74505a85e1b669168640eaae4cf0ec7fa1f8b9c3
[fw/openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "jtag/interface.h"
35 #include "breakpoints.h"
36 #include "cortex_m.h"
37 #include "target_request.h"
38 #include "target_type.h"
39 #include "arm_disassembler.h"
40 #include "register.h"
41 #include "arm_opcodes.h"
42 #include "arm_semihosting.h"
43 #include <helper/time_support.h>
44
45 /* NOTE:  most of this should work fine for the Cortex-M1 and
46  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
47  * Some differences:  M0/M1 doesn't have FBP remapping or the
48  * DWT tracing/profiling support.  (So the cycle counter will
49  * not be usable; the other stuff isn't currently used here.)
50  *
51  * Although there are some workarounds for errata seen only in r0p0
52  * silicon, such old parts are hard to find and thus not much tested
53  * any longer.
54  */
55
56 /**
57  * Returns the type of a break point required by address location
58  */
59 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
60
61
62 /* forward declarations */
63 static int cortex_m3_store_core_reg_u32(struct target *target,
64         enum armv7m_regtype type, uint32_t num, uint32_t value);
65
66 static int cortexm3_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
67         uint32_t *value, int regnum)
68 {
69         int retval;
70         uint32_t dcrdr;
71
72         /* because the DCB_DCRDR is used for the emulated dcc channel
73          * we have to save/restore the DCB_DCRDR when used */
74
75         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
76         if (retval != ERROR_OK)
77                 return retval;
78
79         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
80         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
81         if (retval != ERROR_OK)
82                 return retval;
83         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
84         if (retval != ERROR_OK)
85                 return retval;
86
87         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
88         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
89         if (retval != ERROR_OK)
90                 return retval;
91         retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
92         if (retval != ERROR_OK)
93                 return retval;
94
95         retval = dap_run(swjdp);
96         if (retval != ERROR_OK)
97                 return retval;
98
99         /* restore DCB_DCRDR - this needs to be in a seperate
100          * transaction otherwise the emulated DCC channel breaks */
101         if (retval == ERROR_OK)
102                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
103
104         return retval;
105 }
106
107 static int cortexm3_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
108         uint32_t value, int regnum)
109 {
110         int retval;
111         uint32_t dcrdr;
112
113         /* because the DCB_DCRDR is used for the emulated dcc channel
114          * we have to save/restore the DCB_DCRDR when used */
115
116         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
117         if (retval != ERROR_OK)
118                 return retval;
119
120         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
121         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
122         if (retval != ERROR_OK)
123                 return retval;
124         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
125         if (retval != ERROR_OK)
126                 return retval;
127
128         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
129         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
130         if (retval != ERROR_OK)
131                 return retval;
132         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
133         if (retval != ERROR_OK)
134                 return retval;
135
136         retval = dap_run(swjdp);
137         if (retval != ERROR_OK)
138                 return retval;
139
140         /* restore DCB_DCRDR - this needs to be in a seperate
141          * transaction otherwise the emulated DCC channel breaks */
142         if (retval == ERROR_OK)
143                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
144
145         return retval;
146 }
147
148 static int cortex_m3_write_debug_halt_mask(struct target *target,
149         uint32_t mask_on, uint32_t mask_off)
150 {
151         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
152         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
153
154         /* mask off status bits */
155         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
156         /* create new register mask */
157         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
158
159         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
160 }
161
162 static int cortex_m3_clear_halt(struct target *target)
163 {
164         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
165         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
166         int retval;
167
168         /* clear step if any */
169         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
170
171         /* Read Debug Fault Status Register */
172         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
173         if (retval != ERROR_OK)
174                 return retval;
175
176         /* Clear Debug Fault Status */
177         retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
178         if (retval != ERROR_OK)
179                 return retval;
180         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
181
182         return ERROR_OK;
183 }
184
185 static int cortex_m3_single_step_core(struct target *target)
186 {
187         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
188         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
189         uint32_t dhcsr_save;
190         int retval;
191
192         /* backup dhcsr reg */
193         dhcsr_save = cortex_m3->dcb_dhcsr;
194
195         /* Mask interrupts before clearing halt, if done already.  This avoids
196          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
197          * HALT can put the core into an unknown state.
198          */
199         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS)) {
200                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
201                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
202                 if (retval != ERROR_OK)
203                         return retval;
204         }
205         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
206                         DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
207         if (retval != ERROR_OK)
208                 return retval;
209         LOG_DEBUG(" ");
210
211         /* restore dhcsr reg */
212         cortex_m3->dcb_dhcsr = dhcsr_save;
213         cortex_m3_clear_halt(target);
214
215         return ERROR_OK;
216 }
217
218 static int cortex_m3_endreset_event(struct target *target)
219 {
220         int i;
221         int retval;
222         uint32_t dcb_demcr;
223         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
224         struct armv7m_common *armv7m = &cortex_m3->armv7m;
225         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
226         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
227         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
228
229         /* REVISIT The four debug monitor bits are currently ignored... */
230         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
231         if (retval != ERROR_OK)
232                 return retval;
233         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
234
235         /* this register is used for emulated dcc channel */
236         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
237         if (retval != ERROR_OK)
238                 return retval;
239
240         /* Enable debug requests */
241         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
242         if (retval != ERROR_OK)
243                 return retval;
244         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
245                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
246                 if (retval != ERROR_OK)
247                         return retval;
248         }
249
250         /* clear any interrupt masking */
251         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
252
253         /* Enable features controlled by ITM and DWT blocks, and catch only
254          * the vectors we were told to pay attention to.
255          *
256          * Target firmware is responsible for all fault handling policy
257          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
258          * or manual updates to the NVIC SHCSR and CCR registers.
259          */
260         retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
261         if (retval != ERROR_OK)
262                 return retval;
263
264         /* Paranoia: evidently some (early?) chips don't preserve all the
265          * debug state (including FBP, DWT, etc) across reset...
266          */
267
268         /* Enable FPB */
269         retval = target_write_u32(target, FP_CTRL, 3);
270         if (retval != ERROR_OK)
271                 return retval;
272
273         cortex_m3->fpb_enabled = 1;
274
275         /* Restore FPB registers */
276         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
277                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
278                 if (retval != ERROR_OK)
279                         return retval;
280         }
281
282         /* Restore DWT registers */
283         for (i = 0; i < cortex_m3->dwt_num_comp; i++) {
284                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
285                                 dwt_list[i].comp);
286                 if (retval != ERROR_OK)
287                         return retval;
288                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
289                                 dwt_list[i].mask);
290                 if (retval != ERROR_OK)
291                         return retval;
292                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
293                                 dwt_list[i].function);
294                 if (retval != ERROR_OK)
295                         return retval;
296         }
297         retval = dap_run(swjdp);
298         if (retval != ERROR_OK)
299                 return retval;
300
301         register_cache_invalidate(cortex_m3->armv7m.core_cache);
302
303         /* make sure we have latest dhcsr flags */
304         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
305
306         return retval;
307 }
308
309 static int cortex_m3_examine_debug_reason(struct target *target)
310 {
311         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
312
313         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
314          * only check the debug reason if we don't know it already */
315
316         if ((target->debug_reason != DBG_REASON_DBGRQ)
317                 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
318                 if (cortex_m3->nvic_dfsr & DFSR_BKPT) {
319                         target->debug_reason = DBG_REASON_BREAKPOINT;
320                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
321                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
322                 } else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
323                         target->debug_reason = DBG_REASON_WATCHPOINT;
324                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
325                         target->debug_reason = DBG_REASON_BREAKPOINT;
326                 else    /* EXTERNAL, HALTED */
327                         target->debug_reason = DBG_REASON_UNDEFINED;
328         }
329
330         return ERROR_OK;
331 }
332
333 static int cortex_m3_examine_exception_reason(struct target *target)
334 {
335         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
336         struct armv7m_common *armv7m = target_to_armv7m(target);
337         struct adiv5_dap *swjdp = armv7m->arm.dap;
338         int retval;
339
340         retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
341         if (retval != ERROR_OK)
342                 return retval;
343         switch (armv7m->exception_number) {
344                 case 2: /* NMI */
345                         break;
346                 case 3: /* Hard Fault */
347                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
348                         if (retval != ERROR_OK)
349                                 return retval;
350                         if (except_sr & 0x40000000) {
351                                 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
352                                 if (retval != ERROR_OK)
353                                         return retval;
354                         }
355                         break;
356                 case 4: /* Memory Management */
357                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
358                         if (retval != ERROR_OK)
359                                 return retval;
360                         retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
361                         if (retval != ERROR_OK)
362                                 return retval;
363                         break;
364                 case 5: /* Bus Fault */
365                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
366                         if (retval != ERROR_OK)
367                                 return retval;
368                         retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
369                         if (retval != ERROR_OK)
370                                 return retval;
371                         break;
372                 case 6: /* Usage Fault */
373                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
374                         if (retval != ERROR_OK)
375                                 return retval;
376                         break;
377                 case 11:        /* SVCall */
378                         break;
379                 case 12:        /* Debug Monitor */
380                         retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
381                         if (retval != ERROR_OK)
382                                 return retval;
383                         break;
384                 case 14:        /* PendSV */
385                         break;
386                 case 15:        /* SysTick */
387                         break;
388                 default:
389                         except_sr = 0;
390                         break;
391         }
392         retval = dap_run(swjdp);
393         if (retval == ERROR_OK)
394                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
395                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
396                         armv7m_exception_string(armv7m->exception_number),
397                         shcsr, except_sr, cfsr, except_ar);
398         return retval;
399 }
400
401 static int cortex_m3_debug_entry(struct target *target)
402 {
403         int i;
404         uint32_t xPSR;
405         int retval;
406         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
407         struct armv7m_common *armv7m = &cortex_m3->armv7m;
408         struct arm *arm = &armv7m->arm;
409         struct adiv5_dap *swjdp = armv7m->arm.dap;
410         struct reg *r;
411
412         LOG_DEBUG(" ");
413
414         cortex_m3_clear_halt(target);
415         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
416         if (retval != ERROR_OK)
417                 return retval;
418
419         retval = armv7m->examine_debug_reason(target);
420         if (retval != ERROR_OK)
421                 return retval;
422
423         /* Examine target state and mode
424          * First load register acessible through core debug port*/
425         int num_regs = armv7m->core_cache->num_regs;
426
427         for (i = 0; i < num_regs; i++) {
428                 if (!armv7m->core_cache->reg_list[i].valid)
429                         armv7m->read_core_reg(target, i);
430         }
431
432         r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
433         xPSR = buf_get_u32(r->value, 0, 32);
434
435 #ifdef ARMV7_GDB_HACKS
436         /* FIXME this breaks on scan chains with more than one Cortex-M3.
437          * Instead, each CM3 should have its own dummy value...
438          */
439         /* copy real xpsr reg for gdb, setting thumb bit */
440         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
441         buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
442         armv7m_gdb_dummy_cpsr_reg.valid = r->valid;
443         armv7m_gdb_dummy_cpsr_reg.dirty = r->dirty;
444 #endif
445
446         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
447         if (xPSR & 0xf00) {
448                 r->dirty = r->valid;
449                 cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR & ~0xff);
450         }
451
452         /* Are we in an exception handler */
453         if (xPSR & 0x1FF) {
454                 armv7m->core_mode = ARMV7M_MODE_HANDLER;
455                 armv7m->exception_number = (xPSR & 0x1FF);
456
457                 arm->core_mode = ARM_MODE_HANDLER;
458                 arm->map = armv7m_msp_reg_map;
459         } else {
460                 unsigned control = buf_get_u32(armv7m->core_cache
461                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
462
463                 /* is this thread privileged? */
464                 armv7m->core_mode = control & 1;
465                 arm->core_mode = armv7m->core_mode
466                         ? ARM_MODE_USER_THREAD
467                         : ARM_MODE_THREAD;
468
469                 /* which stack is it using? */
470                 if (control & 2)
471                         arm->map = armv7m_psp_reg_map;
472                 else
473                         arm->map = armv7m_msp_reg_map;
474
475                 armv7m->exception_number = 0;
476         }
477
478         if (armv7m->exception_number)
479                 cortex_m3_examine_exception_reason(target);
480
481         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
482                 armv7m_mode_strings[armv7m->core_mode],
483                 *(uint32_t *)(arm->pc->value),
484                 target_state_name(target));
485
486         if (armv7m->post_debug_entry) {
487                 retval = armv7m->post_debug_entry(target);
488                 if (retval != ERROR_OK)
489                         return retval;
490         }
491
492         return ERROR_OK;
493 }
494
495 static int cortex_m3_poll(struct target *target)
496 {
497         int detected_failure = ERROR_OK;
498         int retval = ERROR_OK;
499         enum target_state prev_target_state = target->state;
500         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
501         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
502
503         /* Read from Debug Halting Control and Status Register */
504         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
505         if (retval != ERROR_OK) {
506                 target->state = TARGET_UNKNOWN;
507                 return retval;
508         }
509
510         /* Recover from lockup.  See ARMv7-M architecture spec,
511          * section B1.5.15 "Unrecoverable exception cases".
512          */
513         if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
514                 LOG_ERROR("%s -- clearing lockup after double fault",
515                         target_name(target));
516                 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
517                 target->debug_reason = DBG_REASON_DBGRQ;
518
519                 /* We have to execute the rest (the "finally" equivalent, but
520                  * still throw this exception again).
521                  */
522                 detected_failure = ERROR_FAIL;
523
524                 /* refresh status bits */
525                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
526                 if (retval != ERROR_OK)
527                         return retval;
528         }
529
530         if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
531                 /* check if still in reset */
532                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
533                 if (retval != ERROR_OK)
534                         return retval;
535
536                 if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
537                         target->state = TARGET_RESET;
538                         return ERROR_OK;
539                 }
540         }
541
542         if (target->state == TARGET_RESET) {
543                 /* Cannot switch context while running so endreset is
544                  * called with target->state == TARGET_RESET
545                  */
546                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
547                         cortex_m3->dcb_dhcsr);
548                 cortex_m3_endreset_event(target);
549                 target->state = TARGET_RUNNING;
550                 prev_target_state = TARGET_RUNNING;
551         }
552
553         if (cortex_m3->dcb_dhcsr & S_HALT) {
554                 target->state = TARGET_HALTED;
555
556                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
557                         retval = cortex_m3_debug_entry(target);
558                         if (retval != ERROR_OK)
559                                 return retval;
560
561                         if (arm_semihosting(target, &retval) != 0)
562                                 return retval;
563
564                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
565                 }
566                 if (prev_target_state == TARGET_DEBUG_RUNNING) {
567                         LOG_DEBUG(" ");
568                         retval = cortex_m3_debug_entry(target);
569                         if (retval != ERROR_OK)
570                                 return retval;
571
572                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
573                 }
574         }
575
576         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
577          * How best to model low power modes?
578          */
579
580         if (target->state == TARGET_UNKNOWN) {
581                 /* check if processor is retiring instructions */
582                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST) {
583                         target->state = TARGET_RUNNING;
584                         retval = ERROR_OK;
585                 }
586         }
587
588         /* Did we detect a failure condition that we cleared? */
589         if (detected_failure != ERROR_OK)
590                 retval = detected_failure;
591         return retval;
592 }
593
594 static int cortex_m3_halt(struct target *target)
595 {
596         LOG_DEBUG("target->state: %s",
597                 target_state_name(target));
598
599         if (target->state == TARGET_HALTED) {
600                 LOG_DEBUG("target was already halted");
601                 return ERROR_OK;
602         }
603
604         if (target->state == TARGET_UNKNOWN)
605                 LOG_WARNING("target was in unknown state when halt was requested");
606
607         if (target->state == TARGET_RESET) {
608                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
609                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
610                         return ERROR_TARGET_FAILURE;
611                 } else {
612                         /* we came here in a reset_halt or reset_init sequence
613                          * debug entry was already prepared in cortex_m3_assert_reset()
614                          */
615                         target->debug_reason = DBG_REASON_DBGRQ;
616
617                         return ERROR_OK;
618                 }
619         }
620
621         /* Write to Debug Halting Control and Status Register */
622         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
623
624         target->debug_reason = DBG_REASON_DBGRQ;
625
626         return ERROR_OK;
627 }
628
629 static int cortex_m3_soft_reset_halt(struct target *target)
630 {
631         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
632         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
633         uint32_t dcb_dhcsr = 0;
634         int retval, timeout = 0;
635
636         /* Enter debug state on reset; restore DEMCR in endreset_event() */
637         retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
638                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
639         if (retval != ERROR_OK)
640                 return retval;
641
642         /* Request a core-only reset */
643         retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
644                         AIRCR_VECTKEY | AIRCR_VECTRESET);
645         if (retval != ERROR_OK)
646                 return retval;
647         target->state = TARGET_RESET;
648
649         /* registers are now invalid */
650         register_cache_invalidate(cortex_m3->armv7m.core_cache);
651
652         while (timeout < 100) {
653                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
654                 if (retval == ERROR_OK) {
655                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
656                                         &cortex_m3->nvic_dfsr);
657                         if (retval != ERROR_OK)
658                                 return retval;
659                         if ((dcb_dhcsr & S_HALT)
660                                 && (cortex_m3->nvic_dfsr & DFSR_VCATCH)) {
661                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
662                                         "DFSR 0x%08x",
663                                         (unsigned) dcb_dhcsr,
664                                         (unsigned) cortex_m3->nvic_dfsr);
665                                 cortex_m3_poll(target);
666                                 /* FIXME restore user's vector catch config */
667                                 return ERROR_OK;
668                         } else
669                                 LOG_DEBUG("waiting for system reset-halt, "
670                                         "DHCSR 0x%08x, %d ms",
671                                         (unsigned) dcb_dhcsr, timeout);
672                 }
673                 timeout++;
674                 alive_sleep(1);
675         }
676
677         return ERROR_OK;
678 }
679
680 static void cortex_m3_enable_breakpoints(struct target *target)
681 {
682         struct breakpoint *breakpoint = target->breakpoints;
683
684         /* set any pending breakpoints */
685         while (breakpoint) {
686                 if (!breakpoint->set)
687                         cortex_m3_set_breakpoint(target, breakpoint);
688                 breakpoint = breakpoint->next;
689         }
690 }
691
692 static int cortex_m3_resume(struct target *target, int current,
693         uint32_t address, int handle_breakpoints, int debug_execution)
694 {
695         struct armv7m_common *armv7m = target_to_armv7m(target);
696         struct breakpoint *breakpoint = NULL;
697         uint32_t resume_pc;
698         struct reg *r;
699
700         if (target->state != TARGET_HALTED) {
701                 LOG_WARNING("target not halted");
702                 return ERROR_TARGET_NOT_HALTED;
703         }
704
705         if (!debug_execution) {
706                 target_free_all_working_areas(target);
707                 cortex_m3_enable_breakpoints(target);
708                 cortex_m3_enable_watchpoints(target);
709         }
710
711         if (debug_execution) {
712                 r = armv7m->core_cache->reg_list + ARMV7M_PRIMASK;
713
714                 /* Disable interrupts */
715                 /* We disable interrupts in the PRIMASK register instead of
716                  * masking with C_MASKINTS.  This is probably the same issue
717                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
718                  * in parallel with disabled interrupts can cause local faults
719                  * to not be taken.
720                  *
721                  * REVISIT this clearly breaks non-debug execution, since the
722                  * PRIMASK register state isn't saved/restored...  workaround
723                  * by never resuming app code after debug execution.
724                  */
725                 buf_set_u32(r->value, 0, 1, 1);
726                 r->dirty = true;
727                 r->valid = true;
728
729                 /* Make sure we are in Thumb mode */
730                 r = armv7m->core_cache->reg_list + ARMV7M_xPSR;
731                 buf_set_u32(r->value, 24, 1, 1);
732                 r->dirty = true;
733                 r->valid = true;
734         }
735
736         /* current = 1: continue on current pc, otherwise continue at <address> */
737         r = armv7m->arm.pc;
738         if (!current) {
739                 buf_set_u32(r->value, 0, 32, address);
740                 r->dirty = true;
741                 r->valid = true;
742         }
743
744         /* if we halted last time due to a bkpt instruction
745          * then we have to manually step over it, otherwise
746          * the core will break again */
747
748         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
749                 && !debug_execution)
750                 armv7m_maybe_skip_bkpt_inst(target, NULL);
751
752         resume_pc = buf_get_u32(r->value, 0, 32);
753
754         armv7m_restore_context(target);
755
756         /* the front-end may request us not to handle breakpoints */
757         if (handle_breakpoints) {
758                 /* Single step past breakpoint at current address */
759                 breakpoint = breakpoint_find(target, resume_pc);
760                 if (breakpoint) {
761                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
762                                 breakpoint->address,
763                                 breakpoint->unique_id);
764                         cortex_m3_unset_breakpoint(target, breakpoint);
765                         cortex_m3_single_step_core(target);
766                         cortex_m3_set_breakpoint(target, breakpoint);
767                 }
768         }
769
770         /* Restart core */
771         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
772
773         target->debug_reason = DBG_REASON_NOTHALTED;
774
775         /* registers are now invalid */
776         register_cache_invalidate(armv7m->core_cache);
777
778         if (!debug_execution) {
779                 target->state = TARGET_RUNNING;
780                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
781                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
782         } else {
783                 target->state = TARGET_DEBUG_RUNNING;
784                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
785                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
786         }
787
788         return ERROR_OK;
789 }
790
791 /* int irqstepcount = 0; */
792 static int cortex_m3_step(struct target *target, int current,
793         uint32_t address, int handle_breakpoints)
794 {
795         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
796         struct armv7m_common *armv7m = &cortex_m3->armv7m;
797         struct adiv5_dap *swjdp = armv7m->arm.dap;
798         struct breakpoint *breakpoint = NULL;
799         struct reg *pc = armv7m->arm.pc;
800         bool bkpt_inst_found = false;
801         int retval;
802         bool isr_timed_out = false;
803
804         if (target->state != TARGET_HALTED) {
805                 LOG_WARNING("target not halted");
806                 return ERROR_TARGET_NOT_HALTED;
807         }
808
809         /* current = 1: continue on current pc, otherwise continue at <address> */
810         if (!current)
811                 buf_set_u32(pc->value, 0, 32, address);
812
813         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
814
815         /* the front-end may request us not to handle breakpoints */
816         if (handle_breakpoints) {
817                 breakpoint = breakpoint_find(target, pc_value);
818                 if (breakpoint)
819                         cortex_m3_unset_breakpoint(target, breakpoint);
820         }
821
822         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
823
824         target->debug_reason = DBG_REASON_SINGLESTEP;
825
826         armv7m_restore_context(target);
827
828         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
829
830         /* if no bkpt instruction is found at pc then we can perform
831          * a normal step, otherwise we have to manually step over the bkpt
832          * instruction - as such simulate a step */
833         if (bkpt_inst_found == false) {
834                 /* Automatic ISR masking mode off: Just step over the next instruction */
835                 if ((cortex_m3->isrmasking_mode != CORTEX_M3_ISRMASK_AUTO))
836                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
837                 else {
838                         /* Process interrupts during stepping in a way they don't interfere
839                          * debugging.
840                          *
841                          * Principle:
842                          *
843                          * Set a temporary break point at the current pc and let the core run
844                          * with interrupts enabled. Pending interrupts get served and we run
845                          * into the breakpoint again afterwards. Then we step over the next
846                          * instruction with interrupts disabled.
847                          *
848                          * If the pending interrupts don't complete within time, we leave the
849                          * core running. This may happen if the interrupts trigger faster
850                          * than the core can process them or the handler doesn't return.
851                          *
852                          * If no more breakpoints are available we simply do a step with
853                          * interrupts enabled.
854                          *
855                          */
856
857                         /* Set a temporary break point */
858                         retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
859                         bool tmp_bp_set = (retval == ERROR_OK);
860
861                         /* No more breakpoints left, just do a step */
862                         if (!tmp_bp_set)
863                                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
864                         else {
865                                 /* Start the core */
866                                 LOG_DEBUG("Starting core to serve pending interrupts");
867                                 int64_t t_start = timeval_ms();
868                                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
869
870                                 /* Wait for pending handlers to complete or timeout */
871                                 do {
872                                         retval = mem_ap_read_atomic_u32(swjdp,
873                                                         DCB_DHCSR,
874                                                         &cortex_m3->dcb_dhcsr);
875                                         if (retval != ERROR_OK) {
876                                                 target->state = TARGET_UNKNOWN;
877                                                 return retval;
878                                         }
879                                         isr_timed_out = ((timeval_ms() - t_start) > 500);
880                                 } while (!((cortex_m3->dcb_dhcsr & S_HALT) || isr_timed_out));
881
882                                 /* Remove the temporary breakpoint */
883                                 breakpoint_remove(target, pc_value);
884
885                                 if (isr_timed_out) {
886                                         LOG_DEBUG("Interrupt handlers didn't complete within time, "
887                                                 "leaving target running");
888                                 } else {
889                                         /* Step over next instruction with interrupts disabled */
890                                         cortex_m3_write_debug_halt_mask(target,
891                                                 C_HALT | C_MASKINTS,
892                                                 0);
893                                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
894                                         /* Re-enable interrupts */
895                                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
896                                 }
897                         }
898                 }
899         }
900
901         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
902         if (retval != ERROR_OK)
903                 return retval;
904
905         /* registers are now invalid */
906         register_cache_invalidate(cortex_m3->armv7m.core_cache);
907
908         if (breakpoint)
909                 cortex_m3_set_breakpoint(target, breakpoint);
910
911         if (isr_timed_out) {
912                 /* Leave the core running. The user has to stop execution manually. */
913                 target->debug_reason = DBG_REASON_NOTHALTED;
914                 target->state = TARGET_RUNNING;
915                 return ERROR_OK;
916         }
917
918         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
919                 " nvic_icsr = 0x%" PRIx32,
920                 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
921
922         retval = cortex_m3_debug_entry(target);
923         if (retval != ERROR_OK)
924                 return retval;
925         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
926
927         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
928                 " nvic_icsr = 0x%" PRIx32,
929                 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
930
931         return ERROR_OK;
932 }
933
934 static int cortex_m3_assert_reset(struct target *target)
935 {
936         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
937         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
938         enum cortex_m3_soft_reset_config reset_config = cortex_m3->soft_reset_config;
939
940         LOG_DEBUG("target->state: %s",
941                 target_state_name(target));
942
943         enum reset_types jtag_reset_config = jtag_get_reset_config();
944
945         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
946                 /* allow scripts to override the reset event */
947
948                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
949                 register_cache_invalidate(cortex_m3->armv7m.core_cache);
950                 target->state = TARGET_RESET;
951
952                 return ERROR_OK;
953         }
954
955         /* some cores support connecting while srst is asserted
956          * use that mode is it has been configured */
957
958         bool srst_asserted = false;
959
960         if (jtag_reset_config & RESET_SRST_NO_GATING) {
961                 adapter_assert_reset();
962                 srst_asserted = true;
963         }
964
965         /* Enable debug requests */
966         int retval;
967         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
968         if (retval != ERROR_OK)
969                 return retval;
970         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
971                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
972                 if (retval != ERROR_OK)
973                         return retval;
974         }
975
976         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
977         if (retval != ERROR_OK)
978                 return retval;
979
980         if (!target->reset_halt) {
981                 /* Set/Clear C_MASKINTS in a separate operation */
982                 if (cortex_m3->dcb_dhcsr & C_MASKINTS) {
983                         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
984                                         DBGKEY | C_DEBUGEN | C_HALT);
985                         if (retval != ERROR_OK)
986                                 return retval;
987                 }
988
989                 /* clear any debug flags before resuming */
990                 cortex_m3_clear_halt(target);
991
992                 /* clear C_HALT in dhcsr reg */
993                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
994         } else {
995                 /* Halt in debug on reset; endreset_event() restores DEMCR.
996                  *
997                  * REVISIT catching BUSERR presumably helps to defend against
998                  * bad vector table entries.  Should this include MMERR or
999                  * other flags too?
1000                  */
1001                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
1002                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1003                 if (retval != ERROR_OK)
1004                         return retval;
1005         }
1006
1007         if (jtag_reset_config & RESET_HAS_SRST) {
1008                 /* default to asserting srst */
1009                 if (!srst_asserted)
1010                         adapter_assert_reset();
1011         } else {
1012                 /* Use a standard Cortex-M3 software reset mechanism.
1013                  * We default to using VECRESET as it is supported on all current cores.
1014                  * This has the disadvantage of not resetting the peripherals, so a
1015                  * reset-init event handler is needed to perform any peripheral resets.
1016                  */
1017                 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1018                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1019                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1020                 if (retval != ERROR_OK)
1021                         return retval;
1022
1023                 LOG_DEBUG("Using Cortex-M3 %s", (reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1024                         ? "SYSRESETREQ" : "VECTRESET");
1025
1026                 if (reset_config == CORTEX_M3_RESET_VECTRESET) {
1027                         LOG_WARNING("Only resetting the Cortex-M3 core, use a reset-init event "
1028                                 "handler to reset any peripherals or configure hardware srst support.");
1029                 }
1030
1031                 {
1032                         /* I do not know why this is necessary, but it
1033                          * fixes strange effects (step/resume cause NMI
1034                          * after reset) on LM3S6918 -- Michael Schwingen
1035                          */
1036                         uint32_t tmp;
1037                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1038                         if (retval != ERROR_OK)
1039                                 return retval;
1040                 }
1041         }
1042
1043         target->state = TARGET_RESET;
1044         jtag_add_sleep(50000);
1045
1046         register_cache_invalidate(cortex_m3->armv7m.core_cache);
1047
1048         if (target->reset_halt) {
1049                 retval = target_halt(target);
1050                 if (retval != ERROR_OK)
1051                         return retval;
1052         }
1053
1054         return ERROR_OK;
1055 }
1056
1057 static int cortex_m3_deassert_reset(struct target *target)
1058 {
1059         LOG_DEBUG("target->state: %s",
1060                 target_state_name(target));
1061
1062         /* deassert reset lines */
1063         adapter_deassert_reset();
1064
1065         return ERROR_OK;
1066 }
1067
1068 int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1069 {
1070         int retval;
1071         int fp_num = 0;
1072         uint32_t hilo;
1073         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1074         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1075
1076         if (breakpoint->set) {
1077                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
1078                 return ERROR_OK;
1079         }
1080
1081         if (cortex_m3->auto_bp_type)
1082                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1083
1084         if (breakpoint->type == BKPT_HARD) {
1085                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
1086                         fp_num++;
1087                 if (fp_num >= cortex_m3->fp_num_code) {
1088                         LOG_ERROR("Can not find free FPB Comparator!");
1089                         return ERROR_FAIL;
1090                 }
1091                 breakpoint->set = fp_num + 1;
1092                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1093                 comparator_list[fp_num].used = 1;
1094                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1095                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1096                         comparator_list[fp_num].fpcr_value);
1097                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1098                         fp_num,
1099                         comparator_list[fp_num].fpcr_value);
1100                 if (!cortex_m3->fpb_enabled) {
1101                         LOG_DEBUG("FPB wasn't enabled, do it now");
1102                         target_write_u32(target, FP_CTRL, 3);
1103                 }
1104         } else if (breakpoint->type == BKPT_SOFT) {
1105                 uint8_t code[4];
1106
1107                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1108                  * semihosting; don't use that.  Otherwise the BKPT
1109                  * parameter is arbitrary.
1110                  */
1111                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1112                 retval = target_read_memory(target,
1113                                 breakpoint->address & 0xFFFFFFFE,
1114                                 breakpoint->length, 1,
1115                                 breakpoint->orig_instr);
1116                 if (retval != ERROR_OK)
1117                         return retval;
1118                 retval = target_write_memory(target,
1119                                 breakpoint->address & 0xFFFFFFFE,
1120                                 breakpoint->length, 1,
1121                                 code);
1122                 if (retval != ERROR_OK)
1123                         return retval;
1124                 breakpoint->set = true;
1125         }
1126
1127         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1128                 breakpoint->unique_id,
1129                 (int)(breakpoint->type),
1130                 breakpoint->address,
1131                 breakpoint->length,
1132                 breakpoint->set);
1133
1134         return ERROR_OK;
1135 }
1136
1137 int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1138 {
1139         int retval;
1140         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1141         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1142
1143         if (!breakpoint->set) {
1144                 LOG_WARNING("breakpoint not set");
1145                 return ERROR_OK;
1146         }
1147
1148         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1149                 breakpoint->unique_id,
1150                 (int)(breakpoint->type),
1151                 breakpoint->address,
1152                 breakpoint->length,
1153                 breakpoint->set);
1154
1155         if (breakpoint->type == BKPT_HARD) {
1156                 int fp_num = breakpoint->set - 1;
1157                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code)) {
1158                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1159                         return ERROR_OK;
1160                 }
1161                 comparator_list[fp_num].used = 0;
1162                 comparator_list[fp_num].fpcr_value = 0;
1163                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1164                         comparator_list[fp_num].fpcr_value);
1165         } else {
1166                 /* restore original instruction (kept in target endianness) */
1167                 if (breakpoint->length == 4) {
1168                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1169                                         breakpoint->orig_instr);
1170                         if (retval != ERROR_OK)
1171                                 return retval;
1172                 } else {
1173                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1174                                         breakpoint->orig_instr);
1175                         if (retval != ERROR_OK)
1176                                 return retval;
1177                 }
1178         }
1179         breakpoint->set = false;
1180
1181         return ERROR_OK;
1182 }
1183
1184 int cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1185 {
1186         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1187
1188         if (cortex_m3->auto_bp_type) {
1189                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1190 #ifdef ARMV7_GDB_HACKS
1191                 if (breakpoint->length != 2) {
1192                         /* XXX Hack: Replace all breakpoints with length != 2 with
1193                          * a hardware breakpoint. */
1194                         breakpoint->type = BKPT_HARD;
1195                         breakpoint->length = 2;
1196                 }
1197 #endif
1198         }
1199
1200         if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1201                 if (breakpoint->type == BKPT_HARD) {
1202                         LOG_INFO("flash patch comparator requested outside code memory region");
1203                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1204                 }
1205
1206                 if (breakpoint->type == BKPT_SOFT) {
1207                         LOG_INFO("soft breakpoint requested in code (flash) memory region");
1208                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1209                 }
1210         }
1211
1212         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1)) {
1213                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1214                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1215         }
1216
1217         if ((breakpoint->length != 2)) {
1218                 LOG_INFO("only breakpoints of two bytes length supported");
1219                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1220         }
1221
1222         if (breakpoint->type == BKPT_HARD)
1223                 cortex_m3->fp_code_available--;
1224
1225         return cortex_m3_set_breakpoint(target, breakpoint);
1226 }
1227
1228 int cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1229 {
1230         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1231
1232         /* REVISIT why check? FBP can be updated with core running ... */
1233         if (target->state != TARGET_HALTED) {
1234                 LOG_WARNING("target not halted");
1235                 return ERROR_TARGET_NOT_HALTED;
1236         }
1237
1238         if (cortex_m3->auto_bp_type)
1239                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1240
1241         if (breakpoint->set)
1242                 cortex_m3_unset_breakpoint(target, breakpoint);
1243
1244         if (breakpoint->type == BKPT_HARD)
1245                 cortex_m3->fp_code_available++;
1246
1247         return ERROR_OK;
1248 }
1249
1250 int cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1251 {
1252         int dwt_num = 0;
1253         uint32_t mask, temp;
1254         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1255
1256         /* watchpoint params were validated earlier */
1257         mask = 0;
1258         temp = watchpoint->length;
1259         while (temp) {
1260                 temp >>= 1;
1261                 mask++;
1262         }
1263         mask--;
1264
1265         /* REVISIT Don't fully trust these "not used" records ... users
1266          * may set up breakpoints by hand, e.g. dual-address data value
1267          * watchpoint using comparator #1; comparator #0 matching cycle
1268          * count; send data trace info through ITM and TPIU; etc
1269          */
1270         struct cortex_m3_dwt_comparator *comparator;
1271
1272         for (comparator = cortex_m3->dwt_comparator_list;
1273                 comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1274                 comparator++, dwt_num++)
1275                 continue;
1276         if (dwt_num >= cortex_m3->dwt_num_comp) {
1277                 LOG_ERROR("Can not find free DWT Comparator");
1278                 return ERROR_FAIL;
1279         }
1280         comparator->used = 1;
1281         watchpoint->set = dwt_num + 1;
1282
1283         comparator->comp = watchpoint->address;
1284         target_write_u32(target, comparator->dwt_comparator_address + 0,
1285                 comparator->comp);
1286
1287         comparator->mask = mask;
1288         target_write_u32(target, comparator->dwt_comparator_address + 4,
1289                 comparator->mask);
1290
1291         switch (watchpoint->rw) {
1292                 case WPT_READ:
1293                         comparator->function = 5;
1294                         break;
1295                 case WPT_WRITE:
1296                         comparator->function = 6;
1297                         break;
1298                 case WPT_ACCESS:
1299                         comparator->function = 7;
1300                         break;
1301         }
1302         target_write_u32(target, comparator->dwt_comparator_address + 8,
1303                 comparator->function);
1304
1305         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1306                 watchpoint->unique_id, dwt_num,
1307                 (unsigned) comparator->comp,
1308                 (unsigned) comparator->mask,
1309                 (unsigned) comparator->function);
1310         return ERROR_OK;
1311 }
1312
1313 int cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1314 {
1315         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1316         struct cortex_m3_dwt_comparator *comparator;
1317         int dwt_num;
1318
1319         if (!watchpoint->set) {
1320                 LOG_WARNING("watchpoint (wpid: %d) not set",
1321                         watchpoint->unique_id);
1322                 return ERROR_OK;
1323         }
1324
1325         dwt_num = watchpoint->set - 1;
1326
1327         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1328                 watchpoint->unique_id, dwt_num,
1329                 (unsigned) watchpoint->address);
1330
1331         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp)) {
1332                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1333                 return ERROR_OK;
1334         }
1335
1336         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1337         comparator->used = 0;
1338         comparator->function = 0;
1339         target_write_u32(target, comparator->dwt_comparator_address + 8,
1340                 comparator->function);
1341
1342         watchpoint->set = false;
1343
1344         return ERROR_OK;
1345 }
1346
1347 int cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1348 {
1349         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1350
1351         if (cortex_m3->dwt_comp_available < 1) {
1352                 LOG_DEBUG("no comparators?");
1353                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1354         }
1355
1356         /* hardware doesn't support data value masking */
1357         if (watchpoint->mask != ~(uint32_t)0) {
1358                 LOG_DEBUG("watchpoint value masks not supported");
1359                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1360         }
1361
1362         /* hardware allows address masks of up to 32K */
1363         unsigned mask;
1364
1365         for (mask = 0; mask < 16; mask++) {
1366                 if ((1u << mask) == watchpoint->length)
1367                         break;
1368         }
1369         if (mask == 16) {
1370                 LOG_DEBUG("unsupported watchpoint length");
1371                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1372         }
1373         if (watchpoint->address & ((1 << mask) - 1)) {
1374                 LOG_DEBUG("watchpoint address is unaligned");
1375                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1376         }
1377
1378         /* Caller doesn't seem to be able to describe watching for data
1379          * values of zero; that flags "no value".
1380          *
1381          * REVISIT This DWT may well be able to watch for specific data
1382          * values.  Requires comparator #1 to set DATAVMATCH and match
1383          * the data, and another comparator (DATAVADDR0) matching addr.
1384          */
1385         if (watchpoint->value) {
1386                 LOG_DEBUG("data value watchpoint not YET supported");
1387                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1388         }
1389
1390         cortex_m3->dwt_comp_available--;
1391         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1392
1393         return ERROR_OK;
1394 }
1395
1396 int cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1397 {
1398         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1399
1400         /* REVISIT why check? DWT can be updated with core running ... */
1401         if (target->state != TARGET_HALTED) {
1402                 LOG_WARNING("target not halted");
1403                 return ERROR_TARGET_NOT_HALTED;
1404         }
1405
1406         if (watchpoint->set)
1407                 cortex_m3_unset_watchpoint(target, watchpoint);
1408
1409         cortex_m3->dwt_comp_available++;
1410         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1411
1412         return ERROR_OK;
1413 }
1414
1415 void cortex_m3_enable_watchpoints(struct target *target)
1416 {
1417         struct watchpoint *watchpoint = target->watchpoints;
1418
1419         /* set any pending watchpoints */
1420         while (watchpoint) {
1421                 if (!watchpoint->set)
1422                         cortex_m3_set_watchpoint(target, watchpoint);
1423                 watchpoint = watchpoint->next;
1424         }
1425 }
1426
1427 static int cortex_m3_load_core_reg_u32(struct target *target,
1428         enum armv7m_regtype type, uint32_t num, uint32_t *value)
1429 {
1430         int retval;
1431         struct armv7m_common *armv7m = target_to_armv7m(target);
1432         struct adiv5_dap *swjdp = armv7m->arm.dap;
1433
1434         /* NOTE:  we "know" here that the register identifiers used
1435          * in the v7m header match the Cortex-M3 Debug Core Register
1436          * Selector values for R0..R15, xPSR, MSP, and PSP.
1437          */
1438         switch (num) {
1439                 case 0 ... 18:
1440                         /* read a normal core register */
1441                         retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1442
1443                         if (retval != ERROR_OK) {
1444                                 LOG_ERROR("JTAG failure %i", retval);
1445                                 return ERROR_JTAG_DEVICE_ERROR;
1446                         }
1447                         LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "", (int)num, *value);
1448                         break;
1449
1450                 case ARMV7M_PRIMASK:
1451                 case ARMV7M_BASEPRI:
1452                 case ARMV7M_FAULTMASK:
1453                 case ARMV7M_CONTROL:
1454                         /* Cortex-M3 packages these four registers as bitfields
1455                          * in one Debug Core register.  So say r0 and r2 docs;
1456                          * it was removed from r1 docs, but still works.
1457                          */
1458                         cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1459
1460                         switch (num) {
1461                                 case ARMV7M_PRIMASK:
1462                                         *value = buf_get_u32((uint8_t *)value, 0, 1);
1463                                         break;
1464
1465                                 case ARMV7M_BASEPRI:
1466                                         *value = buf_get_u32((uint8_t *)value, 8, 8);
1467                                         break;
1468
1469                                 case ARMV7M_FAULTMASK:
1470                                         *value = buf_get_u32((uint8_t *)value, 16, 1);
1471                                         break;
1472
1473                                 case ARMV7M_CONTROL:
1474                                         *value = buf_get_u32((uint8_t *)value, 24, 2);
1475                                         break;
1476                         }
1477
1478                         LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1479                         break;
1480
1481                 default:
1482                         return ERROR_COMMAND_SYNTAX_ERROR;
1483         }
1484
1485         return ERROR_OK;
1486 }
1487
1488 static int cortex_m3_store_core_reg_u32(struct target *target,
1489         enum armv7m_regtype type, uint32_t num, uint32_t value)
1490 {
1491         int retval;
1492         uint32_t reg;
1493         struct armv7m_common *armv7m = target_to_armv7m(target);
1494         struct adiv5_dap *swjdp = armv7m->arm.dap;
1495
1496 #ifdef ARMV7_GDB_HACKS
1497         /* If the LR register is being modified, make sure it will put us
1498          * in "thumb" mode, or an INVSTATE exception will occur. This is a
1499          * hack to deal with the fact that gdb will sometimes "forge"
1500          * return addresses, and doesn't set the LSB correctly (i.e., when
1501          * printing expressions containing function calls, it sets LR = 0.)
1502          * Valid exception return codes have bit 0 set too.
1503          */
1504         if (num == ARMV7M_R14)
1505                 value |= 0x01;
1506 #endif
1507
1508         /* NOTE:  we "know" here that the register identifiers used
1509          * in the v7m header match the Cortex-M3 Debug Core Register
1510          * Selector values for R0..R15, xPSR, MSP, and PSP.
1511          */
1512         switch (num) {
1513                 case 0 ... 18:
1514                         retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1515                         if (retval != ERROR_OK) {
1516                                 struct reg *r;
1517
1518                                 LOG_ERROR("JTAG failure");
1519                                 r = armv7m->core_cache->reg_list + num;
1520                                 r->dirty = r->valid;
1521                                 return ERROR_JTAG_DEVICE_ERROR;
1522                         }
1523                         LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1524                         break;
1525
1526                 case ARMV7M_PRIMASK:
1527                 case ARMV7M_BASEPRI:
1528                 case ARMV7M_FAULTMASK:
1529                 case ARMV7M_CONTROL:
1530                         /* Cortex-M3 packages these four registers as bitfields
1531                          * in one Debug Core register.  So say r0 and r2 docs;
1532                          * it was removed from r1 docs, but still works.
1533                          */
1534                         cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1535
1536                         switch (num) {
1537                                 case ARMV7M_PRIMASK:
1538                                         buf_set_u32((uint8_t *)&reg, 0, 1, value);
1539                                         break;
1540
1541                                 case ARMV7M_BASEPRI:
1542                                         buf_set_u32((uint8_t *)&reg, 8, 8, value);
1543                                         break;
1544
1545                                 case ARMV7M_FAULTMASK:
1546                                         buf_set_u32((uint8_t *)&reg, 16, 1, value);
1547                                         break;
1548
1549                                 case ARMV7M_CONTROL:
1550                                         buf_set_u32((uint8_t *)&reg, 24, 2, value);
1551                                         break;
1552                         }
1553
1554                         cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1555
1556                         LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1557                         break;
1558
1559                 default:
1560                         return ERROR_COMMAND_SYNTAX_ERROR;
1561         }
1562
1563         return ERROR_OK;
1564 }
1565
1566 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1567         uint32_t size, uint32_t count, uint8_t *buffer)
1568 {
1569         struct armv7m_common *armv7m = target_to_armv7m(target);
1570         struct adiv5_dap *swjdp = armv7m->arm.dap;
1571         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1572
1573         if (armv7m->arm.is_armv6m) {
1574                 /* armv6m does not handle unaligned memory access */
1575                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1576                         return ERROR_TARGET_UNALIGNED_ACCESS;
1577         }
1578
1579         /* cortex_m3 handles unaligned memory access */
1580         if (count && buffer) {
1581                 switch (size) {
1582                         case 4:
1583                                 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
1584                                 break;
1585                         case 2:
1586                                 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1587                                 break;
1588                         case 1:
1589                                 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1590                                 break;
1591                 }
1592         }
1593
1594         return retval;
1595 }
1596
1597 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1598         uint32_t size, uint32_t count, const uint8_t *buffer)
1599 {
1600         struct armv7m_common *armv7m = target_to_armv7m(target);
1601         struct adiv5_dap *swjdp = armv7m->arm.dap;
1602         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1603
1604         if (armv7m->arm.is_armv6m) {
1605                 /* armv6m does not handle unaligned memory access */
1606                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1607                         return ERROR_TARGET_UNALIGNED_ACCESS;
1608         }
1609
1610         if (count && buffer) {
1611                 switch (size) {
1612                         case 4:
1613                                 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
1614                                 break;
1615                         case 2:
1616                                 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1617                                 break;
1618                         case 1:
1619                                 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1620                                 break;
1621                 }
1622         }
1623
1624         return retval;
1625 }
1626
1627 static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
1628         uint32_t count, const uint8_t *buffer)
1629 {
1630         return cortex_m3_write_memory(target, address, 4, count, buffer);
1631 }
1632
1633 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1634         struct target *target)
1635 {
1636         armv7m_build_reg_cache(target);
1637         return ERROR_OK;
1638 }
1639
1640 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1641  * on r/w if the core is not running, and clear on resume or reset ... or
1642  * at least, in a post_restore_context() method.
1643  */
1644
1645 struct dwt_reg_state {
1646         struct target *target;
1647         uint32_t addr;
1648         uint32_t value;         /* scratch/cache */
1649 };
1650
1651 static int cortex_m3_dwt_get_reg(struct reg *reg)
1652 {
1653         struct dwt_reg_state *state = reg->arch_info;
1654
1655         return target_read_u32(state->target, state->addr, &state->value);
1656 }
1657
1658 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1659 {
1660         struct dwt_reg_state *state = reg->arch_info;
1661
1662         return target_write_u32(state->target, state->addr,
1663                         buf_get_u32(buf, 0, reg->size));
1664 }
1665
1666 struct dwt_reg {
1667         uint32_t addr;
1668         char *name;
1669         unsigned size;
1670 };
1671
1672 static struct dwt_reg dwt_base_regs[] = {
1673         { DWT_CTRL, "dwt_ctrl", 32, },
1674         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1675          * increments while the core is asleep.
1676          */
1677         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1678         /* plus some 8 bit counters, useful for profiling with TPIU */
1679 };
1680
1681 static struct dwt_reg dwt_comp[] = {
1682 #define DWT_COMPARATOR(i) \
1683                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1684                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1685                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1686         DWT_COMPARATOR(0),
1687         DWT_COMPARATOR(1),
1688         DWT_COMPARATOR(2),
1689         DWT_COMPARATOR(3),
1690 #undef DWT_COMPARATOR
1691 };
1692
1693 static const struct reg_arch_type dwt_reg_type = {
1694         .get = cortex_m3_dwt_get_reg,
1695         .set = cortex_m3_dwt_set_reg,
1696 };
1697
1698 static void cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1699 {
1700         struct dwt_reg_state *state;
1701
1702         state = calloc(1, sizeof *state);
1703         if (!state)
1704                 return;
1705         state->addr = d->addr;
1706         state->target = t;
1707
1708         r->name = d->name;
1709         r->size = d->size;
1710         r->value = &state->value;
1711         r->arch_info = state;
1712         r->type = &dwt_reg_type;
1713 }
1714
1715 void cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1716 {
1717         uint32_t dwtcr;
1718         struct reg_cache *cache;
1719         struct cortex_m3_dwt_comparator *comparator;
1720         int reg, i;
1721
1722         target_read_u32(target, DWT_CTRL, &dwtcr);
1723         if (!dwtcr) {
1724                 LOG_DEBUG("no DWT");
1725                 return;
1726         }
1727
1728         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1729         cm3->dwt_comp_available = cm3->dwt_num_comp;
1730         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1731                         sizeof(struct cortex_m3_dwt_comparator));
1732         if (!cm3->dwt_comparator_list) {
1733 fail0:
1734                 cm3->dwt_num_comp = 0;
1735                 LOG_ERROR("out of mem");
1736                 return;
1737         }
1738
1739         cache = calloc(1, sizeof *cache);
1740         if (!cache) {
1741 fail1:
1742                 free(cm3->dwt_comparator_list);
1743                 goto fail0;
1744         }
1745         cache->name = "cortex-m3 dwt registers";
1746         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1747         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1748         if (!cache->reg_list) {
1749                 free(cache);
1750                 goto fail1;
1751         }
1752
1753         for (reg = 0; reg < 2; reg++)
1754                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1755                         dwt_base_regs + reg);
1756
1757         comparator = cm3->dwt_comparator_list;
1758         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1759                 int j;
1760
1761                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1762                 for (j = 0; j < 3; j++, reg++)
1763                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1764                                 dwt_comp + 3 * i + j);
1765         }
1766
1767         *register_get_last_cache_p(&target->reg_cache) = cache;
1768         cm3->dwt_cache = cache;
1769
1770         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1771                 dwtcr, cm3->dwt_num_comp,
1772                 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1773
1774         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1775          * implement single-address data value watchpoints ... so we
1776          * won't need to check it later, when asked to set one up.
1777          */
1778 }
1779
1780 #define MVFR0 0xe000ef40
1781 #define MVFR1 0xe000ef44
1782
1783 #define MVFR0_DEFAULT_M4 0x10110021
1784 #define MVFR1_DEFAULT_M4 0x11000011
1785
1786 int cortex_m3_examine(struct target *target)
1787 {
1788         int retval;
1789         uint32_t cpuid, fpcr, mvfr0, mvfr1;
1790         int i;
1791         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1792         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
1793         struct armv7m_common *armv7m = target_to_armv7m(target);
1794
1795         /* stlink shares the examine handler but does not support
1796          * all its calls */
1797         if (!armv7m->stlink) {
1798                 retval = ahbap_debugport_init(swjdp);
1799                 if (retval != ERROR_OK)
1800                         return retval;
1801         }
1802
1803         if (!target_was_examined(target)) {
1804                 target_set_examined(target);
1805
1806                 /* Read from Device Identification Registers */
1807                 retval = target_read_u32(target, CPUID, &cpuid);
1808                 if (retval != ERROR_OK)
1809                         return retval;
1810
1811                 /* Get CPU Type */
1812                 i = (cpuid >> 4) & 0xf;
1813
1814                 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1815                                 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1816                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1817
1818                 /* test for floating point feature on cortex-m4 */
1819                 if (i == 4) {
1820                         target_read_u32(target, MVFR0, &mvfr0);
1821                         target_read_u32(target, MVFR1, &mvfr1);
1822
1823                         if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
1824                                 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
1825                                 armv7m->fp_feature = FPv4_SP;
1826                         }
1827                 } else if (i == 0) {
1828                         /* Cortex-M0 does not support unaligned memory access */
1829                         armv7m->arm.is_armv6m = true;
1830                 }
1831
1832                 if (i == 4 || i == 3) {
1833                         /* Cortex-M3/M4 has 4096 bytes autoincrement range */
1834                         armv7m->dap.tar_autoincr_block = (1 << 12);
1835                 }
1836
1837                 /* NOTE: FPB and DWT are both optional. */
1838
1839                 /* Setup FPB */
1840                 target_read_u32(target, FP_CTRL, &fpcr);
1841                 cortex_m3->auto_bp_type = 1;
1842                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);    /* bits
1843                                                                                          *[14:12]
1844                                                                                          *and [7:4]
1845                                                                                          **/
1846                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1847                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1848                 cortex_m3->fp_comparator_list = calloc(
1849                                 cortex_m3->fp_num_code + cortex_m3->fp_num_lit,
1850                                 sizeof(struct cortex_m3_fp_comparator));
1851                 cortex_m3->fpb_enabled = fpcr & 1;
1852                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
1853                         cortex_m3->fp_comparator_list[i].type =
1854                                 (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1855                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1856                 }
1857                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
1858                         fpcr,
1859                         cortex_m3->fp_num_code,
1860                         cortex_m3->fp_num_lit);
1861
1862                 /* Setup DWT */
1863                 cortex_m3_dwt_setup(cortex_m3, target);
1864
1865                 /* These hardware breakpoints only work for code in flash! */
1866                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1867                         target_name(target),
1868                         cortex_m3->fp_num_code,
1869                         cortex_m3->dwt_num_comp);
1870         }
1871
1872         return ERROR_OK;
1873 }
1874
1875 static int cortex_m3_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1876 {
1877         uint16_t dcrdr;
1878         int retval;
1879
1880         mem_ap_read_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1881         *ctrl = (uint8_t)dcrdr;
1882         *value = (uint8_t)(dcrdr >> 8);
1883
1884         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1885
1886         /* write ack back to software dcc register
1887          * signify we have read data */
1888         if (dcrdr & (1 << 0)) {
1889                 dcrdr = 0;
1890                 retval = mem_ap_write_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1891                 if (retval != ERROR_OK)
1892                         return retval;
1893         }
1894
1895         return ERROR_OK;
1896 }
1897
1898 static int cortex_m3_target_request_data(struct target *target,
1899         uint32_t size, uint8_t *buffer)
1900 {
1901         struct armv7m_common *armv7m = target_to_armv7m(target);
1902         struct adiv5_dap *swjdp = armv7m->arm.dap;
1903         uint8_t data;
1904         uint8_t ctrl;
1905         uint32_t i;
1906
1907         for (i = 0; i < (size * 4); i++) {
1908                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1909                 buffer[i] = data;
1910         }
1911
1912         return ERROR_OK;
1913 }
1914
1915 static int cortex_m3_handle_target_request(void *priv)
1916 {
1917         struct target *target = priv;
1918         if (!target_was_examined(target))
1919                 return ERROR_OK;
1920         struct armv7m_common *armv7m = target_to_armv7m(target);
1921         struct adiv5_dap *swjdp = armv7m->arm.dap;
1922
1923         if (!target->dbg_msg_enabled)
1924                 return ERROR_OK;
1925
1926         if (target->state == TARGET_RUNNING) {
1927                 uint8_t data;
1928                 uint8_t ctrl;
1929
1930                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1931
1932                 /* check if we have data */
1933                 if (ctrl & (1 << 0)) {
1934                         uint32_t request;
1935
1936                         /* we assume target is quick enough */
1937                         request = data;
1938                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1939                         request |= (data << 8);
1940                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1941                         request |= (data << 16);
1942                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1943                         request |= (data << 24);
1944                         target_request(target, request);
1945                 }
1946         }
1947
1948         return ERROR_OK;
1949 }
1950
1951 static int cortex_m3_init_arch_info(struct target *target,
1952         struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1953 {
1954         int retval;
1955         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1956
1957         armv7m_init_arch_info(target, armv7m);
1958
1959         /* prepare JTAG information for the new target */
1960         cortex_m3->jtag_info.tap = tap;
1961         cortex_m3->jtag_info.scann_size = 4;
1962
1963         /* default reset mode is to use srst if fitted
1964          * if not it will use CORTEX_M3_RESET_VECTRESET */
1965         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
1966
1967         armv7m->arm.dap = &armv7m->dap;
1968
1969         /* Leave (only) generic DAP stuff for debugport_init(); */
1970         armv7m->dap.jtag_info = &cortex_m3->jtag_info;
1971         armv7m->dap.memaccess_tck = 8;
1972
1973         /* Cortex-M3/M4 has 4096 bytes autoincrement range
1974          * but set a safe default to 1024 to support Cortex-M0
1975          * this will be changed in cortex_m3_examine if a M3/M4 is detected */
1976         armv7m->dap.tar_autoincr_block = (1 << 10);
1977
1978         /* register arch-specific functions */
1979         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1980
1981         armv7m->post_debug_entry = NULL;
1982
1983         armv7m->pre_restore_context = NULL;
1984
1985         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
1986         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
1987
1988         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
1989
1990         retval = arm_jtag_setup_connection(&cortex_m3->jtag_info);
1991         if (retval != ERROR_OK)
1992                 return retval;
1993
1994         return ERROR_OK;
1995 }
1996
1997 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
1998 {
1999         struct cortex_m3_common *cortex_m3 = calloc(1, sizeof(struct cortex_m3_common));
2000
2001         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
2002         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
2003
2004         return ERROR_OK;
2005 }
2006
2007 /*--------------------------------------------------------------------------*/
2008
2009 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
2010         struct cortex_m3_common *cm3)
2011 {
2012         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
2013                 command_print(cmd_ctx, "target is not a Cortex-M3");
2014                 return ERROR_TARGET_INVALID;
2015         }
2016         return ERROR_OK;
2017 }
2018
2019 /*
2020  * Only stuff below this line should need to verify that its target
2021  * is a Cortex-M3.  Everything else should have indirected through the
2022  * cortexm3_target structure, which is only used with CM3 targets.
2023  */
2024
2025 static const struct {
2026         char name[10];
2027         unsigned mask;
2028 } vec_ids[] = {
2029         { "hard_err",   VC_HARDERR, },
2030         { "int_err",    VC_INTERR, },
2031         { "bus_err",    VC_BUSERR, },
2032         { "state_err",  VC_STATERR, },
2033         { "chk_err",    VC_CHKERR, },
2034         { "nocp_err",   VC_NOCPERR, },
2035         { "mm_err",     VC_MMERR, },
2036         { "reset",      VC_CORERESET, },
2037 };
2038
2039 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
2040 {
2041         struct target *target = get_current_target(CMD_CTX);
2042         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2043         struct armv7m_common *armv7m = &cortex_m3->armv7m;
2044         struct adiv5_dap *swjdp = armv7m->arm.dap;
2045         uint32_t demcr = 0;
2046         int retval;
2047
2048         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2049         if (retval != ERROR_OK)
2050                 return retval;
2051
2052         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2053         if (retval != ERROR_OK)
2054                 return retval;
2055
2056         if (CMD_ARGC > 0) {
2057                 unsigned catch = 0;
2058
2059                 if (CMD_ARGC == 1) {
2060                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2061                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2062                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2063                                         | VC_MMERR | VC_CORERESET;
2064                                 goto write;
2065                         } else if (strcmp(CMD_ARGV[0], "none") == 0)
2066                                 goto write;
2067                 }
2068                 while (CMD_ARGC-- > 0) {
2069                         unsigned i;
2070                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2071                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2072                                         continue;
2073                                 catch |= vec_ids[i].mask;
2074                                 break;
2075                         }
2076                         if (i == ARRAY_SIZE(vec_ids)) {
2077                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2078                                 return ERROR_COMMAND_SYNTAX_ERROR;
2079                         }
2080                 }
2081 write:
2082                 /* For now, armv7m->demcr only stores vector catch flags. */
2083                 armv7m->demcr = catch;
2084
2085                 demcr &= ~0xffff;
2086                 demcr |= catch;
2087
2088                 /* write, but don't assume it stuck (why not??) */
2089                 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2090                 if (retval != ERROR_OK)
2091                         return retval;
2092                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2093                 if (retval != ERROR_OK)
2094                         return retval;
2095
2096                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2097                  * Otherwise the vector catch hardware could fire when there's
2098                  * no debugger hooked up, causing much confusion...
2099                  */
2100         }
2101
2102         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2103                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2104                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2105         }
2106
2107         return ERROR_OK;
2108 }
2109
2110 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2111 {
2112         struct target *target = get_current_target(CMD_CTX);
2113         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2114         int retval;
2115
2116         static const Jim_Nvp nvp_maskisr_modes[] = {
2117                 { .name = "auto", .value = CORTEX_M3_ISRMASK_AUTO },
2118                 { .name = "off", .value = CORTEX_M3_ISRMASK_OFF },
2119                 { .name = "on", .value = CORTEX_M3_ISRMASK_ON },
2120                 { .name = NULL, .value = -1 },
2121         };
2122         const Jim_Nvp *n;
2123
2124
2125         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2126         if (retval != ERROR_OK)
2127                 return retval;
2128
2129         if (target->state != TARGET_HALTED) {
2130                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2131                 return ERROR_OK;
2132         }
2133
2134         if (CMD_ARGC > 0) {
2135                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2136                 if (n->name == NULL)
2137                         return ERROR_COMMAND_SYNTAX_ERROR;
2138                 cortex_m3->isrmasking_mode = n->value;
2139
2140
2141                 if (cortex_m3->isrmasking_mode == CORTEX_M3_ISRMASK_ON)
2142                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2143                 else
2144                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2145         }
2146
2147         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m3->isrmasking_mode);
2148         command_print(CMD_CTX, "cortex_m3 interrupt mask %s", n->name);
2149
2150         return ERROR_OK;
2151 }
2152
2153 COMMAND_HANDLER(handle_cortex_m3_reset_config_command)
2154 {
2155         struct target *target = get_current_target(CMD_CTX);
2156         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2157         int retval;
2158         char *reset_config;
2159
2160         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2161         if (retval != ERROR_OK)
2162                 return retval;
2163
2164         if (CMD_ARGC > 0) {
2165                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2166                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_SYSRESETREQ;
2167                 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2168                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2169         }
2170
2171         switch (cortex_m3->soft_reset_config) {
2172                 case CORTEX_M3_RESET_SYSRESETREQ:
2173                         reset_config = "sysresetreq";
2174                         break;
2175
2176                 case CORTEX_M3_RESET_VECTRESET:
2177                         reset_config = "vectreset";
2178                         break;
2179
2180                 default:
2181                         reset_config = "unknown";
2182                         break;
2183         }
2184
2185         command_print(CMD_CTX, "cortex_m3 reset_config %s", reset_config);
2186
2187         return ERROR_OK;
2188 }
2189
2190 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2191         {
2192                 .name = "maskisr",
2193                 .handler = handle_cortex_m3_mask_interrupts_command,
2194                 .mode = COMMAND_EXEC,
2195                 .help = "mask cortex_m3 interrupts",
2196                 .usage = "['auto'|'on'|'off']",
2197         },
2198         {
2199                 .name = "vector_catch",
2200                 .handler = handle_cortex_m3_vector_catch_command,
2201                 .mode = COMMAND_EXEC,
2202                 .help = "configure hardware vectors to trigger debug entry",
2203                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2204         },
2205         {
2206                 .name = "reset_config",
2207                 .handler = handle_cortex_m3_reset_config_command,
2208                 .mode = COMMAND_ANY,
2209                 .help = "configure software reset handling",
2210                 .usage = "['srst'|'sysresetreq'|'vectreset']",
2211         },
2212         COMMAND_REGISTRATION_DONE
2213 };
2214 static const struct command_registration cortex_m3_command_handlers[] = {
2215         {
2216                 .chain = armv7m_command_handlers,
2217         },
2218         {
2219                 .name = "cortex_m3",
2220                 .mode = COMMAND_EXEC,
2221                 .help = "Cortex-M3 command group",
2222                 .usage = "",
2223                 .chain = cortex_m3_exec_command_handlers,
2224         },
2225         COMMAND_REGISTRATION_DONE
2226 };
2227
2228 struct target_type cortexm3_target = {
2229         .name = "cortex_m3",
2230
2231         .poll = cortex_m3_poll,
2232         .arch_state = armv7m_arch_state,
2233
2234         .target_request_data = cortex_m3_target_request_data,
2235
2236         .halt = cortex_m3_halt,
2237         .resume = cortex_m3_resume,
2238         .step = cortex_m3_step,
2239
2240         .assert_reset = cortex_m3_assert_reset,
2241         .deassert_reset = cortex_m3_deassert_reset,
2242         .soft_reset_halt = cortex_m3_soft_reset_halt,
2243
2244         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2245
2246         .read_memory = cortex_m3_read_memory,
2247         .write_memory = cortex_m3_write_memory,
2248         .bulk_write_memory = cortex_m3_bulk_write_memory,
2249         .checksum_memory = armv7m_checksum_memory,
2250         .blank_check_memory = armv7m_blank_check_memory,
2251
2252         .run_algorithm = armv7m_run_algorithm,
2253         .start_algorithm = armv7m_start_algorithm,
2254         .wait_algorithm = armv7m_wait_algorithm,
2255
2256         .add_breakpoint = cortex_m3_add_breakpoint,
2257         .remove_breakpoint = cortex_m3_remove_breakpoint,
2258         .add_watchpoint = cortex_m3_add_watchpoint,
2259         .remove_watchpoint = cortex_m3_remove_watchpoint,
2260
2261         .commands = cortex_m3_command_handlers,
2262         .target_create = cortex_m3_target_create,
2263         .init_target = cortex_m3_init_target,
2264         .examine = cortex_m3_examine,
2265 };