retire ERROR_INVALID_ARGUMENTS and replace with ERROR_COMMAND_SYNTAX_ERROR
[fw/openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40 #include "arm_opcodes.h"
41 #include "arm_semihosting.h"
42 #include <helper/time_support.h>
43
44 /* NOTE:  most of this should work fine for the Cortex-M1 and
45  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
46  * Some differences:  M0/M1 doesn't have FBP remapping or the
47  * DWT tracing/profiling support.  (So the cycle counter will
48  * not be usable; the other stuff isn't currently used here.)
49  *
50  * Although there are some workarounds for errata seen only in r0p0
51  * silicon, such old parts are hard to find and thus not much tested
52  * any longer.
53  */
54
55 /**
56  * Returns the type of a break point required by address location
57  */
58 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
59
60
61 /* forward declarations */
62 static int cortex_m3_store_core_reg_u32(struct target *target,
63                 enum armv7m_regtype type, uint32_t num, uint32_t value);
64
65 static int cortexm3_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
66                 uint32_t *value, int regnum)
67 {
68         int retval;
69         uint32_t dcrdr;
70
71         /* because the DCB_DCRDR is used for the emulated dcc channel
72          * we have to save/restore the DCB_DCRDR when used */
73
74         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
75         if (retval != ERROR_OK)
76                 return retval;
77
78         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
79         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
80         if (retval != ERROR_OK)
81                 return retval;
82         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
83         if (retval != ERROR_OK)
84                 return retval;
85
86         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
87         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
88         if (retval != ERROR_OK)
89                 return retval;
90         retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
91         if (retval != ERROR_OK)
92                 return retval;
93
94         retval = dap_run(swjdp);
95         if (retval != ERROR_OK)
96                 return retval;
97
98         /* restore DCB_DCRDR - this needs to be in a seperate
99          * transaction otherwise the emulated DCC channel breaks */
100         if (retval == ERROR_OK)
101                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
102
103         return retval;
104 }
105
106 static int cortexm3_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
107                 uint32_t value, int regnum)
108 {
109         int retval;
110         uint32_t dcrdr;
111
112         /* because the DCB_DCRDR is used for the emulated dcc channel
113          * we have to save/restore the DCB_DCRDR when used */
114
115         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
116         if (retval != ERROR_OK)
117                 return retval;
118
119         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
120         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
121         if (retval != ERROR_OK)
122                 return retval;
123         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
124         if (retval != ERROR_OK)
125                 return retval;
126
127         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
128         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
129         if (retval != ERROR_OK)
130                 return retval;
131         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
132         if (retval != ERROR_OK)
133                 return retval;
134
135         retval = dap_run(swjdp);
136         if (retval != ERROR_OK)
137                 return retval;
138
139         /* restore DCB_DCRDR - this needs to be in a seperate
140          * transaction otherwise the emulated DCC channel breaks */
141         if (retval == ERROR_OK)
142                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
143
144         return retval;
145 }
146
147 static int cortex_m3_write_debug_halt_mask(struct target *target,
148                 uint32_t mask_on, uint32_t mask_off)
149 {
150         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
151         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
152
153         /* mask off status bits */
154         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
155         /* create new register mask */
156         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
157
158         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
159 }
160
161 static int cortex_m3_clear_halt(struct target *target)
162 {
163         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
164         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
165         int retval;
166
167         /* clear step if any */
168         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
169
170         /* Read Debug Fault Status Register */
171         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
172         if (retval != ERROR_OK)
173                 return retval;
174
175         /* Clear Debug Fault Status */
176         retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
177         if (retval != ERROR_OK)
178                 return retval;
179         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
180
181         return ERROR_OK;
182 }
183
184 static int cortex_m3_single_step_core(struct target *target)
185 {
186         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
187         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
188         uint32_t dhcsr_save;
189         int retval;
190
191         /* backup dhcsr reg */
192         dhcsr_save = cortex_m3->dcb_dhcsr;
193
194         /* Mask interrupts before clearing halt, if done already.  This avoids
195          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
196          * HALT can put the core into an unknown state.
197          */
198         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
199         {
200                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
201                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
202                 if (retval != ERROR_OK)
203                         return retval;
204         }
205         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
206                                 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
207         if (retval != ERROR_OK)
208                 return retval;
209         LOG_DEBUG(" ");
210
211         /* restore dhcsr reg */
212         cortex_m3->dcb_dhcsr = dhcsr_save;
213         cortex_m3_clear_halt(target);
214
215         return ERROR_OK;
216 }
217
218 static int cortex_m3_endreset_event(struct target *target)
219 {
220         int i;
221         int retval;
222         uint32_t dcb_demcr;
223         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
224         struct armv7m_common *armv7m = &cortex_m3->armv7m;
225         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
226         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
227         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
228
229         /* REVISIT The four debug monitor bits are currently ignored... */
230         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
231         if (retval != ERROR_OK)
232                 return retval;
233         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
234
235         /* this register is used for emulated dcc channel */
236         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
237         if (retval != ERROR_OK)
238                 return retval;
239
240         /* Enable debug requests */
241         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
242         if (retval != ERROR_OK)
243                 return retval;
244         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
245         {
246                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
247                 if (retval != ERROR_OK)
248                         return retval;
249         }
250
251         /* clear any interrupt masking */
252         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
253
254         /* Enable features controlled by ITM and DWT blocks, and catch only
255          * the vectors we were told to pay attention to.
256          *
257          * Target firmware is responsible for all fault handling policy
258          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
259          * or manual updates to the NVIC SHCSR and CCR registers.
260          */
261         retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
262         if (retval != ERROR_OK)
263                 return retval;
264
265         /* Paranoia: evidently some (early?) chips don't preserve all the
266          * debug state (including FBP, DWT, etc) across reset...
267          */
268
269         /* Enable FPB */
270         retval = target_write_u32(target, FP_CTRL, 3);
271         if (retval != ERROR_OK)
272                 return retval;
273
274         cortex_m3->fpb_enabled = 1;
275
276         /* Restore FPB registers */
277         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
278         {
279                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
280                 if (retval != ERROR_OK)
281                         return retval;
282         }
283
284         /* Restore DWT registers */
285         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
286         {
287                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
288                                 dwt_list[i].comp);
289                 if (retval != ERROR_OK)
290                         return retval;
291                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
292                                 dwt_list[i].mask);
293                 if (retval != ERROR_OK)
294                         return retval;
295                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
296                                 dwt_list[i].function);
297                 if (retval != ERROR_OK)
298                         return retval;
299         }
300         retval = dap_run(swjdp);
301         if (retval != ERROR_OK)
302                 return retval;
303
304         register_cache_invalidate(cortex_m3->armv7m.core_cache);
305
306         /* make sure we have latest dhcsr flags */
307         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
308
309         return retval;
310 }
311
312 static int cortex_m3_examine_debug_reason(struct target *target)
313 {
314         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
315
316         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
317         /* only check the debug reason if we don't know it already */
318
319         if ((target->debug_reason != DBG_REASON_DBGRQ)
320                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
321         {
322                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
323                 {
324                         target->debug_reason = DBG_REASON_BREAKPOINT;
325                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
326                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
327                 }
328                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
329                         target->debug_reason = DBG_REASON_WATCHPOINT;
330                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
331                         target->debug_reason = DBG_REASON_BREAKPOINT;
332                 else /* EXTERNAL, HALTED */
333                         target->debug_reason = DBG_REASON_UNDEFINED;
334         }
335
336         return ERROR_OK;
337 }
338
339 static int cortex_m3_examine_exception_reason(struct target *target)
340 {
341         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
342         struct armv7m_common *armv7m = target_to_armv7m(target);
343         struct adiv5_dap *swjdp = &armv7m->dap;
344         int retval;
345
346         retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
347         if (retval != ERROR_OK)
348                 return retval;
349         switch (armv7m->exception_number)
350         {
351                 case 2: /* NMI */
352                         break;
353                 case 3: /* Hard Fault */
354                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
355                         if (retval != ERROR_OK)
356                                 return retval;
357                         if (except_sr & 0x40000000)
358                         {
359                                 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
360                                 if (retval != ERROR_OK)
361                                         return retval;
362                         }
363                         break;
364                 case 4: /* Memory Management */
365                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
366                         if (retval != ERROR_OK)
367                                 return retval;
368                         retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
369                         if (retval != ERROR_OK)
370                                 return retval;
371                         break;
372                 case 5: /* Bus Fault */
373                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
374                         if (retval != ERROR_OK)
375                                 return retval;
376                         retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
377                         if (retval != ERROR_OK)
378                                 return retval;
379                         break;
380                 case 6: /* Usage Fault */
381                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
382                         if (retval != ERROR_OK)
383                                 return retval;
384                         break;
385                 case 11:        /* SVCall */
386                         break;
387                 case 12:        /* Debug Monitor */
388                         retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
389                         if (retval != ERROR_OK)
390                                 return retval;
391                         break;
392                 case 14:        /* PendSV */
393                         break;
394                 case 15:        /* SysTick */
395                         break;
396                 default:
397                         except_sr = 0;
398                         break;
399         }
400         retval = dap_run(swjdp);
401         if (retval == ERROR_OK)
402                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
403                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
404                         armv7m_exception_string(armv7m->exception_number),
405                         shcsr, except_sr, cfsr, except_ar);
406         return retval;
407 }
408
409 /* PSP is used in some thread modes */
410 static const int armv7m_psp_reg_map[17] = {
411         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
412         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
413         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
414         ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
415         ARMV7M_xPSR,
416 };
417
418 /* MSP is used in handler and some thread modes */
419 static const int armv7m_msp_reg_map[17] = {
420         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
421         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
422         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
423         ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
424         ARMV7M_xPSR,
425 };
426
427 static int cortex_m3_debug_entry(struct target *target)
428 {
429         int i;
430         uint32_t xPSR;
431         int retval;
432         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
433         struct armv7m_common *armv7m = &cortex_m3->armv7m;
434         struct arm *arm = &armv7m->arm;
435         struct adiv5_dap *swjdp = &armv7m->dap;
436         struct reg *r;
437
438         LOG_DEBUG(" ");
439
440         cortex_m3_clear_halt(target);
441         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
442         if (retval != ERROR_OK)
443                 return retval;
444
445         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
446                 return retval;
447
448         /* Examine target state and mode */
449         /* First load register acessible through core debug port*/
450         int num_regs = armv7m->core_cache->num_regs;
451
452         for (i = 0; i < num_regs; i++)
453         {
454                 if (!armv7m->core_cache->reg_list[i].valid)
455                         armv7m->read_core_reg(target, i);
456         }
457
458         r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
459         xPSR = buf_get_u32(r->value, 0, 32);
460
461 #ifdef ARMV7_GDB_HACKS
462         /* FIXME this breaks on scan chains with more than one Cortex-M3.
463          * Instead, each CM3 should have its own dummy value...
464          */
465         /* copy real xpsr reg for gdb, setting thumb bit */
466         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
467         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
468         armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
469         armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
470 #endif
471
472         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
473         if (xPSR & 0xf00)
474         {
475                 r->dirty = r->valid;
476                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
477         }
478
479         /* Are we in an exception handler */
480         if (xPSR & 0x1FF)
481         {
482                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
483                 armv7m->exception_number = (xPSR & 0x1FF);
484
485                 arm->core_mode = ARM_MODE_HANDLER;
486                 arm->map = armv7m_msp_reg_map;
487         }
488         else
489         {
490                 unsigned control = buf_get_u32(armv7m->core_cache
491                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
492
493                 /* is this thread privileged? */
494                 armv7m->core_mode = control & 1;
495                 arm->core_mode = armv7m->core_mode
496                                 ? ARM_MODE_USER_THREAD
497                                 : ARM_MODE_THREAD;
498
499                 /* which stack is it using? */
500                 if (control & 2)
501                         arm->map = armv7m_psp_reg_map;
502                 else
503                         arm->map = armv7m_msp_reg_map;
504
505                 armv7m->exception_number = 0;
506         }
507
508         if (armv7m->exception_number)
509         {
510                 cortex_m3_examine_exception_reason(target);
511         }
512
513         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
514                 armv7m_mode_strings[armv7m->core_mode],
515                 *(uint32_t*)(arm->pc->value),
516                 target_state_name(target));
517
518         if (armv7m->post_debug_entry)
519         {
520                 retval = armv7m->post_debug_entry(target);
521                 if (retval != ERROR_OK)
522                         return retval;
523         }
524
525         return ERROR_OK;
526 }
527
528 static int cortex_m3_poll(struct target *target)
529 {
530         int detected_failure = ERROR_OK;
531         int retval = ERROR_OK;
532         enum target_state prev_target_state = target->state;
533         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
534         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
535
536         /* Read from Debug Halting Control and Status Register */
537         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
538         if (retval != ERROR_OK)
539         {
540                 target->state = TARGET_UNKNOWN;
541                 return retval;
542         }
543
544         /* Recover from lockup.  See ARMv7-M architecture spec,
545          * section B1.5.15 "Unrecoverable exception cases".
546          */
547         if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
548                 LOG_ERROR("%s -- clearing lockup after double fault",
549                                 target_name(target));
550                 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
551                 target->debug_reason = DBG_REASON_DBGRQ;
552
553                 /* We have to execute the rest (the "finally" equivalent, but
554                  * still throw this exception again).
555                  */
556                 detected_failure = ERROR_FAIL;
557
558                 /* refresh status bits */
559                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
560                 if (retval != ERROR_OK)
561                         return retval;
562         }
563
564         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
565         {
566                 /* check if still in reset */
567                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
568                 if (retval != ERROR_OK)
569                         return retval;
570
571                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
572                 {
573                         target->state = TARGET_RESET;
574                         return ERROR_OK;
575                 }
576         }
577
578         if (target->state == TARGET_RESET)
579         {
580                 /* Cannot switch context while running so endreset is
581                  * called with target->state == TARGET_RESET
582                  */
583                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
584                                 cortex_m3->dcb_dhcsr);
585                 cortex_m3_endreset_event(target);
586                 target->state = TARGET_RUNNING;
587                 prev_target_state = TARGET_RUNNING;
588         }
589
590         if (cortex_m3->dcb_dhcsr & S_HALT)
591         {
592                 target->state = TARGET_HALTED;
593
594                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
595                 {
596                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
597                                 return retval;
598
599                         if (arm_semihosting(target, &retval) != 0)
600                                 return retval;
601
602                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
603                 }
604                 if (prev_target_state == TARGET_DEBUG_RUNNING)
605                 {
606                         LOG_DEBUG(" ");
607                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
608                                 return retval;
609
610                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
611                 }
612         }
613
614         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
615          * How best to model low power modes?
616          */
617
618         if (target->state == TARGET_UNKNOWN)
619         {
620                 /* check if processor is retiring instructions */
621                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
622                 {
623                         target->state = TARGET_RUNNING;
624                         retval = ERROR_OK;
625                 }
626         }
627
628         /* Did we detect a failure condition that we cleared? */
629         if (detected_failure != ERROR_OK)
630                 retval = detected_failure;
631         return retval;
632 }
633
634 static int cortex_m3_halt(struct target *target)
635 {
636         LOG_DEBUG("target->state: %s",
637                 target_state_name(target));
638
639         if (target->state == TARGET_HALTED)
640         {
641                 LOG_DEBUG("target was already halted");
642                 return ERROR_OK;
643         }
644
645         if (target->state == TARGET_UNKNOWN)
646         {
647                 LOG_WARNING("target was in unknown state when halt was requested");
648         }
649
650         if (target->state == TARGET_RESET)
651         {
652                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
653                 {
654                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
655                         return ERROR_TARGET_FAILURE;
656                 }
657                 else
658                 {
659                         /* we came here in a reset_halt or reset_init sequence
660                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
661                          */
662                         target->debug_reason = DBG_REASON_DBGRQ;
663
664                         return ERROR_OK;
665                 }
666         }
667
668         /* Write to Debug Halting Control and Status Register */
669         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
670
671         target->debug_reason = DBG_REASON_DBGRQ;
672
673         return ERROR_OK;
674 }
675
676 static int cortex_m3_soft_reset_halt(struct target *target)
677 {
678         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
679         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
680         uint32_t dcb_dhcsr = 0;
681         int retval, timeout = 0;
682
683         /* Enter debug state on reset; restore DEMCR in endreset_event() */
684         retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
685                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
686         if (retval != ERROR_OK)
687                 return retval;
688
689         /* Request a core-only reset */
690         retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
691                         AIRCR_VECTKEY | AIRCR_VECTRESET);
692         if (retval != ERROR_OK)
693                 return retval;
694         target->state = TARGET_RESET;
695
696         /* registers are now invalid */
697         register_cache_invalidate(cortex_m3->armv7m.core_cache);
698
699         while (timeout < 100)
700         {
701                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
702                 if (retval == ERROR_OK)
703                 {
704                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
705                                         &cortex_m3->nvic_dfsr);
706                         if (retval != ERROR_OK)
707                                 return retval;
708                         if ((dcb_dhcsr & S_HALT)
709                                         && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
710                         {
711                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
712                                         "DFSR 0x%08x",
713                                         (unsigned) dcb_dhcsr,
714                                         (unsigned) cortex_m3->nvic_dfsr);
715                                 cortex_m3_poll(target);
716                                 /* FIXME restore user's vector catch config */
717                                 return ERROR_OK;
718                         }
719                         else
720                                 LOG_DEBUG("waiting for system reset-halt, "
721                                         "DHCSR 0x%08x, %d ms",
722                                         (unsigned) dcb_dhcsr, timeout);
723                 }
724                 timeout++;
725                 alive_sleep(1);
726         }
727
728         return ERROR_OK;
729 }
730
731 static void cortex_m3_enable_breakpoints(struct target *target)
732 {
733         struct breakpoint *breakpoint = target->breakpoints;
734
735         /* set any pending breakpoints */
736         while (breakpoint)
737         {
738                 if (!breakpoint->set)
739                         cortex_m3_set_breakpoint(target, breakpoint);
740                 breakpoint = breakpoint->next;
741         }
742 }
743
744 static int cortex_m3_resume(struct target *target, int current,
745                 uint32_t address, int handle_breakpoints, int debug_execution)
746 {
747         struct armv7m_common *armv7m = target_to_armv7m(target);
748         struct breakpoint *breakpoint = NULL;
749         uint32_t resume_pc;
750         struct reg *r;
751
752         if (target->state != TARGET_HALTED)
753         {
754                 LOG_WARNING("target not halted");
755                 return ERROR_TARGET_NOT_HALTED;
756         }
757
758         if (!debug_execution)
759         {
760                 target_free_all_working_areas(target);
761                 cortex_m3_enable_breakpoints(target);
762                 cortex_m3_enable_watchpoints(target);
763         }
764
765         if (debug_execution)
766         {
767                 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
768
769                 /* Disable interrupts */
770                 /* We disable interrupts in the PRIMASK register instead of
771                  * masking with C_MASKINTS.  This is probably the same issue
772                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
773                  * in parallel with disabled interrupts can cause local faults
774                  * to not be taken.
775                  *
776                  * REVISIT this clearly breaks non-debug execution, since the
777                  * PRIMASK register state isn't saved/restored...  workaround
778                  * by never resuming app code after debug execution.
779                  */
780                 buf_set_u32(r->value, 0, 1, 1);
781                 r->dirty = true;
782                 r->valid = true;
783
784                 /* Make sure we are in Thumb mode */
785                 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
786                 buf_set_u32(r->value, 24, 1, 1);
787                 r->dirty = true;
788                 r->valid = true;
789         }
790
791         /* current = 1: continue on current pc, otherwise continue at <address> */
792         r = armv7m->arm.pc;
793         if (!current)
794         {
795                 buf_set_u32(r->value, 0, 32, address);
796                 r->dirty = true;
797                 r->valid = true;
798         }
799
800         /* if we halted last time due to a bkpt instruction
801          * then we have to manually step over it, otherwise
802          * the core will break again */
803
804         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
805                         && !debug_execution)
806         {
807                 armv7m_maybe_skip_bkpt_inst(target, NULL);
808         }
809
810         resume_pc = buf_get_u32(r->value, 0, 32);
811
812         armv7m_restore_context(target);
813
814         /* the front-end may request us not to handle breakpoints */
815         if (handle_breakpoints)
816         {
817                 /* Single step past breakpoint at current address */
818                 if ((breakpoint = breakpoint_find(target, resume_pc)))
819                 {
820                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
821                                           breakpoint->address,
822                                           breakpoint->unique_id);
823                         cortex_m3_unset_breakpoint(target, breakpoint);
824                         cortex_m3_single_step_core(target);
825                         cortex_m3_set_breakpoint(target, breakpoint);
826                 }
827         }
828
829         /* Restart core */
830         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
831
832         target->debug_reason = DBG_REASON_NOTHALTED;
833
834         /* registers are now invalid */
835         register_cache_invalidate(armv7m->core_cache);
836
837         if (!debug_execution)
838         {
839                 target->state = TARGET_RUNNING;
840                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
841                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
842         }
843         else
844         {
845                 target->state = TARGET_DEBUG_RUNNING;
846                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
847                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
848         }
849
850         return ERROR_OK;
851 }
852
853 /* int irqstepcount = 0; */
854 static int cortex_m3_step(struct target *target, int current,
855                 uint32_t address, int handle_breakpoints)
856 {
857         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
858         struct armv7m_common *armv7m = &cortex_m3->armv7m;
859         struct adiv5_dap *swjdp = &armv7m->dap;
860         struct breakpoint *breakpoint = NULL;
861         struct reg *pc = armv7m->arm.pc;
862         bool bkpt_inst_found = false;
863         int retval;
864         bool isr_timed_out = false;
865
866         if (target->state != TARGET_HALTED)
867         {
868                 LOG_WARNING("target not halted");
869                 return ERROR_TARGET_NOT_HALTED;
870         }
871
872         /* current = 1: continue on current pc, otherwise continue at <address> */
873         if (!current)
874                 buf_set_u32(pc->value, 0, 32, address);
875
876         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
877
878         /* the front-end may request us not to handle breakpoints */
879         if (handle_breakpoints) {
880                 breakpoint = breakpoint_find(target, pc_value);
881                 if (breakpoint)
882                         cortex_m3_unset_breakpoint(target, breakpoint);
883         }
884
885         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
886
887         target->debug_reason = DBG_REASON_SINGLESTEP;
888
889         armv7m_restore_context(target);
890
891         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
892
893         /* if no bkpt instruction is found at pc then we can perform
894          * a normal step, otherwise we have to manually step over the bkpt
895          * instruction - as such simulate a step */
896         if (bkpt_inst_found == false)
897         {
898                 /* Automatic ISR masking mode off: Just step over the next instruction */
899                 if ((cortex_m3->isrmasking_mode != CORTEX_M3_ISRMASK_AUTO))
900                 {
901                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
902                 }
903                 else
904                 {
905                         /* Process interrupts during stepping in a way they don't interfere
906                          * debugging.
907                          *
908                          * Principle:
909                          *
910                          * Set a temporary break point at the current pc and let the core run
911                          * with interrupts enabled. Pending interrupts get served and we run
912                          * into the breakpoint again afterwards. Then we step over the next
913                          * instruction with interrupts disabled.
914                          *
915                          * If the pending interrupts don't complete within time, we leave the
916                          * core running. This may happen if the interrupts trigger faster
917                          * than the core can process them or the handler doesn't return.
918                          *
919                          * If no more breakpoints are available we simply do a step with
920                          * interrupts enabled.
921                          *
922                          */
923
924                         /* Set a temporary break point */
925                         retval = breakpoint_add(target, pc_value , 2, BKPT_TYPE_BY_ADDR(pc_value));
926                         bool tmp_bp_set = (retval == ERROR_OK);
927
928                         /* No more breakpoints left, just do a step */
929                         if (!tmp_bp_set)
930                         {
931                                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
932                         }
933                         else
934                         {
935                                 /* Start the core */
936                                 LOG_DEBUG("Starting core to serve pending interrupts");
937                                 int64_t t_start = timeval_ms();
938                                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
939
940                                 /* Wait for pending handlers to complete or timeout */
941                                 do {
942                                         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
943                                         if (retval != ERROR_OK)
944                                         {
945                                                 target->state = TARGET_UNKNOWN;
946                                                 return retval;
947                                         }
948                                         isr_timed_out = ((timeval_ms() - t_start) > 500);
949                                 } while (!((cortex_m3->dcb_dhcsr & S_HALT) || isr_timed_out));
950
951                                 /* Remove the temporary breakpoint */
952                                 breakpoint_remove(target, pc_value);
953
954                                 if (isr_timed_out)
955                                 {
956                                         LOG_DEBUG("Interrupt handlers didn't complete within time, "
957                                                         "leaving target running");
958                                 }
959                                 else
960                                 {
961                                         /* Step over next instruction with interrupts disabled */
962                                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
963                                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
964                                         /* Re-enable interrupts */
965                                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
966                                 }
967                         }
968                 }
969         }
970
971         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
972         if (retval != ERROR_OK)
973                 return retval;
974
975         /* registers are now invalid */
976         register_cache_invalidate(cortex_m3->armv7m.core_cache);
977
978         if (breakpoint)
979                 cortex_m3_set_breakpoint(target, breakpoint);
980
981         if (isr_timed_out) {
982                 /* Leave the core running. The user has to stop execution manually. */
983                 target->debug_reason = DBG_REASON_NOTHALTED;
984                 target->state = TARGET_RUNNING;
985                 return ERROR_OK;
986         }
987
988         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
989                         " nvic_icsr = 0x%" PRIx32,
990                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
991
992         retval = cortex_m3_debug_entry(target);
993         if (retval != ERROR_OK)
994                 return retval;
995         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
996
997         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
998                         " nvic_icsr = 0x%" PRIx32,
999                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
1000
1001         return ERROR_OK;
1002 }
1003
1004 static int cortex_m3_assert_reset(struct target *target)
1005 {
1006         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1007         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
1008         enum cortex_m3_soft_reset_config reset_config = cortex_m3->soft_reset_config;
1009
1010         LOG_DEBUG("target->state: %s",
1011                 target_state_name(target));
1012
1013         enum reset_types jtag_reset_config = jtag_get_reset_config();
1014
1015         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1016                 /* allow scripts to override the reset event */
1017
1018                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1019                 register_cache_invalidate(cortex_m3->armv7m.core_cache);
1020                 target->state = TARGET_RESET;
1021
1022                 return ERROR_OK;
1023         }
1024
1025         /* Enable debug requests */
1026         int retval;
1027         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
1028         if (retval != ERROR_OK)
1029                 return retval;
1030         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
1031         {
1032                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
1033                 if (retval != ERROR_OK)
1034                         return retval;
1035         }
1036
1037         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
1038         if (retval != ERROR_OK)
1039                 return retval;
1040
1041         if (!target->reset_halt)
1042         {
1043                 /* Set/Clear C_MASKINTS in a separate operation */
1044                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
1045                 {
1046                         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
1047                                         DBGKEY | C_DEBUGEN | C_HALT);
1048                         if (retval != ERROR_OK)
1049                                 return retval;
1050                 }
1051
1052                 /* clear any debug flags before resuming */
1053                 cortex_m3_clear_halt(target);
1054
1055                 /* clear C_HALT in dhcsr reg */
1056                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
1057         }
1058         else
1059         {
1060                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1061                  *
1062                  * REVISIT catching BUSERR presumably helps to defend against
1063                  * bad vector table entries.  Should this include MMERR or
1064                  * other flags too?
1065                  */
1066                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
1067                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1068                 if (retval != ERROR_OK)
1069                         return retval;
1070         }
1071
1072         if (jtag_reset_config & RESET_HAS_SRST)
1073         {
1074                 /* default to asserting srst */
1075                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1076                 {
1077                         jtag_add_reset(1, 1);
1078                 }
1079                 else
1080                 {
1081                         jtag_add_reset(0, 1);
1082                 }
1083         }
1084         else
1085         {
1086                 /* Use a standard Cortex-M3 software reset mechanism.
1087                  * We default to using VECRESET as it is supported on all current cores.
1088                  * This has the disadvantage of not resetting the peripherals, so a
1089                  * reset-init event handler is needed to perform any peripheral resets.
1090                  */
1091                 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1092                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1093                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1094                 if (retval != ERROR_OK)
1095                         return retval;
1096
1097                 LOG_DEBUG("Using Cortex-M3 %s", (reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1098                                 ? "SYSRESETREQ" : "VECTRESET");
1099
1100                 if (reset_config == CORTEX_M3_RESET_VECTRESET) {
1101                         LOG_WARNING("Only resetting the Cortex-M3 core, use a reset-init event "
1102                                         "handler to reset any peripherals");
1103                 }
1104
1105                 {
1106                         /* I do not know why this is necessary, but it
1107                          * fixes strange effects (step/resume cause NMI
1108                          * after reset) on LM3S6918 -- Michael Schwingen
1109                          */
1110                         uint32_t tmp;
1111                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1112                         if (retval != ERROR_OK)
1113                                 return retval;
1114                 }
1115         }
1116
1117         target->state = TARGET_RESET;
1118         jtag_add_sleep(50000);
1119
1120         register_cache_invalidate(cortex_m3->armv7m.core_cache);
1121
1122         if (target->reset_halt)
1123         {
1124                 if ((retval = target_halt(target)) != ERROR_OK)
1125                         return retval;
1126         }
1127
1128         return ERROR_OK;
1129 }
1130
1131 static int cortex_m3_deassert_reset(struct target *target)
1132 {
1133         LOG_DEBUG("target->state: %s",
1134                 target_state_name(target));
1135
1136         /* deassert reset lines */
1137         jtag_add_reset(0, 0);
1138
1139         return ERROR_OK;
1140 }
1141
1142 int
1143 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1144 {
1145         int retval;
1146         int fp_num = 0;
1147         uint32_t hilo;
1148         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1149         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1150
1151         if (breakpoint->set)
1152         {
1153                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
1154                 return ERROR_OK;
1155         }
1156
1157         if (cortex_m3->auto_bp_type)
1158         {
1159                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1160         }
1161
1162         if (breakpoint->type == BKPT_HARD)
1163         {
1164                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
1165                         fp_num++;
1166                 if (fp_num >= cortex_m3->fp_num_code)
1167                 {
1168                         LOG_ERROR("Can not find free FPB Comparator!");
1169                         return ERROR_FAIL;
1170                 }
1171                 breakpoint->set = fp_num + 1;
1172                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1173                 comparator_list[fp_num].used = 1;
1174                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1175                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1176                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
1177                 if (!cortex_m3->fpb_enabled)
1178                 {
1179                         LOG_DEBUG("FPB wasn't enabled, do it now");
1180                         target_write_u32(target, FP_CTRL, 3);
1181                 }
1182         }
1183         else if (breakpoint->type == BKPT_SOFT)
1184         {
1185                 uint8_t code[4];
1186
1187                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1188                  * semihosting; don't use that.  Otherwise the BKPT
1189                  * parameter is arbitrary.
1190                  */
1191                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1192                 retval = target_read_memory(target,
1193                                 breakpoint->address & 0xFFFFFFFE,
1194                                 breakpoint->length, 1,
1195                                 breakpoint->orig_instr);
1196                 if (retval != ERROR_OK)
1197                         return retval;
1198                 retval = target_write_memory(target,
1199                                 breakpoint->address & 0xFFFFFFFE,
1200                                 breakpoint->length, 1,
1201                                 code);
1202                 if (retval != ERROR_OK)
1203                         return retval;
1204                 breakpoint->set = true;
1205         }
1206
1207         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1208                           breakpoint->unique_id,
1209                           (int)(breakpoint->type),
1210                           breakpoint->address,
1211                           breakpoint->length,
1212                           breakpoint->set);
1213
1214         return ERROR_OK;
1215 }
1216
1217 int
1218 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1219 {
1220         int retval;
1221         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1222         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
1223
1224         if (!breakpoint->set)
1225         {
1226                 LOG_WARNING("breakpoint not set");
1227                 return ERROR_OK;
1228         }
1229
1230         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1231                           breakpoint->unique_id,
1232                           (int)(breakpoint->type),
1233                           breakpoint->address,
1234                           breakpoint->length,
1235                           breakpoint->set);
1236
1237         if (breakpoint->type == BKPT_HARD)
1238         {
1239                 int fp_num = breakpoint->set - 1;
1240                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
1241                 {
1242                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1243                         return ERROR_OK;
1244                 }
1245                 comparator_list[fp_num].used = 0;
1246                 comparator_list[fp_num].fpcr_value = 0;
1247                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1248         }
1249         else
1250         {
1251                 /* restore original instruction (kept in target endianness) */
1252                 if (breakpoint->length == 4)
1253                 {
1254                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
1255                         {
1256                                 return retval;
1257                         }
1258                 }
1259                 else
1260                 {
1261                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
1262                         {
1263                                 return retval;
1264                         }
1265                 }
1266         }
1267         breakpoint->set = false;
1268
1269         return ERROR_OK;
1270 }
1271
1272 int
1273 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1274 {
1275         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1276
1277         if (cortex_m3->auto_bp_type)
1278         {
1279                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1280 #ifdef ARMV7_GDB_HACKS
1281                 if (breakpoint->length != 2) {
1282                         /* XXX Hack: Replace all breakpoints with length != 2 with
1283                          * a hardware breakpoint. */
1284                         breakpoint->type = BKPT_HARD;
1285                         breakpoint->length = 2;
1286                 }
1287 #endif
1288         }
1289
1290         if(breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1291                 if (breakpoint->type == BKPT_HARD)
1292                 {
1293                         LOG_INFO("flash patch comparator requested outside code memory region");
1294                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1295                 }
1296
1297                 if (breakpoint->type == BKPT_SOFT)
1298                 {
1299                         LOG_INFO("soft breakpoint requested in code (flash) memory region");
1300                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1301                 }
1302         }
1303
1304         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
1305         {
1306                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1307                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1308         }
1309
1310         if ((breakpoint->length != 2))
1311         {
1312                 LOG_INFO("only breakpoints of two bytes length supported");
1313                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1314         }
1315
1316         if (breakpoint->type == BKPT_HARD)
1317                 cortex_m3->fp_code_available--;
1318
1319         return cortex_m3_set_breakpoint(target, breakpoint);
1320 }
1321
1322 int
1323 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1324 {
1325         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1326
1327         /* REVISIT why check? FBP can be updated with core running ... */
1328         if (target->state != TARGET_HALTED)
1329         {
1330                 LOG_WARNING("target not halted");
1331                 return ERROR_TARGET_NOT_HALTED;
1332         }
1333
1334         if (cortex_m3->auto_bp_type)
1335         {
1336                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1337         }
1338
1339         if (breakpoint->set)
1340         {
1341                 cortex_m3_unset_breakpoint(target, breakpoint);
1342         }
1343
1344         if (breakpoint->type == BKPT_HARD)
1345                 cortex_m3->fp_code_available++;
1346
1347         return ERROR_OK;
1348 }
1349
1350 int
1351 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1352 {
1353         int dwt_num = 0;
1354         uint32_t mask, temp;
1355         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1356
1357         /* watchpoint params were validated earlier */
1358         mask = 0;
1359         temp = watchpoint->length;
1360         while (temp) {
1361                 temp >>= 1;
1362                 mask++;
1363         }
1364         mask--;
1365
1366         /* REVISIT Don't fully trust these "not used" records ... users
1367          * may set up breakpoints by hand, e.g. dual-address data value
1368          * watchpoint using comparator #1; comparator #0 matching cycle
1369          * count; send data trace info through ITM and TPIU; etc
1370          */
1371         struct cortex_m3_dwt_comparator *comparator;
1372
1373         for (comparator = cortex_m3->dwt_comparator_list;
1374                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1375                         comparator++, dwt_num++)
1376                 continue;
1377         if (dwt_num >= cortex_m3->dwt_num_comp)
1378         {
1379                 LOG_ERROR("Can not find free DWT Comparator");
1380                 return ERROR_FAIL;
1381         }
1382         comparator->used = 1;
1383         watchpoint->set = dwt_num + 1;
1384
1385         comparator->comp = watchpoint->address;
1386         target_write_u32(target, comparator->dwt_comparator_address + 0,
1387                         comparator->comp);
1388
1389         comparator->mask = mask;
1390         target_write_u32(target, comparator->dwt_comparator_address + 4,
1391                         comparator->mask);
1392
1393         switch (watchpoint->rw) {
1394         case WPT_READ:
1395                 comparator->function = 5;
1396                 break;
1397         case WPT_WRITE:
1398                 comparator->function = 6;
1399                 break;
1400         case WPT_ACCESS:
1401                 comparator->function = 7;
1402                 break;
1403         }
1404         target_write_u32(target, comparator->dwt_comparator_address + 8,
1405                         comparator->function);
1406
1407         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1408                         watchpoint->unique_id, dwt_num,
1409                         (unsigned) comparator->comp,
1410                         (unsigned) comparator->mask,
1411                         (unsigned) comparator->function);
1412         return ERROR_OK;
1413 }
1414
1415 int
1416 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1417 {
1418         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1419         struct cortex_m3_dwt_comparator *comparator;
1420         int dwt_num;
1421
1422         if (!watchpoint->set)
1423         {
1424                 LOG_WARNING("watchpoint (wpid: %d) not set",
1425                                 watchpoint->unique_id);
1426                 return ERROR_OK;
1427         }
1428
1429         dwt_num = watchpoint->set - 1;
1430
1431         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1432                         watchpoint->unique_id, dwt_num,
1433                         (unsigned) watchpoint->address);
1434
1435         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1436         {
1437                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1438                 return ERROR_OK;
1439         }
1440
1441         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1442         comparator->used = 0;
1443         comparator->function = 0;
1444         target_write_u32(target, comparator->dwt_comparator_address + 8,
1445                         comparator->function);
1446
1447         watchpoint->set = false;
1448
1449         return ERROR_OK;
1450 }
1451
1452 int
1453 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1454 {
1455         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1456
1457         if (cortex_m3->dwt_comp_available < 1)
1458         {
1459                 LOG_DEBUG("no comparators?");
1460                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1461         }
1462
1463         /* hardware doesn't support data value masking */
1464         if (watchpoint->mask != ~(uint32_t)0) {
1465                 LOG_DEBUG("watchpoint value masks not supported");
1466                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1467         }
1468
1469         /* hardware allows address masks of up to 32K */
1470         unsigned mask;
1471
1472         for (mask = 0; mask < 16; mask++) {
1473                 if ((1u << mask) == watchpoint->length)
1474                         break;
1475         }
1476         if (mask == 16) {
1477                 LOG_DEBUG("unsupported watchpoint length");
1478                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1479         }
1480         if (watchpoint->address & ((1 << mask) - 1)) {
1481                 LOG_DEBUG("watchpoint address is unaligned");
1482                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1483         }
1484
1485         /* Caller doesn't seem to be able to describe watching for data
1486          * values of zero; that flags "no value".
1487          *
1488          * REVISIT This DWT may well be able to watch for specific data
1489          * values.  Requires comparator #1 to set DATAVMATCH and match
1490          * the data, and another comparator (DATAVADDR0) matching addr.
1491          */
1492         if (watchpoint->value) {
1493                 LOG_DEBUG("data value watchpoint not YET supported");
1494                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1495         }
1496
1497         cortex_m3->dwt_comp_available--;
1498         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1499
1500         return ERROR_OK;
1501 }
1502
1503 int
1504 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1505 {
1506         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1507
1508         /* REVISIT why check? DWT can be updated with core running ... */
1509         if (target->state != TARGET_HALTED)
1510         {
1511                 LOG_WARNING("target not halted");
1512                 return ERROR_TARGET_NOT_HALTED;
1513         }
1514
1515         if (watchpoint->set)
1516         {
1517                 cortex_m3_unset_watchpoint(target, watchpoint);
1518         }
1519
1520         cortex_m3->dwt_comp_available++;
1521         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1522
1523         return ERROR_OK;
1524 }
1525
1526 void cortex_m3_enable_watchpoints(struct target *target)
1527 {
1528         struct watchpoint *watchpoint = target->watchpoints;
1529
1530         /* set any pending watchpoints */
1531         while (watchpoint)
1532         {
1533                 if (!watchpoint->set)
1534                         cortex_m3_set_watchpoint(target, watchpoint);
1535                 watchpoint = watchpoint->next;
1536         }
1537 }
1538
1539 static int cortex_m3_load_core_reg_u32(struct target *target,
1540                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1541 {
1542         int retval;
1543         struct armv7m_common *armv7m = target_to_armv7m(target);
1544         struct adiv5_dap *swjdp = &armv7m->dap;
1545
1546         /* NOTE:  we "know" here that the register identifiers used
1547          * in the v7m header match the Cortex-M3 Debug Core Register
1548          * Selector values for R0..R15, xPSR, MSP, and PSP.
1549          */
1550         switch (num) {
1551         case 0 ... 18:
1552                 /* read a normal core register */
1553                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1554
1555                 if (retval != ERROR_OK)
1556                 {
1557                         LOG_ERROR("JTAG failure %i",retval);
1558                         return ERROR_JTAG_DEVICE_ERROR;
1559                 }
1560                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1561                 break;
1562
1563         case ARMV7M_PRIMASK:
1564         case ARMV7M_BASEPRI:
1565         case ARMV7M_FAULTMASK:
1566         case ARMV7M_CONTROL:
1567                 /* Cortex-M3 packages these four registers as bitfields
1568                  * in one Debug Core register.  So say r0 and r2 docs;
1569                  * it was removed from r1 docs, but still works.
1570                  */
1571                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1572
1573                 switch (num)
1574                 {
1575                         case ARMV7M_PRIMASK:
1576                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1577                                 break;
1578
1579                         case ARMV7M_BASEPRI:
1580                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1581                                 break;
1582
1583                         case ARMV7M_FAULTMASK:
1584                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1585                                 break;
1586
1587                         case ARMV7M_CONTROL:
1588                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1589                                 break;
1590                 }
1591
1592                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1593                 break;
1594
1595         default:
1596                 return ERROR_COMMAND_SYNTAX_ERROR;
1597         }
1598
1599         return ERROR_OK;
1600 }
1601
1602 static int cortex_m3_store_core_reg_u32(struct target *target,
1603                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1604 {
1605         int retval;
1606         uint32_t reg;
1607         struct armv7m_common *armv7m = target_to_armv7m(target);
1608         struct adiv5_dap *swjdp = &armv7m->dap;
1609
1610 #ifdef ARMV7_GDB_HACKS
1611         /* If the LR register is being modified, make sure it will put us
1612          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1613          * hack to deal with the fact that gdb will sometimes "forge"
1614          * return addresses, and doesn't set the LSB correctly (i.e., when
1615          * printing expressions containing function calls, it sets LR = 0.)
1616          * Valid exception return codes have bit 0 set too.
1617          */
1618         if (num == ARMV7M_R14)
1619                 value |= 0x01;
1620 #endif
1621
1622         /* NOTE:  we "know" here that the register identifiers used
1623          * in the v7m header match the Cortex-M3 Debug Core Register
1624          * Selector values for R0..R15, xPSR, MSP, and PSP.
1625          */
1626         switch (num) {
1627         case 0 ... 18:
1628                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1629                 if (retval != ERROR_OK)
1630                 {
1631                         struct reg *r;
1632
1633                         LOG_ERROR("JTAG failure");
1634                         r = armv7m->core_cache->reg_list + num;
1635                         r->dirty = r->valid;
1636                         return ERROR_JTAG_DEVICE_ERROR;
1637                 }
1638                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1639                 break;
1640
1641         case ARMV7M_PRIMASK:
1642         case ARMV7M_BASEPRI:
1643         case ARMV7M_FAULTMASK:
1644         case ARMV7M_CONTROL:
1645                 /* Cortex-M3 packages these four registers as bitfields
1646                  * in one Debug Core register.  So say r0 and r2 docs;
1647                  * it was removed from r1 docs, but still works.
1648                  */
1649                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1650
1651                 switch (num)
1652                 {
1653                         case ARMV7M_PRIMASK:
1654                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1655                                 break;
1656
1657                         case ARMV7M_BASEPRI:
1658                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1659                                 break;
1660
1661                         case ARMV7M_FAULTMASK:
1662                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1663                                 break;
1664
1665                         case ARMV7M_CONTROL:
1666                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1667                                 break;
1668                 }
1669
1670                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1671
1672                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1673                 break;
1674
1675         default:
1676                 return ERROR_COMMAND_SYNTAX_ERROR;
1677         }
1678
1679         return ERROR_OK;
1680 }
1681
1682 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1683                 uint32_t size, uint32_t count, uint8_t *buffer)
1684 {
1685         struct armv7m_common *armv7m = target_to_armv7m(target);
1686         struct adiv5_dap *swjdp = &armv7m->dap;
1687         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1688
1689         /* cortex_m3 handles unaligned memory access */
1690         if (count && buffer) {
1691                 switch (size) {
1692                 case 4:
1693                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1694                         break;
1695                 case 2:
1696                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1697                         break;
1698                 case 1:
1699                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1700                         break;
1701                 }
1702         }
1703
1704         return retval;
1705 }
1706
1707 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1708                 uint32_t size, uint32_t count, const uint8_t *buffer)
1709 {
1710         struct armv7m_common *armv7m = target_to_armv7m(target);
1711         struct adiv5_dap *swjdp = &armv7m->dap;
1712         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1713
1714         if (count && buffer) {
1715                 switch (size) {
1716                 case 4:
1717                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1718                         break;
1719                 case 2:
1720                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1721                         break;
1722                 case 1:
1723                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1724                         break;
1725                 }
1726         }
1727
1728         return retval;
1729 }
1730
1731 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1732                 uint32_t count, const uint8_t *buffer)
1733 {
1734         return cortex_m3_write_memory(target, address, 4, count, buffer);
1735 }
1736
1737 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1738                 struct target *target)
1739 {
1740         armv7m_build_reg_cache(target);
1741         return ERROR_OK;
1742 }
1743
1744 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1745  * on r/w if the core is not running, and clear on resume or reset ... or
1746  * at least, in a post_restore_context() method.
1747  */
1748
1749 struct dwt_reg_state {
1750         struct target   *target;
1751         uint32_t        addr;
1752         uint32_t        value;  /* scratch/cache */
1753 };
1754
1755 static int cortex_m3_dwt_get_reg(struct reg *reg)
1756 {
1757         struct dwt_reg_state *state = reg->arch_info;
1758
1759         return target_read_u32(state->target, state->addr, &state->value);
1760 }
1761
1762 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1763 {
1764         struct dwt_reg_state *state = reg->arch_info;
1765
1766         return target_write_u32(state->target, state->addr,
1767                         buf_get_u32(buf, 0, reg->size));
1768 }
1769
1770 struct dwt_reg {
1771         uint32_t        addr;
1772         char            *name;
1773         unsigned        size;
1774 };
1775
1776 static struct dwt_reg dwt_base_regs[] = {
1777         { DWT_CTRL, "dwt_ctrl", 32, },
1778         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1779          * increments while the core is asleep.
1780          */
1781         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1782         /* plus some 8 bit counters, useful for profiling with TPIU */
1783 };
1784
1785 static struct dwt_reg dwt_comp[] = {
1786 #define DWT_COMPARATOR(i) \
1787                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1788                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1789                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1790         DWT_COMPARATOR(0),
1791         DWT_COMPARATOR(1),
1792         DWT_COMPARATOR(2),
1793         DWT_COMPARATOR(3),
1794 #undef DWT_COMPARATOR
1795 };
1796
1797 static const struct reg_arch_type dwt_reg_type = {
1798         .get = cortex_m3_dwt_get_reg,
1799         .set = cortex_m3_dwt_set_reg,
1800 };
1801
1802 static void
1803 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1804 {
1805         struct dwt_reg_state *state;
1806
1807         state = calloc(1, sizeof *state);
1808         if (!state)
1809                 return;
1810         state->addr = d->addr;
1811         state->target = t;
1812
1813         r->name = d->name;
1814         r->size = d->size;
1815         r->value = &state->value;
1816         r->arch_info = state;
1817         r->type = &dwt_reg_type;
1818 }
1819
1820 void
1821 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1822 {
1823         uint32_t dwtcr;
1824         struct reg_cache *cache;
1825         struct cortex_m3_dwt_comparator *comparator;
1826         int reg, i;
1827
1828         target_read_u32(target, DWT_CTRL, &dwtcr);
1829         if (!dwtcr) {
1830                 LOG_DEBUG("no DWT");
1831                 return;
1832         }
1833
1834         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1835         cm3->dwt_comp_available = cm3->dwt_num_comp;
1836         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1837                         sizeof(struct cortex_m3_dwt_comparator));
1838         if (!cm3->dwt_comparator_list) {
1839 fail0:
1840                 cm3->dwt_num_comp = 0;
1841                 LOG_ERROR("out of mem");
1842                 return;
1843         }
1844
1845         cache = calloc(1, sizeof *cache);
1846         if (!cache) {
1847 fail1:
1848                 free(cm3->dwt_comparator_list);
1849                 goto fail0;
1850         }
1851         cache->name = "cortex-m3 dwt registers";
1852         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1853         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1854         if (!cache->reg_list) {
1855                 free(cache);
1856                 goto fail1;
1857         }
1858
1859         for (reg = 0; reg < 2; reg++)
1860                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1861                                 dwt_base_regs + reg);
1862
1863         comparator = cm3->dwt_comparator_list;
1864         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1865                 int j;
1866
1867                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1868                 for (j = 0; j < 3; j++, reg++)
1869                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1870                                         dwt_comp + 3 * i + j);
1871         }
1872
1873         *register_get_last_cache_p(&target->reg_cache) = cache;
1874         cm3->dwt_cache = cache;
1875
1876         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1877                         dwtcr, cm3->dwt_num_comp,
1878                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1879
1880         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1881          * implement single-address data value watchpoints ... so we
1882          * won't need to check it later, when asked to set one up.
1883          */
1884 }
1885
1886 static int cortex_m3_examine(struct target *target)
1887 {
1888         int retval;
1889         uint32_t cpuid, fpcr;
1890         int i;
1891         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1892         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
1893
1894         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1895                 return retval;
1896
1897         if (!target_was_examined(target))
1898         {
1899                 target_set_examined(target);
1900
1901                 /* Read from Device Identification Registers */
1902                 retval = target_read_u32(target, CPUID, &cpuid);
1903                 if (retval != ERROR_OK)
1904                         return retval;
1905
1906                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1907                         LOG_DEBUG("Cortex-M3 r%" PRId8 "p%" PRId8 " processor detected",
1908                                 (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1909                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1910
1911                 /* NOTE: FPB and DWT are both optional. */
1912
1913                 /* Setup FPB */
1914                 target_read_u32(target, FP_CTRL, &fpcr);
1915                 cortex_m3->auto_bp_type = 1;
1916                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1917                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1918                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1919                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1920                 cortex_m3->fpb_enabled = fpcr & 1;
1921                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1922                 {
1923                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1924                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1925                 }
1926                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1927
1928                 /* Setup DWT */
1929                 cortex_m3_dwt_setup(cortex_m3, target);
1930
1931                 /* These hardware breakpoints only work for code in flash! */
1932                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1933                                 target_name(target),
1934                                 cortex_m3->fp_num_code,
1935                                 cortex_m3->dwt_num_comp);
1936         }
1937
1938         return ERROR_OK;
1939 }
1940
1941 static int cortex_m3_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1942 {
1943         uint16_t dcrdr;
1944         int retval;
1945
1946         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1947         *ctrl = (uint8_t)dcrdr;
1948         *value = (uint8_t)(dcrdr >> 8);
1949
1950         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1951
1952         /* write ack back to software dcc register
1953          * signify we have read data */
1954         if (dcrdr & (1 << 0))
1955         {
1956                 dcrdr = 0;
1957                 retval = mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1958                 if (retval != ERROR_OK)
1959                         return retval;
1960         }
1961
1962         return ERROR_OK;
1963 }
1964
1965 static int cortex_m3_target_request_data(struct target *target,
1966                 uint32_t size, uint8_t *buffer)
1967 {
1968         struct armv7m_common *armv7m = target_to_armv7m(target);
1969         struct adiv5_dap *swjdp = &armv7m->dap;
1970         uint8_t data;
1971         uint8_t ctrl;
1972         uint32_t i;
1973
1974         for (i = 0; i < (size * 4); i++)
1975         {
1976                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1977                 buffer[i] = data;
1978         }
1979
1980         return ERROR_OK;
1981 }
1982
1983 static int cortex_m3_handle_target_request(void *priv)
1984 {
1985         struct target *target = priv;
1986         if (!target_was_examined(target))
1987                 return ERROR_OK;
1988         struct armv7m_common *armv7m = target_to_armv7m(target);
1989         struct adiv5_dap *swjdp = &armv7m->dap;
1990
1991         if (!target->dbg_msg_enabled)
1992                 return ERROR_OK;
1993
1994         if (target->state == TARGET_RUNNING)
1995         {
1996                 uint8_t data;
1997                 uint8_t ctrl;
1998
1999                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
2000
2001                 /* check if we have data */
2002                 if (ctrl & (1 << 0))
2003                 {
2004                         uint32_t request;
2005
2006                         /* we assume target is quick enough */
2007                         request = data;
2008                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
2009                         request |= (data << 8);
2010                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
2011                         request |= (data << 16);
2012                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
2013                         request |= (data << 24);
2014                         target_request(target, request);
2015                 }
2016         }
2017
2018         return ERROR_OK;
2019 }
2020
2021 static int cortex_m3_init_arch_info(struct target *target,
2022                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
2023 {
2024         int retval;
2025         struct armv7m_common *armv7m = &cortex_m3->armv7m;
2026
2027         armv7m_init_arch_info(target, armv7m);
2028
2029         /* prepare JTAG information for the new target */
2030         cortex_m3->jtag_info.tap = tap;
2031         cortex_m3->jtag_info.scann_size = 4;
2032
2033         /* default reset mode is to use srst if fitted
2034          * if not it will use CORTEX_M3_RESET_VECTRESET */
2035         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2036
2037         armv7m->arm.dap = &armv7m->dap;
2038
2039         /* Leave (only) generic DAP stuff for debugport_init(); */
2040         armv7m->dap.jtag_info = &cortex_m3->jtag_info;
2041         armv7m->dap.memaccess_tck = 8;
2042         /* Cortex-M3 has 4096 bytes autoincrement range */
2043         armv7m->dap.tar_autoincr_block = (1 << 12);
2044
2045         /* register arch-specific functions */
2046         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
2047
2048         armv7m->post_debug_entry = NULL;
2049
2050         armv7m->pre_restore_context = NULL;
2051
2052         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
2053         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
2054
2055         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
2056
2057         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
2058         {
2059                 return retval;
2060         }
2061
2062         return ERROR_OK;
2063 }
2064
2065 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
2066 {
2067         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
2068
2069         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
2070         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
2071
2072         return ERROR_OK;
2073 }
2074
2075 /*--------------------------------------------------------------------------*/
2076
2077 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
2078                 struct cortex_m3_common *cm3)
2079 {
2080         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
2081                 command_print(cmd_ctx, "target is not a Cortex-M3");
2082                 return ERROR_TARGET_INVALID;
2083         }
2084         return ERROR_OK;
2085 }
2086
2087 /*
2088  * Only stuff below this line should need to verify that its target
2089  * is a Cortex-M3.  Everything else should have indirected through the
2090  * cortexm3_target structure, which is only used with CM3 targets.
2091  */
2092
2093 static const struct {
2094         char name[10];
2095         unsigned mask;
2096 } vec_ids[] = {
2097         { "hard_err",   VC_HARDERR, },
2098         { "int_err",    VC_INTERR, },
2099         { "bus_err",    VC_BUSERR, },
2100         { "state_err",  VC_STATERR, },
2101         { "chk_err",    VC_CHKERR, },
2102         { "nocp_err",   VC_NOCPERR, },
2103         { "mm_err",     VC_MMERR, },
2104         { "reset",      VC_CORERESET, },
2105 };
2106
2107 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
2108 {
2109         struct target *target = get_current_target(CMD_CTX);
2110         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2111         struct armv7m_common *armv7m = &cortex_m3->armv7m;
2112         struct adiv5_dap *swjdp = &armv7m->dap;
2113         uint32_t demcr = 0;
2114         int retval;
2115
2116         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2117         if (retval != ERROR_OK)
2118                 return retval;
2119
2120         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2121         if (retval != ERROR_OK)
2122                 return retval;
2123
2124         if (CMD_ARGC > 0) {
2125                 unsigned catch = 0;
2126
2127                 if (CMD_ARGC == 1) {
2128                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2129                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2130                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2131                                         | VC_MMERR | VC_CORERESET;
2132                                 goto write;
2133                         } else if (strcmp(CMD_ARGV[0], "none") == 0) {
2134                                 goto write;
2135                         }
2136                 }
2137                 while (CMD_ARGC-- > 0) {
2138                         unsigned i;
2139                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2140                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2141                                         continue;
2142                                 catch |= vec_ids[i].mask;
2143                                 break;
2144                         }
2145                         if (i == ARRAY_SIZE(vec_ids)) {
2146                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2147                                 return ERROR_COMMAND_SYNTAX_ERROR;
2148                         }
2149                 }
2150 write:
2151                 /* For now, armv7m->demcr only stores vector catch flags. */
2152                 armv7m->demcr = catch;
2153
2154                 demcr &= ~0xffff;
2155                 demcr |= catch;
2156
2157                 /* write, but don't assume it stuck (why not??) */
2158                 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2159                 if (retval != ERROR_OK)
2160                         return retval;
2161                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2162                 if (retval != ERROR_OK)
2163                         return retval;
2164
2165                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2166                  * Otherwise the vector catch hardware could fire when there's
2167                  * no debugger hooked up, causing much confusion...
2168                  */
2169         }
2170
2171         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
2172         {
2173                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2174                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2175         }
2176
2177         return ERROR_OK;
2178 }
2179
2180 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2181 {
2182         struct target *target = get_current_target(CMD_CTX);
2183         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2184         int retval;
2185
2186         static const Jim_Nvp nvp_maskisr_modes[] = {
2187                 { .name = "auto", .value = CORTEX_M3_ISRMASK_AUTO },
2188                 { .name = "off" , .value = CORTEX_M3_ISRMASK_OFF },
2189                 { .name = "on"  , .value = CORTEX_M3_ISRMASK_ON },
2190                 { .name = NULL  , .value = -1 },
2191         };
2192         const Jim_Nvp *n;
2193
2194
2195         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2196         if (retval != ERROR_OK)
2197                 return retval;
2198
2199         if (target->state != TARGET_HALTED)
2200         {
2201                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2202                 return ERROR_OK;
2203         }
2204
2205         if (CMD_ARGC > 0)
2206         {
2207                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2208                 if (n->name == NULL)
2209                 {
2210                         return ERROR_COMMAND_SYNTAX_ERROR;
2211                 }
2212                 cortex_m3->isrmasking_mode = n->value;
2213
2214
2215                 if(cortex_m3->isrmasking_mode == CORTEX_M3_ISRMASK_ON)
2216                 {
2217                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2218                 }
2219                 else
2220                 {
2221                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2222                 }
2223         }
2224
2225         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m3->isrmasking_mode);
2226         command_print(CMD_CTX, "cortex_m3 interrupt mask %s", n->name);
2227
2228         return ERROR_OK;
2229 }
2230
2231 COMMAND_HANDLER(handle_cortex_m3_reset_config_command)
2232 {
2233         struct target *target = get_current_target(CMD_CTX);
2234         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2235         int retval;
2236         char *reset_config;
2237
2238         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2239         if (retval != ERROR_OK)
2240                 return retval;
2241
2242         if (CMD_ARGC > 0)
2243         {
2244                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2245                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_SYSRESETREQ;
2246                 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2247                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2248         }
2249
2250         switch (cortex_m3->soft_reset_config)
2251         {
2252                 case CORTEX_M3_RESET_SYSRESETREQ:
2253                         reset_config = "sysresetreq";
2254                         break;
2255
2256                 case CORTEX_M3_RESET_VECTRESET:
2257                         reset_config = "vectreset";
2258                         break;
2259
2260                 default:
2261                         reset_config = "unknown";
2262                         break;
2263         }
2264
2265         command_print(CMD_CTX, "cortex_m3 reset_config %s", reset_config);
2266
2267         return ERROR_OK;
2268 }
2269
2270 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2271         {
2272                 .name = "maskisr",
2273                 .handler = handle_cortex_m3_mask_interrupts_command,
2274                 .mode = COMMAND_EXEC,
2275                 .help = "mask cortex_m3 interrupts",
2276                 .usage = "['auto'|'on'|'off']",
2277         },
2278         {
2279                 .name = "vector_catch",
2280                 .handler = handle_cortex_m3_vector_catch_command,
2281                 .mode = COMMAND_EXEC,
2282                 .help = "configure hardware vectors to trigger debug entry",
2283                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2284         },
2285         {
2286                 .name = "reset_config",
2287                 .handler = handle_cortex_m3_reset_config_command,
2288                 .mode = COMMAND_ANY,
2289                 .help = "configure software reset handling",
2290                 .usage = "['srst'|'sysresetreq'|'vectreset']",
2291         },
2292         COMMAND_REGISTRATION_DONE
2293 };
2294 static const struct command_registration cortex_m3_command_handlers[] = {
2295         {
2296                 .chain = armv7m_command_handlers,
2297         },
2298         {
2299                 .name = "cortex_m3",
2300                 .mode = COMMAND_EXEC,
2301                 .help = "Cortex-M3 command group",
2302                 .chain = cortex_m3_exec_command_handlers,
2303         },
2304         COMMAND_REGISTRATION_DONE
2305 };
2306
2307 struct target_type cortexm3_target =
2308 {
2309         .name = "cortex_m3",
2310
2311         .poll = cortex_m3_poll,
2312         .arch_state = armv7m_arch_state,
2313
2314         .target_request_data = cortex_m3_target_request_data,
2315
2316         .halt = cortex_m3_halt,
2317         .resume = cortex_m3_resume,
2318         .step = cortex_m3_step,
2319
2320         .assert_reset = cortex_m3_assert_reset,
2321         .deassert_reset = cortex_m3_deassert_reset,
2322         .soft_reset_halt = cortex_m3_soft_reset_halt,
2323
2324         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2325
2326         .read_memory = cortex_m3_read_memory,
2327         .write_memory = cortex_m3_write_memory,
2328         .bulk_write_memory = cortex_m3_bulk_write_memory,
2329         .checksum_memory = armv7m_checksum_memory,
2330         .blank_check_memory = armv7m_blank_check_memory,
2331
2332         .run_algorithm = armv7m_run_algorithm,
2333         .start_algorithm = armv7m_start_algorithm,
2334         .wait_algorithm = armv7m_wait_algorithm,
2335
2336         .add_breakpoint = cortex_m3_add_breakpoint,
2337         .remove_breakpoint = cortex_m3_remove_breakpoint,
2338         .add_watchpoint = cortex_m3_add_watchpoint,
2339         .remove_watchpoint = cortex_m3_remove_watchpoint,
2340
2341         .commands = cortex_m3_command_handlers,
2342         .target_create = cortex_m3_target_create,
2343         .init_target = cortex_m3_init_target,
2344         .examine = cortex_m3_examine,
2345 };