openocd: fix SPDX tag format for files .c
[fw/openocd] / src / target / mips32.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /***************************************************************************
4  *   Copyright (C) 2008 by Spencer Oliver                                  *
5  *   spen@spen-soft.co.uk                                                  *
6  *                                                                         *
7  *   Copyright (C) 2008 by David T.L. Wong                                 *
8  *                                                                         *
9  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
10  *   oyvind.harboe@zylin.com                                               *
11  *                                                                         *
12  *   Copyright (C) 2011 by Drasko DRASKOVIC                                *
13  *   drasko.draskovic@gmail.com                                            *
14  ***************************************************************************/
15
16 #ifdef HAVE_CONFIG_H
17 #include "config.h"
18 #endif
19
20 #include "mips32.h"
21 #include "breakpoints.h"
22 #include "algorithm.h"
23 #include "register.h"
24
25 static const char *mips_isa_strings[] = {
26         "MIPS32", "MIPS16", "", "MICRO MIPS32",
27 };
28
29 #define MIPS32_GDB_DUMMY_FP_REG 1
30
31 /*
32  * GDB registers
33  * based on gdb-7.6.2/gdb/features/mips-{fpu,cp0,cpu}.xml
34  */
35 static const struct {
36         unsigned id;
37         const char *name;
38         enum reg_type type;
39         const char *group;
40         const char *feature;
41         int flag;
42 } mips32_regs[] = {
43         {  0,  "r0", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
44         {  1,  "r1", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
45         {  2,  "r2", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
46         {  3,  "r3", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
47         {  4,  "r4", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
48         {  5,  "r5", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
49         {  6,  "r6", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
50         {  7,  "r7", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
51         {  8,  "r8", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
52         {  9,  "r9", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
53         { 10, "r10", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
54         { 11, "r11", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
55         { 12, "r12", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
56         { 13, "r13", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
57         { 14, "r14", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
58         { 15, "r15", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
59         { 16, "r16", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
60         { 17, "r17", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
61         { 18, "r18", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
62         { 19, "r19", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
63         { 20, "r20", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
64         { 21, "r21", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
65         { 22, "r22", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
66         { 23, "r23", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
67         { 24, "r24", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
68         { 25, "r25", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
69         { 26, "r26", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
70         { 27, "r27", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
71         { 28, "r28", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
72         { 29, "r29", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
73         { 30, "r30", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
74         { 31, "r31", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
75         { 32, "status", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
76         { 33, "lo", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
77         { 34, "hi", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
78         { 35, "badvaddr", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
79         { 36, "cause", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
80         { 37, "pc", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
81
82         { 38,  "f0", REG_TYPE_IEEE_SINGLE, NULL,
83                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
84         { 39,  "f1", REG_TYPE_IEEE_SINGLE, NULL,
85                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
86         { 40,  "f2", REG_TYPE_IEEE_SINGLE, NULL,
87                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
88         { 41,  "f3", REG_TYPE_IEEE_SINGLE, NULL,
89                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
90         { 42,  "f4", REG_TYPE_IEEE_SINGLE, NULL,
91                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
92         { 43,  "f5", REG_TYPE_IEEE_SINGLE, NULL,
93                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
94         { 44,  "f6", REG_TYPE_IEEE_SINGLE, NULL,
95                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
96         { 45,  "f7", REG_TYPE_IEEE_SINGLE, NULL,
97                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
98         { 46,  "f8", REG_TYPE_IEEE_SINGLE, NULL,
99                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
100         { 47,  "f9", REG_TYPE_IEEE_SINGLE, NULL,
101                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
102         { 48, "f10", REG_TYPE_IEEE_SINGLE, NULL,
103                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
104         { 49, "f11", REG_TYPE_IEEE_SINGLE, NULL,
105                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
106         { 50, "f12", REG_TYPE_IEEE_SINGLE, NULL,
107                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
108         { 51, "f13", REG_TYPE_IEEE_SINGLE, NULL,
109                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
110         { 52, "f14", REG_TYPE_IEEE_SINGLE, NULL,
111                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
112         { 53, "f15", REG_TYPE_IEEE_SINGLE, NULL,
113                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
114         { 54, "f16", REG_TYPE_IEEE_SINGLE, NULL,
115                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
116         { 55, "f17", REG_TYPE_IEEE_SINGLE, NULL,
117                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
118         { 56, "f18", REG_TYPE_IEEE_SINGLE, NULL,
119                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
120         { 57, "f19", REG_TYPE_IEEE_SINGLE, NULL,
121                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
122         { 58, "f20", REG_TYPE_IEEE_SINGLE, NULL,
123                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
124         { 59, "f21", REG_TYPE_IEEE_SINGLE, NULL,
125                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
126         { 60, "f22", REG_TYPE_IEEE_SINGLE, NULL,
127                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
128         { 61, "f23", REG_TYPE_IEEE_SINGLE, NULL,
129                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
130         { 62, "f24", REG_TYPE_IEEE_SINGLE, NULL,
131                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
132         { 63, "f25", REG_TYPE_IEEE_SINGLE, NULL,
133                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
134         { 64, "f26", REG_TYPE_IEEE_SINGLE, NULL,
135                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
136         { 65, "f27", REG_TYPE_IEEE_SINGLE, NULL,
137                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
138         { 66, "f28", REG_TYPE_IEEE_SINGLE, NULL,
139                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
140         { 67, "f29", REG_TYPE_IEEE_SINGLE, NULL,
141                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
142         { 68, "f30", REG_TYPE_IEEE_SINGLE, NULL,
143                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
144         { 69, "f31", REG_TYPE_IEEE_SINGLE, NULL,
145                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
146         { 70, "fcsr", REG_TYPE_INT, "float",
147                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
148         { 71, "fir", REG_TYPE_INT, "float",
149                 "org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
150 };
151
152
153 #define MIPS32_NUM_REGS ARRAY_SIZE(mips32_regs)
154
155 static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
156
157 static int mips32_get_core_reg(struct reg *reg)
158 {
159         int retval;
160         struct mips32_core_reg *mips32_reg = reg->arch_info;
161         struct target *target = mips32_reg->target;
162         struct mips32_common *mips32_target = target_to_mips32(target);
163
164         if (target->state != TARGET_HALTED)
165                 return ERROR_TARGET_NOT_HALTED;
166
167         retval = mips32_target->read_core_reg(target, mips32_reg->num);
168
169         return retval;
170 }
171
172 static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
173 {
174         struct mips32_core_reg *mips32_reg = reg->arch_info;
175         struct target *target = mips32_reg->target;
176         uint32_t value = buf_get_u32(buf, 0, 32);
177
178         if (target->state != TARGET_HALTED)
179                 return ERROR_TARGET_NOT_HALTED;
180
181         buf_set_u32(reg->value, 0, 32, value);
182         reg->dirty = true;
183         reg->valid = true;
184
185         return ERROR_OK;
186 }
187
188 static int mips32_read_core_reg(struct target *target, unsigned int num)
189 {
190         uint32_t reg_value;
191
192         /* get pointers to arch-specific information */
193         struct mips32_common *mips32 = target_to_mips32(target);
194
195         if (num >= MIPS32_NUM_REGS)
196                 return ERROR_COMMAND_SYNTAX_ERROR;
197
198         reg_value = mips32->core_regs[num];
199         buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
200         mips32->core_cache->reg_list[num].valid = true;
201         mips32->core_cache->reg_list[num].dirty = false;
202
203         return ERROR_OK;
204 }
205
206 static int mips32_write_core_reg(struct target *target, unsigned int num)
207 {
208         uint32_t reg_value;
209
210         /* get pointers to arch-specific information */
211         struct mips32_common *mips32 = target_to_mips32(target);
212
213         if (num >= MIPS32_NUM_REGS)
214                 return ERROR_COMMAND_SYNTAX_ERROR;
215
216         reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
217         mips32->core_regs[num] = reg_value;
218         LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num, reg_value);
219         mips32->core_cache->reg_list[num].valid = true;
220         mips32->core_cache->reg_list[num].dirty = false;
221
222         return ERROR_OK;
223 }
224
225 int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
226                 int *reg_list_size, enum target_register_class reg_class)
227 {
228         /* get pointers to arch-specific information */
229         struct mips32_common *mips32 = target_to_mips32(target);
230         unsigned int i;
231
232         /* include floating point registers */
233         *reg_list_size = MIPS32_NUM_REGS;
234         *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
235
236         for (i = 0; i < MIPS32_NUM_REGS; i++)
237                 (*reg_list)[i] = &mips32->core_cache->reg_list[i];
238
239         return ERROR_OK;
240 }
241
242 int mips32_save_context(struct target *target)
243 {
244         unsigned int i;
245
246         /* get pointers to arch-specific information */
247         struct mips32_common *mips32 = target_to_mips32(target);
248         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
249
250         /* read core registers */
251         mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
252
253         for (i = 0; i < MIPS32_NUM_REGS; i++) {
254                 if (!mips32->core_cache->reg_list[i].valid)
255                         mips32->read_core_reg(target, i);
256         }
257
258         return ERROR_OK;
259 }
260
261 int mips32_restore_context(struct target *target)
262 {
263         unsigned int i;
264
265         /* get pointers to arch-specific information */
266         struct mips32_common *mips32 = target_to_mips32(target);
267         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
268
269         for (i = 0; i < MIPS32_NUM_REGS; i++) {
270                 if (mips32->core_cache->reg_list[i].dirty)
271                         mips32->write_core_reg(target, i);
272         }
273
274         /* write core regs */
275         mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
276
277         return ERROR_OK;
278 }
279
280 int mips32_arch_state(struct target *target)
281 {
282         struct mips32_common *mips32 = target_to_mips32(target);
283
284         LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
285                 mips_isa_strings[mips32->isa_mode],
286                 debug_reason_name(target),
287                 buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
288
289         return ERROR_OK;
290 }
291
292 static const struct reg_arch_type mips32_reg_type = {
293         .get = mips32_get_core_reg,
294         .set = mips32_set_core_reg,
295 };
296
297 struct reg_cache *mips32_build_reg_cache(struct target *target)
298 {
299         /* get pointers to arch-specific information */
300         struct mips32_common *mips32 = target_to_mips32(target);
301
302         int num_regs = MIPS32_NUM_REGS;
303         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
304         struct reg_cache *cache = malloc(sizeof(struct reg_cache));
305         struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
306         struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
307         struct reg_feature *feature;
308         int i;
309
310         /* Build the process context cache */
311         cache->name = "mips32 registers";
312         cache->next = NULL;
313         cache->reg_list = reg_list;
314         cache->num_regs = num_regs;
315         (*cache_p) = cache;
316         mips32->core_cache = cache;
317
318         for (i = 0; i < num_regs; i++) {
319                 arch_info[i].num = mips32_regs[i].id;
320                 arch_info[i].target = target;
321                 arch_info[i].mips32_common = mips32;
322
323                 reg_list[i].name = mips32_regs[i].name;
324                 reg_list[i].size = 32;
325
326                 if (mips32_regs[i].flag == MIPS32_GDB_DUMMY_FP_REG) {
327                         reg_list[i].value = mips32_gdb_dummy_fp_value;
328                         reg_list[i].valid = true;
329                         reg_list[i].arch_info = NULL;
330                         register_init_dummy(&reg_list[i]);
331                 } else {
332                         reg_list[i].value = calloc(1, 4);
333                         reg_list[i].valid = false;
334                         reg_list[i].type = &mips32_reg_type;
335                         reg_list[i].arch_info = &arch_info[i];
336
337                         reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
338                         if (reg_list[i].reg_data_type)
339                                 reg_list[i].reg_data_type->type = mips32_regs[i].type;
340                         else
341                                 LOG_ERROR("unable to allocate reg type list");
342                 }
343
344                 reg_list[i].dirty = false;
345
346                 reg_list[i].group = mips32_regs[i].group;
347                 reg_list[i].number = i;
348                 reg_list[i].exist = true;
349                 reg_list[i].caller_save = true; /* gdb defaults to true */
350
351                 feature = calloc(1, sizeof(struct reg_feature));
352                 if (feature) {
353                         feature->name = mips32_regs[i].feature;
354                         reg_list[i].feature = feature;
355                 } else
356                         LOG_ERROR("unable to allocate feature list");
357         }
358
359         return cache;
360 }
361
362 int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
363 {
364         target->arch_info = mips32;
365         mips32->common_magic = MIPS32_COMMON_MAGIC;
366         mips32->fast_data_area = NULL;
367         mips32->isa_imp = MIPS32_ONLY;  /* default */
368
369         /* has breakpoint/watchpoint unit been scanned */
370         mips32->bp_scanned = 0;
371         mips32->data_break_list = NULL;
372
373         mips32->ejtag_info.tap = tap;
374         mips32->read_core_reg = mips32_read_core_reg;
375         mips32->write_core_reg = mips32_write_core_reg;
376         /* if unknown endianness defaults to little endian, 1 */
377         mips32->ejtag_info.endianness = target->endianness == TARGET_BIG_ENDIAN ? 0 : 1;
378         mips32->ejtag_info.scan_delay = MIPS32_SCAN_DELAY_LEGACY_MODE;
379         mips32->ejtag_info.mode = 0;                    /* Initial default value */
380         mips32->ejtag_info.isa = 0;     /* isa on debug mips32, updated by poll function */
381         mips32->ejtag_info.config_regs = 0;     /* no config register read */
382         return ERROR_OK;
383 }
384
385 /* run to exit point. return error if exit point was not reached. */
386 static int mips32_run_and_wait(struct target *target, target_addr_t entry_point,
387                 int timeout_ms, target_addr_t exit_point, struct mips32_common *mips32)
388 {
389         uint32_t pc;
390         int retval;
391         /* This code relies on the target specific  resume() and  poll()->debug_entry()
392          * sequence to write register values to the processor and the read them back */
393         retval = target_resume(target, 0, entry_point, 0, 1);
394         if (retval != ERROR_OK)
395                 return retval;
396
397         retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
398         /* If the target fails to halt due to the breakpoint, force a halt */
399         if (retval != ERROR_OK || target->state != TARGET_HALTED) {
400                 retval = target_halt(target);
401                 if (retval != ERROR_OK)
402                         return retval;
403                 retval = target_wait_state(target, TARGET_HALTED, 500);
404                 if (retval != ERROR_OK)
405                         return retval;
406                 return ERROR_TARGET_TIMEOUT;
407         }
408
409         pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32);
410         if (exit_point && (pc != exit_point)) {
411                 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
412                 return ERROR_TARGET_TIMEOUT;
413         }
414
415         return ERROR_OK;
416 }
417
418 int mips32_run_algorithm(struct target *target, int num_mem_params,
419                 struct mem_param *mem_params, int num_reg_params,
420                 struct reg_param *reg_params, target_addr_t entry_point,
421                 target_addr_t exit_point, int timeout_ms, void *arch_info)
422 {
423         struct mips32_common *mips32 = target_to_mips32(target);
424         struct mips32_algorithm *mips32_algorithm_info = arch_info;
425         enum mips32_isa_mode isa_mode = mips32->isa_mode;
426
427         uint32_t context[MIPS32_NUM_REGS];
428         int retval = ERROR_OK;
429
430         LOG_DEBUG("Running algorithm");
431
432         /* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
433          * at the exit point */
434
435         if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
436                 LOG_ERROR("current target isn't a MIPS32 target");
437                 return ERROR_TARGET_INVALID;
438         }
439
440         if (target->state != TARGET_HALTED) {
441                 LOG_WARNING("target not halted");
442                 return ERROR_TARGET_NOT_HALTED;
443         }
444
445         /* refresh core register cache */
446         for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
447                 if (!mips32->core_cache->reg_list[i].valid)
448                         mips32->read_core_reg(target, i);
449                 context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
450         }
451
452         for (int i = 0; i < num_mem_params; i++) {
453                 if (mem_params[i].direction == PARAM_IN)
454                         continue;
455                 retval = target_write_buffer(target, mem_params[i].address,
456                                 mem_params[i].size, mem_params[i].value);
457                 if (retval != ERROR_OK)
458                         return retval;
459         }
460
461         for (int i = 0; i < num_reg_params; i++) {
462                 if (reg_params[i].direction == PARAM_IN)
463                         continue;
464
465                 struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, false);
466
467                 if (!reg) {
468                         LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
469                         return ERROR_COMMAND_SYNTAX_ERROR;
470                 }
471
472                 if (reg->size != reg_params[i].size) {
473                         LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
474                                         reg_params[i].reg_name);
475                         return ERROR_COMMAND_SYNTAX_ERROR;
476                 }
477
478                 mips32_set_core_reg(reg, reg_params[i].value);
479         }
480
481         mips32->isa_mode = mips32_algorithm_info->isa_mode;
482
483         retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
484
485         if (retval != ERROR_OK)
486                 return retval;
487
488         for (int i = 0; i < num_mem_params; i++) {
489                 if (mem_params[i].direction != PARAM_OUT) {
490                         retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
491                                         mem_params[i].value);
492                         if (retval != ERROR_OK)
493                                 return retval;
494                 }
495         }
496
497         for (int i = 0; i < num_reg_params; i++) {
498                 if (reg_params[i].direction != PARAM_OUT) {
499                         struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, false);
500                         if (!reg) {
501                                 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
502                                 return ERROR_COMMAND_SYNTAX_ERROR;
503                         }
504
505                         if (reg->size != reg_params[i].size) {
506                                 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
507                                                 reg_params[i].reg_name);
508                                 return ERROR_COMMAND_SYNTAX_ERROR;
509                         }
510
511                         buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
512                 }
513         }
514
515         /* restore everything we saved before */
516         for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
517                 uint32_t regvalue;
518                 regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
519                 if (regvalue != context[i]) {
520                         LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
521                                 mips32->core_cache->reg_list[i].name, context[i]);
522                         buf_set_u32(mips32->core_cache->reg_list[i].value,
523                                         0, 32, context[i]);
524                         mips32->core_cache->reg_list[i].valid = true;
525                         mips32->core_cache->reg_list[i].dirty = true;
526                 }
527         }
528
529         mips32->isa_mode = isa_mode;
530
531         return ERROR_OK;
532 }
533
534 int mips32_examine(struct target *target)
535 {
536         struct mips32_common *mips32 = target_to_mips32(target);
537
538         if (!target_was_examined(target)) {
539                 target_set_examined(target);
540
541                 /* we will configure later */
542                 mips32->bp_scanned = 0;
543                 mips32->num_inst_bpoints = 0;
544                 mips32->num_data_bpoints = 0;
545                 mips32->num_inst_bpoints_avail = 0;
546                 mips32->num_data_bpoints_avail = 0;
547         }
548
549         return ERROR_OK;
550 }
551
552 static int mips32_configure_ibs(struct target *target)
553 {
554         struct mips32_common *mips32 = target_to_mips32(target);
555         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
556         int retval, i;
557         uint32_t bpinfo;
558
559         /* get number of inst breakpoints */
560         retval = target_read_u32(target, ejtag_info->ejtag_ibs_addr, &bpinfo);
561         if (retval != ERROR_OK)
562                 return retval;
563
564         mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
565         mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
566         mips32->inst_break_list = calloc(mips32->num_inst_bpoints,
567                 sizeof(struct mips32_comparator));
568
569         for (i = 0; i < mips32->num_inst_bpoints; i++)
570                 mips32->inst_break_list[i].reg_address =
571                         ejtag_info->ejtag_iba0_addr +
572                         (ejtag_info->ejtag_iba_step_size * i);
573
574         /* clear IBIS reg */
575         retval = target_write_u32(target, ejtag_info->ejtag_ibs_addr, 0);
576         return retval;
577 }
578
579 static int mips32_configure_dbs(struct target *target)
580 {
581         struct mips32_common *mips32 = target_to_mips32(target);
582         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
583         int retval, i;
584         uint32_t bpinfo;
585
586         /* get number of data breakpoints */
587         retval = target_read_u32(target, ejtag_info->ejtag_dbs_addr, &bpinfo);
588         if (retval != ERROR_OK)
589                 return retval;
590
591         mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
592         mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
593         mips32->data_break_list = calloc(mips32->num_data_bpoints,
594                 sizeof(struct mips32_comparator));
595
596         for (i = 0; i < mips32->num_data_bpoints; i++)
597                 mips32->data_break_list[i].reg_address =
598                         ejtag_info->ejtag_dba0_addr +
599                         (ejtag_info->ejtag_dba_step_size * i);
600
601         /* clear DBIS reg */
602         retval = target_write_u32(target, ejtag_info->ejtag_dbs_addr, 0);
603         return retval;
604 }
605
606 int mips32_configure_break_unit(struct target *target)
607 {
608         /* get pointers to arch-specific information */
609         struct mips32_common *mips32 = target_to_mips32(target);
610         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
611         int retval;
612         uint32_t dcr;
613
614         if (mips32->bp_scanned)
615                 return ERROR_OK;
616
617         /* get info about breakpoint support */
618         retval = target_read_u32(target, EJTAG_DCR, &dcr);
619         if (retval != ERROR_OK)
620                 return retval;
621
622         /* EJTAG 2.0 defines IB and DB bits in IMP instead of DCR. */
623         if (ejtag_info->ejtag_version == EJTAG_VERSION_20) {
624                 ejtag_info->debug_caps = dcr & EJTAG_DCR_ENM;
625                 if (!(ejtag_info->impcode & EJTAG_V20_IMP_NOIB))
626                         ejtag_info->debug_caps |= EJTAG_DCR_IB;
627                 if (!(ejtag_info->impcode & EJTAG_V20_IMP_NODB))
628                         ejtag_info->debug_caps |= EJTAG_DCR_DB;
629         } else
630                 /* keep  debug caps for later use */
631                 ejtag_info->debug_caps = dcr & (EJTAG_DCR_ENM
632                                 | EJTAG_DCR_IB | EJTAG_DCR_DB);
633
634
635         if (ejtag_info->debug_caps & EJTAG_DCR_IB) {
636                 retval = mips32_configure_ibs(target);
637                 if (retval != ERROR_OK)
638                         return retval;
639         }
640
641         if (ejtag_info->debug_caps & EJTAG_DCR_DB) {
642                 retval = mips32_configure_dbs(target);
643                 if (retval != ERROR_OK)
644                         return retval;
645         }
646
647         /* check if target endianness settings matches debug control register */
648         if (((ejtag_info->debug_caps & EJTAG_DCR_ENM)
649                         && (target->endianness == TARGET_LITTLE_ENDIAN)) ||
650                         (!(ejtag_info->debug_caps & EJTAG_DCR_ENM)
651                          && (target->endianness == TARGET_BIG_ENDIAN)))
652                 LOG_WARNING("DCR endianness settings does not match target settings");
653
654         LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
655                         mips32->num_data_bpoints);
656
657         mips32->bp_scanned = 1;
658
659         return ERROR_OK;
660 }
661
662 int mips32_enable_interrupts(struct target *target, int enable)
663 {
664         int retval;
665         int update = 0;
666         uint32_t dcr;
667
668         /* read debug control register */
669         retval = target_read_u32(target, EJTAG_DCR, &dcr);
670         if (retval != ERROR_OK)
671                 return retval;
672
673         if (enable) {
674                 if (!(dcr & EJTAG_DCR_INTE)) {
675                         /* enable interrupts */
676                         dcr |= EJTAG_DCR_INTE;
677                         update = 1;
678                 }
679         } else {
680                 if (dcr & EJTAG_DCR_INTE) {
681                         /* disable interrupts */
682                         dcr &= ~EJTAG_DCR_INTE;
683                         update = 1;
684                 }
685         }
686
687         if (update) {
688                 retval = target_write_u32(target, EJTAG_DCR, dcr);
689                 if (retval != ERROR_OK)
690                         return retval;
691         }
692
693         return ERROR_OK;
694 }
695
696 /* read config to config3 cp0 registers and log isa implementation */
697 int mips32_read_config_regs(struct target *target)
698 {
699         struct mips32_common *mips32 = target_to_mips32(target);
700         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
701
702         if (ejtag_info->config_regs == 0)
703                 for (int i = 0; i != 4; i++) {
704                         int retval = mips32_cp0_read(ejtag_info, &ejtag_info->config[i], 16, i);
705                         if (retval != ERROR_OK) {
706                                 LOG_ERROR("isa info not available, failed to read cp0 config register: %" PRId32, i);
707                                 ejtag_info->config_regs = 0;
708                                 return retval;
709                         }
710                         ejtag_info->config_regs = i + 1;
711                         if ((ejtag_info->config[i] & (1 << 31)) == 0)
712                                 break;  /* no more config registers implemented */
713                 }
714         else
715                 return ERROR_OK;        /* already successfully read */
716
717         LOG_DEBUG("read  %"PRIu32" config registers", ejtag_info->config_regs);
718
719         if (ejtag_info->impcode & EJTAG_IMP_MIPS16) {
720                 mips32->isa_imp = MIPS32_MIPS16;
721                 LOG_USER("MIPS32 with MIPS16 support implemented");
722
723         } else if (ejtag_info->config_regs >= 4) {      /* config3 implemented */
724                 unsigned isa_imp = (ejtag_info->config[3] & MIPS32_CONFIG3_ISA_MASK) >> MIPS32_CONFIG3_ISA_SHIFT;
725                 if (isa_imp == 1) {
726                         mips32->isa_imp = MMIPS32_ONLY;
727                         LOG_USER("MICRO MIPS32 only implemented");
728
729                 } else if (isa_imp != 0) {
730                         mips32->isa_imp = MIPS32_MMIPS32;
731                         LOG_USER("MIPS32 and MICRO MIPS32 implemented");
732                 }
733         }
734
735         if (mips32->isa_imp == MIPS32_ONLY)     /* initial default value */
736                 LOG_USER("MIPS32 only implemented");
737
738         return ERROR_OK;
739 }
740 int mips32_checksum_memory(struct target *target, target_addr_t address,
741                 uint32_t count, uint32_t *checksum)
742 {
743         struct working_area *crc_algorithm;
744         struct reg_param reg_params[2];
745         struct mips32_algorithm mips32_info;
746
747         struct mips32_common *mips32 = target_to_mips32(target);
748         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
749
750         /* see contrib/loaders/checksum/mips32.s for src */
751         uint32_t isa = ejtag_info->isa ? 1 : 0;
752
753         uint32_t mips_crc_code[] = {
754                 MIPS32_ADDIU(isa, 12, 4, 0),                    /* addiu        $t4, $a0, 0 */
755                 MIPS32_ADDIU(isa, 10, 5, 0),                    /* addiu        $t2, $a1, 0 */
756                 MIPS32_ADDIU(isa, 4, 0, 0xFFFF),                /* addiu        $a0, $zero, 0xffff */
757                 MIPS32_BEQ(isa, 0, 0, 0x10 << isa),             /* beq          $zero, $zero, ncomp */
758                 MIPS32_ADDIU(isa, 11, 0, 0),                    /* addiu        $t3, $zero, 0 */
759                                                 /* nbyte: */
760                 MIPS32_LB(isa, 5, 0, 12),                       /* lb           $a1, ($t4) */
761                 MIPS32_ADDI(isa, 12, 12, 1),                    /* addi         $t4, $t4, 1 */
762                 MIPS32_SLL(isa, 5, 5, 24),                      /* sll          $a1, $a1, 24 */
763                 MIPS32_LUI(isa, 2, 0x04c1),                     /* lui          $v0, 0x04c1 */
764                 MIPS32_XOR(isa, 4, 4, 5),                       /* xor          $a0, $a0, $a1 */
765                 MIPS32_ORI(isa, 7, 2, 0x1db7),                  /* ori          $a3, $v0, 0x1db7 */
766                 MIPS32_ADDU(isa, 6, 0, 0),                      /* addu         $a2, $zero, $zero */
767                                                 /* loop */
768                 MIPS32_SLL(isa, 8, 4, 1),                       /* sll          $t0, $a0, 1 */
769                 MIPS32_ADDIU(isa, 6, 6, 1),                     /* addiu        $a2, $a2, 1 */
770                 MIPS32_SLTI(isa, 4, 4, 0),                      /* slti         $a0, $a0, 0 */
771                 MIPS32_XOR(isa, 9, 8, 7),                       /* xor          $t1, $t0, $a3 */
772                 MIPS32_MOVN(isa, 8, 9, 4),                      /* movn         $t0, $t1, $a0 */
773                 MIPS32_SLTI(isa, 3, 6, 8),                      /* slti         $v1, $a2, 8 */
774                 MIPS32_BNE(isa, 3, 0, NEG16(7 << isa)),         /* bne          $v1, $zero, loop */
775                 MIPS32_ADDU(isa, 4, 8, 0),                      /* addu         $a0, $t0, $zero */
776                                                 /* ncomp */
777                 MIPS32_BNE(isa, 10, 11, NEG16(16 << isa)),      /* bne          $t2, $t3, nbyte */
778                 MIPS32_ADDIU(isa, 11, 11, 1),                   /* addiu        $t3, $t3, 1 */
779                 MIPS32_SDBBP(isa),
780         };
781
782         /* make sure we have a working area */
783         if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
784                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
785
786         pracc_swap16_array(ejtag_info, mips_crc_code, ARRAY_SIZE(mips_crc_code));
787
788         /* convert mips crc code into a buffer in target endianness */
789         uint8_t mips_crc_code_8[sizeof(mips_crc_code)];
790         target_buffer_set_u32_array(target, mips_crc_code_8,
791                                         ARRAY_SIZE(mips_crc_code), mips_crc_code);
792
793         int retval = target_write_buffer(target, crc_algorithm->address, sizeof(mips_crc_code), mips_crc_code_8);
794         if (retval != ERROR_OK)
795                 return retval;
796
797         mips32_info.common_magic = MIPS32_COMMON_MAGIC;
798         mips32_info.isa_mode = isa ? MIPS32_ISA_MMIPS32 : MIPS32_ISA_MIPS32;    /* run isa as in debug mode */
799
800         init_reg_param(&reg_params[0], "r4", 32, PARAM_IN_OUT);
801         buf_set_u32(reg_params[0].value, 0, 32, address);
802
803         init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
804         buf_set_u32(reg_params[1].value, 0, 32, count);
805
806         int timeout = 20000 * (1 + (count / (1024 * 1024)));
807
808         retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
809                                       crc_algorithm->address + (sizeof(mips_crc_code) - 4), timeout, &mips32_info);
810
811         if (retval == ERROR_OK)
812                 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
813
814         destroy_reg_param(&reg_params[0]);
815         destroy_reg_param(&reg_params[1]);
816
817         target_free_working_area(target, crc_algorithm);
818
819         return retval;
820 }
821
822 /** Checks whether a memory region is erased. */
823 int mips32_blank_check_memory(struct target *target,
824                 struct target_memory_check_block *blocks, int num_blocks,
825                 uint8_t erased_value)
826 {
827         struct working_area *erase_check_algorithm;
828         struct reg_param reg_params[3];
829         struct mips32_algorithm mips32_info;
830
831         struct mips32_common *mips32 = target_to_mips32(target);
832         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
833
834         if (erased_value != 0xff) {
835                 LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for MIPS32",
836                         erased_value);
837                 return ERROR_FAIL;
838         }
839         uint32_t isa = ejtag_info->isa ? 1 : 0;
840         uint32_t erase_check_code[] = {
841                                                 /* nbyte: */
842                 MIPS32_LB(isa, 8, 0, 4),                        /* lb           $t0, ($a0) */
843                 MIPS32_AND(isa, 6, 6, 8),                       /* and          $a2, $a2, $t0 */
844                 MIPS32_ADDIU(isa, 5, 5, NEG16(1)),              /* addiu        $a1, $a1, -1 */
845                 MIPS32_BNE(isa, 5, 0, NEG16(4 << isa)),         /* bne          $a1, $zero, nbyte */
846                 MIPS32_ADDIU(isa, 4, 4, 1),                     /* addiu        $a0, $a0, 1 */
847                 MIPS32_SDBBP(isa)                               /* sdbbp */
848         };
849
850         /* make sure we have a working area */
851         if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
852                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
853
854         pracc_swap16_array(ejtag_info, erase_check_code, ARRAY_SIZE(erase_check_code));
855
856         /* convert erase check code into a buffer in target endianness */
857         uint8_t erase_check_code_8[sizeof(erase_check_code)];
858         target_buffer_set_u32_array(target, erase_check_code_8,
859                                         ARRAY_SIZE(erase_check_code), erase_check_code);
860
861         int retval = target_write_buffer(target, erase_check_algorithm->address,
862                                                 sizeof(erase_check_code), erase_check_code_8);
863         if (retval != ERROR_OK)
864                 goto cleanup;
865
866         mips32_info.common_magic = MIPS32_COMMON_MAGIC;
867         mips32_info.isa_mode = isa ? MIPS32_ISA_MMIPS32 : MIPS32_ISA_MIPS32;
868
869         init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
870         buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
871
872         init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
873         buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
874
875         init_reg_param(&reg_params[2], "r6", 32, PARAM_IN_OUT);
876         buf_set_u32(reg_params[2].value, 0, 32, erased_value);
877
878         retval = target_run_algorithm(target, 0, NULL, 3, reg_params, erase_check_algorithm->address,
879                         erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &mips32_info);
880
881         if (retval == ERROR_OK)
882                 blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
883
884         destroy_reg_param(&reg_params[0]);
885         destroy_reg_param(&reg_params[1]);
886         destroy_reg_param(&reg_params[2]);
887
888 cleanup:
889         target_free_working_area(target, erase_check_algorithm);
890
891         if (retval != ERROR_OK)
892                 return retval;
893
894         return 1;       /* only one block has been checked */
895 }
896
897 static int mips32_verify_pointer(struct command_invocation *cmd,
898                 struct mips32_common *mips32)
899 {
900         if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
901                 command_print(cmd, "target is not an MIPS32");
902                 return ERROR_TARGET_INVALID;
903         }
904         return ERROR_OK;
905 }
906
907 /**
908  * MIPS32 targets expose command interface
909  * to manipulate CP0 registers
910  */
911 COMMAND_HANDLER(mips32_handle_cp0_command)
912 {
913         int retval;
914         struct target *target = get_current_target(CMD_CTX);
915         struct mips32_common *mips32 = target_to_mips32(target);
916         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
917
918
919         retval = mips32_verify_pointer(CMD, mips32);
920         if (retval != ERROR_OK)
921                 return retval;
922
923         if (target->state != TARGET_HALTED) {
924                 command_print(CMD, "target must be stopped for \"%s\" command", CMD_NAME);
925                 return ERROR_OK;
926         }
927
928         /* two or more argument, access a single register/select (write if third argument is given) */
929         if (CMD_ARGC < 2)
930                 return ERROR_COMMAND_SYNTAX_ERROR;
931         else {
932                 uint32_t cp0_reg, cp0_sel;
933                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
934                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
935
936                 if (CMD_ARGC == 2) {
937                         uint32_t value;
938
939                         retval = mips32_cp0_read(ejtag_info, &value, cp0_reg, cp0_sel);
940                         if (retval != ERROR_OK) {
941                                 command_print(CMD,
942                                                 "couldn't access reg %" PRIu32,
943                                                 cp0_reg);
944                                 return ERROR_OK;
945                         }
946                         command_print(CMD, "cp0 reg %" PRIu32 ", select %" PRIu32 ": %8.8" PRIx32,
947                                         cp0_reg, cp0_sel, value);
948
949                 } else if (CMD_ARGC == 3) {
950                         uint32_t value;
951                         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
952                         retval = mips32_cp0_write(ejtag_info, value, cp0_reg, cp0_sel);
953                         if (retval != ERROR_OK) {
954                                 command_print(CMD,
955                                                 "couldn't access cp0 reg %" PRIu32 ", select %" PRIu32,
956                                                 cp0_reg,  cp0_sel);
957                                 return ERROR_OK;
958                         }
959                         command_print(CMD, "cp0 reg %" PRIu32 ", select %" PRIu32 ": %8.8" PRIx32,
960                                         cp0_reg, cp0_sel, value);
961                 }
962         }
963
964         return ERROR_OK;
965 }
966
967 COMMAND_HANDLER(mips32_handle_scan_delay_command)
968 {
969         struct target *target = get_current_target(CMD_CTX);
970         struct mips32_common *mips32 = target_to_mips32(target);
971         struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
972
973         if (CMD_ARGC == 1)
974                 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], ejtag_info->scan_delay);
975         else if (CMD_ARGC > 1)
976                         return ERROR_COMMAND_SYNTAX_ERROR;
977
978         command_print(CMD, "scan delay: %d nsec", ejtag_info->scan_delay);
979         if (ejtag_info->scan_delay >= MIPS32_SCAN_DELAY_LEGACY_MODE) {
980                 ejtag_info->mode = 0;
981                 command_print(CMD, "running in legacy mode");
982         } else {
983                 ejtag_info->mode = 1;
984                 command_print(CMD, "running in fast queued mode");
985         }
986
987         return ERROR_OK;
988 }
989
990 static const struct command_registration mips32_exec_command_handlers[] = {
991         {
992                 .name = "cp0",
993                 .handler = mips32_handle_cp0_command,
994                 .mode = COMMAND_EXEC,
995                 .usage = "regnum select [value]",
996                 .help = "display/modify cp0 register",
997         },
998                 {
999                 .name = "scan_delay",
1000                 .handler = mips32_handle_scan_delay_command,
1001                 .mode = COMMAND_ANY,
1002                 .help = "display/set scan delay in nano seconds",
1003                 .usage = "[value]",
1004         },
1005         COMMAND_REGISTRATION_DONE
1006 };
1007
1008 const struct command_registration mips32_command_handlers[] = {
1009         {
1010                 .name = "mips32",
1011                 .mode = COMMAND_ANY,
1012                 .help = "mips32 command group",
1013                 .usage = "",
1014                 .chain = mips32_exec_command_handlers,
1015         },
1016         COMMAND_REGISTRATION_DONE
1017 };