9d5099be0371e506780ec4171a3f25cb43a7e0f3
[fw/openocd] / src / target / espressif / esp32.c
1 /***************************************************************************
2  *   ESP32 target API for OpenOCD                                          *
3  *   Copyright (C) 2016-2019 Espressif Systems Ltd.                        *
4  *   Author: Dmitry Yakovlev <dmitry@espressif.com>                        *
5  *   Author: Alexey Gerenkov <alexey@espressif.com>                        *
6  *                                                                         *
7  *   This program is free software; you can redistribute it and/or modify  *
8  *   it under the terms of the GNU General Public License as published by  *
9  *   the Free Software Foundation; either version 2 of the License, or     *
10  *   (at your option) any later version.                                   *
11  *                                                                         *
12  *   This program is distributed in the hope that it will be useful,       *
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
15  *   GNU General Public License for more details.                          *
16  *                                                                         *
17  *   You should have received a copy of the GNU General Public License     *
18  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
19  ***************************************************************************/
20
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
24
25 #include <helper/time_support.h>
26 #include <target/target.h>
27 #include <target/target_type.h>
28 #include <target/smp.h>
29 #include "assert.h"
30 #include "esp32.h"
31 #include "esp_xtensa_smp.h"
32
33 /*
34 This is a JTAG driver for the ESP32, the are two Tensilica cores inside
35 the ESP32 chip. For more information please have a look into ESP32 target
36 implementation.
37 */
38
39 /* ESP32 memory map */
40 #define ESP32_DRAM_LOW            0x3ffae000
41 #define ESP32_DRAM_HIGH           0x40000000
42 #define ESP32_IROM_MASK_LOW       0x40000000
43 #define ESP32_IROM_MASK_HIGH      0x40064f00
44 #define ESP32_IRAM_LOW            0x40070000
45 #define ESP32_IRAM_HIGH           0x400a0000
46 #define ESP32_RTC_IRAM_LOW        0x400c0000
47 #define ESP32_RTC_IRAM_HIGH       0x400c2000
48 #define ESP32_RTC_DRAM_LOW        0x3ff80000
49 #define ESP32_RTC_DRAM_HIGH       0x3ff82000
50 #define ESP32_RTC_DATA_LOW        0x50000000
51 #define ESP32_RTC_DATA_HIGH       0x50002000
52 #define ESP32_EXTRAM_DATA_LOW     0x3f800000
53 #define ESP32_EXTRAM_DATA_HIGH    0x3fc00000
54 #define ESP32_DR_REG_LOW          0x3ff00000
55 #define ESP32_DR_REG_HIGH         0x3ff71000
56 #define ESP32_SYS_RAM_LOW         0x60000000UL
57 #define ESP32_SYS_RAM_HIGH        (ESP32_SYS_RAM_LOW + 0x20000000UL)
58 #define ESP32_RTC_SLOW_MEM_BASE   ESP32_RTC_DATA_LOW
59
60 /* ESP32 WDT */
61 #define ESP32_WDT_WKEY_VALUE       0x50d83aa1
62 #define ESP32_TIMG0_BASE           0x3ff5f000
63 #define ESP32_TIMG1_BASE           0x3ff60000
64 #define ESP32_TIMGWDT_CFG0_OFF     0x48
65 #define ESP32_TIMGWDT_PROTECT_OFF  0x64
66 #define ESP32_TIMG0WDT_CFG0        (ESP32_TIMG0_BASE + ESP32_TIMGWDT_CFG0_OFF)
67 #define ESP32_TIMG1WDT_CFG0        (ESP32_TIMG1_BASE + ESP32_TIMGWDT_CFG0_OFF)
68 #define ESP32_TIMG0WDT_PROTECT     (ESP32_TIMG0_BASE + ESP32_TIMGWDT_PROTECT_OFF)
69 #define ESP32_TIMG1WDT_PROTECT     (ESP32_TIMG1_BASE + ESP32_TIMGWDT_PROTECT_OFF)
70 #define ESP32_RTCCNTL_BASE         0x3ff48000
71 #define ESP32_RTCWDT_CFG_OFF       0x8C
72 #define ESP32_RTCWDT_PROTECT_OFF   0xA4
73 #define ESP32_RTCWDT_CFG           (ESP32_RTCCNTL_BASE + ESP32_RTCWDT_CFG_OFF)
74 #define ESP32_RTCWDT_PROTECT       (ESP32_RTCCNTL_BASE + ESP32_RTCWDT_PROTECT_OFF)
75
76 #define ESP32_TRACEMEM_BLOCK_SZ    0x4000
77
78 /* ESP32 dport regs */
79 #define ESP32_DR_REG_DPORT_BASE         ESP32_DR_REG_LOW
80 #define ESP32_DPORT_APPCPU_CTRL_B_REG   (ESP32_DR_REG_DPORT_BASE + 0x030)
81 #define ESP32_DPORT_APPCPU_CLKGATE_EN   BIT(0)
82 /* ESP32 RTC regs */
83 #define ESP32_RTC_CNTL_SW_CPU_STALL_REG (ESP32_RTCCNTL_BASE + 0xac)
84 #define ESP32_RTC_CNTL_SW_CPU_STALL_DEF 0x0
85
86
87 /* this should map local reg IDs to GDB reg mapping as defined in xtensa-config.c 'rmap' in
88  *xtensa-overlay */
89 static const unsigned int esp32_gdb_regs_mapping[ESP32_NUM_REGS] = {
90         XT_REG_IDX_PC,
91         XT_REG_IDX_AR0, XT_REG_IDX_AR1, XT_REG_IDX_AR2, XT_REG_IDX_AR3,
92         XT_REG_IDX_AR4, XT_REG_IDX_AR5, XT_REG_IDX_AR6, XT_REG_IDX_AR7,
93         XT_REG_IDX_AR8, XT_REG_IDX_AR9, XT_REG_IDX_AR10, XT_REG_IDX_AR11,
94         XT_REG_IDX_AR12, XT_REG_IDX_AR13, XT_REG_IDX_AR14, XT_REG_IDX_AR15,
95         XT_REG_IDX_AR16, XT_REG_IDX_AR17, XT_REG_IDX_AR18, XT_REG_IDX_AR19,
96         XT_REG_IDX_AR20, XT_REG_IDX_AR21, XT_REG_IDX_AR22, XT_REG_IDX_AR23,
97         XT_REG_IDX_AR24, XT_REG_IDX_AR25, XT_REG_IDX_AR26, XT_REG_IDX_AR27,
98         XT_REG_IDX_AR28, XT_REG_IDX_AR29, XT_REG_IDX_AR30, XT_REG_IDX_AR31,
99         XT_REG_IDX_AR32, XT_REG_IDX_AR33, XT_REG_IDX_AR34, XT_REG_IDX_AR35,
100         XT_REG_IDX_AR36, XT_REG_IDX_AR37, XT_REG_IDX_AR38, XT_REG_IDX_AR39,
101         XT_REG_IDX_AR40, XT_REG_IDX_AR41, XT_REG_IDX_AR42, XT_REG_IDX_AR43,
102         XT_REG_IDX_AR44, XT_REG_IDX_AR45, XT_REG_IDX_AR46, XT_REG_IDX_AR47,
103         XT_REG_IDX_AR48, XT_REG_IDX_AR49, XT_REG_IDX_AR50, XT_REG_IDX_AR51,
104         XT_REG_IDX_AR52, XT_REG_IDX_AR53, XT_REG_IDX_AR54, XT_REG_IDX_AR55,
105         XT_REG_IDX_AR56, XT_REG_IDX_AR57, XT_REG_IDX_AR58, XT_REG_IDX_AR59,
106         XT_REG_IDX_AR60, XT_REG_IDX_AR61, XT_REG_IDX_AR62, XT_REG_IDX_AR63,
107         XT_REG_IDX_LBEG, XT_REG_IDX_LEND, XT_REG_IDX_LCOUNT, XT_REG_IDX_SAR,
108         XT_REG_IDX_WINDOWBASE, XT_REG_IDX_WINDOWSTART, XT_REG_IDX_CONFIGID0, XT_REG_IDX_CONFIGID1,
109         XT_REG_IDX_PS, XT_REG_IDX_THREADPTR, XT_REG_IDX_BR, XT_REG_IDX_SCOMPARE1,
110         XT_REG_IDX_ACCLO, XT_REG_IDX_ACCHI,
111         XT_REG_IDX_M0, XT_REG_IDX_M1, XT_REG_IDX_M2, XT_REG_IDX_M3,
112         ESP32_REG_IDX_EXPSTATE,
113         ESP32_REG_IDX_F64R_LO,
114         ESP32_REG_IDX_F64R_HI,
115         ESP32_REG_IDX_F64S,
116         XT_REG_IDX_F0, XT_REG_IDX_F1, XT_REG_IDX_F2, XT_REG_IDX_F3,
117         XT_REG_IDX_F4, XT_REG_IDX_F5, XT_REG_IDX_F6, XT_REG_IDX_F7,
118         XT_REG_IDX_F8, XT_REG_IDX_F9, XT_REG_IDX_F10, XT_REG_IDX_F11,
119         XT_REG_IDX_F12, XT_REG_IDX_F13, XT_REG_IDX_F14, XT_REG_IDX_F15,
120         XT_REG_IDX_FCR, XT_REG_IDX_FSR, XT_REG_IDX_MMID, XT_REG_IDX_IBREAKENABLE,
121         XT_REG_IDX_MEMCTL, XT_REG_IDX_ATOMCTL, XT_REG_IDX_OCD_DDR,
122         XT_REG_IDX_IBREAKA0, XT_REG_IDX_IBREAKA1, XT_REG_IDX_DBREAKA0, XT_REG_IDX_DBREAKA1,
123         XT_REG_IDX_DBREAKC0, XT_REG_IDX_DBREAKC1,
124         XT_REG_IDX_EPC1, XT_REG_IDX_EPC2, XT_REG_IDX_EPC3, XT_REG_IDX_EPC4,
125         XT_REG_IDX_EPC5, XT_REG_IDX_EPC6, XT_REG_IDX_EPC7, XT_REG_IDX_DEPC,
126         XT_REG_IDX_EPS2, XT_REG_IDX_EPS3, XT_REG_IDX_EPS4, XT_REG_IDX_EPS5,
127         XT_REG_IDX_EPS6, XT_REG_IDX_EPS7,
128         XT_REG_IDX_EXCSAVE1, XT_REG_IDX_EXCSAVE2, XT_REG_IDX_EXCSAVE3, XT_REG_IDX_EXCSAVE4,
129         XT_REG_IDX_EXCSAVE5, XT_REG_IDX_EXCSAVE6, XT_REG_IDX_EXCSAVE7, XT_REG_IDX_CPENABLE,
130         XT_REG_IDX_INTERRUPT, XT_REG_IDX_INTSET, XT_REG_IDX_INTCLEAR, XT_REG_IDX_INTENABLE,
131         XT_REG_IDX_VECBASE, XT_REG_IDX_EXCCAUSE, XT_REG_IDX_DEBUGCAUSE, XT_REG_IDX_CCOUNT,
132         XT_REG_IDX_PRID, XT_REG_IDX_ICOUNT, XT_REG_IDX_ICOUNTLEVEL, XT_REG_IDX_EXCVADDR,
133         XT_REG_IDX_CCOMPARE0, XT_REG_IDX_CCOMPARE1, XT_REG_IDX_CCOMPARE2,
134         XT_REG_IDX_MISC0, XT_REG_IDX_MISC1, XT_REG_IDX_MISC2, XT_REG_IDX_MISC3,
135         XT_REG_IDX_A0, XT_REG_IDX_A1, XT_REG_IDX_A2, XT_REG_IDX_A3,
136         XT_REG_IDX_A4, XT_REG_IDX_A5, XT_REG_IDX_A6, XT_REG_IDX_A7,
137         XT_REG_IDX_A8, XT_REG_IDX_A9, XT_REG_IDX_A10, XT_REG_IDX_A11,
138         XT_REG_IDX_A12, XT_REG_IDX_A13, XT_REG_IDX_A14, XT_REG_IDX_A15,
139         XT_REG_IDX_PWRCTL, XT_REG_IDX_PWRSTAT, XT_REG_IDX_ERISTAT,
140         XT_REG_IDX_CS_ITCTRL, XT_REG_IDX_CS_CLAIMSET, XT_REG_IDX_CS_CLAIMCLR,
141         XT_REG_IDX_CS_LOCKACCESS, XT_REG_IDX_CS_LOCKSTATUS, XT_REG_IDX_CS_AUTHSTATUS,
142         XT_REG_IDX_FAULT_INFO,
143         XT_REG_IDX_TRAX_ID, XT_REG_IDX_TRAX_CTRL, XT_REG_IDX_TRAX_STAT,
144         XT_REG_IDX_TRAX_DATA, XT_REG_IDX_TRAX_ADDR, XT_REG_IDX_TRAX_PCTRIGGER,
145         XT_REG_IDX_TRAX_PCMATCH, XT_REG_IDX_TRAX_DELAY, XT_REG_IDX_TRAX_MEMSTART,
146         XT_REG_IDX_TRAX_MEMEND,
147         XT_REG_IDX_PMG, XT_REG_IDX_PMPC, XT_REG_IDX_PM0, XT_REG_IDX_PM1,
148         XT_REG_IDX_PMCTRL0, XT_REG_IDX_PMCTRL1, XT_REG_IDX_PMSTAT0, XT_REG_IDX_PMSTAT1,
149         XT_REG_IDX_OCD_ID, XT_REG_IDX_OCD_DCRCLR, XT_REG_IDX_OCD_DCRSET, XT_REG_IDX_OCD_DSR,
150 };
151
152 static const struct xtensa_user_reg_desc esp32_user_regs[ESP32_NUM_REGS - XT_NUM_REGS] = {
153         { "expstate", 0xE6, 0, 32, &xtensa_user_reg_u32_type },
154         { "f64r_lo", 0xEA, 0, 32, &xtensa_user_reg_u32_type },
155         { "f64r_hi", 0xEB, 0, 32, &xtensa_user_reg_u32_type },
156         { "f64s", 0xEC, 0, 32, &xtensa_user_reg_u32_type },
157 };
158
159 static const struct xtensa_config esp32_xtensa_cfg = {
160         .density = true,
161         .aregs_num = XT_AREGS_NUM_MAX,
162         .windowed = true,
163         .coproc = true,
164         .fp_coproc = true,
165         .loop = true,
166         .miscregs_num = 4,
167         .threadptr = true,
168         .boolean = true,
169         .reloc_vec = true,
170         .proc_id = true,
171         .cond_store = true,
172         .mac16 = true,
173         .user_regs_num = ARRAY_SIZE(esp32_user_regs),
174         .user_regs = esp32_user_regs,
175         .fetch_user_regs = xtensa_fetch_user_regs_u32,
176         .queue_write_dirty_user_regs = xtensa_queue_write_dirty_user_regs_u32,
177         .gdb_general_regs_num = ESP32_NUM_REGS_G_COMMAND,
178         .gdb_regs_mapping = esp32_gdb_regs_mapping,
179         .irom = {
180                 .count = 2,
181                 .regions = {
182                         {
183                                 .base = ESP32_IROM_LOW,
184                                 .size = ESP32_IROM_HIGH - ESP32_IROM_LOW,
185                                 .access = XT_MEM_ACCESS_READ,
186                         },
187                         {
188                                 .base = ESP32_IROM_MASK_LOW,
189                                 .size = ESP32_IROM_MASK_HIGH - ESP32_IROM_MASK_LOW,
190                                 .access = XT_MEM_ACCESS_READ,
191                         },
192                 }
193         },
194         .iram = {
195                 .count = 2,
196                 .regions = {
197                         {
198                                 .base = ESP32_IRAM_LOW,
199                                 .size = ESP32_IRAM_HIGH - ESP32_IRAM_LOW,
200                                 .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE,
201                         },
202                         {
203                                 .base = ESP32_RTC_IRAM_LOW,
204                                 .size = ESP32_RTC_IRAM_HIGH - ESP32_RTC_IRAM_LOW,
205                                 .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE,
206                         },
207                 }
208         },
209         .drom = {
210                 .count = 1,
211                 .regions = {
212                         {
213                                 .base = ESP32_DROM_LOW,
214                                 .size = ESP32_DROM_HIGH - ESP32_DROM_LOW,
215                                 .access = XT_MEM_ACCESS_READ,
216                         },
217                 }
218         },
219         .dram = {
220                 .count = 6,
221                 .regions = {
222                         {
223                                 .base = ESP32_DRAM_LOW,
224                                 .size = ESP32_DRAM_HIGH - ESP32_DRAM_LOW,
225                                 .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE,
226                         },
227                         {
228                                 .base = ESP32_RTC_DRAM_LOW,
229                                 .size = ESP32_RTC_DRAM_HIGH - ESP32_RTC_DRAM_LOW,
230                                 .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE,
231                         },
232                         {
233                                 .base = ESP32_RTC_DATA_LOW,
234                                 .size = ESP32_RTC_DATA_HIGH - ESP32_RTC_DATA_LOW,
235                                 .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE,
236                         },
237                         {
238                                 .base = ESP32_EXTRAM_DATA_LOW,
239                                 .size = ESP32_EXTRAM_DATA_HIGH - ESP32_EXTRAM_DATA_LOW,
240                                 .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE,
241                         },
242                         {
243                                 .base = ESP32_DR_REG_LOW,
244                                 .size = ESP32_DR_REG_HIGH - ESP32_DR_REG_LOW,
245                                 .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE,
246                         },
247                         {
248                                 .base = ESP32_SYS_RAM_LOW,
249                                 .size = ESP32_SYS_RAM_HIGH - ESP32_SYS_RAM_LOW,
250                                 .access = XT_MEM_ACCESS_READ | XT_MEM_ACCESS_WRITE,
251                         },
252                 }
253         },
254         .exc = {
255                 .enabled = true,
256         },
257         .irq = {
258                 .enabled = true,
259                 .irq_num = 32,
260         },
261         .high_irq = {
262                 .enabled = true,
263                 .excm_level = 3,
264                 .nmi_num = 1,
265         },
266         .tim_irq = {
267                 .enabled = true,
268                 .comp_num = 3,
269         },
270         .debug = {
271                 .enabled = true,
272                 .irq_level = 6,
273                 .ibreaks_num = 2,
274                 .dbreaks_num = 2,
275                 .icount_sz = 32,
276         },
277         .trace = {
278                 .enabled = true,
279                 .mem_sz = ESP32_TRACEMEM_BLOCK_SZ,
280                 .reversed_mem_access = true,
281         },
282 };
283
284 /* 0 - don't care, 1 - TMS low, 2 - TMS high */
285 enum esp32_flash_bootstrap {
286         FBS_DONTCARE = 0,
287         FBS_TMSLOW,
288         FBS_TMSHIGH,
289 };
290
291 struct esp32_common {
292         struct esp_xtensa_smp_common esp_xtensa_smp;
293         enum esp32_flash_bootstrap flash_bootstrap;
294 };
295
296 static inline struct esp32_common *target_to_esp32(struct target *target)
297 {
298         return container_of(target->arch_info, struct esp32_common, esp_xtensa_smp);
299 }
300
301 /* Reset ESP32 peripherals.
302  * Postconditions: all peripherals except RTC_CNTL are reset, CPU's PC is undefined, PRO CPU is halted,
303  * APP CPU is in reset
304  * How this works:
305  * 0. make sure target is halted; if not, try to halt it; if that fails, try to reset it (via OCD) and then halt
306  * 1. set CPU initial PC to 0x50000000 (ESP32_SMP_RTC_DATA_LOW) by clearing RTC_CNTL_{PRO,APP}CPU_STAT_VECTOR_SEL
307  * 2. load stub code into ESP32_SMP_RTC_DATA_LOW; once executed, stub code will disable watchdogs and
308  * make CPU spin in an idle loop.
309  * 3. trigger SoC reset using RTC_CNTL_SW_SYS_RST bit
310  * 4. wait for the OCD to be reset
311  * 5. halt the target and wait for it to be halted (at this point CPU is in the idle loop)
312  * 6. restore initial PC and the contents of ESP32_SMP_RTC_DATA_LOW
313  * TODO: some state of RTC_CNTL is not reset during SW_SYS_RST. Need to reset that manually. */
314
315 const uint8_t esp32_reset_stub_code[] = {
316 #include "../../../contrib/loaders/reset/espressif/esp32/cpu_reset_handler_code.inc"
317 };
318
319 static int esp32_soc_reset(struct target *target)
320 {
321         int res;
322         struct target_list *head;
323         struct xtensa *xtensa;
324
325         LOG_DEBUG("start");
326         /* In order to write to peripheral registers, target must be halted first */
327         if (target->state != TARGET_HALTED) {
328                 LOG_DEBUG("Target not halted before SoC reset, trying to halt it first");
329                 xtensa_halt(target);
330                 res = target_wait_state(target, TARGET_HALTED, 1000);
331                 if (res != ERROR_OK) {
332                         LOG_DEBUG("Couldn't halt target before SoC reset, trying to do reset-halt");
333                         res = xtensa_assert_reset(target);
334                         if (res != ERROR_OK) {
335                                 LOG_ERROR(
336                                         "Couldn't halt target before SoC reset! (xtensa_assert_reset returned %d)",
337                                         res);
338                                 return res;
339                         }
340                         alive_sleep(10);
341                         xtensa_poll(target);
342                         bool reset_halt_save = target->reset_halt;
343                         target->reset_halt = true;
344                         res = xtensa_deassert_reset(target);
345                         target->reset_halt = reset_halt_save;
346                         if (res != ERROR_OK) {
347                                 LOG_ERROR(
348                                         "Couldn't halt target before SoC reset! (xtensa_deassert_reset returned %d)",
349                                         res);
350                                 return res;
351                         }
352                         alive_sleep(10);
353                         xtensa_poll(target);
354                         xtensa_halt(target);
355                         res = target_wait_state(target, TARGET_HALTED, 1000);
356                         if (res != ERROR_OK) {
357                                 LOG_ERROR("Couldn't halt target before SoC reset");
358                                 return res;
359                         }
360                 }
361         }
362
363         if (target->smp) {
364                 foreach_smp_target(head, target->smp_targets) {
365                         xtensa = target_to_xtensa(head->target);
366                         /* if any of the cores is stalled unstall them */
367                         if (xtensa_dm_core_is_stalled(&xtensa->dbg_mod)) {
368                                 LOG_TARGET_DEBUG(head->target, "Unstall CPUs before SW reset!");
369                                 res = target_write_u32(target,
370                                         ESP32_RTC_CNTL_SW_CPU_STALL_REG,
371                                         ESP32_RTC_CNTL_SW_CPU_STALL_DEF);
372                                 if (res != ERROR_OK) {
373                                         LOG_TARGET_ERROR(head->target, "Failed to unstall CPUs before SW reset!");
374                                         return res;
375                                 }
376                                 break;  /* both cores are unstalled now, so exit the loop */
377                         }
378                 }
379         }
380
381         LOG_DEBUG("Loading stub code into RTC RAM");
382         uint8_t slow_mem_save[sizeof(esp32_reset_stub_code)];
383
384         /* Save contents of RTC_SLOW_MEM which we are about to overwrite */
385         res = target_read_buffer(target, ESP32_RTC_SLOW_MEM_BASE, sizeof(slow_mem_save), slow_mem_save);
386         if (res != ERROR_OK) {
387                 LOG_ERROR("Failed to save contents of RTC_SLOW_MEM (%d)!", res);
388                 return res;
389         }
390
391         /* Write stub code into RTC_SLOW_MEM */
392         res = target_write_buffer(target, ESP32_RTC_SLOW_MEM_BASE, sizeof(esp32_reset_stub_code), esp32_reset_stub_code);
393         if (res != ERROR_OK) {
394                 LOG_ERROR("Failed to write stub (%d)!", res);
395                 return res;
396         }
397
398         LOG_DEBUG("Resuming the target");
399         xtensa = target_to_xtensa(target);
400         xtensa->suppress_dsr_errors = true;
401         res = xtensa_resume(target, 0, ESP32_RTC_SLOW_MEM_BASE + 4, 0, 0);
402         xtensa->suppress_dsr_errors = false;
403         if (res != ERROR_OK) {
404                 LOG_ERROR("Failed to run stub (%d)!", res);
405                 return res;
406         }
407         LOG_DEBUG("resume done, waiting for the target to come alive");
408
409         /* Wait for SoC to reset */
410         alive_sleep(100);
411         int64_t timeout = timeval_ms() + 100;
412         bool get_timeout = false;
413         while (target->state != TARGET_RESET && target->state != TARGET_RUNNING) {
414                 alive_sleep(10);
415                 xtensa_poll(target);
416                 if (timeval_ms() >= timeout) {
417                         LOG_TARGET_ERROR(target, "Timed out waiting for CPU to be reset, target state=%d", target->state);
418                         get_timeout = true;
419                         break;
420                 }
421         }
422
423         /* Halt the CPU again */
424         LOG_DEBUG("halting the target");
425         xtensa_halt(target);
426         res = target_wait_state(target, TARGET_HALTED, 1000);
427         if (res == ERROR_OK) {
428                 LOG_DEBUG("restoring RTC_SLOW_MEM");
429                 res = target_write_buffer(target, ESP32_RTC_SLOW_MEM_BASE, sizeof(slow_mem_save), slow_mem_save);
430                 if (res != ERROR_OK)
431                         LOG_TARGET_ERROR(target, "Failed to restore contents of RTC_SLOW_MEM (%d)!", res);
432         } else {
433                 LOG_TARGET_ERROR(target, "Timed out waiting for CPU to be halted after SoC reset");
434         }
435
436         return get_timeout ? ERROR_TARGET_TIMEOUT : res;
437 }
438
439 static int esp32_disable_wdts(struct target *target)
440 {
441         /* TIMG1 WDT */
442         int res = target_write_u32(target, ESP32_TIMG0WDT_PROTECT, ESP32_WDT_WKEY_VALUE);
443         if (res != ERROR_OK) {
444                 LOG_ERROR("Failed to write ESP32_TIMG0WDT_PROTECT (%d)!", res);
445                 return res;
446         }
447         res = target_write_u32(target, ESP32_TIMG0WDT_CFG0, 0);
448         if (res != ERROR_OK) {
449                 LOG_ERROR("Failed to write ESP32_TIMG0WDT_CFG0 (%d)!", res);
450                 return res;
451         }
452         /* TIMG2 WDT */
453         res = target_write_u32(target, ESP32_TIMG1WDT_PROTECT, ESP32_WDT_WKEY_VALUE);
454         if (res != ERROR_OK) {
455                 LOG_ERROR("Failed to write ESP32_TIMG1WDT_PROTECT (%d)!", res);
456                 return res;
457         }
458         res = target_write_u32(target, ESP32_TIMG1WDT_CFG0, 0);
459         if (res != ERROR_OK) {
460                 LOG_ERROR("Failed to write ESP32_TIMG1WDT_CFG0 (%d)!", res);
461                 return res;
462         }
463         /* RTC WDT */
464         res = target_write_u32(target, ESP32_RTCWDT_PROTECT, ESP32_WDT_WKEY_VALUE);
465         if (res != ERROR_OK) {
466                 LOG_ERROR("Failed to write ESP32_RTCWDT_PROTECT (%d)!", res);
467                 return res;
468         }
469         res = target_write_u32(target, ESP32_RTCWDT_CFG, 0);
470         if (res != ERROR_OK) {
471                 LOG_ERROR("Failed to write ESP32_RTCWDT_CFG (%d)!", res);
472                 return res;
473         }
474         return ERROR_OK;
475 }
476
477 static int esp32_on_halt(struct target *target)
478 {
479         return esp32_disable_wdts(target);
480 }
481
482 static int esp32_arch_state(struct target *target)
483 {
484         return ERROR_OK;
485 }
486
487 static int esp32_virt2phys(struct target *target,
488         target_addr_t virtual, target_addr_t *physical)
489 {
490         if (physical) {
491                 *physical = virtual;
492                 return ERROR_OK;
493         }
494         return ERROR_FAIL;
495 }
496
497
498 /* The TDI pin is also used as a flash Vcc bootstrap pin. If we reset the CPU externally, the last state of the TDI pin
499  * can allow the power to an 1.8V flash chip to be raised to 3.3V, or the other way around. Users can use the
500  * esp32 flashbootstrap command to set a level, and this routine will make sure the tdi line will return to
501  * that when the jtag port is idle. */
502
503 static void esp32_queue_tdi_idle(struct target *target)
504 {
505         struct esp32_common *esp32 = target_to_esp32(target);
506         static uint32_t value;
507         uint8_t t[4] = { 0, 0, 0, 0 };
508
509         if (esp32->flash_bootstrap == FBS_TMSLOW)
510                 /* Make sure tdi is 0 at the exit of queue execution */
511                 value = 0;
512         else if (esp32->flash_bootstrap == FBS_TMSHIGH)
513                 /* Make sure tdi is 1 at the exit of queue execution */
514                 value = 1;
515         else
516                 return;
517
518         /* Scan out 1 bit, do not move from IRPAUSE after we're done. */
519         buf_set_u32(t, 0, 1, value);
520         jtag_add_plain_ir_scan(1, t, NULL, TAP_IRPAUSE);
521 }
522
523 static int esp32_target_init(struct command_context *cmd_ctx, struct target *target)
524 {
525         return esp_xtensa_smp_target_init(cmd_ctx, target);
526 }
527
528 static const struct xtensa_debug_ops esp32_dbg_ops = {
529         .queue_enable = xtensa_dm_queue_enable,
530         .queue_reg_read = xtensa_dm_queue_reg_read,
531         .queue_reg_write = xtensa_dm_queue_reg_write
532 };
533
534 static const struct xtensa_power_ops esp32_pwr_ops = {
535         .queue_reg_read = xtensa_dm_queue_pwr_reg_read,
536         .queue_reg_write = xtensa_dm_queue_pwr_reg_write
537 };
538
539 static const struct esp_xtensa_smp_chip_ops esp32_chip_ops = {
540         .reset = esp32_soc_reset,
541         .on_halt = esp32_on_halt
542 };
543
544 static int esp32_target_create(struct target *target, Jim_Interp *interp)
545 {
546         struct xtensa_debug_module_config esp32_dm_cfg = {
547                 .dbg_ops = &esp32_dbg_ops,
548                 .pwr_ops = &esp32_pwr_ops,
549                 .tap = target->tap,
550                 .queue_tdi_idle = esp32_queue_tdi_idle,
551                 .queue_tdi_idle_arg = target
552         };
553
554         struct esp32_common *esp32 = calloc(1, sizeof(struct esp32_common));
555         if (!esp32) {
556                 LOG_ERROR("Failed to alloc memory for arch info!");
557                 return ERROR_FAIL;
558         }
559
560         int ret = esp_xtensa_smp_init_arch_info(target, &esp32->esp_xtensa_smp, &esp32_xtensa_cfg,
561                 &esp32_dm_cfg, &esp32_chip_ops);
562         if (ret != ERROR_OK) {
563                 LOG_ERROR("Failed to init arch info!");
564                 free(esp32);
565                 return ret;
566         }
567         esp32->flash_bootstrap = FBS_DONTCARE;
568
569         /* Assume running target. If different, the first poll will fix this. */
570         target->state = TARGET_RUNNING;
571         target->debug_reason = DBG_REASON_NOTHALTED;
572         return ERROR_OK;
573 }
574
575 COMMAND_HELPER(esp32_cmd_flashbootstrap_do, struct esp32_common *esp32)
576 {
577         int state = -1;
578
579         if (CMD_ARGC < 1) {
580                 const char *st;
581                 state = esp32->flash_bootstrap;
582                 if (state == FBS_DONTCARE)
583                         st = "Don't care";
584                 else if (state == FBS_TMSLOW)
585                         st = "Low (3.3V)";
586                 else if (state == FBS_TMSHIGH)
587                         st = "High (1.8V)";
588                 else
589                         st = "None";
590                 command_print(CMD, "Current idle tms state: %s", st);
591                 return ERROR_OK;
592         }
593
594         if (!strcasecmp(CMD_ARGV[0], "none"))
595                 state = FBS_DONTCARE;
596         else if (!strcasecmp(CMD_ARGV[0], "1.8"))
597                 state = FBS_TMSHIGH;
598         else if (!strcasecmp(CMD_ARGV[0], "3.3"))
599                 state = FBS_TMSLOW;
600         else if (!strcasecmp(CMD_ARGV[0], "high"))
601                 state = FBS_TMSHIGH;
602         else if (!strcasecmp(CMD_ARGV[0], "low"))
603                 state = FBS_TMSLOW;
604
605         if (state == -1) {
606                 command_print(CMD,
607                         "Argument unknown. Please pick one of none, high, low, 1.8 or 3.3");
608                 return ERROR_FAIL;
609         }
610         esp32->flash_bootstrap = state;
611         return ERROR_OK;
612 }
613
614 COMMAND_HANDLER(esp32_cmd_flashbootstrap)
615 {
616         struct target *target = get_current_target(CMD_CTX);
617
618         if (target->smp) {
619                 struct target_list *head;
620                 struct target *curr;
621                 foreach_smp_target(head, target->smp_targets) {
622                         curr = head->target;
623                         int ret = CALL_COMMAND_HANDLER(esp32_cmd_flashbootstrap_do,
624                                 target_to_esp32(curr));
625                         if (ret != ERROR_OK)
626                                 return ret;
627                 }
628                 return ERROR_OK;
629         }
630         return CALL_COMMAND_HANDLER(esp32_cmd_flashbootstrap_do,
631                 target_to_esp32(target));
632 }
633
634 static const struct command_registration esp32_any_command_handlers[] = {
635         {
636                 .name = "flashbootstrap",
637                 .handler = esp32_cmd_flashbootstrap,
638                 .mode = COMMAND_ANY,
639                 .help =
640                         "Set the idle state of the TMS pin, which at reset also is the voltage selector for the flash chip.",
641                 .usage = "none|1.8|3.3|high|low",
642         },
643         COMMAND_REGISTRATION_DONE
644 };
645
646 extern const struct command_registration semihosting_common_handlers[];
647 static const struct command_registration esp32_command_handlers[] = {
648         {
649                 .chain = esp_xtensa_smp_command_handlers,
650         },
651         {
652                 .name = "esp32",
653                 .usage = "",
654                 .chain = smp_command_handlers,
655         },
656         {
657                 .name = "esp32",
658                 .usage = "",
659                 .chain = esp32_any_command_handlers,
660         },
661         COMMAND_REGISTRATION_DONE
662 };
663
664 /** Holds methods for Xtensa targets. */
665 struct target_type esp32_target = {
666         .name = "esp32",
667
668         .poll = esp_xtensa_smp_poll,
669         .arch_state = esp32_arch_state,
670
671         .halt = xtensa_halt,
672         .resume = esp_xtensa_smp_resume,
673         .step = esp_xtensa_smp_step,
674
675         .assert_reset = esp_xtensa_smp_assert_reset,
676         .deassert_reset = esp_xtensa_smp_deassert_reset,
677         .soft_reset_halt = esp_xtensa_smp_soft_reset_halt,
678
679         .virt2phys = esp32_virt2phys,
680         .mmu = xtensa_mmu_is_enabled,
681         .read_memory = xtensa_read_memory,
682         .write_memory = xtensa_write_memory,
683
684         .read_buffer = xtensa_read_buffer,
685         .write_buffer = xtensa_write_buffer,
686
687         .checksum_memory = xtensa_checksum_memory,
688
689         .get_gdb_arch = xtensa_get_gdb_arch,
690         .get_gdb_reg_list = xtensa_get_gdb_reg_list,
691
692         .add_breakpoint = esp_xtensa_breakpoint_add,
693         .remove_breakpoint = esp_xtensa_breakpoint_remove,
694
695         .add_watchpoint = esp_xtensa_smp_watchpoint_add,
696         .remove_watchpoint = esp_xtensa_smp_watchpoint_remove,
697
698         .target_create = esp32_target_create,
699         .init_target = esp32_target_init,
700         .examine = xtensa_examine,
701         .deinit_target = esp_xtensa_target_deinit,
702
703         .commands = esp32_command_handlers,
704 };