target: move regmaps to armv7m.c
[fw/openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "cortex_m.h"
36 #include "target_request.h"
37 #include "target_type.h"
38 #include "arm_disassembler.h"
39 #include "register.h"
40 #include "arm_opcodes.h"
41 #include "arm_semihosting.h"
42 #include <helper/time_support.h>
43
44 /* NOTE:  most of this should work fine for the Cortex-M1 and
45  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
46  * Some differences:  M0/M1 doesn't have FBP remapping or the
47  * DWT tracing/profiling support.  (So the cycle counter will
48  * not be usable; the other stuff isn't currently used here.)
49  *
50  * Although there are some workarounds for errata seen only in r0p0
51  * silicon, such old parts are hard to find and thus not much tested
52  * any longer.
53  */
54
55 /**
56  * Returns the type of a break point required by address location
57  */
58 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
59
60
61 /* forward declarations */
62 static int cortex_m3_store_core_reg_u32(struct target *target,
63                 enum armv7m_regtype type, uint32_t num, uint32_t value);
64
65 static int cortexm3_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
66                 uint32_t *value, int regnum)
67 {
68         int retval;
69         uint32_t dcrdr;
70
71         /* because the DCB_DCRDR is used for the emulated dcc channel
72          * we have to save/restore the DCB_DCRDR when used */
73
74         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
75         if (retval != ERROR_OK)
76                 return retval;
77
78         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
79         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
80         if (retval != ERROR_OK)
81                 return retval;
82         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
83         if (retval != ERROR_OK)
84                 return retval;
85
86         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
87         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
88         if (retval != ERROR_OK)
89                 return retval;
90         retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
91         if (retval != ERROR_OK)
92                 return retval;
93
94         retval = dap_run(swjdp);
95         if (retval != ERROR_OK)
96                 return retval;
97
98         /* restore DCB_DCRDR - this needs to be in a seperate
99          * transaction otherwise the emulated DCC channel breaks */
100         if (retval == ERROR_OK)
101                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
102
103         return retval;
104 }
105
106 static int cortexm3_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
107                 uint32_t value, int regnum)
108 {
109         int retval;
110         uint32_t dcrdr;
111
112         /* because the DCB_DCRDR is used for the emulated dcc channel
113          * we have to save/restore the DCB_DCRDR when used */
114
115         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
116         if (retval != ERROR_OK)
117                 return retval;
118
119         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
120         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
121         if (retval != ERROR_OK)
122                 return retval;
123         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
124         if (retval != ERROR_OK)
125                 return retval;
126
127         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
128         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
129         if (retval != ERROR_OK)
130                 return retval;
131         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
132         if (retval != ERROR_OK)
133                 return retval;
134
135         retval = dap_run(swjdp);
136         if (retval != ERROR_OK)
137                 return retval;
138
139         /* restore DCB_DCRDR - this needs to be in a seperate
140          * transaction otherwise the emulated DCC channel breaks */
141         if (retval == ERROR_OK)
142                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
143
144         return retval;
145 }
146
147 static int cortex_m3_write_debug_halt_mask(struct target *target,
148                 uint32_t mask_on, uint32_t mask_off)
149 {
150         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
151         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
152
153         /* mask off status bits */
154         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
155         /* create new register mask */
156         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
157
158         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
159 }
160
161 static int cortex_m3_clear_halt(struct target *target)
162 {
163         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
164         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
165         int retval;
166
167         /* clear step if any */
168         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
169
170         /* Read Debug Fault Status Register */
171         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
172         if (retval != ERROR_OK)
173                 return retval;
174
175         /* Clear Debug Fault Status */
176         retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
177         if (retval != ERROR_OK)
178                 return retval;
179         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
180
181         return ERROR_OK;
182 }
183
184 static int cortex_m3_single_step_core(struct target *target)
185 {
186         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
187         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
188         uint32_t dhcsr_save;
189         int retval;
190
191         /* backup dhcsr reg */
192         dhcsr_save = cortex_m3->dcb_dhcsr;
193
194         /* Mask interrupts before clearing halt, if done already.  This avoids
195          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
196          * HALT can put the core into an unknown state.
197          */
198         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
199         {
200                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
201                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
202                 if (retval != ERROR_OK)
203                         return retval;
204         }
205         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
206                                 DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
207         if (retval != ERROR_OK)
208                 return retval;
209         LOG_DEBUG(" ");
210
211         /* restore dhcsr reg */
212         cortex_m3->dcb_dhcsr = dhcsr_save;
213         cortex_m3_clear_halt(target);
214
215         return ERROR_OK;
216 }
217
218 static int cortex_m3_endreset_event(struct target *target)
219 {
220         int i;
221         int retval;
222         uint32_t dcb_demcr;
223         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
224         struct armv7m_common *armv7m = &cortex_m3->armv7m;
225         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
226         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
227         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
228
229         /* REVISIT The four debug monitor bits are currently ignored... */
230         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
231         if (retval != ERROR_OK)
232                 return retval;
233         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
234
235         /* this register is used for emulated dcc channel */
236         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
237         if (retval != ERROR_OK)
238                 return retval;
239
240         /* Enable debug requests */
241         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
242         if (retval != ERROR_OK)
243                 return retval;
244         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
245         {
246                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
247                 if (retval != ERROR_OK)
248                         return retval;
249         }
250
251         /* clear any interrupt masking */
252         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
253
254         /* Enable features controlled by ITM and DWT blocks, and catch only
255          * the vectors we were told to pay attention to.
256          *
257          * Target firmware is responsible for all fault handling policy
258          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
259          * or manual updates to the NVIC SHCSR and CCR registers.
260          */
261         retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
262         if (retval != ERROR_OK)
263                 return retval;
264
265         /* Paranoia: evidently some (early?) chips don't preserve all the
266          * debug state (including FBP, DWT, etc) across reset...
267          */
268
269         /* Enable FPB */
270         retval = target_write_u32(target, FP_CTRL, 3);
271         if (retval != ERROR_OK)
272                 return retval;
273
274         cortex_m3->fpb_enabled = 1;
275
276         /* Restore FPB registers */
277         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
278         {
279                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
280                 if (retval != ERROR_OK)
281                         return retval;
282         }
283
284         /* Restore DWT registers */
285         for (i = 0; i < cortex_m3->dwt_num_comp; i++)
286         {
287                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
288                                 dwt_list[i].comp);
289                 if (retval != ERROR_OK)
290                         return retval;
291                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
292                                 dwt_list[i].mask);
293                 if (retval != ERROR_OK)
294                         return retval;
295                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
296                                 dwt_list[i].function);
297                 if (retval != ERROR_OK)
298                         return retval;
299         }
300         retval = dap_run(swjdp);
301         if (retval != ERROR_OK)
302                 return retval;
303
304         register_cache_invalidate(cortex_m3->armv7m.core_cache);
305
306         /* make sure we have latest dhcsr flags */
307         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
308
309         return retval;
310 }
311
312 static int cortex_m3_examine_debug_reason(struct target *target)
313 {
314         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
315
316         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
317         /* only check the debug reason if we don't know it already */
318
319         if ((target->debug_reason != DBG_REASON_DBGRQ)
320                 && (target->debug_reason != DBG_REASON_SINGLESTEP))
321         {
322                 if (cortex_m3->nvic_dfsr & DFSR_BKPT)
323                 {
324                         target->debug_reason = DBG_REASON_BREAKPOINT;
325                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
326                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
327                 }
328                 else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
329                         target->debug_reason = DBG_REASON_WATCHPOINT;
330                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
331                         target->debug_reason = DBG_REASON_BREAKPOINT;
332                 else /* EXTERNAL, HALTED */
333                         target->debug_reason = DBG_REASON_UNDEFINED;
334         }
335
336         return ERROR_OK;
337 }
338
339 static int cortex_m3_examine_exception_reason(struct target *target)
340 {
341         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
342         struct armv7m_common *armv7m = target_to_armv7m(target);
343         struct adiv5_dap *swjdp = &armv7m->dap;
344         int retval;
345
346         retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
347         if (retval != ERROR_OK)
348                 return retval;
349         switch (armv7m->exception_number)
350         {
351                 case 2: /* NMI */
352                         break;
353                 case 3: /* Hard Fault */
354                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
355                         if (retval != ERROR_OK)
356                                 return retval;
357                         if (except_sr & 0x40000000)
358                         {
359                                 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
360                                 if (retval != ERROR_OK)
361                                         return retval;
362                         }
363                         break;
364                 case 4: /* Memory Management */
365                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
366                         if (retval != ERROR_OK)
367                                 return retval;
368                         retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
369                         if (retval != ERROR_OK)
370                                 return retval;
371                         break;
372                 case 5: /* Bus Fault */
373                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
374                         if (retval != ERROR_OK)
375                                 return retval;
376                         retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
377                         if (retval != ERROR_OK)
378                                 return retval;
379                         break;
380                 case 6: /* Usage Fault */
381                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
382                         if (retval != ERROR_OK)
383                                 return retval;
384                         break;
385                 case 11:        /* SVCall */
386                         break;
387                 case 12:        /* Debug Monitor */
388                         retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
389                         if (retval != ERROR_OK)
390                                 return retval;
391                         break;
392                 case 14:        /* PendSV */
393                         break;
394                 case 15:        /* SysTick */
395                         break;
396                 default:
397                         except_sr = 0;
398                         break;
399         }
400         retval = dap_run(swjdp);
401         if (retval == ERROR_OK)
402                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
403                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
404                         armv7m_exception_string(armv7m->exception_number),
405                         shcsr, except_sr, cfsr, except_ar);
406         return retval;
407 }
408
409 static int cortex_m3_debug_entry(struct target *target)
410 {
411         int i;
412         uint32_t xPSR;
413         int retval;
414         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
415         struct armv7m_common *armv7m = &cortex_m3->armv7m;
416         struct arm *arm = &armv7m->arm;
417         struct adiv5_dap *swjdp = &armv7m->dap;
418         struct reg *r;
419
420         LOG_DEBUG(" ");
421
422         cortex_m3_clear_halt(target);
423         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
424         if (retval != ERROR_OK)
425                 return retval;
426
427         if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
428                 return retval;
429
430         /* Examine target state and mode */
431         /* First load register acessible through core debug port*/
432         int num_regs = armv7m->core_cache->num_regs;
433
434         for (i = 0; i < num_regs; i++)
435         {
436                 if (!armv7m->core_cache->reg_list[i].valid)
437                         armv7m->read_core_reg(target, i);
438         }
439
440         r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
441         xPSR = buf_get_u32(r->value, 0, 32);
442
443 #ifdef ARMV7_GDB_HACKS
444         /* FIXME this breaks on scan chains with more than one Cortex-M3.
445          * Instead, each CM3 should have its own dummy value...
446          */
447         /* copy real xpsr reg for gdb, setting thumb bit */
448         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
449         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
450         armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
451         armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
452 #endif
453
454         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
455         if (xPSR & 0xf00)
456         {
457                 r->dirty = r->valid;
458                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
459         }
460
461         /* Are we in an exception handler */
462         if (xPSR & 0x1FF)
463         {
464                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
465                 armv7m->exception_number = (xPSR & 0x1FF);
466
467                 arm->core_mode = ARM_MODE_HANDLER;
468                 arm->map = armv7m_msp_reg_map;
469         }
470         else
471         {
472                 unsigned control = buf_get_u32(armv7m->core_cache
473                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
474
475                 /* is this thread privileged? */
476                 armv7m->core_mode = control & 1;
477                 arm->core_mode = armv7m->core_mode
478                                 ? ARM_MODE_USER_THREAD
479                                 : ARM_MODE_THREAD;
480
481                 /* which stack is it using? */
482                 if (control & 2)
483                         arm->map = armv7m_psp_reg_map;
484                 else
485                         arm->map = armv7m_msp_reg_map;
486
487                 armv7m->exception_number = 0;
488         }
489
490         if (armv7m->exception_number)
491         {
492                 cortex_m3_examine_exception_reason(target);
493         }
494
495         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
496                 armv7m_mode_strings[armv7m->core_mode],
497                 *(uint32_t*)(arm->pc->value),
498                 target_state_name(target));
499
500         if (armv7m->post_debug_entry)
501         {
502                 retval = armv7m->post_debug_entry(target);
503                 if (retval != ERROR_OK)
504                         return retval;
505         }
506
507         return ERROR_OK;
508 }
509
510 static int cortex_m3_poll(struct target *target)
511 {
512         int detected_failure = ERROR_OK;
513         int retval = ERROR_OK;
514         enum target_state prev_target_state = target->state;
515         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
516         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
517
518         /* Read from Debug Halting Control and Status Register */
519         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
520         if (retval != ERROR_OK)
521         {
522                 target->state = TARGET_UNKNOWN;
523                 return retval;
524         }
525
526         /* Recover from lockup.  See ARMv7-M architecture spec,
527          * section B1.5.15 "Unrecoverable exception cases".
528          */
529         if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
530                 LOG_ERROR("%s -- clearing lockup after double fault",
531                                 target_name(target));
532                 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
533                 target->debug_reason = DBG_REASON_DBGRQ;
534
535                 /* We have to execute the rest (the "finally" equivalent, but
536                  * still throw this exception again).
537                  */
538                 detected_failure = ERROR_FAIL;
539
540                 /* refresh status bits */
541                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
542                 if (retval != ERROR_OK)
543                         return retval;
544         }
545
546         if (cortex_m3->dcb_dhcsr & S_RESET_ST)
547         {
548                 /* check if still in reset */
549                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
550                 if (retval != ERROR_OK)
551                         return retval;
552
553                 if (cortex_m3->dcb_dhcsr & S_RESET_ST)
554                 {
555                         target->state = TARGET_RESET;
556                         return ERROR_OK;
557                 }
558         }
559
560         if (target->state == TARGET_RESET)
561         {
562                 /* Cannot switch context while running so endreset is
563                  * called with target->state == TARGET_RESET
564                  */
565                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
566                                 cortex_m3->dcb_dhcsr);
567                 cortex_m3_endreset_event(target);
568                 target->state = TARGET_RUNNING;
569                 prev_target_state = TARGET_RUNNING;
570         }
571
572         if (cortex_m3->dcb_dhcsr & S_HALT)
573         {
574                 target->state = TARGET_HALTED;
575
576                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
577                 {
578                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
579                                 return retval;
580
581                         if (arm_semihosting(target, &retval) != 0)
582                                 return retval;
583
584                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
585                 }
586                 if (prev_target_state == TARGET_DEBUG_RUNNING)
587                 {
588                         LOG_DEBUG(" ");
589                         if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
590                                 return retval;
591
592                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
593                 }
594         }
595
596         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
597          * How best to model low power modes?
598          */
599
600         if (target->state == TARGET_UNKNOWN)
601         {
602                 /* check if processor is retiring instructions */
603                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
604                 {
605                         target->state = TARGET_RUNNING;
606                         retval = ERROR_OK;
607                 }
608         }
609
610         /* Did we detect a failure condition that we cleared? */
611         if (detected_failure != ERROR_OK)
612                 retval = detected_failure;
613         return retval;
614 }
615
616 static int cortex_m3_halt(struct target *target)
617 {
618         LOG_DEBUG("target->state: %s",
619                 target_state_name(target));
620
621         if (target->state == TARGET_HALTED)
622         {
623                 LOG_DEBUG("target was already halted");
624                 return ERROR_OK;
625         }
626
627         if (target->state == TARGET_UNKNOWN)
628         {
629                 LOG_WARNING("target was in unknown state when halt was requested");
630         }
631
632         if (target->state == TARGET_RESET)
633         {
634                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
635                 {
636                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
637                         return ERROR_TARGET_FAILURE;
638                 }
639                 else
640                 {
641                         /* we came here in a reset_halt or reset_init sequence
642                          * debug entry was already prepared in cortex_m3_prepare_reset_halt()
643                          */
644                         target->debug_reason = DBG_REASON_DBGRQ;
645
646                         return ERROR_OK;
647                 }
648         }
649
650         /* Write to Debug Halting Control and Status Register */
651         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
652
653         target->debug_reason = DBG_REASON_DBGRQ;
654
655         return ERROR_OK;
656 }
657
658 static int cortex_m3_soft_reset_halt(struct target *target)
659 {
660         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
661         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
662         uint32_t dcb_dhcsr = 0;
663         int retval, timeout = 0;
664
665         /* Enter debug state on reset; restore DEMCR in endreset_event() */
666         retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
667                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
668         if (retval != ERROR_OK)
669                 return retval;
670
671         /* Request a core-only reset */
672         retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
673                         AIRCR_VECTKEY | AIRCR_VECTRESET);
674         if (retval != ERROR_OK)
675                 return retval;
676         target->state = TARGET_RESET;
677
678         /* registers are now invalid */
679         register_cache_invalidate(cortex_m3->armv7m.core_cache);
680
681         while (timeout < 100)
682         {
683                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
684                 if (retval == ERROR_OK)
685                 {
686                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
687                                         &cortex_m3->nvic_dfsr);
688                         if (retval != ERROR_OK)
689                                 return retval;
690                         if ((dcb_dhcsr & S_HALT)
691                                         && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
692                         {
693                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
694                                         "DFSR 0x%08x",
695                                         (unsigned) dcb_dhcsr,
696                                         (unsigned) cortex_m3->nvic_dfsr);
697                                 cortex_m3_poll(target);
698                                 /* FIXME restore user's vector catch config */
699                                 return ERROR_OK;
700                         }
701                         else
702                                 LOG_DEBUG("waiting for system reset-halt, "
703                                         "DHCSR 0x%08x, %d ms",
704                                         (unsigned) dcb_dhcsr, timeout);
705                 }
706                 timeout++;
707                 alive_sleep(1);
708         }
709
710         return ERROR_OK;
711 }
712
713 static void cortex_m3_enable_breakpoints(struct target *target)
714 {
715         struct breakpoint *breakpoint = target->breakpoints;
716
717         /* set any pending breakpoints */
718         while (breakpoint)
719         {
720                 if (!breakpoint->set)
721                         cortex_m3_set_breakpoint(target, breakpoint);
722                 breakpoint = breakpoint->next;
723         }
724 }
725
726 static int cortex_m3_resume(struct target *target, int current,
727                 uint32_t address, int handle_breakpoints, int debug_execution)
728 {
729         struct armv7m_common *armv7m = target_to_armv7m(target);
730         struct breakpoint *breakpoint = NULL;
731         uint32_t resume_pc;
732         struct reg *r;
733
734         if (target->state != TARGET_HALTED)
735         {
736                 LOG_WARNING("target not halted");
737                 return ERROR_TARGET_NOT_HALTED;
738         }
739
740         if (!debug_execution)
741         {
742                 target_free_all_working_areas(target);
743                 cortex_m3_enable_breakpoints(target);
744                 cortex_m3_enable_watchpoints(target);
745         }
746
747         if (debug_execution)
748         {
749                 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
750
751                 /* Disable interrupts */
752                 /* We disable interrupts in the PRIMASK register instead of
753                  * masking with C_MASKINTS.  This is probably the same issue
754                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
755                  * in parallel with disabled interrupts can cause local faults
756                  * to not be taken.
757                  *
758                  * REVISIT this clearly breaks non-debug execution, since the
759                  * PRIMASK register state isn't saved/restored...  workaround
760                  * by never resuming app code after debug execution.
761                  */
762                 buf_set_u32(r->value, 0, 1, 1);
763                 r->dirty = true;
764                 r->valid = true;
765
766                 /* Make sure we are in Thumb mode */
767                 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
768                 buf_set_u32(r->value, 24, 1, 1);
769                 r->dirty = true;
770                 r->valid = true;
771         }
772
773         /* current = 1: continue on current pc, otherwise continue at <address> */
774         r = armv7m->arm.pc;
775         if (!current)
776         {
777                 buf_set_u32(r->value, 0, 32, address);
778                 r->dirty = true;
779                 r->valid = true;
780         }
781
782         /* if we halted last time due to a bkpt instruction
783          * then we have to manually step over it, otherwise
784          * the core will break again */
785
786         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
787                         && !debug_execution)
788         {
789                 armv7m_maybe_skip_bkpt_inst(target, NULL);
790         }
791
792         resume_pc = buf_get_u32(r->value, 0, 32);
793
794         armv7m_restore_context(target);
795
796         /* the front-end may request us not to handle breakpoints */
797         if (handle_breakpoints)
798         {
799                 /* Single step past breakpoint at current address */
800                 if ((breakpoint = breakpoint_find(target, resume_pc)))
801                 {
802                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
803                                           breakpoint->address,
804                                           breakpoint->unique_id);
805                         cortex_m3_unset_breakpoint(target, breakpoint);
806                         cortex_m3_single_step_core(target);
807                         cortex_m3_set_breakpoint(target, breakpoint);
808                 }
809         }
810
811         /* Restart core */
812         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
813
814         target->debug_reason = DBG_REASON_NOTHALTED;
815
816         /* registers are now invalid */
817         register_cache_invalidate(armv7m->core_cache);
818
819         if (!debug_execution)
820         {
821                 target->state = TARGET_RUNNING;
822                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
823                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
824         }
825         else
826         {
827                 target->state = TARGET_DEBUG_RUNNING;
828                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
829                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
830         }
831
832         return ERROR_OK;
833 }
834
835 /* int irqstepcount = 0; */
836 static int cortex_m3_step(struct target *target, int current,
837                 uint32_t address, int handle_breakpoints)
838 {
839         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
840         struct armv7m_common *armv7m = &cortex_m3->armv7m;
841         struct adiv5_dap *swjdp = &armv7m->dap;
842         struct breakpoint *breakpoint = NULL;
843         struct reg *pc = armv7m->arm.pc;
844         bool bkpt_inst_found = false;
845         int retval;
846         bool isr_timed_out = false;
847
848         if (target->state != TARGET_HALTED)
849         {
850                 LOG_WARNING("target not halted");
851                 return ERROR_TARGET_NOT_HALTED;
852         }
853
854         /* current = 1: continue on current pc, otherwise continue at <address> */
855         if (!current)
856                 buf_set_u32(pc->value, 0, 32, address);
857
858         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
859
860         /* the front-end may request us not to handle breakpoints */
861         if (handle_breakpoints) {
862                 breakpoint = breakpoint_find(target, pc_value);
863                 if (breakpoint)
864                         cortex_m3_unset_breakpoint(target, breakpoint);
865         }
866
867         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
868
869         target->debug_reason = DBG_REASON_SINGLESTEP;
870
871         armv7m_restore_context(target);
872
873         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
874
875         /* if no bkpt instruction is found at pc then we can perform
876          * a normal step, otherwise we have to manually step over the bkpt
877          * instruction - as such simulate a step */
878         if (bkpt_inst_found == false)
879         {
880                 /* Automatic ISR masking mode off: Just step over the next instruction */
881                 if ((cortex_m3->isrmasking_mode != CORTEX_M3_ISRMASK_AUTO))
882                 {
883                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
884                 }
885                 else
886                 {
887                         /* Process interrupts during stepping in a way they don't interfere
888                          * debugging.
889                          *
890                          * Principle:
891                          *
892                          * Set a temporary break point at the current pc and let the core run
893                          * with interrupts enabled. Pending interrupts get served and we run
894                          * into the breakpoint again afterwards. Then we step over the next
895                          * instruction with interrupts disabled.
896                          *
897                          * If the pending interrupts don't complete within time, we leave the
898                          * core running. This may happen if the interrupts trigger faster
899                          * than the core can process them or the handler doesn't return.
900                          *
901                          * If no more breakpoints are available we simply do a step with
902                          * interrupts enabled.
903                          *
904                          */
905
906                         /* Set a temporary break point */
907                         retval = breakpoint_add(target, pc_value , 2, BKPT_TYPE_BY_ADDR(pc_value));
908                         bool tmp_bp_set = (retval == ERROR_OK);
909
910                         /* No more breakpoints left, just do a step */
911                         if (!tmp_bp_set)
912                         {
913                                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
914                         }
915                         else
916                         {
917                                 /* Start the core */
918                                 LOG_DEBUG("Starting core to serve pending interrupts");
919                                 int64_t t_start = timeval_ms();
920                                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
921
922                                 /* Wait for pending handlers to complete or timeout */
923                                 do {
924                                         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
925                                         if (retval != ERROR_OK)
926                                         {
927                                                 target->state = TARGET_UNKNOWN;
928                                                 return retval;
929                                         }
930                                         isr_timed_out = ((timeval_ms() - t_start) > 500);
931                                 } while (!((cortex_m3->dcb_dhcsr & S_HALT) || isr_timed_out));
932
933                                 /* Remove the temporary breakpoint */
934                                 breakpoint_remove(target, pc_value);
935
936                                 if (isr_timed_out)
937                                 {
938                                         LOG_DEBUG("Interrupt handlers didn't complete within time, "
939                                                         "leaving target running");
940                                 }
941                                 else
942                                 {
943                                         /* Step over next instruction with interrupts disabled */
944                                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
945                                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
946                                         /* Re-enable interrupts */
947                                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
948                                 }
949                         }
950                 }
951         }
952
953         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
954         if (retval != ERROR_OK)
955                 return retval;
956
957         /* registers are now invalid */
958         register_cache_invalidate(cortex_m3->armv7m.core_cache);
959
960         if (breakpoint)
961                 cortex_m3_set_breakpoint(target, breakpoint);
962
963         if (isr_timed_out) {
964                 /* Leave the core running. The user has to stop execution manually. */
965                 target->debug_reason = DBG_REASON_NOTHALTED;
966                 target->state = TARGET_RUNNING;
967                 return ERROR_OK;
968         }
969
970         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
971                         " nvic_icsr = 0x%" PRIx32,
972                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
973
974         retval = cortex_m3_debug_entry(target);
975         if (retval != ERROR_OK)
976                 return retval;
977         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
978
979         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
980                         " nvic_icsr = 0x%" PRIx32,
981                         cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
982
983         return ERROR_OK;
984 }
985
986 static int cortex_m3_assert_reset(struct target *target)
987 {
988         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
989         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
990         enum cortex_m3_soft_reset_config reset_config = cortex_m3->soft_reset_config;
991
992         LOG_DEBUG("target->state: %s",
993                 target_state_name(target));
994
995         enum reset_types jtag_reset_config = jtag_get_reset_config();
996
997         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
998                 /* allow scripts to override the reset event */
999
1000                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1001                 register_cache_invalidate(cortex_m3->armv7m.core_cache);
1002                 target->state = TARGET_RESET;
1003
1004                 return ERROR_OK;
1005         }
1006
1007         /* Enable debug requests */
1008         int retval;
1009         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
1010         if (retval != ERROR_OK)
1011                 return retval;
1012         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
1013         {
1014                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
1015                 if (retval != ERROR_OK)
1016                         return retval;
1017         }
1018
1019         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
1020         if (retval != ERROR_OK)
1021                 return retval;
1022
1023         if (!target->reset_halt)
1024         {
1025                 /* Set/Clear C_MASKINTS in a separate operation */
1026                 if (cortex_m3->dcb_dhcsr & C_MASKINTS)
1027                 {
1028                         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
1029                                         DBGKEY | C_DEBUGEN | C_HALT);
1030                         if (retval != ERROR_OK)
1031                                 return retval;
1032                 }
1033
1034                 /* clear any debug flags before resuming */
1035                 cortex_m3_clear_halt(target);
1036
1037                 /* clear C_HALT in dhcsr reg */
1038                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
1039         }
1040         else
1041         {
1042                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1043                  *
1044                  * REVISIT catching BUSERR presumably helps to defend against
1045                  * bad vector table entries.  Should this include MMERR or
1046                  * other flags too?
1047                  */
1048                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
1049                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1050                 if (retval != ERROR_OK)
1051                         return retval;
1052         }
1053
1054         if (jtag_reset_config & RESET_HAS_SRST)
1055         {
1056                 /* default to asserting srst */
1057                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1058                 {
1059                         jtag_add_reset(1, 1);
1060                 }
1061                 else
1062                 {
1063                         jtag_add_reset(0, 1);
1064                 }
1065         }
1066         else
1067         {
1068                 /* Use a standard Cortex-M3 software reset mechanism.
1069                  * We default to using VECRESET as it is supported on all current cores.
1070                  * This has the disadvantage of not resetting the peripherals, so a
1071                  * reset-init event handler is needed to perform any peripheral resets.
1072                  */
1073                 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1074                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1075                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1076                 if (retval != ERROR_OK)
1077                         return retval;
1078
1079                 LOG_DEBUG("Using Cortex-M3 %s", (reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1080                                 ? "SYSRESETREQ" : "VECTRESET");
1081
1082                 if (reset_config == CORTEX_M3_RESET_VECTRESET) {
1083                         LOG_WARNING("Only resetting the Cortex-M3 core, use a reset-init event "
1084                                         "handler to reset any peripherals");
1085                 }
1086
1087                 {
1088                         /* I do not know why this is necessary, but it
1089                          * fixes strange effects (step/resume cause NMI
1090                          * after reset) on LM3S6918 -- Michael Schwingen
1091                          */
1092                         uint32_t tmp;
1093                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1094                         if (retval != ERROR_OK)
1095                                 return retval;
1096                 }
1097         }
1098
1099         target->state = TARGET_RESET;
1100         jtag_add_sleep(50000);
1101
1102         register_cache_invalidate(cortex_m3->armv7m.core_cache);
1103
1104         if (target->reset_halt)
1105         {
1106                 if ((retval = target_halt(target)) != ERROR_OK)
1107                         return retval;
1108         }
1109
1110         return ERROR_OK;
1111 }
1112
1113 static int cortex_m3_deassert_reset(struct target *target)
1114 {
1115         LOG_DEBUG("target->state: %s",
1116                 target_state_name(target));
1117
1118         /* deassert reset lines */
1119         jtag_add_reset(0, 0);
1120
1121         return ERROR_OK;
1122 }
1123
1124 int
1125 cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1126 {
1127         int retval;
1128         int fp_num = 0;
1129         uint32_t hilo;
1130         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1131         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1132
1133         if (breakpoint->set)
1134         {
1135                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
1136                 return ERROR_OK;
1137         }
1138
1139         if (cortex_m3->auto_bp_type)
1140         {
1141                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1142         }
1143
1144         if (breakpoint->type == BKPT_HARD)
1145         {
1146                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
1147                         fp_num++;
1148                 if (fp_num >= cortex_m3->fp_num_code)
1149                 {
1150                         LOG_ERROR("Can not find free FPB Comparator!");
1151                         return ERROR_FAIL;
1152                 }
1153                 breakpoint->set = fp_num + 1;
1154                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1155                 comparator_list[fp_num].used = 1;
1156                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1157                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1158                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
1159                 if (!cortex_m3->fpb_enabled)
1160                 {
1161                         LOG_DEBUG("FPB wasn't enabled, do it now");
1162                         target_write_u32(target, FP_CTRL, 3);
1163                 }
1164         }
1165         else if (breakpoint->type == BKPT_SOFT)
1166         {
1167                 uint8_t code[4];
1168
1169                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1170                  * semihosting; don't use that.  Otherwise the BKPT
1171                  * parameter is arbitrary.
1172                  */
1173                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1174                 retval = target_read_memory(target,
1175                                 breakpoint->address & 0xFFFFFFFE,
1176                                 breakpoint->length, 1,
1177                                 breakpoint->orig_instr);
1178                 if (retval != ERROR_OK)
1179                         return retval;
1180                 retval = target_write_memory(target,
1181                                 breakpoint->address & 0xFFFFFFFE,
1182                                 breakpoint->length, 1,
1183                                 code);
1184                 if (retval != ERROR_OK)
1185                         return retval;
1186                 breakpoint->set = true;
1187         }
1188
1189         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1190                           breakpoint->unique_id,
1191                           (int)(breakpoint->type),
1192                           breakpoint->address,
1193                           breakpoint->length,
1194                           breakpoint->set);
1195
1196         return ERROR_OK;
1197 }
1198
1199 int
1200 cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1201 {
1202         int retval;
1203         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1204         struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
1205
1206         if (!breakpoint->set)
1207         {
1208                 LOG_WARNING("breakpoint not set");
1209                 return ERROR_OK;
1210         }
1211
1212         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1213                           breakpoint->unique_id,
1214                           (int)(breakpoint->type),
1215                           breakpoint->address,
1216                           breakpoint->length,
1217                           breakpoint->set);
1218
1219         if (breakpoint->type == BKPT_HARD)
1220         {
1221                 int fp_num = breakpoint->set - 1;
1222                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
1223                 {
1224                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1225                         return ERROR_OK;
1226                 }
1227                 comparator_list[fp_num].used = 0;
1228                 comparator_list[fp_num].fpcr_value = 0;
1229                 target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
1230         }
1231         else
1232         {
1233                 /* restore original instruction (kept in target endianness) */
1234                 if (breakpoint->length == 4)
1235                 {
1236                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
1237                         {
1238                                 return retval;
1239                         }
1240                 }
1241                 else
1242                 {
1243                         if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
1244                         {
1245                                 return retval;
1246                         }
1247                 }
1248         }
1249         breakpoint->set = false;
1250
1251         return ERROR_OK;
1252 }
1253
1254 int
1255 cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1256 {
1257         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1258
1259         if (cortex_m3->auto_bp_type)
1260         {
1261                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1262 #ifdef ARMV7_GDB_HACKS
1263                 if (breakpoint->length != 2) {
1264                         /* XXX Hack: Replace all breakpoints with length != 2 with
1265                          * a hardware breakpoint. */
1266                         breakpoint->type = BKPT_HARD;
1267                         breakpoint->length = 2;
1268                 }
1269 #endif
1270         }
1271
1272         if(breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1273                 if (breakpoint->type == BKPT_HARD)
1274                 {
1275                         LOG_INFO("flash patch comparator requested outside code memory region");
1276                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1277                 }
1278
1279                 if (breakpoint->type == BKPT_SOFT)
1280                 {
1281                         LOG_INFO("soft breakpoint requested in code (flash) memory region");
1282                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1283                 }
1284         }
1285
1286         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
1287         {
1288                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1289                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1290         }
1291
1292         if ((breakpoint->length != 2))
1293         {
1294                 LOG_INFO("only breakpoints of two bytes length supported");
1295                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1296         }
1297
1298         if (breakpoint->type == BKPT_HARD)
1299                 cortex_m3->fp_code_available--;
1300
1301         return cortex_m3_set_breakpoint(target, breakpoint);
1302 }
1303
1304 int
1305 cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1306 {
1307         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1308
1309         /* REVISIT why check? FBP can be updated with core running ... */
1310         if (target->state != TARGET_HALTED)
1311         {
1312                 LOG_WARNING("target not halted");
1313                 return ERROR_TARGET_NOT_HALTED;
1314         }
1315
1316         if (cortex_m3->auto_bp_type)
1317         {
1318                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1319         }
1320
1321         if (breakpoint->set)
1322         {
1323                 cortex_m3_unset_breakpoint(target, breakpoint);
1324         }
1325
1326         if (breakpoint->type == BKPT_HARD)
1327                 cortex_m3->fp_code_available++;
1328
1329         return ERROR_OK;
1330 }
1331
1332 int
1333 cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1334 {
1335         int dwt_num = 0;
1336         uint32_t mask, temp;
1337         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1338
1339         /* watchpoint params were validated earlier */
1340         mask = 0;
1341         temp = watchpoint->length;
1342         while (temp) {
1343                 temp >>= 1;
1344                 mask++;
1345         }
1346         mask--;
1347
1348         /* REVISIT Don't fully trust these "not used" records ... users
1349          * may set up breakpoints by hand, e.g. dual-address data value
1350          * watchpoint using comparator #1; comparator #0 matching cycle
1351          * count; send data trace info through ITM and TPIU; etc
1352          */
1353         struct cortex_m3_dwt_comparator *comparator;
1354
1355         for (comparator = cortex_m3->dwt_comparator_list;
1356                         comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1357                         comparator++, dwt_num++)
1358                 continue;
1359         if (dwt_num >= cortex_m3->dwt_num_comp)
1360         {
1361                 LOG_ERROR("Can not find free DWT Comparator");
1362                 return ERROR_FAIL;
1363         }
1364         comparator->used = 1;
1365         watchpoint->set = dwt_num + 1;
1366
1367         comparator->comp = watchpoint->address;
1368         target_write_u32(target, comparator->dwt_comparator_address + 0,
1369                         comparator->comp);
1370
1371         comparator->mask = mask;
1372         target_write_u32(target, comparator->dwt_comparator_address + 4,
1373                         comparator->mask);
1374
1375         switch (watchpoint->rw) {
1376         case WPT_READ:
1377                 comparator->function = 5;
1378                 break;
1379         case WPT_WRITE:
1380                 comparator->function = 6;
1381                 break;
1382         case WPT_ACCESS:
1383                 comparator->function = 7;
1384                 break;
1385         }
1386         target_write_u32(target, comparator->dwt_comparator_address + 8,
1387                         comparator->function);
1388
1389         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1390                         watchpoint->unique_id, dwt_num,
1391                         (unsigned) comparator->comp,
1392                         (unsigned) comparator->mask,
1393                         (unsigned) comparator->function);
1394         return ERROR_OK;
1395 }
1396
1397 int
1398 cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1399 {
1400         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1401         struct cortex_m3_dwt_comparator *comparator;
1402         int dwt_num;
1403
1404         if (!watchpoint->set)
1405         {
1406                 LOG_WARNING("watchpoint (wpid: %d) not set",
1407                                 watchpoint->unique_id);
1408                 return ERROR_OK;
1409         }
1410
1411         dwt_num = watchpoint->set - 1;
1412
1413         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1414                         watchpoint->unique_id, dwt_num,
1415                         (unsigned) watchpoint->address);
1416
1417         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
1418         {
1419                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1420                 return ERROR_OK;
1421         }
1422
1423         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1424         comparator->used = 0;
1425         comparator->function = 0;
1426         target_write_u32(target, comparator->dwt_comparator_address + 8,
1427                         comparator->function);
1428
1429         watchpoint->set = false;
1430
1431         return ERROR_OK;
1432 }
1433
1434 int
1435 cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1436 {
1437         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1438
1439         if (cortex_m3->dwt_comp_available < 1)
1440         {
1441                 LOG_DEBUG("no comparators?");
1442                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1443         }
1444
1445         /* hardware doesn't support data value masking */
1446         if (watchpoint->mask != ~(uint32_t)0) {
1447                 LOG_DEBUG("watchpoint value masks not supported");
1448                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1449         }
1450
1451         /* hardware allows address masks of up to 32K */
1452         unsigned mask;
1453
1454         for (mask = 0; mask < 16; mask++) {
1455                 if ((1u << mask) == watchpoint->length)
1456                         break;
1457         }
1458         if (mask == 16) {
1459                 LOG_DEBUG("unsupported watchpoint length");
1460                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1461         }
1462         if (watchpoint->address & ((1 << mask) - 1)) {
1463                 LOG_DEBUG("watchpoint address is unaligned");
1464                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1465         }
1466
1467         /* Caller doesn't seem to be able to describe watching for data
1468          * values of zero; that flags "no value".
1469          *
1470          * REVISIT This DWT may well be able to watch for specific data
1471          * values.  Requires comparator #1 to set DATAVMATCH and match
1472          * the data, and another comparator (DATAVADDR0) matching addr.
1473          */
1474         if (watchpoint->value) {
1475                 LOG_DEBUG("data value watchpoint not YET supported");
1476                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1477         }
1478
1479         cortex_m3->dwt_comp_available--;
1480         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1481
1482         return ERROR_OK;
1483 }
1484
1485 int
1486 cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1487 {
1488         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1489
1490         /* REVISIT why check? DWT can be updated with core running ... */
1491         if (target->state != TARGET_HALTED)
1492         {
1493                 LOG_WARNING("target not halted");
1494                 return ERROR_TARGET_NOT_HALTED;
1495         }
1496
1497         if (watchpoint->set)
1498         {
1499                 cortex_m3_unset_watchpoint(target, watchpoint);
1500         }
1501
1502         cortex_m3->dwt_comp_available++;
1503         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1504
1505         return ERROR_OK;
1506 }
1507
1508 void cortex_m3_enable_watchpoints(struct target *target)
1509 {
1510         struct watchpoint *watchpoint = target->watchpoints;
1511
1512         /* set any pending watchpoints */
1513         while (watchpoint)
1514         {
1515                 if (!watchpoint->set)
1516                         cortex_m3_set_watchpoint(target, watchpoint);
1517                 watchpoint = watchpoint->next;
1518         }
1519 }
1520
1521 static int cortex_m3_load_core_reg_u32(struct target *target,
1522                 enum armv7m_regtype type, uint32_t num, uint32_t * value)
1523 {
1524         int retval;
1525         struct armv7m_common *armv7m = target_to_armv7m(target);
1526         struct adiv5_dap *swjdp = &armv7m->dap;
1527
1528         /* NOTE:  we "know" here that the register identifiers used
1529          * in the v7m header match the Cortex-M3 Debug Core Register
1530          * Selector values for R0..R15, xPSR, MSP, and PSP.
1531          */
1532         switch (num) {
1533         case 0 ... 18:
1534                 /* read a normal core register */
1535                 retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1536
1537                 if (retval != ERROR_OK)
1538                 {
1539                         LOG_ERROR("JTAG failure %i",retval);
1540                         return ERROR_JTAG_DEVICE_ERROR;
1541                 }
1542                 LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "",(int)num,*value);
1543                 break;
1544
1545         case ARMV7M_PRIMASK:
1546         case ARMV7M_BASEPRI:
1547         case ARMV7M_FAULTMASK:
1548         case ARMV7M_CONTROL:
1549                 /* Cortex-M3 packages these four registers as bitfields
1550                  * in one Debug Core register.  So say r0 and r2 docs;
1551                  * it was removed from r1 docs, but still works.
1552                  */
1553                 cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1554
1555                 switch (num)
1556                 {
1557                         case ARMV7M_PRIMASK:
1558                                 *value = buf_get_u32((uint8_t*)value, 0, 1);
1559                                 break;
1560
1561                         case ARMV7M_BASEPRI:
1562                                 *value = buf_get_u32((uint8_t*)value, 8, 8);
1563                                 break;
1564
1565                         case ARMV7M_FAULTMASK:
1566                                 *value = buf_get_u32((uint8_t*)value, 16, 1);
1567                                 break;
1568
1569                         case ARMV7M_CONTROL:
1570                                 *value = buf_get_u32((uint8_t*)value, 24, 2);
1571                                 break;
1572                 }
1573
1574                 LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1575                 break;
1576
1577         default:
1578                 return ERROR_COMMAND_SYNTAX_ERROR;
1579         }
1580
1581         return ERROR_OK;
1582 }
1583
1584 static int cortex_m3_store_core_reg_u32(struct target *target,
1585                 enum armv7m_regtype type, uint32_t num, uint32_t value)
1586 {
1587         int retval;
1588         uint32_t reg;
1589         struct armv7m_common *armv7m = target_to_armv7m(target);
1590         struct adiv5_dap *swjdp = &armv7m->dap;
1591
1592 #ifdef ARMV7_GDB_HACKS
1593         /* If the LR register is being modified, make sure it will put us
1594          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1595          * hack to deal with the fact that gdb will sometimes "forge"
1596          * return addresses, and doesn't set the LSB correctly (i.e., when
1597          * printing expressions containing function calls, it sets LR = 0.)
1598          * Valid exception return codes have bit 0 set too.
1599          */
1600         if (num == ARMV7M_R14)
1601                 value |= 0x01;
1602 #endif
1603
1604         /* NOTE:  we "know" here that the register identifiers used
1605          * in the v7m header match the Cortex-M3 Debug Core Register
1606          * Selector values for R0..R15, xPSR, MSP, and PSP.
1607          */
1608         switch (num) {
1609         case 0 ... 18:
1610                 retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1611                 if (retval != ERROR_OK)
1612                 {
1613                         struct reg *r;
1614
1615                         LOG_ERROR("JTAG failure");
1616                         r = armv7m->core_cache->reg_list + num;
1617                         r->dirty = r->valid;
1618                         return ERROR_JTAG_DEVICE_ERROR;
1619                 }
1620                 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1621                 break;
1622
1623         case ARMV7M_PRIMASK:
1624         case ARMV7M_BASEPRI:
1625         case ARMV7M_FAULTMASK:
1626         case ARMV7M_CONTROL:
1627                 /* Cortex-M3 packages these four registers as bitfields
1628                  * in one Debug Core register.  So say r0 and r2 docs;
1629                  * it was removed from r1 docs, but still works.
1630                  */
1631                 cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1632
1633                 switch (num)
1634                 {
1635                         case ARMV7M_PRIMASK:
1636                                 buf_set_u32((uint8_t*)&reg, 0, 1, value);
1637                                 break;
1638
1639                         case ARMV7M_BASEPRI:
1640                                 buf_set_u32((uint8_t*)&reg, 8, 8, value);
1641                                 break;
1642
1643                         case ARMV7M_FAULTMASK:
1644                                 buf_set_u32((uint8_t*)&reg, 16, 1, value);
1645                                 break;
1646
1647                         case ARMV7M_CONTROL:
1648                                 buf_set_u32((uint8_t*)&reg, 24, 2, value);
1649                                 break;
1650                 }
1651
1652                 cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1653
1654                 LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1655                 break;
1656
1657         default:
1658                 return ERROR_COMMAND_SYNTAX_ERROR;
1659         }
1660
1661         return ERROR_OK;
1662 }
1663
1664 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1665                 uint32_t size, uint32_t count, uint8_t *buffer)
1666 {
1667         struct armv7m_common *armv7m = target_to_armv7m(target);
1668         struct adiv5_dap *swjdp = &armv7m->dap;
1669         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1670
1671         /* cortex_m3 handles unaligned memory access */
1672         if (count && buffer) {
1673                 switch (size) {
1674                 case 4:
1675                         retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1676                         break;
1677                 case 2:
1678                         retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1679                         break;
1680                 case 1:
1681                         retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1682                         break;
1683                 }
1684         }
1685
1686         return retval;
1687 }
1688
1689 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1690                 uint32_t size, uint32_t count, const uint8_t *buffer)
1691 {
1692         struct armv7m_common *armv7m = target_to_armv7m(target);
1693         struct adiv5_dap *swjdp = &armv7m->dap;
1694         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1695
1696         if (count && buffer) {
1697                 switch (size) {
1698                 case 4:
1699                         retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1700                         break;
1701                 case 2:
1702                         retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1703                         break;
1704                 case 1:
1705                         retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1706                         break;
1707                 }
1708         }
1709
1710         return retval;
1711 }
1712
1713 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1714                 uint32_t count, const uint8_t *buffer)
1715 {
1716         return cortex_m3_write_memory(target, address, 4, count, buffer);
1717 }
1718
1719 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1720                 struct target *target)
1721 {
1722         armv7m_build_reg_cache(target);
1723         return ERROR_OK;
1724 }
1725
1726 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1727  * on r/w if the core is not running, and clear on resume or reset ... or
1728  * at least, in a post_restore_context() method.
1729  */
1730
1731 struct dwt_reg_state {
1732         struct target   *target;
1733         uint32_t        addr;
1734         uint32_t        value;  /* scratch/cache */
1735 };
1736
1737 static int cortex_m3_dwt_get_reg(struct reg *reg)
1738 {
1739         struct dwt_reg_state *state = reg->arch_info;
1740
1741         return target_read_u32(state->target, state->addr, &state->value);
1742 }
1743
1744 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1745 {
1746         struct dwt_reg_state *state = reg->arch_info;
1747
1748         return target_write_u32(state->target, state->addr,
1749                         buf_get_u32(buf, 0, reg->size));
1750 }
1751
1752 struct dwt_reg {
1753         uint32_t        addr;
1754         char            *name;
1755         unsigned        size;
1756 };
1757
1758 static struct dwt_reg dwt_base_regs[] = {
1759         { DWT_CTRL, "dwt_ctrl", 32, },
1760         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1761          * increments while the core is asleep.
1762          */
1763         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1764         /* plus some 8 bit counters, useful for profiling with TPIU */
1765 };
1766
1767 static struct dwt_reg dwt_comp[] = {
1768 #define DWT_COMPARATOR(i) \
1769                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1770                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1771                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1772         DWT_COMPARATOR(0),
1773         DWT_COMPARATOR(1),
1774         DWT_COMPARATOR(2),
1775         DWT_COMPARATOR(3),
1776 #undef DWT_COMPARATOR
1777 };
1778
1779 static const struct reg_arch_type dwt_reg_type = {
1780         .get = cortex_m3_dwt_get_reg,
1781         .set = cortex_m3_dwt_set_reg,
1782 };
1783
1784 static void
1785 cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1786 {
1787         struct dwt_reg_state *state;
1788
1789         state = calloc(1, sizeof *state);
1790         if (!state)
1791                 return;
1792         state->addr = d->addr;
1793         state->target = t;
1794
1795         r->name = d->name;
1796         r->size = d->size;
1797         r->value = &state->value;
1798         r->arch_info = state;
1799         r->type = &dwt_reg_type;
1800 }
1801
1802 void
1803 cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1804 {
1805         uint32_t dwtcr;
1806         struct reg_cache *cache;
1807         struct cortex_m3_dwt_comparator *comparator;
1808         int reg, i;
1809
1810         target_read_u32(target, DWT_CTRL, &dwtcr);
1811         if (!dwtcr) {
1812                 LOG_DEBUG("no DWT");
1813                 return;
1814         }
1815
1816         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1817         cm3->dwt_comp_available = cm3->dwt_num_comp;
1818         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1819                         sizeof(struct cortex_m3_dwt_comparator));
1820         if (!cm3->dwt_comparator_list) {
1821 fail0:
1822                 cm3->dwt_num_comp = 0;
1823                 LOG_ERROR("out of mem");
1824                 return;
1825         }
1826
1827         cache = calloc(1, sizeof *cache);
1828         if (!cache) {
1829 fail1:
1830                 free(cm3->dwt_comparator_list);
1831                 goto fail0;
1832         }
1833         cache->name = "cortex-m3 dwt registers";
1834         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1835         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1836         if (!cache->reg_list) {
1837                 free(cache);
1838                 goto fail1;
1839         }
1840
1841         for (reg = 0; reg < 2; reg++)
1842                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1843                                 dwt_base_regs + reg);
1844
1845         comparator = cm3->dwt_comparator_list;
1846         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1847                 int j;
1848
1849                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1850                 for (j = 0; j < 3; j++, reg++)
1851                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1852                                         dwt_comp + 3 * i + j);
1853         }
1854
1855         *register_get_last_cache_p(&target->reg_cache) = cache;
1856         cm3->dwt_cache = cache;
1857
1858         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1859                         dwtcr, cm3->dwt_num_comp,
1860                         (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1861
1862         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1863          * implement single-address data value watchpoints ... so we
1864          * won't need to check it later, when asked to set one up.
1865          */
1866 }
1867
1868 static int cortex_m3_examine(struct target *target)
1869 {
1870         int retval;
1871         uint32_t cpuid, fpcr;
1872         int i;
1873         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1874         struct adiv5_dap *swjdp = &cortex_m3->armv7m.dap;
1875
1876         if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
1877                 return retval;
1878
1879         if (!target_was_examined(target))
1880         {
1881                 target_set_examined(target);
1882
1883                 /* Read from Device Identification Registers */
1884                 retval = target_read_u32(target, CPUID, &cpuid);
1885                 if (retval != ERROR_OK)
1886                         return retval;
1887
1888                 if (((cpuid >> 4) & 0xc3f) == 0xc23)
1889                         LOG_DEBUG("Cortex-M3 r%" PRId8 "p%" PRId8 " processor detected",
1890                                 (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1891                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1892
1893                 /* NOTE: FPB and DWT are both optional. */
1894
1895                 /* Setup FPB */
1896                 target_read_u32(target, FP_CTRL, &fpcr);
1897                 cortex_m3->auto_bp_type = 1;
1898                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
1899                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1900                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1901                 cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
1902                 cortex_m3->fpb_enabled = fpcr & 1;
1903                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
1904                 {
1905                         cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1906                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1907                 }
1908                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
1909
1910                 /* Setup DWT */
1911                 cortex_m3_dwt_setup(cortex_m3, target);
1912
1913                 /* These hardware breakpoints only work for code in flash! */
1914                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1915                                 target_name(target),
1916                                 cortex_m3->fp_num_code,
1917                                 cortex_m3->dwt_num_comp);
1918         }
1919
1920         return ERROR_OK;
1921 }
1922
1923 static int cortex_m3_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1924 {
1925         uint16_t dcrdr;
1926         int retval;
1927
1928         mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1929         *ctrl = (uint8_t)dcrdr;
1930         *value = (uint8_t)(dcrdr >> 8);
1931
1932         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1933
1934         /* write ack back to software dcc register
1935          * signify we have read data */
1936         if (dcrdr & (1 << 0))
1937         {
1938                 dcrdr = 0;
1939                 retval = mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
1940                 if (retval != ERROR_OK)
1941                         return retval;
1942         }
1943
1944         return ERROR_OK;
1945 }
1946
1947 static int cortex_m3_target_request_data(struct target *target,
1948                 uint32_t size, uint8_t *buffer)
1949 {
1950         struct armv7m_common *armv7m = target_to_armv7m(target);
1951         struct adiv5_dap *swjdp = &armv7m->dap;
1952         uint8_t data;
1953         uint8_t ctrl;
1954         uint32_t i;
1955
1956         for (i = 0; i < (size * 4); i++)
1957         {
1958                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1959                 buffer[i] = data;
1960         }
1961
1962         return ERROR_OK;
1963 }
1964
1965 static int cortex_m3_handle_target_request(void *priv)
1966 {
1967         struct target *target = priv;
1968         if (!target_was_examined(target))
1969                 return ERROR_OK;
1970         struct armv7m_common *armv7m = target_to_armv7m(target);
1971         struct adiv5_dap *swjdp = &armv7m->dap;
1972
1973         if (!target->dbg_msg_enabled)
1974                 return ERROR_OK;
1975
1976         if (target->state == TARGET_RUNNING)
1977         {
1978                 uint8_t data;
1979                 uint8_t ctrl;
1980
1981                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1982
1983                 /* check if we have data */
1984                 if (ctrl & (1 << 0))
1985                 {
1986                         uint32_t request;
1987
1988                         /* we assume target is quick enough */
1989                         request = data;
1990                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1991                         request |= (data << 8);
1992                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1993                         request |= (data << 16);
1994                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1995                         request |= (data << 24);
1996                         target_request(target, request);
1997                 }
1998         }
1999
2000         return ERROR_OK;
2001 }
2002
2003 static int cortex_m3_init_arch_info(struct target *target,
2004                 struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
2005 {
2006         int retval;
2007         struct armv7m_common *armv7m = &cortex_m3->armv7m;
2008
2009         armv7m_init_arch_info(target, armv7m);
2010
2011         /* prepare JTAG information for the new target */
2012         cortex_m3->jtag_info.tap = tap;
2013         cortex_m3->jtag_info.scann_size = 4;
2014
2015         /* default reset mode is to use srst if fitted
2016          * if not it will use CORTEX_M3_RESET_VECTRESET */
2017         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2018
2019         armv7m->arm.dap = &armv7m->dap;
2020
2021         /* Leave (only) generic DAP stuff for debugport_init(); */
2022         armv7m->dap.jtag_info = &cortex_m3->jtag_info;
2023         armv7m->dap.memaccess_tck = 8;
2024         /* Cortex-M3 has 4096 bytes autoincrement range */
2025         armv7m->dap.tar_autoincr_block = (1 << 12);
2026
2027         /* register arch-specific functions */
2028         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
2029
2030         armv7m->post_debug_entry = NULL;
2031
2032         armv7m->pre_restore_context = NULL;
2033
2034         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
2035         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
2036
2037         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
2038
2039         if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
2040         {
2041                 return retval;
2042         }
2043
2044         return ERROR_OK;
2045 }
2046
2047 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
2048 {
2049         struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
2050
2051         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
2052         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
2053
2054         return ERROR_OK;
2055 }
2056
2057 /*--------------------------------------------------------------------------*/
2058
2059 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
2060                 struct cortex_m3_common *cm3)
2061 {
2062         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
2063                 command_print(cmd_ctx, "target is not a Cortex-M3");
2064                 return ERROR_TARGET_INVALID;
2065         }
2066         return ERROR_OK;
2067 }
2068
2069 /*
2070  * Only stuff below this line should need to verify that its target
2071  * is a Cortex-M3.  Everything else should have indirected through the
2072  * cortexm3_target structure, which is only used with CM3 targets.
2073  */
2074
2075 static const struct {
2076         char name[10];
2077         unsigned mask;
2078 } vec_ids[] = {
2079         { "hard_err",   VC_HARDERR, },
2080         { "int_err",    VC_INTERR, },
2081         { "bus_err",    VC_BUSERR, },
2082         { "state_err",  VC_STATERR, },
2083         { "chk_err",    VC_CHKERR, },
2084         { "nocp_err",   VC_NOCPERR, },
2085         { "mm_err",     VC_MMERR, },
2086         { "reset",      VC_CORERESET, },
2087 };
2088
2089 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
2090 {
2091         struct target *target = get_current_target(CMD_CTX);
2092         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2093         struct armv7m_common *armv7m = &cortex_m3->armv7m;
2094         struct adiv5_dap *swjdp = &armv7m->dap;
2095         uint32_t demcr = 0;
2096         int retval;
2097
2098         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2099         if (retval != ERROR_OK)
2100                 return retval;
2101
2102         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2103         if (retval != ERROR_OK)
2104                 return retval;
2105
2106         if (CMD_ARGC > 0) {
2107                 unsigned catch = 0;
2108
2109                 if (CMD_ARGC == 1) {
2110                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2111                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2112                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2113                                         | VC_MMERR | VC_CORERESET;
2114                                 goto write;
2115                         } else if (strcmp(CMD_ARGV[0], "none") == 0) {
2116                                 goto write;
2117                         }
2118                 }
2119                 while (CMD_ARGC-- > 0) {
2120                         unsigned i;
2121                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2122                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2123                                         continue;
2124                                 catch |= vec_ids[i].mask;
2125                                 break;
2126                         }
2127                         if (i == ARRAY_SIZE(vec_ids)) {
2128                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2129                                 return ERROR_COMMAND_SYNTAX_ERROR;
2130                         }
2131                 }
2132 write:
2133                 /* For now, armv7m->demcr only stores vector catch flags. */
2134                 armv7m->demcr = catch;
2135
2136                 demcr &= ~0xffff;
2137                 demcr |= catch;
2138
2139                 /* write, but don't assume it stuck (why not??) */
2140                 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2141                 if (retval != ERROR_OK)
2142                         return retval;
2143                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2144                 if (retval != ERROR_OK)
2145                         return retval;
2146
2147                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2148                  * Otherwise the vector catch hardware could fire when there's
2149                  * no debugger hooked up, causing much confusion...
2150                  */
2151         }
2152
2153         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
2154         {
2155                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2156                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2157         }
2158
2159         return ERROR_OK;
2160 }
2161
2162 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2163 {
2164         struct target *target = get_current_target(CMD_CTX);
2165         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2166         int retval;
2167
2168         static const Jim_Nvp nvp_maskisr_modes[] = {
2169                 { .name = "auto", .value = CORTEX_M3_ISRMASK_AUTO },
2170                 { .name = "off" , .value = CORTEX_M3_ISRMASK_OFF },
2171                 { .name = "on"  , .value = CORTEX_M3_ISRMASK_ON },
2172                 { .name = NULL  , .value = -1 },
2173         };
2174         const Jim_Nvp *n;
2175
2176
2177         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2178         if (retval != ERROR_OK)
2179                 return retval;
2180
2181         if (target->state != TARGET_HALTED)
2182         {
2183                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2184                 return ERROR_OK;
2185         }
2186
2187         if (CMD_ARGC > 0)
2188         {
2189                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2190                 if (n->name == NULL)
2191                 {
2192                         return ERROR_COMMAND_SYNTAX_ERROR;
2193                 }
2194                 cortex_m3->isrmasking_mode = n->value;
2195
2196
2197                 if(cortex_m3->isrmasking_mode == CORTEX_M3_ISRMASK_ON)
2198                 {
2199                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2200                 }
2201                 else
2202                 {
2203                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2204                 }
2205         }
2206
2207         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m3->isrmasking_mode);
2208         command_print(CMD_CTX, "cortex_m3 interrupt mask %s", n->name);
2209
2210         return ERROR_OK;
2211 }
2212
2213 COMMAND_HANDLER(handle_cortex_m3_reset_config_command)
2214 {
2215         struct target *target = get_current_target(CMD_CTX);
2216         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2217         int retval;
2218         char *reset_config;
2219
2220         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2221         if (retval != ERROR_OK)
2222                 return retval;
2223
2224         if (CMD_ARGC > 0)
2225         {
2226                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2227                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_SYSRESETREQ;
2228                 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2229                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2230         }
2231
2232         switch (cortex_m3->soft_reset_config)
2233         {
2234                 case CORTEX_M3_RESET_SYSRESETREQ:
2235                         reset_config = "sysresetreq";
2236                         break;
2237
2238                 case CORTEX_M3_RESET_VECTRESET:
2239                         reset_config = "vectreset";
2240                         break;
2241
2242                 default:
2243                         reset_config = "unknown";
2244                         break;
2245         }
2246
2247         command_print(CMD_CTX, "cortex_m3 reset_config %s", reset_config);
2248
2249         return ERROR_OK;
2250 }
2251
2252 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2253         {
2254                 .name = "maskisr",
2255                 .handler = handle_cortex_m3_mask_interrupts_command,
2256                 .mode = COMMAND_EXEC,
2257                 .help = "mask cortex_m3 interrupts",
2258                 .usage = "['auto'|'on'|'off']",
2259         },
2260         {
2261                 .name = "vector_catch",
2262                 .handler = handle_cortex_m3_vector_catch_command,
2263                 .mode = COMMAND_EXEC,
2264                 .help = "configure hardware vectors to trigger debug entry",
2265                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2266         },
2267         {
2268                 .name = "reset_config",
2269                 .handler = handle_cortex_m3_reset_config_command,
2270                 .mode = COMMAND_ANY,
2271                 .help = "configure software reset handling",
2272                 .usage = "['srst'|'sysresetreq'|'vectreset']",
2273         },
2274         COMMAND_REGISTRATION_DONE
2275 };
2276 static const struct command_registration cortex_m3_command_handlers[] = {
2277         {
2278                 .chain = armv7m_command_handlers,
2279         },
2280         {
2281                 .name = "cortex_m3",
2282                 .mode = COMMAND_EXEC,
2283                 .help = "Cortex-M3 command group",
2284                 .usage = "",
2285                 .chain = cortex_m3_exec_command_handlers,
2286         },
2287         COMMAND_REGISTRATION_DONE
2288 };
2289
2290 struct target_type cortexm3_target =
2291 {
2292         .name = "cortex_m3",
2293
2294         .poll = cortex_m3_poll,
2295         .arch_state = armv7m_arch_state,
2296
2297         .target_request_data = cortex_m3_target_request_data,
2298
2299         .halt = cortex_m3_halt,
2300         .resume = cortex_m3_resume,
2301         .step = cortex_m3_step,
2302
2303         .assert_reset = cortex_m3_assert_reset,
2304         .deassert_reset = cortex_m3_deassert_reset,
2305         .soft_reset_halt = cortex_m3_soft_reset_halt,
2306
2307         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2308
2309         .read_memory = cortex_m3_read_memory,
2310         .write_memory = cortex_m3_write_memory,
2311         .bulk_write_memory = cortex_m3_bulk_write_memory,
2312         .checksum_memory = armv7m_checksum_memory,
2313         .blank_check_memory = armv7m_blank_check_memory,
2314
2315         .run_algorithm = armv7m_run_algorithm,
2316         .start_algorithm = armv7m_start_algorithm,
2317         .wait_algorithm = armv7m_wait_algorithm,
2318
2319         .add_breakpoint = cortex_m3_add_breakpoint,
2320         .remove_breakpoint = cortex_m3_remove_breakpoint,
2321         .add_watchpoint = cortex_m3_add_watchpoint,
2322         .remove_watchpoint = cortex_m3_remove_watchpoint,
2323
2324         .commands = cortex_m3_command_handlers,
2325         .target_create = cortex_m3_target_create,
2326         .init_target = cortex_m3_init_target,
2327         .examine = cortex_m3_examine,
2328 };