armv7m: remove gdb register hacks
[fw/openocd] / src / target / cortex_m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   This program is free software; you can redistribute it and/or modify  *
12  *   it under the terms of the GNU General Public License as published by  *
13  *   the Free Software Foundation; either version 2 of the License, or     *
14  *   (at your option) any later version.                                   *
15  *                                                                         *
16  *   This program is distributed in the hope that it will be useful,       *
17  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
18  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
19  *   GNU General Public License for more details.                          *
20  *                                                                         *
21  *   You should have received a copy of the GNU General Public License     *
22  *   along with this program; if not, write to the                         *
23  *   Free Software Foundation, Inc.,                                       *
24  *   51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.           *
25  *                                                                         *
26  *                                                                         *
27  *   Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0)              *
28  *                                                                         *
29  ***************************************************************************/
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "jtag/interface.h"
35 #include "breakpoints.h"
36 #include "cortex_m.h"
37 #include "target_request.h"
38 #include "target_type.h"
39 #include "arm_disassembler.h"
40 #include "register.h"
41 #include "arm_opcodes.h"
42 #include "arm_semihosting.h"
43 #include <helper/time_support.h>
44
45 /* NOTE:  most of this should work fine for the Cortex-M1 and
46  * Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
47  * Some differences:  M0/M1 doesn't have FBP remapping or the
48  * DWT tracing/profiling support.  (So the cycle counter will
49  * not be usable; the other stuff isn't currently used here.)
50  *
51  * Although there are some workarounds for errata seen only in r0p0
52  * silicon, such old parts are hard to find and thus not much tested
53  * any longer.
54  */
55
56 /**
57  * Returns the type of a break point required by address location
58  */
59 #define BKPT_TYPE_BY_ADDR(addr) ((addr) < 0x20000000 ? BKPT_HARD : BKPT_SOFT)
60
61
62 /* forward declarations */
63 static int cortex_m3_store_core_reg_u32(struct target *target,
64                 uint32_t num, uint32_t value);
65
66 static int cortexm3_dap_read_coreregister_u32(struct adiv5_dap *swjdp,
67         uint32_t *value, int regnum)
68 {
69         int retval;
70         uint32_t dcrdr;
71
72         /* because the DCB_DCRDR is used for the emulated dcc channel
73          * we have to save/restore the DCB_DCRDR when used */
74
75         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
76         if (retval != ERROR_OK)
77                 return retval;
78
79         /* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
80         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
81         if (retval != ERROR_OK)
82                 return retval;
83         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
84         if (retval != ERROR_OK)
85                 return retval;
86
87         /* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
88         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
89         if (retval != ERROR_OK)
90                 return retval;
91         retval = dap_queue_ap_read(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
92         if (retval != ERROR_OK)
93                 return retval;
94
95         retval = dap_run(swjdp);
96         if (retval != ERROR_OK)
97                 return retval;
98
99         /* restore DCB_DCRDR - this needs to be in a seperate
100          * transaction otherwise the emulated DCC channel breaks */
101         if (retval == ERROR_OK)
102                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
103
104         return retval;
105 }
106
107 static int cortexm3_dap_write_coreregister_u32(struct adiv5_dap *swjdp,
108         uint32_t value, int regnum)
109 {
110         int retval;
111         uint32_t dcrdr;
112
113         /* because the DCB_DCRDR is used for the emulated dcc channel
114          * we have to save/restore the DCB_DCRDR when used */
115
116         retval = mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
117         if (retval != ERROR_OK)
118                 return retval;
119
120         /* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
121         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
122         if (retval != ERROR_OK)
123                 return retval;
124         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
125         if (retval != ERROR_OK)
126                 return retval;
127
128         /* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
129         retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
130         if (retval != ERROR_OK)
131                 return retval;
132         retval = dap_queue_ap_write(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
133         if (retval != ERROR_OK)
134                 return retval;
135
136         retval = dap_run(swjdp);
137         if (retval != ERROR_OK)
138                 return retval;
139
140         /* restore DCB_DCRDR - this needs to be in a seperate
141          * transaction otherwise the emulated DCC channel breaks */
142         if (retval == ERROR_OK)
143                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
144
145         return retval;
146 }
147
148 static int cortex_m3_write_debug_halt_mask(struct target *target,
149         uint32_t mask_on, uint32_t mask_off)
150 {
151         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
152         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
153
154         /* mask off status bits */
155         cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
156         /* create new register mask */
157         cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
158
159         return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
160 }
161
162 static int cortex_m3_clear_halt(struct target *target)
163 {
164         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
165         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
166         int retval;
167
168         /* clear step if any */
169         cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
170
171         /* Read Debug Fault Status Register */
172         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
173         if (retval != ERROR_OK)
174                 return retval;
175
176         /* Clear Debug Fault Status */
177         retval = mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
178         if (retval != ERROR_OK)
179                 return retval;
180         LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
181
182         return ERROR_OK;
183 }
184
185 static int cortex_m3_single_step_core(struct target *target)
186 {
187         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
188         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
189         uint32_t dhcsr_save;
190         int retval;
191
192         /* backup dhcsr reg */
193         dhcsr_save = cortex_m3->dcb_dhcsr;
194
195         /* Mask interrupts before clearing halt, if done already.  This avoids
196          * Erratum 377497 (fixed in r1p0) where setting MASKINTS while clearing
197          * HALT can put the core into an unknown state.
198          */
199         if (!(cortex_m3->dcb_dhcsr & C_MASKINTS)) {
200                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
201                                 DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
202                 if (retval != ERROR_OK)
203                         return retval;
204         }
205         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
206                         DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
207         if (retval != ERROR_OK)
208                 return retval;
209         LOG_DEBUG(" ");
210
211         /* restore dhcsr reg */
212         cortex_m3->dcb_dhcsr = dhcsr_save;
213         cortex_m3_clear_halt(target);
214
215         return ERROR_OK;
216 }
217
218 static int cortex_m3_endreset_event(struct target *target)
219 {
220         int i;
221         int retval;
222         uint32_t dcb_demcr;
223         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
224         struct armv7m_common *armv7m = &cortex_m3->armv7m;
225         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
226         struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
227         struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
228
229         /* REVISIT The four debug monitor bits are currently ignored... */
230         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
231         if (retval != ERROR_OK)
232                 return retval;
233         LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "", dcb_demcr);
234
235         /* this register is used for emulated dcc channel */
236         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
237         if (retval != ERROR_OK)
238                 return retval;
239
240         /* Enable debug requests */
241         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
242         if (retval != ERROR_OK)
243                 return retval;
244         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
245                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
246                 if (retval != ERROR_OK)
247                         return retval;
248         }
249
250         /* clear any interrupt masking */
251         cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
252
253         /* Enable features controlled by ITM and DWT blocks, and catch only
254          * the vectors we were told to pay attention to.
255          *
256          * Target firmware is responsible for all fault handling policy
257          * choices *EXCEPT* explicitly scripted overrides like "vector_catch"
258          * or manual updates to the NVIC SHCSR and CCR registers.
259          */
260         retval = mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | armv7m->demcr);
261         if (retval != ERROR_OK)
262                 return retval;
263
264         /* Paranoia: evidently some (early?) chips don't preserve all the
265          * debug state (including FBP, DWT, etc) across reset...
266          */
267
268         /* Enable FPB */
269         retval = target_write_u32(target, FP_CTRL, 3);
270         if (retval != ERROR_OK)
271                 return retval;
272
273         cortex_m3->fpb_enabled = 1;
274
275         /* Restore FPB registers */
276         for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
277                 retval = target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
278                 if (retval != ERROR_OK)
279                         return retval;
280         }
281
282         /* Restore DWT registers */
283         for (i = 0; i < cortex_m3->dwt_num_comp; i++) {
284                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
285                                 dwt_list[i].comp);
286                 if (retval != ERROR_OK)
287                         return retval;
288                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
289                                 dwt_list[i].mask);
290                 if (retval != ERROR_OK)
291                         return retval;
292                 retval = target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
293                                 dwt_list[i].function);
294                 if (retval != ERROR_OK)
295                         return retval;
296         }
297         retval = dap_run(swjdp);
298         if (retval != ERROR_OK)
299                 return retval;
300
301         register_cache_invalidate(armv7m->arm.core_cache);
302
303         /* make sure we have latest dhcsr flags */
304         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
305
306         return retval;
307 }
308
309 static int cortex_m3_examine_debug_reason(struct target *target)
310 {
311         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
312
313         /* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason
314          * only check the debug reason if we don't know it already */
315
316         if ((target->debug_reason != DBG_REASON_DBGRQ)
317                 && (target->debug_reason != DBG_REASON_SINGLESTEP)) {
318                 if (cortex_m3->nvic_dfsr & DFSR_BKPT) {
319                         target->debug_reason = DBG_REASON_BREAKPOINT;
320                         if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
321                                 target->debug_reason = DBG_REASON_WPTANDBKPT;
322                 } else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
323                         target->debug_reason = DBG_REASON_WATCHPOINT;
324                 else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
325                         target->debug_reason = DBG_REASON_BREAKPOINT;
326                 else    /* EXTERNAL, HALTED */
327                         target->debug_reason = DBG_REASON_UNDEFINED;
328         }
329
330         return ERROR_OK;
331 }
332
333 static int cortex_m3_examine_exception_reason(struct target *target)
334 {
335         uint32_t shcsr = 0, except_sr = 0, cfsr = -1, except_ar = -1;
336         struct armv7m_common *armv7m = target_to_armv7m(target);
337         struct adiv5_dap *swjdp = armv7m->arm.dap;
338         int retval;
339
340         retval = mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
341         if (retval != ERROR_OK)
342                 return retval;
343         switch (armv7m->exception_number) {
344                 case 2: /* NMI */
345                         break;
346                 case 3: /* Hard Fault */
347                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
348                         if (retval != ERROR_OK)
349                                 return retval;
350                         if (except_sr & 0x40000000) {
351                                 retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
352                                 if (retval != ERROR_OK)
353                                         return retval;
354                         }
355                         break;
356                 case 4: /* Memory Management */
357                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
358                         if (retval != ERROR_OK)
359                                 return retval;
360                         retval = mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
361                         if (retval != ERROR_OK)
362                                 return retval;
363                         break;
364                 case 5: /* Bus Fault */
365                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
366                         if (retval != ERROR_OK)
367                                 return retval;
368                         retval = mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
369                         if (retval != ERROR_OK)
370                                 return retval;
371                         break;
372                 case 6: /* Usage Fault */
373                         retval = mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
374                         if (retval != ERROR_OK)
375                                 return retval;
376                         break;
377                 case 11:        /* SVCall */
378                         break;
379                 case 12:        /* Debug Monitor */
380                         retval = mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
381                         if (retval != ERROR_OK)
382                                 return retval;
383                         break;
384                 case 14:        /* PendSV */
385                         break;
386                 case 15:        /* SysTick */
387                         break;
388                 default:
389                         except_sr = 0;
390                         break;
391         }
392         retval = dap_run(swjdp);
393         if (retval == ERROR_OK)
394                 LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32
395                         ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32,
396                         armv7m_exception_string(armv7m->exception_number),
397                         shcsr, except_sr, cfsr, except_ar);
398         return retval;
399 }
400
401 static int cortex_m3_debug_entry(struct target *target)
402 {
403         int i;
404         uint32_t xPSR;
405         int retval;
406         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
407         struct armv7m_common *armv7m = &cortex_m3->armv7m;
408         struct arm *arm = &armv7m->arm;
409         struct adiv5_dap *swjdp = armv7m->arm.dap;
410         struct reg *r;
411
412         LOG_DEBUG(" ");
413
414         cortex_m3_clear_halt(target);
415         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
416         if (retval != ERROR_OK)
417                 return retval;
418
419         retval = armv7m->examine_debug_reason(target);
420         if (retval != ERROR_OK)
421                 return retval;
422
423         /* Examine target state and mode
424          * First load register accessible through core debug port */
425         int num_regs = arm->core_cache->num_regs;
426
427         for (i = 0; i < num_regs; i++) {
428                 r = &armv7m->arm.core_cache->reg_list[i];
429                 if (!r->valid)
430                         arm->read_core_reg(target, r, i, ARM_MODE_ANY);
431         }
432
433         r = arm->cpsr;
434         xPSR = buf_get_u32(r->value, 0, 32);
435
436         /* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
437         if (xPSR & 0xf00) {
438                 r->dirty = r->valid;
439                 cortex_m3_store_core_reg_u32(target, 16, xPSR & ~0xff);
440         }
441
442         /* Are we in an exception handler */
443         if (xPSR & 0x1FF) {
444                 armv7m->exception_number = (xPSR & 0x1FF);
445
446                 arm->core_mode = ARM_MODE_HANDLER;
447                 arm->map = armv7m_msp_reg_map;
448         } else {
449                 unsigned control = buf_get_u32(arm->core_cache
450                                 ->reg_list[ARMV7M_CONTROL].value, 0, 2);
451
452                 /* is this thread privileged? */
453                 arm->core_mode = control & 1
454                         ? ARM_MODE_USER_THREAD
455                         : ARM_MODE_THREAD;
456
457                 /* which stack is it using? */
458                 if (control & 2)
459                         arm->map = armv7m_psp_reg_map;
460                 else
461                         arm->map = armv7m_msp_reg_map;
462
463                 armv7m->exception_number = 0;
464         }
465
466         if (armv7m->exception_number)
467                 cortex_m3_examine_exception_reason(target);
468
469         LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
470                 arm_mode_name(arm->core_mode),
471                 *(uint32_t *)(arm->pc->value),
472                 target_state_name(target));
473
474         if (armv7m->post_debug_entry) {
475                 retval = armv7m->post_debug_entry(target);
476                 if (retval != ERROR_OK)
477                         return retval;
478         }
479
480         return ERROR_OK;
481 }
482
483 static int cortex_m3_poll(struct target *target)
484 {
485         int detected_failure = ERROR_OK;
486         int retval = ERROR_OK;
487         enum target_state prev_target_state = target->state;
488         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
489         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
490
491         /* Read from Debug Halting Control and Status Register */
492         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
493         if (retval != ERROR_OK) {
494                 target->state = TARGET_UNKNOWN;
495                 return retval;
496         }
497
498         /* Recover from lockup.  See ARMv7-M architecture spec,
499          * section B1.5.15 "Unrecoverable exception cases".
500          */
501         if (cortex_m3->dcb_dhcsr & S_LOCKUP) {
502                 LOG_ERROR("%s -- clearing lockup after double fault",
503                         target_name(target));
504                 cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
505                 target->debug_reason = DBG_REASON_DBGRQ;
506
507                 /* We have to execute the rest (the "finally" equivalent, but
508                  * still throw this exception again).
509                  */
510                 detected_failure = ERROR_FAIL;
511
512                 /* refresh status bits */
513                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
514                 if (retval != ERROR_OK)
515                         return retval;
516         }
517
518         if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
519                 /* check if still in reset */
520                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
521                 if (retval != ERROR_OK)
522                         return retval;
523
524                 if (cortex_m3->dcb_dhcsr & S_RESET_ST) {
525                         target->state = TARGET_RESET;
526                         return ERROR_OK;
527                 }
528         }
529
530         if (target->state == TARGET_RESET) {
531                 /* Cannot switch context while running so endreset is
532                  * called with target->state == TARGET_RESET
533                  */
534                 LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32,
535                         cortex_m3->dcb_dhcsr);
536                 cortex_m3_endreset_event(target);
537                 target->state = TARGET_RUNNING;
538                 prev_target_state = TARGET_RUNNING;
539         }
540
541         if (cortex_m3->dcb_dhcsr & S_HALT) {
542                 target->state = TARGET_HALTED;
543
544                 if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET)) {
545                         retval = cortex_m3_debug_entry(target);
546                         if (retval != ERROR_OK)
547                                 return retval;
548
549                         if (arm_semihosting(target, &retval) != 0)
550                                 return retval;
551
552                         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
553                 }
554                 if (prev_target_state == TARGET_DEBUG_RUNNING) {
555                         LOG_DEBUG(" ");
556                         retval = cortex_m3_debug_entry(target);
557                         if (retval != ERROR_OK)
558                                 return retval;
559
560                         target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
561                 }
562         }
563
564         /* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
565          * How best to model low power modes?
566          */
567
568         if (target->state == TARGET_UNKNOWN) {
569                 /* check if processor is retiring instructions */
570                 if (cortex_m3->dcb_dhcsr & S_RETIRE_ST) {
571                         target->state = TARGET_RUNNING;
572                         retval = ERROR_OK;
573                 }
574         }
575
576         /* Did we detect a failure condition that we cleared? */
577         if (detected_failure != ERROR_OK)
578                 retval = detected_failure;
579         return retval;
580 }
581
582 static int cortex_m3_halt(struct target *target)
583 {
584         LOG_DEBUG("target->state: %s",
585                 target_state_name(target));
586
587         if (target->state == TARGET_HALTED) {
588                 LOG_DEBUG("target was already halted");
589                 return ERROR_OK;
590         }
591
592         if (target->state == TARGET_UNKNOWN)
593                 LOG_WARNING("target was in unknown state when halt was requested");
594
595         if (target->state == TARGET_RESET) {
596                 if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) {
597                         LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
598                         return ERROR_TARGET_FAILURE;
599                 } else {
600                         /* we came here in a reset_halt or reset_init sequence
601                          * debug entry was already prepared in cortex_m3_assert_reset()
602                          */
603                         target->debug_reason = DBG_REASON_DBGRQ;
604
605                         return ERROR_OK;
606                 }
607         }
608
609         /* Write to Debug Halting Control and Status Register */
610         cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
611
612         target->debug_reason = DBG_REASON_DBGRQ;
613
614         return ERROR_OK;
615 }
616
617 static int cortex_m3_soft_reset_halt(struct target *target)
618 {
619         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
620         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
621         uint32_t dcb_dhcsr = 0;
622         int retval, timeout = 0;
623
624         /* soft_reset_halt is deprecated on cortex_m as the same functionality
625          * can be obtained by using 'reset halt' and 'cortex_m reset_config vectreset'
626          * As this reset only used VC_CORERESET it would only ever reset the cortex_m
627          * core, not the peripherals */
628         LOG_WARNING("soft_reset_halt is deprecated, please use 'reset halt' instead.");
629
630         /* Enter debug state on reset; restore DEMCR in endreset_event() */
631         retval = mem_ap_write_u32(swjdp, DCB_DEMCR,
632                         TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
633         if (retval != ERROR_OK)
634                 return retval;
635
636         /* Request a core-only reset */
637         retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
638                         AIRCR_VECTKEY | AIRCR_VECTRESET);
639         if (retval != ERROR_OK)
640                 return retval;
641         target->state = TARGET_RESET;
642
643         /* registers are now invalid */
644         register_cache_invalidate(cortex_m3->armv7m.arm.core_cache);
645
646         while (timeout < 100) {
647                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
648                 if (retval == ERROR_OK) {
649                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_DFSR,
650                                         &cortex_m3->nvic_dfsr);
651                         if (retval != ERROR_OK)
652                                 return retval;
653                         if ((dcb_dhcsr & S_HALT)
654                                 && (cortex_m3->nvic_dfsr & DFSR_VCATCH)) {
655                                 LOG_DEBUG("system reset-halted, DHCSR 0x%08x, "
656                                         "DFSR 0x%08x",
657                                         (unsigned) dcb_dhcsr,
658                                         (unsigned) cortex_m3->nvic_dfsr);
659                                 cortex_m3_poll(target);
660                                 /* FIXME restore user's vector catch config */
661                                 return ERROR_OK;
662                         } else
663                                 LOG_DEBUG("waiting for system reset-halt, "
664                                         "DHCSR 0x%08x, %d ms",
665                                         (unsigned) dcb_dhcsr, timeout);
666                 }
667                 timeout++;
668                 alive_sleep(1);
669         }
670
671         return ERROR_OK;
672 }
673
674 void cortex_m3_enable_breakpoints(struct target *target)
675 {
676         struct breakpoint *breakpoint = target->breakpoints;
677
678         /* set any pending breakpoints */
679         while (breakpoint) {
680                 if (!breakpoint->set)
681                         cortex_m3_set_breakpoint(target, breakpoint);
682                 breakpoint = breakpoint->next;
683         }
684 }
685
686 static int cortex_m3_resume(struct target *target, int current,
687         uint32_t address, int handle_breakpoints, int debug_execution)
688 {
689         struct armv7m_common *armv7m = target_to_armv7m(target);
690         struct breakpoint *breakpoint = NULL;
691         uint32_t resume_pc;
692         struct reg *r;
693
694         if (target->state != TARGET_HALTED) {
695                 LOG_WARNING("target not halted");
696                 return ERROR_TARGET_NOT_HALTED;
697         }
698
699         if (!debug_execution) {
700                 target_free_all_working_areas(target);
701                 cortex_m3_enable_breakpoints(target);
702                 cortex_m3_enable_watchpoints(target);
703         }
704
705         if (debug_execution) {
706                 r = armv7m->arm.core_cache->reg_list + ARMV7M_PRIMASK;
707
708                 /* Disable interrupts */
709                 /* We disable interrupts in the PRIMASK register instead of
710                  * masking with C_MASKINTS.  This is probably the same issue
711                  * as Cortex-M3 Erratum 377493 (fixed in r1p0):  C_MASKINTS
712                  * in parallel with disabled interrupts can cause local faults
713                  * to not be taken.
714                  *
715                  * REVISIT this clearly breaks non-debug execution, since the
716                  * PRIMASK register state isn't saved/restored...  workaround
717                  * by never resuming app code after debug execution.
718                  */
719                 buf_set_u32(r->value, 0, 1, 1);
720                 r->dirty = true;
721                 r->valid = true;
722
723                 /* Make sure we are in Thumb mode */
724                 r = armv7m->arm.cpsr;
725                 buf_set_u32(r->value, 24, 1, 1);
726                 r->dirty = true;
727                 r->valid = true;
728         }
729
730         /* current = 1: continue on current pc, otherwise continue at <address> */
731         r = armv7m->arm.pc;
732         if (!current) {
733                 buf_set_u32(r->value, 0, 32, address);
734                 r->dirty = true;
735                 r->valid = true;
736         }
737
738         /* if we halted last time due to a bkpt instruction
739          * then we have to manually step over it, otherwise
740          * the core will break again */
741
742         if (!breakpoint_find(target, buf_get_u32(r->value, 0, 32))
743                 && !debug_execution)
744                 armv7m_maybe_skip_bkpt_inst(target, NULL);
745
746         resume_pc = buf_get_u32(r->value, 0, 32);
747
748         armv7m_restore_context(target);
749
750         /* the front-end may request us not to handle breakpoints */
751         if (handle_breakpoints) {
752                 /* Single step past breakpoint at current address */
753                 breakpoint = breakpoint_find(target, resume_pc);
754                 if (breakpoint) {
755                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
756                                 breakpoint->address,
757                                 breakpoint->unique_id);
758                         cortex_m3_unset_breakpoint(target, breakpoint);
759                         cortex_m3_single_step_core(target);
760                         cortex_m3_set_breakpoint(target, breakpoint);
761                 }
762         }
763
764         /* Restart core */
765         cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
766
767         target->debug_reason = DBG_REASON_NOTHALTED;
768
769         /* registers are now invalid */
770         register_cache_invalidate(armv7m->arm.core_cache);
771
772         if (!debug_execution) {
773                 target->state = TARGET_RUNNING;
774                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
775                 LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
776         } else {
777                 target->state = TARGET_DEBUG_RUNNING;
778                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
779                 LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
780         }
781
782         return ERROR_OK;
783 }
784
785 /* int irqstepcount = 0; */
786 static int cortex_m3_step(struct target *target, int current,
787         uint32_t address, int handle_breakpoints)
788 {
789         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
790         struct armv7m_common *armv7m = &cortex_m3->armv7m;
791         struct adiv5_dap *swjdp = armv7m->arm.dap;
792         struct breakpoint *breakpoint = NULL;
793         struct reg *pc = armv7m->arm.pc;
794         bool bkpt_inst_found = false;
795         int retval;
796         bool isr_timed_out = false;
797
798         if (target->state != TARGET_HALTED) {
799                 LOG_WARNING("target not halted");
800                 return ERROR_TARGET_NOT_HALTED;
801         }
802
803         /* current = 1: continue on current pc, otherwise continue at <address> */
804         if (!current)
805                 buf_set_u32(pc->value, 0, 32, address);
806
807         uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
808
809         /* the front-end may request us not to handle breakpoints */
810         if (handle_breakpoints) {
811                 breakpoint = breakpoint_find(target, pc_value);
812                 if (breakpoint)
813                         cortex_m3_unset_breakpoint(target, breakpoint);
814         }
815
816         armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
817
818         target->debug_reason = DBG_REASON_SINGLESTEP;
819
820         armv7m_restore_context(target);
821
822         target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
823
824         /* if no bkpt instruction is found at pc then we can perform
825          * a normal step, otherwise we have to manually step over the bkpt
826          * instruction - as such simulate a step */
827         if (bkpt_inst_found == false) {
828                 /* Automatic ISR masking mode off: Just step over the next instruction */
829                 if ((cortex_m3->isrmasking_mode != CORTEX_M3_ISRMASK_AUTO))
830                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
831                 else {
832                         /* Process interrupts during stepping in a way they don't interfere
833                          * debugging.
834                          *
835                          * Principle:
836                          *
837                          * Set a temporary break point at the current pc and let the core run
838                          * with interrupts enabled. Pending interrupts get served and we run
839                          * into the breakpoint again afterwards. Then we step over the next
840                          * instruction with interrupts disabled.
841                          *
842                          * If the pending interrupts don't complete within time, we leave the
843                          * core running. This may happen if the interrupts trigger faster
844                          * than the core can process them or the handler doesn't return.
845                          *
846                          * If no more breakpoints are available we simply do a step with
847                          * interrupts enabled.
848                          *
849                          */
850
851                         /* 2012-09-29 ph
852                          *
853                          * If a break point is already set on the lower half word then a break point on
854                          * the upper half word will not break again when the core is restarted. So we
855                          * just step over the instruction with interrupts disabled.
856                          *
857                          * The documentation has no information about this, it was found by observation
858                          * on STM32F1 and STM32F2. Proper explanation welcome. STM32F0 dosen't seem to
859                          * suffer from this problem.
860                          *
861                          * To add some confusion: pc_value has bit 0 always set, while the breakpoint
862                          * address has it always cleared. The former is done to indicate thumb mode
863                          * to gdb.
864                          *
865                          */
866                         if ((pc_value & 0x02) && breakpoint_find(target, pc_value & ~0x03)) {
867                                 LOG_DEBUG("Stepping over next instruction with interrupts disabled");
868                                 cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
869                                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
870                                 /* Re-enable interrupts */
871                                 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
872                         }
873                         else {
874
875                                 /* Set a temporary break point */
876                                 if (breakpoint)
877                                         retval = cortex_m3_set_breakpoint(target, breakpoint);
878                                 else
879                                         retval = breakpoint_add(target, pc_value, 2, BKPT_TYPE_BY_ADDR(pc_value));
880                                 bool tmp_bp_set = (retval == ERROR_OK);
881
882                                 /* No more breakpoints left, just do a step */
883                                 if (!tmp_bp_set)
884                                         cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
885                                 else {
886                                         /* Start the core */
887                                         LOG_DEBUG("Starting core to serve pending interrupts");
888                                         int64_t t_start = timeval_ms();
889                                         cortex_m3_write_debug_halt_mask(target, 0, C_HALT | C_STEP);
890
891                                         /* Wait for pending handlers to complete or timeout */
892                                         do {
893                                                 retval = mem_ap_read_atomic_u32(swjdp,
894                                                                 DCB_DHCSR,
895                                                                 &cortex_m3->dcb_dhcsr);
896                                                 if (retval != ERROR_OK) {
897                                                         target->state = TARGET_UNKNOWN;
898                                                         return retval;
899                                                 }
900                                                 isr_timed_out = ((timeval_ms() - t_start) > 500);
901                                         } while (!((cortex_m3->dcb_dhcsr & S_HALT) || isr_timed_out));
902
903                                         /* only remove breakpoint if we created it */
904                                         if (breakpoint)
905                                                 cortex_m3_unset_breakpoint(target, breakpoint);
906                                         else {
907                                                 /* Remove the temporary breakpoint */
908                                                 breakpoint_remove(target, pc_value);
909                                         }
910
911                                         if (isr_timed_out) {
912                                                 LOG_DEBUG("Interrupt handlers didn't complete within time, "
913                                                         "leaving target running");
914                                         } else {
915                                                 /* Step over next instruction with interrupts disabled */
916                                                 cortex_m3_write_debug_halt_mask(target,
917                                                         C_HALT | C_MASKINTS,
918                                                         0);
919                                                 cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
920                                                 /* Re-enable interrupts */
921                                                 cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
922                                         }
923                                 }
924                         }
925                 }
926         }
927
928         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
929         if (retval != ERROR_OK)
930                 return retval;
931
932         /* registers are now invalid */
933         register_cache_invalidate(armv7m->arm.core_cache);
934
935         if (breakpoint)
936                 cortex_m3_set_breakpoint(target, breakpoint);
937
938         if (isr_timed_out) {
939                 /* Leave the core running. The user has to stop execution manually. */
940                 target->debug_reason = DBG_REASON_NOTHALTED;
941                 target->state = TARGET_RUNNING;
942                 return ERROR_OK;
943         }
944
945         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
946                 " nvic_icsr = 0x%" PRIx32,
947                 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
948
949         retval = cortex_m3_debug_entry(target);
950         if (retval != ERROR_OK)
951                 return retval;
952         target_call_event_callbacks(target, TARGET_EVENT_HALTED);
953
954         LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32
955                 " nvic_icsr = 0x%" PRIx32,
956                 cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
957
958         return ERROR_OK;
959 }
960
961 static int cortex_m3_assert_reset(struct target *target)
962 {
963         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
964         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
965         enum cortex_m3_soft_reset_config reset_config = cortex_m3->soft_reset_config;
966
967         LOG_DEBUG("target->state: %s",
968                 target_state_name(target));
969
970         enum reset_types jtag_reset_config = jtag_get_reset_config();
971
972         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
973                 /* allow scripts to override the reset event */
974
975                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
976                 register_cache_invalidate(cortex_m3->armv7m.arm.core_cache);
977                 target->state = TARGET_RESET;
978
979                 return ERROR_OK;
980         }
981
982         /* some cores support connecting while srst is asserted
983          * use that mode is it has been configured */
984
985         bool srst_asserted = false;
986
987         if ((jtag_reset_config & RESET_HAS_SRST) &&
988             (jtag_reset_config & RESET_SRST_NO_GATING)) {
989                 adapter_assert_reset();
990                 srst_asserted = true;
991         }
992
993         /* Enable debug requests */
994         int retval;
995         retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
996         if (retval != ERROR_OK)
997                 return retval;
998         if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN)) {
999                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
1000                 if (retval != ERROR_OK)
1001                         return retval;
1002         }
1003
1004         /* If the processor is sleeping in a WFI or WFE instruction, the
1005          * C_HALT bit must be asserted to regain control */
1006         if (cortex_m3->dcb_dhcsr & S_SLEEP) {
1007                 retval = mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
1008                 if (retval != ERROR_OK)
1009                         return retval;
1010         }
1011
1012         retval = mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
1013         if (retval != ERROR_OK)
1014                 return retval;
1015
1016         if (!target->reset_halt) {
1017                 /* Set/Clear C_MASKINTS in a separate operation */
1018                 if (cortex_m3->dcb_dhcsr & C_MASKINTS) {
1019                         retval = mem_ap_write_atomic_u32(swjdp, DCB_DHCSR,
1020                                         DBGKEY | C_DEBUGEN | C_HALT);
1021                         if (retval != ERROR_OK)
1022                                 return retval;
1023                 }
1024
1025                 /* clear any debug flags before resuming */
1026                 cortex_m3_clear_halt(target);
1027
1028                 /* clear C_HALT in dhcsr reg */
1029                 cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
1030         } else {
1031                 /* Halt in debug on reset; endreset_event() restores DEMCR.
1032                  *
1033                  * REVISIT catching BUSERR presumably helps to defend against
1034                  * bad vector table entries.  Should this include MMERR or
1035                  * other flags too?
1036                  */
1037                 retval = mem_ap_write_atomic_u32(swjdp, DCB_DEMCR,
1038                                 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1039                 if (retval != ERROR_OK)
1040                         return retval;
1041         }
1042
1043         if (jtag_reset_config & RESET_HAS_SRST) {
1044                 /* default to asserting srst */
1045                 if (!srst_asserted)
1046                         adapter_assert_reset();
1047         } else {
1048                 /* Use a standard Cortex-M3 software reset mechanism.
1049                  * We default to using VECRESET as it is supported on all current cores.
1050                  * This has the disadvantage of not resetting the peripherals, so a
1051                  * reset-init event handler is needed to perform any peripheral resets.
1052                  */
1053                 retval = mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
1054                                 AIRCR_VECTKEY | ((reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1055                                 ? AIRCR_SYSRESETREQ : AIRCR_VECTRESET));
1056                 if (retval != ERROR_OK)
1057                         return retval;
1058
1059                 LOG_DEBUG("Using Cortex-M %s", (reset_config == CORTEX_M3_RESET_SYSRESETREQ)
1060                         ? "SYSRESETREQ" : "VECTRESET");
1061
1062                 if (reset_config == CORTEX_M3_RESET_VECTRESET) {
1063                         LOG_WARNING("Only resetting the Cortex-M core, use a reset-init event "
1064                                 "handler to reset any peripherals or configure hardware srst support.");
1065                 }
1066
1067                 {
1068                         /* I do not know why this is necessary, but it
1069                          * fixes strange effects (step/resume cause NMI
1070                          * after reset) on LM3S6918 -- Michael Schwingen
1071                          */
1072                         uint32_t tmp;
1073                         retval = mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
1074                         if (retval != ERROR_OK)
1075                                 return retval;
1076                 }
1077         }
1078
1079         target->state = TARGET_RESET;
1080         jtag_add_sleep(50000);
1081
1082         register_cache_invalidate(cortex_m3->armv7m.arm.core_cache);
1083
1084         if (target->reset_halt) {
1085                 retval = target_halt(target);
1086                 if (retval != ERROR_OK)
1087                         return retval;
1088         }
1089
1090         return ERROR_OK;
1091 }
1092
1093 static int cortex_m3_deassert_reset(struct target *target)
1094 {
1095         LOG_DEBUG("target->state: %s",
1096                 target_state_name(target));
1097
1098         /* deassert reset lines */
1099         adapter_deassert_reset();
1100
1101         return ERROR_OK;
1102 }
1103
1104 int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
1105 {
1106         int retval;
1107         int fp_num = 0;
1108         uint32_t hilo;
1109         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1110         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1111
1112         if (breakpoint->set) {
1113                 LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
1114                 return ERROR_OK;
1115         }
1116
1117         if (cortex_m3->auto_bp_type)
1118                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1119
1120         if (breakpoint->type == BKPT_HARD) {
1121                 while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
1122                         fp_num++;
1123                 if (fp_num >= cortex_m3->fp_num_code) {
1124                         LOG_ERROR("Can not find free FPB Comparator!");
1125                         return ERROR_FAIL;
1126                 }
1127                 breakpoint->set = fp_num + 1;
1128                 hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
1129                 comparator_list[fp_num].used = 1;
1130                 comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
1131                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1132                         comparator_list[fp_num].fpcr_value);
1133                 LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "",
1134                         fp_num,
1135                         comparator_list[fp_num].fpcr_value);
1136                 if (!cortex_m3->fpb_enabled) {
1137                         LOG_DEBUG("FPB wasn't enabled, do it now");
1138                         target_write_u32(target, FP_CTRL, 3);
1139                 }
1140         } else if (breakpoint->type == BKPT_SOFT) {
1141                 uint8_t code[4];
1142
1143                 /* NOTE: on ARMv6-M and ARMv7-M, BKPT(0xab) is used for
1144                  * semihosting; don't use that.  Otherwise the BKPT
1145                  * parameter is arbitrary.
1146                  */
1147                 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1148                 retval = target_read_memory(target,
1149                                 breakpoint->address & 0xFFFFFFFE,
1150                                 breakpoint->length, 1,
1151                                 breakpoint->orig_instr);
1152                 if (retval != ERROR_OK)
1153                         return retval;
1154                 retval = target_write_memory(target,
1155                                 breakpoint->address & 0xFFFFFFFE,
1156                                 breakpoint->length, 1,
1157                                 code);
1158                 if (retval != ERROR_OK)
1159                         return retval;
1160                 breakpoint->set = true;
1161         }
1162
1163         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1164                 breakpoint->unique_id,
1165                 (int)(breakpoint->type),
1166                 breakpoint->address,
1167                 breakpoint->length,
1168                 breakpoint->set);
1169
1170         return ERROR_OK;
1171 }
1172
1173 int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1174 {
1175         int retval;
1176         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1177         struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
1178
1179         if (!breakpoint->set) {
1180                 LOG_WARNING("breakpoint not set");
1181                 return ERROR_OK;
1182         }
1183
1184         LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
1185                 breakpoint->unique_id,
1186                 (int)(breakpoint->type),
1187                 breakpoint->address,
1188                 breakpoint->length,
1189                 breakpoint->set);
1190
1191         if (breakpoint->type == BKPT_HARD) {
1192                 int fp_num = breakpoint->set - 1;
1193                 if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code)) {
1194                         LOG_DEBUG("Invalid FP Comparator number in breakpoint");
1195                         return ERROR_OK;
1196                 }
1197                 comparator_list[fp_num].used = 0;
1198                 comparator_list[fp_num].fpcr_value = 0;
1199                 target_write_u32(target, comparator_list[fp_num].fpcr_address,
1200                         comparator_list[fp_num].fpcr_value);
1201         } else {
1202                 /* restore original instruction (kept in target endianness) */
1203                 if (breakpoint->length == 4) {
1204                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1,
1205                                         breakpoint->orig_instr);
1206                         if (retval != ERROR_OK)
1207                                 return retval;
1208                 } else {
1209                         retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1,
1210                                         breakpoint->orig_instr);
1211                         if (retval != ERROR_OK)
1212                                 return retval;
1213                 }
1214         }
1215         breakpoint->set = false;
1216
1217         return ERROR_OK;
1218 }
1219
1220 int cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
1221 {
1222         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1223
1224         if (cortex_m3->auto_bp_type)
1225                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1226
1227         if (breakpoint->type != BKPT_TYPE_BY_ADDR(breakpoint->address)) {
1228                 if (breakpoint->type == BKPT_HARD) {
1229                         LOG_INFO("flash patch comparator requested outside code memory region");
1230                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1231                 }
1232
1233                 if (breakpoint->type == BKPT_SOFT) {
1234                         LOG_INFO("soft breakpoint requested in code (flash) memory region");
1235                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1236                 }
1237         }
1238
1239         if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1)) {
1240                 LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
1241                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1242         }
1243
1244         if ((breakpoint->length != 2)) {
1245                 LOG_INFO("only breakpoints of two bytes length supported");
1246                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1247         }
1248
1249         if (breakpoint->type == BKPT_HARD)
1250                 cortex_m3->fp_code_available--;
1251
1252         return cortex_m3_set_breakpoint(target, breakpoint);
1253 }
1254
1255 int cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1256 {
1257         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1258
1259         /* REVISIT why check? FBP can be updated with core running ... */
1260         if (target->state != TARGET_HALTED) {
1261                 LOG_WARNING("target not halted");
1262                 return ERROR_TARGET_NOT_HALTED;
1263         }
1264
1265         if (cortex_m3->auto_bp_type)
1266                 breakpoint->type = BKPT_TYPE_BY_ADDR(breakpoint->address);
1267
1268         if (breakpoint->set)
1269                 cortex_m3_unset_breakpoint(target, breakpoint);
1270
1271         if (breakpoint->type == BKPT_HARD)
1272                 cortex_m3->fp_code_available++;
1273
1274         return ERROR_OK;
1275 }
1276
1277 int cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1278 {
1279         int dwt_num = 0;
1280         uint32_t mask, temp;
1281         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1282
1283         /* watchpoint params were validated earlier */
1284         mask = 0;
1285         temp = watchpoint->length;
1286         while (temp) {
1287                 temp >>= 1;
1288                 mask++;
1289         }
1290         mask--;
1291
1292         /* REVISIT Don't fully trust these "not used" records ... users
1293          * may set up breakpoints by hand, e.g. dual-address data value
1294          * watchpoint using comparator #1; comparator #0 matching cycle
1295          * count; send data trace info through ITM and TPIU; etc
1296          */
1297         struct cortex_m3_dwt_comparator *comparator;
1298
1299         for (comparator = cortex_m3->dwt_comparator_list;
1300                 comparator->used && dwt_num < cortex_m3->dwt_num_comp;
1301                 comparator++, dwt_num++)
1302                 continue;
1303         if (dwt_num >= cortex_m3->dwt_num_comp) {
1304                 LOG_ERROR("Can not find free DWT Comparator");
1305                 return ERROR_FAIL;
1306         }
1307         comparator->used = 1;
1308         watchpoint->set = dwt_num + 1;
1309
1310         comparator->comp = watchpoint->address;
1311         target_write_u32(target, comparator->dwt_comparator_address + 0,
1312                 comparator->comp);
1313
1314         comparator->mask = mask;
1315         target_write_u32(target, comparator->dwt_comparator_address + 4,
1316                 comparator->mask);
1317
1318         switch (watchpoint->rw) {
1319                 case WPT_READ:
1320                         comparator->function = 5;
1321                         break;
1322                 case WPT_WRITE:
1323                         comparator->function = 6;
1324                         break;
1325                 case WPT_ACCESS:
1326                         comparator->function = 7;
1327                         break;
1328         }
1329         target_write_u32(target, comparator->dwt_comparator_address + 8,
1330                 comparator->function);
1331
1332         LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
1333                 watchpoint->unique_id, dwt_num,
1334                 (unsigned) comparator->comp,
1335                 (unsigned) comparator->mask,
1336                 (unsigned) comparator->function);
1337         return ERROR_OK;
1338 }
1339
1340 int cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1341 {
1342         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1343         struct cortex_m3_dwt_comparator *comparator;
1344         int dwt_num;
1345
1346         if (!watchpoint->set) {
1347                 LOG_WARNING("watchpoint (wpid: %d) not set",
1348                         watchpoint->unique_id);
1349                 return ERROR_OK;
1350         }
1351
1352         dwt_num = watchpoint->set - 1;
1353
1354         LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
1355                 watchpoint->unique_id, dwt_num,
1356                 (unsigned) watchpoint->address);
1357
1358         if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp)) {
1359                 LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
1360                 return ERROR_OK;
1361         }
1362
1363         comparator = cortex_m3->dwt_comparator_list + dwt_num;
1364         comparator->used = 0;
1365         comparator->function = 0;
1366         target_write_u32(target, comparator->dwt_comparator_address + 8,
1367                 comparator->function);
1368
1369         watchpoint->set = false;
1370
1371         return ERROR_OK;
1372 }
1373
1374 int cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1375 {
1376         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1377
1378         if (cortex_m3->dwt_comp_available < 1) {
1379                 LOG_DEBUG("no comparators?");
1380                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1381         }
1382
1383         /* hardware doesn't support data value masking */
1384         if (watchpoint->mask != ~(uint32_t)0) {
1385                 LOG_DEBUG("watchpoint value masks not supported");
1386                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1387         }
1388
1389         /* hardware allows address masks of up to 32K */
1390         unsigned mask;
1391
1392         for (mask = 0; mask < 16; mask++) {
1393                 if ((1u << mask) == watchpoint->length)
1394                         break;
1395         }
1396         if (mask == 16) {
1397                 LOG_DEBUG("unsupported watchpoint length");
1398                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1399         }
1400         if (watchpoint->address & ((1 << mask) - 1)) {
1401                 LOG_DEBUG("watchpoint address is unaligned");
1402                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1403         }
1404
1405         /* Caller doesn't seem to be able to describe watching for data
1406          * values of zero; that flags "no value".
1407          *
1408          * REVISIT This DWT may well be able to watch for specific data
1409          * values.  Requires comparator #1 to set DATAVMATCH and match
1410          * the data, and another comparator (DATAVADDR0) matching addr.
1411          */
1412         if (watchpoint->value) {
1413                 LOG_DEBUG("data value watchpoint not YET supported");
1414                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1415         }
1416
1417         cortex_m3->dwt_comp_available--;
1418         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1419
1420         return ERROR_OK;
1421 }
1422
1423 int cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1424 {
1425         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1426
1427         /* REVISIT why check? DWT can be updated with core running ... */
1428         if (target->state != TARGET_HALTED) {
1429                 LOG_WARNING("target not halted");
1430                 return ERROR_TARGET_NOT_HALTED;
1431         }
1432
1433         if (watchpoint->set)
1434                 cortex_m3_unset_watchpoint(target, watchpoint);
1435
1436         cortex_m3->dwt_comp_available++;
1437         LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
1438
1439         return ERROR_OK;
1440 }
1441
1442 void cortex_m3_enable_watchpoints(struct target *target)
1443 {
1444         struct watchpoint *watchpoint = target->watchpoints;
1445
1446         /* set any pending watchpoints */
1447         while (watchpoint) {
1448                 if (!watchpoint->set)
1449                         cortex_m3_set_watchpoint(target, watchpoint);
1450                 watchpoint = watchpoint->next;
1451         }
1452 }
1453
1454 static int cortex_m3_load_core_reg_u32(struct target *target,
1455                 uint32_t num, uint32_t *value)
1456 {
1457         int retval;
1458         struct armv7m_common *armv7m = target_to_armv7m(target);
1459         struct adiv5_dap *swjdp = armv7m->arm.dap;
1460
1461         /* NOTE:  we "know" here that the register identifiers used
1462          * in the v7m header match the Cortex-M3 Debug Core Register
1463          * Selector values for R0..R15, xPSR, MSP, and PSP.
1464          */
1465         switch (num) {
1466                 case 0 ... 18:
1467                         /* read a normal core register */
1468                         retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
1469
1470                         if (retval != ERROR_OK) {
1471                                 LOG_ERROR("JTAG failure %i", retval);
1472                                 return ERROR_JTAG_DEVICE_ERROR;
1473                         }
1474                         LOG_DEBUG("load from core reg %i  value 0x%" PRIx32 "", (int)num, *value);
1475                         break;
1476
1477                 case ARMV7M_PRIMASK:
1478                 case ARMV7M_BASEPRI:
1479                 case ARMV7M_FAULTMASK:
1480                 case ARMV7M_CONTROL:
1481                         /* Cortex-M3 packages these four registers as bitfields
1482                          * in one Debug Core register.  So say r0 and r2 docs;
1483                          * it was removed from r1 docs, but still works.
1484                          */
1485                         cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
1486
1487                         switch (num) {
1488                                 case ARMV7M_PRIMASK:
1489                                         *value = buf_get_u32((uint8_t *)value, 0, 1);
1490                                         break;
1491
1492                                 case ARMV7M_BASEPRI:
1493                                         *value = buf_get_u32((uint8_t *)value, 8, 8);
1494                                         break;
1495
1496                                 case ARMV7M_FAULTMASK:
1497                                         *value = buf_get_u32((uint8_t *)value, 16, 1);
1498                                         break;
1499
1500                                 case ARMV7M_CONTROL:
1501                                         *value = buf_get_u32((uint8_t *)value, 24, 2);
1502                                         break;
1503                         }
1504
1505                         LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
1506                         break;
1507
1508                 default:
1509                         return ERROR_COMMAND_SYNTAX_ERROR;
1510         }
1511
1512         return ERROR_OK;
1513 }
1514
1515 static int cortex_m3_store_core_reg_u32(struct target *target,
1516                 uint32_t num, uint32_t value)
1517 {
1518         int retval;
1519         uint32_t reg;
1520         struct armv7m_common *armv7m = target_to_armv7m(target);
1521         struct adiv5_dap *swjdp = armv7m->arm.dap;
1522
1523         /* NOTE:  we "know" here that the register identifiers used
1524          * in the v7m header match the Cortex-M3 Debug Core Register
1525          * Selector values for R0..R15, xPSR, MSP, and PSP.
1526          */
1527         switch (num) {
1528                 case 0 ... 18:
1529                         retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
1530                         if (retval != ERROR_OK) {
1531                                 struct reg *r;
1532
1533                                 LOG_ERROR("JTAG failure");
1534                                 r = armv7m->arm.core_cache->reg_list + num;
1535                                 r->dirty = r->valid;
1536                                 return ERROR_JTAG_DEVICE_ERROR;
1537                         }
1538                         LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
1539                         break;
1540
1541                 case ARMV7M_PRIMASK:
1542                 case ARMV7M_BASEPRI:
1543                 case ARMV7M_FAULTMASK:
1544                 case ARMV7M_CONTROL:
1545                         /* Cortex-M3 packages these four registers as bitfields
1546                          * in one Debug Core register.  So say r0 and r2 docs;
1547                          * it was removed from r1 docs, but still works.
1548                          */
1549                         cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
1550
1551                         switch (num) {
1552                                 case ARMV7M_PRIMASK:
1553                                         buf_set_u32((uint8_t *)&reg, 0, 1, value);
1554                                         break;
1555
1556                                 case ARMV7M_BASEPRI:
1557                                         buf_set_u32((uint8_t *)&reg, 8, 8, value);
1558                                         break;
1559
1560                                 case ARMV7M_FAULTMASK:
1561                                         buf_set_u32((uint8_t *)&reg, 16, 1, value);
1562                                         break;
1563
1564                                 case ARMV7M_CONTROL:
1565                                         buf_set_u32((uint8_t *)&reg, 24, 2, value);
1566                                         break;
1567                         }
1568
1569                         cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
1570
1571                         LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
1572                         break;
1573
1574                 default:
1575                         return ERROR_COMMAND_SYNTAX_ERROR;
1576         }
1577
1578         return ERROR_OK;
1579 }
1580
1581 static int cortex_m3_read_memory(struct target *target, uint32_t address,
1582         uint32_t size, uint32_t count, uint8_t *buffer)
1583 {
1584         struct armv7m_common *armv7m = target_to_armv7m(target);
1585         struct adiv5_dap *swjdp = armv7m->arm.dap;
1586         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1587
1588         if (armv7m->arm.is_armv6m) {
1589                 /* armv6m does not handle unaligned memory access */
1590                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1591                         return ERROR_TARGET_UNALIGNED_ACCESS;
1592         }
1593
1594         /* cortex_m3 handles unaligned memory access */
1595         if (count && buffer) {
1596                 switch (size) {
1597                         case 4:
1598                                 retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address, true);
1599                                 break;
1600                         case 2:
1601                                 retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
1602                                 break;
1603                         case 1:
1604                                 retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
1605                                 break;
1606                 }
1607         }
1608
1609         return retval;
1610 }
1611
1612 static int cortex_m3_write_memory(struct target *target, uint32_t address,
1613         uint32_t size, uint32_t count, const uint8_t *buffer)
1614 {
1615         struct armv7m_common *armv7m = target_to_armv7m(target);
1616         struct adiv5_dap *swjdp = armv7m->arm.dap;
1617         int retval = ERROR_COMMAND_SYNTAX_ERROR;
1618
1619         if (armv7m->arm.is_armv6m) {
1620                 /* armv6m does not handle unaligned memory access */
1621                 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
1622                         return ERROR_TARGET_UNALIGNED_ACCESS;
1623         }
1624
1625         if (count && buffer) {
1626                 switch (size) {
1627                         case 4:
1628                                 retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address, true);
1629                                 break;
1630                         case 2:
1631                                 retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
1632                                 break;
1633                         case 1:
1634                                 retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
1635                                 break;
1636                 }
1637         }
1638
1639         return retval;
1640 }
1641
1642 static int cortex_m3_init_target(struct command_context *cmd_ctx,
1643         struct target *target)
1644 {
1645         armv7m_build_reg_cache(target);
1646         return ERROR_OK;
1647 }
1648
1649 /* REVISIT cache valid/dirty bits are unmaintained.  We could set "valid"
1650  * on r/w if the core is not running, and clear on resume or reset ... or
1651  * at least, in a post_restore_context() method.
1652  */
1653
1654 struct dwt_reg_state {
1655         struct target *target;
1656         uint32_t addr;
1657         uint32_t value;         /* scratch/cache */
1658 };
1659
1660 static int cortex_m3_dwt_get_reg(struct reg *reg)
1661 {
1662         struct dwt_reg_state *state = reg->arch_info;
1663
1664         return target_read_u32(state->target, state->addr, &state->value);
1665 }
1666
1667 static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
1668 {
1669         struct dwt_reg_state *state = reg->arch_info;
1670
1671         return target_write_u32(state->target, state->addr,
1672                         buf_get_u32(buf, 0, reg->size));
1673 }
1674
1675 struct dwt_reg {
1676         uint32_t addr;
1677         char *name;
1678         unsigned size;
1679 };
1680
1681 static struct dwt_reg dwt_base_regs[] = {
1682         { DWT_CTRL, "dwt_ctrl", 32, },
1683         /* NOTE that Erratum 532314 (fixed r2p0) affects CYCCNT:  it wrongly
1684          * increments while the core is asleep.
1685          */
1686         { DWT_CYCCNT, "dwt_cyccnt", 32, },
1687         /* plus some 8 bit counters, useful for profiling with TPIU */
1688 };
1689
1690 static struct dwt_reg dwt_comp[] = {
1691 #define DWT_COMPARATOR(i) \
1692                 { DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
1693                 { DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
1694                 { DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
1695         DWT_COMPARATOR(0),
1696         DWT_COMPARATOR(1),
1697         DWT_COMPARATOR(2),
1698         DWT_COMPARATOR(3),
1699 #undef DWT_COMPARATOR
1700 };
1701
1702 static const struct reg_arch_type dwt_reg_type = {
1703         .get = cortex_m3_dwt_get_reg,
1704         .set = cortex_m3_dwt_set_reg,
1705 };
1706
1707 static void cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
1708 {
1709         struct dwt_reg_state *state;
1710
1711         state = calloc(1, sizeof *state);
1712         if (!state)
1713                 return;
1714         state->addr = d->addr;
1715         state->target = t;
1716
1717         r->name = d->name;
1718         r->size = d->size;
1719         r->value = &state->value;
1720         r->arch_info = state;
1721         r->type = &dwt_reg_type;
1722 }
1723
1724 void cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
1725 {
1726         uint32_t dwtcr;
1727         struct reg_cache *cache;
1728         struct cortex_m3_dwt_comparator *comparator;
1729         int reg, i;
1730
1731         target_read_u32(target, DWT_CTRL, &dwtcr);
1732         if (!dwtcr) {
1733                 LOG_DEBUG("no DWT");
1734                 return;
1735         }
1736
1737         cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
1738         cm3->dwt_comp_available = cm3->dwt_num_comp;
1739         cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
1740                         sizeof(struct cortex_m3_dwt_comparator));
1741         if (!cm3->dwt_comparator_list) {
1742 fail0:
1743                 cm3->dwt_num_comp = 0;
1744                 LOG_ERROR("out of mem");
1745                 return;
1746         }
1747
1748         cache = calloc(1, sizeof *cache);
1749         if (!cache) {
1750 fail1:
1751                 free(cm3->dwt_comparator_list);
1752                 goto fail0;
1753         }
1754         cache->name = "cortex-m3 dwt registers";
1755         cache->num_regs = 2 + cm3->dwt_num_comp * 3;
1756         cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
1757         if (!cache->reg_list) {
1758                 free(cache);
1759                 goto fail1;
1760         }
1761
1762         for (reg = 0; reg < 2; reg++)
1763                 cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1764                         dwt_base_regs + reg);
1765
1766         comparator = cm3->dwt_comparator_list;
1767         for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
1768                 int j;
1769
1770                 comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
1771                 for (j = 0; j < 3; j++, reg++)
1772                         cortex_m3_dwt_addreg(target, cache->reg_list + reg,
1773                                 dwt_comp + 3 * i + j);
1774
1775                 /* make sure we clear any watchpoints enabled on the target */
1776                 target_write_u32(target, comparator->dwt_comparator_address + 8, 0);
1777         }
1778
1779         *register_get_last_cache_p(&target->reg_cache) = cache;
1780         cm3->dwt_cache = cache;
1781
1782         LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
1783                 dwtcr, cm3->dwt_num_comp,
1784                 (dwtcr & (0xf << 24)) ? " only" : "/trigger");
1785
1786         /* REVISIT:  if num_comp > 1, check whether comparator #1 can
1787          * implement single-address data value watchpoints ... so we
1788          * won't need to check it later, when asked to set one up.
1789          */
1790 }
1791
1792 #define MVFR0 0xe000ef40
1793 #define MVFR1 0xe000ef44
1794
1795 #define MVFR0_DEFAULT_M4 0x10110021
1796 #define MVFR1_DEFAULT_M4 0x11000011
1797
1798 int cortex_m3_examine(struct target *target)
1799 {
1800         int retval;
1801         uint32_t cpuid, fpcr, mvfr0, mvfr1;
1802         int i;
1803         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
1804         struct adiv5_dap *swjdp = cortex_m3->armv7m.arm.dap;
1805         struct armv7m_common *armv7m = target_to_armv7m(target);
1806
1807         /* stlink shares the examine handler but does not support
1808          * all its calls */
1809         if (!armv7m->stlink) {
1810                 retval = ahbap_debugport_init(swjdp);
1811                 if (retval != ERROR_OK)
1812                         return retval;
1813         }
1814
1815         if (!target_was_examined(target)) {
1816                 target_set_examined(target);
1817
1818                 /* Read from Device Identification Registers */
1819                 retval = target_read_u32(target, CPUID, &cpuid);
1820                 if (retval != ERROR_OK)
1821                         return retval;
1822
1823                 /* Get CPU Type */
1824                 i = (cpuid >> 4) & 0xf;
1825
1826                 LOG_DEBUG("Cortex-M%d r%" PRId8 "p%" PRId8 " processor detected",
1827                                 i, (uint8_t)((cpuid >> 20) & 0xf), (uint8_t)((cpuid >> 0) & 0xf));
1828                 LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
1829
1830                 /* test for floating point feature on cortex-m4 */
1831                 if (i == 4) {
1832                         target_read_u32(target, MVFR0, &mvfr0);
1833                         target_read_u32(target, MVFR1, &mvfr1);
1834
1835                         if ((mvfr0 == MVFR0_DEFAULT_M4) && (mvfr1 == MVFR1_DEFAULT_M4)) {
1836                                 LOG_DEBUG("Cortex-M%d floating point feature FPv4_SP found", i);
1837                                 armv7m->fp_feature = FPv4_SP;
1838                         }
1839                 } else if (i == 0) {
1840                         /* Cortex-M0 does not support unaligned memory access */
1841                         armv7m->arm.is_armv6m = true;
1842                 }
1843
1844                 if (i == 4 || i == 3) {
1845                         /* Cortex-M3/M4 has 4096 bytes autoincrement range */
1846                         armv7m->dap.tar_autoincr_block = (1 << 12);
1847                 }
1848
1849                 /* NOTE: FPB and DWT are both optional. */
1850
1851                 /* Setup FPB */
1852                 target_read_u32(target, FP_CTRL, &fpcr);
1853                 cortex_m3->auto_bp_type = 1;
1854                 cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF);    /* bits
1855                                                                                          *[14:12]
1856                                                                                          *and [7:4]
1857                                                                                          **/
1858                 cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
1859                 cortex_m3->fp_code_available = cortex_m3->fp_num_code;
1860                 cortex_m3->fp_comparator_list = calloc(
1861                                 cortex_m3->fp_num_code + cortex_m3->fp_num_lit,
1862                                 sizeof(struct cortex_m3_fp_comparator));
1863                 cortex_m3->fpb_enabled = fpcr & 1;
1864                 for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++) {
1865                         cortex_m3->fp_comparator_list[i].type =
1866                                 (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
1867                         cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
1868
1869                         /* make sure we clear any breakpoints enabled on the target */
1870                         target_write_u32(target, cortex_m3->fp_comparator_list[i].fpcr_address, 0);
1871                 }
1872                 LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i",
1873                         fpcr,
1874                         cortex_m3->fp_num_code,
1875                         cortex_m3->fp_num_lit);
1876
1877                 /* Setup DWT */
1878                 cortex_m3_dwt_setup(cortex_m3, target);
1879
1880                 /* These hardware breakpoints only work for code in flash! */
1881                 LOG_INFO("%s: hardware has %d breakpoints, %d watchpoints",
1882                         target_name(target),
1883                         cortex_m3->fp_num_code,
1884                         cortex_m3->dwt_num_comp);
1885         }
1886
1887         return ERROR_OK;
1888 }
1889
1890 static int cortex_m3_dcc_read(struct adiv5_dap *swjdp, uint8_t *value, uint8_t *ctrl)
1891 {
1892         uint16_t dcrdr;
1893         int retval;
1894
1895         mem_ap_read_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1896         *ctrl = (uint8_t)dcrdr;
1897         *value = (uint8_t)(dcrdr >> 8);
1898
1899         LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
1900
1901         /* write ack back to software dcc register
1902          * signify we have read data */
1903         if (dcrdr & (1 << 0)) {
1904                 dcrdr = 0;
1905                 retval = mem_ap_write_buf_u16(swjdp, (uint8_t *)&dcrdr, 1, DCB_DCRDR);
1906                 if (retval != ERROR_OK)
1907                         return retval;
1908         }
1909
1910         return ERROR_OK;
1911 }
1912
1913 static int cortex_m3_target_request_data(struct target *target,
1914         uint32_t size, uint8_t *buffer)
1915 {
1916         struct armv7m_common *armv7m = target_to_armv7m(target);
1917         struct adiv5_dap *swjdp = armv7m->arm.dap;
1918         uint8_t data;
1919         uint8_t ctrl;
1920         uint32_t i;
1921
1922         for (i = 0; i < (size * 4); i++) {
1923                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1924                 buffer[i] = data;
1925         }
1926
1927         return ERROR_OK;
1928 }
1929
1930 static int cortex_m3_handle_target_request(void *priv)
1931 {
1932         struct target *target = priv;
1933         if (!target_was_examined(target))
1934                 return ERROR_OK;
1935         struct armv7m_common *armv7m = target_to_armv7m(target);
1936         struct adiv5_dap *swjdp = armv7m->arm.dap;
1937
1938         if (!target->dbg_msg_enabled)
1939                 return ERROR_OK;
1940
1941         if (target->state == TARGET_RUNNING) {
1942                 uint8_t data;
1943                 uint8_t ctrl;
1944
1945                 cortex_m3_dcc_read(swjdp, &data, &ctrl);
1946
1947                 /* check if we have data */
1948                 if (ctrl & (1 << 0)) {
1949                         uint32_t request;
1950
1951                         /* we assume target is quick enough */
1952                         request = data;
1953                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1954                         request |= (data << 8);
1955                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1956                         request |= (data << 16);
1957                         cortex_m3_dcc_read(swjdp, &data, &ctrl);
1958                         request |= (data << 24);
1959                         target_request(target, request);
1960                 }
1961         }
1962
1963         return ERROR_OK;
1964 }
1965
1966 static int cortex_m3_init_arch_info(struct target *target,
1967         struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
1968 {
1969         int retval;
1970         struct armv7m_common *armv7m = &cortex_m3->armv7m;
1971
1972         armv7m_init_arch_info(target, armv7m);
1973
1974         /* prepare JTAG information for the new target */
1975         cortex_m3->jtag_info.tap = tap;
1976         cortex_m3->jtag_info.scann_size = 4;
1977
1978         /* default reset mode is to use srst if fitted
1979          * if not it will use CORTEX_M3_RESET_VECTRESET */
1980         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
1981
1982         armv7m->arm.dap = &armv7m->dap;
1983
1984         /* Leave (only) generic DAP stuff for debugport_init(); */
1985         armv7m->dap.jtag_info = &cortex_m3->jtag_info;
1986         armv7m->dap.memaccess_tck = 8;
1987
1988         /* Cortex-M3/M4 has 4096 bytes autoincrement range
1989          * but set a safe default to 1024 to support Cortex-M0
1990          * this will be changed in cortex_m3_examine if a M3/M4 is detected */
1991         armv7m->dap.tar_autoincr_block = (1 << 10);
1992
1993         /* register arch-specific functions */
1994         armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
1995
1996         armv7m->post_debug_entry = NULL;
1997
1998         armv7m->pre_restore_context = NULL;
1999
2000         armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
2001         armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
2002
2003         target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
2004
2005         retval = arm_jtag_setup_connection(&cortex_m3->jtag_info);
2006         if (retval != ERROR_OK)
2007                 return retval;
2008
2009         return ERROR_OK;
2010 }
2011
2012 static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
2013 {
2014         struct cortex_m3_common *cortex_m3 = calloc(1, sizeof(struct cortex_m3_common));
2015
2016         cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
2017         cortex_m3_init_arch_info(target, cortex_m3, target->tap);
2018
2019         return ERROR_OK;
2020 }
2021
2022 /*--------------------------------------------------------------------------*/
2023
2024 static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
2025         struct cortex_m3_common *cm3)
2026 {
2027         if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
2028                 command_print(cmd_ctx, "target is not a Cortex-M");
2029                 return ERROR_TARGET_INVALID;
2030         }
2031         return ERROR_OK;
2032 }
2033
2034 /*
2035  * Only stuff below this line should need to verify that its target
2036  * is a Cortex-M3.  Everything else should have indirected through the
2037  * cortexm3_target structure, which is only used with CM3 targets.
2038  */
2039
2040 static const struct {
2041         char name[10];
2042         unsigned mask;
2043 } vec_ids[] = {
2044         { "hard_err",   VC_HARDERR, },
2045         { "int_err",    VC_INTERR, },
2046         { "bus_err",    VC_BUSERR, },
2047         { "state_err",  VC_STATERR, },
2048         { "chk_err",    VC_CHKERR, },
2049         { "nocp_err",   VC_NOCPERR, },
2050         { "mm_err",     VC_MMERR, },
2051         { "reset",      VC_CORERESET, },
2052 };
2053
2054 COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
2055 {
2056         struct target *target = get_current_target(CMD_CTX);
2057         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2058         struct armv7m_common *armv7m = &cortex_m3->armv7m;
2059         struct adiv5_dap *swjdp = armv7m->arm.dap;
2060         uint32_t demcr = 0;
2061         int retval;
2062
2063         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2064         if (retval != ERROR_OK)
2065                 return retval;
2066
2067         retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2068         if (retval != ERROR_OK)
2069                 return retval;
2070
2071         if (CMD_ARGC > 0) {
2072                 unsigned catch = 0;
2073
2074                 if (CMD_ARGC == 1) {
2075                         if (strcmp(CMD_ARGV[0], "all") == 0) {
2076                                 catch = VC_HARDERR | VC_INTERR | VC_BUSERR
2077                                         | VC_STATERR | VC_CHKERR | VC_NOCPERR
2078                                         | VC_MMERR | VC_CORERESET;
2079                                 goto write;
2080                         } else if (strcmp(CMD_ARGV[0], "none") == 0)
2081                                 goto write;
2082                 }
2083                 while (CMD_ARGC-- > 0) {
2084                         unsigned i;
2085                         for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2086                                 if (strcmp(CMD_ARGV[CMD_ARGC], vec_ids[i].name) != 0)
2087                                         continue;
2088                                 catch |= vec_ids[i].mask;
2089                                 break;
2090                         }
2091                         if (i == ARRAY_SIZE(vec_ids)) {
2092                                 LOG_ERROR("No CM3 vector '%s'", CMD_ARGV[CMD_ARGC]);
2093                                 return ERROR_COMMAND_SYNTAX_ERROR;
2094                         }
2095                 }
2096 write:
2097                 /* For now, armv7m->demcr only stores vector catch flags. */
2098                 armv7m->demcr = catch;
2099
2100                 demcr &= ~0xffff;
2101                 demcr |= catch;
2102
2103                 /* write, but don't assume it stuck (why not??) */
2104                 retval = mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
2105                 if (retval != ERROR_OK)
2106                         return retval;
2107                 retval = mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
2108                 if (retval != ERROR_OK)
2109                         return retval;
2110
2111                 /* FIXME be sure to clear DEMCR on clean server shutdown.
2112                  * Otherwise the vector catch hardware could fire when there's
2113                  * no debugger hooked up, causing much confusion...
2114                  */
2115         }
2116
2117         for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++) {
2118                 command_print(CMD_CTX, "%9s: %s", vec_ids[i].name,
2119                         (demcr & vec_ids[i].mask) ? "catch" : "ignore");
2120         }
2121
2122         return ERROR_OK;
2123 }
2124
2125 COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
2126 {
2127         struct target *target = get_current_target(CMD_CTX);
2128         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2129         int retval;
2130
2131         static const Jim_Nvp nvp_maskisr_modes[] = {
2132                 { .name = "auto", .value = CORTEX_M3_ISRMASK_AUTO },
2133                 { .name = "off", .value = CORTEX_M3_ISRMASK_OFF },
2134                 { .name = "on", .value = CORTEX_M3_ISRMASK_ON },
2135                 { .name = NULL, .value = -1 },
2136         };
2137         const Jim_Nvp *n;
2138
2139
2140         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2141         if (retval != ERROR_OK)
2142                 return retval;
2143
2144         if (target->state != TARGET_HALTED) {
2145                 command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
2146                 return ERROR_OK;
2147         }
2148
2149         if (CMD_ARGC > 0) {
2150                 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
2151                 if (n->name == NULL)
2152                         return ERROR_COMMAND_SYNTAX_ERROR;
2153                 cortex_m3->isrmasking_mode = n->value;
2154
2155
2156                 if (cortex_m3->isrmasking_mode == CORTEX_M3_ISRMASK_ON)
2157                         cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
2158                 else
2159                         cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
2160         }
2161
2162         n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_m3->isrmasking_mode);
2163         command_print(CMD_CTX, "cortex_m interrupt mask %s", n->name);
2164
2165         return ERROR_OK;
2166 }
2167
2168 COMMAND_HANDLER(handle_cortex_m3_reset_config_command)
2169 {
2170         struct target *target = get_current_target(CMD_CTX);
2171         struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
2172         int retval;
2173         char *reset_config;
2174
2175         retval = cortex_m3_verify_pointer(CMD_CTX, cortex_m3);
2176         if (retval != ERROR_OK)
2177                 return retval;
2178
2179         if (CMD_ARGC > 0) {
2180                 if (strcmp(*CMD_ARGV, "sysresetreq") == 0)
2181                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_SYSRESETREQ;
2182                 else if (strcmp(*CMD_ARGV, "vectreset") == 0)
2183                         cortex_m3->soft_reset_config = CORTEX_M3_RESET_VECTRESET;
2184         }
2185
2186         switch (cortex_m3->soft_reset_config) {
2187                 case CORTEX_M3_RESET_SYSRESETREQ:
2188                         reset_config = "sysresetreq";
2189                         break;
2190
2191                 case CORTEX_M3_RESET_VECTRESET:
2192                         reset_config = "vectreset";
2193                         break;
2194
2195                 default:
2196                         reset_config = "unknown";
2197                         break;
2198         }
2199
2200         command_print(CMD_CTX, "cortex_m reset_config %s", reset_config);
2201
2202         return ERROR_OK;
2203 }
2204
2205 static const struct command_registration cortex_m3_exec_command_handlers[] = {
2206         {
2207                 .name = "maskisr",
2208                 .handler = handle_cortex_m3_mask_interrupts_command,
2209                 .mode = COMMAND_EXEC,
2210                 .help = "mask cortex_m interrupts",
2211                 .usage = "['auto'|'on'|'off']",
2212         },
2213         {
2214                 .name = "vector_catch",
2215                 .handler = handle_cortex_m3_vector_catch_command,
2216                 .mode = COMMAND_EXEC,
2217                 .help = "configure hardware vectors to trigger debug entry",
2218                 .usage = "['all'|'none'|('bus_err'|'chk_err'|...)*]",
2219         },
2220         {
2221                 .name = "reset_config",
2222                 .handler = handle_cortex_m3_reset_config_command,
2223                 .mode = COMMAND_ANY,
2224                 .help = "configure software reset handling",
2225                 .usage = "['srst'|'sysresetreq'|'vectreset']",
2226         },
2227         COMMAND_REGISTRATION_DONE
2228 };
2229 static const struct command_registration cortex_m3_command_handlers[] = {
2230         {
2231                 .chain = armv7m_command_handlers,
2232         },
2233         {
2234                 .name = "cortex_m",
2235                 .mode = COMMAND_EXEC,
2236                 .help = "Cortex-M command group",
2237                 .usage = "",
2238                 .chain = cortex_m3_exec_command_handlers,
2239         },
2240         COMMAND_REGISTRATION_DONE
2241 };
2242
2243 struct target_type cortexm3_target = {
2244         .name = "cortex_m",
2245         .deprecated_name = "cortex_m3",
2246
2247         .poll = cortex_m3_poll,
2248         .arch_state = armv7m_arch_state,
2249
2250         .target_request_data = cortex_m3_target_request_data,
2251
2252         .halt = cortex_m3_halt,
2253         .resume = cortex_m3_resume,
2254         .step = cortex_m3_step,
2255
2256         .assert_reset = cortex_m3_assert_reset,
2257         .deassert_reset = cortex_m3_deassert_reset,
2258         .soft_reset_halt = cortex_m3_soft_reset_halt,
2259
2260         .get_gdb_reg_list = armv7m_get_gdb_reg_list,
2261
2262         .read_memory = cortex_m3_read_memory,
2263         .write_memory = cortex_m3_write_memory,
2264         .checksum_memory = armv7m_checksum_memory,
2265         .blank_check_memory = armv7m_blank_check_memory,
2266
2267         .run_algorithm = armv7m_run_algorithm,
2268         .start_algorithm = armv7m_start_algorithm,
2269         .wait_algorithm = armv7m_wait_algorithm,
2270
2271         .add_breakpoint = cortex_m3_add_breakpoint,
2272         .remove_breakpoint = cortex_m3_remove_breakpoint,
2273         .add_watchpoint = cortex_m3_add_watchpoint,
2274         .remove_watchpoint = cortex_m3_remove_watchpoint,
2275
2276         .commands = cortex_m3_command_handlers,
2277         .target_create = cortex_m3_target_create,
2278         .init_target = cortex_m3_init_target,
2279         .examine = cortex_m3_examine,
2280 };