topic: add reset functions for SWD
[fw/openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "jtag/interface.h"
35 #include "breakpoints.h"
36 #include "cortex_m.h"
37 #include "target_request.h"
38 #include "target_type.h"
39 #include "arm_disassembler.h"
40 #include "register.h"
41 #include "arm_opcodes.h"
42 #include "arm_semihosting.h"
43 #include <helper/time_support.h>
44
45 /* NOTE:  most of this should work fine for the Cortex-M1 and
46  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
47  * Some differences:  M0/M1 doesn't have FBP remapping or the
48  * DWT tracing/profiling support.  (So the cycle counter will
49  * not be usable; the other stuff isn't currently used here.)
50  *
51  * Although there are some workarounds for errata seen only in r0p0
52  * silicon, such old parts are hard to find and thus not much tested
53  * any longer.
54  */
55
56 /**
57  * Returns the type of a break point required by address location
58  */
59 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
60
61
62 /* forward declarations */
63 static int cortex_m3_store_core_reg_u32(struct target *target,
64         enum armv7m_regtype type, uint32_t num, uint32_t value);
65
66 static int cortexm3_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
67         uint32_t *value, int regnum)
68 {
69         int retval;
70         uint32_t dcrdr;
71
72         /* because the DCB_DCRDR is used for the emulated dcc channel
73          * we have to save/restore the DCB_DCRDR when used */
74
75         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
76         if (retval != ERROR_OK)
77                 return retval;
78
79         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
80         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
81         if (retval != ERROR_OK)
82                 return retval;
83         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
84         if (retval != ERROR_OK)
85                 return retval;
86
87         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
88         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
89         if (retval != ERROR_OK)
90                 return retval;
91         retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
92         if (retval != ERROR_OK)
93                 return retval;
94
95         retval = dap_run(swjdp);
96         if (retval != ERROR_OK)
97                 return retval;
98
99         /* restore DCB_DCRDR - this needs to be in a seperate
100          * transaction otherwise the emulated DCC channel breaks */
101         if (retval == ERROR_OK)
102                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
103
104         return retval;
105 }
106
107 static int cortexm3_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
108         uint32_t value, int regnum)
109 {
110         int retval;
111         uint32_t dcrdr;
112
113         /* because the DCB_DCRDR is used for the emulated dcc channel
114          * we have to save/restore the DCB_DCRDR when used */
115
116         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
117         if (retval != ERROR_OK)
118                 return retval;
119
120         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
121         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
122         if (retval != ERROR_OK)
123                 return retval;
124         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
125         if (retval != ERROR_OK)
126                 return retval;
127
128         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
129         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
130         if (retval != ERROR_OK)
131                 return retval;
132         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
133         if (retval != ERROR_OK)
134                 return retval;
135
136         retval = dap_run(swjdp);
137         if (retval != ERROR_OK)
138                 return retval;
139
140         /* restore DCB_DCRDR - this needs to be in a seperate
141          * transaction otherwise the emulated DCC channel breaks */
142         if (retval == ERROR_OK)
143                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
144
145         return retval;
146 }
147
148 static int cortex_m3_write_debug_halt_mask(struct target *target,
149         uint32_t mask_on, uint32_t mask_off)
150 {
151         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
152         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
153
154         /* mask off status bits */
155         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
156         /* create new register mask */
157         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
158
159         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
160 }
161
162 static int cortex_m3_clear_halt(struct target *target)
163 {
164         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
165         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
166         int retval;
167
168         /* clear step if any */
169         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
170
171         /* Read Debug Fault Status Register */
172         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
173         if (retval != ERROR_OK)
174                 return retval;
175
176         /* Clear Debug Fault Status */
177         retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
178         if (retval != ERROR_OK)
179                 return retval;
180         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
181
182         return ERROR_OK;
183 }
184
185 static int cortex_m3_single_step_core(struct target *target)
186 {
187         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
188         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
189         uint32_t dhcsr_save;
190         int retval;
191
192         /* backup dhcsr reg */
193         dhcsr_save = cortex_m3->dcb_dhcsr;
194
195         /* Mask interrupts before clearing halt, if done already.  This avoids
196          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
197          * HALT can put the core into an unknown state.
198          */
199         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS)) {
200                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
201                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
202                 if (retval != ERROR_OK)
203                         return retval;
204         }
205         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
206                         DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
207         if (retval != ERROR_OK)
208                 return retval;
209         LOG_DEBUG(" ");
210
211         /* restore dhcsr reg */
212         cortex_m3->dcb_dhcsr = dhcsr_save;
213         cortex_m3_clear_halt(target);
214
215         return ERROR_OK;
216 }
217
218 static int cortex_m3_endreset_event(struct target *target)
219 {
220         int i;
221         int retval;
222         uint32_t dcb_demcr;
223         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
224         struct armv7m_common *armv7m = &cortex_m3->armv7m;
225         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
226         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
227         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
228
229         /* REVISIT The four debug monitor bits are currently ignored... */
230         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
231         if (retval != ERROR_OK)
232                 return retval;
233         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
234
235         /* this register is used for emulated dcc channel */
236         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
237         if (retval != ERROR_OK)
238                 return retval;
239
240         /* Enable debug requests */
241         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
242         if (retval != ERROR_OK)
243                 return retval;
244         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
245                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
246                 if (retval != ERROR_OK)
247                         return retval;
248         }
249
250         /* clear any interrupt masking */
251         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
252
253         /* Enable features controlled by ITM and DWT blocks, and catch only
254          * the vectors we were told to pay attention to.
255          *
256          * Target firmware is responsible for all fault handling policy
257          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
258          * or manual updates to the NVIC SHCSR and CCR registers.
259          */
260         retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
261         if (retval != ERROR_OK)
262                 return retval;
263
264         /* Paranoia: evidently some (early?) chips don't preserve all the
265          * debug state (including FBP, DWT, etc) across reset...
266          */
267
268         /* Enable FPB */
269         retval = target_write_u32(target, FP_CTRL, 3);
270         if (retval != ERROR_OK)
271                 return retval;
272
273         cortex_m3->fpb_enabled = 1;
274
275         /* Restore FPB registers */
276         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
277                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
278                 if (retval != ERROR_OK)
279                         return retval;
280         }
281
282         /* Restore DWT registers */
283         for (i = 0; i < cortex_m3->dwt_num_comp; i++) {
284                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
285                                 dwt_list[i].comp);
286                 if (retval != ERROR_OK)
287                         return retval;
288                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
289                                 dwt_list[i].mask);
290                 if (retval != ERROR_OK)
291                         return retval;
292                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
293                                 dwt_list[i].function);
294                 if (retval != ERROR_OK)
295                         return retval;
296         }
297         retval = dap_run(swjdp);
298         if (retval != ERROR_OK)
299                 return retval;
300
301         register_cache_invalidate(cortex_m3->armv7m.core_cache);
302
303         /* make sure we have latest dhcsr flags */
304         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
305
306         return retval;
307 }
308
309 static int cortex_m3_examine_debug_reason(struct target *target)
310 {
311         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
312
313         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
314          * only check the debug reason if we don't know it already */
315
316         if ((target->debug_reason != DBG_REASON_DBGRQ)
317                 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
318                 if (cortex_m3->nvic_dfsr & DFSR_BKPT) {
319                         target->debug_reason = DBG_REASON_BREAKPOINT;
320                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
321                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
322                 } else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
323                         target->debug_reason = DBG_REASON_WATCHPOINT;
324                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
325                         target->debug_reason = DBG_REASON_BREAKPOINT;
326                 else    /* EXTERNAL, HALTED */
327                         target->debug_reason = DBG_REASON_UNDEFINED;
328         }
329
330         return ERROR_OK;
331 }
332
333 static int cortex_m3_examine_exception_reason(struct target *target)
334 {
335         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
336         struct armv7m_common *armv7m = target_to_armv7m(target);
337         struct adiv5_dap *swjdp = &armv7m->dap;
338         int retval;
339
340         retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
341         if (retval != ERROR_OK)
342                 return retval;
343         switch (armv7m->exception_number) {
344                 case 2: /* NMI */
345                         break;
346                 case 3: /* Hard Fault */
347                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
348                         if (retval != ERROR_OK)
349                                 return retval;
350                         if (except_sr & 0x40000000) {
351                                 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
352                                 if (retval != ERROR_OK)
353                                         return retval;
354                         }
355                         break;
356                 case 4: /* Memory Management */
357                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
358                         if (retval != ERROR_OK)
359                                 return retval;
360                         retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
361                         if (retval != ERROR_OK)
362                                 return retval;
363                         break;
364                 case 5: /* Bus Fault */
365                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
366                         if (retval != ERROR_OK)
367                                 return retval;
368                         retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
369                         if (retval != ERROR_OK)
370                                 return retval;
371                         break;
372                 case 6: /* Usage Fault */
373                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
374                         if (retval != ERROR_OK)
375                                 return retval;
376                         break;
377                 case 11:        /* SVCall */
378                         break;
379                 case 12:        /* Debug Monitor */
380                         retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
381                         if (retval != ERROR_OK)
382                                 return retval;
383                         break;
384                 case 14:        /* PendSV */
385                         break;
386                 case 15:        /* SysTick */
387                         break;
388                 default:
389                         except_sr = 0;
390                         break;
391         }
392         retval = dap_run(swjdp);
393         if (retval == ERROR_OK)
394                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
395                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
396                         armv7m_exception_string(armv7m->exception_number),
397                         shcsr, except_sr, cfsr, except_ar);
398         return retval;
399 }
400
401 static int cortex_m3_debug_entry(struct target *target)
402 {
403         int i;
404         uint32_t xPSR;
405         int retval;
406         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
407         struct armv7m_common *armv7m = &cortex_m3->armv7m;
408         struct arm *arm = &armv7m->arm;
409         struct adiv5_dap *swjdp = &armv7m->dap;
410         struct reg *r;
411
412         LOG_DEBUG(" ");
413
414         cortex_m3_clear_halt(target);
415         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
416         if (retval != ERROR_OK)
417                 return retval;
418
419         retval = armv7m->examine_debug_reason(target);
420         if (retval != ERROR_OK)
421                 return retval;
422
423         /* Examine target state and mode
424          * First load register acessible through core debug port*/
425         int num_regs = armv7m->core_cache->num_regs;
426
427         for (i = 0; i < num_regs; i++) {
428                 if (!armv7m->core_cache->reg_list[i].valid)
429                         armv7m->read_core_reg(target, i);
430         }
431
432         r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
433         xPSR = buf_get_u32(r->value, 0, 32);
434
435 #ifdef ARMV7_GDB_HACKS
436         /* FIXME this breaks on scan chains with more than one Cortex-M3.
437          * Instead, each CM3 should have its own dummy value...
438          */
439         /* copy real xpsr reg for gdb, setting thumb bit */
440         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
441         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
442         armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
443         armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
444 #endif
445
446         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
447         if (xPSR & 0xf00) {
448                 r->dirty = r->valid;
449                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR & ~0xff);
450         }
451
452         /* Are we in an exception handler */
453         if (xPSR & 0x1FF) {
454                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
455                 armv7m->exception_number = (xPSR & 0x1FF);
456
457                 arm->core_mode = ARM_MODE_HANDLER;
458                 arm->map = armv7m_msp_reg_map;
459         } else {
460                 unsigned control = buf_get_u32(armv7m->core_cache
461                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
462
463                 /* is this thread privileged? */
464                 armv7m->core_mode = control & 1;
465                 arm->core_mode = armv7m->core_mode
466                         ? ARM_MODE_USER_THREAD
467                         : ARM_MODE_THREAD;
468
469                 /* which stack is it using? */
470                 if (control & 2)
471                         arm->map = armv7m_psp_reg_map;
472                 else
473                         arm->map = armv7m_msp_reg_map;
474
475                 armv7m->exception_number = 0;
476         }
477
478         if (armv7m->exception_number)
479                 cortex_m3_examine_exception_reason(target);
480
481         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
482                 armv7m_mode_strings[armv7m->core_mode],
483                 *(uint32_t *)(arm->pc->value),
484                 target_state_name(target));
485
486         if (armv7m->post_debug_entry) {
487                 retval = armv7m->post_debug_entry(target);
488                 if (retval != ERROR_OK)
489                         return retval;
490         }
491
492         return ERROR_OK;
493 }
494
495 static int cortex_m3_poll(struct target *target)
496 {
497         int detected_failure = ERROR_OK;
498         int retval = ERROR_OK;
499         enum target_state prev_target_state = target->state;
500         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
501         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
502
503         /* Read from Debug Halting Control and Status Register */
504         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
505         if (retval != ERROR_OK) {
506                 target->state = TARGET_UNKNOWN;
507                 return retval;
508         }
509
510         /* Recover from lockup.  See ARMv7-M architecture spec,
511          * section B1.5.15 "Unrecoverable exception cases".
512          */
513         if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
514                 LOG_ERROR("%s -- clearing lockup after double fault",
515                         target_name(target));
516                 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
517                 target->debug_reason = DBG_REASON_DBGRQ;
518
519                 /* We have to execute the rest (the "finally" equivalent, but
520                  * still throw this exception again).
521                  */
522                 detected_failure = ERROR_FAIL;
523
524                 /* refresh status bits */
525                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
526                 if (retval != ERROR_OK)
527                         return retval;
528         }
529
530         if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
531                 /* check if still in reset */
532                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
533                 if (retval != ERROR_OK)
534                         return retval;
535
536                 if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
537                         target->state = TARGET_RESET;
538                         return ERROR_OK;
539                 }
540         }
541
542         if (target->state == TARGET_RESET) {
543                 /* Cannot switch context while running so endreset is
544                  * called with target->state == TARGET_RESET
545                  */
546                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
547                         cortex_m3->dcb_dhcsr);
548                 cortex_m3_endreset_event(target);
549                 target->state = TARGET_RUNNING;
550                 prev_target_state = TARGET_RUNNING;
551         }
552
553         if (cortex_m3->dcb_dhcsr & S_HALT) {
554                 target->state = TARGET_HALTED;
555
556                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
557                         retval = cortex_m3_debug_entry(target);
558                         if (retval != ERROR_OK)
559                                 return retval;
560
561                         if (arm_semihosting(target, &retval) != 0)
562                                 return retval;
563
564                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
565                 }
566                 if (prev_target_state == TARGET_DEBUG_RUNNING) {
567                         LOG_DEBUG(" ");
568                         retval = cortex_m3_debug_entry(target);
569                         if (retval != ERROR_OK)
570                                 return retval;
571
572                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
573                 }
574         }
575
576         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
577          * How best to model low power modes?
578          */
579
580         if (target->state == TARGET_UNKNOWN) {
581                 /* check if processor is retiring instructions */
582                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST) {
583                         target->state = TARGET_RUNNING;
584                         retval = ERROR_OK;
585                 }
586         }
587
588         /* Did we detect a failure condition that we cleared? */
589         if (detected_failure != ERROR_OK)
590                 retval = detected_failure;
591         return retval;
592 }
593
594 static int cortex_m3_halt(struct target *target)
595 {
596         LOG_DEBUG("target->state: %s",
597                 target_state_name(target));
598
599         if (target->state == TARGET_HALTED) {
600                 LOG_DEBUG("target was already halted");
601                 return ERROR_OK;
602         }
603
604         if (target->state == TARGET_UNKNOWN)
605                 LOG_WARNING("target was in unknown state when halt was requested");
606
607         if (target->state == TARGET_RESET) {
608                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
609                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
610                         return ERROR_TARGET_FAILURE;
611                 } else {
612                         /* we came here in a reset_halt or reset_init sequence
613                          * debug entry was already prepared in cortex_m3_assert_reset()
614                          */
615                         target->debug_reason = DBG_REASON_DBGRQ;
616
617                         return ERROR_OK;
618                 }
619         }
620
621         /* Write to Debug Halting Control and Status Register */
622         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
623
624         target->debug_reason = DBG_REASON_DBGRQ;
625
626         return ERROR_OK;
627 }
628
629 static int cortex_m3_soft_reset_halt(struct target *target)
630 {
631         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
632         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
633         uint32_t dcb_dhcsr = 0;
634         int retval, timeout = 0;
635
636         /* Enter debug state on reset; restore DEMCR in endreset_event() */
637         retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
638                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
639         if (retval != ERROR_OK)
640                 return retval;
641
642         /* Request a core-only reset */
643         retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
644                         AIRCR_VECTKEY | AIRCR_VECTRESET);
645         if (retval != ERROR_OK)
646                 return retval;
647         target->state = TARGET_RESET;
648
649         /* registers are now invalid */
650         register_cache_invalidate(cortex_m3->armv7m.core_cache);
651
652         while (timeout < 100) {
653                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
654                 if (retval == ERROR_OK) {
655                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
656                                         &cortex_m3->nvic_dfsr);
657                         if (retval != ERROR_OK)
658                                 return retval;
659                         if ((dcb_dhcsr & S_HALT)
660                                 && (cortex_m3->nvic_dfsr & DFSR_VCATCH)) {
661                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
662                                         "DFSR 0x%08x",
663                                         (unsigned) dcb_dhcsr,
664                                         (unsigned) cortex_m3->nvic_dfsr);
665                                 cortex_m3_poll(target);
666                                 /* FIXME restore user's vector catch config */
667                                 return ERROR_OK;
668                         } else
669                                 LOG_DEBUG("waiting for system reset-halt, "
670                                         "DHCSR 0x%08x, %d ms",
671                                         (unsigned) dcb_dhcsr, timeout);
672                 }
673                 timeout++;
674                 alive_sleep(1);
675         }
676
677         return ERROR_OK;
678 }
679
680 static void cortex_m3_enable_breakpoints(struct target *target)
681 {
682         struct breakpoint *breakpoint = target->breakpoints;
683
684         /* set any pending breakpoints */
685         while (breakpoint) {
686                 if (!breakpoint->set)
687                         cortex_m3_set_breakpoint(target, breakpoint);
688                 breakpoint = breakpoint->next;
689         }
690 }
691
692 static int cortex_m3_resume(struct target *target, int current,
693         uint32_t address, int handle_breakpoints, int debug_execution)
694 {
695         struct armv7m_common *armv7m = target_to_armv7m(target);
696         struct breakpoint *breakpoint = NULL;
697         uint32_t resume_pc;
698         struct reg *r;
699
700         if (target->state != TARGET_HALTED) {
701                 LOG_WARNING("target not halted");
702                 return ERROR_TARGET_NOT_HALTED;
703         }
704
705         if (!debug_execution) {
706                 target_free_all_working_areas(target);
707                 cortex_m3_enable_breakpoints(target);
708                 cortex_m3_enable_watchpoints(target);
709         }
710
711         if (debug_execution) {
712                 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
713
714                 /* Disable interrupts */
715                 /* We disable interrupts in the PRIMASK register instead of
716                  * masking with C_MASKINTS.  This is probably the same issue
717                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
718                  * in parallel with disabled interrupts can cause local faults
719                  * to not be taken.
720                  *
721                  * REVISIT this clearly breaks non-debug execution, since the
722                  * PRIMASK register state isn't saved/restored...  workaround
723                  * by never resuming app code after debug execution.
724                  */
725                 buf_set_u32(r->value, 0, 1, 1);
726                 r->dirty = true;
727                 r->valid = true;
728
729                 /* Make sure we are in Thumb mode */
730                 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
731                 buf_set_u32(r->value, 24, 1, 1);
732                 r->dirty = true;
733                 r->valid = true;
734         }
735
736         /* current = 1: continue on current pc, otherwise continue at <address> */
737         r = armv7m->arm.pc;
738         if (!current) {
739                 buf_set_u32(r->value, 0, 32, address);
740                 r->dirty = true;
741                 r->valid = true;
742         }
743
744         /* if we halted last time due to a bkpt instruction
745          * then we have to manually step over it, otherwise
746          * the core will break again */
747
748         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
749                 && !debug_execution)
750                 armv7m_maybe_skip_bkpt_inst(target, NULL);
751
752         resume_pc = buf_get_u32(r->value, 0, 32);
753
754         armv7m_restore_context(target);
755
756         /* the front-end may request us not to handle breakpoints */
757         if (handle_breakpoints) {
758                 /* Single step past breakpoint at current address */
759                 breakpoint = breakpoint_find(target, resume_pc);
760                 if (breakpoint) {
761                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
762                                 breakpoint->address,
763                                 breakpoint->unique_id);
764                         cortex_m3_unset_breakpoint(target, breakpoint);
765                         cortex_m3_single_step_core(target);
766                         cortex_m3_set_breakpoint(target, breakpoint);
767                 }
768         }
769
770         /* Restart core */
771         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
772
773         target->debug_reason = DBG_REASON_NOTHALTED;
774
775         /* registers are now invalid */
776         register_cache_invalidate(armv7m->core_cache);
777
778         if (!debug_execution) {
779                 target->state = TARGET_RUNNING;
780                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
781                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
782         } else {
783                 target->state = TARGET_DEBUG_RUNNING;
784                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
785                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
786         }
787
788         return ERROR_OK;
789 }
790
791 /* int irqstepcount = 0; */
792 static int cortex_m3_step(struct target *target, int current,
793         uint32_t address, int handle_breakpoints)
794 {
795         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
796         struct armv7m_common *armv7m = &cortex_m3->armv7m;
797         struct adiv5_dap *swjdp = &armv7m->dap;
798         struct breakpoint *breakpoint = NULL;
799         struct reg *pc = armv7m->arm.pc;
800         bool bkpt_inst_found = false;
801         int retval;
802         bool isr_timed_out = false;
803
804         if (target->state != TARGET_HALTED) {
805                 LOG_WARNING("target not halted");
806                 return ERROR_TARGET_NOT_HALTED;
807         }
808
809         /* current = 1: continue on current pc, otherwise continue at <address> */
810         if (!current)
811                 buf_set_u32(pc->value, 0, 32, address);
812
813         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
814
815         /* the front-end may request us not to handle breakpoints */
816         if (handle_breakpoints) {
817                 breakpoint = breakpoint_find(target, pc_value);
818                 if (breakpoint)
819                         cortex_m3_unset_breakpoint(target, breakpoint);
820         }
821
822         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
823
824         target->debug_reason = DBG_REASON_SINGLESTEP;
825
826         armv7m_restore_context(target);
827
828         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
829
830         /* if no bkpt instruction is found at pc then we can perform
831          * a normal step, otherwise we have to manually step over the bkpt
832          * instruction - as such simulate a step */
833         if (bkpt_inst_found == false) {
834                 /* Automatic ISR masking mode off: Just step over the next instruction */
835                 if ((cortex_m3->isrmasking_mode != CORTEX_M3_ISRMASK_AUTO))
836                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
837                 else {
838                         /* Process interrupts during stepping in a way they don't interfere
839                          * debugging.
840                          *
841                          * Principle:
842                          *
843                          * Set a temporary break point at the current pc and let the core run
844                          * with interrupts enabled. Pending interrupts get served and we run
845                          * into the breakpoint again afterwards. Then we step over the next
846                          * instruction with interrupts disabled.
847                          *
848                          * If the pending interrupts don't complete within time, we leave the
849                          * core running. This may happen if the interrupts trigger faster
850                          * than the core can process them or the handler doesn't return.
851                          *
852                          * If no more breakpoints are available we simply do a step with
853                          * interrupts enabled.
854                          *
855                          */
856
857                         /* Set a temporary break point */
858                         retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
859                         bool tmp_bp_set = (retval == ERROR_OK);
860
861                         /* No more breakpoints left, just do a step */
862                         if (!tmp_bp_set)
863                                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
864                         else {
865                                 /* Start the core */
866                                 LOG_DEBUG("Starting core to serve pending interrupts");
867                                 int64_t t_start = timeval_ms();
868                                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
869
870                                 /* Wait for pending handlers to complete or timeout */
871                                 do {
872                                         retval = mem_ap_read_atomic_u32(swjdp,
873                                                         DCB_DHCSR,
874                                                         &cortex_m3->dcb_dhcsr);
875                                         if (retval != ERROR_OK) {
876                                                 target->state = TARGET_UNKNOWN;
877                                                 return retval;
878                                         }
879                                         isr_timed_out = ((timeval_ms() - t_start) > 500);
880                                 } while (!((cortex_m3->dcb_dhcsr & S_HALT) || isr_timed_out));
881
882                                 /* Remove the temporary breakpoint */
883                                 breakpoint_remove(target, pc_value);
884
885                                 if (isr_timed_out) {
886                                         LOG_DEBUG("Interrupt handlers didn't complete within time, "
887                                                 "leaving target running");
888                                 } else {
889                                         /* Step over next instruction with interrupts disabled */
890                                         cortex_m3_write_debug_halt_mask(target,
891                                                 C_HALT | C_MASKINTS,
892                                                 0);
893                                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
894                                         /* Re-enable interrupts */
895                                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
896                                 }
897                         }
898                 }
899         }
900
901         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
902         if (retval != ERROR_OK)
903                 return retval;
904
905         /* registers are now invalid */
906         register_cache_invalidate(cortex_m3->armv7m.core_cache);
907
908         if (breakpoint)
909                 cortex_m3_set_breakpoint(target, breakpoint);
910
911         if (isr_timed_out) {
912                 /* Leave the core running. The user has to stop execution manually. */
913                 target->debug_reason = DBG_REASON_NOTHALTED;
914                 target->state = TARGET_RUNNING;
915                 return ERROR_OK;
916         }
917
918         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
919                 " nvic_icsr = 0x%" PRIx32,
920                 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
921
922         retval = cortex_m3_debug_entry(target);
923         if (retval != ERROR_OK)
924                 return retval;
925         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
926
927         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
928                 " nvic_icsr = 0x%" PRIx32,
929                 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
930
931         return ERROR_OK;
932 }
933
934 static int cortex_m3_assert_reset(struct target *target)
935 {
936         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
937         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
938         enum cortex_m3_soft_reset_config reset_config = cortex_m3->soft_reset_config;
939
940         LOG_DEBUG("target->state: %s",
941                 target_state_name(target));
942
943         enum reset_types jtag_reset_config = jtag_get_reset_config();
944
945         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
946                 /* allow scripts to override the reset event */
947
948                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
949                 register_cache_invalidate(cortex_m3->armv7m.core_cache);
950                 target->state = TARGET_RESET;
951
952                 return ERROR_OK;
953         }
954
955         /* Enable debug requests */
956         int retval;
957         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
958         if (retval != ERROR_OK)
959                 return retval;
960         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
961                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
962                 if (retval != ERROR_OK)
963                         return retval;
964         }
965
966         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
967         if (retval != ERROR_OK)
968                 return retval;
969
970         if (!target->reset_halt) {
971                 /* Set/Clear C_MASKINTS in a separate operation */
972                 if (cortex_m3->dcb_dhcsr & C_MASKINTS) {
973                         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
974                                         DBGKEY | C_DEBUGEN | C_HALT);
975                         if (retval != ERROR_OK)
976                                 return retval;
977                 }
978
979                 /* clear any debug flags before resuming */
980                 cortex_m3_clear_halt(target);
981
982                 /* clear C_HALT in dhcsr reg */
983                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
984         } else {
985                 /* Halt in debug on reset; endreset_event() restores DEMCR.
986                  *
987                  * REVISIT catching BUSERR presumably helps to defend against
988                  * bad vector table entries.  Should this include MMERR or
989                  * other flags too?
990                  */
991                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
992                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
993                 if (retval != ERROR_OK)
994                         return retval;
995         }
996
997         if (jtag_reset_config & RESET_HAS_SRST) {
998                 /* default to asserting srst */
999                 adapter_assert_reset();
1000         } else {
1001                 /* Use a standard Cortex-M3 software reset mechanism.
1002                  * We default to using VECRESET as it is supported on all current cores.
1003                  * This has the disadvantage of not resetting the peripherals, so a
1004                  * reset-init event handler is needed to perform any peripheral resets.
1005                  */
1006                 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1007                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1008                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1009                 if (retval != ERROR_OK)
1010                         return retval;
1011
1012                 LOG_DEBUG("Using Cortex-M3 %s", (reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1013                         ? "SYSRESETREQ" : "VECTRESET");
1014
1015                 if (reset_config == CORTEX_M3_RESET_VECTRESET) {
1016                         LOG_WARNING("Only resetting the Cortex-M3 core, use a reset-init event "
1017                                 "handler to reset any peripherals");
1018                 }
1019
1020                 {
1021                         /* I do not know why this is necessary, but it
1022                          * fixes strange effects (step/resume cause NMI
1023                          * after reset) on LM3S6918 -- Michael Schwingen
1024                          */
1025                         uint32_t tmp;
1026                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1027                         if (retval != ERROR_OK)
1028                                 return retval;
1029                 }
1030         }
1031
1032         target->state = TARGET_RESET;
1033         jtag_add_sleep(50000);
1034
1035         register_cache_invalidate(cortex_m3->armv7m.core_cache);
1036
1037         if (target->reset_halt) {
1038                 retval = target_halt(target);
1039                 if (retval != ERROR_OK)
1040                         return retval;
1041         }
1042
1043         return ERROR_OK;
1044 }
1045
1046 static int cortex_m3_deassert_reset(struct target *target)
1047 {
1048         LOG_DEBUG("target->state: %s",
1049                 target_state_name(target));
1050
1051         /* deassert reset lines */
1052         adapter_deassert_reset();
1053
1054         return ERROR_OK;
1055 }
1056
1057 int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1058 {
1059         int retval;
1060         int fp_num = 0;
1061         uint32_t hilo;
1062         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1063         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1064
1065         if (breakpoint->set) {
1066                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
1067                 return ERROR_OK;
1068         }
1069
1070         if (cortex_m3->auto_bp_type)
1071                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1072
1073         if (breakpoint->type == BKPT_HARD) {
1074                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
1075                         fp_num++;
1076                 if (fp_num >= cortex_m3->fp_num_code) {
1077                         LOG_ERROR("Can not find free FPB Comparator!");
1078                         return ERROR_FAIL;
1079                 }
1080                 breakpoint->set = fp_num + 1;
1081                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1082                 comparator_list[fp_num].used = 1;
1083                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1084                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1085                         comparator_list[fp_num].fpcr_value);
1086                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1087                         fp_num,
1088                         comparator_list[fp_num].fpcr_value);
1089                 if (!cortex_m3->fpb_enabled) {
1090                         LOG_DEBUG("FPB wasn't enabled, do it now");
1091                         target_write_u32(target, FP_CTRL, 3);
1092                 }
1093         } else if (breakpoint->type == BKPT_SOFT) {
1094                 uint8_t code[4];
1095
1096                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1097                  * semihosting; don't use that.  Otherwise the BKPT
1098                  * parameter is arbitrary.
1099                  */
1100                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1101                 retval = target_read_memory(target,
1102                                 breakpoint->address & 0xFFFFFFFE,
1103                                 breakpoint->length, 1,
1104                                 breakpoint->orig_instr);
1105                 if (retval != ERROR_OK)
1106                         return retval;
1107                 retval = target_write_memory(target,
1108                                 breakpoint->address & 0xFFFFFFFE,
1109                                 breakpoint->length, 1,
1110                                 code);
1111                 if (retval != ERROR_OK)
1112                         return retval;
1113                 breakpoint->set = true;
1114         }
1115
1116         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1117                 breakpoint->unique_id,
1118                 (int)(breakpoint->type),
1119                 breakpoint->address,
1120                 breakpoint->length,
1121                 breakpoint->set);
1122
1123         return ERROR_OK;
1124 }
1125
1126 int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1127 {
1128         int retval;
1129         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1130         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1131
1132         if (!breakpoint->set) {
1133                 LOG_WARNING("breakpoint not set");
1134                 return ERROR_OK;
1135         }
1136
1137         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1138                 breakpoint->unique_id,
1139                 (int)(breakpoint->type),
1140                 breakpoint->address,
1141                 breakpoint->length,
1142                 breakpoint->set);
1143
1144         if (breakpoint->type == BKPT_HARD) {
1145                 int fp_num = breakpoint->set - 1;
1146                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code)) {
1147                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1148                         return ERROR_OK;
1149                 }
1150                 comparator_list[fp_num].used = 0;
1151                 comparator_list[fp_num].fpcr_value = 0;
1152                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1153                         comparator_list[fp_num].fpcr_value);
1154         } else {
1155                 /* restore original instruction (kept in target endianness) */
1156                 if (breakpoint->length == 4) {
1157                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1158                                         breakpoint->orig_instr);
1159                         if (retval != ERROR_OK)
1160                                 return retval;
1161                 } else {
1162                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1163                                         breakpoint->orig_instr);
1164                         if (retval != ERROR_OK)
1165                                 return retval;
1166                 }
1167         }
1168         breakpoint->set = false;
1169
1170         return ERROR_OK;
1171 }
1172
1173 int cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1174 {
1175         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1176
1177         if (cortex_m3->auto_bp_type) {
1178                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1179 #ifdef ARMV7_GDB_HACKS
1180                 if (breakpoint->length != 2) {
1181                         /* XXX Hack: Replace all breakpoints with length != 2 with
1182                          * a hardware breakpoint. */
1183                         breakpoint->type = BKPT_HARD;
1184                         breakpoint->length = 2;
1185                 }
1186 #endif
1187         }
1188
1189         if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1190                 if (breakpoint->type == BKPT_HARD) {
1191                         LOG_INFO("flash patch comparator requested outside code memory region");
1192                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1193                 }
1194
1195                 if (breakpoint->type == BKPT_SOFT) {
1196                         LOG_INFO("soft breakpoint requested in code (flash) memory region");
1197                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1198                 }
1199         }
1200
1201         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1)) {
1202                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1203                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1204         }
1205
1206         if ((breakpoint->length != 2)) {
1207                 LOG_INFO("only breakpoints of two bytes length supported");
1208                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1209         }
1210
1211         if (breakpoint->type == BKPT_HARD)
1212                 cortex_m3->fp_code_available--;
1213
1214         return cortex_m3_set_breakpoint(target, breakpoint);
1215 }
1216
1217 int cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1218 {
1219         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1220
1221         /* REVISIT why check? FBP can be updated with core running ... */
1222         if (target->state != TARGET_HALTED) {
1223                 LOG_WARNING("target not halted");
1224                 return ERROR_TARGET_NOT_HALTED;
1225         }
1226
1227         if (cortex_m3->auto_bp_type)
1228                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1229
1230         if (breakpoint->set)
1231                 cortex_m3_unset_breakpoint(target, breakpoint);
1232
1233         if (breakpoint->type == BKPT_HARD)
1234                 cortex_m3->fp_code_available++;
1235
1236         return ERROR_OK;
1237 }
1238
1239 int cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1240 {
1241         int dwt_num = 0;
1242         uint32_t mask, temp;
1243         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1244
1245         /* watchpoint params were validated earlier */
1246         mask = 0;
1247         temp = watchpoint->length;
1248         while (temp) {
1249                 temp >>= 1;
1250                 mask++;
1251         }
1252         mask--;
1253
1254         /* REVISIT Don't fully trust these "not used" records ... users
1255          * may set up breakpoints by hand, e.g. dual-address data value
1256          * watchpoint using comparator #1; comparator #0 matching cycle
1257          * count; send data trace info through ITM and TPIU; etc
1258          */
1259         struct cortex_m3_dwt_comparator *comparator;
1260
1261         for (comparator = cortex_m3->dwt_comparator_list;
1262                 comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1263                 comparator++, dwt_num++)
1264                 continue;
1265         if (dwt_num >= cortex_m3->dwt_num_comp) {
1266                 LOG_ERROR("Can not find free DWT Comparator");
1267                 return ERROR_FAIL;
1268         }
1269         comparator->used = 1;
1270         watchpoint->set = dwt_num + 1;
1271
1272         comparator->comp = watchpoint->address;
1273         target_write_u32(target, comparator->dwt_comparator_address + 0,
1274                 comparator->comp);
1275
1276         comparator->mask = mask;
1277         target_write_u32(target, comparator->dwt_comparator_address + 4,
1278                 comparator->mask);
1279
1280         switch (watchpoint->rw) {
1281                 case WPT_READ:
1282                         comparator->function = 5;
1283                         break;
1284                 case WPT_WRITE:
1285                         comparator->function = 6;
1286                         break;
1287                 case WPT_ACCESS:
1288                         comparator->function = 7;
1289                         break;
1290         }
1291         target_write_u32(target, comparator->dwt_comparator_address + 8,
1292                 comparator->function);
1293
1294         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1295                 watchpoint->unique_id, dwt_num,
1296                 (unsigned) comparator->comp,
1297                 (unsigned) comparator->mask,
1298                 (unsigned) comparator->function);
1299         return ERROR_OK;
1300 }
1301
1302 int cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1303 {
1304         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1305         struct cortex_m3_dwt_comparator *comparator;
1306         int dwt_num;
1307
1308         if (!watchpoint->set) {
1309                 LOG_WARNING("watchpoint (wpid: %d) not set",
1310                         watchpoint->unique_id);
1311                 return ERROR_OK;
1312         }
1313
1314         dwt_num = watchpoint->set - 1;
1315
1316         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1317                 watchpoint->unique_id, dwt_num,
1318                 (unsigned) watchpoint->address);
1319
1320         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp)) {
1321                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1322                 return ERROR_OK;
1323         }
1324
1325         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1326         comparator->used = 0;
1327         comparator->function = 0;
1328         target_write_u32(target, comparator->dwt_comparator_address + 8,
1329                 comparator->function);
1330
1331         watchpoint->set = false;
1332
1333         return ERROR_OK;
1334 }
1335
1336 int cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1337 {
1338         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1339
1340         if (cortex_m3->dwt_comp_available < 1) {
1341                 LOG_DEBUG("no comparators?");
1342                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1343         }
1344
1345         /* hardware doesn't support data value masking */
1346         if (watchpoint->mask != ~(uint32_t)0) {
1347                 LOG_DEBUG("watchpoint value masks not supported");
1348                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1349         }
1350
1351         /* hardware allows address masks of up to 32K */
1352         unsigned mask;
1353
1354         for (mask = 0; mask < 16; mask++) {
1355                 if ((1u << mask) == watchpoint->length)
1356                         break;
1357         }
1358         if (mask == 16) {
1359                 LOG_DEBUG("unsupported watchpoint length");
1360                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1361         }
1362         if (watchpoint->address & ((1 << mask) - 1)) {
1363                 LOG_DEBUG("watchpoint address is unaligned");
1364                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1365         }
1366
1367         /* Caller doesn't seem to be able to describe watching for data
1368          * values of zero; that flags "no value".
1369          *
1370          * REVISIT This DWT may well be able to watch for specific data
1371          * values.  Requires comparator #1 to set DATAVMATCH and match
1372          * the data, and another comparator (DATAVADDR0) matching addr.
1373          */
1374         if (watchpoint->value) {
1375                 LOG_DEBUG("data value watchpoint not YET supported");
1376                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1377         }
1378
1379         cortex_m3->dwt_comp_available--;
1380         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1381
1382         return ERROR_OK;
1383 }
1384
1385 int cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1386 {
1387         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1388
1389         /* REVISIT why check? DWT can be updated with core running ... */
1390         if (target->state != TARGET_HALTED) {
1391                 LOG_WARNING("target not halted");
1392                 return ERROR_TARGET_NOT_HALTED;
1393         }
1394
1395         if (watchpoint->set)
1396                 cortex_m3_unset_watchpoint(target, watchpoint);
1397
1398         cortex_m3->dwt_comp_available++;
1399         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1400
1401         return ERROR_OK;
1402 }
1403
1404 void cortex_m3_enable_watchpoints(struct target *target)
1405 {
1406         struct watchpoint *watchpoint = target->watchpoints;
1407
1408         /* set any pending watchpoints */
1409         while (watchpoint) {
1410                 if (!watchpoint->set)
1411                         cortex_m3_set_watchpoint(target, watchpoint);
1412                 watchpoint = watchpoint->next;
1413         }
1414 }
1415
1416 static int cortex_m3_load_core_reg_u32(struct target *target,
1417         enum armv7m_regtype type, uint32_t num, uint32_t *value)
1418 {
1419         int retval;
1420         struct armv7m_common *armv7m = target_to_armv7m(target);
1421         struct adiv5_dap *swjdp = &armv7m->dap;
1422
1423         /* NOTE:  we "know" here that the register identifiers used
1424          * in the v7m header match the Cortex-M3 Debug Core Register
1425          * Selector values for R0..R15, xPSR, MSP, and PSP.
1426          */
1427         switch (num) {
1428                 case 0 ... 18:
1429                         /* read a normal core register */
1430                         retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1431
1432                         if (retval != ERROR_OK) {
1433                                 LOG_ERROR("JTAG failure %i", retval);
1434                                 return ERROR_JTAG_DEVICE_ERROR;
1435                         }
1436                         LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "", (int)num, *value);
1437                         break;
1438
1439                 case ARMV7M_PRIMASK:
1440                 case ARMV7M_BASEPRI:
1441                 case ARMV7M_FAULTMASK:
1442                 case ARMV7M_CONTROL:
1443                         /* Cortex-M3 packages these four registers as bitfields
1444                          * in one Debug Core register.  So say r0 and r2 docs;
1445                          * it was removed from r1 docs, but still works.
1446                          */
1447                         cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1448
1449                         switch (num) {
1450                                 case ARMV7M_PRIMASK:
1451                                         *value = buf_get_u32((uint8_t *)value, 0, 1);
1452                                         break;
1453
1454                                 case ARMV7M_BASEPRI:
1455                                         *value = buf_get_u32((uint8_t *)value, 8, 8);
1456                                         break;
1457
1458                                 case ARMV7M_FAULTMASK:
1459                                         *value = buf_get_u32((uint8_t *)value, 16, 1);
1460                                         break;
1461
1462                                 case ARMV7M_CONTROL:
1463                                         *value = buf_get_u32((uint8_t *)value, 24, 2);
1464                                         break;
1465                         }
1466
1467                         LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1468                         break;
1469
1470                 default:
1471                         return ERROR_COMMAND_SYNTAX_ERROR;
1472         }
1473
1474         return ERROR_OK;
1475 }
1476
1477 static int cortex_m3_store_core_reg_u32(struct target *target,
1478         enum armv7m_regtype type, uint32_t num, uint32_t value)
1479 {
1480         int retval;
1481         uint32_t reg;
1482         struct armv7m_common *armv7m = target_to_armv7m(target);
1483         struct adiv5_dap *swjdp = &armv7m->dap;
1484
1485 #ifdef ARMV7_GDB_HACKS
1486         /* If the LR register is being modified, make sure it will put us
1487          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1488          * hack to deal with the fact that gdb will sometimes "forge"
1489          * return addresses, and doesn't set the LSB correctly (i.e., when
1490          * printing expressions containing function calls, it sets LR = 0.)
1491          * Valid exception return codes have bit 0 set too.
1492          */
1493         if (num == ARMV7M_R14)
1494                 value |= 0x01;
1495 #endif
1496
1497         /* NOTE:  we "know" here that the register identifiers used
1498          * in the v7m header match the Cortex-M3 Debug Core Register
1499          * Selector values for R0..R15, xPSR, MSP, and PSP.
1500          */
1501         switch (num) {
1502                 case 0 ... 18:
1503                         retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1504                         if (retval != ERROR_OK) {
1505                                 struct reg *r;
1506
1507                                 LOG_ERROR("JTAG failure");
1508                                 r = armv7m->core_cache->reg_list + num;
1509                                 r->dirty = r->valid;
1510                                 return ERROR_JTAG_DEVICE_ERROR;
1511                         }
1512                         LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1513                         break;
1514
1515                 case ARMV7M_PRIMASK:
1516                 case ARMV7M_BASEPRI:
1517                 case ARMV7M_FAULTMASK:
1518                 case ARMV7M_CONTROL:
1519                         /* Cortex-M3 packages these four registers as bitfields
1520                          * in one Debug Core register.  So say r0 and r2 docs;
1521                          * it was removed from r1 docs, but still works.
1522                          */
1523                         cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1524
1525                         switch (num) {
1526                                 case ARMV7M_PRIMASK:
1527                                         buf_set_u32((uint8_t *)&reg, 0, 1, value);
1528                                         break;
1529
1530                                 case ARMV7M_BASEPRI:
1531                                         buf_set_u32((uint8_t *)&reg, 8, 8, value);
1532                                         break;
1533
1534                                 case ARMV7M_FAULTMASK:
1535                                         buf_set_u32((uint8_t *)&reg, 16, 1, value);
1536                                         break;
1537
1538                                 case ARMV7M_CONTROL:
1539                                         buf_set_u32((uint8_t *)&reg, 24, 2, value);
1540                                         break;
1541                         }
1542
1543                         cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1544
1545                         LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1546                         break;
1547
1548                 default:
1549                         return ERROR_COMMAND_SYNTAX_ERROR;
1550         }
1551
1552         return ERROR_OK;
1553 }
1554
1555 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1556         uint32_t size, uint32_t count, uint8_t *buffer)
1557 {
1558         struct armv7m_common *armv7m = target_to_armv7m(target);
1559         struct adiv5_dap *swjdp = &armv7m->dap;
1560         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1561
1562         /* cortex_m3 handles unaligned memory access */
1563         if (count && buffer) {
1564                 switch (size) {
1565                         case 4:
1566                                 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1567                                 break;
1568                         case 2:
1569                                 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1570                                 break;
1571                         case 1:
1572                                 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1573                                 break;
1574                 }
1575         }
1576
1577         return retval;
1578 }
1579
1580 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1581         uint32_t size, uint32_t count, const uint8_t *buffer)
1582 {
1583         struct armv7m_common *armv7m = target_to_armv7m(target);
1584         struct adiv5_dap *swjdp = &armv7m->dap;
1585         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1586
1587         if (count && buffer) {
1588                 switch (size) {
1589                         case 4:
1590                                 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1591                                 break;
1592                         case 2:
1593                                 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1594                                 break;
1595                         case 1:
1596                                 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1597                                 break;
1598                 }
1599         }
1600
1601         return retval;
1602 }
1603
1604 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1605         uint32_t count, const uint8_t *buffer)
1606 {
1607         return cortex_m3_write_memory(target, address, 4, count, buffer);
1608 }
1609
1610 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1611         struct target *target)
1612 {
1613         armv7m_build_reg_cache(target);
1614         return ERROR_OK;
1615 }
1616
1617 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1618  * on r/w if the core is not running, and clear on resume or reset ... or
1619  * at least, in a post_restore_context() method.
1620  */
1621
1622 struct dwt_reg_state {
1623         struct target *target;
1624         uint32_t addr;
1625         uint32_t value;         /* scratch/cache */
1626 };
1627
1628 static int cortex_m3_dwt_get_reg(struct reg *reg)
1629 {
1630         struct dwt_reg_state *state = reg->arch_info;
1631
1632         return target_read_u32(state->target, state->addr, &state->value);
1633 }
1634
1635 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1636 {
1637         struct dwt_reg_state *state = reg->arch_info;
1638
1639         return target_write_u32(state->target, state->addr,
1640                         buf_get_u32(buf, 0, reg->size));
1641 }
1642
1643 struct dwt_reg {
1644         uint32_t addr;
1645         char *name;
1646         unsigned size;
1647 };
1648
1649 static struct dwt_reg dwt_base_regs[] = {
1650         { DWT_CTRL, "dwt_ctrl", 32, },
1651         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1652          * increments while the core is asleep.
1653          */
1654         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1655         /* plus some 8 bit counters, useful for profiling with TPIU */
1656 };
1657
1658 static struct dwt_reg dwt_comp[] = {
1659 #define DWT_COMPARATOR(i) \
1660                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1661                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1662                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1663         DWT_COMPARATOR(0),
1664         DWT_COMPARATOR(1),
1665         DWT_COMPARATOR(2),
1666         DWT_COMPARATOR(3),
1667 #undef DWT_COMPARATOR
1668 };
1669
1670 static const struct reg_arch_type dwt_reg_type = {
1671         .get = cortex_m3_dwt_get_reg,
1672         .set = cortex_m3_dwt_set_reg,
1673 };
1674
1675 static void cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1676 {
1677         struct dwt_reg_state *state;
1678
1679         state = calloc(1, sizeof *state);
1680         if (!state)
1681                 return;
1682         state->addr = d->addr;
1683         state->target = t;
1684
1685         r->name = d->name;
1686         r->size = d->size;
1687         r->value = &state->value;
1688         r->arch_info = state;
1689         r->type = &dwt_reg_type;
1690 }
1691
1692 void cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1693 {
1694         uint32_t dwtcr;
1695         struct reg_cache *cache;
1696         struct cortex_m3_dwt_comparator *comparator;
1697         int reg, i;
1698
1699         target_read_u32(target, DWT_CTRL, &dwtcr);
1700         if (!dwtcr) {
1701                 LOG_DEBUG("no DWT");
1702                 return;
1703         }
1704
1705         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1706         cm3->dwt_comp_available = cm3->dwt_num_comp;
1707         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1708                         sizeof(struct cortex_m3_dwt_comparator));
1709         if (!cm3->dwt_comparator_list) {
1710 fail0:
1711                 cm3->dwt_num_comp = 0;
1712                 LOG_ERROR("out of mem");
1713                 return;
1714         }
1715
1716         cache = calloc(1, sizeof *cache);
1717         if (!cache) {
1718 fail1:
1719                 free(cm3->dwt_comparator_list);
1720                 goto fail0;
1721         }
1722         cache->name = "cortex-m3 dwt registers";
1723         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1724         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1725         if (!cache->reg_list) {
1726                 free(cache);
1727                 goto fail1;
1728         }
1729
1730         for (reg = 0; reg < 2; reg++)
1731                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1732                         dwt_base_regs + reg);
1733
1734         comparator = cm3->dwt_comparator_list;
1735         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1736                 int j;
1737
1738                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1739                 for (j = 0; j < 3; j++, reg++)
1740                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1741                                 dwt_comp + 3 * i + j);
1742         }
1743
1744         *register_get_last_cache_p(&target->reg_cache) = cache;
1745         cm3->dwt_cache = cache;
1746
1747         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1748                 dwtcr, cm3->dwt_num_comp,
1749                 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1750
1751         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1752          * implement single-address data value watchpoints ... so we
1753          * won't need to check it later, when asked to set one up.
1754          */
1755 }
1756
1757 #define MVFR0 0xe000ef40
1758 #define MVFR1 0xe000ef44
1759
1760 #define MVFR0_DEFAULT_M4 0x10110021
1761 #define MVFR1_DEFAULT_M4 0x11000011
1762
1763 int cortex_m3_examine(struct target *target)
1764 {
1765         int retval;
1766         uint32_t cpuid, fpcr, mvfr0, mvfr1;
1767         int i;
1768         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1769         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
1770         struct armv7m_common *armv7m = target_to_armv7m(target);
1771
1772         retval = ahbap_debugport_init(swjdp);
1773         if (retval != ERROR_OK)
1774                 return retval;
1775
1776         if (!target_was_examined(target)) {
1777                 target_set_examined(target);
1778
1779                 /* Read from Device Identification Registers */
1780                 retval = target_read_u32(target, CPUID, &cpuid);
1781                 if (retval != ERROR_OK)
1782                         return retval;
1783
1784                 /* Get CPU Type */
1785                 i = (cpuid >> 4) & 0xf;
1786
1787                 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1788                                 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1789                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1790
1791                 /* test for floating point feature on cortex-m4 */
1792                 if (i == 4) {
1793                         target_read_u32(target, MVFR0, &mvfr0);
1794                         target_read_u32(target, MVFR1, &mvfr1);
1795
1796                         if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
1797                                 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
1798                                 armv7m->fp_feature = FPv4_SP;
1799                         }
1800                 }
1801
1802                 /* NOTE: FPB and DWT are both optional. */
1803
1804                 /* Setup FPB */
1805                 target_read_u32(target, FP_CTRL, &fpcr);
1806                 cortex_m3->auto_bp_type = 1;
1807                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);    /* bits
1808                                                                                          *[14:12]
1809                                                                                          *and [7:4]
1810                                                                                          **/
1811                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1812                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1813                 cortex_m3->fp_comparator_list = calloc(
1814                                 cortex_m3->fp_num_code + cortex_m3->fp_num_lit,
1815                                 sizeof(struct cortex_m3_fp_comparator));
1816                 cortex_m3->fpb_enabled = fpcr & 1;
1817                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
1818                         cortex_m3->fp_comparator_list[i].type =
1819                                 (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1820                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1821                 }
1822                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
1823                         fpcr,
1824                         cortex_m3->fp_num_code,
1825                         cortex_m3->fp_num_lit);
1826
1827                 /* Setup DWT */
1828                 cortex_m3_dwt_setup(cortex_m3, target);
1829
1830                 /* These hardware breakpoints only work for code in flash! */
1831                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1832                         target_name(target),
1833                         cortex_m3->fp_num_code,
1834                         cortex_m3->dwt_num_comp);
1835         }
1836
1837         return ERROR_OK;
1838 }
1839
1840 static int cortex_m3_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1841 {
1842         uint16_t dcrdr;
1843         int retval;
1844
1845         mem_ap_read_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1846         *ctrl = (uint8_t)dcrdr;
1847         *value = (uint8_t)(dcrdr >> 8);
1848
1849         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1850
1851         /* write ack back to software dcc register
1852          * signify we have read data */
1853         if (dcrdr & (1 << 0)) {
1854                 dcrdr = 0;
1855                 retval = mem_ap_write_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1856                 if (retval != ERROR_OK)
1857                         return retval;
1858         }
1859
1860         return ERROR_OK;
1861 }
1862
1863 static int cortex_m3_target_request_data(struct target *target,
1864         uint32_t size, uint8_t *buffer)
1865 {
1866         struct armv7m_common *armv7m = target_to_armv7m(target);
1867         struct adiv5_dap *swjdp = &armv7m->dap;
1868         uint8_t data;
1869         uint8_t ctrl;
1870         uint32_t i;
1871
1872         for (i = 0; i < (size * 4); i++) {
1873                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1874                 buffer[i] = data;
1875         }
1876
1877         return ERROR_OK;
1878 }
1879
1880 static int cortex_m3_handle_target_request(void *priv)
1881 {
1882         struct target *target = priv;
1883         if (!target_was_examined(target))
1884                 return ERROR_OK;
1885         struct armv7m_common *armv7m = target_to_armv7m(target);
1886         struct adiv5_dap *swjdp = &armv7m->dap;
1887
1888         if (!target->dbg_msg_enabled)
1889                 return ERROR_OK;
1890
1891         if (target->state == TARGET_RUNNING) {
1892                 uint8_t data;
1893                 uint8_t ctrl;
1894
1895                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1896
1897                 /* check if we have data */
1898                 if (ctrl & (1 << 0)) {
1899                         uint32_t request;
1900
1901                         /* we assume target is quick enough */
1902                         request = data;
1903                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1904                         request |= (data << 8);
1905                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1906                         request |= (data << 16);
1907                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1908                         request |= (data << 24);
1909                         target_request(target, request);
1910                 }
1911         }
1912
1913         return ERROR_OK;
1914 }
1915
1916 static int cortex_m3_init_arch_info(struct target *target,
1917         struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1918 {
1919         int retval;
1920         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1921
1922         armv7m_init_arch_info(target, armv7m);
1923
1924         /* prepare JTAG information for the new target */
1925         cortex_m3->jtag_info.tap = tap;
1926         cortex_m3->jtag_info.scann_size = 4;
1927
1928         /* default reset mode is to use srst if fitted
1929          * if not it will use CORTEX_M3_RESET_VECTRESET */
1930         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
1931
1932         armv7m->arm.dap = &armv7m->dap;
1933
1934         /* Leave (only) generic DAP stuff for debugport_init(); */
1935         armv7m->dap.jtag_info = &cortex_m3->jtag_info;
1936         armv7m->dap.memaccess_tck = 8;
1937         /* Cortex-M3 has 4096 bytes autoincrement range */
1938         armv7m->dap.tar_autoincr_block = (1 << 12);
1939
1940         /* register arch-specific functions */
1941         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1942
1943         armv7m->post_debug_entry = NULL;
1944
1945         armv7m->pre_restore_context = NULL;
1946
1947         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1948         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1949
1950         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1951
1952         retval = arm_jtag_setup_connection(&cortex_m3->jtag_info);
1953         if (retval != ERROR_OK)
1954                 return retval;
1955
1956         return ERROR_OK;
1957 }
1958
1959 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1960 {
1961         struct cortex_m3_common *cortex_m3 = calloc(1, sizeof(struct cortex_m3_common));
1962
1963         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
1964         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
1965
1966         return ERROR_OK;
1967 }
1968
1969 /*--------------------------------------------------------------------------*/
1970
1971 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
1972         struct cortex_m3_common *cm3)
1973 {
1974         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
1975                 command_print(cmd_ctx, "target is not a Cortex-M3");
1976                 return ERROR_TARGET_INVALID;
1977         }
1978         return ERROR_OK;
1979 }
1980
1981 /*
1982  * Only stuff below this line should need to verify that its target
1983  * is a Cortex-M3.  Everything else should have indirected through the
1984  * cortexm3_target structure, which is only used with CM3 targets.
1985  */
1986
1987 static const struct {
1988         char name[10];
1989         unsigned mask;
1990 } vec_ids[] = {
1991         { "hard_err",   VC_HARDERR, },
1992         { "int_err",    VC_INTERR, },
1993         { "bus_err",    VC_BUSERR, },
1994         { "state_err",  VC_STATERR, },
1995         { "chk_err",    VC_CHKERR, },
1996         { "nocp_err",   VC_NOCPERR, },
1997         { "mm_err",     VC_MMERR, },
1998         { "reset",      VC_CORERESET, },
1999 };
2000
2001 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
2002 {
2003         struct target *target = get_current_target(CMD_CTX);
2004         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2005         struct armv7m_common *armv7m = &cortex_m3->armv7m;
2006         struct adiv5_dap *swjdp = &armv7m->dap;
2007         uint32_t demcr = 0;
2008         int retval;
2009
2010         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2011         if (retval != ERROR_OK)
2012                 return retval;
2013
2014         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2015         if (retval != ERROR_OK)
2016                 return retval;
2017
2018         if (CMD_ARGC > 0) {
2019                 unsigned catch = 0;
2020
2021                 if (CMD_ARGC == 1) {
2022                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2023                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2024                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2025                                         | VC_MMERR | VC_CORERESET;
2026                                 goto write;
2027                         } else if (strcmp(CMD_ARGV[0], "none") == 0)
2028                                 goto write;
2029                 }
2030                 while (CMD_ARGC-- > 0) {
2031                         unsigned i;
2032                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2033                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2034                                         continue;
2035                                 catch |= vec_ids[i].mask;
2036                                 break;
2037                         }
2038                         if (i == ARRAY_SIZE(vec_ids)) {
2039                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2040                                 return ERROR_COMMAND_SYNTAX_ERROR;
2041                         }
2042                 }
2043 write:
2044                 /* For now, armv7m->demcr only stores vector catch flags. */
2045                 armv7m->demcr = catch;
2046
2047                 demcr &= ~0xffff;
2048                 demcr |= catch;
2049
2050                 /* write, but don't assume it stuck (why not??) */
2051                 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2052                 if (retval != ERROR_OK)
2053                         return retval;
2054                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2055                 if (retval != ERROR_OK)
2056                         return retval;
2057
2058                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2059                  * Otherwise the vector catch hardware could fire when there's
2060                  * no debugger hooked up, causing much confusion...
2061                  */
2062         }
2063
2064         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2065                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2066                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2067         }
2068
2069         return ERROR_OK;
2070 }
2071
2072 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2073 {
2074         struct target *target = get_current_target(CMD_CTX);
2075         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2076         int retval;
2077
2078         static const Jim_Nvp nvp_maskisr_modes[] = {
2079                 { .name = "auto", .value = CORTEX_M3_ISRMASK_AUTO },
2080                 { .name = "off", .value = CORTEX_M3_ISRMASK_OFF },
2081                 { .name = "on", .value = CORTEX_M3_ISRMASK_ON },
2082                 { .name = NULL, .value = -1 },
2083         };
2084         const Jim_Nvp *n;
2085
2086
2087         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2088         if (retval != ERROR_OK)
2089                 return retval;
2090
2091         if (target->state != TARGET_HALTED) {
2092                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2093                 return ERROR_OK;
2094         }
2095
2096         if (CMD_ARGC > 0) {
2097                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2098                 if (n->name == NULL)
2099                         return ERROR_COMMAND_SYNTAX_ERROR;
2100                 cortex_m3->isrmasking_mode = n->value;
2101
2102
2103                 if (cortex_m3->isrmasking_mode == CORTEX_M3_ISRMASK_ON)
2104                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2105                 else
2106                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2107         }
2108
2109         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m3->isrmasking_mode);
2110         command_print(CMD_CTX, "cortex_m3 interrupt mask %s", n->name);
2111
2112         return ERROR_OK;
2113 }
2114
2115 COMMAND_HANDLER(handle_cortex_m3_reset_config_command)
2116 {
2117         struct target *target = get_current_target(CMD_CTX);
2118         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2119         int retval;
2120         char *reset_config;
2121
2122         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2123         if (retval != ERROR_OK)
2124                 return retval;
2125
2126         if (CMD_ARGC > 0) {
2127                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2128                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_SYSRESETREQ;
2129                 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2130                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2131         }
2132
2133         switch (cortex_m3->soft_reset_config) {
2134                 case CORTEX_M3_RESET_SYSRESETREQ:
2135                         reset_config = "sysresetreq";
2136                         break;
2137
2138                 case CORTEX_M3_RESET_VECTRESET:
2139                         reset_config = "vectreset";
2140                         break;
2141
2142                 default:
2143                         reset_config = "unknown";
2144                         break;
2145         }
2146
2147         command_print(CMD_CTX, "cortex_m3 reset_config %s", reset_config);
2148
2149         return ERROR_OK;
2150 }
2151
2152 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2153         {
2154                 .name = "maskisr",
2155                 .handler = handle_cortex_m3_mask_interrupts_command,
2156                 .mode = COMMAND_EXEC,
2157                 .help = "mask cortex_m3 interrupts",
2158                 .usage = "['auto'|'on'|'off']",
2159         },
2160         {
2161                 .name = "vector_catch",
2162                 .handler = handle_cortex_m3_vector_catch_command,
2163                 .mode = COMMAND_EXEC,
2164                 .help = "configure hardware vectors to trigger debug entry",
2165                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2166         },
2167         {
2168                 .name = "reset_config",
2169                 .handler = handle_cortex_m3_reset_config_command,
2170                 .mode = COMMAND_ANY,
2171                 .help = "configure software reset handling",
2172                 .usage = "['srst'|'sysresetreq'|'vectreset']",
2173         },
2174         COMMAND_REGISTRATION_DONE
2175 };
2176 static const struct command_registration cortex_m3_command_handlers[] = {
2177         {
2178                 .chain = armv7m_command_handlers,
2179         },
2180         {
2181                 .name = "cortex_m3",
2182                 .mode = COMMAND_EXEC,
2183                 .help = "Cortex-M3 command group",
2184                 .usage = "",
2185                 .chain = cortex_m3_exec_command_handlers,
2186         },
2187         COMMAND_REGISTRATION_DONE
2188 };
2189
2190 struct target_type cortexm3_target = {
2191         .name = "cortex_m3",
2192
2193         .poll = cortex_m3_poll,
2194         .arch_state = armv7m_arch_state,
2195
2196         .target_request_data = cortex_m3_target_request_data,
2197
2198         .halt = cortex_m3_halt,
2199         .resume = cortex_m3_resume,
2200         .step = cortex_m3_step,
2201
2202         .assert_reset = cortex_m3_assert_reset,
2203         .deassert_reset = cortex_m3_deassert_reset,
2204         .soft_reset_halt = cortex_m3_soft_reset_halt,
2205
2206         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2207
2208         .read_memory = cortex_m3_read_memory,
2209         .write_memory = cortex_m3_write_memory,
2210         .bulk_write_memory = cortex_m3_bulk_write_memory,
2211         .checksum_memory = armv7m_checksum_memory,
2212         .blank_check_memory = armv7m_blank_check_memory,
2213
2214         .run_algorithm = armv7m_run_algorithm,
2215         .start_algorithm = armv7m_start_algorithm,
2216         .wait_algorithm = armv7m_wait_algorithm,
2217
2218         .add_breakpoint = cortex_m3_add_breakpoint,
2219         .remove_breakpoint = cortex_m3_remove_breakpoint,
2220         .add_watchpoint = cortex_m3_add_watchpoint,
2221         .remove_watchpoint = cortex_m3_remove_watchpoint,
2222
2223         .commands = cortex_m3_command_handlers,
2224         .target_create = cortex_m3_target_create,
2225         .init_target = cortex_m3_init_target,
2226         .examine = cortex_m3_examine,
2227 };