cortex_m: initialize unused CPU variables to 0 for poll info output
[fw/openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40 #include "arm_opcodes.h"
41 #include "arm_semihosting.h"
42 #include <helper/time_support.h>
43
44 /* NOTE:  most of this should work fine for the Cortex-M1 and
45  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
46  * Some differences:  M0/M1 doesn't have FBP remapping or the
47  * DWT tracing/profiling support.  (So the cycle counter will
48  * not be usable; the other stuff isn't currently used here.)
49  *
50  * Although there are some workarounds for errata seen only in r0p0
51  * silicon, such old parts are hard to find and thus not much tested
52  * any longer.
53  */
54
55 /**
56  * Returns the type of a break point required by address location
57  */
58 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
59
60
61 /* forward declarations */
62 static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
63 static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
64 static void cortex_m3_enable_watchpoints(struct target *target);
65 static int cortex_m3_store_core_reg_u32(struct target *target,
66                 enum armv7m_regtype type, uint32_t num, uint32_t value);
67
68 static int cortexm3_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
69                 uint32_t *value, int regnum)
70 {
71         int retval;
72         uint32_t dcrdr;
73
74         /* because the DCB_DCRDR is used for the emulated dcc channel
75          * we have to save/restore the DCB_DCRDR when used */
76
77         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
78         if (retval != ERROR_OK)
79                 return retval;
80
81         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
82         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
83         if (retval != ERROR_OK)
84                 return retval;
85         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
86         if (retval != ERROR_OK)
87                 return retval;
88
89         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
90         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
91         if (retval != ERROR_OK)
92                 return retval;
93         retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
94         if (retval != ERROR_OK)
95                 return retval;
96
97         retval = dap_run(swjdp);
98         if (retval != ERROR_OK)
99                 return retval;
100
101         /* restore DCB_DCRDR - this needs to be in a seperate
102          * transaction otherwise the emulated DCC channel breaks */
103         if (retval == ERROR_OK)
104                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
105
106         return retval;
107 }
108
109 static int cortexm3_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
110                 uint32_t value, int regnum)
111 {
112         int retval;
113         uint32_t dcrdr;
114
115         /* because the DCB_DCRDR is used for the emulated dcc channel
116          * we have to save/restore the DCB_DCRDR when used */
117
118         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
119         if (retval != ERROR_OK)
120                 return retval;
121
122         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
123         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
124         if (retval != ERROR_OK)
125                 return retval;
126         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
127         if (retval != ERROR_OK)
128                 return retval;
129
130         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
131         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
132         if (retval != ERROR_OK)
133                 return retval;
134         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
135         if (retval != ERROR_OK)
136                 return retval;
137
138         retval = dap_run(swjdp);
139         if (retval != ERROR_OK)
140                 return retval;
141
142         /* restore DCB_DCRDR - this needs to be in a seperate
143          * transaction otherwise the emulated DCC channel breaks */
144         if (retval == ERROR_OK)
145                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
146
147         return retval;
148 }
149
150 static int cortex_m3_write_debug_halt_mask(struct target *target,
151                 uint32_t mask_on, uint32_t mask_off)
152 {
153         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
154         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
155
156         /* mask off status bits */
157         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
158         /* create new register mask */
159         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
160
161         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
162 }
163
164 static int cortex_m3_clear_halt(struct target *target)
165 {
166         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
167         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
168         int retval;
169
170         /* clear step if any */
171         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
172
173         /* Read Debug Fault Status Register */
174         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
175         if (retval != ERROR_OK)
176                 return retval;
177
178         /* Clear Debug Fault Status */
179         retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
180         if (retval != ERROR_OK)
181                 return retval;
182         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
183
184         return ERROR_OK;
185 }
186
187 static int cortex_m3_single_step_core(struct target *target)
188 {
189         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
190         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
191         uint32_t dhcsr_save;
192         int retval;
193
194         /* backup dhcsr reg */
195         dhcsr_save = cortex_m3->dcb_dhcsr;
196
197         /* Mask interrupts before clearing halt, if done already.  This avoids
198          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
199          * HALT can put the core into an unknown state.
200          */
201         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
202         {
203                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
204                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
205                 if (retval != ERROR_OK)
206                         return retval;
207         }
208         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
209                                 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
210         if (retval != ERROR_OK)
211                 return retval;
212         LOG_DEBUG(" ");
213
214         /* restore dhcsr reg */
215         cortex_m3->dcb_dhcsr = dhcsr_save;
216         cortex_m3_clear_halt(target);
217
218         return ERROR_OK;
219 }
220
221 static int cortex_m3_endreset_event(struct target *target)
222 {
223         int i;
224         int retval;
225         uint32_t dcb_demcr;
226         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
227         struct armv7m_common *armv7m = &cortex_m3->armv7m;
228         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
229         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
230         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
231
232         /* REVISIT The four debug monitor bits are currently ignored... */
233         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
234         if (retval != ERROR_OK)
235                 return retval;
236         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
237
238         /* this register is used for emulated dcc channel */
239         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
240         if (retval != ERROR_OK)
241                 return retval;
242
243         /* Enable debug requests */
244         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
245         if (retval != ERROR_OK)
246                 return retval;
247         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
248         {
249                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
250                 if (retval != ERROR_OK)
251                         return retval;
252         }
253
254         /* clear any interrupt masking */
255         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
256
257         /* Enable features controlled by ITM and DWT blocks, and catch only
258          * the vectors we were told to pay attention to.
259          *
260          * Target firmware is responsible for all fault handling policy
261          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
262          * or manual updates to the NVIC SHCSR and CCR registers.
263          */
264         retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
265         if (retval != ERROR_OK)
266                 return retval;
267
268         /* Paranoia: evidently some (early?) chips don't preserve all the
269          * debug state (including FBP, DWT, etc) across reset...
270          */
271
272         /* Enable FPB */
273         retval = target_write_u32(target, FP_CTRL, 3);
274         if (retval != ERROR_OK)
275                 return retval;
276
277         cortex_m3->fpb_enabled = 1;
278
279         /* Restore FPB registers */
280         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
281         {
282                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
283                 if (retval != ERROR_OK)
284                         return retval;
285         }
286
287         /* Restore DWT registers */
288         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
289         {
290                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
291                                 dwt_list[i].comp);
292                 if (retval != ERROR_OK)
293                         return retval;
294                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
295                                 dwt_list[i].mask);
296                 if (retval != ERROR_OK)
297                         return retval;
298                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
299                                 dwt_list[i].function);
300                 if (retval != ERROR_OK)
301                         return retval;
302         }
303         retval = dap_run(swjdp);
304         if (retval != ERROR_OK)
305                 return retval;
306
307         register_cache_invalidate(cortex_m3->armv7m.core_cache);
308
309         /* make sure we have latest dhcsr flags */
310         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
311
312         return retval;
313 }
314
315 static int cortex_m3_examine_debug_reason(struct target *target)
316 {
317         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
318
319         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
320         /* only check the debug reason if we don't know it already */
321
322         if ((target->debug_reason != DBG_REASON_DBGRQ)
323                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
324         {
325                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
326                 {
327                         target->debug_reason = DBG_REASON_BREAKPOINT;
328                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
329                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
330                 }
331                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
332                         target->debug_reason = DBG_REASON_WATCHPOINT;
333                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
334                         target->debug_reason = DBG_REASON_BREAKPOINT;
335                 else /* EXTERNAL, HALTED */
336                         target->debug_reason = DBG_REASON_UNDEFINED;
337         }
338
339         return ERROR_OK;
340 }
341
342 static int cortex_m3_examine_exception_reason(struct target *target)
343 {
344         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
345         struct armv7m_common *armv7m = target_to_armv7m(target);
346         struct adiv5_dap *swjdp = &armv7m->dap;
347         int retval;
348
349         retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
350         if (retval != ERROR_OK)
351                 return retval;
352         switch (armv7m->exception_number)
353         {
354                 case 2: /* NMI */
355                         break;
356                 case 3: /* Hard Fault */
357                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
358                         if (retval != ERROR_OK)
359                                 return retval;
360                         if (except_sr & 0x40000000)
361                         {
362                                 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
363                                 if (retval != ERROR_OK)
364                                         return retval;
365                         }
366                         break;
367                 case 4: /* Memory Management */
368                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
369                         if (retval != ERROR_OK)
370                                 return retval;
371                         retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
372                         if (retval != ERROR_OK)
373                                 return retval;
374                         break;
375                 case 5: /* Bus Fault */
376                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
377                         if (retval != ERROR_OK)
378                                 return retval;
379                         retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
380                         if (retval != ERROR_OK)
381                                 return retval;
382                         break;
383                 case 6: /* Usage Fault */
384                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
385                         if (retval != ERROR_OK)
386                                 return retval;
387                         break;
388                 case 11:        /* SVCall */
389                         break;
390                 case 12:        /* Debug Monitor */
391                         retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
392                         if (retval != ERROR_OK)
393                                 return retval;
394                         break;
395                 case 14:        /* PendSV */
396                         break;
397                 case 15:        /* SysTick */
398                         break;
399                 default:
400                         except_sr = 0;
401                         break;
402         }
403         retval = dap_run(swjdp);
404         if (retval == ERROR_OK)
405                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
406                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
407                         armv7m_exception_string(armv7m->exception_number),
408                         shcsr, except_sr, cfsr, except_ar);
409         return retval;
410 }
411
412 /* PSP is used in some thread modes */
413 static const int armv7m_psp_reg_map[17] = {
414         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
415         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
416         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
417         ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
418         ARMV7M_xPSR,
419 };
420
421 /* MSP is used in handler and some thread modes */
422 static const int armv7m_msp_reg_map[17] = {
423         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
424         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
425         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
426         ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
427         ARMV7M_xPSR,
428 };
429
430 static int cortex_m3_debug_entry(struct target *target)
431 {
432         int i;
433         uint32_t xPSR;
434         int retval;
435         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
436         struct armv7m_common *armv7m = &cortex_m3->armv7m;
437         struct arm *arm = &armv7m->arm;
438         struct adiv5_dap *swjdp = &armv7m->dap;
439         struct reg *r;
440
441         LOG_DEBUG(" ");
442
443         cortex_m3_clear_halt(target);
444         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
445         if (retval != ERROR_OK)
446                 return retval;
447
448         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
449                 return retval;
450
451         /* Examine target state and mode */
452         /* First load register acessible through core debug port*/
453         int num_regs = armv7m->core_cache->num_regs;
454
455         for (i = 0; i < num_regs; i++)
456         {
457                 if (!armv7m->core_cache->reg_list[i].valid)
458                         armv7m->read_core_reg(target, i);
459         }
460
461         r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
462         xPSR = buf_get_u32(r->value, 0, 32);
463
464 #ifdef ARMV7_GDB_HACKS
465         /* FIXME this breaks on scan chains with more than one Cortex-M3.
466          * Instead, each CM3 should have its own dummy value...
467          */
468         /* copy real xpsr reg for gdb, setting thumb bit */
469         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
470         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
471         armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
472         armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
473 #endif
474
475         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
476         if (xPSR & 0xf00)
477         {
478                 r->dirty = r->valid;
479                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
480         }
481
482         /* Are we in an exception handler */
483         if (xPSR & 0x1FF)
484         {
485                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
486                 armv7m->exception_number = (xPSR & 0x1FF);
487
488                 arm->core_mode = ARM_MODE_HANDLER;
489                 arm->map = armv7m_msp_reg_map;
490         }
491         else
492         {
493                 unsigned control = buf_get_u32(armv7m->core_cache
494                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
495
496                 /* is this thread privileged? */
497                 armv7m->core_mode = control & 1;
498                 arm->core_mode = armv7m->core_mode
499                                 ? ARM_MODE_USER_THREAD
500                                 : ARM_MODE_THREAD;
501
502                 /* which stack is it using? */
503                 if (control & 2)
504                         arm->map = armv7m_psp_reg_map;
505                 else
506                         arm->map = armv7m_msp_reg_map;
507
508                 armv7m->exception_number = 0;
509         }
510
511         if (armv7m->exception_number)
512         {
513                 cortex_m3_examine_exception_reason(target);
514         }
515
516         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
517                 armv7m_mode_strings[armv7m->core_mode],
518                 *(uint32_t*)(arm->pc->value),
519                 target_state_name(target));
520
521         if (armv7m->post_debug_entry)
522         {
523                 retval = armv7m->post_debug_entry(target);
524                 if (retval != ERROR_OK)
525                         return retval;
526         }
527
528         return ERROR_OK;
529 }
530
531 static int cortex_m3_poll(struct target *target)
532 {
533         int detected_failure = ERROR_OK;
534         int retval = ERROR_OK;
535         enum target_state prev_target_state = target->state;
536         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
537         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
538
539         /* Read from Debug Halting Control and Status Register */
540         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
541         if (retval != ERROR_OK)
542         {
543                 target->state = TARGET_UNKNOWN;
544                 return retval;
545         }
546
547         /* Recover from lockup.  See ARMv7-M architecture spec,
548          * section B1.5.15 "Unrecoverable exception cases".
549          */
550         if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
551                 LOG_ERROR("%s -- clearing lockup after double fault",
552                                 target_name(target));
553                 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
554                 target->debug_reason = DBG_REASON_DBGRQ;
555
556                 /* We have to execute the rest (the "finally" equivalent, but
557                  * still throw this exception again).
558                  */
559                 detected_failure = ERROR_FAIL;
560
561                 /* refresh status bits */
562                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
563                 if (retval != ERROR_OK)
564                         return retval;
565         }
566
567         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
568         {
569                 /* check if still in reset */
570                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
571                 if (retval != ERROR_OK)
572                         return retval;
573
574                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
575                 {
576                         target->state = TARGET_RESET;
577                         return ERROR_OK;
578                 }
579         }
580
581         if (target->state == TARGET_RESET)
582         {
583                 /* Cannot switch context while running so endreset is
584                  * called with target->state == TARGET_RESET
585                  */
586                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
587                                 cortex_m3->dcb_dhcsr);
588                 cortex_m3_endreset_event(target);
589                 target->state = TARGET_RUNNING;
590                 prev_target_state = TARGET_RUNNING;
591         }
592
593         if (cortex_m3->dcb_dhcsr & S_HALT)
594         {
595                 target->state = TARGET_HALTED;
596
597                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
598                 {
599                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
600                                 return retval;
601
602                         if (arm_semihosting(target, &retval) != 0)
603                                 return retval;
604
605                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
606                 }
607                 if (prev_target_state == TARGET_DEBUG_RUNNING)
608                 {
609                         LOG_DEBUG(" ");
610                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
611                                 return retval;
612
613                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
614                 }
615         }
616
617         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
618          * How best to model low power modes?
619          */
620
621         if (target->state == TARGET_UNKNOWN)
622         {
623                 /* check if processor is retiring instructions */
624                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
625                 {
626                         target->state = TARGET_RUNNING;
627                         retval = ERROR_OK;
628                 }
629         }
630
631         /* Did we detect a failure condition that we cleared? */
632         if (detected_failure != ERROR_OK)
633                 retval = detected_failure;
634         return retval;
635 }
636
637 static int cortex_m3_halt(struct target *target)
638 {
639         LOG_DEBUG("target->state: %s",
640                 target_state_name(target));
641
642         if (target->state == TARGET_HALTED)
643         {
644                 LOG_DEBUG("target was already halted");
645                 return ERROR_OK;
646         }
647
648         if (target->state == TARGET_UNKNOWN)
649         {
650                 LOG_WARNING("target was in unknown state when halt was requested");
651         }
652
653         if (target->state == TARGET_RESET)
654         {
655                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
656                 {
657                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
658                         return ERROR_TARGET_FAILURE;
659                 }
660                 else
661                 {
662                         /* we came here in a reset_halt or reset_init sequence
663                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
664                          */
665                         target->debug_reason = DBG_REASON_DBGRQ;
666
667                         return ERROR_OK;
668                 }
669         }
670
671         /* Write to Debug Halting Control and Status Register */
672         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
673
674         target->debug_reason = DBG_REASON_DBGRQ;
675
676         return ERROR_OK;
677 }
678
679 static int cortex_m3_soft_reset_halt(struct target *target)
680 {
681         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
682         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
683         uint32_t dcb_dhcsr = 0;
684         int retval, timeout = 0;
685
686         /* Enter debug state on reset; restore DEMCR in endreset_event() */
687         retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
688                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
689         if (retval != ERROR_OK)
690                 return retval;
691
692         /* Request a core-only reset */
693         retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
694                         AIRCR_VECTKEY | AIRCR_VECTRESET);
695         if (retval != ERROR_OK)
696                 return retval;
697         target->state = TARGET_RESET;
698
699         /* registers are now invalid */
700         register_cache_invalidate(cortex_m3->armv7m.core_cache);
701
702         while (timeout < 100)
703         {
704                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
705                 if (retval == ERROR_OK)
706                 {
707                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
708                                         &cortex_m3->nvic_dfsr);
709                         if (retval != ERROR_OK)
710                                 return retval;
711                         if ((dcb_dhcsr & S_HALT)
712                                         && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
713                         {
714                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
715                                         "DFSR 0x%08x",
716                                         (unsigned) dcb_dhcsr,
717                                         (unsigned) cortex_m3->nvic_dfsr);
718                                 cortex_m3_poll(target);
719                                 /* FIXME restore user's vector catch config */
720                                 return ERROR_OK;
721                         }
722                         else
723                                 LOG_DEBUG("waiting for system reset-halt, "
724                                         "DHCSR 0x%08x, %d ms",
725                                         (unsigned) dcb_dhcsr, timeout);
726                 }
727                 timeout++;
728                 alive_sleep(1);
729         }
730
731         return ERROR_OK;
732 }
733
734 static void cortex_m3_enable_breakpoints(struct target *target)
735 {
736         struct breakpoint *breakpoint = target->breakpoints;
737
738         /* set any pending breakpoints */
739         while (breakpoint)
740         {
741                 if (!breakpoint->set)
742                         cortex_m3_set_breakpoint(target, breakpoint);
743                 breakpoint = breakpoint->next;
744         }
745 }
746
747 static int cortex_m3_resume(struct target *target, int current,
748                 uint32_t address, int handle_breakpoints, int debug_execution)
749 {
750         struct armv7m_common *armv7m = target_to_armv7m(target);
751         struct breakpoint *breakpoint = NULL;
752         uint32_t resume_pc;
753         struct reg *r;
754
755         if (target->state != TARGET_HALTED)
756         {
757                 LOG_WARNING("target not halted");
758                 return ERROR_TARGET_NOT_HALTED;
759         }
760
761         if (!debug_execution)
762         {
763                 target_free_all_working_areas(target);
764                 cortex_m3_enable_breakpoints(target);
765                 cortex_m3_enable_watchpoints(target);
766         }
767
768         if (debug_execution)
769         {
770                 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
771
772                 /* Disable interrupts */
773                 /* We disable interrupts in the PRIMASK register instead of
774                  * masking with C_MASKINTS.  This is probably the same issue
775                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
776                  * in parallel with disabled interrupts can cause local faults
777                  * to not be taken.
778                  *
779                  * REVISIT this clearly breaks non-debug execution, since the
780                  * PRIMASK register state isn't saved/restored...  workaround
781                  * by never resuming app code after debug execution.
782                  */
783                 buf_set_u32(r->value, 0, 1, 1);
784                 r->dirty = true;
785                 r->valid = true;
786
787                 /* Make sure we are in Thumb mode */
788                 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
789                 buf_set_u32(r->value, 24, 1, 1);
790                 r->dirty = true;
791                 r->valid = true;
792         }
793
794         /* current = 1: continue on current pc, otherwise continue at <address> */
795         r = armv7m->arm.pc;
796         if (!current)
797         {
798                 buf_set_u32(r->value, 0, 32, address);
799                 r->dirty = true;
800                 r->valid = true;
801         }
802
803         /* if we halted last time due to a bkpt instruction
804          * then we have to manually step over it, otherwise
805          * the core will break again */
806
807         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
808                         && !debug_execution)
809         {
810                 armv7m_maybe_skip_bkpt_inst(target, NULL);
811         }
812
813         resume_pc = buf_get_u32(r->value, 0, 32);
814
815         armv7m_restore_context(target);
816
817         /* the front-end may request us not to handle breakpoints */
818         if (handle_breakpoints)
819         {
820                 /* Single step past breakpoint at current address */
821                 if ((breakpoint = breakpoint_find(target, resume_pc)))
822                 {
823                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
824                                           breakpoint->address,
825                                           breakpoint->unique_id);
826                         cortex_m3_unset_breakpoint(target, breakpoint);
827                         cortex_m3_single_step_core(target);
828                         cortex_m3_set_breakpoint(target, breakpoint);
829                 }
830         }
831
832         /* Restart core */
833         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
834
835         target->debug_reason = DBG_REASON_NOTHALTED;
836
837         /* registers are now invalid */
838         register_cache_invalidate(armv7m->core_cache);
839
840         if (!debug_execution)
841         {
842                 target->state = TARGET_RUNNING;
843                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
844                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
845         }
846         else
847         {
848                 target->state = TARGET_DEBUG_RUNNING;
849                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
850                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
851         }
852
853         return ERROR_OK;
854 }
855
856 /* int irqstepcount = 0; */
857 static int cortex_m3_step(struct target *target, int current,
858                 uint32_t address, int handle_breakpoints)
859 {
860         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
861         struct armv7m_common *armv7m = &cortex_m3->armv7m;
862         struct adiv5_dap *swjdp = &armv7m->dap;
863         struct breakpoint *breakpoint = NULL;
864         struct reg *pc = armv7m->arm.pc;
865         bool bkpt_inst_found = false;
866         int retval;
867         bool isr_timed_out = false;
868
869         if (target->state != TARGET_HALTED)
870         {
871                 LOG_WARNING("target not halted");
872                 return ERROR_TARGET_NOT_HALTED;
873         }
874
875         /* current = 1: continue on current pc, otherwise continue at <address> */
876         if (!current)
877                 buf_set_u32(pc->value, 0, 32, address);
878
879         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
880
881         /* the front-end may request us not to handle breakpoints */
882         if (handle_breakpoints) {
883                 breakpoint = breakpoint_find(target, pc_value);
884                 if (breakpoint)
885                         cortex_m3_unset_breakpoint(target, breakpoint);
886         }
887
888         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
889
890         target->debug_reason = DBG_REASON_SINGLESTEP;
891
892         armv7m_restore_context(target);
893
894         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
895
896         /* if no bkpt instruction is found at pc then we can perform
897          * a normal step, otherwise we have to manually step over the bkpt
898          * instruction - as such simulate a step */
899         if (bkpt_inst_found == false)
900         {
901                 /* Automatic ISR masking mode off: Just step over the next instruction */
902                 if ((cortex_m3->isrmasking_mode != CORTEX_M3_ISRMASK_AUTO))
903                 {
904                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
905                 }
906                 else
907                 {
908                         /* Process interrupts during stepping in a way they don't interfere
909                          * debugging.
910                          *
911                          * Principle:
912                          *
913                          * Set a temporary break point at the current pc and let the core run
914                          * with interrupts enabled. Pending interrupts get served and we run
915                          * into the breakpoint again afterwards. Then we step over the next
916                          * instruction with interrupts disabled.
917                          *
918                          * If the pending interrupts don't complete within time, we leave the
919                          * core running. This may happen if the interrupts trigger faster
920                          * than the core can process them or the handler doesn't return.
921                          *
922                          * If no more breakpoints are available we simply do a step with
923                          * interrupts enabled.
924                          *
925                          */
926
927                         /* Set a temporary break point */
928                         retval = breakpoint_add(target, pc_value , 2, BKPT_TYPE_BY_ADDR(pc_value));
929                         bool tmp_bp_set = (retval == ERROR_OK);
930
931                         /* No more breakpoints left, just do a step */
932                         if (!tmp_bp_set)
933                         {
934                                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
935                         }
936                         else
937                         {
938                                 /* Start the core */
939                                 LOG_DEBUG("Starting core to serve pending interrupts");
940                                 int64_t t_start = timeval_ms();
941                                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
942
943                                 /* Wait for pending handlers to complete or timeout */
944                                 do {
945                                         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
946                                         if (retval != ERROR_OK)
947                                         {
948                                                 target->state = TARGET_UNKNOWN;
949                                                 return retval;
950                                         }
951                                         isr_timed_out = ((timeval_ms() - t_start) > 500);
952                                 } while (!((cortex_m3->dcb_dhcsr & S_HALT) || isr_timed_out));
953
954                                 /* Remove the temporary breakpoint */
955                                 breakpoint_remove(target, pc_value);
956
957                                 if (isr_timed_out)
958                                 {
959                                         LOG_DEBUG("Interrupt handlers didn't complete within time, "
960                                                         "leaving target running");
961                                 }
962                                 else
963                                 {
964                                         /* Step over next instruction with interrupts disabled */
965                                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
966                                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
967                                         /* Re-enable interrupts */
968                                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
969                                 }
970                         }
971                 }
972         }
973
974         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
975         if (retval != ERROR_OK)
976                 return retval;
977
978         /* registers are now invalid */
979         register_cache_invalidate(cortex_m3->armv7m.core_cache);
980
981         if (breakpoint)
982                 cortex_m3_set_breakpoint(target, breakpoint);
983
984         if (isr_timed_out) {
985                 /* Leave the core running. The user has to stop execution manually. */
986                 target->debug_reason = DBG_REASON_NOTHALTED;
987                 target->state = TARGET_RUNNING;
988                 return ERROR_OK;
989         }
990
991         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
992                         " nvic_icsr = 0x%" PRIx32,
993                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
994
995         retval = cortex_m3_debug_entry(target);
996         if (retval != ERROR_OK)
997                 return retval;
998         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
999
1000         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
1001                         " nvic_icsr = 0x%" PRIx32,
1002                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
1003
1004         return ERROR_OK;
1005 }
1006
1007 static int cortex_m3_assert_reset(struct target *target)
1008 {
1009         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1010         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
1011         enum cortex_m3_soft_reset_config reset_config = cortex_m3->soft_reset_config;
1012
1013         LOG_DEBUG("target->state: %s",
1014                 target_state_name(target));
1015
1016         enum reset_types jtag_reset_config = jtag_get_reset_config();
1017
1018         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1019                 /* allow scripts to override the reset event */
1020
1021                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1022                 register_cache_invalidate(cortex_m3->armv7m.core_cache);
1023                 target->state = TARGET_RESET;
1024
1025                 return ERROR_OK;
1026         }
1027
1028         /* Enable debug requests */
1029         int retval;
1030         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
1031         if (retval != ERROR_OK)
1032                 return retval;
1033         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
1034         {
1035                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
1036                 if (retval != ERROR_OK)
1037                         return retval;
1038         }
1039
1040         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
1041         if (retval != ERROR_OK)
1042                 return retval;
1043
1044         if (!target->reset_halt)
1045         {
1046                 /* Set/Clear C_MASKINTS in a separate operation */
1047                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
1048                 {
1049                         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
1050                                         DBGKEY | C_DEBUGEN | C_HALT);
1051                         if (retval != ERROR_OK)
1052                                 return retval;
1053                 }
1054
1055                 /* clear any debug flags before resuming */
1056                 cortex_m3_clear_halt(target);
1057
1058                 /* clear C_HALT in dhcsr reg */
1059                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
1060         }
1061         else
1062         {
1063                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1064                  *
1065                  * REVISIT catching BUSERR presumably helps to defend against
1066                  * bad vector table entries.  Should this include MMERR or
1067                  * other flags too?
1068                  */
1069                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
1070                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1071                 if (retval != ERROR_OK)
1072                         return retval;
1073         }
1074
1075         if (jtag_reset_config & RESET_HAS_SRST)
1076         {
1077                 /* default to asserting srst */
1078                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1079                 {
1080                         jtag_add_reset(1, 1);
1081                 }
1082                 else
1083                 {
1084                         jtag_add_reset(0, 1);
1085                 }
1086         }
1087         else
1088         {
1089                 /* Use a standard Cortex-M3 software reset mechanism.
1090                  * We default to using VECRESET as it is supported on all current cores.
1091                  * This has the disadvantage of not resetting the peripherals, so a
1092                  * reset-init event handler is needed to perform any peripheral resets.
1093                  */
1094                 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1095                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1096                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1097                 if (retval != ERROR_OK)
1098                         return retval;
1099
1100                 LOG_DEBUG("Using Cortex-M3 %s", (reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1101                                 ? "SYSRESETREQ" : "VECTRESET");
1102
1103                 if (reset_config == CORTEX_M3_RESET_VECTRESET) {
1104                         LOG_WARNING("Only resetting the Cortex-M3 core, use a reset-init event "
1105                                         "handler to reset any peripherals");
1106                 }
1107
1108                 {
1109                         /* I do not know why this is necessary, but it
1110                          * fixes strange effects (step/resume cause NMI
1111                          * after reset) on LM3S6918 -- Michael Schwingen
1112                          */
1113                         uint32_t tmp;
1114                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1115                         if (retval != ERROR_OK)
1116                                 return retval;
1117                 }
1118         }
1119
1120         target->state = TARGET_RESET;
1121         jtag_add_sleep(50000);
1122
1123         register_cache_invalidate(cortex_m3->armv7m.core_cache);
1124
1125         if (target->reset_halt)
1126         {
1127                 if ((retval = target_halt(target)) != ERROR_OK)
1128                         return retval;
1129         }
1130
1131         return ERROR_OK;
1132 }
1133
1134 static int cortex_m3_deassert_reset(struct target *target)
1135 {
1136         LOG_DEBUG("target->state: %s",
1137                 target_state_name(target));
1138
1139         /* deassert reset lines */
1140         jtag_add_reset(0, 0);
1141
1142         return ERROR_OK;
1143 }
1144
1145 static int
1146 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1147 {
1148         int retval;
1149         int fp_num = 0;
1150         uint32_t hilo;
1151         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1152         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1153
1154         if (breakpoint->set)
1155         {
1156                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
1157                 return ERROR_OK;
1158         }
1159
1160         if (cortex_m3->auto_bp_type)
1161         {
1162                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1163         }
1164
1165         if (breakpoint->type == BKPT_HARD)
1166         {
1167                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
1168                         fp_num++;
1169                 if (fp_num >= cortex_m3->fp_num_code)
1170                 {
1171                         LOG_ERROR("Can not find free FPB Comparator!");
1172                         return ERROR_FAIL;
1173                 }
1174                 breakpoint->set = fp_num + 1;
1175                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1176                 comparator_list[fp_num].used = 1;
1177                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1178                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1179                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
1180                 if (!cortex_m3->fpb_enabled)
1181                 {
1182                         LOG_DEBUG("FPB wasn't enabled, do it now");
1183                         target_write_u32(target, FP_CTRL, 3);
1184                 }
1185         }
1186         else if (breakpoint->type == BKPT_SOFT)
1187         {
1188                 uint8_t code[4];
1189
1190                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1191                  * semihosting; don't use that.  Otherwise the BKPT
1192                  * parameter is arbitrary.
1193                  */
1194                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1195                 retval = target_read_memory(target,
1196                                 breakpoint->address & 0xFFFFFFFE,
1197                                 breakpoint->length, 1,
1198                                 breakpoint->orig_instr);
1199                 if (retval != ERROR_OK)
1200                         return retval;
1201                 retval = target_write_memory(target,
1202                                 breakpoint->address & 0xFFFFFFFE,
1203                                 breakpoint->length, 1,
1204                                 code);
1205                 if (retval != ERROR_OK)
1206                         return retval;
1207                 breakpoint->set = true;
1208         }
1209
1210         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1211                           breakpoint->unique_id,
1212                           (int)(breakpoint->type),
1213                           breakpoint->address,
1214                           breakpoint->length,
1215                           breakpoint->set);
1216
1217         return ERROR_OK;
1218 }
1219
1220 static int
1221 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1222 {
1223         int retval;
1224         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1225         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
1226
1227         if (!breakpoint->set)
1228         {
1229                 LOG_WARNING("breakpoint not set");
1230                 return ERROR_OK;
1231         }
1232
1233         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1234                           breakpoint->unique_id,
1235                           (int)(breakpoint->type),
1236                           breakpoint->address,
1237                           breakpoint->length,
1238                           breakpoint->set);
1239
1240         if (breakpoint->type == BKPT_HARD)
1241         {
1242                 int fp_num = breakpoint->set - 1;
1243                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
1244                 {
1245                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1246                         return ERROR_OK;
1247                 }
1248                 comparator_list[fp_num].used = 0;
1249                 comparator_list[fp_num].fpcr_value = 0;
1250                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1251         }
1252         else
1253         {
1254                 /* restore original instruction (kept in target endianness) */
1255                 if (breakpoint->length == 4)
1256                 {
1257                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
1258                         {
1259                                 return retval;
1260                         }
1261                 }
1262                 else
1263                 {
1264                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
1265                         {
1266                                 return retval;
1267                         }
1268                 }
1269         }
1270         breakpoint->set = false;
1271
1272         return ERROR_OK;
1273 }
1274
1275 static int
1276 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1277 {
1278         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1279
1280         if (cortex_m3->auto_bp_type)
1281         {
1282                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1283 #ifdef ARMV7_GDB_HACKS
1284                 if (breakpoint->length != 2) {
1285                         /* XXX Hack: Replace all breakpoints with length != 2 with
1286                          * a hardware breakpoint. */
1287                         breakpoint->type = BKPT_HARD;
1288                         breakpoint->length = 2;
1289                 }
1290 #endif
1291         }
1292
1293         if(breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1294                 if (breakpoint->type == BKPT_HARD)
1295                 {
1296                         LOG_INFO("flash patch comparator requested outside code memory region");
1297                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1298                 }
1299
1300                 if (breakpoint->type == BKPT_SOFT)
1301                 {
1302                         LOG_INFO("soft breakpoint requested in code (flash) memory region");
1303                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1304                 }
1305         }
1306
1307         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
1308         {
1309                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1310                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1311         }
1312
1313         if ((breakpoint->length != 2))
1314         {
1315                 LOG_INFO("only breakpoints of two bytes length supported");
1316                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1317         }
1318
1319         if (breakpoint->type == BKPT_HARD)
1320                 cortex_m3->fp_code_available--;
1321
1322         return cortex_m3_set_breakpoint(target, breakpoint);
1323 }
1324
1325 static int
1326 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1327 {
1328         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1329
1330         /* REVISIT why check? FBP can be updated with core running ... */
1331         if (target->state != TARGET_HALTED)
1332         {
1333                 LOG_WARNING("target not halted");
1334                 return ERROR_TARGET_NOT_HALTED;
1335         }
1336
1337         if (cortex_m3->auto_bp_type)
1338         {
1339                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1340         }
1341
1342         if (breakpoint->set)
1343         {
1344                 cortex_m3_unset_breakpoint(target, breakpoint);
1345         }
1346
1347         if (breakpoint->type == BKPT_HARD)
1348                 cortex_m3->fp_code_available++;
1349
1350         return ERROR_OK;
1351 }
1352
1353 static int
1354 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1355 {
1356         int dwt_num = 0;
1357         uint32_t mask, temp;
1358         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1359
1360         /* watchpoint params were validated earlier */
1361         mask = 0;
1362         temp = watchpoint->length;
1363         while (temp) {
1364                 temp >>= 1;
1365                 mask++;
1366         }
1367         mask--;
1368
1369         /* REVISIT Don't fully trust these "not used" records ... users
1370          * may set up breakpoints by hand, e.g. dual-address data value
1371          * watchpoint using comparator #1; comparator #0 matching cycle
1372          * count; send data trace info through ITM and TPIU; etc
1373          */
1374         struct cortex_m3_dwt_comparator *comparator;
1375
1376         for (comparator = cortex_m3->dwt_comparator_list;
1377                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1378                         comparator++, dwt_num++)
1379                 continue;
1380         if (dwt_num >= cortex_m3->dwt_num_comp)
1381         {
1382                 LOG_ERROR("Can not find free DWT Comparator");
1383                 return ERROR_FAIL;
1384         }
1385         comparator->used = 1;
1386         watchpoint->set = dwt_num + 1;
1387
1388         comparator->comp = watchpoint->address;
1389         target_write_u32(target, comparator->dwt_comparator_address + 0,
1390                         comparator->comp);
1391
1392         comparator->mask = mask;
1393         target_write_u32(target, comparator->dwt_comparator_address + 4,
1394                         comparator->mask);
1395
1396         switch (watchpoint->rw) {
1397         case WPT_READ:
1398                 comparator->function = 5;
1399                 break;
1400         case WPT_WRITE:
1401                 comparator->function = 6;
1402                 break;
1403         case WPT_ACCESS:
1404                 comparator->function = 7;
1405                 break;
1406         }
1407         target_write_u32(target, comparator->dwt_comparator_address + 8,
1408                         comparator->function);
1409
1410         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1411                         watchpoint->unique_id, dwt_num,
1412                         (unsigned) comparator->comp,
1413                         (unsigned) comparator->mask,
1414                         (unsigned) comparator->function);
1415         return ERROR_OK;
1416 }
1417
1418 static int
1419 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1420 {
1421         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1422         struct cortex_m3_dwt_comparator *comparator;
1423         int dwt_num;
1424
1425         if (!watchpoint->set)
1426         {
1427                 LOG_WARNING("watchpoint (wpid: %d) not set",
1428                                 watchpoint->unique_id);
1429                 return ERROR_OK;
1430         }
1431
1432         dwt_num = watchpoint->set - 1;
1433
1434         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1435                         watchpoint->unique_id, dwt_num,
1436                         (unsigned) watchpoint->address);
1437
1438         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1439         {
1440                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1441                 return ERROR_OK;
1442         }
1443
1444         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1445         comparator->used = 0;
1446         comparator->function = 0;
1447         target_write_u32(target, comparator->dwt_comparator_address + 8,
1448                         comparator->function);
1449
1450         watchpoint->set = false;
1451
1452         return ERROR_OK;
1453 }
1454
1455 static int
1456 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1457 {
1458         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1459
1460         if (cortex_m3->dwt_comp_available < 1)
1461         {
1462                 LOG_DEBUG("no comparators?");
1463                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1464         }
1465
1466         /* hardware doesn't support data value masking */
1467         if (watchpoint->mask != ~(uint32_t)0) {
1468                 LOG_DEBUG("watchpoint value masks not supported");
1469                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1470         }
1471
1472         /* hardware allows address masks of up to 32K */
1473         unsigned mask;
1474
1475         for (mask = 0; mask < 16; mask++) {
1476                 if ((1u << mask) == watchpoint->length)
1477                         break;
1478         }
1479         if (mask == 16) {
1480                 LOG_DEBUG("unsupported watchpoint length");
1481                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1482         }
1483         if (watchpoint->address & ((1 << mask) - 1)) {
1484                 LOG_DEBUG("watchpoint address is unaligned");
1485                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1486         }
1487
1488         /* Caller doesn't seem to be able to describe watching for data
1489          * values of zero; that flags "no value".
1490          *
1491          * REVISIT This DWT may well be able to watch for specific data
1492          * values.  Requires comparator #1 to set DATAVMATCH and match
1493          * the data, and another comparator (DATAVADDR0) matching addr.
1494          */
1495         if (watchpoint->value) {
1496                 LOG_DEBUG("data value watchpoint not YET supported");
1497                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1498         }
1499
1500         cortex_m3->dwt_comp_available--;
1501         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1502
1503         return ERROR_OK;
1504 }
1505
1506 static int
1507 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1508 {
1509         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1510
1511         /* REVISIT why check? DWT can be updated with core running ... */
1512         if (target->state != TARGET_HALTED)
1513         {
1514                 LOG_WARNING("target not halted");
1515                 return ERROR_TARGET_NOT_HALTED;
1516         }
1517
1518         if (watchpoint->set)
1519         {
1520                 cortex_m3_unset_watchpoint(target, watchpoint);
1521         }
1522
1523         cortex_m3->dwt_comp_available++;
1524         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1525
1526         return ERROR_OK;
1527 }
1528
1529 static void cortex_m3_enable_watchpoints(struct target *target)
1530 {
1531         struct watchpoint *watchpoint = target->watchpoints;
1532
1533         /* set any pending watchpoints */
1534         while (watchpoint)
1535         {
1536                 if (!watchpoint->set)
1537                         cortex_m3_set_watchpoint(target, watchpoint);
1538                 watchpoint = watchpoint->next;
1539         }
1540 }
1541
1542 static int cortex_m3_load_core_reg_u32(struct target *target,
1543                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1544 {
1545         int retval;
1546         struct armv7m_common *armv7m = target_to_armv7m(target);
1547         struct adiv5_dap *swjdp = &armv7m->dap;
1548
1549         /* NOTE:  we "know" here that the register identifiers used
1550          * in the v7m header match the Cortex-M3 Debug Core Register
1551          * Selector values for R0..R15, xPSR, MSP, and PSP.
1552          */
1553         switch (num) {
1554         case 0 ... 18:
1555                 /* read a normal core register */
1556                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1557
1558                 if (retval != ERROR_OK)
1559                 {
1560                         LOG_ERROR("JTAG failure %i",retval);
1561                         return ERROR_JTAG_DEVICE_ERROR;
1562                 }
1563                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1564                 break;
1565
1566         case ARMV7M_PRIMASK:
1567         case ARMV7M_BASEPRI:
1568         case ARMV7M_FAULTMASK:
1569         case ARMV7M_CONTROL:
1570                 /* Cortex-M3 packages these four registers as bitfields
1571                  * in one Debug Core register.  So say r0 and r2 docs;
1572                  * it was removed from r1 docs, but still works.
1573                  */
1574                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1575
1576                 switch (num)
1577                 {
1578                         case ARMV7M_PRIMASK:
1579                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1580                                 break;
1581
1582                         case ARMV7M_BASEPRI:
1583                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1584                                 break;
1585
1586                         case ARMV7M_FAULTMASK:
1587                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1588                                 break;
1589
1590                         case ARMV7M_CONTROL:
1591                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1592                                 break;
1593                 }
1594
1595                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1596                 break;
1597
1598         default:
1599                 return ERROR_INVALID_ARGUMENTS;
1600         }
1601
1602         return ERROR_OK;
1603 }
1604
1605 static int cortex_m3_store_core_reg_u32(struct target *target,
1606                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1607 {
1608         int retval;
1609         uint32_t reg;
1610         struct armv7m_common *armv7m = target_to_armv7m(target);
1611         struct adiv5_dap *swjdp = &armv7m->dap;
1612
1613 #ifdef ARMV7_GDB_HACKS
1614         /* If the LR register is being modified, make sure it will put us
1615          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1616          * hack to deal with the fact that gdb will sometimes "forge"
1617          * return addresses, and doesn't set the LSB correctly (i.e., when
1618          * printing expressions containing function calls, it sets LR = 0.)
1619          * Valid exception return codes have bit 0 set too.
1620          */
1621         if (num == ARMV7M_R14)
1622                 value |= 0x01;
1623 #endif
1624
1625         /* NOTE:  we "know" here that the register identifiers used
1626          * in the v7m header match the Cortex-M3 Debug Core Register
1627          * Selector values for R0..R15, xPSR, MSP, and PSP.
1628          */
1629         switch (num) {
1630         case 0 ... 18:
1631                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1632                 if (retval != ERROR_OK)
1633                 {
1634                         struct reg *r;
1635
1636                         LOG_ERROR("JTAG failure");
1637                         r = armv7m->core_cache->reg_list + num;
1638                         r->dirty = r->valid;
1639                         return ERROR_JTAG_DEVICE_ERROR;
1640                 }
1641                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1642                 break;
1643
1644         case ARMV7M_PRIMASK:
1645         case ARMV7M_BASEPRI:
1646         case ARMV7M_FAULTMASK:
1647         case ARMV7M_CONTROL:
1648                 /* Cortex-M3 packages these four registers as bitfields
1649                  * in one Debug Core register.  So say r0 and r2 docs;
1650                  * it was removed from r1 docs, but still works.
1651                  */
1652                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1653
1654                 switch (num)
1655                 {
1656                         case ARMV7M_PRIMASK:
1657                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1658                                 break;
1659
1660                         case ARMV7M_BASEPRI:
1661                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1662                                 break;
1663
1664                         case ARMV7M_FAULTMASK:
1665                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1666                                 break;
1667
1668                         case ARMV7M_CONTROL:
1669                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1670                                 break;
1671                 }
1672
1673                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1674
1675                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1676                 break;
1677
1678         default:
1679                 return ERROR_INVALID_ARGUMENTS;
1680         }
1681
1682         return ERROR_OK;
1683 }
1684
1685 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1686                 uint32_t size, uint32_t count, uint8_t *buffer)
1687 {
1688         struct armv7m_common *armv7m = target_to_armv7m(target);
1689         struct adiv5_dap *swjdp = &armv7m->dap;
1690         int retval = ERROR_INVALID_ARGUMENTS;
1691
1692         /* cortex_m3 handles unaligned memory access */
1693         if (count && buffer) {
1694                 switch (size) {
1695                 case 4:
1696                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1697                         break;
1698                 case 2:
1699                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1700                         break;
1701                 case 1:
1702                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1703                         break;
1704                 }
1705         }
1706
1707         return retval;
1708 }
1709
1710 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1711                 uint32_t size, uint32_t count, const uint8_t *buffer)
1712 {
1713         struct armv7m_common *armv7m = target_to_armv7m(target);
1714         struct adiv5_dap *swjdp = &armv7m->dap;
1715         int retval = ERROR_INVALID_ARGUMENTS;
1716
1717         if (count && buffer) {
1718                 switch (size) {
1719                 case 4:
1720                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1721                         break;
1722                 case 2:
1723                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1724                         break;
1725                 case 1:
1726                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1727                         break;
1728                 }
1729         }
1730
1731         return retval;
1732 }
1733
1734 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1735                 uint32_t count, const uint8_t *buffer)
1736 {
1737         return cortex_m3_write_memory(target, address, 4, count, buffer);
1738 }
1739
1740 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1741                 struct target *target)
1742 {
1743         armv7m_build_reg_cache(target);
1744         return ERROR_OK;
1745 }
1746
1747 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1748  * on r/w if the core is not running, and clear on resume or reset ... or
1749  * at least, in a post_restore_context() method.
1750  */
1751
1752 struct dwt_reg_state {
1753         struct target   *target;
1754         uint32_t        addr;
1755         uint32_t        value;  /* scratch/cache */
1756 };
1757
1758 static int cortex_m3_dwt_get_reg(struct reg *reg)
1759 {
1760         struct dwt_reg_state *state = reg->arch_info;
1761
1762         return target_read_u32(state->target, state->addr, &state->value);
1763 }
1764
1765 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1766 {
1767         struct dwt_reg_state *state = reg->arch_info;
1768
1769         return target_write_u32(state->target, state->addr,
1770                         buf_get_u32(buf, 0, reg->size));
1771 }
1772
1773 struct dwt_reg {
1774         uint32_t        addr;
1775         char            *name;
1776         unsigned        size;
1777 };
1778
1779 static struct dwt_reg dwt_base_regs[] = {
1780         { DWT_CTRL, "dwt_ctrl", 32, },
1781         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1782          * increments while the core is asleep.
1783          */
1784         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1785         /* plus some 8 bit counters, useful for profiling with TPIU */
1786 };
1787
1788 static struct dwt_reg dwt_comp[] = {
1789 #define DWT_COMPARATOR(i) \
1790                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1791                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1792                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1793         DWT_COMPARATOR(0),
1794         DWT_COMPARATOR(1),
1795         DWT_COMPARATOR(2),
1796         DWT_COMPARATOR(3),
1797 #undef DWT_COMPARATOR
1798 };
1799
1800 static const struct reg_arch_type dwt_reg_type = {
1801         .get = cortex_m3_dwt_get_reg,
1802         .set = cortex_m3_dwt_set_reg,
1803 };
1804
1805 static void
1806 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1807 {
1808         struct dwt_reg_state *state;
1809
1810         state = calloc(1, sizeof *state);
1811         if (!state)
1812                 return;
1813         state->addr = d->addr;
1814         state->target = t;
1815
1816         r->name = d->name;
1817         r->size = d->size;
1818         r->value = &state->value;
1819         r->arch_info = state;
1820         r->type = &dwt_reg_type;
1821 }
1822
1823 static void
1824 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1825 {
1826         uint32_t dwtcr;
1827         struct reg_cache *cache;
1828         struct cortex_m3_dwt_comparator *comparator;
1829         int reg, i;
1830
1831         target_read_u32(target, DWT_CTRL, &dwtcr);
1832         if (!dwtcr) {
1833                 LOG_DEBUG("no DWT");
1834                 return;
1835         }
1836
1837         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1838         cm3->dwt_comp_available = cm3->dwt_num_comp;
1839         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1840                         sizeof(struct cortex_m3_dwt_comparator));
1841         if (!cm3->dwt_comparator_list) {
1842 fail0:
1843                 cm3->dwt_num_comp = 0;
1844                 LOG_ERROR("out of mem");
1845                 return;
1846         }
1847
1848         cache = calloc(1, sizeof *cache);
1849         if (!cache) {
1850 fail1:
1851                 free(cm3->dwt_comparator_list);
1852                 goto fail0;
1853         }
1854         cache->name = "cortex-m3 dwt registers";
1855         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1856         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1857         if (!cache->reg_list) {
1858                 free(cache);
1859                 goto fail1;
1860         }
1861
1862         for (reg = 0; reg < 2; reg++)
1863                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1864                                 dwt_base_regs + reg);
1865
1866         comparator = cm3->dwt_comparator_list;
1867         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1868                 int j;
1869
1870                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1871                 for (j = 0; j < 3; j++, reg++)
1872                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1873                                         dwt_comp + 3 * i + j);
1874         }
1875
1876         *register_get_last_cache_p(&target->reg_cache) = cache;
1877         cm3->dwt_cache = cache;
1878
1879         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1880                         dwtcr, cm3->dwt_num_comp,
1881                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1882
1883         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1884          * implement single-address data value watchpoints ... so we
1885          * won't need to check it later, when asked to set one up.
1886          */
1887 }
1888
1889 static int cortex_m3_examine(struct target *target)
1890 {
1891         int retval;
1892         uint32_t cpuid, fpcr;
1893         int i;
1894         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1895         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
1896
1897         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1898                 return retval;
1899
1900         if (!target_was_examined(target))
1901         {
1902                 target_set_examined(target);
1903
1904                 /* Read from Device Identification Registers */
1905                 retval = target_read_u32(target, CPUID, &cpuid);
1906                 if (retval != ERROR_OK)
1907                         return retval;
1908
1909                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1910                         LOG_DEBUG("Cortex-M3 r%" PRId8 "p%" PRId8 " processor detected",
1911                                 (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1912                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1913
1914                 /* NOTE: FPB and DWT are both optional. */
1915
1916                 /* Setup FPB */
1917                 target_read_u32(target, FP_CTRL, &fpcr);
1918                 cortex_m3->auto_bp_type = 1;
1919                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1920                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1921                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1922                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1923                 cortex_m3->fpb_enabled = fpcr & 1;
1924                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1925                 {
1926                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1927                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1928                 }
1929                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1930
1931                 /* Setup DWT */
1932                 cortex_m3_dwt_setup(cortex_m3, target);
1933
1934                 /* These hardware breakpoints only work for code in flash! */
1935                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1936                                 target_name(target),
1937                                 cortex_m3->fp_num_code,
1938                                 cortex_m3->dwt_num_comp);
1939         }
1940
1941         return ERROR_OK;
1942 }
1943
1944 static int cortex_m3_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1945 {
1946         uint16_t dcrdr;
1947         int retval;
1948
1949         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1950         *ctrl = (uint8_t)dcrdr;
1951         *value = (uint8_t)(dcrdr >> 8);
1952
1953         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1954
1955         /* write ack back to software dcc register
1956          * signify we have read data */
1957         if (dcrdr & (1 << 0))
1958         {
1959                 dcrdr = 0;
1960                 retval = mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1961                 if (retval != ERROR_OK)
1962                         return retval;
1963         }
1964
1965         return ERROR_OK;
1966 }
1967
1968 static int cortex_m3_target_request_data(struct target *target,
1969                 uint32_t size, uint8_t *buffer)
1970 {
1971         struct armv7m_common *armv7m = target_to_armv7m(target);
1972         struct adiv5_dap *swjdp = &armv7m->dap;
1973         uint8_t data;
1974         uint8_t ctrl;
1975         uint32_t i;
1976
1977         for (i = 0; i < (size * 4); i++)
1978         {
1979                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1980                 buffer[i] = data;
1981         }
1982
1983         return ERROR_OK;
1984 }
1985
1986 static int cortex_m3_handle_target_request(void *priv)
1987 {
1988         struct target *target = priv;
1989         if (!target_was_examined(target))
1990                 return ERROR_OK;
1991         struct armv7m_common *armv7m = target_to_armv7m(target);
1992         struct adiv5_dap *swjdp = &armv7m->dap;
1993
1994         if (!target->dbg_msg_enabled)
1995                 return ERROR_OK;
1996
1997         if (target->state == TARGET_RUNNING)
1998         {
1999                 uint8_t data;
2000                 uint8_t ctrl;
2001
2002                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
2003
2004                 /* check if we have data */
2005                 if (ctrl & (1 << 0))
2006                 {
2007                         uint32_t request;
2008
2009                         /* we assume target is quick enough */
2010                         request = data;
2011                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
2012                         request |= (data << 8);
2013                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
2014                         request |= (data << 16);
2015                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
2016                         request |= (data << 24);
2017                         target_request(target, request);
2018                 }
2019         }
2020
2021         return ERROR_OK;
2022 }
2023
2024 static int cortex_m3_init_arch_info(struct target *target,
2025                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
2026 {
2027         int retval;
2028         struct armv7m_common *armv7m = &cortex_m3->armv7m;
2029
2030         armv7m_init_arch_info(target, armv7m);
2031
2032         /* prepare JTAG information for the new target */
2033         cortex_m3->jtag_info.tap = tap;
2034         cortex_m3->jtag_info.scann_size = 4;
2035
2036         /* default reset mode is to use srst if fitted
2037          * if not it will use CORTEX_M3_RESET_VECTRESET */
2038         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2039
2040         armv7m->arm.dap = &armv7m->dap;
2041
2042         /* Leave (only) generic DAP stuff for debugport_init(); */
2043         armv7m->dap.jtag_info = &cortex_m3->jtag_info;
2044         armv7m->dap.memaccess_tck = 8;
2045         /* Cortex-M3 has 4096 bytes autoincrement range */
2046         armv7m->dap.tar_autoincr_block = (1 << 12);
2047
2048         /* register arch-specific functions */
2049         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
2050
2051         armv7m->post_debug_entry = NULL;
2052
2053         armv7m->pre_restore_context = NULL;
2054
2055         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
2056         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
2057
2058         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
2059
2060         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
2061         {
2062                 return retval;
2063         }
2064
2065         return ERROR_OK;
2066 }
2067
2068 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
2069 {
2070         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
2071
2072         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
2073         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
2074
2075         return ERROR_OK;
2076 }
2077
2078 /*--------------------------------------------------------------------------*/
2079
2080 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
2081                 struct cortex_m3_common *cm3)
2082 {
2083         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
2084                 command_print(cmd_ctx, "target is not a Cortex-M3");
2085                 return ERROR_TARGET_INVALID;
2086         }
2087         return ERROR_OK;
2088 }
2089
2090 /*
2091  * Only stuff below this line should need to verify that its target
2092  * is a Cortex-M3.  Everything else should have indirected through the
2093  * cortexm3_target structure, which is only used with CM3 targets.
2094  */
2095
2096 static const struct {
2097         char name[10];
2098         unsigned mask;
2099 } vec_ids[] = {
2100         { "hard_err",   VC_HARDERR, },
2101         { "int_err",    VC_INTERR, },
2102         { "bus_err",    VC_BUSERR, },
2103         { "state_err",  VC_STATERR, },
2104         { "chk_err",    VC_CHKERR, },
2105         { "nocp_err",   VC_NOCPERR, },
2106         { "mm_err",     VC_MMERR, },
2107         { "reset",      VC_CORERESET, },
2108 };
2109
2110 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
2111 {
2112         struct target *target = get_current_target(CMD_CTX);
2113         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2114         struct armv7m_common *armv7m = &cortex_m3->armv7m;
2115         struct adiv5_dap *swjdp = &armv7m->dap;
2116         uint32_t demcr = 0;
2117         int retval;
2118
2119         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2120         if (retval != ERROR_OK)
2121                 return retval;
2122
2123         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2124         if (retval != ERROR_OK)
2125                 return retval;
2126
2127         if (CMD_ARGC > 0) {
2128                 unsigned catch = 0;
2129
2130                 if (CMD_ARGC == 1) {
2131                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2132                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2133                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2134                                         | VC_MMERR | VC_CORERESET;
2135                                 goto write;
2136                         } else if (strcmp(CMD_ARGV[0], "none") == 0) {
2137                                 goto write;
2138                         }
2139                 }
2140                 while (CMD_ARGC-- > 0) {
2141                         unsigned i;
2142                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2143                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2144                                         continue;
2145                                 catch |= vec_ids[i].mask;
2146                                 break;
2147                         }
2148                         if (i == ARRAY_SIZE(vec_ids)) {
2149                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2150                                 return ERROR_INVALID_ARGUMENTS;
2151                         }
2152                 }
2153 write:
2154                 /* For now, armv7m->demcr only stores vector catch flags. */
2155                 armv7m->demcr = catch;
2156
2157                 demcr &= ~0xffff;
2158                 demcr |= catch;
2159
2160                 /* write, but don't assume it stuck (why not??) */
2161                 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2162                 if (retval != ERROR_OK)
2163                         return retval;
2164                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2165                 if (retval != ERROR_OK)
2166                         return retval;
2167
2168                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2169                  * Otherwise the vector catch hardware could fire when there's
2170                  * no debugger hooked up, causing much confusion...
2171                  */
2172         }
2173
2174         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
2175         {
2176                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2177                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2178         }
2179
2180         return ERROR_OK;
2181 }
2182
2183 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2184 {
2185         struct target *target = get_current_target(CMD_CTX);
2186         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2187         int retval;
2188
2189         static const Jim_Nvp nvp_maskisr_modes[] = {
2190                 { .name = "auto", .value = CORTEX_M3_ISRMASK_AUTO },
2191                 { .name = "off" , .value = CORTEX_M3_ISRMASK_OFF },
2192                 { .name = "on"  , .value = CORTEX_M3_ISRMASK_ON },
2193                 { .name = NULL  , .value = -1 },
2194         };
2195         const Jim_Nvp *n;
2196
2197
2198         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2199         if (retval != ERROR_OK)
2200                 return retval;
2201
2202         if (target->state != TARGET_HALTED)
2203         {
2204                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2205                 return ERROR_OK;
2206         }
2207
2208         if (CMD_ARGC > 0)
2209         {
2210                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2211                 if (n->name == NULL)
2212                 {
2213                         return ERROR_COMMAND_SYNTAX_ERROR;
2214                 }
2215                 cortex_m3->isrmasking_mode = n->value;
2216
2217
2218                 if(cortex_m3->isrmasking_mode == CORTEX_M3_ISRMASK_ON)
2219                 {
2220                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2221                 }
2222                 else
2223                 {
2224                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2225                 }
2226         }
2227
2228         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m3->isrmasking_mode);
2229         command_print(CMD_CTX, "cortex_m3 interrupt mask %s", n->name);
2230
2231         return ERROR_OK;
2232 }
2233
2234 COMMAND_HANDLER(handle_cortex_m3_reset_config_command)
2235 {
2236         struct target *target = get_current_target(CMD_CTX);
2237         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2238         int retval;
2239         char *reset_config;
2240
2241         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2242         if (retval != ERROR_OK)
2243                 return retval;
2244
2245         if (CMD_ARGC > 0)
2246         {
2247                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2248                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_SYSRESETREQ;
2249                 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2250                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2251         }
2252
2253         switch (cortex_m3->soft_reset_config)
2254         {
2255                 case CORTEX_M3_RESET_SYSRESETREQ:
2256                         reset_config = "sysresetreq";
2257                         break;
2258
2259                 case CORTEX_M3_RESET_VECTRESET:
2260                         reset_config = "vectreset";
2261                         break;
2262
2263                 default:
2264                         reset_config = "unknown";
2265                         break;
2266         }
2267
2268         command_print(CMD_CTX, "cortex_m3 reset_config %s", reset_config);
2269
2270         return ERROR_OK;
2271 }
2272
2273 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2274         {
2275                 .name = "maskisr",
2276                 .handler = handle_cortex_m3_mask_interrupts_command,
2277                 .mode = COMMAND_EXEC,
2278                 .help = "mask cortex_m3 interrupts",
2279                 .usage = "['auto'|'on'|'off']",
2280         },
2281         {
2282                 .name = "vector_catch",
2283                 .handler = handle_cortex_m3_vector_catch_command,
2284                 .mode = COMMAND_EXEC,
2285                 .help = "configure hardware vectors to trigger debug entry",
2286                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2287         },
2288         {
2289                 .name = "reset_config",
2290                 .handler = handle_cortex_m3_reset_config_command,
2291                 .mode = COMMAND_ANY,
2292                 .help = "configure software reset handling",
2293                 .usage = "['srst'|'sysresetreq'|'vectreset']",
2294         },
2295         COMMAND_REGISTRATION_DONE
2296 };
2297 static const struct command_registration cortex_m3_command_handlers[] = {
2298         {
2299                 .chain = armv7m_command_handlers,
2300         },
2301         {
2302                 .name = "cortex_m3",
2303                 .mode = COMMAND_EXEC,
2304                 .help = "Cortex-M3 command group",
2305                 .chain = cortex_m3_exec_command_handlers,
2306         },
2307         COMMAND_REGISTRATION_DONE
2308 };
2309
2310 struct target_type cortexm3_target =
2311 {
2312         .name = "cortex_m3",
2313
2314         .poll = cortex_m3_poll,
2315         .arch_state = armv7m_arch_state,
2316
2317         .target_request_data = cortex_m3_target_request_data,
2318
2319         .halt = cortex_m3_halt,
2320         .resume = cortex_m3_resume,
2321         .step = cortex_m3_step,
2322
2323         .assert_reset = cortex_m3_assert_reset,
2324         .deassert_reset = cortex_m3_deassert_reset,
2325         .soft_reset_halt = cortex_m3_soft_reset_halt,
2326
2327         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2328
2329         .read_memory = cortex_m3_read_memory,
2330         .write_memory = cortex_m3_write_memory,
2331         .bulk_write_memory = cortex_m3_bulk_write_memory,
2332         .checksum_memory = armv7m_checksum_memory,
2333         .blank_check_memory = armv7m_blank_check_memory,
2334
2335         .run_algorithm = armv7m_run_algorithm,
2336         .start_algorithm = armv7m_start_algorithm,
2337         .wait_algorithm = armv7m_wait_algorithm,
2338
2339         .add_breakpoint = cortex_m3_add_breakpoint,
2340         .remove_breakpoint = cortex_m3_remove_breakpoint,
2341         .add_watchpoint = cortex_m3_add_watchpoint,
2342         .remove_watchpoint = cortex_m3_remove_watchpoint,
2343
2344         .commands = cortex_m3_command_handlers,
2345         .target_create = cortex_m3_target_create,
2346         .init_target = cortex_m3_init_target,
2347         .examine = cortex_m3_examine,
2348 };