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
4888                 return JIM_ERR;
4889         }
4890
4891         /* COMMAND */
4892         Jim_GetOpt_Obj(goi, &new_cmd);
4893         /* does this command exist? */
4894         cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_ERRMSG);
4895         if (cmd) {
4896                 cp = Jim_GetString(new_cmd, NULL);
4897                 Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
4898                 return JIM_ERR;
4899         }
4900
4901         /* TYPE */
4902         e = Jim_GetOpt_String(goi, &cp2, NULL);
4903         if (e != JIM_OK)
4904                 return e;
4905         cp = cp2;
4906         /* now does target type exist */
4907         for (x = 0 ; target_types[x] ; x++) {
4908                 if (0 == strcmp(cp, target_types[x]->name)) {
4909                         /* found */
4910                         break;
4911                 }
4912         }
4913         if (target_types[x] == NULL) {
4914                 Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
4915                 for (x = 0 ; target_types[x] ; x++) {
4916                         if (target_types[x + 1]) {
4917                                 Jim_AppendStrings(goi->interp,
4918                                                                    Jim_GetResult(goi->interp),
4919                                                                    target_types[x]->name,
4920                                                                    ", ", NULL);
4921                         } else {
4922                                 Jim_AppendStrings(goi->interp,
4923                                                                    Jim_GetResult(goi->interp),
4924                                                                    " or ",
4925                                                                    target_types[x]->name, NULL);
4926                         }
4927                 }
4928                 return JIM_ERR;
4929         }
4930
4931         /* Create it */
4932         target = calloc(1, sizeof(struct target));
4933         /* set target number */
4934         target->target_number = new_target_number();
4935
4936         /* allocate memory for each unique target type */
4937         target->type = (struct target_type *)calloc(1, sizeof(struct target_type));
4938
4939         memcpy(target->type, target_types[x], sizeof(struct target_type));
4940
4941         /* will be set by "-endian" */
4942         target->endianness = TARGET_ENDIAN_UNKNOWN;
4943
4944         /* default to first core, override with -coreid */
4945         target->coreid = 0;
4946
4947         target->working_area        = 0x0;
4948         target->working_area_size   = 0x0;
4949         target->working_areas       = NULL;
4950         target->backup_working_area = 0;
4951
4952         target->state               = TARGET_UNKNOWN;
4953         target->debug_reason        = DBG_REASON_UNDEFINED;
4954         target->reg_cache           = NULL;
4955         target->breakpoints         = NULL;
4956         target->watchpoints         = NULL;
4957         target->next                = NULL;
4958         target->arch_info           = NULL;
4959
4960         target->display             = 1;
4961
4962         target->halt_issued                     = false;
4963
4964         /* initialize trace information */
4965         target->trace_info = malloc(sizeof(struct trace));
4966         target->trace_info->num_trace_points         = 0;
4967         target->trace_info->trace_points_size        = 0;
4968         target->trace_info->trace_points             = NULL;
4969         target->trace_info->trace_history_size       = 0;
4970         target->trace_info->trace_history            = NULL;
4971         target->trace_info->trace_history_pos        = 0;
4972         target->trace_info->trace_history_overflowed = 0;
4973
4974         target->dbgmsg          = NULL;
4975         target->dbg_msg_enabled = 0;
4976
4977         target->endianness = TARGET_ENDIAN_UNKNOWN;
4978
4979         target->rtos = NULL;
4980         target->rtos_auto_detect = false;
4981
4982         /* Do the rest as "configure" options */
4983         goi->isconfigure = 1;
4984         e = target_configure(goi, target);
4985
4986         if (target->tap == NULL) {
4987                 Jim_SetResultString(goi->interp, "-chain-position required when creating target", -1);
4988                 e = JIM_ERR;
4989         }
4990
4991         if (e != JIM_OK) {
4992                 free(target->type);
4993                 free(target);
4994                 return e;
4995         }
4996
4997         if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
4998                 /* default endian to little if not specified */
4999                 target->endianness = TARGET_LITTLE_ENDIAN;
5000         }
5001
5002         /* incase variant is not set */
5003         if (!target->variant)
5004                 target->variant = strdup("");
5005
5006         cp = Jim_GetString(new_cmd, NULL);
5007         target->cmd_name = strdup(cp);
5008
5009         /* create the target specific commands */
5010         if (target->type->commands) {
5011                 e = register_commands(cmd_ctx, NULL, target->type->commands);
5012                 if (ERROR_OK != e)
5013                         LOG_ERROR("unable to register '%s' commands", cp);
5014         }
5015         if (target->type->target_create)
5016                 (*(target->type->target_create))(target, goi->interp);
5017
5018         /* append to end of list */
5019         {
5020                 struct target **tpp;
5021                 tpp = &(all_targets);
5022                 while (*tpp)
5023                         tpp = &((*tpp)->next);
5024                 *tpp = target;
5025         }
5026
5027         /* now - create the new target name command */
5028         const const struct command_registration target_subcommands[] = {
5029                 {
5030                         .chain = target_instance_command_handlers,
5031                 },
5032                 {
5033                         .chain = target->type->commands,
5034                 },
5035                 COMMAND_REGISTRATION_DONE
5036         };
5037         const const struct command_registration target_commands[] = {
5038                 {
5039                         .name = cp,
5040                         .mode = COMMAND_ANY,
5041                         .help = "target command group",
5042                         .usage = "",
5043                         .chain = target_subcommands,
5044                 },
5045                 COMMAND_REGISTRATION_DONE
5046         };
5047         e = register_commands(cmd_ctx, NULL, target_commands);
5048         if (ERROR_OK != e)
5049                 return JIM_ERR;
5050
5051         struct command *c = command_find_in_context(cmd_ctx, cp);
5052         assert(c);
5053         command_set_handler_data(c, target);
5054
5055         return (ERROR_OK == e) ? JIM_OK : JIM_ERR;
5056 }
5057
5058 static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5059 {
5060         if (argc != 1) {
5061                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5062                 return JIM_ERR;
5063         }
5064         struct command_context *cmd_ctx = current_command_context(interp);
5065         assert(cmd_ctx != NULL);
5066
5067         Jim_SetResultString(interp, get_current_target(cmd_ctx)->cmd_name, -1);
5068         return JIM_OK;
5069 }
5070
5071 static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5072 {
5073         if (argc != 1) {
5074                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5075                 return JIM_ERR;
5076         }
5077         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5078         for (unsigned x = 0; NULL != target_types[x]; x++) {
5079                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5080                         Jim_NewStringObj(interp, target_types[x]->name, -1));
5081         }
5082         return JIM_OK;
5083 }
5084
5085 static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5086 {
5087         if (argc != 1) {
5088                 Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
5089                 return JIM_ERR;
5090         }
5091         Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
5092         struct target *target = all_targets;
5093         while (target) {
5094                 Jim_ListAppendElement(interp, Jim_GetResult(interp),
5095                         Jim_NewStringObj(interp, target_name(target), -1));
5096                 target = target->next;
5097         }
5098         return JIM_OK;
5099 }
5100
5101 static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5102 {
5103         int i;
5104         const char *targetname;
5105         int retval, len;
5106         struct target *target = (struct target *) NULL;
5107         struct target_list *head, *curr, *new;
5108         curr = (struct target_list *) NULL;
5109         head = (struct target_list *) NULL;
5110
5111         retval = 0;
5112         LOG_DEBUG("%d", argc);
5113         /* argv[1] = target to associate in smp
5114          * argv[2] = target to assoicate in smp
5115          * argv[3] ...
5116          */
5117
5118         for (i = 1; i < argc; i++) {
5119
5120                 targetname = Jim_GetString(argv[i], &len);
5121                 target = get_target(targetname);
5122                 LOG_DEBUG("%s ", targetname);
5123                 if (target) {
5124                         new = malloc(sizeof(struct target_list));
5125                         new->target = target;
5126                         new->next = (struct target_list *)NULL;
5127                         if (head == (struct target_list *)NULL) {
5128                                 head = new;
5129                                 curr = head;
5130                         } else {
5131                                 curr->next = new;
5132                                 curr = new;
5133                         }
5134                 }
5135         }
5136         /*  now parse the list of cpu and put the target in smp mode*/
5137         curr = head;
5138
5139         while (curr != (struct target_list *)NULL) {
5140                 target = curr->target;
5141                 target->smp = 1;
5142                 target->head = head;
5143                 curr = curr->next;
5144         }
5145
5146         if (target && target->rtos)
5147                 retval = rtos_smp_init(head->target);
5148
5149         return retval;
5150 }
5151
5152
5153 static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5154 {
5155         Jim_GetOptInfo goi;
5156         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5157         if (goi.argc < 3) {
5158                 Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
5159                         "<name> <target_type> [<target_options> ...]");
5160                 return JIM_ERR;
5161         }
5162         return target_create(&goi);
5163 }
5164
5165 static int jim_target_number(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5166 {
5167         Jim_GetOptInfo goi;
5168         Jim_GetOpt_Setup(&goi, interp, argc - 1, argv + 1);
5169
5170         /* It's OK to remove this mechanism sometime after August 2010 or so */
5171         LOG_WARNING("don't use numbers as target identifiers; use names");
5172         if (goi.argc != 1) {
5173                 Jim_SetResultFormatted(goi.interp, "usage: target number <number>");
5174                 return JIM_ERR;
5175         }
5176         jim_wide w;
5177         int e = Jim_GetOpt_Wide(&goi, &w);
5178         if (e != JIM_OK)
5179                 return JIM_ERR;
5180
5181         struct target *target;
5182         for (target = all_targets; NULL != target; target = target->next) {
5183                 if (target->target_number != w)
5184                         continue;
5185
5186                 Jim_SetResultString(goi.interp, target_name(target), -1);
5187                 return JIM_OK;
5188         }
5189         {
5190                 Jim_Obj *wObj = Jim_NewIntObj(goi.interp, w);
5191                 Jim_SetResultFormatted(goi.interp,
5192                         "Target: number %#s does not exist", wObj);
5193                 Jim_FreeNewObj(interp, wObj);
5194         }
5195         return JIM_ERR;
5196 }
5197
5198 static int jim_target_count(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
5199 {
5200         if (argc != 1) {
5201                 Jim_WrongNumArgs(interp, 1, argv, "<no parameters>");
5202                 return JIM_ERR;
5203         }
5204         unsigned count = 0;
5205         struct target *target = all_targets;
5206         while (NULL != target) {
5207                 target = target->next;
5208                 count++;
5209         }
5210         Jim_SetResult(interp, Jim_NewIntObj(interp, count));
5211         return JIM_OK;
5212 }
5213
5214 static const struct command_registration target_subcommand_handlers[] = {
5215         {
5216                 .name = "init",
5217                 .mode = COMMAND_CONFIG,
5218                 .handler = handle_target_init_command,
5219                 .help = "initialize targets",
5220         },
5221         {
5222                 .name = "create",
5223                 /* REVISIT this should be COMMAND_CONFIG ... */
5224                 .mode = COMMAND_ANY,
5225                 .jim_handler = jim_target_create,
5226                 .usage = "name type '-chain-position' name [options ...]",
5227                 .help = "Creates and selects a new target",
5228         },
5229         {
5230                 .name = "current",
5231                 .mode = COMMAND_ANY,
5232                 .jim_handler = jim_target_current,
5233                 .help = "Returns the currently selected target",
5234         },
5235         {
5236                 .name = "types",
5237                 .mode = COMMAND_ANY,
5238                 .jim_handler = jim_target_types,
5239                 .help = "Returns the available target types as "
5240                                 "a list of strings",
5241         },
5242         {
5243                 .name = "names",
5244                 .mode = COMMAND_ANY,
5245                 .jim_handler = jim_target_names,
5246                 .help = "Returns the names of all targets as a list of strings",
5247         },
5248         {
5249                 .name = "number",
5250                 .mode = COMMAND_ANY,
5251                 .jim_handler = jim_target_number,
5252                 .usage = "number",
5253                 .help = "Returns the name of the numbered target "
5254                         "(DEPRECATED)",
5255         },
5256         {
5257                 .name = "count",
5258                 .mode = COMMAND_ANY,
5259                 .jim_handler = jim_target_count,
5260                 .help = "Returns the number of targets as an integer "
5261                         "(DEPRECATED)",
5262         },
5263         {
5264                 .name = "smp",
5265                 .mode = COMMAND_ANY,
5266                 .jim_handler = jim_target_smp,
5267                 .usage = "targetname1 targetname2 ...",
5268                 .help = "gather several target in a smp list"
5269         },
5270
5271         COMMAND_REGISTRATION_DONE
5272 };
5273
5274 struct FastLoad {
5275         uint32_t address;
5276         uint8_t *data;
5277         int length;
5278
5279 };
5280
5281 static int fastload_num;
5282 static struct FastLoad *fastload;
5283
5284 static void free_fastload(void)
5285 {
5286         if (fastload != NULL) {
5287                 int i;
5288                 for (i = 0; i < fastload_num; i++) {
5289                         if (fastload[i].data)
5290                                 free(fastload[i].data);
5291                 }
5292                 free(fastload);
5293                 fastload = NULL;
5294         }
5295 }
5296
5297 COMMAND_HANDLER(handle_fast_load_image_command)
5298 {
5299         uint8_t *buffer;
5300         size_t buf_cnt;
5301         uint32_t image_size;
5302         uint32_t min_address = 0;
5303         uint32_t max_address = 0xffffffff;
5304         int i;
5305
5306         struct image image;
5307
5308         int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
5309                         &image, &min_address, &max_address);
5310         if (ERROR_OK != retval)
5311                 return retval;
5312
5313         struct duration bench;
5314         duration_start(&bench);
5315
5316         retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
5317         if (retval != ERROR_OK)
5318                 return retval;
5319
5320         image_size = 0x0;
5321         retval = ERROR_OK;
5322         fastload_num = image.num_sections;
5323         fastload = (struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
5324         if (fastload == NULL) {
5325                 command_print(CMD_CTX, "out of memory");
5326                 image_close(&image);
5327                 return ERROR_FAIL;
5328         }
5329         memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
5330         for (i = 0; i < image.num_sections; i++) {
5331                 buffer = malloc(image.sections[i].size);
5332                 if (buffer == NULL) {
5333                         command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5334                                                   (int)(image.sections[i].size));
5335                         retval = ERROR_FAIL;
5336                         break;
5337                 }
5338
5339                 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
5340                 if (retval != ERROR_OK) {
5341                         free(buffer);
5342                         break;
5343                 }
5344
5345                 uint32_t offset = 0;
5346                 uint32_t length = buf_cnt;
5347
5348                 /* DANGER!!! beware of unsigned comparision here!!! */
5349
5350                 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
5351                                 (image.sections[i].base_address < max_address)) {
5352                         if (image.sections[i].base_address < min_address) {
5353                                 /* clip addresses below */
5354                                 offset += min_address-image.sections[i].base_address;
5355                                 length -= offset;
5356                         }
5357
5358                         if (image.sections[i].base_address + buf_cnt > max_address)
5359                                 length -= (image.sections[i].base_address + buf_cnt)-max_address;
5360
5361                         fastload[i].address = image.sections[i].base_address + offset;
5362                         fastload[i].data = malloc(length);
5363                         if (fastload[i].data == NULL) {
5364                                 free(buffer);
5365                                 command_print(CMD_CTX, "error allocating buffer for section (%d bytes)",
5366                                                           length);
5367                                 retval = ERROR_FAIL;
5368                                 break;
5369                         }
5370                         memcpy(fastload[i].data, buffer + offset, length);
5371                         fastload[i].length = length;
5372
5373                         image_size += length;
5374                         command_print(CMD_CTX, "%u bytes written at address 0x%8.8x",
5375                                                   (unsigned int)length,
5376                                                   ((unsigned int)(image.sections[i].base_address + offset)));
5377                 }
5378
5379                 free(buffer);
5380         }
5381
5382         if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
5383                 command_print(CMD_CTX, "Loaded %" PRIu32 " bytes "
5384                                 "in %fs (%0.3f KiB/s)", image_size,
5385                                 duration_elapsed(&bench), duration_kbps(&bench, image_size));
5386
5387                 command_print(CMD_CTX,
5388                                 "WARNING: image has not been loaded to target!"
5389                                 "You can issue a 'fast_load' to finish loading.");
5390         }
5391
5392         image_close(&image);
5393
5394         if (retval != ERROR_OK)
5395                 free_fastload();
5396
5397         return retval;
5398 }
5399
5400 COMMAND_HANDLER(handle_fast_load_command)
5401 {
5402         if (CMD_ARGC > 0)
5403                 return ERROR_COMMAND_SYNTAX_ERROR;
5404         if (fastload == NULL) {
5405                 LOG_ERROR("No image in memory");
5406                 return ERROR_FAIL;
5407         }
5408         int i;
5409         int ms = timeval_ms();
5410         int size = 0;
5411         int retval = ERROR_OK;
5412         for (i = 0; i < fastload_num; i++) {
5413                 struct target *target = get_current_target(CMD_CTX);
5414                 command_print(CMD_CTX, "Write to 0x%08x, length 0x%08x",
5415                                           (unsigned int)(fastload[i].address),
5416                                           (unsigned int)(fastload[i].length));
5417                 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
5418                 if (retval != ERROR_OK)
5419                         break;
5420                 size += fastload[i].length;
5421         }
5422         if (retval == ERROR_OK) {
5423                 int after = timeval_ms();
5424                 command_print(CMD_CTX, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
5425         }
5426         return retval;
5427 }
5428
5429 static const struct command_registration target_command_handlers[] = {
5430         {
5431                 .name = "targets",
5432                 .handler = handle_targets_command,
5433                 .mode = COMMAND_ANY,
5434                 .help = "change current default target (one parameter) "
5435                         "or prints table of all targets (no parameters)",
5436                 .usage = "[target]",
5437         },
5438         {
5439                 .name = "target",
5440                 .mode = COMMAND_CONFIG,
5441                 .help = "configure target",
5442
5443                 .chain = target_subcommand_handlers,
5444         },
5445         COMMAND_REGISTRATION_DONE
5446 };
5447
5448 int target_register_commands(struct command_context *cmd_ctx)
5449 {
5450         return register_commands(cmd_ctx, NULL, target_command_handlers);
5451 }
5452
5453 static bool target_reset_nag = true;
5454
5455 bool get_target_reset_nag(void)
5456 {
5457         return target_reset_nag;
5458 }
5459
5460 COMMAND_HANDLER(handle_target_reset_nag)
5461 {
5462         return CALL_COMMAND_HANDLER(handle_command_parse_bool,
5463                         &target_reset_nag, "Nag after each reset about options to improve "
5464                         "performance");
5465 }
5466
5467 COMMAND_HANDLER(handle_ps_command)
5468 {
5469         struct target *target = get_current_target(CMD_CTX);
5470         char *display;
5471         if (target->state != TARGET_HALTED) {
5472                 LOG_INFO("target not halted !!");
5473                 return ERROR_OK;
5474         }
5475
5476         if ((target->rtos) && (target->rtos->type)
5477                         && (target->rtos->type->ps_command)) {
5478                 display = target->rtos->type->ps_command(target);
5479                 command_print(CMD_CTX, "%s", display);
5480                 free(display);
5481                 return ERROR_OK;
5482         } else {
5483                 LOG_INFO("failed");
5484                 return ERROR_TARGET_FAILURE;
5485         }
5486 }
5487
5488 static const struct command_registration target_exec_command_handlers[] = {
5489         {
5490                 .name = "fast_load_image",
5491                 .handler = handle_fast_load_image_command,
5492                 .mode = COMMAND_ANY,
5493                 .help = "Load image into server memory for later use by "
5494                         "fast_load; primarily for profiling",
5495                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5496                         "[min_address [max_length]]",
5497         },
5498         {
5499                 .name = "fast_load",
5500                 .handler = handle_fast_load_command,
5501                 .mode = COMMAND_EXEC,
5502                 .help = "loads active fast load image to current target "
5503                         "- mainly for profiling purposes",
5504                 .usage = "",
5505         },
5506         {
5507                 .name = "profile",
5508                 .handler = handle_profile_command,
5509                 .mode = COMMAND_EXEC,
5510                 .usage = "seconds filename",
5511                 .help = "profiling samples the CPU PC",
5512         },
5513         /** @todo don't register virt2phys() unless target supports it */
5514         {
5515                 .name = "virt2phys",
5516                 .handler = handle_virt2phys_command,
5517                 .mode = COMMAND_ANY,
5518                 .help = "translate a virtual address into a physical address",
5519                 .usage = "virtual_address",
5520         },
5521         {
5522                 .name = "reg",
5523                 .handler = handle_reg_command,
5524                 .mode = COMMAND_EXEC,
5525                 .help = "display or set a register; with no arguments, "
5526                         "displays all registers and their values",
5527                 .usage = "[(register_name|register_number) [value]]",
5528         },
5529         {
5530                 .name = "poll",
5531                 .handler = handle_poll_command,
5532                 .mode = COMMAND_EXEC,
5533                 .help = "poll target state; or reconfigure background polling",
5534                 .usage = "['on'|'off']",
5535         },
5536         {
5537                 .name = "wait_halt",
5538                 .handler = handle_wait_halt_command,
5539                 .mode = COMMAND_EXEC,
5540                 .help = "wait up to the specified number of milliseconds "
5541                         "(default 5) for a previously requested halt",
5542                 .usage = "[milliseconds]",
5543         },
5544         {
5545                 .name = "halt",
5546                 .handler = handle_halt_command,
5547                 .mode = COMMAND_EXEC,
5548                 .help = "request target to halt, then wait up to the specified"
5549                         "number of milliseconds (default 5) for it to complete",
5550                 .usage = "[milliseconds]",
5551         },
5552         {
5553                 .name = "resume",
5554                 .handler = handle_resume_command,
5555                 .mode = COMMAND_EXEC,
5556                 .help = "resume target execution from current PC or address",
5557                 .usage = "[address]",
5558         },
5559         {
5560                 .name = "reset",
5561                 .handler = handle_reset_command,
5562                 .mode = COMMAND_EXEC,
5563                 .usage = "[run|halt|init]",
5564                 .help = "Reset all targets into the specified mode."
5565                         "Default reset mode is run, if not given.",
5566         },
5567         {
5568                 .name = "soft_reset_halt",
5569                 .handler = handle_soft_reset_halt_command,
5570                 .mode = COMMAND_EXEC,
5571                 .usage = "",
5572                 .help = "halt the target and do a soft reset",
5573         },
5574         {
5575                 .name = "step",
5576                 .handler = handle_step_command,
5577                 .mode = COMMAND_EXEC,
5578                 .help = "step one instruction from current PC or address",
5579                 .usage = "[address]",
5580         },
5581         {
5582                 .name = "mdw",
5583                 .handler = handle_md_command,
5584                 .mode = COMMAND_EXEC,
5585                 .help = "display memory words",
5586                 .usage = "['phys'] address [count]",
5587         },
5588         {
5589                 .name = "mdh",
5590                 .handler = handle_md_command,
5591                 .mode = COMMAND_EXEC,
5592                 .help = "display memory half-words",
5593                 .usage = "['phys'] address [count]",
5594         },
5595         {
5596                 .name = "mdb",
5597                 .handler = handle_md_command,
5598                 .mode = COMMAND_EXEC,
5599                 .help = "display memory bytes",
5600                 .usage = "['phys'] address [count]",
5601         },
5602         {
5603                 .name = "mww",
5604                 .handler = handle_mw_command,
5605                 .mode = COMMAND_EXEC,
5606                 .help = "write memory word",
5607                 .usage = "['phys'] address value [count]",
5608         },
5609         {
5610                 .name = "mwh",
5611                 .handler = handle_mw_command,
5612                 .mode = COMMAND_EXEC,
5613                 .help = "write memory half-word",
5614                 .usage = "['phys'] address value [count]",
5615         },
5616         {
5617                 .name = "mwb",
5618                 .handler = handle_mw_command,
5619                 .mode = COMMAND_EXEC,
5620                 .help = "write memory byte",
5621                 .usage = "['phys'] address value [count]",
5622         },
5623         {
5624                 .name = "bp",
5625                 .handler = handle_bp_command,
5626                 .mode = COMMAND_EXEC,
5627                 .help = "list or set hardware or software breakpoint",
5628                 .usage = "<address> [<asid>]<length> ['hw'|'hw_ctx']",
5629         },
5630         {
5631                 .name = "rbp",
5632                 .handler = handle_rbp_command,
5633                 .mode = COMMAND_EXEC,
5634                 .help = "remove breakpoint",
5635                 .usage = "address",
5636         },
5637         {
5638                 .name = "wp",
5639                 .handler = handle_wp_command,
5640                 .mode = COMMAND_EXEC,
5641                 .help = "list (no params) or create watchpoints",
5642                 .usage = "[address length [('r'|'w'|'a') value [mask]]]",
5643         },
5644         {
5645                 .name = "rwp",
5646                 .handler = handle_rwp_command,
5647                 .mode = COMMAND_EXEC,
5648                 .help = "remove watchpoint",
5649                 .usage = "address",
5650         },
5651         {
5652                 .name = "load_image",
5653                 .handler = handle_load_image_command,
5654                 .mode = COMMAND_EXEC,
5655                 .usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
5656                         "[min_address] [max_length]",
5657         },
5658         {
5659                 .name = "dump_image",
5660                 .handler = handle_dump_image_command,
5661                 .mode = COMMAND_EXEC,
5662                 .usage = "filename address size",
5663         },
5664         {
5665                 .name = "verify_image",
5666                 .handler = handle_verify_image_command,
5667                 .mode = COMMAND_EXEC,
5668                 .usage = "filename [offset [type]]",
5669         },
5670         {
5671                 .name = "test_image",
5672                 .handler = handle_test_image_command,
5673                 .mode = COMMAND_EXEC,
5674                 .usage = "filename [offset [type]]",
5675         },
5676         {
5677                 .name = "mem2array",
5678                 .mode = COMMAND_EXEC,
5679                 .jim_handler = jim_mem2array,
5680                 .help = "read 8/16/32 bit memory and return as a TCL array "
5681                         "for script processing",
5682                 .usage = "arrayname bitwidth address count",
5683         },
5684         {
5685                 .name = "array2mem",
5686                 .mode = COMMAND_EXEC,
5687                 .jim_handler = jim_array2mem,
5688                 .help = "convert a TCL array to memory locations "
5689                         "and write the 8/16/32 bit values",
5690                 .usage = "arrayname bitwidth address count",
5691         },
5692         {
5693                 .name = "reset_nag",
5694                 .handler = handle_target_reset_nag,
5695                 .mode = COMMAND_ANY,
5696                 .help = "Nag after each reset about options that could have been "
5697                                 "enabled to improve performance. ",
5698                 .usage = "['enable'|'disable']",
5699         },
5700         {
5701                 .name = "ps",
5702                 .handler = handle_ps_command,
5703                 .mode = COMMAND_EXEC,
5704                 .help = "list all tasks ",
5705                 .usage = " ",
5706         },
5707
5708         COMMAND_REGISTRATION_DONE
5709 };
5710 static int target_register_user_commands(struct command_context *cmd_ctx)
5711 {
5712         int retval = ERROR_OK;
5713         retval = target_request_register_commands(cmd_ctx);
5714         if (retval != ERROR_OK)
5715                 return retval;
5716
5717         retval = trace_register_commands(cmd_ctx);
5718         if (retval != ERROR_OK)
5719                 return retval;
5720
5721
5722         return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
5723 }