a3b3d425a9b2dabb2e7ea85f7aee7908a2db47a2
[fw/openocd] / src / target / cortex_m3.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m3.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40 #include "arm_opcodes.h"
41
42
43 /* NOTE:  most of this should work fine for the Cortex-M1 and
44  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
45  * Some differences:  M0/M1 doesn't have FBP remapping or the
46  * DWT tracing/profiling support.  (So the cycle counter will
47  * not be usable; the other stuff isn't currently used here.)
48  *
49  * Although there are some workarounds for errata seen only in r0p0
50  * silicon, such old parts are hard to find and thus not much tested
51  * any longer.
52  */
53
54
55 /* forward declarations */
56 static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
57 static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
58 static void cortex_m3_enable_watchpoints(struct target *target);
59 static int cortex_m3_store_core_reg_u32(struct target *target,
60                 enum armv7m_regtype type, uint32_t num, uint32_t value);
61
62 static int cortexm3_dap_read_coreregister_u32(struct swjdp_common *swjdp,
63                 uint32_t *value, int regnum)
64 {
65         int retval;
66         uint32_t dcrdr;
67
68         /* because the DCB_DCRDR is used for the emulated dcc channel
69          * we have to save/restore the DCB_DCRDR when used */
70
71         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
72
73         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
74
75         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
76         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
77         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
78
79         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
80         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
81         dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
82
83         retval = jtagdp_transaction_endcheck(swjdp);
84
85         /* restore DCB_DCRDR - this needs to be in a seperate
86          * transaction otherwise the emulated DCC channel breaks */
87         if (retval == ERROR_OK)
88                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
89
90         return retval;
91 }
92
93 static int cortexm3_dap_write_coreregister_u32(struct swjdp_common *swjdp,
94                 uint32_t value, int regnum)
95 {
96         int retval;
97         uint32_t dcrdr;
98
99         /* because the DCB_DCRDR is used for the emulated dcc channel
100          * we have to save/restore the DCB_DCRDR when used */
101
102         mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
103
104         swjdp->trans_mode = TRANS_MODE_COMPOSITE;
105
106         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
107         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
108         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
109
110         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
111         dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
112         dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
113
114         retval = jtagdp_transaction_endcheck(swjdp);
115
116         /* restore DCB_DCRDR - this needs to be in a seperate
117          * transaction otherwise the emulated DCC channel breaks */
118         if (retval == ERROR_OK)
119                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
120
121         return retval;
122 }
123
124 static int cortex_m3_write_debug_halt_mask(struct target *target,
125                 uint32_t mask_on, uint32_t mask_off)
126 {
127         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
128         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
129
130         /* mask off status bits */
131         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
132         /* create new register mask */
133         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
134
135         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
136 }
137
138 static int cortex_m3_clear_halt(struct target *target)
139 {
140         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
141         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
142
143         /* clear step if any */
144         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
145
146         /* Read Debug Fault Status Register */
147         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
148
149         /* Clear Debug Fault Status */
150         mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
151         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
152
153         return ERROR_OK;
154 }
155
156 static int cortex_m3_single_step_core(struct target *target)
157 {
158         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
159         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
160         uint32_t dhcsr_save;
161
162         /* backup dhcsr reg */
163         dhcsr_save = cortex_m3->dcb_dhcsr;
164
165         /* Mask interrupts before clearing halt, if done already.  This avoids
166          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
167          * HALT can put the core into an unknown state.
168          */
169         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
170                 mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
171                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
172         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
173                                 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
174         LOG_DEBUG(" ");
175
176         /* restore dhcsr reg */
177         cortex_m3->dcb_dhcsr = dhcsr_save;
178         cortex_m3_clear_halt(target);
179
180         return ERROR_OK;
181 }
182
183 static int cortex_m3_endreset_event(struct target *target)
184 {
185         int i;
186         uint32_t dcb_demcr;
187         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
188         struct armv7m_common *armv7m = &cortex_m3->armv7m;
189         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
190         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
191         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
192
193         /* REVISIT The four debug monitor bits are currently ignored... */
194         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
195         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
196
197         /* this register is used for emulated dcc channel */
198         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
199
200         /* Enable debug requests */
201         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
202         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
203                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
204
205         /* clear any interrupt masking */
206         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
207
208         /* Enable features controlled by ITM and DWT blocks, and catch only
209          * the vectors we were told to pay attention to.
210          *
211          * Target firmware is responsible for all fault handling policy
212          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
213          * or manual updates to the NVIC SHCSR and CCR registers.
214          */
215         mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
216
217         /* Paranoia: evidently some (early?) chips don't preserve all the
218          * debug state (including FBP, DWT, etc) across reset...
219          */
220
221         /* Enable FPB */
222         target_write_u32(target, FP_CTRL, 3);
223         cortex_m3->fpb_enabled = 1;
224
225         /* Restore FPB registers */
226         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
227         {
228                 target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
229         }
230
231         /* Restore DWT registers */
232         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
233         {
234                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
235                                 dwt_list[i].comp);
236                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
237                                 dwt_list[i].mask);
238                 target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
239                                 dwt_list[i].function);
240         }
241         jtagdp_transaction_endcheck(swjdp);
242
243         register_cache_invalidate(cortex_m3->armv7m.core_cache);
244
245         /* make sure we have latest dhcsr flags */
246         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
247
248         return ERROR_OK;
249 }
250
251 static int cortex_m3_examine_debug_reason(struct target *target)
252 {
253         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
254
255         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
256         /* only check the debug reason if we don't know it already */
257
258         if ((target->debug_reason != DBG_REASON_DBGRQ)
259                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
260         {
261                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
262                 {
263                         target->debug_reason = DBG_REASON_BREAKPOINT;
264                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
265                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
266                 }
267                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
268                         target->debug_reason = DBG_REASON_WATCHPOINT;
269                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
270                         target->debug_reason = DBG_REASON_BREAKPOINT;
271                 else /* EXTERNAL, HALTED */
272                         target->debug_reason = DBG_REASON_UNDEFINED;
273         }
274
275         return ERROR_OK;
276 }
277
278 static int cortex_m3_examine_exception_reason(struct target *target)
279 {
280         uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
281         struct armv7m_common *armv7m = target_to_armv7m(target);
282         struct swjdp_common *swjdp = &armv7m->swjdp_info;
283
284         mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
285         switch (armv7m->exception_number)
286         {
287                 case 2: /* NMI */
288                         break;
289                 case 3: /* Hard Fault */
290                         mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
291                         if (except_sr & 0x40000000)
292                         {
293                                 mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
294                         }
295                         break;
296                 case 4: /* Memory Management */
297                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
298                         mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
299                         break;
300                 case 5: /* Bus Fault */
301                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
302                         mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
303                         break;
304                 case 6: /* Usage Fault */
305                         mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
306                         break;
307                 case 11:        /* SVCall */
308                         break;
309                 case 12:        /* Debug Monitor */
310                         mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
311                         break;
312                 case 14:        /* PendSV */
313                         break;
314                 case 15:        /* SysTick */
315                         break;
316                 default:
317                         except_sr = 0;
318                         break;
319         }
320         jtagdp_transaction_endcheck(swjdp);
321         LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32 "", armv7m_exception_string(armv7m->exception_number), \
322                 shcsr, except_sr, cfsr, except_ar);
323         return ERROR_OK;
324 }
325
326 /* PSP is used in some thread modes */
327 static const int armv7m_psp_reg_map[17] = {
328         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
329         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
330         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
331         ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
332         ARMV7M_xPSR,
333 };
334
335 /* MSP is used in handler and some thread modes */
336 static const int armv7m_msp_reg_map[17] = {
337         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
338         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
339         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
340         ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
341         ARMV7M_xPSR,
342 };
343
344 static int cortex_m3_debug_entry(struct target *target)
345 {
346         int i;
347         uint32_t xPSR;
348         int retval;
349         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
350         struct armv7m_common *armv7m = &cortex_m3->armv7m;
351         struct arm *arm = &armv7m->arm;
352         struct swjdp_common *swjdp = &armv7m->swjdp_info;
353         struct reg *r;
354
355         LOG_DEBUG(" ");
356
357         cortex_m3_clear_halt(target);
358         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
359
360         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
361                 return retval;
362
363         /* Examine target state and mode */
364         /* First load register acessible through core debug port*/
365         int num_regs = armv7m->core_cache->num_regs;
366
367         for (i = 0; i < num_regs; i++)
368         {
369                 if (!armv7m->core_cache->reg_list[i].valid)
370                         armv7m->read_core_reg(target, i);
371         }
372
373         r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
374         xPSR = buf_get_u32(r->value, 0, 32);
375
376 #ifdef ARMV7_GDB_HACKS
377         /* FIXME this breaks on scan chains with more than one Cortex-M3.
378          * Instead, each CM3 should have its own dummy value...
379          */
380         /* copy real xpsr reg for gdb, setting thumb bit */
381         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
382         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
383         armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
384         armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
385 #endif
386
387         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
388         if (xPSR & 0xf00)
389         {
390                 r->dirty = r->valid;
391                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
392         }
393
394         /* Are we in an exception handler */
395         if (xPSR & 0x1FF)
396         {
397                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
398                 armv7m->exception_number = (xPSR & 0x1FF);
399
400                 arm->core_mode = ARM_MODE_HANDLER;
401                 arm->map = armv7m_msp_reg_map;
402         }
403         else
404         {
405                 unsigned control = buf_get_u32(armv7m->core_cache
406                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
407
408                 /* is this thread privileged? */
409                 armv7m->core_mode = control & 1;
410                 arm->core_mode = armv7m->core_mode
411                                 ? ARM_MODE_USER_THREAD
412                                 : ARM_MODE_THREAD;
413
414                 /* which stack is it using? */
415                 if (control & 2)
416                         arm->map = armv7m_psp_reg_map;
417                 else
418                         arm->map = armv7m_msp_reg_map;
419
420                 armv7m->exception_number = 0;
421         }
422
423         if (armv7m->exception_number)
424         {
425                 cortex_m3_examine_exception_reason(target);
426         }
427
428         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
429                 armv7m_mode_strings[armv7m->core_mode],
430                 *(uint32_t*)(arm->pc->value),
431                 target_state_name(target));
432
433         if (armv7m->post_debug_entry)
434                 armv7m->post_debug_entry(target);
435
436         return ERROR_OK;
437 }
438
439 static int cortex_m3_poll(struct target *target)
440 {
441         int retval;
442         enum target_state prev_target_state = target->state;
443         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
444         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
445
446         /* Read from Debug Halting Control and Status Register */
447         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
448         if (retval != ERROR_OK)
449         {
450                 target->state = TARGET_UNKNOWN;
451                 return retval;
452         }
453
454         /* Recover from lockup.  See ARMv7-M architecture spec,
455          * section B1.5.15 "Unrecoverable exception cases".
456          *
457          * REVISIT Is there a better way to report and handle this?
458          */
459         if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
460                 LOG_WARNING("%s -- clearing lockup after double fault",
461                                 target_name(target));
462                 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
463                 target->debug_reason = DBG_REASON_DBGRQ;
464
465                 /* refresh status bits */
466                 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
467         }
468
469         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
470         {
471                 /* check if still in reset */
472                 mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
473
474                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
475                 {
476                         target->state = TARGET_RESET;
477                         return ERROR_OK;
478                 }
479         }
480
481         if (target->state == TARGET_RESET)
482         {
483                 /* Cannot switch context while running so endreset is
484                  * called with target->state == TARGET_RESET
485                  */
486                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
487                                 cortex_m3->dcb_dhcsr);
488                 cortex_m3_endreset_event(target);
489                 target->state = TARGET_RUNNING;
490                 prev_target_state = TARGET_RUNNING;
491         }
492
493         if (cortex_m3->dcb_dhcsr & S_HALT)
494         {
495                 target->state = TARGET_HALTED;
496
497                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
498                 {
499                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
500                                 return retval;
501
502                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
503                 }
504                 if (prev_target_state == TARGET_DEBUG_RUNNING)
505                 {
506                         LOG_DEBUG(" ");
507                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
508                                 return retval;
509
510                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
511                 }
512         }
513
514         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
515          * How best to model low power modes?
516          */
517
518         if (target->state == TARGET_UNKNOWN)
519         {
520                 /* check if processor is retiring instructions */
521                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
522                 {
523                         target->state = TARGET_RUNNING;
524                         return ERROR_OK;
525                 }
526         }
527
528         return ERROR_OK;
529 }
530
531 static int cortex_m3_halt(struct target *target)
532 {
533         LOG_DEBUG("target->state: %s",
534                 target_state_name(target));
535
536         if (target->state == TARGET_HALTED)
537         {
538                 LOG_DEBUG("target was already halted");
539                 return ERROR_OK;
540         }
541
542         if (target->state == TARGET_UNKNOWN)
543         {
544                 LOG_WARNING("target was in unknown state when halt was requested");
545         }
546
547         if (target->state == TARGET_RESET)
548         {
549                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
550                 {
551                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
552                         return ERROR_TARGET_FAILURE;
553                 }
554                 else
555                 {
556                         /* we came here in a reset_halt or reset_init sequence
557                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
558                          */
559                         target->debug_reason = DBG_REASON_DBGRQ;
560
561                         return ERROR_OK;
562                 }
563         }
564
565         /* Write to Debug Halting Control and Status Register */
566         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
567
568         target->debug_reason = DBG_REASON_DBGRQ;
569
570         return ERROR_OK;
571 }
572
573 static int cortex_m3_soft_reset_halt(struct target *target)
574 {
575         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
576         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
577         uint32_t dcb_dhcsr = 0;
578         int retval, timeout = 0;
579
580         /* Enter debug state on reset; restore DEMCR in endreset_event() */
581         mem_ap_write_u32(swjdp, DCB_DEMCR,
582                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
583
584         /* Request a core-only reset */
585         mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
586                         AIRCR_VECTKEY | AIRCR_VECTRESET);
587         target->state = TARGET_RESET;
588
589         /* registers are now invalid */
590         register_cache_invalidate(cortex_m3->armv7m.core_cache);
591
592         while (timeout < 100)
593         {
594                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
595                 if (retval == ERROR_OK)
596                 {
597                         mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
598                                         &cortex_m3->nvic_dfsr);
599                         if ((dcb_dhcsr & S_HALT)
600                                         && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
601                         {
602                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
603                                         "DFSR 0x%08x",
604                                         (unsigned) dcb_dhcsr,
605                                         (unsigned) cortex_m3->nvic_dfsr);
606                                 cortex_m3_poll(target);
607                                 /* FIXME restore user's vector catch config */
608                                 return ERROR_OK;
609                         }
610                         else
611                                 LOG_DEBUG("waiting for system reset-halt, "
612                                         "DHCSR 0x%08x, %d ms",
613                                         (unsigned) dcb_dhcsr, timeout);
614                 }
615                 timeout++;
616                 alive_sleep(1);
617         }
618
619         return ERROR_OK;
620 }
621
622 static void cortex_m3_enable_breakpoints(struct target *target)
623 {
624         struct breakpoint *breakpoint = target->breakpoints;
625
626         /* set any pending breakpoints */
627         while (breakpoint)
628         {
629                 if (!breakpoint->set)
630                         cortex_m3_set_breakpoint(target, breakpoint);
631                 breakpoint = breakpoint->next;
632         }
633 }
634
635 static int cortex_m3_resume(struct target *target, int current,
636                 uint32_t address, int handle_breakpoints, int debug_execution)
637 {
638         struct armv7m_common *armv7m = target_to_armv7m(target);
639         struct breakpoint *breakpoint = NULL;
640         uint32_t resume_pc;
641         struct reg *r;
642
643         if (target->state != TARGET_HALTED)
644         {
645                 LOG_WARNING("target not halted");
646                 return ERROR_TARGET_NOT_HALTED;
647         }
648
649         if (!debug_execution)
650         {
651                 target_free_all_working_areas(target);
652                 cortex_m3_enable_breakpoints(target);
653                 cortex_m3_enable_watchpoints(target);
654         }
655
656         if (debug_execution)
657         {
658                 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
659
660                 /* Disable interrupts */
661                 /* We disable interrupts in the PRIMASK register instead of
662                  * masking with C_MASKINTS.  This is probably the same issue
663                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
664                  * in parallel with disabled interrupts can cause local faults
665                  * to not be taken.
666                  *
667                  * REVISIT this clearly breaks non-debug execution, since the
668                  * PRIMASK register state isn't saved/restored...  workaround
669                  * by never resuming app code after debug execution.
670                  */
671                 buf_set_u32(r->value, 0, 1, 1);
672                 r->dirty = true;
673                 r->valid = true;
674
675                 /* Make sure we are in Thumb mode */
676                 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
677                 buf_set_u32(r->value, 24, 1, 1);
678                 r->dirty = true;
679                 r->valid = true;
680         }
681
682         /* current = 1: continue on current pc, otherwise continue at <address> */
683         r = armv7m->arm.pc;
684         if (!current)
685         {
686                 buf_set_u32(r->value, 0, 32, address);
687                 r->dirty = true;
688                 r->valid = true;
689         }
690
691         /* if we halted last time due to a bkpt instruction
692          * then we have to manually step over it, otherwise
693          * the core will break again */
694
695         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
696                         && !debug_execution)
697         {
698                 armv7m_maybe_skip_bkpt_inst(target, NULL);
699         }
700
701         resume_pc = buf_get_u32(r->value, 0, 32);
702
703         armv7m_restore_context(target);
704
705         /* the front-end may request us not to handle breakpoints */
706         if (handle_breakpoints)
707         {
708                 /* Single step past breakpoint at current address */
709                 if ((breakpoint = breakpoint_find(target, resume_pc)))
710                 {
711                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
712                                           breakpoint->address,
713                                           breakpoint->unique_id);
714                         cortex_m3_unset_breakpoint(target, breakpoint);
715                         cortex_m3_single_step_core(target);
716                         cortex_m3_set_breakpoint(target, breakpoint);
717                 }
718         }
719
720         /* Restart core */
721         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
722
723         target->debug_reason = DBG_REASON_NOTHALTED;
724
725         /* registers are now invalid */
726         register_cache_invalidate(armv7m->core_cache);
727
728         if (!debug_execution)
729         {
730                 target->state = TARGET_RUNNING;
731                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
732                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
733         }
734         else
735         {
736                 target->state = TARGET_DEBUG_RUNNING;
737                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
738                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
739         }
740
741         return ERROR_OK;
742 }
743
744 /* int irqstepcount = 0; */
745 static int cortex_m3_step(struct target *target, int current,
746                 uint32_t address, int handle_breakpoints)
747 {
748         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
749         struct armv7m_common *armv7m = &cortex_m3->armv7m;
750         struct swjdp_common *swjdp = &armv7m->swjdp_info;
751         struct breakpoint *breakpoint = NULL;
752         struct reg *pc = armv7m->arm.pc;
753         bool bkpt_inst_found = false;
754
755         if (target->state != TARGET_HALTED)
756         {
757                 LOG_WARNING("target not halted");
758                 return ERROR_TARGET_NOT_HALTED;
759         }
760
761         /* current = 1: continue on current pc, otherwise continue at <address> */
762         if (!current)
763                 buf_set_u32(pc->value, 0, 32, address);
764
765         /* the front-end may request us not to handle breakpoints */
766         if (handle_breakpoints) {
767                 breakpoint = breakpoint_find(target,
768                                 buf_get_u32(pc->value, 0, 32));
769                 if (breakpoint)
770                         cortex_m3_unset_breakpoint(target, breakpoint);
771         }
772
773         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
774
775         target->debug_reason = DBG_REASON_SINGLESTEP;
776
777         armv7m_restore_context(target);
778
779         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
780
781         /* if no bkpt instruction is found at pc then we can perform
782          * a normal step, otherwise we have to manually step over the bkpt
783          * instruction - as such simulate a step */
784         if (bkpt_inst_found == false)
785         {
786                 /* set step and clear halt */
787                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
788         }
789
790         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
791
792         /* registers are now invalid */
793         register_cache_invalidate(cortex_m3->armv7m.core_cache);
794
795         if (breakpoint)
796                 cortex_m3_set_breakpoint(target, breakpoint);
797
798         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
799                         " nvic_icsr = 0x%" PRIx32,
800                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
801
802         cortex_m3_debug_entry(target);
803         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
804
805         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
806                         " nvic_icsr = 0x%" PRIx32,
807                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
808
809         return ERROR_OK;
810 }
811
812 static int cortex_m3_assert_reset(struct target *target)
813 {
814         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
815         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
816         int assert_srst = 1;
817
818         LOG_DEBUG("target->state: %s",
819                 target_state_name(target));
820
821         enum reset_types jtag_reset_config = jtag_get_reset_config();
822
823         /*
824          * We can reset Cortex-M3 targets using just the NVIC without
825          * requiring SRST, getting a SoC reset (or a core-only reset)
826          * instead of a system reset.
827          */
828         if (!(jtag_reset_config & RESET_HAS_SRST))
829                 assert_srst = 0;
830
831         /* Enable debug requests */
832         mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
833         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
834                 mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
835
836         mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
837
838         if (!target->reset_halt)
839         {
840                 /* Set/Clear C_MASKINTS in a separate operation */
841                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
842                         mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
843                                         DBGKEY | C_DEBUGEN | C_HALT);
844
845                 /* clear any debug flags before resuming */
846                 cortex_m3_clear_halt(target);
847
848                 /* clear C_HALT in dhcsr reg */
849                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
850         }
851         else
852         {
853                 /* Halt in debug on reset; endreset_event() restores DEMCR.
854                  *
855                  * REVISIT catching BUSERR presumably helps to defend against
856                  * bad vector table entries.  Should this include MMERR or
857                  * other flags too?
858                  */
859                 mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
860                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
861         }
862
863         /*
864          * When nRST is asserted on most Stellaris devices, it clears some of
865          * the debug state.  The ARMv7M and Cortex-M3 TRMs say that's wrong;
866          * and OpenOCD depends on those TRMs.  So we won't use SRST on those
867          * chips.  (Only power-on reset should affect debug state, beyond a
868          * few specified bits; not the chip's nRST input, wired to SRST.)
869          *
870          * REVISIT current errata specs don't seem to cover this issue.
871          * Do we have more details than this email?
872          *   https://lists.berlios.de/pipermail
873          *      /openocd-development/2008-August/003065.html
874          */
875         if (strcmp(target->variant, "lm3s") == 0)
876         {
877                 /* Check for silicon revisions with the issue. */
878                 uint32_t did0;
879
880                 if (target_read_u32(target, 0x400fe000, &did0) == ERROR_OK)
881                 {
882                         switch ((did0 >> 16) & 0xff)
883                         {
884                                 case 0:
885                                         /* all Sandstorm suffer issue */
886                                         assert_srst = 0;
887                                         break;
888
889                                 case 1:
890                                 case 3:
891                                         /* Fury and DustDevil rev A have
892                                          * this nRST problem.  It should
893                                          * be fixed in rev B silicon.
894                                          */
895                                         if (((did0 >> 8) & 0xff) == 0)
896                                                 assert_srst = 0;
897                                         break;
898                                 case 4:
899                                         /* Tempest should be fine. */
900                                         break;
901                         }
902                 }
903         }
904
905         if (assert_srst)
906         {
907                 /* default to asserting srst */
908                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
909                 {
910                         jtag_add_reset(1, 1);
911                 }
912                 else
913                 {
914                         jtag_add_reset(0, 1);
915                 }
916         }
917         else
918         {
919                 /* Use a standard Cortex-M3 software reset mechanism.
920                  * SYSRESETREQ will reset SoC peripherals outside the
921                  * core, like watchdog timers, if the SoC wires it up
922                  * correctly.  Else VECRESET can reset just the core.
923                  */
924                 mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
925                                 AIRCR_VECTKEY | AIRCR_SYSRESETREQ);
926                 LOG_DEBUG("Using Cortex-M3 SYSRESETREQ");
927
928                 {
929                         /* I do not know why this is necessary, but it
930                          * fixes strange effects (step/resume cause NMI
931                          * after reset) on LM3S6918 -- Michael Schwingen
932                          */
933                         uint32_t tmp;
934                         mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
935                 }
936         }
937
938         target->state = TARGET_RESET;
939         jtag_add_sleep(50000);
940
941         register_cache_invalidate(cortex_m3->armv7m.core_cache);
942
943         if (target->reset_halt)
944         {
945                 int retval;
946                 if ((retval = target_halt(target)) != ERROR_OK)
947                         return retval;
948         }
949
950         return ERROR_OK;
951 }
952
953 static int cortex_m3_deassert_reset(struct target *target)
954 {
955         LOG_DEBUG("target->state: %s",
956                 target_state_name(target));
957
958         /* deassert reset lines */
959         jtag_add_reset(0, 0);
960
961         return ERROR_OK;
962 }
963
964 static int
965 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
966 {
967         int retval;
968         int fp_num = 0;
969         uint32_t hilo;
970         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
971         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
972
973         if (breakpoint->set)
974         {
975                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
976                 return ERROR_OK;
977         }
978
979         if (cortex_m3->auto_bp_type)
980         {
981                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
982         }
983
984         if (breakpoint->type == BKPT_HARD)
985         {
986                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
987                         fp_num++;
988                 if (fp_num >= cortex_m3->fp_num_code)
989                 {
990                         LOG_ERROR("Can not find free FPB Comparator!");
991                         return ERROR_FAIL;
992                 }
993                 breakpoint->set = fp_num + 1;
994                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
995                 comparator_list[fp_num].used = 1;
996                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
997                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
998                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
999                 if (!cortex_m3->fpb_enabled)
1000                 {
1001                         LOG_DEBUG("FPB wasn't enabled, do it now");
1002                         target_write_u32(target, FP_CTRL, 3);
1003                 }
1004         }
1005         else if (breakpoint->type == BKPT_SOFT)
1006         {
1007                 uint8_t code[4];
1008
1009                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1010                  * semihosting; don't use that.  Otherwise the BKPT
1011                  * parameter is arbitrary.
1012                  */
1013                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1014                 retval = target_read_memory(target,
1015                                 breakpoint->address & 0xFFFFFFFE,
1016                                 breakpoint->length, 1,
1017                                 breakpoint->orig_instr);
1018                 if (retval != ERROR_OK)
1019                         return retval;
1020                 retval = target_write_memory(target,
1021                                 breakpoint->address & 0xFFFFFFFE,
1022                                 breakpoint->length, 1,
1023                                 code);
1024                 if (retval != ERROR_OK)
1025                         return retval;
1026                 breakpoint->set = true;
1027         }
1028
1029         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1030                           breakpoint->unique_id,
1031                           (int)(breakpoint->type),
1032                           breakpoint->address,
1033                           breakpoint->length,
1034                           breakpoint->set);
1035
1036         return ERROR_OK;
1037 }
1038
1039 static int
1040 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1041 {
1042         int retval;
1043         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1044         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
1045
1046         if (!breakpoint->set)
1047         {
1048                 LOG_WARNING("breakpoint not set");
1049                 return ERROR_OK;
1050         }
1051
1052         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1053                           breakpoint->unique_id,
1054                           (int)(breakpoint->type),
1055                           breakpoint->address,
1056                           breakpoint->length,
1057                           breakpoint->set);
1058
1059         if (breakpoint->type == BKPT_HARD)
1060         {
1061                 int fp_num = breakpoint->set - 1;
1062                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
1063                 {
1064                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1065                         return ERROR_OK;
1066                 }
1067                 comparator_list[fp_num].used = 0;
1068                 comparator_list[fp_num].fpcr_value = 0;
1069                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1070         }
1071         else
1072         {
1073                 /* restore original instruction (kept in target endianness) */
1074                 if (breakpoint->length == 4)
1075                 {
1076                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
1077                         {
1078                                 return retval;
1079                         }
1080                 }
1081                 else
1082                 {
1083                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
1084                         {
1085                                 return retval;
1086                         }
1087                 }
1088         }
1089         breakpoint->set = false;
1090
1091         return ERROR_OK;
1092 }
1093
1094 static int
1095 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1096 {
1097         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1098
1099         if (cortex_m3->auto_bp_type)
1100         {
1101                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1102 #ifdef ARMV7_GDB_HACKS
1103                 if (breakpoint->length != 2) {
1104                         /* XXX Hack: Replace all breakpoints with length != 2 with
1105                          * a hardware breakpoint. */
1106                         breakpoint->type = BKPT_HARD;
1107                         breakpoint->length = 2;
1108                 }
1109 #endif
1110         }
1111
1112         if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
1113         {
1114                 LOG_INFO("flash patch comparator requested outside code memory region");
1115                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1116         }
1117
1118         if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
1119         {
1120                 LOG_INFO("soft breakpoint requested in code (flash) memory region");
1121                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1122         }
1123
1124         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
1125         {
1126                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1127                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1128         }
1129
1130         if ((breakpoint->length != 2))
1131         {
1132                 LOG_INFO("only breakpoints of two bytes length supported");
1133                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1134         }
1135
1136         if (breakpoint->type == BKPT_HARD)
1137                 cortex_m3->fp_code_available--;
1138         cortex_m3_set_breakpoint(target, breakpoint);
1139
1140         return ERROR_OK;
1141 }
1142
1143 static int
1144 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1145 {
1146         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1147
1148         /* REVISIT why check? FBP can be updated with core running ... */
1149         if (target->state != TARGET_HALTED)
1150         {
1151                 LOG_WARNING("target not halted");
1152                 return ERROR_TARGET_NOT_HALTED;
1153         }
1154
1155         if (cortex_m3->auto_bp_type)
1156         {
1157                 breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
1158         }
1159
1160         if (breakpoint->set)
1161         {
1162                 cortex_m3_unset_breakpoint(target, breakpoint);
1163         }
1164
1165         if (breakpoint->type == BKPT_HARD)
1166                 cortex_m3->fp_code_available++;
1167
1168         return ERROR_OK;
1169 }
1170
1171 static int
1172 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1173 {
1174         int dwt_num = 0;
1175         uint32_t mask, temp;
1176         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1177
1178         /* watchpoint params were validated earlier */
1179         mask = 0;
1180         temp = watchpoint->length;
1181         while (temp) {
1182                 temp >>= 1;
1183                 mask++;
1184         }
1185         mask--;
1186
1187         /* REVISIT Don't fully trust these "not used" records ... users
1188          * may set up breakpoints by hand, e.g. dual-address data value
1189          * watchpoint using comparator #1; comparator #0 matching cycle
1190          * count; send data trace info through ITM and TPIU; etc
1191          */
1192         struct cortex_m3_dwt_comparator *comparator;
1193
1194         for (comparator = cortex_m3->dwt_comparator_list;
1195                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1196                         comparator++, dwt_num++)
1197                 continue;
1198         if (dwt_num >= cortex_m3->dwt_num_comp)
1199         {
1200                 LOG_ERROR("Can not find free DWT Comparator");
1201                 return ERROR_FAIL;
1202         }
1203         comparator->used = 1;
1204         watchpoint->set = dwt_num + 1;
1205
1206         comparator->comp = watchpoint->address;
1207         target_write_u32(target, comparator->dwt_comparator_address + 0,
1208                         comparator->comp);
1209
1210         comparator->mask = mask;
1211         target_write_u32(target, comparator->dwt_comparator_address + 4,
1212                         comparator->mask);
1213
1214         switch (watchpoint->rw) {
1215         case WPT_READ:
1216                 comparator->function = 5;
1217                 break;
1218         case WPT_WRITE:
1219                 comparator->function = 6;
1220                 break;
1221         case WPT_ACCESS:
1222                 comparator->function = 7;
1223                 break;
1224         }
1225         target_write_u32(target, comparator->dwt_comparator_address + 8,
1226                         comparator->function);
1227
1228         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1229                         watchpoint->unique_id, dwt_num,
1230                         (unsigned) comparator->comp,
1231                         (unsigned) comparator->mask,
1232                         (unsigned) comparator->function);
1233         return ERROR_OK;
1234 }
1235
1236 static int
1237 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1238 {
1239         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1240         struct cortex_m3_dwt_comparator *comparator;
1241         int dwt_num;
1242
1243         if (!watchpoint->set)
1244         {
1245                 LOG_WARNING("watchpoint (wpid: %d) not set",
1246                                 watchpoint->unique_id);
1247                 return ERROR_OK;
1248         }
1249
1250         dwt_num = watchpoint->set - 1;
1251
1252         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1253                         watchpoint->unique_id, dwt_num,
1254                         (unsigned) watchpoint->address);
1255
1256         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1257         {
1258                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1259                 return ERROR_OK;
1260         }
1261
1262         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1263         comparator->used = 0;
1264         comparator->function = 0;
1265         target_write_u32(target, comparator->dwt_comparator_address + 8,
1266                         comparator->function);
1267
1268         watchpoint->set = false;
1269
1270         return ERROR_OK;
1271 }
1272
1273 static int
1274 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1275 {
1276         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1277
1278         if (cortex_m3->dwt_comp_available < 1)
1279         {
1280                 LOG_DEBUG("no comparators?");
1281                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1282         }
1283
1284         /* hardware doesn't support data value masking */
1285         if (watchpoint->mask != ~(uint32_t)0) {
1286                 LOG_DEBUG("watchpoint value masks not supported");
1287                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1288         }
1289
1290         /* hardware allows address masks of up to 32K */
1291         unsigned mask;
1292
1293         for (mask = 0; mask < 16; mask++) {
1294                 if ((1u << mask) == watchpoint->length)
1295                         break;
1296         }
1297         if (mask == 16) {
1298                 LOG_DEBUG("unsupported watchpoint length");
1299                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1300         }
1301         if (watchpoint->address & ((1 << mask) - 1)) {
1302                 LOG_DEBUG("watchpoint address is unaligned");
1303                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1304         }
1305
1306         /* Caller doesn't seem to be able to describe watching for data
1307          * values of zero; that flags "no value".
1308          *
1309          * REVISIT This DWT may well be able to watch for specific data
1310          * values.  Requires comparator #1 to set DATAVMATCH and match
1311          * the data, and another comparator (DATAVADDR0) matching addr.
1312          */
1313         if (watchpoint->value) {
1314                 LOG_DEBUG("data value watchpoint not YET supported");
1315                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1316         }
1317
1318         cortex_m3->dwt_comp_available--;
1319         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1320
1321         return ERROR_OK;
1322 }
1323
1324 static int
1325 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1326 {
1327         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1328
1329         /* REVISIT why check? DWT can be updated with core running ... */
1330         if (target->state != TARGET_HALTED)
1331         {
1332                 LOG_WARNING("target not halted");
1333                 return ERROR_TARGET_NOT_HALTED;
1334         }
1335
1336         if (watchpoint->set)
1337         {
1338                 cortex_m3_unset_watchpoint(target, watchpoint);
1339         }
1340
1341         cortex_m3->dwt_comp_available++;
1342         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1343
1344         return ERROR_OK;
1345 }
1346
1347 static void cortex_m3_enable_watchpoints(struct target *target)
1348 {
1349         struct watchpoint *watchpoint = target->watchpoints;
1350
1351         /* set any pending watchpoints */
1352         while (watchpoint)
1353         {
1354                 if (!watchpoint->set)
1355                         cortex_m3_set_watchpoint(target, watchpoint);
1356                 watchpoint = watchpoint->next;
1357         }
1358 }
1359
1360 static int cortex_m3_load_core_reg_u32(struct target *target,
1361                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1362 {
1363         int retval;
1364         struct armv7m_common *armv7m = target_to_armv7m(target);
1365         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1366
1367         /* NOTE:  we "know" here that the register identifiers used
1368          * in the v7m header match the Cortex-M3 Debug Core Register
1369          * Selector values for R0..R15, xPSR, MSP, and PSP.
1370          */
1371         switch (num) {
1372         case 0 ... 18:
1373                 /* read a normal core register */
1374                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1375
1376                 if (retval != ERROR_OK)
1377                 {
1378                         LOG_ERROR("JTAG failure %i",retval);
1379                         return ERROR_JTAG_DEVICE_ERROR;
1380                 }
1381                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1382                 break;
1383
1384         case ARMV7M_PRIMASK:
1385         case ARMV7M_BASEPRI:
1386         case ARMV7M_FAULTMASK:
1387         case ARMV7M_CONTROL:
1388                 /* Cortex-M3 packages these four registers as bitfields
1389                  * in one Debug Core register.  So say r0 and r2 docs;
1390                  * it was removed from r1 docs, but still works.
1391                  */
1392                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1393
1394                 switch (num)
1395                 {
1396                         case ARMV7M_PRIMASK:
1397                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1398                                 break;
1399
1400                         case ARMV7M_BASEPRI:
1401                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1402                                 break;
1403
1404                         case ARMV7M_FAULTMASK:
1405                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1406                                 break;
1407
1408                         case ARMV7M_CONTROL:
1409                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1410                                 break;
1411                 }
1412
1413                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1414                 break;
1415
1416         default:
1417                 return ERROR_INVALID_ARGUMENTS;
1418         }
1419
1420         return ERROR_OK;
1421 }
1422
1423 static int cortex_m3_store_core_reg_u32(struct target *target,
1424                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1425 {
1426         int retval;
1427         uint32_t reg;
1428         struct armv7m_common *armv7m = target_to_armv7m(target);
1429         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1430
1431 #ifdef ARMV7_GDB_HACKS
1432         /* If the LR register is being modified, make sure it will put us
1433          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1434          * hack to deal with the fact that gdb will sometimes "forge"
1435          * return addresses, and doesn't set the LSB correctly (i.e., when
1436          * printing expressions containing function calls, it sets LR = 0.)
1437          * Valid exception return codes have bit 0 set too.
1438          */
1439         if (num == ARMV7M_R14)
1440                 value |= 0x01;
1441 #endif
1442
1443         /* NOTE:  we "know" here that the register identifiers used
1444          * in the v7m header match the Cortex-M3 Debug Core Register
1445          * Selector values for R0..R15, xPSR, MSP, and PSP.
1446          */
1447         switch (num) {
1448         case 0 ... 18:
1449                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1450                 if (retval != ERROR_OK)
1451                 {
1452                         struct reg *r;
1453
1454                         LOG_ERROR("JTAG failure %i", retval);
1455                         r = armv7m->core_cache->reg_list + num;
1456                         r->dirty = r->valid;
1457                         return ERROR_JTAG_DEVICE_ERROR;
1458                 }
1459                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1460                 break;
1461
1462         case ARMV7M_PRIMASK:
1463         case ARMV7M_BASEPRI:
1464         case ARMV7M_FAULTMASK:
1465         case ARMV7M_CONTROL:
1466                 /* Cortex-M3 packages these four registers as bitfields
1467                  * in one Debug Core register.  So say r0 and r2 docs;
1468                  * it was removed from r1 docs, but still works.
1469                  */
1470                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1471
1472                 switch (num)
1473                 {
1474                         case ARMV7M_PRIMASK:
1475                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1476                                 break;
1477
1478                         case ARMV7M_BASEPRI:
1479                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1480                                 break;
1481
1482                         case ARMV7M_FAULTMASK:
1483                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1484                                 break;
1485
1486                         case ARMV7M_CONTROL:
1487                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1488                                 break;
1489                 }
1490
1491                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1492
1493                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1494                 break;
1495
1496         default:
1497                 return ERROR_INVALID_ARGUMENTS;
1498         }
1499
1500         return ERROR_OK;
1501 }
1502
1503 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1504                 uint32_t size, uint32_t count, uint8_t *buffer)
1505 {
1506         struct armv7m_common *armv7m = target_to_armv7m(target);
1507         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1508         int retval = ERROR_INVALID_ARGUMENTS;
1509
1510         /* cortex_m3 handles unaligned memory access */
1511         if (count && buffer) {
1512                 switch (size) {
1513                 case 4:
1514                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1515                         break;
1516                 case 2:
1517                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1518                         break;
1519                 case 1:
1520                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1521                         break;
1522                 }
1523         }
1524
1525         return retval;
1526 }
1527
1528 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1529                 uint32_t size, uint32_t count, uint8_t *buffer)
1530 {
1531         struct armv7m_common *armv7m = target_to_armv7m(target);
1532         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1533         int retval = ERROR_INVALID_ARGUMENTS;
1534
1535         if (count && buffer) {
1536                 switch (size) {
1537                 case 4:
1538                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1539                         break;
1540                 case 2:
1541                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1542                         break;
1543                 case 1:
1544                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1545                         break;
1546                 }
1547         }
1548
1549         return retval;
1550 }
1551
1552 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1553                 uint32_t count, uint8_t *buffer)
1554 {
1555         return cortex_m3_write_memory(target, address, 4, count, buffer);
1556 }
1557
1558 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1559                 struct target *target)
1560 {
1561         armv7m_build_reg_cache(target);
1562         return ERROR_OK;
1563 }
1564
1565 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1566  * on r/w if the core is not running, and clear on resume or reset ... or
1567  * at least, in a post_restore_context() method.
1568  */
1569
1570 struct dwt_reg_state {
1571         struct target   *target;
1572         uint32_t        addr;
1573         uint32_t        value;  /* scratch/cache */
1574 };
1575
1576 static int cortex_m3_dwt_get_reg(struct reg *reg)
1577 {
1578         struct dwt_reg_state *state = reg->arch_info;
1579
1580         return target_read_u32(state->target, state->addr, &state->value);
1581 }
1582
1583 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1584 {
1585         struct dwt_reg_state *state = reg->arch_info;
1586
1587         return target_write_u32(state->target, state->addr,
1588                         buf_get_u32(buf, 0, reg->size));
1589 }
1590
1591 struct dwt_reg {
1592         uint32_t        addr;
1593         char            *name;
1594         unsigned        size;
1595 };
1596
1597 static struct dwt_reg dwt_base_regs[] = {
1598         { DWT_CTRL, "dwt_ctrl", 32, },
1599         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1600          * increments while the core is asleep.
1601          */
1602         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1603         /* plus some 8 bit counters, useful for profiling with TPIU */
1604 };
1605
1606 static struct dwt_reg dwt_comp[] = {
1607 #define DWT_COMPARATOR(i) \
1608                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1609                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1610                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1611         DWT_COMPARATOR(0),
1612         DWT_COMPARATOR(1),
1613         DWT_COMPARATOR(2),
1614         DWT_COMPARATOR(3),
1615 #undef DWT_COMPARATOR
1616 };
1617
1618 static const struct reg_arch_type dwt_reg_type = {
1619         .get = cortex_m3_dwt_get_reg,
1620         .set = cortex_m3_dwt_set_reg,
1621 };
1622
1623 static void
1624 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1625 {
1626         struct dwt_reg_state *state;
1627
1628         state = calloc(1, sizeof *state);
1629         if (!state)
1630                 return;
1631         state->addr = d->addr;
1632         state->target = t;
1633
1634         r->name = d->name;
1635         r->size = d->size;
1636         r->value = &state->value;
1637         r->arch_info = state;
1638         r->type = &dwt_reg_type;
1639 }
1640
1641 static void
1642 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1643 {
1644         uint32_t dwtcr;
1645         struct reg_cache *cache;
1646         struct cortex_m3_dwt_comparator *comparator;
1647         int reg, i;
1648
1649         target_read_u32(target, DWT_CTRL, &dwtcr);
1650         if (!dwtcr) {
1651                 LOG_DEBUG("no DWT");
1652                 return;
1653         }
1654
1655         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1656         cm3->dwt_comp_available = cm3->dwt_num_comp;
1657         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1658                         sizeof(struct cortex_m3_dwt_comparator));
1659         if (!cm3->dwt_comparator_list) {
1660 fail0:
1661                 cm3->dwt_num_comp = 0;
1662                 LOG_ERROR("out of mem");
1663                 return;
1664         }
1665
1666         cache = calloc(1, sizeof *cache);
1667         if (!cache) {
1668 fail1:
1669                 free(cm3->dwt_comparator_list);
1670                 goto fail0;
1671         }
1672         cache->name = "cortex-m3 dwt registers";
1673         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1674         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1675         if (!cache->reg_list) {
1676                 free(cache);
1677                 goto fail1;
1678         }
1679
1680         for (reg = 0; reg < 2; reg++)
1681                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1682                                 dwt_base_regs + reg);
1683
1684         comparator = cm3->dwt_comparator_list;
1685         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1686                 int j;
1687
1688                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1689                 for (j = 0; j < 3; j++, reg++)
1690                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1691                                         dwt_comp + 3 * i + j);
1692         }
1693
1694         *register_get_last_cache_p(&target->reg_cache) = cache;
1695         cm3->dwt_cache = cache;
1696
1697         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1698                         dwtcr, cm3->dwt_num_comp,
1699                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1700
1701         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1702          * implement single-address data value watchpoints ... so we
1703          * won't need to check it later, when asked to set one up.
1704          */
1705 }
1706
1707 static int cortex_m3_examine(struct target *target)
1708 {
1709         int retval;
1710         uint32_t cpuid, fpcr;
1711         int i;
1712         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1713         struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
1714
1715         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1716                 return retval;
1717
1718         if (!target_was_examined(target))
1719         {
1720                 target_set_examined(target);
1721
1722                 /* Read from Device Identification Registers */
1723                 retval = target_read_u32(target, CPUID, &cpuid);
1724                 if (retval != ERROR_OK)
1725                         return retval;
1726
1727                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1728                         LOG_DEBUG("Cortex-M3 r%" PRId8 "p%" PRId8 " processor detected",
1729                                 (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1730                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1731
1732                 /* NOTE: FPB and DWT are both optional. */
1733
1734                 /* Setup FPB */
1735                 target_read_u32(target, FP_CTRL, &fpcr);
1736                 cortex_m3->auto_bp_type = 1;
1737                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1738                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1739                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1740                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1741                 cortex_m3->fpb_enabled = fpcr & 1;
1742                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1743                 {
1744                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1745                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1746                 }
1747                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1748
1749                 /* Setup DWT */
1750                 cortex_m3_dwt_setup(cortex_m3, target);
1751
1752                 /* These hardware breakpoints only work for code in flash! */
1753                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1754                                 target_name(target),
1755                                 cortex_m3->fp_num_code,
1756                                 cortex_m3->dwt_num_comp);
1757         }
1758
1759         return ERROR_OK;
1760 }
1761
1762 static int cortex_m3_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
1763 {
1764         uint16_t dcrdr;
1765
1766         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1767         *ctrl = (uint8_t)dcrdr;
1768         *value = (uint8_t)(dcrdr >> 8);
1769
1770         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1771
1772         /* write ack back to software dcc register
1773          * signify we have read data */
1774         if (dcrdr & (1 << 0))
1775         {
1776                 dcrdr = 0;
1777                 mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1778         }
1779
1780         return ERROR_OK;
1781 }
1782
1783 static int cortex_m3_target_request_data(struct target *target,
1784                 uint32_t size, uint8_t *buffer)
1785 {
1786         struct armv7m_common *armv7m = target_to_armv7m(target);
1787         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1788         uint8_t data;
1789         uint8_t ctrl;
1790         uint32_t i;
1791
1792         for (i = 0; i < (size * 4); i++)
1793         {
1794                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1795                 buffer[i] = data;
1796         }
1797
1798         return ERROR_OK;
1799 }
1800
1801 static int cortex_m3_handle_target_request(void *priv)
1802 {
1803         struct target *target = priv;
1804         if (!target_was_examined(target))
1805                 return ERROR_OK;
1806         struct armv7m_common *armv7m = target_to_armv7m(target);
1807         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1808
1809         if (!target->dbg_msg_enabled)
1810                 return ERROR_OK;
1811
1812         if (target->state == TARGET_RUNNING)
1813         {
1814                 uint8_t data;
1815                 uint8_t ctrl;
1816
1817                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1818
1819                 /* check if we have data */
1820                 if (ctrl & (1 << 0))
1821                 {
1822                         uint32_t request;
1823
1824                         /* we assume target is quick enough */
1825                         request = data;
1826                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1827                         request |= (data << 8);
1828                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1829                         request |= (data << 16);
1830                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1831                         request |= (data << 24);
1832                         target_request(target, request);
1833                 }
1834         }
1835
1836         return ERROR_OK;
1837 }
1838
1839 static int cortex_m3_init_arch_info(struct target *target,
1840                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1841 {
1842         int retval;
1843         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1844
1845         armv7m_init_arch_info(target, armv7m);
1846
1847         /* prepare JTAG information for the new target */
1848         cortex_m3->jtag_info.tap = tap;
1849         cortex_m3->jtag_info.scann_size = 4;
1850
1851         armv7m->swjdp_info.dp_select_value = -1;
1852         armv7m->swjdp_info.ap_csw_value = -1;
1853         armv7m->swjdp_info.ap_tar_value = -1;
1854         armv7m->swjdp_info.jtag_info = &cortex_m3->jtag_info;
1855         armv7m->swjdp_info.memaccess_tck = 8;
1856         armv7m->swjdp_info.tar_autoincr_block = (1 << 12);      /* Cortex-M3 has 4096 bytes autoincrement range */
1857
1858         /* register arch-specific functions */
1859         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1860
1861         armv7m->post_debug_entry = NULL;
1862
1863         armv7m->pre_restore_context = NULL;
1864         armv7m->post_restore_context = NULL;
1865
1866         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1867         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1868
1869         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1870
1871         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
1872         {
1873                 return retval;
1874         }
1875
1876         return ERROR_OK;
1877 }
1878
1879 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1880 {
1881         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
1882
1883         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1884         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1885
1886         return ERROR_OK;
1887 }
1888
1889 /*--------------------------------------------------------------------------*/
1890
1891 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
1892                 struct cortex_m3_common *cm3)
1893 {
1894         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1895                 command_print(cmd_ctx, "target is not a Cortex-M3");
1896                 return ERROR_TARGET_INVALID;
1897         }
1898         return ERROR_OK;
1899 }
1900
1901 /*
1902  * Only stuff below this line should need to verify that its target
1903  * is a Cortex-M3.  Everything else should have indirected through the
1904  * cortexm3_target structure, which is only used with CM3 targets.
1905  */
1906
1907 /*
1908  * REVISIT Thumb2 disassembly should work for all ARMv7 cores, as well
1909  * as at least ARM-1156T2.  The interesting thing about Cortex-M is
1910  * that *only* Thumb2 disassembly matters.  There are also some small
1911  * additions to Thumb2 that are specific to ARMv7-M.
1912  */
1913 COMMAND_HANDLER(handle_cortex_m3_disassemble_command)
1914 {
1915         int retval;
1916         struct target *target = get_current_target(CMD_CTX);
1917         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1918         uint32_t address;
1919         unsigned long count = 1;
1920         struct arm_instruction cur_instruction;
1921
1922         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1923         if (retval != ERROR_OK)
1924                 return retval;
1925
1926         errno = 0;
1927         switch (CMD_ARGC) {
1928         case 2:
1929                 COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], count);
1930                 /* FALL THROUGH */
1931         case 1:
1932                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
1933                 break;
1934         default:
1935                 command_print(CMD_CTX,
1936                         "usage: cortex_m3 disassemble <address> [<count>]");
1937                 return ERROR_OK;
1938         }
1939
1940         while (count--) {
1941                 retval = thumb2_opcode(target, address, &cur_instruction);
1942                 if (retval != ERROR_OK)
1943                         return retval;
1944                 command_print(CMD_CTX, "%s", cur_instruction.text);
1945                 address += cur_instruction.instruction_size;
1946         }
1947
1948         return ERROR_OK;
1949 }
1950
1951 static const struct {
1952         char name[10];
1953         unsigned mask;
1954 } vec_ids[] = {
1955         { "hard_err",   VC_HARDERR, },
1956         { "int_err",    VC_INTERR, },
1957         { "bus_err",    VC_BUSERR, },
1958         { "state_err",  VC_STATERR, },
1959         { "chk_err",    VC_CHKERR, },
1960         { "nocp_err",   VC_NOCPERR, },
1961         { "mm_err",     VC_MMERR, },
1962         { "reset",      VC_CORERESET, },
1963 };
1964
1965 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
1966 {
1967         struct target *target = get_current_target(CMD_CTX);
1968         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1969         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1970         struct swjdp_common *swjdp = &armv7m->swjdp_info;
1971         uint32_t demcr = 0;
1972         int retval;
1973
1974         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
1975         if (retval != ERROR_OK)
1976                 return retval;
1977
1978         mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
1979
1980         if (CMD_ARGC > 0) {
1981                 unsigned catch = 0;
1982
1983                 if (CMD_ARGC == 1) {
1984                         if (strcmp(CMD_ARGV[0], "all") == 0) {
1985                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
1986                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
1987                                         | VC_MMERR | VC_CORERESET;
1988                                 goto write;
1989                         } else if (strcmp(CMD_ARGV[0], "none") == 0) {
1990                                 goto write;
1991                         }
1992                 }
1993                 while (CMD_ARGC-- > 0) {
1994                         unsigned i;
1995                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
1996                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
1997                                         continue;
1998                                 catch |= vec_ids[i].mask;
1999                                 break;
2000                         }
2001                         if (i == ARRAY_SIZE(vec_ids)) {
2002                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2003                                 return ERROR_INVALID_ARGUMENTS;
2004                         }
2005                 }
2006 write:
2007                 /* For now, armv7m->demcr only stores vector catch flags. */
2008                 armv7m->demcr = catch;
2009
2010                 demcr &= ~0xffff;
2011                 demcr |= catch;
2012
2013                 /* write, but don't assume it stuck (why not??) */
2014                 mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2015                 mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2016
2017                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2018                  * Otherwise the vector catch hardware could fire when there's
2019                  * no debugger hooked up, causing much confusion...
2020                  */
2021         }
2022
2023         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
2024         {
2025                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2026                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2027         }
2028
2029         return ERROR_OK;
2030 }
2031
2032 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2033 {
2034         struct target *target = get_current_target(CMD_CTX);
2035         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2036         int retval;
2037
2038         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2039         if (retval != ERROR_OK)
2040                 return retval;
2041
2042         if (target->state != TARGET_HALTED)
2043         {
2044                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2045                 return ERROR_OK;
2046         }
2047
2048         if (CMD_ARGC > 0)
2049         {
2050                 bool enable;
2051                 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2052                 uint32_t mask_on = C_HALT | (enable ? C_MASKINTS : 0);
2053                 uint32_t mask_off = enable ? 0 : C_MASKINTS;
2054                 cortex_m3_write_debug_halt_mask(target, mask_on, mask_off);
2055         }
2056
2057         command_print(CMD_CTX, "cortex_m3 interrupt mask %s",
2058                         (cortex_m3->dcb_dhcsr & C_MASKINTS) ? "on" : "off");
2059
2060         return ERROR_OK;
2061 }
2062
2063 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2064         {
2065                 .name = "disassemble",
2066                 .handler = handle_cortex_m3_disassemble_command,
2067                 .mode = COMMAND_EXEC,
2068                 .help = "disassemble Thumb2 instructions",
2069                 .usage = "address [count]",
2070         },
2071         {
2072                 .name = "maskisr",
2073                 .handler = handle_cortex_m3_mask_interrupts_command,
2074                 .mode = COMMAND_EXEC,
2075                 .help = "mask cortex_m3 interrupts",
2076                 .usage = "['on'|'off']",
2077         },
2078         {
2079                 .name = "vector_catch",
2080                 .handler = handle_cortex_m3_vector_catch_command,
2081                 .mode = COMMAND_EXEC,
2082                 .help = "configure hardware vectors to trigger debug entry",
2083                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2084         },
2085         COMMAND_REGISTRATION_DONE
2086 };
2087 static const struct command_registration cortex_m3_command_handlers[] = {
2088         {
2089                 .chain = armv7m_command_handlers,
2090         },
2091         {
2092                 .name = "cortex_m3",
2093                 .mode = COMMAND_EXEC,
2094                 .help = "Cortex-M3 command group",
2095                 .chain = cortex_m3_exec_command_handlers,
2096         },
2097         COMMAND_REGISTRATION_DONE
2098 };
2099
2100 struct target_type cortexm3_target =
2101 {
2102         .name = "cortex_m3",
2103
2104         .poll = cortex_m3_poll,
2105         .arch_state = armv7m_arch_state,
2106
2107         .target_request_data = cortex_m3_target_request_data,
2108
2109         .halt = cortex_m3_halt,
2110         .resume = cortex_m3_resume,
2111         .step = cortex_m3_step,
2112
2113         .assert_reset = cortex_m3_assert_reset,
2114         .deassert_reset = cortex_m3_deassert_reset,
2115         .soft_reset_halt = cortex_m3_soft_reset_halt,
2116
2117         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2118
2119         .read_memory = cortex_m3_read_memory,
2120         .write_memory = cortex_m3_write_memory,
2121         .bulk_write_memory = cortex_m3_bulk_write_memory,
2122         .checksum_memory = armv7m_checksum_memory,
2123         .blank_check_memory = armv7m_blank_check_memory,
2124
2125         .run_algorithm = armv7m_run_algorithm,
2126
2127         .add_breakpoint = cortex_m3_add_breakpoint,
2128         .remove_breakpoint = cortex_m3_remove_breakpoint,
2129         .add_watchpoint = cortex_m3_add_watchpoint,
2130         .remove_watchpoint = cortex_m3_remove_watchpoint,
2131
2132         .commands = cortex_m3_command_handlers,
2133         .target_create = cortex_m3_target_create,
2134         .init_target = cortex_m3_init_target,
2135         .examine = cortex_m3_examine,
2136 };