target: rename cortex_m3.[ch] to cortex_m.[ch]
[fw/openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40 #include "arm_opcodes.h"
41 #include "arm_semihosting.h"
42 #include <helper/time_support.h>
43
44 /* NOTE:  most of this should work fine for the Cortex-M1 and
45  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
46  * Some differences:  M0/M1 doesn't have FBP remapping or the
47  * DWT tracing/profiling support.  (So the cycle counter will
48  * not be usable; the other stuff isn't currently used here.)
49  *
50  * Although there are some workarounds for errata seen only in r0p0
51  * silicon, such old parts are hard to find and thus not much tested
52  * any longer.
53  */
54
55 /**
56  * Returns the type of a break point required by address location
57  */
58 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
59
60
61 /* forward declarations */
62 static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
63 static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
64 static void cortex_m3_enable_watchpoints(struct target *target);
65 static int cortex_m3_store_core_reg_u32(struct target *target,
66                 enum armv7m_regtype type, uint32_t num, uint32_t value);
67
68 static int cortexm3_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
69                 uint32_t *value, int regnum)
70 {
71         int retval;
72         uint32_t dcrdr;
73
74         /* because the DCB_DCRDR is used for the emulated dcc channel
75          * we have to save/restore the DCB_DCRDR when used */
76
77         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
78         if (retval != ERROR_OK)
79                 return retval;
80
81         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
82         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
83         if (retval != ERROR_OK)
84                 return retval;
85         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
86         if (retval != ERROR_OK)
87                 return retval;
88
89         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
90         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
91         if (retval != ERROR_OK)
92                 return retval;
93         retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
94         if (retval != ERROR_OK)
95                 return retval;
96
97         retval = dap_run(swjdp);
98         if (retval != ERROR_OK)
99                 return retval;
100
101         /* restore DCB_DCRDR - this needs to be in a seperate
102          * transaction otherwise the emulated DCC channel breaks */
103         if (retval == ERROR_OK)
104                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
105
106         return retval;
107 }
108
109 static int cortexm3_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
110                 uint32_t value, int regnum)
111 {
112         int retval;
113         uint32_t dcrdr;
114
115         /* because the DCB_DCRDR is used for the emulated dcc channel
116          * we have to save/restore the DCB_DCRDR when used */
117
118         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
119         if (retval != ERROR_OK)
120                 return retval;
121
122         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
123         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
124         if (retval != ERROR_OK)
125                 return retval;
126         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
127         // XXX check retval
128
129         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
130         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
131         if (retval != ERROR_OK)
132                 return retval;
133         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
134         // XXX check retval
135
136         retval = dap_run(swjdp);
137
138         /* restore DCB_DCRDR - this needs to be in a seperate
139          * transaction otherwise the emulated DCC channel breaks */
140         if (retval == ERROR_OK)
141                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
142
143         return retval;
144 }
145
146 static int cortex_m3_write_debug_halt_mask(struct target *target,
147                 uint32_t mask_on, uint32_t mask_off)
148 {
149         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
150         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
151
152         /* mask off status bits */
153         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
154         /* create new register mask */
155         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
156
157         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
158 }
159
160 static int cortex_m3_clear_halt(struct target *target)
161 {
162         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
163         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
164         int retval;
165
166         /* clear step if any */
167         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
168
169         /* Read Debug Fault Status Register */
170         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
171         if (retval != ERROR_OK)
172                 return retval;
173
174         /* Clear Debug Fault Status */
175         retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
176         if (retval != ERROR_OK)
177                 return retval;
178         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
179
180         return ERROR_OK;
181 }
182
183 static int cortex_m3_single_step_core(struct target *target)
184 {
185         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
186         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
187         uint32_t dhcsr_save;
188         int retval;
189
190         /* backup dhcsr reg */
191         dhcsr_save = cortex_m3->dcb_dhcsr;
192
193         /* Mask interrupts before clearing halt, if done already.  This avoids
194          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
195          * HALT can put the core into an unknown state.
196          */
197         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
198         {
199                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
200                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
201                 if (retval != ERROR_OK)
202                         return retval;
203         }
204         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
205                                 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
206         if (retval != ERROR_OK)
207                 return retval;
208         LOG_DEBUG(" ");
209
210         /* restore dhcsr reg */
211         cortex_m3->dcb_dhcsr = dhcsr_save;
212         cortex_m3_clear_halt(target);
213
214         return ERROR_OK;
215 }
216
217 static int cortex_m3_endreset_event(struct target *target)
218 {
219         int i;
220         int retval;
221         uint32_t dcb_demcr;
222         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
223         struct armv7m_common *armv7m = &cortex_m3->armv7m;
224         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
225         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
226         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
227
228         /* REVISIT The four debug monitor bits are currently ignored... */
229         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
230         if (retval != ERROR_OK)
231                 return retval;
232         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
233
234         /* this register is used for emulated dcc channel */
235         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
236         if (retval != ERROR_OK)
237                 return retval;
238
239         /* Enable debug requests */
240         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
241         if (retval != ERROR_OK)
242                 return retval;
243         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
244         {
245                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
246                 if (retval != ERROR_OK)
247                         return retval;
248         }
249
250         /* clear any interrupt masking */
251         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
252
253         /* Enable features controlled by ITM and DWT blocks, and catch only
254          * the vectors we were told to pay attention to.
255          *
256          * Target firmware is responsible for all fault handling policy
257          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
258          * or manual updates to the NVIC SHCSR and CCR registers.
259          */
260         retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
261         if (retval != ERROR_OK)
262                 return retval;
263
264         /* Paranoia: evidently some (early?) chips don't preserve all the
265          * debug state (including FBP, DWT, etc) across reset...
266          */
267
268         /* Enable FPB */
269         retval = target_write_u32(target, FP_CTRL, 3);
270         if (retval != ERROR_OK)
271                 return retval;
272
273         cortex_m3->fpb_enabled = 1;
274
275         /* Restore FPB registers */
276         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
277         {
278                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
279                 if (retval != ERROR_OK)
280                         return retval;
281         }
282
283         /* Restore DWT registers */
284         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
285         {
286                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
287                                 dwt_list[i].comp);
288                 if (retval != ERROR_OK)
289                         return retval;
290                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
291                                 dwt_list[i].mask);
292                 if (retval != ERROR_OK)
293                         return retval;
294                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
295                                 dwt_list[i].function);
296                 if (retval != ERROR_OK)
297                         return retval;
298         }
299         retval = dap_run(swjdp);
300         if (retval != ERROR_OK)
301                 return retval;
302
303         register_cache_invalidate(cortex_m3->armv7m.core_cache);
304
305         /* make sure we have latest dhcsr flags */
306         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
307
308         return retval;
309 }
310
311 static int cortex_m3_examine_debug_reason(struct target *target)
312 {
313         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
314
315         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
316         /* only check the debug reason if we don't know it already */
317
318         if ((target->debug_reason != DBG_REASON_DBGRQ)
319                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
320         {
321                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
322                 {
323                         target->debug_reason = DBG_REASON_BREAKPOINT;
324                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
325                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
326                 }
327                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
328                         target->debug_reason = DBG_REASON_WATCHPOINT;
329                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
330                         target->debug_reason = DBG_REASON_BREAKPOINT;
331                 else /* EXTERNAL, HALTED */
332                         target->debug_reason = DBG_REASON_UNDEFINED;
333         }
334
335         return ERROR_OK;
336 }
337
338 static int cortex_m3_examine_exception_reason(struct target *target)
339 {
340         uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
341         struct armv7m_common *armv7m = target_to_armv7m(target);
342         struct adiv5_dap *swjdp = &armv7m->dap;
343         int retval;
344
345         retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
346         if (retval != ERROR_OK)
347                 return retval;
348         switch (armv7m->exception_number)
349         {
350                 case 2: /* NMI */
351                         break;
352                 case 3: /* Hard Fault */
353                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
354                         if (retval != ERROR_OK)
355                                 return retval;
356                         if (except_sr & 0x40000000)
357                         {
358                                 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
359                                 if (retval != ERROR_OK)
360                                         return retval;
361                         }
362                         break;
363                 case 4: /* Memory Management */
364                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
365                         if (retval != ERROR_OK)
366                                 return retval;
367                         retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
368                         if (retval != ERROR_OK)
369                                 return retval;
370                         break;
371                 case 5: /* Bus Fault */
372                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
373                         if (retval != ERROR_OK)
374                                 return retval;
375                         retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
376                         if (retval != ERROR_OK)
377                                 return retval;
378                         break;
379                 case 6: /* Usage Fault */
380                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
381                         if (retval != ERROR_OK)
382                                 return retval;
383                         break;
384                 case 11:        /* SVCall */
385                         break;
386                 case 12:        /* Debug Monitor */
387                         retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
388                         if (retval != ERROR_OK)
389                                 return retval;
390                         break;
391                 case 14:        /* PendSV */
392                         break;
393                 case 15:        /* SysTick */
394                         break;
395                 default:
396                         except_sr = 0;
397                         break;
398         }
399         retval = dap_run(swjdp);
400         if (retval == ERROR_OK)
401                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
402                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
403                         armv7m_exception_string(armv7m->exception_number),
404                         shcsr, except_sr, cfsr, except_ar);
405         return retval;
406 }
407
408 /* PSP is used in some thread modes */
409 static const int armv7m_psp_reg_map[17] = {
410         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
411         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
412         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
413         ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
414         ARMV7M_xPSR,
415 };
416
417 /* MSP is used in handler and some thread modes */
418 static const int armv7m_msp_reg_map[17] = {
419         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
420         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
421         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
422         ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
423         ARMV7M_xPSR,
424 };
425
426 static int cortex_m3_debug_entry(struct target *target)
427 {
428         int i;
429         uint32_t xPSR;
430         int retval;
431         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
432         struct armv7m_common *armv7m = &cortex_m3->armv7m;
433         struct arm *arm = &armv7m->arm;
434         struct adiv5_dap *swjdp = &armv7m->dap;
435         struct reg *r;
436
437         LOG_DEBUG(" ");
438
439         cortex_m3_clear_halt(target);
440         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
441         if (retval != ERROR_OK)
442                 return retval;
443
444         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
445                 return retval;
446
447         /* Examine target state and mode */
448         /* First load register acessible through core debug port*/
449         int num_regs = armv7m->core_cache->num_regs;
450
451         for (i = 0; i < num_regs; i++)
452         {
453                 if (!armv7m->core_cache->reg_list[i].valid)
454                         armv7m->read_core_reg(target, i);
455         }
456
457         r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
458         xPSR = buf_get_u32(r->value, 0, 32);
459
460 #ifdef ARMV7_GDB_HACKS
461         /* FIXME this breaks on scan chains with more than one Cortex-M3.
462          * Instead, each CM3 should have its own dummy value...
463          */
464         /* copy real xpsr reg for gdb, setting thumb bit */
465         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
466         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
467         armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
468         armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
469 #endif
470
471         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
472         if (xPSR & 0xf00)
473         {
474                 r->dirty = r->valid;
475                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
476         }
477
478         /* Are we in an exception handler */
479         if (xPSR & 0x1FF)
480         {
481                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
482                 armv7m->exception_number = (xPSR & 0x1FF);
483
484                 arm->core_mode = ARM_MODE_HANDLER;
485                 arm->map = armv7m_msp_reg_map;
486         }
487         else
488         {
489                 unsigned control = buf_get_u32(armv7m->core_cache
490                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
491
492                 /* is this thread privileged? */
493                 armv7m->core_mode = control & 1;
494                 arm->core_mode = armv7m->core_mode
495                                 ? ARM_MODE_USER_THREAD
496                                 : ARM_MODE_THREAD;
497
498                 /* which stack is it using? */
499                 if (control & 2)
500                         arm->map = armv7m_psp_reg_map;
501                 else
502                         arm->map = armv7m_msp_reg_map;
503
504                 armv7m->exception_number = 0;
505         }
506
507         if (armv7m->exception_number)
508         {
509                 cortex_m3_examine_exception_reason(target);
510         }
511
512         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
513                 armv7m_mode_strings[armv7m->core_mode],
514                 *(uint32_t*)(arm->pc->value),
515                 target_state_name(target));
516
517         if (armv7m->post_debug_entry)
518         {
519                 retval = armv7m->post_debug_entry(target);
520                 if (retval != ERROR_OK)
521                         return retval;
522         }
523
524         return ERROR_OK;
525 }
526
527 static int cortex_m3_poll(struct target *target)
528 {
529         int detected_failure = ERROR_OK;
530         int retval = ERROR_OK;
531         enum target_state prev_target_state = target->state;
532         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
533         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
534
535         /* Read from Debug Halting Control and Status Register */
536         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
537         if (retval != ERROR_OK)
538         {
539                 target->state = TARGET_UNKNOWN;
540                 return retval;
541         }
542
543         /* Recover from lockup.  See ARMv7-M architecture spec,
544          * section B1.5.15 "Unrecoverable exception cases".
545          */
546         if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
547                 LOG_ERROR("%s -- clearing lockup after double fault",
548                                 target_name(target));
549                 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
550                 target->debug_reason = DBG_REASON_DBGRQ;
551
552                 /* We have to execute the rest (the "finally" equivalent, but
553                  * still throw this exception again).
554                  */
555                 detected_failure = ERROR_FAIL;
556
557                 /* refresh status bits */
558                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
559                 if (retval != ERROR_OK)
560                         return retval;
561         }
562
563         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
564         {
565                 /* check if still in reset */
566                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
567                 if (retval != ERROR_OK)
568                         return retval;
569
570                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
571                 {
572                         target->state = TARGET_RESET;
573                         return ERROR_OK;
574                 }
575         }
576
577         if (target->state == TARGET_RESET)
578         {
579                 /* Cannot switch context while running so endreset is
580                  * called with target->state == TARGET_RESET
581                  */
582                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
583                                 cortex_m3->dcb_dhcsr);
584                 cortex_m3_endreset_event(target);
585                 target->state = TARGET_RUNNING;
586                 prev_target_state = TARGET_RUNNING;
587         }
588
589         if (cortex_m3->dcb_dhcsr & S_HALT)
590         {
591                 target->state = TARGET_HALTED;
592
593                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
594                 {
595                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
596                                 return retval;
597
598                         if (arm_semihosting(target, &retval) != 0)
599                                 return retval;
600
601                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
602                 }
603                 if (prev_target_state == TARGET_DEBUG_RUNNING)
604                 {
605                         LOG_DEBUG(" ");
606                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
607                                 return retval;
608
609                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
610                 }
611         }
612
613         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
614          * How best to model low power modes?
615          */
616
617         if (target->state == TARGET_UNKNOWN)
618         {
619                 /* check if processor is retiring instructions */
620                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
621                 {
622                         target->state = TARGET_RUNNING;
623                         retval = ERROR_OK;
624                 }
625         }
626
627         /* Did we detect a failure condition that we cleared? */
628         if (detected_failure != ERROR_OK)
629                 retval = detected_failure;
630         return retval;
631 }
632
633 static int cortex_m3_halt(struct target *target)
634 {
635         LOG_DEBUG("target->state: %s",
636                 target_state_name(target));
637
638         if (target->state == TARGET_HALTED)
639         {
640                 LOG_DEBUG("target was already halted");
641                 return ERROR_OK;
642         }
643
644         if (target->state == TARGET_UNKNOWN)
645         {
646                 LOG_WARNING("target was in unknown state when halt was requested");
647         }
648
649         if (target->state == TARGET_RESET)
650         {
651                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
652                 {
653                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
654                         return ERROR_TARGET_FAILURE;
655                 }
656                 else
657                 {
658                         /* we came here in a reset_halt or reset_init sequence
659                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
660                          */
661                         target->debug_reason = DBG_REASON_DBGRQ;
662
663                         return ERROR_OK;
664                 }
665         }
666
667         /* Write to Debug Halting Control and Status Register */
668         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
669
670         target->debug_reason = DBG_REASON_DBGRQ;
671
672         return ERROR_OK;
673 }
674
675 static int cortex_m3_soft_reset_halt(struct target *target)
676 {
677         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
678         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
679         uint32_t dcb_dhcsr = 0;
680         int retval, timeout = 0;
681
682         /* Enter debug state on reset; restore DEMCR in endreset_event() */
683         retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
684                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
685         if (retval != ERROR_OK)
686                 return retval;
687
688         /* Request a core-only reset */
689         retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
690                         AIRCR_VECTKEY | AIRCR_VECTRESET);
691         if (retval != ERROR_OK)
692                 return retval;
693         target->state = TARGET_RESET;
694
695         /* registers are now invalid */
696         register_cache_invalidate(cortex_m3->armv7m.core_cache);
697
698         while (timeout < 100)
699         {
700                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
701                 if (retval == ERROR_OK)
702                 {
703                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
704                                         &cortex_m3->nvic_dfsr);
705                         if (retval != ERROR_OK)
706                                 return retval;
707                         if ((dcb_dhcsr & S_HALT)
708                                         && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
709                         {
710                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
711                                         "DFSR 0x%08x",
712                                         (unsigned) dcb_dhcsr,
713                                         (unsigned) cortex_m3->nvic_dfsr);
714                                 cortex_m3_poll(target);
715                                 /* FIXME restore user's vector catch config */
716                                 return ERROR_OK;
717                         }
718                         else
719                                 LOG_DEBUG("waiting for system reset-halt, "
720                                         "DHCSR 0x%08x, %d ms",
721                                         (unsigned) dcb_dhcsr, timeout);
722                 }
723                 timeout++;
724                 alive_sleep(1);
725         }
726
727         return ERROR_OK;
728 }
729
730 static void cortex_m3_enable_breakpoints(struct target *target)
731 {
732         struct breakpoint *breakpoint = target->breakpoints;
733
734         /* set any pending breakpoints */
735         while (breakpoint)
736         {
737                 if (!breakpoint->set)
738                         cortex_m3_set_breakpoint(target, breakpoint);
739                 breakpoint = breakpoint->next;
740         }
741 }
742
743 static int cortex_m3_resume(struct target *target, int current,
744                 uint32_t address, int handle_breakpoints, int debug_execution)
745 {
746         struct armv7m_common *armv7m = target_to_armv7m(target);
747         struct breakpoint *breakpoint = NULL;
748         uint32_t resume_pc;
749         struct reg *r;
750
751         if (target->state != TARGET_HALTED)
752         {
753                 LOG_WARNING("target not halted");
754                 return ERROR_TARGET_NOT_HALTED;
755         }
756
757         if (!debug_execution)
758         {
759                 target_free_all_working_areas(target);
760                 cortex_m3_enable_breakpoints(target);
761                 cortex_m3_enable_watchpoints(target);
762         }
763
764         if (debug_execution)
765         {
766                 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
767
768                 /* Disable interrupts */
769                 /* We disable interrupts in the PRIMASK register instead of
770                  * masking with C_MASKINTS.  This is probably the same issue
771                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
772                  * in parallel with disabled interrupts can cause local faults
773                  * to not be taken.
774                  *
775                  * REVISIT this clearly breaks non-debug execution, since the
776                  * PRIMASK register state isn't saved/restored...  workaround
777                  * by never resuming app code after debug execution.
778                  */
779                 buf_set_u32(r->value, 0, 1, 1);
780                 r->dirty = true;
781                 r->valid = true;
782
783                 /* Make sure we are in Thumb mode */
784                 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
785                 buf_set_u32(r->value, 24, 1, 1);
786                 r->dirty = true;
787                 r->valid = true;
788         }
789
790         /* current = 1: continue on current pc, otherwise continue at <address> */
791         r = armv7m->arm.pc;
792         if (!current)
793         {
794                 buf_set_u32(r->value, 0, 32, address);
795                 r->dirty = true;
796                 r->valid = true;
797         }
798
799         /* if we halted last time due to a bkpt instruction
800          * then we have to manually step over it, otherwise
801          * the core will break again */
802
803         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
804                         && !debug_execution)
805         {
806                 armv7m_maybe_skip_bkpt_inst(target, NULL);
807         }
808
809         resume_pc = buf_get_u32(r->value, 0, 32);
810
811         armv7m_restore_context(target);
812
813         /* the front-end may request us not to handle breakpoints */
814         if (handle_breakpoints)
815         {
816                 /* Single step past breakpoint at current address */
817                 if ((breakpoint = breakpoint_find(target, resume_pc)))
818                 {
819                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
820                                           breakpoint->address,
821                                           breakpoint->unique_id);
822                         cortex_m3_unset_breakpoint(target, breakpoint);
823                         cortex_m3_single_step_core(target);
824                         cortex_m3_set_breakpoint(target, breakpoint);
825                 }
826         }
827
828         /* Restart core */
829         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
830
831         target->debug_reason = DBG_REASON_NOTHALTED;
832
833         /* registers are now invalid */
834         register_cache_invalidate(armv7m->core_cache);
835
836         if (!debug_execution)
837         {
838                 target->state = TARGET_RUNNING;
839                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
840                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
841         }
842         else
843         {
844                 target->state = TARGET_DEBUG_RUNNING;
845                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
846                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
847         }
848
849         return ERROR_OK;
850 }
851
852 /* int irqstepcount = 0; */
853 static int cortex_m3_step(struct target *target, int current,
854                 uint32_t address, int handle_breakpoints)
855 {
856         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
857         struct armv7m_common *armv7m = &cortex_m3->armv7m;
858         struct adiv5_dap *swjdp = &armv7m->dap;
859         struct breakpoint *breakpoint = NULL;
860         struct reg *pc = armv7m->arm.pc;
861         bool bkpt_inst_found = false;
862         int retval;
863         bool isr_timed_out = false;
864
865         if (target->state != TARGET_HALTED)
866         {
867                 LOG_WARNING("target not halted");
868                 return ERROR_TARGET_NOT_HALTED;
869         }
870
871         /* current = 1: continue on current pc, otherwise continue at <address> */
872         if (!current)
873                 buf_set_u32(pc->value, 0, 32, address);
874
875         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
876
877         /* the front-end may request us not to handle breakpoints */
878         if (handle_breakpoints) {
879                 breakpoint = breakpoint_find(target, pc_value);
880                 if (breakpoint)
881                         cortex_m3_unset_breakpoint(target, breakpoint);
882         }
883
884         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
885
886         target->debug_reason = DBG_REASON_SINGLESTEP;
887
888         armv7m_restore_context(target);
889
890         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
891
892         /* if no bkpt instruction is found at pc then we can perform
893          * a normal step, otherwise we have to manually step over the bkpt
894          * instruction - as such simulate a step */
895         if (bkpt_inst_found == false)
896         {
897                 /* Automatic ISR masking mode off: Just step over the next instruction */
898                 if ((cortex_m3->isrmasking_mode != CORTEX_M3_ISRMASK_AUTO))
899                 {
900                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
901                 }
902                 else
903                 {
904                         /* Process interrupts during stepping in a way they don't interfere
905                          * debugging.
906                          *
907                          * Principle:
908                          *
909                          * Set a temporary break point at the current pc and let the core run
910                          * with interrupts enabled. Pending interrupts get served and we run
911                          * into the breakpoint again afterwards. Then we step over the next
912                          * instruction with interrupts disabled.
913                          *
914                          * If the pending interrupts don't complete within time, we leave the
915                          * core running. This may happen if the interrupts trigger faster
916                          * than the core can process them or the handler doesn't return.
917                          *
918                          * If no more breakpoints are available we simply do a step with
919                          * interrupts enabled.
920                          *
921                          */
922
923                         /* Set a temporary break point */
924                         retval = breakpoint_add(target, pc_value , 2, BKPT_TYPE_BY_ADDR(pc_value));
925                         bool tmp_bp_set = (retval == ERROR_OK);
926
927                         /* No more breakpoints left, just do a step */
928                         if (!tmp_bp_set)
929                         {
930                                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
931                         }
932                         else
933                         {
934                                 /* Start the core */
935                                 LOG_DEBUG("Starting core to serve pending interrupts");
936                                 int64_t t_start = timeval_ms();
937                                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
938
939                                 /* Wait for pending handlers to complete or timeout */
940                                 do {
941                                         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
942                                         if (retval != ERROR_OK)
943                                         {
944                                                 target->state = TARGET_UNKNOWN;
945                                                 return retval;
946                                         }
947                                         isr_timed_out = ((timeval_ms() - t_start) > 500);
948                                 } while (!((cortex_m3->dcb_dhcsr & S_HALT) || isr_timed_out));
949
950                                 /* Remove the temporary breakpoint */
951                                 breakpoint_remove(target, pc_value);
952
953                                 if (isr_timed_out)
954                                 {
955                                         LOG_DEBUG("Interrupt handlers didn't complete within time, "
956                                                         "leaving target running");
957                                 }
958                                 else
959                                 {
960                                         /* Step over next instruction with interrupts disabled */
961                                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
962                                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
963                                         /* Re-enable interrupts */
964                                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
965                                 }
966                         }
967                 }
968         }
969
970         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
971         if (retval != ERROR_OK)
972                 return retval;
973
974         /* registers are now invalid */
975         register_cache_invalidate(cortex_m3->armv7m.core_cache);
976
977         if (breakpoint)
978                 cortex_m3_set_breakpoint(target, breakpoint);
979
980         if (isr_timed_out) {
981                 /* Leave the core running. The user has to stop execution manually. */
982                 target->debug_reason = DBG_REASON_NOTHALTED;
983                 target->state = TARGET_RUNNING;
984                 return ERROR_OK;
985         }
986
987         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
988                         " nvic_icsr = 0x%" PRIx32,
989                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
990
991         retval = cortex_m3_debug_entry(target);
992         if (retval != ERROR_OK)
993                 return retval;
994         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
995
996         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
997                         " nvic_icsr = 0x%" PRIx32,
998                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
999
1000         return ERROR_OK;
1001 }
1002
1003 static int cortex_m3_assert_reset(struct target *target)
1004 {
1005         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1006         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
1007         enum cortex_m3_soft_reset_config reset_config = cortex_m3->soft_reset_config;
1008
1009         LOG_DEBUG("target->state: %s",
1010                 target_state_name(target));
1011
1012         enum reset_types jtag_reset_config = jtag_get_reset_config();
1013
1014         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
1015                 /* allow scripts to override the reset event */
1016
1017                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1018                 register_cache_invalidate(cortex_m3->armv7m.core_cache);
1019                 target->state = TARGET_RESET;
1020
1021                 return ERROR_OK;
1022         }
1023
1024         /* Enable debug requests */
1025         int retval;
1026         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
1027         if (retval != ERROR_OK)
1028                 return retval;
1029         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
1030         {
1031                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
1032                 if (retval != ERROR_OK)
1033                         return retval;
1034         }
1035
1036         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
1037         if (retval != ERROR_OK)
1038                 return retval;
1039
1040         if (!target->reset_halt)
1041         {
1042                 /* Set/Clear C_MASKINTS in a separate operation */
1043                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
1044                 {
1045                         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
1046                                         DBGKEY | C_DEBUGEN | C_HALT);
1047                         if (retval != ERROR_OK)
1048                                 return retval;
1049                 }
1050
1051                 /* clear any debug flags before resuming */
1052                 cortex_m3_clear_halt(target);
1053
1054                 /* clear C_HALT in dhcsr reg */
1055                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
1056         }
1057         else
1058         {
1059                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1060                  *
1061                  * REVISIT catching BUSERR presumably helps to defend against
1062                  * bad vector table entries.  Should this include MMERR or
1063                  * other flags too?
1064                  */
1065                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
1066                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1067                 if (retval != ERROR_OK)
1068                         return retval;
1069         }
1070
1071         if (jtag_reset_config & RESET_HAS_SRST)
1072         {
1073                 /* default to asserting srst */
1074                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1075                 {
1076                         jtag_add_reset(1, 1);
1077                 }
1078                 else
1079                 {
1080                         jtag_add_reset(0, 1);
1081                 }
1082         }
1083         else
1084         {
1085                 /* Use a standard Cortex-M3 software reset mechanism.
1086                  * We default to using VECRESET as it is supported on all current cores.
1087                  * This has the disadvantage of not resetting the peripherals, so a
1088                  * reset-init event handler is needed to perform any peripheral resets.
1089                  */
1090                 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1091                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1092                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1093                 if (retval != ERROR_OK)
1094                         return retval;
1095
1096                 LOG_DEBUG("Using Cortex-M3 %s", (reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1097                                 ? "SYSRESETREQ" : "VECTRESET");
1098
1099                 if (reset_config == CORTEX_M3_RESET_VECTRESET) {
1100                         LOG_WARNING("Only resetting the Cortex-M3 core, use a reset-init event "
1101                                         "handler to reset any peripherals");
1102                 }
1103
1104                 {
1105                         /* I do not know why this is necessary, but it
1106                          * fixes strange effects (step/resume cause NMI
1107                          * after reset) on LM3S6918 -- Michael Schwingen
1108                          */
1109                         uint32_t tmp;
1110                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1111                         if (retval != ERROR_OK)
1112                                 return retval;
1113                 }
1114         }
1115
1116         target->state = TARGET_RESET;
1117         jtag_add_sleep(50000);
1118
1119         register_cache_invalidate(cortex_m3->armv7m.core_cache);
1120
1121         if (target->reset_halt)
1122         {
1123                 if ((retval = target_halt(target)) != ERROR_OK)
1124                         return retval;
1125         }
1126
1127         return ERROR_OK;
1128 }
1129
1130 static int cortex_m3_deassert_reset(struct target *target)
1131 {
1132         LOG_DEBUG("target->state: %s",
1133                 target_state_name(target));
1134
1135         /* deassert reset lines */
1136         jtag_add_reset(0, 0);
1137
1138         return ERROR_OK;
1139 }
1140
1141 static int
1142 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1143 {
1144         int retval;
1145         int fp_num = 0;
1146         uint32_t hilo;
1147         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1148         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1149
1150         if (breakpoint->set)
1151         {
1152                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
1153                 return ERROR_OK;
1154         }
1155
1156         if (cortex_m3->auto_bp_type)
1157         {
1158                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1159         }
1160
1161         if (breakpoint->type == BKPT_HARD)
1162         {
1163                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
1164                         fp_num++;
1165                 if (fp_num >= cortex_m3->fp_num_code)
1166                 {
1167                         LOG_ERROR("Can not find free FPB Comparator!");
1168                         return ERROR_FAIL;
1169                 }
1170                 breakpoint->set = fp_num + 1;
1171                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1172                 comparator_list[fp_num].used = 1;
1173                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1174                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1175                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
1176                 if (!cortex_m3->fpb_enabled)
1177                 {
1178                         LOG_DEBUG("FPB wasn't enabled, do it now");
1179                         target_write_u32(target, FP_CTRL, 3);
1180                 }
1181         }
1182         else if (breakpoint->type == BKPT_SOFT)
1183         {
1184                 uint8_t code[4];
1185
1186                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1187                  * semihosting; don't use that.  Otherwise the BKPT
1188                  * parameter is arbitrary.
1189                  */
1190                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1191                 retval = target_read_memory(target,
1192                                 breakpoint->address & 0xFFFFFFFE,
1193                                 breakpoint->length, 1,
1194                                 breakpoint->orig_instr);
1195                 if (retval != ERROR_OK)
1196                         return retval;
1197                 retval = target_write_memory(target,
1198                                 breakpoint->address & 0xFFFFFFFE,
1199                                 breakpoint->length, 1,
1200                                 code);
1201                 if (retval != ERROR_OK)
1202                         return retval;
1203                 breakpoint->set = true;
1204         }
1205
1206         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1207                           breakpoint->unique_id,
1208                           (int)(breakpoint->type),
1209                           breakpoint->address,
1210                           breakpoint->length,
1211                           breakpoint->set);
1212
1213         return ERROR_OK;
1214 }
1215
1216 static int
1217 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1218 {
1219         int retval;
1220         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1221         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
1222
1223         if (!breakpoint->set)
1224         {
1225                 LOG_WARNING("breakpoint not set");
1226                 return ERROR_OK;
1227         }
1228
1229         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1230                           breakpoint->unique_id,
1231                           (int)(breakpoint->type),
1232                           breakpoint->address,
1233                           breakpoint->length,
1234                           breakpoint->set);
1235
1236         if (breakpoint->type == BKPT_HARD)
1237         {
1238                 int fp_num = breakpoint->set - 1;
1239                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
1240                 {
1241                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1242                         return ERROR_OK;
1243                 }
1244                 comparator_list[fp_num].used = 0;
1245                 comparator_list[fp_num].fpcr_value = 0;
1246                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1247         }
1248         else
1249         {
1250                 /* restore original instruction (kept in target endianness) */
1251                 if (breakpoint->length == 4)
1252                 {
1253                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
1254                         {
1255                                 return retval;
1256                         }
1257                 }
1258                 else
1259                 {
1260                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
1261                         {
1262                                 return retval;
1263                         }
1264                 }
1265         }
1266         breakpoint->set = false;
1267
1268         return ERROR_OK;
1269 }
1270
1271 static int
1272 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1273 {
1274         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1275
1276         if (cortex_m3->auto_bp_type)
1277         {
1278                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1279 #ifdef ARMV7_GDB_HACKS
1280                 if (breakpoint->length != 2) {
1281                         /* XXX Hack: Replace all breakpoints with length != 2 with
1282                          * a hardware breakpoint. */
1283                         breakpoint->type = BKPT_HARD;
1284                         breakpoint->length = 2;
1285                 }
1286 #endif
1287         }
1288
1289         if(breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1290                 if (breakpoint->type == BKPT_HARD)
1291                 {
1292                         LOG_INFO("flash patch comparator requested outside code memory region");
1293                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1294                 }
1295
1296                 if (breakpoint->type == BKPT_SOFT)
1297                 {
1298                         LOG_INFO("soft breakpoint requested in code (flash) memory region");
1299                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1300                 }
1301         }
1302
1303         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
1304         {
1305                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1306                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1307         }
1308
1309         if ((breakpoint->length != 2))
1310         {
1311                 LOG_INFO("only breakpoints of two bytes length supported");
1312                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1313         }
1314
1315         if (breakpoint->type == BKPT_HARD)
1316                 cortex_m3->fp_code_available--;
1317
1318         return cortex_m3_set_breakpoint(target, breakpoint);
1319 }
1320
1321 static int
1322 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1323 {
1324         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1325
1326         /* REVISIT why check? FBP can be updated with core running ... */
1327         if (target->state != TARGET_HALTED)
1328         {
1329                 LOG_WARNING("target not halted");
1330                 return ERROR_TARGET_NOT_HALTED;
1331         }
1332
1333         if (cortex_m3->auto_bp_type)
1334         {
1335                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1336         }
1337
1338         if (breakpoint->set)
1339         {
1340                 cortex_m3_unset_breakpoint(target, breakpoint);
1341         }
1342
1343         if (breakpoint->type == BKPT_HARD)
1344                 cortex_m3->fp_code_available++;
1345
1346         return ERROR_OK;
1347 }
1348
1349 static int
1350 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1351 {
1352         int dwt_num = 0;
1353         uint32_t mask, temp;
1354         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1355
1356         /* watchpoint params were validated earlier */
1357         mask = 0;
1358         temp = watchpoint->length;
1359         while (temp) {
1360                 temp >>= 1;
1361                 mask++;
1362         }
1363         mask--;
1364
1365         /* REVISIT Don't fully trust these "not used" records ... users
1366          * may set up breakpoints by hand, e.g. dual-address data value
1367          * watchpoint using comparator #1; comparator #0 matching cycle
1368          * count; send data trace info through ITM and TPIU; etc
1369          */
1370         struct cortex_m3_dwt_comparator *comparator;
1371
1372         for (comparator = cortex_m3->dwt_comparator_list;
1373                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1374                         comparator++, dwt_num++)
1375                 continue;
1376         if (dwt_num >= cortex_m3->dwt_num_comp)
1377         {
1378                 LOG_ERROR("Can not find free DWT Comparator");
1379                 return ERROR_FAIL;
1380         }
1381         comparator->used = 1;
1382         watchpoint->set = dwt_num + 1;
1383
1384         comparator->comp = watchpoint->address;
1385         target_write_u32(target, comparator->dwt_comparator_address + 0,
1386                         comparator->comp);
1387
1388         comparator->mask = mask;
1389         target_write_u32(target, comparator->dwt_comparator_address + 4,
1390                         comparator->mask);
1391
1392         switch (watchpoint->rw) {
1393         case WPT_READ:
1394                 comparator->function = 5;
1395                 break;
1396         case WPT_WRITE:
1397                 comparator->function = 6;
1398                 break;
1399         case WPT_ACCESS:
1400                 comparator->function = 7;
1401                 break;
1402         }
1403         target_write_u32(target, comparator->dwt_comparator_address + 8,
1404                         comparator->function);
1405
1406         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1407                         watchpoint->unique_id, dwt_num,
1408                         (unsigned) comparator->comp,
1409                         (unsigned) comparator->mask,
1410                         (unsigned) comparator->function);
1411         return ERROR_OK;
1412 }
1413
1414 static int
1415 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1416 {
1417         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1418         struct cortex_m3_dwt_comparator *comparator;
1419         int dwt_num;
1420
1421         if (!watchpoint->set)
1422         {
1423                 LOG_WARNING("watchpoint (wpid: %d) not set",
1424                                 watchpoint->unique_id);
1425                 return ERROR_OK;
1426         }
1427
1428         dwt_num = watchpoint->set - 1;
1429
1430         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1431                         watchpoint->unique_id, dwt_num,
1432                         (unsigned) watchpoint->address);
1433
1434         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1435         {
1436                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1437                 return ERROR_OK;
1438         }
1439
1440         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1441         comparator->used = 0;
1442         comparator->function = 0;
1443         target_write_u32(target, comparator->dwt_comparator_address + 8,
1444                         comparator->function);
1445
1446         watchpoint->set = false;
1447
1448         return ERROR_OK;
1449 }
1450
1451 static int
1452 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1453 {
1454         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1455
1456         if (cortex_m3->dwt_comp_available < 1)
1457         {
1458                 LOG_DEBUG("no comparators?");
1459                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1460         }
1461
1462         /* hardware doesn't support data value masking */
1463         if (watchpoint->mask != ~(uint32_t)0) {
1464                 LOG_DEBUG("watchpoint value masks not supported");
1465                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1466         }
1467
1468         /* hardware allows address masks of up to 32K */
1469         unsigned mask;
1470
1471         for (mask = 0; mask < 16; mask++) {
1472                 if ((1u << mask) == watchpoint->length)
1473                         break;
1474         }
1475         if (mask == 16) {
1476                 LOG_DEBUG("unsupported watchpoint length");
1477                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1478         }
1479         if (watchpoint->address & ((1 << mask) - 1)) {
1480                 LOG_DEBUG("watchpoint address is unaligned");
1481                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1482         }
1483
1484         /* Caller doesn't seem to be able to describe watching for data
1485          * values of zero; that flags "no value".
1486          *
1487          * REVISIT This DWT may well be able to watch for specific data
1488          * values.  Requires comparator #1 to set DATAVMATCH and match
1489          * the data, and another comparator (DATAVADDR0) matching addr.
1490          */
1491         if (watchpoint->value) {
1492                 LOG_DEBUG("data value watchpoint not YET supported");
1493                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1494         }
1495
1496         cortex_m3->dwt_comp_available--;
1497         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1498
1499         return ERROR_OK;
1500 }
1501
1502 static int
1503 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1504 {
1505         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1506
1507         /* REVISIT why check? DWT can be updated with core running ... */
1508         if (target->state != TARGET_HALTED)
1509         {
1510                 LOG_WARNING("target not halted");
1511                 return ERROR_TARGET_NOT_HALTED;
1512         }
1513
1514         if (watchpoint->set)
1515         {
1516                 cortex_m3_unset_watchpoint(target, watchpoint);
1517         }
1518
1519         cortex_m3->dwt_comp_available++;
1520         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1521
1522         return ERROR_OK;
1523 }
1524
1525 static void cortex_m3_enable_watchpoints(struct target *target)
1526 {
1527         struct watchpoint *watchpoint = target->watchpoints;
1528
1529         /* set any pending watchpoints */
1530         while (watchpoint)
1531         {
1532                 if (!watchpoint->set)
1533                         cortex_m3_set_watchpoint(target, watchpoint);
1534                 watchpoint = watchpoint->next;
1535         }
1536 }
1537
1538 static int cortex_m3_load_core_reg_u32(struct target *target,
1539                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1540 {
1541         int retval;
1542         struct armv7m_common *armv7m = target_to_armv7m(target);
1543         struct adiv5_dap *swjdp = &armv7m->dap;
1544
1545         /* NOTE:  we "know" here that the register identifiers used
1546          * in the v7m header match the Cortex-M3 Debug Core Register
1547          * Selector values for R0..R15, xPSR, MSP, and PSP.
1548          */
1549         switch (num) {
1550         case 0 ... 18:
1551                 /* read a normal core register */
1552                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1553
1554                 if (retval != ERROR_OK)
1555                 {
1556                         LOG_ERROR("JTAG failure %i",retval);
1557                         return ERROR_JTAG_DEVICE_ERROR;
1558                 }
1559                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1560                 break;
1561
1562         case ARMV7M_PRIMASK:
1563         case ARMV7M_BASEPRI:
1564         case ARMV7M_FAULTMASK:
1565         case ARMV7M_CONTROL:
1566                 /* Cortex-M3 packages these four registers as bitfields
1567                  * in one Debug Core register.  So say r0 and r2 docs;
1568                  * it was removed from r1 docs, but still works.
1569                  */
1570                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1571
1572                 switch (num)
1573                 {
1574                         case ARMV7M_PRIMASK:
1575                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1576                                 break;
1577
1578                         case ARMV7M_BASEPRI:
1579                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1580                                 break;
1581
1582                         case ARMV7M_FAULTMASK:
1583                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1584                                 break;
1585
1586                         case ARMV7M_CONTROL:
1587                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1588                                 break;
1589                 }
1590
1591                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1592                 break;
1593
1594         default:
1595                 return ERROR_INVALID_ARGUMENTS;
1596         }
1597
1598         return ERROR_OK;
1599 }
1600
1601 static int cortex_m3_store_core_reg_u32(struct target *target,
1602                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1603 {
1604         int retval;
1605         uint32_t reg;
1606         struct armv7m_common *armv7m = target_to_armv7m(target);
1607         struct adiv5_dap *swjdp = &armv7m->dap;
1608
1609 #ifdef ARMV7_GDB_HACKS
1610         /* If the LR register is being modified, make sure it will put us
1611          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1612          * hack to deal with the fact that gdb will sometimes "forge"
1613          * return addresses, and doesn't set the LSB correctly (i.e., when
1614          * printing expressions containing function calls, it sets LR = 0.)
1615          * Valid exception return codes have bit 0 set too.
1616          */
1617         if (num == ARMV7M_R14)
1618                 value |= 0x01;
1619 #endif
1620
1621         /* NOTE:  we "know" here that the register identifiers used
1622          * in the v7m header match the Cortex-M3 Debug Core Register
1623          * Selector values for R0..R15, xPSR, MSP, and PSP.
1624          */
1625         switch (num) {
1626         case 0 ... 18:
1627                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1628                 if (retval != ERROR_OK)
1629                 {
1630                         struct reg *r;
1631
1632                         LOG_ERROR("JTAG failure");
1633                         r = armv7m->core_cache->reg_list + num;
1634                         r->dirty = r->valid;
1635                         return ERROR_JTAG_DEVICE_ERROR;
1636                 }
1637                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1638                 break;
1639
1640         case ARMV7M_PRIMASK:
1641         case ARMV7M_BASEPRI:
1642         case ARMV7M_FAULTMASK:
1643         case ARMV7M_CONTROL:
1644                 /* Cortex-M3 packages these four registers as bitfields
1645                  * in one Debug Core register.  So say r0 and r2 docs;
1646                  * it was removed from r1 docs, but still works.
1647                  */
1648                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1649
1650                 switch (num)
1651                 {
1652                         case ARMV7M_PRIMASK:
1653                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1654                                 break;
1655
1656                         case ARMV7M_BASEPRI:
1657                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1658                                 break;
1659
1660                         case ARMV7M_FAULTMASK:
1661                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1662                                 break;
1663
1664                         case ARMV7M_CONTROL:
1665                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1666                                 break;
1667                 }
1668
1669                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1670
1671                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1672                 break;
1673
1674         default:
1675                 return ERROR_INVALID_ARGUMENTS;
1676         }
1677
1678         return ERROR_OK;
1679 }
1680
1681 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1682                 uint32_t size, uint32_t count, uint8_t *buffer)
1683 {
1684         struct armv7m_common *armv7m = target_to_armv7m(target);
1685         struct adiv5_dap *swjdp = &armv7m->dap;
1686         int retval = ERROR_INVALID_ARGUMENTS;
1687
1688         /* cortex_m3 handles unaligned memory access */
1689         if (count && buffer) {
1690                 switch (size) {
1691                 case 4:
1692                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1693                         break;
1694                 case 2:
1695                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1696                         break;
1697                 case 1:
1698                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1699                         break;
1700                 }
1701         }
1702
1703         return retval;
1704 }
1705
1706 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1707                 uint32_t size, uint32_t count, const uint8_t *buffer)
1708 {
1709         struct armv7m_common *armv7m = target_to_armv7m(target);
1710         struct adiv5_dap *swjdp = &armv7m->dap;
1711         int retval = ERROR_INVALID_ARGUMENTS;
1712
1713         if (count && buffer) {
1714                 switch (size) {
1715                 case 4:
1716                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1717                         break;
1718                 case 2:
1719                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1720                         break;
1721                 case 1:
1722                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1723                         break;
1724                 }
1725         }
1726
1727         return retval;
1728 }
1729
1730 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1731                 uint32_t count, const uint8_t *buffer)
1732 {
1733         return cortex_m3_write_memory(target, address, 4, count, buffer);
1734 }
1735
1736 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1737                 struct target *target)
1738 {
1739         armv7m_build_reg_cache(target);
1740         return ERROR_OK;
1741 }
1742
1743 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1744  * on r/w if the core is not running, and clear on resume or reset ... or
1745  * at least, in a post_restore_context() method.
1746  */
1747
1748 struct dwt_reg_state {
1749         struct target   *target;
1750         uint32_t        addr;
1751         uint32_t        value;  /* scratch/cache */
1752 };
1753
1754 static int cortex_m3_dwt_get_reg(struct reg *reg)
1755 {
1756         struct dwt_reg_state *state = reg->arch_info;
1757
1758         return target_read_u32(state->target, state->addr, &state->value);
1759 }
1760
1761 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1762 {
1763         struct dwt_reg_state *state = reg->arch_info;
1764
1765         return target_write_u32(state->target, state->addr,
1766                         buf_get_u32(buf, 0, reg->size));
1767 }
1768
1769 struct dwt_reg {
1770         uint32_t        addr;
1771         char            *name;
1772         unsigned        size;
1773 };
1774
1775 static struct dwt_reg dwt_base_regs[] = {
1776         { DWT_CTRL, "dwt_ctrl", 32, },
1777         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1778          * increments while the core is asleep.
1779          */
1780         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1781         /* plus some 8 bit counters, useful for profiling with TPIU */
1782 };
1783
1784 static struct dwt_reg dwt_comp[] = {
1785 #define DWT_COMPARATOR(i) \
1786                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1787                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1788                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1789         DWT_COMPARATOR(0),
1790         DWT_COMPARATOR(1),
1791         DWT_COMPARATOR(2),
1792         DWT_COMPARATOR(3),
1793 #undef DWT_COMPARATOR
1794 };
1795
1796 static const struct reg_arch_type dwt_reg_type = {
1797         .get = cortex_m3_dwt_get_reg,
1798         .set = cortex_m3_dwt_set_reg,
1799 };
1800
1801 static void
1802 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1803 {
1804         struct dwt_reg_state *state;
1805
1806         state = calloc(1, sizeof *state);
1807         if (!state)
1808                 return;
1809         state->addr = d->addr;
1810         state->target = t;
1811
1812         r->name = d->name;
1813         r->size = d->size;
1814         r->value = &state->value;
1815         r->arch_info = state;
1816         r->type = &dwt_reg_type;
1817 }
1818
1819 static void
1820 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1821 {
1822         uint32_t dwtcr;
1823         struct reg_cache *cache;
1824         struct cortex_m3_dwt_comparator *comparator;
1825         int reg, i;
1826
1827         target_read_u32(target, DWT_CTRL, &dwtcr);
1828         if (!dwtcr) {
1829                 LOG_DEBUG("no DWT");
1830                 return;
1831         }
1832
1833         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1834         cm3->dwt_comp_available = cm3->dwt_num_comp;
1835         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1836                         sizeof(struct cortex_m3_dwt_comparator));
1837         if (!cm3->dwt_comparator_list) {
1838 fail0:
1839                 cm3->dwt_num_comp = 0;
1840                 LOG_ERROR("out of mem");
1841                 return;
1842         }
1843
1844         cache = calloc(1, sizeof *cache);
1845         if (!cache) {
1846 fail1:
1847                 free(cm3->dwt_comparator_list);
1848                 goto fail0;
1849         }
1850         cache->name = "cortex-m3 dwt registers";
1851         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1852         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1853         if (!cache->reg_list) {
1854                 free(cache);
1855                 goto fail1;
1856         }
1857
1858         for (reg = 0; reg < 2; reg++)
1859                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1860                                 dwt_base_regs + reg);
1861
1862         comparator = cm3->dwt_comparator_list;
1863         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1864                 int j;
1865
1866                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1867                 for (j = 0; j < 3; j++, reg++)
1868                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1869                                         dwt_comp + 3 * i + j);
1870         }
1871
1872         *register_get_last_cache_p(&target->reg_cache) = cache;
1873         cm3->dwt_cache = cache;
1874
1875         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1876                         dwtcr, cm3->dwt_num_comp,
1877                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1878
1879         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1880          * implement single-address data value watchpoints ... so we
1881          * won't need to check it later, when asked to set one up.
1882          */
1883 }
1884
1885 static int cortex_m3_examine(struct target *target)
1886 {
1887         int retval;
1888         uint32_t cpuid, fpcr;
1889         int i;
1890         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1891         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
1892
1893         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1894                 return retval;
1895
1896         if (!target_was_examined(target))
1897         {
1898                 target_set_examined(target);
1899
1900                 /* Read from Device Identification Registers */
1901                 retval = target_read_u32(target, CPUID, &cpuid);
1902                 if (retval != ERROR_OK)
1903                         return retval;
1904
1905                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1906                         LOG_DEBUG("Cortex-M3 r%" PRId8 "p%" PRId8 " processor detected",
1907                                 (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1908                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1909
1910                 /* NOTE: FPB and DWT are both optional. */
1911
1912                 /* Setup FPB */
1913                 target_read_u32(target, FP_CTRL, &fpcr);
1914                 cortex_m3->auto_bp_type = 1;
1915                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1916                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1917                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1918                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1919                 cortex_m3->fpb_enabled = fpcr & 1;
1920                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1921                 {
1922                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1923                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1924                 }
1925                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1926
1927                 /* Setup DWT */
1928                 cortex_m3_dwt_setup(cortex_m3, target);
1929
1930                 /* These hardware breakpoints only work for code in flash! */
1931                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1932                                 target_name(target),
1933                                 cortex_m3->fp_num_code,
1934                                 cortex_m3->dwt_num_comp);
1935         }
1936
1937         return ERROR_OK;
1938 }
1939
1940 static int cortex_m3_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1941 {
1942         uint16_t dcrdr;
1943         int retval;
1944
1945         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1946         *ctrl = (uint8_t)dcrdr;
1947         *value = (uint8_t)(dcrdr >> 8);
1948
1949         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1950
1951         /* write ack back to software dcc register
1952          * signify we have read data */
1953         if (dcrdr & (1 << 0))
1954         {
1955                 dcrdr = 0;
1956                 retval = mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1957                 if (retval != ERROR_OK)
1958                         return retval;
1959         }
1960
1961         return ERROR_OK;
1962 }
1963
1964 static int cortex_m3_target_request_data(struct target *target,
1965                 uint32_t size, uint8_t *buffer)
1966 {
1967         struct armv7m_common *armv7m = target_to_armv7m(target);
1968         struct adiv5_dap *swjdp = &armv7m->dap;
1969         uint8_t data;
1970         uint8_t ctrl;
1971         uint32_t i;
1972
1973         for (i = 0; i < (size * 4); i++)
1974         {
1975                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1976                 buffer[i] = data;
1977         }
1978
1979         return ERROR_OK;
1980 }
1981
1982 static int cortex_m3_handle_target_request(void *priv)
1983 {
1984         struct target *target = priv;
1985         if (!target_was_examined(target))
1986                 return ERROR_OK;
1987         struct armv7m_common *armv7m = target_to_armv7m(target);
1988         struct adiv5_dap *swjdp = &armv7m->dap;
1989
1990         if (!target->dbg_msg_enabled)
1991                 return ERROR_OK;
1992
1993         if (target->state == TARGET_RUNNING)
1994         {
1995                 uint8_t data;
1996                 uint8_t ctrl;
1997
1998                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1999
2000                 /* check if we have data */
2001                 if (ctrl & (1 << 0))
2002                 {
2003                         uint32_t request;
2004
2005                         /* we assume target is quick enough */
2006                         request = data;
2007                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
2008                         request |= (data << 8);
2009                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
2010                         request |= (data << 16);
2011                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
2012                         request |= (data << 24);
2013                         target_request(target, request);
2014                 }
2015         }
2016
2017         return ERROR_OK;
2018 }
2019
2020 static int cortex_m3_init_arch_info(struct target *target,
2021                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
2022 {
2023         int retval;
2024         struct armv7m_common *armv7m = &cortex_m3->armv7m;
2025
2026         armv7m_init_arch_info(target, armv7m);
2027
2028         /* prepare JTAG information for the new target */
2029         cortex_m3->jtag_info.tap = tap;
2030         cortex_m3->jtag_info.scann_size = 4;
2031
2032         /* default reset mode is to use srst if fitted
2033          * if not it will use CORTEX_M3_RESET_VECTRESET */
2034         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2035
2036         armv7m->arm.dap = &armv7m->dap;
2037
2038         /* Leave (only) generic DAP stuff for debugport_init(); */
2039         armv7m->dap.jtag_info = &cortex_m3->jtag_info;
2040         armv7m->dap.memaccess_tck = 8;
2041         /* Cortex-M3 has 4096 bytes autoincrement range */
2042         armv7m->dap.tar_autoincr_block = (1 << 12);
2043
2044         /* register arch-specific functions */
2045         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
2046
2047         armv7m->post_debug_entry = NULL;
2048
2049         armv7m->pre_restore_context = NULL;
2050
2051         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
2052         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
2053
2054         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
2055
2056         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
2057         {
2058                 return retval;
2059         }
2060
2061         return ERROR_OK;
2062 }
2063
2064 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
2065 {
2066         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
2067
2068         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
2069         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
2070
2071         return ERROR_OK;
2072 }
2073
2074 /*--------------------------------------------------------------------------*/
2075
2076 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
2077                 struct cortex_m3_common *cm3)
2078 {
2079         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
2080                 command_print(cmd_ctx, "target is not a Cortex-M3");
2081                 return ERROR_TARGET_INVALID;
2082         }
2083         return ERROR_OK;
2084 }
2085
2086 /*
2087  * Only stuff below this line should need to verify that its target
2088  * is a Cortex-M3.  Everything else should have indirected through the
2089  * cortexm3_target structure, which is only used with CM3 targets.
2090  */
2091
2092 static const struct {
2093         char name[10];
2094         unsigned mask;
2095 } vec_ids[] = {
2096         { "hard_err",   VC_HARDERR, },
2097         { "int_err",    VC_INTERR, },
2098         { "bus_err",    VC_BUSERR, },
2099         { "state_err",  VC_STATERR, },
2100         { "chk_err",    VC_CHKERR, },
2101         { "nocp_err",   VC_NOCPERR, },
2102         { "mm_err",     VC_MMERR, },
2103         { "reset",      VC_CORERESET, },
2104 };
2105
2106 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
2107 {
2108         struct target *target = get_current_target(CMD_CTX);
2109         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2110         struct armv7m_common *armv7m = &cortex_m3->armv7m;
2111         struct adiv5_dap *swjdp = &armv7m->dap;
2112         uint32_t demcr = 0;
2113         int retval;
2114
2115         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2116         if (retval != ERROR_OK)
2117                 return retval;
2118
2119         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2120         if (retval != ERROR_OK)
2121                 return retval;
2122
2123         if (CMD_ARGC > 0) {
2124                 unsigned catch = 0;
2125
2126                 if (CMD_ARGC == 1) {
2127                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2128                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2129                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2130                                         | VC_MMERR | VC_CORERESET;
2131                                 goto write;
2132                         } else if (strcmp(CMD_ARGV[0], "none") == 0) {
2133                                 goto write;
2134                         }
2135                 }
2136                 while (CMD_ARGC-- > 0) {
2137                         unsigned i;
2138                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2139                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2140                                         continue;
2141                                 catch |= vec_ids[i].mask;
2142                                 break;
2143                         }
2144                         if (i == ARRAY_SIZE(vec_ids)) {
2145                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2146                                 return ERROR_INVALID_ARGUMENTS;
2147                         }
2148                 }
2149 write:
2150                 /* For now, armv7m->demcr only stores vector catch flags. */
2151                 armv7m->demcr = catch;
2152
2153                 demcr &= ~0xffff;
2154                 demcr |= catch;
2155
2156                 /* write, but don't assume it stuck (why not??) */
2157                 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2158                 if (retval != ERROR_OK)
2159                         return retval;
2160                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2161                 if (retval != ERROR_OK)
2162                         return retval;
2163
2164                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2165                  * Otherwise the vector catch hardware could fire when there's
2166                  * no debugger hooked up, causing much confusion...
2167                  */
2168         }
2169
2170         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
2171         {
2172                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2173                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2174         }
2175
2176         return ERROR_OK;
2177 }
2178
2179 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2180 {
2181         struct target *target = get_current_target(CMD_CTX);
2182         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2183         int retval;
2184
2185         static const Jim_Nvp nvp_maskisr_modes[] = {
2186                 { .name = "auto", .value = CORTEX_M3_ISRMASK_AUTO },
2187                 { .name = "off" , .value = CORTEX_M3_ISRMASK_OFF },
2188                 { .name = "on"  , .value = CORTEX_M3_ISRMASK_ON },
2189                 { .name = NULL  , .value = -1 },
2190         };
2191         const Jim_Nvp *n;
2192
2193
2194         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2195         if (retval != ERROR_OK)
2196                 return retval;
2197
2198         if (target->state != TARGET_HALTED)
2199         {
2200                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2201                 return ERROR_OK;
2202         }
2203
2204         if (CMD_ARGC > 0)
2205         {
2206                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2207                 if (n->name == NULL)
2208                 {
2209                         return ERROR_COMMAND_SYNTAX_ERROR;
2210                 }
2211                 cortex_m3->isrmasking_mode = n->value;
2212
2213
2214                 if(cortex_m3->isrmasking_mode == CORTEX_M3_ISRMASK_ON)
2215                 {
2216                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2217                 }
2218                 else
2219                 {
2220                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2221                 }
2222         }
2223
2224         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m3->isrmasking_mode);
2225         command_print(CMD_CTX, "cortex_m3 interrupt mask %s", n->name);
2226
2227         return ERROR_OK;
2228 }
2229
2230 COMMAND_HANDLER(handle_cortex_m3_reset_config_command)
2231 {
2232         struct target *target = get_current_target(CMD_CTX);
2233         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2234         int retval;
2235         char *reset_config;
2236
2237         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2238         if (retval != ERROR_OK)
2239                 return retval;
2240
2241         if (CMD_ARGC > 0)
2242         {
2243                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2244                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_SYSRESETREQ;
2245                 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2246                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2247         }
2248
2249         switch (cortex_m3->soft_reset_config)
2250         {
2251                 case CORTEX_M3_RESET_SYSRESETREQ:
2252                         reset_config = "sysresetreq";
2253                         break;
2254
2255                 case CORTEX_M3_RESET_VECTRESET:
2256                         reset_config = "vectreset";
2257                         break;
2258
2259                 default:
2260                         reset_config = "unknown";
2261                         break;
2262         }
2263
2264         command_print(CMD_CTX, "cortex_m3 reset_config %s", reset_config);
2265
2266         return ERROR_OK;
2267 }
2268
2269 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2270         {
2271                 .name = "maskisr",
2272                 .handler = handle_cortex_m3_mask_interrupts_command,
2273                 .mode = COMMAND_EXEC,
2274                 .help = "mask cortex_m3 interrupts",
2275                 .usage = "['auto'|'on'|'off']",
2276         },
2277         {
2278                 .name = "vector_catch",
2279                 .handler = handle_cortex_m3_vector_catch_command,
2280                 .mode = COMMAND_EXEC,
2281                 .help = "configure hardware vectors to trigger debug entry",
2282                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2283         },
2284         {
2285                 .name = "reset_config",
2286                 .handler = handle_cortex_m3_reset_config_command,
2287                 .mode = COMMAND_ANY,
2288                 .help = "configure software reset handling",
2289                 .usage = "['srst'|'sysresetreq'|'vectreset']",
2290         },
2291         COMMAND_REGISTRATION_DONE
2292 };
2293 static const struct command_registration cortex_m3_command_handlers[] = {
2294         {
2295                 .chain = armv7m_command_handlers,
2296         },
2297         {
2298                 .name = "cortex_m3",
2299                 .mode = COMMAND_EXEC,
2300                 .help = "Cortex-M3 command group",
2301                 .chain = cortex_m3_exec_command_handlers,
2302         },
2303         COMMAND_REGISTRATION_DONE
2304 };
2305
2306 struct target_type cortexm3_target =
2307 {
2308         .name = "cortex_m3",
2309
2310         .poll = cortex_m3_poll,
2311         .arch_state = armv7m_arch_state,
2312
2313         .target_request_data = cortex_m3_target_request_data,
2314
2315         .halt = cortex_m3_halt,
2316         .resume = cortex_m3_resume,
2317         .step = cortex_m3_step,
2318
2319         .assert_reset = cortex_m3_assert_reset,
2320         .deassert_reset = cortex_m3_deassert_reset,
2321         .soft_reset_halt = cortex_m3_soft_reset_halt,
2322
2323         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2324
2325         .read_memory = cortex_m3_read_memory,
2326         .write_memory = cortex_m3_write_memory,
2327         .bulk_write_memory = cortex_m3_bulk_write_memory,
2328         .checksum_memory = armv7m_checksum_memory,
2329         .blank_check_memory = armv7m_blank_check_memory,
2330
2331         .run_algorithm = armv7m_run_algorithm,
2332         .start_algorithm = armv7m_start_algorithm,
2333         .wait_algorithm = armv7m_wait_algorithm,
2334
2335         .add_breakpoint = cortex_m3_add_breakpoint,
2336         .remove_breakpoint = cortex_m3_remove_breakpoint,
2337         .add_watchpoint = cortex_m3_add_watchpoint,
2338         .remove_watchpoint = cortex_m3_remove_watchpoint,
2339
2340         .commands = cortex_m3_command_handlers,
2341         .target_create = cortex_m3_target_create,
2342         .init_target = cortex_m3_init_target,
2343         .examine = cortex_m3_examine,
2344 };