openocd: src/target: replace the GPL-2.0-or-later license tag
[fw/openocd] / src / target / cortex_a.c
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2
3 /***************************************************************************
4  *   Copyright (C) 2005 by Dominic Rath                                    *
5  *   Dominic.Rath@gmx.de                                                   *
6  *                                                                         *
7  *   Copyright (C) 2006 by Magnus Lundin                                   *
8  *   lundin@mlu.mine.nu                                                    *
9  *                                                                         *
10  *   Copyright (C) 2008 by Spencer Oliver                                  *
11  *   spen@spen-soft.co.uk                                                  *
12  *                                                                         *
13  *   Copyright (C) 2009 by Dirk Behme                                      *
14  *   dirk.behme@gmail.com - copy from cortex_m3                            *
15  *                                                                         *
16  *   Copyright (C) 2010 Ã˜yvind Harboe                                      *
17  *   oyvind.harboe@zylin.com                                               *
18  *                                                                         *
19  *   Copyright (C) ST-Ericsson SA 2011                                     *
20  *   michel.jaouen@stericsson.com : smp minimum support                    *
21  *                                                                         *
22  *   Copyright (C) Broadcom 2012                                           *
23  *   ehunter@broadcom.com : Cortex-R4 support                              *
24  *                                                                         *
25  *   Copyright (C) 2013 Kamal Dasu                                         *
26  *   kdasu.kdev@gmail.com                                                  *
27  *                                                                         *
28  *   Copyright (C) 2016 Chengyu Zheng                                      *
29  *   chengyu.zheng@polimi.it : watchpoint support                          *
30  *                                                                         *
31  *   Cortex-A8(tm) TRM, ARM DDI 0344H                                      *
32  *   Cortex-A9(tm) TRM, ARM DDI 0407F                                      *
33  *   Cortex-A4(tm) TRM, ARM DDI 0363E                                      *
34  *   Cortex-A15(tm)TRM, ARM DDI 0438C                                      *
35  *                                                                         *
36  ***************************************************************************/
37
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41
42 #include "breakpoints.h"
43 #include "cortex_a.h"
44 #include "register.h"
45 #include "armv7a_mmu.h"
46 #include "target_request.h"
47 #include "target_type.h"
48 #include "arm_coresight.h"
49 #include "arm_opcodes.h"
50 #include "arm_semihosting.h"
51 #include "jtag/interface.h"
52 #include "transport/transport.h"
53 #include "smp.h"
54 #include <helper/bits.h>
55 #include <helper/time_support.h>
56
57 static int cortex_a_poll(struct target *target);
58 static int cortex_a_debug_entry(struct target *target);
59 static int cortex_a_restore_context(struct target *target, bool bpwp);
60 static int cortex_a_set_breakpoint(struct target *target,
61         struct breakpoint *breakpoint, uint8_t matchmode);
62 static int cortex_a_set_context_breakpoint(struct target *target,
63         struct breakpoint *breakpoint, uint8_t matchmode);
64 static int cortex_a_set_hybrid_breakpoint(struct target *target,
65         struct breakpoint *breakpoint);
66 static int cortex_a_unset_breakpoint(struct target *target,
67         struct breakpoint *breakpoint);
68 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
69         uint32_t value, uint32_t *dscr);
70 static int cortex_a_mmu(struct target *target, int *enabled);
71 static int cortex_a_mmu_modify(struct target *target, int enable);
72 static int cortex_a_virt2phys(struct target *target,
73         target_addr_t virt, target_addr_t *phys);
74 static int cortex_a_read_cpu_memory(struct target *target,
75         uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
76
77 static unsigned int ilog2(unsigned int x)
78 {
79         unsigned int y = 0;
80         x /= 2;
81         while (x) {
82                 ++y;
83                 x /= 2;
84                 }
85         return y;
86 }
87
88 /*  restore cp15_control_reg at resume */
89 static int cortex_a_restore_cp15_control_reg(struct target *target)
90 {
91         int retval = ERROR_OK;
92         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
93         struct armv7a_common *armv7a = target_to_armv7a(target);
94
95         if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
96                 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
97                 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
98                 retval = armv7a->arm.mcr(target, 15,
99                                 0, 0,   /* op1, op2 */
100                                 1, 0,   /* CRn, CRm */
101                                 cortex_a->cp15_control_reg);
102         }
103         return retval;
104 }
105
106 /*
107  * Set up ARM core for memory access.
108  * If !phys_access, switch to SVC mode and make sure MMU is on
109  * If phys_access, switch off mmu
110  */
111 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
112 {
113         struct armv7a_common *armv7a = target_to_armv7a(target);
114         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
115         int mmu_enabled = 0;
116
117         if (phys_access == 0) {
118                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
119                 cortex_a_mmu(target, &mmu_enabled);
120                 if (mmu_enabled)
121                         cortex_a_mmu_modify(target, 1);
122                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
123                         /* overwrite DACR to all-manager */
124                         armv7a->arm.mcr(target, 15,
125                                         0, 0, 3, 0,
126                                         0xFFFFFFFF);
127                 }
128         } else {
129                 cortex_a_mmu(target, &mmu_enabled);
130                 if (mmu_enabled)
131                         cortex_a_mmu_modify(target, 0);
132         }
133         return ERROR_OK;
134 }
135
136 /*
137  * Restore ARM core after memory access.
138  * If !phys_access, switch to previous mode
139  * If phys_access, restore MMU setting
140  */
141 static int cortex_a_post_memaccess(struct target *target, int phys_access)
142 {
143         struct armv7a_common *armv7a = target_to_armv7a(target);
144         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
145
146         if (phys_access == 0) {
147                 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
148                         /* restore */
149                         armv7a->arm.mcr(target, 15,
150                                         0, 0, 3, 0,
151                                         cortex_a->cp15_dacr_reg);
152                 }
153                 arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
154         } else {
155                 int mmu_enabled = 0;
156                 cortex_a_mmu(target, &mmu_enabled);
157                 if (mmu_enabled)
158                         cortex_a_mmu_modify(target, 1);
159         }
160         return ERROR_OK;
161 }
162
163
164 /*  modify cp15_control_reg in order to enable or disable mmu for :
165  *  - virt2phys address conversion
166  *  - read or write memory in phys or virt address */
167 static int cortex_a_mmu_modify(struct target *target, int enable)
168 {
169         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
170         struct armv7a_common *armv7a = target_to_armv7a(target);
171         int retval = ERROR_OK;
172         int need_write = 0;
173
174         if (enable) {
175                 /*  if mmu enabled at target stop and mmu not enable */
176                 if (!(cortex_a->cp15_control_reg & 0x1U)) {
177                         LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
178                         return ERROR_FAIL;
179                 }
180                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
181                         cortex_a->cp15_control_reg_curr |= 0x1U;
182                         need_write = 1;
183                 }
184         } else {
185                 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
186                         cortex_a->cp15_control_reg_curr &= ~0x1U;
187                         need_write = 1;
188                 }
189         }
190
191         if (need_write) {
192                 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
193                         enable ? "enable mmu" : "disable mmu",
194                         cortex_a->cp15_control_reg_curr);
195
196                 retval = armv7a->arm.mcr(target, 15,
197                                 0, 0,   /* op1, op2 */
198                                 1, 0,   /* CRn, CRm */
199                                 cortex_a->cp15_control_reg_curr);
200         }
201         return retval;
202 }
203
204 /*
205  * Cortex-A Basic debug access, very low level assumes state is saved
206  */
207 static int cortex_a_init_debug_access(struct target *target)
208 {
209         struct armv7a_common *armv7a = target_to_armv7a(target);
210         uint32_t dscr;
211         int retval;
212
213         /* lock memory-mapped access to debug registers to prevent
214          * software interference */
215         retval = mem_ap_write_u32(armv7a->debug_ap,
216                         armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
217         if (retval != ERROR_OK)
218                 return retval;
219
220         /* Disable cacheline fills and force cache write-through in debug state */
221         retval = mem_ap_write_u32(armv7a->debug_ap,
222                         armv7a->debug_base + CPUDBG_DSCCR, 0);
223         if (retval != ERROR_OK)
224                 return retval;
225
226         /* Disable TLB lookup and refill/eviction in debug state */
227         retval = mem_ap_write_u32(armv7a->debug_ap,
228                         armv7a->debug_base + CPUDBG_DSMCR, 0);
229         if (retval != ERROR_OK)
230                 return retval;
231
232         retval = dap_run(armv7a->debug_ap->dap);
233         if (retval != ERROR_OK)
234                 return retval;
235
236         /* Enabling of instruction execution in debug mode is done in debug_entry code */
237
238         /* Resync breakpoint registers */
239
240         /* Enable halt for breakpoint, watchpoint and vector catch */
241         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
242                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
243         if (retval != ERROR_OK)
244                 return retval;
245         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
246                         armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
247         if (retval != ERROR_OK)
248                 return retval;
249
250         /* Since this is likely called from init or reset, update target state information*/
251         return cortex_a_poll(target);
252 }
253
254 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
255 {
256         /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
257          * Writes final value of DSCR into *dscr. Pass force to force always
258          * reading DSCR at least once. */
259         struct armv7a_common *armv7a = target_to_armv7a(target);
260         int retval;
261
262         if (force) {
263                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
264                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
265                 if (retval != ERROR_OK) {
266                         LOG_ERROR("Could not read DSCR register");
267                         return retval;
268                 }
269         }
270
271         retval = cortex_a_wait_dscr_bits(target, DSCR_INSTR_COMP, DSCR_INSTR_COMP, dscr);
272         if (retval != ERROR_OK)
273                 LOG_ERROR("Error waiting for InstrCompl=1");
274         return retval;
275 }
276
277 /* To reduce needless round-trips, pass in a pointer to the current
278  * DSCR value.  Initialize it to zero if you just need to know the
279  * value on return from this function; or DSCR_INSTR_COMP if you
280  * happen to know that no instruction is pending.
281  */
282 static int cortex_a_exec_opcode(struct target *target,
283         uint32_t opcode, uint32_t *dscr_p)
284 {
285         uint32_t dscr;
286         int retval;
287         struct armv7a_common *armv7a = target_to_armv7a(target);
288
289         dscr = dscr_p ? *dscr_p : 0;
290
291         LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
292
293         /* Wait for InstrCompl bit to be set */
294         retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
295         if (retval != ERROR_OK)
296                 return retval;
297
298         retval = mem_ap_write_u32(armv7a->debug_ap,
299                         armv7a->debug_base + CPUDBG_ITR, opcode);
300         if (retval != ERROR_OK)
301                 return retval;
302
303         /* Wait for InstrCompl bit to be set */
304         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
305         if (retval != ERROR_OK) {
306                 LOG_ERROR("Error waiting for cortex_a_exec_opcode");
307                 return retval;
308         }
309
310         if (dscr_p)
311                 *dscr_p = dscr;
312
313         return retval;
314 }
315
316 /* Write to memory mapped registers directly with no cache or mmu handling */
317 static int cortex_a_dap_write_memap_register_u32(struct target *target,
318         uint32_t address,
319         uint32_t value)
320 {
321         int retval;
322         struct armv7a_common *armv7a = target_to_armv7a(target);
323
324         retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
325
326         return retval;
327 }
328
329 /*
330  * Cortex-A implementation of Debug Programmer's Model
331  *
332  * NOTE the invariant:  these routines return with DSCR_INSTR_COMP set,
333  * so there's no need to poll for it before executing an instruction.
334  *
335  * NOTE that in several of these cases the "stall" mode might be useful.
336  * It'd let us queue a few operations together... prepare/finish might
337  * be the places to enable/disable that mode.
338  */
339
340 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
341 {
342         return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
343 }
344
345 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
346 {
347         LOG_DEBUG("write DCC 0x%08" PRIx32, data);
348         return mem_ap_write_u32(a->armv7a_common.debug_ap,
349                         a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
350 }
351
352 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
353         uint32_t *dscr_p)
354 {
355         uint32_t dscr = DSCR_INSTR_COMP;
356         int retval;
357
358         if (dscr_p)
359                 dscr = *dscr_p;
360
361         /* Wait for DTRRXfull */
362         retval = cortex_a_wait_dscr_bits(a->armv7a_common.arm.target,
363                         DSCR_DTR_TX_FULL, DSCR_DTR_TX_FULL, &dscr);
364         if (retval != ERROR_OK) {
365                 LOG_ERROR("Error waiting for read dcc");
366                 return retval;
367         }
368
369         retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
370                         a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
371         if (retval != ERROR_OK)
372                 return retval;
373         /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
374
375         if (dscr_p)
376                 *dscr_p = dscr;
377
378         return retval;
379 }
380
381 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
382 {
383         struct cortex_a_common *a = dpm_to_a(dpm);
384         uint32_t dscr;
385         int retval;
386
387         /* set up invariant:  INSTR_COMP is set after ever DPM operation */
388         retval = cortex_a_wait_instrcmpl(dpm->arm->target, &dscr, true);
389         if (retval != ERROR_OK) {
390                 LOG_ERROR("Error waiting for dpm prepare");
391                 return retval;
392         }
393
394         /* this "should never happen" ... */
395         if (dscr & DSCR_DTR_RX_FULL) {
396                 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
397                 /* Clear DCCRX */
398                 retval = cortex_a_exec_opcode(
399                                 a->armv7a_common.arm.target,
400                                 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
401                                 &dscr);
402                 if (retval != ERROR_OK)
403                         return retval;
404         }
405
406         return retval;
407 }
408
409 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
410 {
411         /* REVISIT what could be done here? */
412         return ERROR_OK;
413 }
414
415 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
416         uint32_t opcode, uint32_t data)
417 {
418         struct cortex_a_common *a = dpm_to_a(dpm);
419         int retval;
420         uint32_t dscr = DSCR_INSTR_COMP;
421
422         retval = cortex_a_write_dcc(a, data);
423         if (retval != ERROR_OK)
424                 return retval;
425
426         return cortex_a_exec_opcode(
427                         a->armv7a_common.arm.target,
428                         opcode,
429                         &dscr);
430 }
431
432 static int cortex_a_instr_write_data_rt_dcc(struct arm_dpm *dpm,
433         uint8_t rt, uint32_t data)
434 {
435         struct cortex_a_common *a = dpm_to_a(dpm);
436         uint32_t dscr = DSCR_INSTR_COMP;
437         int retval;
438
439         if (rt > 15)
440                 return ERROR_TARGET_INVALID;
441
442         retval = cortex_a_write_dcc(a, data);
443         if (retval != ERROR_OK)
444                 return retval;
445
446         /* DCCRX to Rt, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
447         return cortex_a_exec_opcode(
448                         a->armv7a_common.arm.target,
449                         ARMV4_5_MRC(14, 0, rt, 0, 5, 0),
450                         &dscr);
451 }
452
453 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
454         uint32_t opcode, uint32_t data)
455 {
456         struct cortex_a_common *a = dpm_to_a(dpm);
457         uint32_t dscr = DSCR_INSTR_COMP;
458         int retval;
459
460         retval = cortex_a_instr_write_data_rt_dcc(dpm, 0, data);
461         if (retval != ERROR_OK)
462                 return retval;
463
464         /* then the opcode, taking data from R0 */
465         retval = cortex_a_exec_opcode(
466                         a->armv7a_common.arm.target,
467                         opcode,
468                         &dscr);
469
470         return retval;
471 }
472
473 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
474 {
475         struct target *target = dpm->arm->target;
476         uint32_t dscr = DSCR_INSTR_COMP;
477
478         /* "Prefetch flush" after modifying execution status in CPSR */
479         return cortex_a_exec_opcode(target,
480                         ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
481                         &dscr);
482 }
483
484 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
485         uint32_t opcode, uint32_t *data)
486 {
487         struct cortex_a_common *a = dpm_to_a(dpm);
488         int retval;
489         uint32_t dscr = DSCR_INSTR_COMP;
490
491         /* the opcode, writing data to DCC */
492         retval = cortex_a_exec_opcode(
493                         a->armv7a_common.arm.target,
494                         opcode,
495                         &dscr);
496         if (retval != ERROR_OK)
497                 return retval;
498
499         return cortex_a_read_dcc(a, data, &dscr);
500 }
501
502 static int cortex_a_instr_read_data_rt_dcc(struct arm_dpm *dpm,
503         uint8_t rt, uint32_t *data)
504 {
505         struct cortex_a_common *a = dpm_to_a(dpm);
506         uint32_t dscr = DSCR_INSTR_COMP;
507         int retval;
508
509         if (rt > 15)
510                 return ERROR_TARGET_INVALID;
511
512         retval = cortex_a_exec_opcode(
513                         a->armv7a_common.arm.target,
514                         ARMV4_5_MCR(14, 0, rt, 0, 5, 0),
515                         &dscr);
516         if (retval != ERROR_OK)
517                 return retval;
518
519         return cortex_a_read_dcc(a, data, &dscr);
520 }
521
522 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
523         uint32_t opcode, uint32_t *data)
524 {
525         struct cortex_a_common *a = dpm_to_a(dpm);
526         uint32_t dscr = DSCR_INSTR_COMP;
527         int retval;
528
529         /* the opcode, writing data to R0 */
530         retval = cortex_a_exec_opcode(
531                         a->armv7a_common.arm.target,
532                         opcode,
533                         &dscr);
534         if (retval != ERROR_OK)
535                 return retval;
536
537         /* write R0 to DCC */
538         return cortex_a_instr_read_data_rt_dcc(dpm, 0, data);
539 }
540
541 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
542         uint32_t addr, uint32_t control)
543 {
544         struct cortex_a_common *a = dpm_to_a(dpm);
545         uint32_t vr = a->armv7a_common.debug_base;
546         uint32_t cr = a->armv7a_common.debug_base;
547         int retval;
548
549         switch (index_t) {
550                 case 0 ... 15:  /* breakpoints */
551                         vr += CPUDBG_BVR_BASE;
552                         cr += CPUDBG_BCR_BASE;
553                         break;
554                 case 16 ... 31: /* watchpoints */
555                         vr += CPUDBG_WVR_BASE;
556                         cr += CPUDBG_WCR_BASE;
557                         index_t -= 16;
558                         break;
559                 default:
560                         return ERROR_FAIL;
561         }
562         vr += 4 * index_t;
563         cr += 4 * index_t;
564
565         LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
566                 (unsigned) vr, (unsigned) cr);
567
568         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
569                         vr, addr);
570         if (retval != ERROR_OK)
571                 return retval;
572         retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
573                         cr, control);
574         return retval;
575 }
576
577 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
578 {
579         struct cortex_a_common *a = dpm_to_a(dpm);
580         uint32_t cr;
581
582         switch (index_t) {
583                 case 0 ... 15:
584                         cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
585                         break;
586                 case 16 ... 31:
587                         cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
588                         index_t -= 16;
589                         break;
590                 default:
591                         return ERROR_FAIL;
592         }
593         cr += 4 * index_t;
594
595         LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
596
597         /* clear control register */
598         return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
599 }
600
601 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
602 {
603         struct arm_dpm *dpm = &a->armv7a_common.dpm;
604         int retval;
605
606         dpm->arm = &a->armv7a_common.arm;
607         dpm->didr = didr;
608
609         dpm->prepare = cortex_a_dpm_prepare;
610         dpm->finish = cortex_a_dpm_finish;
611
612         dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
613         dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
614         dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
615
616         dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
617         dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
618
619         dpm->bpwp_enable = cortex_a_bpwp_enable;
620         dpm->bpwp_disable = cortex_a_bpwp_disable;
621
622         retval = arm_dpm_setup(dpm);
623         if (retval == ERROR_OK)
624                 retval = arm_dpm_initialize(dpm);
625
626         return retval;
627 }
628 static struct target *get_cortex_a(struct target *target, int32_t coreid)
629 {
630         struct target_list *head;
631
632         foreach_smp_target(head, target->smp_targets) {
633                 struct target *curr = head->target;
634                 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
635                         return curr;
636         }
637         return target;
638 }
639 static int cortex_a_halt(struct target *target);
640
641 static int cortex_a_halt_smp(struct target *target)
642 {
643         int retval = 0;
644         struct target_list *head;
645
646         foreach_smp_target(head, target->smp_targets) {
647                 struct target *curr = head->target;
648                 if ((curr != target) && (curr->state != TARGET_HALTED)
649                         && target_was_examined(curr))
650                         retval += cortex_a_halt(curr);
651         }
652         return retval;
653 }
654
655 static int update_halt_gdb(struct target *target)
656 {
657         struct target *gdb_target = NULL;
658         struct target_list *head;
659         struct target *curr;
660         int retval = 0;
661
662         if (target->gdb_service && target->gdb_service->core[0] == -1) {
663                 target->gdb_service->target = target;
664                 target->gdb_service->core[0] = target->coreid;
665                 retval += cortex_a_halt_smp(target);
666         }
667
668         if (target->gdb_service)
669                 gdb_target = target->gdb_service->target;
670
671         foreach_smp_target(head, target->smp_targets) {
672                 curr = head->target;
673                 /* skip calling context */
674                 if (curr == target)
675                         continue;
676                 if (!target_was_examined(curr))
677                         continue;
678                 /* skip targets that were already halted */
679                 if (curr->state == TARGET_HALTED)
680                         continue;
681                 /* Skip gdb_target; it alerts GDB so has to be polled as last one */
682                 if (curr == gdb_target)
683                         continue;
684
685                 /* avoid recursion in cortex_a_poll() */
686                 curr->smp = 0;
687                 cortex_a_poll(curr);
688                 curr->smp = 1;
689         }
690
691         /* after all targets were updated, poll the gdb serving target */
692         if (gdb_target && gdb_target != target)
693                 cortex_a_poll(gdb_target);
694         return retval;
695 }
696
697 /*
698  * Cortex-A Run control
699  */
700
701 static int cortex_a_poll(struct target *target)
702 {
703         int retval = ERROR_OK;
704         uint32_t dscr;
705         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
706         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
707         enum target_state prev_target_state = target->state;
708         /*  toggle to another core is done by gdb as follow */
709         /*  maint packet J core_id */
710         /*  continue */
711         /*  the next polling trigger an halt event sent to gdb */
712         if ((target->state == TARGET_HALTED) && (target->smp) &&
713                 (target->gdb_service) &&
714                 (!target->gdb_service->target)) {
715                 target->gdb_service->target =
716                         get_cortex_a(target, target->gdb_service->core[1]);
717                 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
718                 return retval;
719         }
720         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
721                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
722         if (retval != ERROR_OK)
723                 return retval;
724         cortex_a->cpudbg_dscr = dscr;
725
726         if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
727                 if (prev_target_state != TARGET_HALTED) {
728                         /* We have a halting debug event */
729                         LOG_DEBUG("Target halted");
730                         target->state = TARGET_HALTED;
731
732                         retval = cortex_a_debug_entry(target);
733                         if (retval != ERROR_OK)
734                                 return retval;
735
736                         if (target->smp) {
737                                 retval = update_halt_gdb(target);
738                                 if (retval != ERROR_OK)
739                                         return retval;
740                         }
741
742                         if (prev_target_state == TARGET_DEBUG_RUNNING) {
743                                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
744                         } else { /* prev_target_state is RUNNING, UNKNOWN or RESET */
745                                 if (arm_semihosting(target, &retval) != 0)
746                                         return retval;
747
748                                 target_call_event_callbacks(target,
749                                         TARGET_EVENT_HALTED);
750                         }
751                 }
752         } else
753                 target->state = TARGET_RUNNING;
754
755         return retval;
756 }
757
758 static int cortex_a_halt(struct target *target)
759 {
760         int retval;
761         uint32_t dscr;
762         struct armv7a_common *armv7a = target_to_armv7a(target);
763
764         /*
765          * Tell the core to be halted by writing DRCR with 0x1
766          * and then wait for the core to be halted.
767          */
768         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
769                         armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
770         if (retval != ERROR_OK)
771                 return retval;
772
773         dscr = 0; /* force read of dscr */
774         retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_HALTED,
775                         DSCR_CORE_HALTED, &dscr);
776         if (retval != ERROR_OK) {
777                 LOG_ERROR("Error waiting for halt");
778                 return retval;
779         }
780
781         target->debug_reason = DBG_REASON_DBGRQ;
782
783         return ERROR_OK;
784 }
785
786 static int cortex_a_internal_restore(struct target *target, int current,
787         target_addr_t *address, int handle_breakpoints, int debug_execution)
788 {
789         struct armv7a_common *armv7a = target_to_armv7a(target);
790         struct arm *arm = &armv7a->arm;
791         int retval;
792         uint32_t resume_pc;
793
794         if (!debug_execution)
795                 target_free_all_working_areas(target);
796
797 #if 0
798         if (debug_execution) {
799                 /* Disable interrupts */
800                 /* We disable interrupts in the PRIMASK register instead of
801                  * masking with C_MASKINTS,
802                  * This is probably the same issue as Cortex-M3 Errata 377493:
803                  * C_MASKINTS in parallel with disabled interrupts can cause
804                  * local faults to not be taken. */
805                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
806                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = true;
807                 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = true;
808
809                 /* Make sure we are in Thumb mode */
810                 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
811                         buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
812                         32) | (1 << 24));
813                 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = true;
814                 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = true;
815         }
816 #endif
817
818         /* current = 1: continue on current pc, otherwise continue at <address> */
819         resume_pc = buf_get_u32(arm->pc->value, 0, 32);
820         if (!current)
821                 resume_pc = *address;
822         else
823                 *address = resume_pc;
824
825         /* Make sure that the Armv7 gdb thumb fixups does not
826          * kill the return address
827          */
828         switch (arm->core_state) {
829                 case ARM_STATE_ARM:
830                         resume_pc &= 0xFFFFFFFC;
831                         break;
832                 case ARM_STATE_THUMB:
833                 case ARM_STATE_THUMB_EE:
834                         /* When the return address is loaded into PC
835                          * bit 0 must be 1 to stay in Thumb state
836                          */
837                         resume_pc |= 0x1;
838                         break;
839                 case ARM_STATE_JAZELLE:
840                         LOG_ERROR("How do I resume into Jazelle state??");
841                         return ERROR_FAIL;
842                 case ARM_STATE_AARCH64:
843                         LOG_ERROR("Shouldn't be in AARCH64 state");
844                         return ERROR_FAIL;
845         }
846         LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
847         buf_set_u32(arm->pc->value, 0, 32, resume_pc);
848         arm->pc->dirty = true;
849         arm->pc->valid = true;
850
851         /* restore dpm_mode at system halt */
852         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
853         /* called it now before restoring context because it uses cpu
854          * register r0 for restoring cp15 control register */
855         retval = cortex_a_restore_cp15_control_reg(target);
856         if (retval != ERROR_OK)
857                 return retval;
858         retval = cortex_a_restore_context(target, handle_breakpoints);
859         if (retval != ERROR_OK)
860                 return retval;
861         target->debug_reason = DBG_REASON_NOTHALTED;
862         target->state = TARGET_RUNNING;
863
864         /* registers are now invalid */
865         register_cache_invalidate(arm->core_cache);
866
867 #if 0
868         /* the front-end may request us not to handle breakpoints */
869         if (handle_breakpoints) {
870                 /* Single step past breakpoint at current address */
871                 breakpoint = breakpoint_find(target, resume_pc);
872                 if (breakpoint) {
873                         LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
874                         cortex_m3_unset_breakpoint(target, breakpoint);
875                         cortex_m3_single_step_core(target);
876                         cortex_m3_set_breakpoint(target, breakpoint);
877                 }
878         }
879
880 #endif
881         return retval;
882 }
883
884 static int cortex_a_internal_restart(struct target *target)
885 {
886         struct armv7a_common *armv7a = target_to_armv7a(target);
887         struct arm *arm = &armv7a->arm;
888         int retval;
889         uint32_t dscr;
890         /*
891          * * Restart core and wait for it to be started.  Clear ITRen and sticky
892          * * exception flags: see ARMv7 ARM, C5.9.
893          *
894          * REVISIT: for single stepping, we probably want to
895          * disable IRQs by default, with optional override...
896          */
897
898         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
899                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
900         if (retval != ERROR_OK)
901                 return retval;
902
903         if ((dscr & DSCR_INSTR_COMP) == 0)
904                 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
905
906         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
907                         armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
908         if (retval != ERROR_OK)
909                 return retval;
910
911         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
912                         armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
913                         DRCR_CLEAR_EXCEPTIONS);
914         if (retval != ERROR_OK)
915                 return retval;
916
917         dscr = 0; /* force read of dscr */
918         retval = cortex_a_wait_dscr_bits(target, DSCR_CORE_RESTARTED,
919                         DSCR_CORE_RESTARTED, &dscr);
920         if (retval != ERROR_OK) {
921                 LOG_ERROR("Error waiting for resume");
922                 return retval;
923         }
924
925         target->debug_reason = DBG_REASON_NOTHALTED;
926         target->state = TARGET_RUNNING;
927
928         /* registers are now invalid */
929         register_cache_invalidate(arm->core_cache);
930
931         return ERROR_OK;
932 }
933
934 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
935 {
936         int retval = 0;
937         struct target_list *head;
938         target_addr_t address;
939
940         foreach_smp_target(head, target->smp_targets) {
941                 struct target *curr = head->target;
942                 if ((curr != target) && (curr->state != TARGET_RUNNING)
943                         && target_was_examined(curr)) {
944                         /*  resume current address , not in step mode */
945                         retval += cortex_a_internal_restore(curr, 1, &address,
946                                         handle_breakpoints, 0);
947                         retval += cortex_a_internal_restart(curr);
948                 }
949         }
950         return retval;
951 }
952
953 static int cortex_a_resume(struct target *target, int current,
954         target_addr_t address, int handle_breakpoints, int debug_execution)
955 {
956         int retval = 0;
957         /* dummy resume for smp toggle in order to reduce gdb impact  */
958         if ((target->smp) && (target->gdb_service->core[1] != -1)) {
959                 /*   simulate a start and halt of target */
960                 target->gdb_service->target = NULL;
961                 target->gdb_service->core[0] = target->gdb_service->core[1];
962                 /*  fake resume at next poll we play the  target core[1], see poll*/
963                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
964                 return 0;
965         }
966         cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
967         if (target->smp) {
968                 target->gdb_service->core[0] = -1;
969                 retval = cortex_a_restore_smp(target, handle_breakpoints);
970                 if (retval != ERROR_OK)
971                         return retval;
972         }
973         cortex_a_internal_restart(target);
974
975         if (!debug_execution) {
976                 target->state = TARGET_RUNNING;
977                 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
978                 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
979         } else {
980                 target->state = TARGET_DEBUG_RUNNING;
981                 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
982                 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
983         }
984
985         return ERROR_OK;
986 }
987
988 static int cortex_a_debug_entry(struct target *target)
989 {
990         uint32_t dscr;
991         int retval = ERROR_OK;
992         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
993         struct armv7a_common *armv7a = target_to_armv7a(target);
994         struct arm *arm = &armv7a->arm;
995
996         LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
997
998         /* REVISIT surely we should not re-read DSCR !! */
999         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1000                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1001         if (retval != ERROR_OK)
1002                 return retval;
1003
1004         /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1005          * imprecise data aborts get discarded by issuing a Data
1006          * Synchronization Barrier:  ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1007          */
1008
1009         /* Enable the ITR execution once we are in debug mode */
1010         dscr |= DSCR_ITR_EN;
1011         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1012                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1013         if (retval != ERROR_OK)
1014                 return retval;
1015
1016         /* Examine debug reason */
1017         arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1018
1019         /* save address of instruction that triggered the watchpoint? */
1020         if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1021                 uint32_t wfar;
1022
1023                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1024                                 armv7a->debug_base + CPUDBG_WFAR,
1025                                 &wfar);
1026                 if (retval != ERROR_OK)
1027                         return retval;
1028                 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1029         }
1030
1031         /* First load register accessible through core debug port */
1032         retval = arm_dpm_read_current_registers(&armv7a->dpm);
1033         if (retval != ERROR_OK)
1034                 return retval;
1035
1036         if (arm->spsr) {
1037                 /* read SPSR */
1038                 retval = arm_dpm_read_reg(&armv7a->dpm, arm->spsr, 17);
1039                 if (retval != ERROR_OK)
1040                         return retval;
1041         }
1042
1043 #if 0
1044 /* TODO, Move this */
1045         uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1046         cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1047         LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1048
1049         cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1050         LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1051
1052         cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1053         LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1054 #endif
1055
1056         /* Are we in an exception handler */
1057 /*      armv4_5->exception_number = 0; */
1058         if (armv7a->post_debug_entry) {
1059                 retval = armv7a->post_debug_entry(target);
1060                 if (retval != ERROR_OK)
1061                         return retval;
1062         }
1063
1064         return retval;
1065 }
1066
1067 static int cortex_a_post_debug_entry(struct target *target)
1068 {
1069         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1070         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1071         int retval;
1072
1073         /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1074         retval = armv7a->arm.mrc(target, 15,
1075                         0, 0,   /* op1, op2 */
1076                         1, 0,   /* CRn, CRm */
1077                         &cortex_a->cp15_control_reg);
1078         if (retval != ERROR_OK)
1079                 return retval;
1080         LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1081         cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1082
1083         if (!armv7a->is_armv7r)
1084                 armv7a_read_ttbcr(target);
1085
1086         if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1087                 armv7a_identify_cache(target);
1088
1089         if (armv7a->is_armv7r) {
1090                 armv7a->armv7a_mmu.mmu_enabled = 0;
1091         } else {
1092                 armv7a->armv7a_mmu.mmu_enabled =
1093                         (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1094         }
1095         armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1096                 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1097         armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1098                 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1099         cortex_a->curr_mode = armv7a->arm.core_mode;
1100
1101         /* switch to SVC mode to read DACR */
1102         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1103         armv7a->arm.mrc(target, 15,
1104                         0, 0, 3, 0,
1105                         &cortex_a->cp15_dacr_reg);
1106
1107         LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1108                         cortex_a->cp15_dacr_reg);
1109
1110         arm_dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1111         return ERROR_OK;
1112 }
1113
1114 static int cortex_a_set_dscr_bits(struct target *target,
1115                 unsigned long bit_mask, unsigned long value)
1116 {
1117         struct armv7a_common *armv7a = target_to_armv7a(target);
1118         uint32_t dscr;
1119
1120         /* Read DSCR */
1121         int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1122                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
1123         if (retval != ERROR_OK)
1124                 return retval;
1125
1126         /* clear bitfield */
1127         dscr &= ~bit_mask;
1128         /* put new value */
1129         dscr |= value & bit_mask;
1130
1131         /* write new DSCR */
1132         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1133                         armv7a->debug_base + CPUDBG_DSCR, dscr);
1134         return retval;
1135 }
1136
1137 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1138         int handle_breakpoints)
1139 {
1140         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1141         struct armv7a_common *armv7a = target_to_armv7a(target);
1142         struct arm *arm = &armv7a->arm;
1143         struct breakpoint *breakpoint = NULL;
1144         struct breakpoint stepbreakpoint;
1145         struct reg *r;
1146         int retval;
1147
1148         if (target->state != TARGET_HALTED) {
1149                 LOG_WARNING("target not halted");
1150                 return ERROR_TARGET_NOT_HALTED;
1151         }
1152
1153         /* current = 1: continue on current pc, otherwise continue at <address> */
1154         r = arm->pc;
1155         if (!current)
1156                 buf_set_u32(r->value, 0, 32, address);
1157         else
1158                 address = buf_get_u32(r->value, 0, 32);
1159
1160         /* The front-end may request us not to handle breakpoints.
1161          * But since Cortex-A uses breakpoint for single step,
1162          * we MUST handle breakpoints.
1163          */
1164         handle_breakpoints = 1;
1165         if (handle_breakpoints) {
1166                 breakpoint = breakpoint_find(target, address);
1167                 if (breakpoint)
1168                         cortex_a_unset_breakpoint(target, breakpoint);
1169         }
1170
1171         /* Setup single step breakpoint */
1172         stepbreakpoint.address = address;
1173         stepbreakpoint.asid = 0;
1174         stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1175                 ? 2 : 4;
1176         stepbreakpoint.type = BKPT_HARD;
1177         stepbreakpoint.is_set = false;
1178
1179         /* Disable interrupts during single step if requested */
1180         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1181                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1182                 if (retval != ERROR_OK)
1183                         return retval;
1184         }
1185
1186         /* Break on IVA mismatch */
1187         cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1188
1189         target->debug_reason = DBG_REASON_SINGLESTEP;
1190
1191         retval = cortex_a_resume(target, 1, address, 0, 0);
1192         if (retval != ERROR_OK)
1193                 return retval;
1194
1195         int64_t then = timeval_ms();
1196         while (target->state != TARGET_HALTED) {
1197                 retval = cortex_a_poll(target);
1198                 if (retval != ERROR_OK)
1199                         return retval;
1200                 if (target->state == TARGET_HALTED)
1201                         break;
1202                 if (timeval_ms() > then + 1000) {
1203                         LOG_ERROR("timeout waiting for target halt");
1204                         return ERROR_FAIL;
1205                 }
1206         }
1207
1208         cortex_a_unset_breakpoint(target, &stepbreakpoint);
1209
1210         /* Re-enable interrupts if they were disabled */
1211         if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1212                 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1213                 if (retval != ERROR_OK)
1214                         return retval;
1215         }
1216
1217
1218         target->debug_reason = DBG_REASON_BREAKPOINT;
1219
1220         if (breakpoint)
1221                 cortex_a_set_breakpoint(target, breakpoint, 0);
1222
1223         if (target->state != TARGET_HALTED)
1224                 LOG_DEBUG("target stepped");
1225
1226         return ERROR_OK;
1227 }
1228
1229 static int cortex_a_restore_context(struct target *target, bool bpwp)
1230 {
1231         struct armv7a_common *armv7a = target_to_armv7a(target);
1232
1233         LOG_DEBUG(" ");
1234
1235         if (armv7a->pre_restore_context)
1236                 armv7a->pre_restore_context(target);
1237
1238         return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1239 }
1240
1241 /*
1242  * Cortex-A Breakpoint and watchpoint functions
1243  */
1244
1245 /* Setup hardware Breakpoint Register Pair */
1246 static int cortex_a_set_breakpoint(struct target *target,
1247         struct breakpoint *breakpoint, uint8_t matchmode)
1248 {
1249         int retval;
1250         int brp_i = 0;
1251         uint32_t control;
1252         uint8_t byte_addr_select = 0x0F;
1253         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1254         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1255         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1256
1257         if (breakpoint->is_set) {
1258                 LOG_WARNING("breakpoint already set");
1259                 return ERROR_OK;
1260         }
1261
1262         if (breakpoint->type == BKPT_HARD) {
1263                 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1264                         brp_i++;
1265                 if (brp_i >= cortex_a->brp_num) {
1266                         LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1267                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1268                 }
1269                 breakpoint_hw_set(breakpoint, brp_i);
1270                 if (breakpoint->length == 2)
1271                         byte_addr_select = (3 << (breakpoint->address & 0x02));
1272                 control = ((matchmode & 0x7) << 20)
1273                         | (byte_addr_select << 5)
1274                         | (3 << 1) | 1;
1275                 brp_list[brp_i].used = true;
1276                 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1277                 brp_list[brp_i].control = control;
1278                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1279                                 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1280                                 brp_list[brp_i].value);
1281                 if (retval != ERROR_OK)
1282                         return retval;
1283                 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1284                                 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1285                                 brp_list[brp_i].control);
1286                 if (retval != ERROR_OK)
1287                         return retval;
1288                 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1289                         brp_list[brp_i].control,
1290                         brp_list[brp_i].value);
1291         } else if (breakpoint->type == BKPT_SOFT) {
1292                 uint8_t code[4];
1293                 /* length == 2: Thumb breakpoint */
1294                 if (breakpoint->length == 2)
1295                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1296                 else
1297                 /* length == 3: Thumb-2 breakpoint, actual encoding is
1298                  * a regular Thumb BKPT instruction but we replace a
1299                  * 32bit Thumb-2 instruction, so fix-up the breakpoint
1300                  * length
1301                  */
1302                 if (breakpoint->length == 3) {
1303                         buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1304                         breakpoint->length = 4;
1305                 } else
1306                         /* length == 4, normal ARM breakpoint */
1307                         buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1308
1309                 retval = target_read_memory(target,
1310                                 breakpoint->address & 0xFFFFFFFE,
1311                                 breakpoint->length, 1,
1312                                 breakpoint->orig_instr);
1313                 if (retval != ERROR_OK)
1314                         return retval;
1315
1316                 /* make sure data cache is cleaned & invalidated down to PoC */
1317                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1318                         armv7a_cache_flush_virt(target, breakpoint->address,
1319                                                 breakpoint->length);
1320                 }
1321
1322                 retval = target_write_memory(target,
1323                                 breakpoint->address & 0xFFFFFFFE,
1324                                 breakpoint->length, 1, code);
1325                 if (retval != ERROR_OK)
1326                         return retval;
1327
1328                 /* update i-cache at breakpoint location */
1329                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1330                                         breakpoint->length);
1331                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1332                                                  breakpoint->length);
1333
1334                 breakpoint->is_set = true;
1335         }
1336
1337         return ERROR_OK;
1338 }
1339
1340 static int cortex_a_set_context_breakpoint(struct target *target,
1341         struct breakpoint *breakpoint, uint8_t matchmode)
1342 {
1343         int retval = ERROR_FAIL;
1344         int brp_i = 0;
1345         uint32_t control;
1346         uint8_t byte_addr_select = 0x0F;
1347         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1348         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1349         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1350
1351         if (breakpoint->is_set) {
1352                 LOG_WARNING("breakpoint already set");
1353                 return retval;
1354         }
1355         /*check available context BRPs*/
1356         while ((brp_list[brp_i].used ||
1357                 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1358                 brp_i++;
1359
1360         if (brp_i >= cortex_a->brp_num) {
1361                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1362                 return ERROR_FAIL;
1363         }
1364
1365         breakpoint_hw_set(breakpoint, brp_i);
1366         control = ((matchmode & 0x7) << 20)
1367                 | (byte_addr_select << 5)
1368                 | (3 << 1) | 1;
1369         brp_list[brp_i].used = true;
1370         brp_list[brp_i].value = (breakpoint->asid);
1371         brp_list[brp_i].control = control;
1372         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1373                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1374                         brp_list[brp_i].value);
1375         if (retval != ERROR_OK)
1376                 return retval;
1377         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1378                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1379                         brp_list[brp_i].control);
1380         if (retval != ERROR_OK)
1381                 return retval;
1382         LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1383                 brp_list[brp_i].control,
1384                 brp_list[brp_i].value);
1385         return ERROR_OK;
1386
1387 }
1388
1389 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1390 {
1391         int retval = ERROR_FAIL;
1392         int brp_1 = 0;  /* holds the contextID pair */
1393         int brp_2 = 0;  /* holds the IVA pair */
1394         uint32_t control_ctx, control_iva;
1395         uint8_t ctx_byte_addr_select = 0x0F;
1396         uint8_t iva_byte_addr_select = 0x0F;
1397         uint8_t ctx_machmode = 0x03;
1398         uint8_t iva_machmode = 0x01;
1399         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1400         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1401         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1402
1403         if (breakpoint->is_set) {
1404                 LOG_WARNING("breakpoint already set");
1405                 return retval;
1406         }
1407         /*check available context BRPs*/
1408         while ((brp_list[brp_1].used ||
1409                 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1410                 brp_1++;
1411
1412         LOG_DEBUG("brp(CTX) found num: %d", brp_1);
1413         if (brp_1 >= cortex_a->brp_num) {
1414                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1415                 return ERROR_FAIL;
1416         }
1417
1418         while ((brp_list[brp_2].used ||
1419                 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1420                 brp_2++;
1421
1422         LOG_DEBUG("brp(IVA) found num: %d", brp_2);
1423         if (brp_2 >= cortex_a->brp_num) {
1424                 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1425                 return ERROR_FAIL;
1426         }
1427
1428         breakpoint_hw_set(breakpoint, brp_1);
1429         breakpoint->linked_brp = brp_2;
1430         control_ctx = ((ctx_machmode & 0x7) << 20)
1431                 | (brp_2 << 16)
1432                 | (0 << 14)
1433                 | (ctx_byte_addr_select << 5)
1434                 | (3 << 1) | 1;
1435         brp_list[brp_1].used = true;
1436         brp_list[brp_1].value = (breakpoint->asid);
1437         brp_list[brp_1].control = control_ctx;
1438         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1439                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].brpn,
1440                         brp_list[brp_1].value);
1441         if (retval != ERROR_OK)
1442                 return retval;
1443         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1444                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].brpn,
1445                         brp_list[brp_1].control);
1446         if (retval != ERROR_OK)
1447                 return retval;
1448
1449         control_iva = ((iva_machmode & 0x7) << 20)
1450                 | (brp_1 << 16)
1451                 | (iva_byte_addr_select << 5)
1452                 | (3 << 1) | 1;
1453         brp_list[brp_2].used = true;
1454         brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1455         brp_list[brp_2].control = control_iva;
1456         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1457                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].brpn,
1458                         brp_list[brp_2].value);
1459         if (retval != ERROR_OK)
1460                 return retval;
1461         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1462                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].brpn,
1463                         brp_list[brp_2].control);
1464         if (retval != ERROR_OK)
1465                 return retval;
1466
1467         return ERROR_OK;
1468 }
1469
1470 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1471 {
1472         int retval;
1473         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1474         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1475         struct cortex_a_brp *brp_list = cortex_a->brp_list;
1476
1477         if (!breakpoint->is_set) {
1478                 LOG_WARNING("breakpoint not set");
1479                 return ERROR_OK;
1480         }
1481
1482         if (breakpoint->type == BKPT_HARD) {
1483                 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1484                         int brp_i = breakpoint->number;
1485                         int brp_j = breakpoint->linked_brp;
1486                         if (brp_i >= cortex_a->brp_num) {
1487                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1488                                 return ERROR_OK;
1489                         }
1490                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1491                                 brp_list[brp_i].control, brp_list[brp_i].value);
1492                         brp_list[brp_i].used = false;
1493                         brp_list[brp_i].value = 0;
1494                         brp_list[brp_i].control = 0;
1495                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1496                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1497                                         brp_list[brp_i].control);
1498                         if (retval != ERROR_OK)
1499                                 return retval;
1500                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1501                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1502                                         brp_list[brp_i].value);
1503                         if (retval != ERROR_OK)
1504                                 return retval;
1505                         if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1506                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1507                                 return ERROR_OK;
1508                         }
1509                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1510                                 brp_list[brp_j].control, brp_list[brp_j].value);
1511                         brp_list[brp_j].used = false;
1512                         brp_list[brp_j].value = 0;
1513                         brp_list[brp_j].control = 0;
1514                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1515                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].brpn,
1516                                         brp_list[brp_j].control);
1517                         if (retval != ERROR_OK)
1518                                 return retval;
1519                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1520                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].brpn,
1521                                         brp_list[brp_j].value);
1522                         if (retval != ERROR_OK)
1523                                 return retval;
1524                         breakpoint->linked_brp = 0;
1525                         breakpoint->is_set = false;
1526                         return ERROR_OK;
1527
1528                 } else {
1529                         int brp_i = breakpoint->number;
1530                         if (brp_i >= cortex_a->brp_num) {
1531                                 LOG_DEBUG("Invalid BRP number in breakpoint");
1532                                 return ERROR_OK;
1533                         }
1534                         LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1535                                 brp_list[brp_i].control, brp_list[brp_i].value);
1536                         brp_list[brp_i].used = false;
1537                         brp_list[brp_i].value = 0;
1538                         brp_list[brp_i].control = 0;
1539                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1540                                         + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].brpn,
1541                                         brp_list[brp_i].control);
1542                         if (retval != ERROR_OK)
1543                                 return retval;
1544                         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1545                                         + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].brpn,
1546                                         brp_list[brp_i].value);
1547                         if (retval != ERROR_OK)
1548                                 return retval;
1549                         breakpoint->is_set = false;
1550                         return ERROR_OK;
1551                 }
1552         } else {
1553
1554                 /* make sure data cache is cleaned & invalidated down to PoC */
1555                 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1556                         armv7a_cache_flush_virt(target, breakpoint->address,
1557                                                 breakpoint->length);
1558                 }
1559
1560                 /* restore original instruction (kept in target endianness) */
1561                 if (breakpoint->length == 4) {
1562                         retval = target_write_memory(target,
1563                                         breakpoint->address & 0xFFFFFFFE,
1564                                         4, 1, breakpoint->orig_instr);
1565                         if (retval != ERROR_OK)
1566                                 return retval;
1567                 } else {
1568                         retval = target_write_memory(target,
1569                                         breakpoint->address & 0xFFFFFFFE,
1570                                         2, 1, breakpoint->orig_instr);
1571                         if (retval != ERROR_OK)
1572                                 return retval;
1573                 }
1574
1575                 /* update i-cache at breakpoint location */
1576                 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1577                                                  breakpoint->length);
1578                 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1579                                                  breakpoint->length);
1580         }
1581         breakpoint->is_set = false;
1582
1583         return ERROR_OK;
1584 }
1585
1586 static int cortex_a_add_breakpoint(struct target *target,
1587         struct breakpoint *breakpoint)
1588 {
1589         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1590
1591         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1592                 LOG_INFO("no hardware breakpoint available");
1593                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1594         }
1595
1596         if (breakpoint->type == BKPT_HARD)
1597                 cortex_a->brp_num_available--;
1598
1599         return cortex_a_set_breakpoint(target, breakpoint, 0x00);       /* Exact match */
1600 }
1601
1602 static int cortex_a_add_context_breakpoint(struct target *target,
1603         struct breakpoint *breakpoint)
1604 {
1605         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1606
1607         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1608                 LOG_INFO("no hardware breakpoint available");
1609                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1610         }
1611
1612         if (breakpoint->type == BKPT_HARD)
1613                 cortex_a->brp_num_available--;
1614
1615         return cortex_a_set_context_breakpoint(target, breakpoint, 0x02);       /* asid match */
1616 }
1617
1618 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1619         struct breakpoint *breakpoint)
1620 {
1621         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1622
1623         if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1624                 LOG_INFO("no hardware breakpoint available");
1625                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1626         }
1627
1628         if (breakpoint->type == BKPT_HARD)
1629                 cortex_a->brp_num_available--;
1630
1631         return cortex_a_set_hybrid_breakpoint(target, breakpoint);      /* ??? */
1632 }
1633
1634
1635 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1636 {
1637         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1638
1639 #if 0
1640 /* It is perfectly possible to remove breakpoints while the target is running */
1641         if (target->state != TARGET_HALTED) {
1642                 LOG_WARNING("target not halted");
1643                 return ERROR_TARGET_NOT_HALTED;
1644         }
1645 #endif
1646
1647         if (breakpoint->is_set) {
1648                 cortex_a_unset_breakpoint(target, breakpoint);
1649                 if (breakpoint->type == BKPT_HARD)
1650                         cortex_a->brp_num_available++;
1651         }
1652
1653
1654         return ERROR_OK;
1655 }
1656
1657 /**
1658  * Sets a watchpoint for an Cortex-A target in one of the watchpoint units.  It is
1659  * considered a bug to call this function when there are no available watchpoint
1660  * units.
1661  *
1662  * @param target Pointer to an Cortex-A target to set a watchpoint on
1663  * @param watchpoint Pointer to the watchpoint to be set
1664  * @return Error status if watchpoint set fails or the result of executing the
1665  * JTAG queue
1666  */
1667 static int cortex_a_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
1668 {
1669         int retval = ERROR_OK;
1670         int wrp_i = 0;
1671         uint32_t control;
1672         uint32_t address;
1673         uint8_t address_mask;
1674         uint8_t byte_address_select;
1675         uint8_t load_store_access_control = 0x3;
1676         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1677         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1678         struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
1679
1680         if (watchpoint->is_set) {
1681                 LOG_WARNING("watchpoint already set");
1682                 return retval;
1683         }
1684
1685         /* check available context WRPs */
1686         while (wrp_list[wrp_i].used && (wrp_i < cortex_a->wrp_num))
1687                 wrp_i++;
1688
1689         if (wrp_i >= cortex_a->wrp_num) {
1690                 LOG_ERROR("ERROR Can not find free Watchpoint Register Pair");
1691                 return ERROR_FAIL;
1692         }
1693
1694         if (watchpoint->length == 0 || watchpoint->length > 0x80000000U ||
1695                         (watchpoint->length & (watchpoint->length - 1))) {
1696                 LOG_WARNING("watchpoint length must be a power of 2");
1697                 return ERROR_FAIL;
1698         }
1699
1700         if (watchpoint->address & (watchpoint->length - 1)) {
1701                 LOG_WARNING("watchpoint address must be aligned at length");
1702                 return ERROR_FAIL;
1703         }
1704
1705         /* FIXME: ARM DDI 0406C: address_mask is optional. What to do if it's missing?  */
1706         /* handle wp length 1 and 2 through byte select */
1707         switch (watchpoint->length) {
1708         case 1:
1709                 byte_address_select = BIT(watchpoint->address & 0x3);
1710                 address = watchpoint->address & ~0x3;
1711                 address_mask = 0;
1712                 break;
1713
1714         case 2:
1715                 byte_address_select = 0x03 << (watchpoint->address & 0x2);
1716                 address = watchpoint->address & ~0x3;
1717                 address_mask = 0;
1718                 break;
1719
1720         case 4:
1721                 byte_address_select = 0x0f;
1722                 address = watchpoint->address;
1723                 address_mask = 0;
1724                 break;
1725
1726         default:
1727                 byte_address_select = 0xff;
1728                 address = watchpoint->address;
1729                 address_mask = ilog2(watchpoint->length);
1730                 break;
1731         }
1732
1733         watchpoint_set(watchpoint, wrp_i);
1734         control = (address_mask << 24) |
1735                 (byte_address_select << 5) |
1736                 (load_store_access_control << 3) |
1737                 (0x3 << 1) | 1;
1738         wrp_list[wrp_i].used = true;
1739         wrp_list[wrp_i].value = address;
1740         wrp_list[wrp_i].control = control;
1741
1742         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1743                         + CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
1744                         wrp_list[wrp_i].value);
1745         if (retval != ERROR_OK)
1746                 return retval;
1747
1748         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1749                         + CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
1750                         wrp_list[wrp_i].control);
1751         if (retval != ERROR_OK)
1752                 return retval;
1753
1754         LOG_DEBUG("wp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
1755                         wrp_list[wrp_i].control,
1756                         wrp_list[wrp_i].value);
1757
1758         return ERROR_OK;
1759 }
1760
1761 /**
1762  * Unset an existing watchpoint and clear the used watchpoint unit.
1763  *
1764  * @param target Pointer to the target to have the watchpoint removed
1765  * @param watchpoint Pointer to the watchpoint to be removed
1766  * @return Error status while trying to unset the watchpoint or the result of
1767  *         executing the JTAG queue
1768  */
1769 static int cortex_a_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
1770 {
1771         int retval;
1772         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1773         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1774         struct cortex_a_wrp *wrp_list = cortex_a->wrp_list;
1775
1776         if (!watchpoint->is_set) {
1777                 LOG_WARNING("watchpoint not set");
1778                 return ERROR_OK;
1779         }
1780
1781         int wrp_i = watchpoint->number;
1782         if (wrp_i >= cortex_a->wrp_num) {
1783                 LOG_DEBUG("Invalid WRP number in watchpoint");
1784                 return ERROR_OK;
1785         }
1786         LOG_DEBUG("wrp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, wrp_i,
1787                         wrp_list[wrp_i].control, wrp_list[wrp_i].value);
1788         wrp_list[wrp_i].used = false;
1789         wrp_list[wrp_i].value = 0;
1790         wrp_list[wrp_i].control = 0;
1791         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1792                         + CPUDBG_WCR_BASE + 4 * wrp_list[wrp_i].wrpn,
1793                         wrp_list[wrp_i].control);
1794         if (retval != ERROR_OK)
1795                 return retval;
1796         retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1797                         + CPUDBG_WVR_BASE + 4 * wrp_list[wrp_i].wrpn,
1798                         wrp_list[wrp_i].value);
1799         if (retval != ERROR_OK)
1800                 return retval;
1801         watchpoint->is_set = false;
1802
1803         return ERROR_OK;
1804 }
1805
1806 /**
1807  * Add a watchpoint to an Cortex-A target.  If there are no watchpoint units
1808  * available, an error response is returned.
1809  *
1810  * @param target Pointer to the Cortex-A target to add a watchpoint to
1811  * @param watchpoint Pointer to the watchpoint to be added
1812  * @return Error status while trying to add the watchpoint
1813  */
1814 static int cortex_a_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
1815 {
1816         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1817
1818         if (cortex_a->wrp_num_available < 1) {
1819                 LOG_INFO("no hardware watchpoint available");
1820                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1821         }
1822
1823         int retval = cortex_a_set_watchpoint(target, watchpoint);
1824         if (retval != ERROR_OK)
1825                 return retval;
1826
1827         cortex_a->wrp_num_available--;
1828         return ERROR_OK;
1829 }
1830
1831 /**
1832  * Remove a watchpoint from an Cortex-A target.  The watchpoint will be unset and
1833  * the used watchpoint unit will be reopened.
1834  *
1835  * @param target Pointer to the target to remove a watchpoint from
1836  * @param watchpoint Pointer to the watchpoint to be removed
1837  * @return Result of trying to unset the watchpoint
1838  */
1839 static int cortex_a_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
1840 {
1841         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1842
1843         if (watchpoint->is_set) {
1844                 cortex_a->wrp_num_available++;
1845                 cortex_a_unset_watchpoint(target, watchpoint);
1846         }
1847         return ERROR_OK;
1848 }
1849
1850
1851 /*
1852  * Cortex-A Reset functions
1853  */
1854
1855 static int cortex_a_assert_reset(struct target *target)
1856 {
1857         struct armv7a_common *armv7a = target_to_armv7a(target);
1858
1859         LOG_DEBUG(" ");
1860
1861         /* FIXME when halt is requested, make it work somehow... */
1862
1863         /* This function can be called in "target not examined" state */
1864
1865         /* Issue some kind of warm reset. */
1866         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1867                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1868         else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1869                 /* REVISIT handle "pulls" cases, if there's
1870                  * hardware that needs them to work.
1871                  */
1872
1873                 /*
1874                  * FIXME: fix reset when transport is not JTAG. This is a temporary
1875                  * work-around for release v0.10 that is not intended to stay!
1876                  */
1877                 if (!transport_is_jtag() ||
1878                                 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1879                         adapter_assert_reset();
1880
1881         } else {
1882                 LOG_ERROR("%s: how to reset?", target_name(target));
1883                 return ERROR_FAIL;
1884         }
1885
1886         /* registers are now invalid */
1887         if (target_was_examined(target))
1888                 register_cache_invalidate(armv7a->arm.core_cache);
1889
1890         target->state = TARGET_RESET;
1891
1892         return ERROR_OK;
1893 }
1894
1895 static int cortex_a_deassert_reset(struct target *target)
1896 {
1897         struct armv7a_common *armv7a = target_to_armv7a(target);
1898         int retval;
1899
1900         LOG_DEBUG(" ");
1901
1902         /* be certain SRST is off */
1903         adapter_deassert_reset();
1904
1905         if (target_was_examined(target)) {
1906                 retval = cortex_a_poll(target);
1907                 if (retval != ERROR_OK)
1908                         return retval;
1909         }
1910
1911         if (target->reset_halt) {
1912                 if (target->state != TARGET_HALTED) {
1913                         LOG_WARNING("%s: ran after reset and before halt ...",
1914                                 target_name(target));
1915                         if (target_was_examined(target)) {
1916                                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1917                                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
1918                                 if (retval != ERROR_OK)
1919                                         return retval;
1920                         } else
1921                                 target->state = TARGET_UNKNOWN;
1922                 }
1923         }
1924
1925         return ERROR_OK;
1926 }
1927
1928 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1929 {
1930         /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1931          * New desired mode must be in mode. Current value of DSCR must be in
1932          * *dscr, which is updated with new value.
1933          *
1934          * This function elides actually sending the mode-change over the debug
1935          * interface if the mode is already set as desired.
1936          */
1937         uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1938         if (new_dscr != *dscr) {
1939                 struct armv7a_common *armv7a = target_to_armv7a(target);
1940                 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1941                                 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1942                 if (retval == ERROR_OK)
1943                         *dscr = new_dscr;
1944                 return retval;
1945         } else {
1946                 return ERROR_OK;
1947         }
1948 }
1949
1950 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1951         uint32_t value, uint32_t *dscr)
1952 {
1953         /* Waits until the specified bit(s) of DSCR take on a specified value. */
1954         struct armv7a_common *armv7a = target_to_armv7a(target);
1955         int64_t then;
1956         int retval;
1957
1958         if ((*dscr & mask) == value)
1959                 return ERROR_OK;
1960
1961         then = timeval_ms();
1962         while (1) {
1963                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1964                                 armv7a->debug_base + CPUDBG_DSCR, dscr);
1965                 if (retval != ERROR_OK) {
1966                         LOG_ERROR("Could not read DSCR register");
1967                         return retval;
1968                 }
1969                 if ((*dscr & mask) == value)
1970                         break;
1971                 if (timeval_ms() > then + 1000) {
1972                         LOG_ERROR("timeout waiting for DSCR bit change");
1973                         return ERROR_FAIL;
1974                 }
1975         }
1976         return ERROR_OK;
1977 }
1978
1979 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1980         uint32_t *data, uint32_t *dscr)
1981 {
1982         int retval;
1983         struct armv7a_common *armv7a = target_to_armv7a(target);
1984
1985         /* Move from coprocessor to R0. */
1986         retval = cortex_a_exec_opcode(target, opcode, dscr);
1987         if (retval != ERROR_OK)
1988                 return retval;
1989
1990         /* Move from R0 to DTRTX. */
1991         retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1992         if (retval != ERROR_OK)
1993                 return retval;
1994
1995         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
1996          * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
1997          * must also check TXfull_l). Most of the time this will be free
1998          * because TXfull_l will be set immediately and cached in dscr. */
1999         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2000                         DSCR_DTRTX_FULL_LATCHED, dscr);
2001         if (retval != ERROR_OK)
2002                 return retval;
2003
2004         /* Read the value transferred to DTRTX. */
2005         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2006                         armv7a->debug_base + CPUDBG_DTRTX, data);
2007         if (retval != ERROR_OK)
2008                 return retval;
2009
2010         return ERROR_OK;
2011 }
2012
2013 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2014         uint32_t *dfsr, uint32_t *dscr)
2015 {
2016         int retval;
2017
2018         if (dfar) {
2019                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2020                 if (retval != ERROR_OK)
2021                         return retval;
2022         }
2023
2024         if (dfsr) {
2025                 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2026                 if (retval != ERROR_OK)
2027                         return retval;
2028         }
2029
2030         return ERROR_OK;
2031 }
2032
2033 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2034         uint32_t data, uint32_t *dscr)
2035 {
2036         int retval;
2037         struct armv7a_common *armv7a = target_to_armv7a(target);
2038
2039         /* Write the value into DTRRX. */
2040         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2041                         armv7a->debug_base + CPUDBG_DTRRX, data);
2042         if (retval != ERROR_OK)
2043                 return retval;
2044
2045         /* Move from DTRRX to R0. */
2046         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2047         if (retval != ERROR_OK)
2048                 return retval;
2049
2050         /* Move from R0 to coprocessor. */
2051         retval = cortex_a_exec_opcode(target, opcode, dscr);
2052         if (retval != ERROR_OK)
2053                 return retval;
2054
2055         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2056          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2057          * check RXfull_l). Most of the time this will be free because RXfull_l
2058          * will be cleared immediately and cached in dscr. */
2059         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2060         if (retval != ERROR_OK)
2061                 return retval;
2062
2063         return ERROR_OK;
2064 }
2065
2066 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2067         uint32_t dfsr, uint32_t *dscr)
2068 {
2069         int retval;
2070
2071         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2072         if (retval != ERROR_OK)
2073                 return retval;
2074
2075         retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2076         if (retval != ERROR_OK)
2077                 return retval;
2078
2079         return ERROR_OK;
2080 }
2081
2082 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2083 {
2084         uint32_t status, upper4;
2085
2086         if (dfsr & (1 << 9)) {
2087                 /* LPAE format. */
2088                 status = dfsr & 0x3f;
2089                 upper4 = status >> 2;
2090                 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2091                         return ERROR_TARGET_TRANSLATION_FAULT;
2092                 else if (status == 33)
2093                         return ERROR_TARGET_UNALIGNED_ACCESS;
2094                 else
2095                         return ERROR_TARGET_DATA_ABORT;
2096         } else {
2097                 /* Normal format. */
2098                 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2099                 if (status == 1)
2100                         return ERROR_TARGET_UNALIGNED_ACCESS;
2101                 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2102                                 status == 9 || status == 11 || status == 13 || status == 15)
2103                         return ERROR_TARGET_TRANSLATION_FAULT;
2104                 else
2105                         return ERROR_TARGET_DATA_ABORT;
2106         }
2107 }
2108
2109 static int cortex_a_write_cpu_memory_slow(struct target *target,
2110         uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2111 {
2112         /* Writes count objects of size size from *buffer. Old value of DSCR must
2113          * be in *dscr; updated to new value. This is slow because it works for
2114          * non-word-sized objects. Avoid unaligned accesses as they do not work
2115          * on memory address space without "Normal" attribute. If size == 4 and
2116          * the address is aligned, cortex_a_write_cpu_memory_fast should be
2117          * preferred.
2118          * Preconditions:
2119          * - Address is in R0.
2120          * - R0 is marked dirty.
2121          */
2122         struct armv7a_common *armv7a = target_to_armv7a(target);
2123         struct arm *arm = &armv7a->arm;
2124         int retval;
2125
2126         /* Mark register R1 as dirty, to use for transferring data. */
2127         arm_reg_current(arm, 1)->dirty = true;
2128
2129         /* Switch to non-blocking mode if not already in that mode. */
2130         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2131         if (retval != ERROR_OK)
2132                 return retval;
2133
2134         /* Go through the objects. */
2135         while (count) {
2136                 /* Write the value to store into DTRRX. */
2137                 uint32_t data, opcode;
2138                 if (size == 1)
2139                         data = *buffer;
2140                 else if (size == 2)
2141                         data = target_buffer_get_u16(target, buffer);
2142                 else
2143                         data = target_buffer_get_u32(target, buffer);
2144                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2145                                 armv7a->debug_base + CPUDBG_DTRRX, data);
2146                 if (retval != ERROR_OK)
2147                         return retval;
2148
2149                 /* Transfer the value from DTRRX to R1. */
2150                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2151                 if (retval != ERROR_OK)
2152                         return retval;
2153
2154                 /* Write the value transferred to R1 into memory. */
2155                 if (size == 1)
2156                         opcode = ARMV4_5_STRB_IP(1, 0);
2157                 else if (size == 2)
2158                         opcode = ARMV4_5_STRH_IP(1, 0);
2159                 else
2160                         opcode = ARMV4_5_STRW_IP(1, 0);
2161                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2162                 if (retval != ERROR_OK)
2163                         return retval;
2164
2165                 /* Check for faults and return early. */
2166                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2167                         return ERROR_OK; /* A data fault is not considered a system failure. */
2168
2169                 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2170                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2171                  * must also check RXfull_l). Most of the time this will be free
2172                  * because RXfull_l will be cleared immediately and cached in dscr. */
2173                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2174                 if (retval != ERROR_OK)
2175                         return retval;
2176
2177                 /* Advance. */
2178                 buffer += size;
2179                 --count;
2180         }
2181
2182         return ERROR_OK;
2183 }
2184
2185 static int cortex_a_write_cpu_memory_fast(struct target *target,
2186         uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2187 {
2188         /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2189          * in *dscr; updated to new value. This is fast but only works for
2190          * word-sized objects at aligned addresses.
2191          * Preconditions:
2192          * - Address is in R0 and must be a multiple of 4.
2193          * - R0 is marked dirty.
2194          */
2195         struct armv7a_common *armv7a = target_to_armv7a(target);
2196         int retval;
2197
2198         /* Switch to fast mode if not already in that mode. */
2199         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2200         if (retval != ERROR_OK)
2201                 return retval;
2202
2203         /* Latch STC instruction. */
2204         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2205                         armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2206         if (retval != ERROR_OK)
2207                 return retval;
2208
2209         /* Transfer all the data and issue all the instructions. */
2210         return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2211                         4, count, armv7a->debug_base + CPUDBG_DTRRX);
2212 }
2213
2214 static int cortex_a_write_cpu_memory(struct target *target,
2215         uint32_t address, uint32_t size,
2216         uint32_t count, const uint8_t *buffer)
2217 {
2218         /* Write memory through the CPU. */
2219         int retval, final_retval;
2220         struct armv7a_common *armv7a = target_to_armv7a(target);
2221         struct arm *arm = &armv7a->arm;
2222         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2223
2224         LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2225                           address, size, count);
2226         if (target->state != TARGET_HALTED) {
2227                 LOG_WARNING("target not halted");
2228                 return ERROR_TARGET_NOT_HALTED;
2229         }
2230
2231         if (!count)
2232                 return ERROR_OK;
2233
2234         /* Clear any abort. */
2235         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2236                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2237         if (retval != ERROR_OK)
2238                 return retval;
2239
2240         /* Read DSCR. */
2241         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2242                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2243         if (retval != ERROR_OK)
2244                 return retval;
2245
2246         /* Switch to non-blocking mode if not already in that mode. */
2247         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2248         if (retval != ERROR_OK)
2249                 goto out;
2250
2251         /* Mark R0 as dirty. */
2252         arm_reg_current(arm, 0)->dirty = true;
2253
2254         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2255         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2256         if (retval != ERROR_OK)
2257                 goto out;
2258
2259         /* Get the memory address into R0. */
2260         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2261                         armv7a->debug_base + CPUDBG_DTRRX, address);
2262         if (retval != ERROR_OK)
2263                 goto out;
2264         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2265         if (retval != ERROR_OK)
2266                 goto out;
2267
2268         if (size == 4 && (address % 4) == 0) {
2269                 /* We are doing a word-aligned transfer, so use fast mode. */
2270                 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2271         } else {
2272                 /* Use slow path. Adjust size for aligned accesses */
2273                 switch (address % 4) {
2274                         case 1:
2275                         case 3:
2276                                 count *= size;
2277                                 size = 1;
2278                                 break;
2279                         case 2:
2280                                 if (size == 4) {
2281                                         count *= 2;
2282                                         size = 2;
2283                                 }
2284                         case 0:
2285                         default:
2286                                 break;
2287                 }
2288                 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2289         }
2290
2291 out:
2292         final_retval = retval;
2293
2294         /* Switch to non-blocking mode if not already in that mode. */
2295         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2296         if (final_retval == ERROR_OK)
2297                 final_retval = retval;
2298
2299         /* Wait for last issued instruction to complete. */
2300         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2301         if (final_retval == ERROR_OK)
2302                 final_retval = retval;
2303
2304         /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2305          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2306          * check RXfull_l). Most of the time this will be free because RXfull_l
2307          * will be cleared immediately and cached in dscr. However, don't do this
2308          * if there is fault, because then the instruction might not have completed
2309          * successfully. */
2310         if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2311                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2312                 if (retval != ERROR_OK)
2313                         return retval;
2314         }
2315
2316         /* If there were any sticky abort flags, clear them. */
2317         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2318                 fault_dscr = dscr;
2319                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2320                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2321                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2322         } else {
2323                 fault_dscr = 0;
2324         }
2325
2326         /* Handle synchronous data faults. */
2327         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2328                 if (final_retval == ERROR_OK) {
2329                         /* Final return value will reflect cause of fault. */
2330                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2331                         if (retval == ERROR_OK) {
2332                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2333                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2334                         } else
2335                                 final_retval = retval;
2336                 }
2337                 /* Fault destroyed DFAR/DFSR; restore them. */
2338                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2339                 if (retval != ERROR_OK)
2340                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2341         }
2342
2343         /* Handle asynchronous data faults. */
2344         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2345                 if (final_retval == ERROR_OK)
2346                         /* No other error has been recorded so far, so keep this one. */
2347                         final_retval = ERROR_TARGET_DATA_ABORT;
2348         }
2349
2350         /* If the DCC is nonempty, clear it. */
2351         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2352                 uint32_t dummy;
2353                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2354                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2355                 if (final_retval == ERROR_OK)
2356                         final_retval = retval;
2357         }
2358         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2359                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2360                 if (final_retval == ERROR_OK)
2361                         final_retval = retval;
2362         }
2363
2364         /* Done. */
2365         return final_retval;
2366 }
2367
2368 static int cortex_a_read_cpu_memory_slow(struct target *target,
2369         uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2370 {
2371         /* Reads count objects of size size into *buffer. Old value of DSCR must be
2372          * in *dscr; updated to new value. This is slow because it works for
2373          * non-word-sized objects. Avoid unaligned accesses as they do not work
2374          * on memory address space without "Normal" attribute. If size == 4 and
2375          * the address is aligned, cortex_a_read_cpu_memory_fast should be
2376          * preferred.
2377          * Preconditions:
2378          * - Address is in R0.
2379          * - R0 is marked dirty.
2380          */
2381         struct armv7a_common *armv7a = target_to_armv7a(target);
2382         struct arm *arm = &armv7a->arm;
2383         int retval;
2384
2385         /* Mark register R1 as dirty, to use for transferring data. */
2386         arm_reg_current(arm, 1)->dirty = true;
2387
2388         /* Switch to non-blocking mode if not already in that mode. */
2389         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2390         if (retval != ERROR_OK)
2391                 return retval;
2392
2393         /* Go through the objects. */
2394         while (count) {
2395                 /* Issue a load of the appropriate size to R1. */
2396                 uint32_t opcode, data;
2397                 if (size == 1)
2398                         opcode = ARMV4_5_LDRB_IP(1, 0);
2399                 else if (size == 2)
2400                         opcode = ARMV4_5_LDRH_IP(1, 0);
2401                 else
2402                         opcode = ARMV4_5_LDRW_IP(1, 0);
2403                 retval = cortex_a_exec_opcode(target, opcode, dscr);
2404                 if (retval != ERROR_OK)
2405                         return retval;
2406
2407                 /* Issue a write of R1 to DTRTX. */
2408                 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2409                 if (retval != ERROR_OK)
2410                         return retval;
2411
2412                 /* Check for faults and return early. */
2413                 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2414                         return ERROR_OK; /* A data fault is not considered a system failure. */
2415
2416                 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2417                  * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2418                  * must also check TXfull_l). Most of the time this will be free
2419                  * because TXfull_l will be set immediately and cached in dscr. */
2420                 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2421                                 DSCR_DTRTX_FULL_LATCHED, dscr);
2422                 if (retval != ERROR_OK)
2423                         return retval;
2424
2425                 /* Read the value transferred to DTRTX into the buffer. */
2426                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2427                                 armv7a->debug_base + CPUDBG_DTRTX, &data);
2428                 if (retval != ERROR_OK)
2429                         return retval;
2430                 if (size == 1)
2431                         *buffer = (uint8_t) data;
2432                 else if (size == 2)
2433                         target_buffer_set_u16(target, buffer, (uint16_t) data);
2434                 else
2435                         target_buffer_set_u32(target, buffer, data);
2436
2437                 /* Advance. */
2438                 buffer += size;
2439                 --count;
2440         }
2441
2442         return ERROR_OK;
2443 }
2444
2445 static int cortex_a_read_cpu_memory_fast(struct target *target,
2446         uint32_t count, uint8_t *buffer, uint32_t *dscr)
2447 {
2448         /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2449          * *dscr; updated to new value. This is fast but only works for word-sized
2450          * objects at aligned addresses.
2451          * Preconditions:
2452          * - Address is in R0 and must be a multiple of 4.
2453          * - R0 is marked dirty.
2454          */
2455         struct armv7a_common *armv7a = target_to_armv7a(target);
2456         uint32_t u32;
2457         int retval;
2458
2459         /* Switch to non-blocking mode if not already in that mode. */
2460         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2461         if (retval != ERROR_OK)
2462                 return retval;
2463
2464         /* Issue the LDC instruction via a write to ITR. */
2465         retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2466         if (retval != ERROR_OK)
2467                 return retval;
2468
2469         count--;
2470
2471         if (count > 0) {
2472                 /* Switch to fast mode if not already in that mode. */
2473                 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2474                 if (retval != ERROR_OK)
2475                         return retval;
2476
2477                 /* Latch LDC instruction. */
2478                 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2479                                 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2480                 if (retval != ERROR_OK)
2481                         return retval;
2482
2483                 /* Read the value transferred to DTRTX into the buffer. Due to fast
2484                  * mode rules, this blocks until the instruction finishes executing and
2485                  * then reissues the read instruction to read the next word from
2486                  * memory. The last read of DTRTX in this call reads the second-to-last
2487                  * word from memory and issues the read instruction for the last word.
2488                  */
2489                 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2490                                 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2491                 if (retval != ERROR_OK)
2492                         return retval;
2493
2494                 /* Advance. */
2495                 buffer += count * 4;
2496         }
2497
2498         /* Wait for last issued instruction to complete. */
2499         retval = cortex_a_wait_instrcmpl(target, dscr, false);
2500         if (retval != ERROR_OK)
2501                 return retval;
2502
2503         /* Switch to non-blocking mode if not already in that mode. */
2504         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2505         if (retval != ERROR_OK)
2506                 return retval;
2507
2508         /* Check for faults and return early. */
2509         if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2510                 return ERROR_OK; /* A data fault is not considered a system failure. */
2511
2512         /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2513          * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2514          * check TXfull_l). Most of the time this will be free because TXfull_l
2515          * will be set immediately and cached in dscr. */
2516         retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2517                         DSCR_DTRTX_FULL_LATCHED, dscr);
2518         if (retval != ERROR_OK)
2519                 return retval;
2520
2521         /* Read the value transferred to DTRTX into the buffer. This is the last
2522          * word. */
2523         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2524                         armv7a->debug_base + CPUDBG_DTRTX, &u32);
2525         if (retval != ERROR_OK)
2526                 return retval;
2527         target_buffer_set_u32(target, buffer, u32);
2528
2529         return ERROR_OK;
2530 }
2531
2532 static int cortex_a_read_cpu_memory(struct target *target,
2533         uint32_t address, uint32_t size,
2534         uint32_t count, uint8_t *buffer)
2535 {
2536         /* Read memory through the CPU. */
2537         int retval, final_retval;
2538         struct armv7a_common *armv7a = target_to_armv7a(target);
2539         struct arm *arm = &armv7a->arm;
2540         uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2541
2542         LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %"  PRIu32 " count %"  PRIu32,
2543                           address, size, count);
2544         if (target->state != TARGET_HALTED) {
2545                 LOG_WARNING("target not halted");
2546                 return ERROR_TARGET_NOT_HALTED;
2547         }
2548
2549         if (!count)
2550                 return ERROR_OK;
2551
2552         /* Clear any abort. */
2553         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2554                         armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2555         if (retval != ERROR_OK)
2556                 return retval;
2557
2558         /* Read DSCR */
2559         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2560                         armv7a->debug_base + CPUDBG_DSCR, &dscr);
2561         if (retval != ERROR_OK)
2562                 return retval;
2563
2564         /* Switch to non-blocking mode if not already in that mode. */
2565         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2566         if (retval != ERROR_OK)
2567                 goto out;
2568
2569         /* Mark R0 as dirty. */
2570         arm_reg_current(arm, 0)->dirty = true;
2571
2572         /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2573         retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2574         if (retval != ERROR_OK)
2575                 goto out;
2576
2577         /* Get the memory address into R0. */
2578         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2579                         armv7a->debug_base + CPUDBG_DTRRX, address);
2580         if (retval != ERROR_OK)
2581                 goto out;
2582         retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2583         if (retval != ERROR_OK)
2584                 goto out;
2585
2586         if (size == 4 && (address % 4) == 0) {
2587                 /* We are doing a word-aligned transfer, so use fast mode. */
2588                 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2589         } else {
2590                 /* Use slow path. Adjust size for aligned accesses */
2591                 switch (address % 4) {
2592                         case 1:
2593                         case 3:
2594                                 count *= size;
2595                                 size = 1;
2596                                 break;
2597                         case 2:
2598                                 if (size == 4) {
2599                                         count *= 2;
2600                                         size = 2;
2601                                 }
2602                                 break;
2603                         case 0:
2604                         default:
2605                                 break;
2606                 }
2607                 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2608         }
2609
2610 out:
2611         final_retval = retval;
2612
2613         /* Switch to non-blocking mode if not already in that mode. */
2614         retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2615         if (final_retval == ERROR_OK)
2616                 final_retval = retval;
2617
2618         /* Wait for last issued instruction to complete. */
2619         retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2620         if (final_retval == ERROR_OK)
2621                 final_retval = retval;
2622
2623         /* If there were any sticky abort flags, clear them. */
2624         if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2625                 fault_dscr = dscr;
2626                 mem_ap_write_atomic_u32(armv7a->debug_ap,
2627                                 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2628                 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2629         } else {
2630                 fault_dscr = 0;
2631         }
2632
2633         /* Handle synchronous data faults. */
2634         if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2635                 if (final_retval == ERROR_OK) {
2636                         /* Final return value will reflect cause of fault. */
2637                         retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2638                         if (retval == ERROR_OK) {
2639                                 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2640                                 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2641                         } else
2642                                 final_retval = retval;
2643                 }
2644                 /* Fault destroyed DFAR/DFSR; restore them. */
2645                 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2646                 if (retval != ERROR_OK)
2647                         LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2648         }
2649
2650         /* Handle asynchronous data faults. */
2651         if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2652                 if (final_retval == ERROR_OK)
2653                         /* No other error has been recorded so far, so keep this one. */
2654                         final_retval = ERROR_TARGET_DATA_ABORT;
2655         }
2656
2657         /* If the DCC is nonempty, clear it. */
2658         if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2659                 uint32_t dummy;
2660                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2661                                 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2662                 if (final_retval == ERROR_OK)
2663                         final_retval = retval;
2664         }
2665         if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2666                 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2667                 if (final_retval == ERROR_OK)
2668                         final_retval = retval;
2669         }
2670
2671         /* Done. */
2672         return final_retval;
2673 }
2674
2675
2676 /*
2677  * Cortex-A Memory access
2678  *
2679  * This is same Cortex-M3 but we must also use the correct
2680  * ap number for every access.
2681  */
2682
2683 static int cortex_a_read_phys_memory(struct target *target,
2684         target_addr_t address, uint32_t size,
2685         uint32_t count, uint8_t *buffer)
2686 {
2687         int retval;
2688
2689         if (!count || !buffer)
2690                 return ERROR_COMMAND_SYNTAX_ERROR;
2691
2692         LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2693                 address, size, count);
2694
2695         /* read memory through the CPU */
2696         cortex_a_prep_memaccess(target, 1);
2697         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2698         cortex_a_post_memaccess(target, 1);
2699
2700         return retval;
2701 }
2702
2703 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2704         uint32_t size, uint32_t count, uint8_t *buffer)
2705 {
2706         int retval;
2707
2708         /* cortex_a handles unaligned memory access */
2709         LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2710                 address, size, count);
2711
2712         cortex_a_prep_memaccess(target, 0);
2713         retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2714         cortex_a_post_memaccess(target, 0);
2715
2716         return retval;
2717 }
2718
2719 static int cortex_a_write_phys_memory(struct target *target,
2720         target_addr_t address, uint32_t size,
2721         uint32_t count, const uint8_t *buffer)
2722 {
2723         int retval;
2724
2725         if (!count || !buffer)
2726                 return ERROR_COMMAND_SYNTAX_ERROR;
2727
2728         LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2729                 address, size, count);
2730
2731         /* write memory through the CPU */
2732         cortex_a_prep_memaccess(target, 1);
2733         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2734         cortex_a_post_memaccess(target, 1);
2735
2736         return retval;
2737 }
2738
2739 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2740         uint32_t size, uint32_t count, const uint8_t *buffer)
2741 {
2742         int retval;
2743
2744         /* cortex_a handles unaligned memory access */
2745         LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRIu32 "; count %" PRIu32,
2746                 address, size, count);
2747
2748         /* memory writes bypass the caches, must flush before writing */
2749         armv7a_cache_auto_flush_on_write(target, address, size * count);
2750
2751         cortex_a_prep_memaccess(target, 0);
2752         retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2753         cortex_a_post_memaccess(target, 0);
2754         return retval;
2755 }
2756
2757 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2758                                 uint32_t count, uint8_t *buffer)
2759 {
2760         uint32_t size;
2761
2762         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2763          * will have something to do with the size we leave to it. */
2764         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2765                 if (address & size) {
2766                         int retval = target_read_memory(target, address, size, 1, buffer);
2767                         if (retval != ERROR_OK)
2768                                 return retval;
2769                         address += size;
2770                         count -= size;
2771                         buffer += size;
2772                 }
2773         }
2774
2775         /* Read the data with as large access size as possible. */
2776         for (; size > 0; size /= 2) {
2777                 uint32_t aligned = count - count % size;
2778                 if (aligned > 0) {
2779                         int retval = target_read_memory(target, address, size, aligned / size, buffer);
2780                         if (retval != ERROR_OK)
2781                                 return retval;
2782                         address += aligned;
2783                         count -= aligned;
2784                         buffer += aligned;
2785                 }
2786         }
2787
2788         return ERROR_OK;
2789 }
2790
2791 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2792                                  uint32_t count, const uint8_t *buffer)
2793 {
2794         uint32_t size;
2795
2796         /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2797          * will have something to do with the size we leave to it. */
2798         for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2799                 if (address & size) {
2800                         int retval = target_write_memory(target, address, size, 1, buffer);
2801                         if (retval != ERROR_OK)
2802                                 return retval;
2803                         address += size;
2804                         count -= size;
2805                         buffer += size;
2806                 }
2807         }
2808
2809         /* Write the data with as large access size as possible. */
2810         for (; size > 0; size /= 2) {
2811                 uint32_t aligned = count - count % size;
2812                 if (aligned > 0) {
2813                         int retval = target_write_memory(target, address, size, aligned / size, buffer);
2814                         if (retval != ERROR_OK)
2815                                 return retval;
2816                         address += aligned;
2817                         count -= aligned;
2818                         buffer += aligned;
2819                 }
2820         }
2821
2822         return ERROR_OK;
2823 }
2824
2825 static int cortex_a_handle_target_request(void *priv)
2826 {
2827         struct target *target = priv;
2828         struct armv7a_common *armv7a = target_to_armv7a(target);
2829         int retval;
2830
2831         if (!target_was_examined(target))
2832                 return ERROR_OK;
2833         if (!target->dbg_msg_enabled)
2834                 return ERROR_OK;
2835
2836         if (target->state == TARGET_RUNNING) {
2837                 uint32_t request;
2838                 uint32_t dscr;
2839                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2840                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2841
2842                 /* check if we have data */
2843                 int64_t then = timeval_ms();
2844                 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2845                         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2846                                         armv7a->debug_base + CPUDBG_DTRTX, &request);
2847                         if (retval == ERROR_OK) {
2848                                 target_request(target, request);
2849                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2850                                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2851                         }
2852                         if (timeval_ms() > then + 1000) {
2853                                 LOG_ERROR("Timeout waiting for dtr tx full");
2854                                 return ERROR_FAIL;
2855                         }
2856                 }
2857         }
2858
2859         return ERROR_OK;
2860 }
2861
2862 /*
2863  * Cortex-A target information and configuration
2864  */
2865
2866 static int cortex_a_examine_first(struct target *target)
2867 {
2868         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2869         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2870         struct adiv5_dap *swjdp = armv7a->arm.dap;
2871         struct adiv5_private_config *pc = target->private_config;
2872
2873         int i;
2874         int retval = ERROR_OK;
2875         uint32_t didr, cpuid, dbg_osreg, dbg_idpfr1;
2876
2877         if (armv7a->debug_ap) {
2878                 dap_put_ap(armv7a->debug_ap);
2879                 armv7a->debug_ap = NULL;
2880         }
2881
2882         if (pc->ap_num == DP_APSEL_INVALID) {
2883                 /* Search for the APB-AP - it is needed for access to debug registers */
2884                 retval = dap_find_get_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2885                 if (retval != ERROR_OK) {
2886                         LOG_ERROR("Could not find APB-AP for debug access");
2887                         return retval;
2888                 }
2889         } else {
2890                 armv7a->debug_ap = dap_get_ap(swjdp, pc->ap_num);
2891                 if (!armv7a->debug_ap) {
2892                         LOG_ERROR("Cannot get AP");
2893                         return ERROR_FAIL;
2894                 }
2895         }
2896
2897         retval = mem_ap_init(armv7a->debug_ap);
2898         if (retval != ERROR_OK) {
2899                 LOG_ERROR("Could not initialize the APB-AP");
2900                 return retval;
2901         }
2902
2903         armv7a->debug_ap->memaccess_tck = 80;
2904
2905         if (!target->dbgbase_set) {
2906                 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2907                           target->cmd_name);
2908                 /* Lookup Processor DAP */
2909                 retval = dap_lookup_cs_component(armv7a->debug_ap, ARM_CS_C9_DEVTYPE_CORE_DEBUG,
2910                                 &armv7a->debug_base, target->coreid);
2911                 if (retval != ERROR_OK) {
2912                         LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
2913                                   target->cmd_name);
2914                         return retval;
2915                 }
2916                 LOG_DEBUG("Detected core %" PRId32 " dbgbase: " TARGET_ADDR_FMT,
2917                           target->coreid, armv7a->debug_base);
2918         } else
2919                 armv7a->debug_base = target->dbgbase;
2920
2921         if ((armv7a->debug_base & (1UL<<31)) == 0)
2922                 LOG_WARNING("Debug base address for target %s has bit 31 set to 0. Access to debug registers will likely fail!\n"
2923                             "Please fix the target configuration.", target_name(target));
2924
2925         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2926                         armv7a->debug_base + CPUDBG_DIDR, &didr);
2927         if (retval != ERROR_OK) {
2928                 LOG_DEBUG("Examine %s failed", "DIDR");
2929                 return retval;
2930         }
2931
2932         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2933                         armv7a->debug_base + CPUDBG_CPUID, &cpuid);
2934         if (retval != ERROR_OK) {
2935                 LOG_DEBUG("Examine %s failed", "CPUID");
2936                 return retval;
2937         }
2938
2939         LOG_DEBUG("didr = 0x%08" PRIx32, didr);
2940         LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
2941
2942         cortex_a->didr = didr;
2943         cortex_a->cpuid = cpuid;
2944
2945         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2946                                     armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
2947         if (retval != ERROR_OK)
2948                 return retval;
2949         LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR  0x%" PRIx32, target->coreid, dbg_osreg);
2950
2951         if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
2952                 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
2953                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2954                 return ERROR_TARGET_INIT_FAILED;
2955         }
2956
2957         if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
2958                 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
2959
2960         /* Read DBGOSLSR and check if OSLK is implemented */
2961         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2962                                 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2963         if (retval != ERROR_OK)
2964                 return retval;
2965         LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
2966
2967         /* check if OS Lock is implemented */
2968         if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
2969                 /* check if OS Lock is set */
2970                 if (dbg_osreg & OSLSR_OSLK) {
2971                         LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
2972
2973                         retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2974                                                         armv7a->debug_base + CPUDBG_OSLAR,
2975                                                         0);
2976                         if (retval == ERROR_OK)
2977                                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2978                                                         armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
2979
2980                         /* if we fail to access the register or cannot reset the OSLK bit, bail out */
2981                         if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
2982                                 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
2983                                                 target->coreid);
2984                                 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
2985                                 return ERROR_TARGET_INIT_FAILED;
2986                         }
2987                 }
2988         }
2989
2990         retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2991                                  armv7a->debug_base + CPUDBG_ID_PFR1, &dbg_idpfr1);
2992         if (retval != ERROR_OK)
2993                 return retval;
2994
2995         if (dbg_idpfr1 & 0x000000f0) {
2996                 LOG_DEBUG("target->coreid %" PRId32 " has security extensions",
2997                                 target->coreid);
2998                 armv7a->arm.core_type = ARM_CORE_TYPE_SEC_EXT;
2999         }
3000         if (dbg_idpfr1 & 0x0000f000) {
3001                 LOG_DEBUG("target->coreid %" PRId32 " has virtualization extensions",
3002                                 target->coreid);
3003                 /*
3004                  * overwrite and simplify the checks.
3005                  * virtualization extensions require implementation of security extension
3006                  */
3007                 armv7a->arm.core_type = ARM_CORE_TYPE_VIRT_EXT;
3008         }
3009
3010         /* Avoid recreating the registers cache */
3011         if (!target_was_examined(target)) {
3012                 retval = cortex_a_dpm_setup(cortex_a, didr);
3013                 if (retval != ERROR_OK)
3014                         return retval;
3015         }
3016
3017         /* Setup Breakpoint Register Pairs */
3018         cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3019         cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3020         cortex_a->brp_num_available = cortex_a->brp_num;
3021         free(cortex_a->brp_list);
3022         cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3023 /*      cortex_a->brb_enabled = ????; */
3024         for (i = 0; i < cortex_a->brp_num; i++) {
3025                 cortex_a->brp_list[i].used = false;
3026                 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3027                         cortex_a->brp_list[i].type = BRP_NORMAL;
3028                 else
3029                         cortex_a->brp_list[i].type = BRP_CONTEXT;
3030                 cortex_a->brp_list[i].value = 0;
3031                 cortex_a->brp_list[i].control = 0;
3032                 cortex_a->brp_list[i].brpn = i;
3033         }
3034
3035         LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3036
3037         /* Setup Watchpoint Register Pairs */
3038         cortex_a->wrp_num = ((didr >> 28) & 0x0F) + 1;
3039         cortex_a->wrp_num_available = cortex_a->wrp_num;
3040         free(cortex_a->wrp_list);
3041         cortex_a->wrp_list = calloc(cortex_a->wrp_num, sizeof(struct cortex_a_wrp));
3042         for (i = 0; i < cortex_a->wrp_num; i++) {
3043                 cortex_a->wrp_list[i].used = false;
3044                 cortex_a->wrp_list[i].value = 0;
3045                 cortex_a->wrp_list[i].control = 0;
3046                 cortex_a->wrp_list[i].wrpn = i;
3047         }
3048
3049         LOG_DEBUG("Configured %i hw watchpoints", cortex_a->wrp_num);
3050
3051         /* select debug_ap as default */
3052         swjdp->apsel = armv7a->debug_ap->ap_num;
3053
3054         target_set_examined(target);
3055         return ERROR_OK;
3056 }
3057
3058 static int cortex_a_examine(struct target *target)
3059 {
3060         int retval = ERROR_OK;
3061
3062         /* Reestablish communication after target reset */
3063         retval = cortex_a_examine_first(target);
3064
3065         /* Configure core debug access */
3066         if (retval == ERROR_OK)
3067                 retval = cortex_a_init_debug_access(target);
3068
3069         return retval;
3070 }
3071
3072 /*
3073  *      Cortex-A target creation and initialization
3074  */
3075
3076 static int cortex_a_init_target(struct command_context *cmd_ctx,
3077         struct target *target)
3078 {
3079         /* examine_first() does a bunch of this */
3080         arm_semihosting_init(target);
3081         return ERROR_OK;
3082 }
3083
3084 static int cortex_a_init_arch_info(struct target *target,
3085         struct cortex_a_common *cortex_a, struct adiv5_dap *dap)
3086 {
3087         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3088
3089         /* Setup struct cortex_a_common */
3090         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3091         armv7a->arm.dap = dap;
3092
3093         /* register arch-specific functions */
3094         armv7a->examine_debug_reason = NULL;
3095
3096         armv7a->post_debug_entry = cortex_a_post_debug_entry;
3097
3098         armv7a->pre_restore_context = NULL;
3099
3100         armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3101
3102
3103 /*      arm7_9->handle_target_request = cortex_a_handle_target_request; */
3104
3105         /* REVISIT v7a setup should be in a v7a-specific routine */
3106         armv7a_init_arch_info(target, armv7a);
3107         target_register_timer_callback(cortex_a_handle_target_request, 1,
3108                 TARGET_TIMER_TYPE_PERIODIC, target);
3109
3110         return ERROR_OK;
3111 }
3112
3113 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3114 {
3115         struct cortex_a_common *cortex_a;
3116         struct adiv5_private_config *pc;
3117
3118         if (!target->private_config)
3119                 return ERROR_FAIL;
3120
3121         pc = (struct adiv5_private_config *)target->private_config;
3122
3123         cortex_a = calloc(1, sizeof(struct cortex_a_common));
3124         if (!cortex_a) {
3125                 LOG_ERROR("Out of memory");
3126                 return ERROR_FAIL;
3127         }
3128         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3129         cortex_a->armv7a_common.is_armv7r = false;
3130         cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
3131
3132         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3133 }
3134
3135 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3136 {
3137         struct cortex_a_common *cortex_a;
3138         struct adiv5_private_config *pc;
3139
3140         pc = (struct adiv5_private_config *)target->private_config;
3141         if (adiv5_verify_config(pc) != ERROR_OK)
3142                 return ERROR_FAIL;
3143
3144         cortex_a = calloc(1, sizeof(struct cortex_a_common));
3145         if (!cortex_a) {
3146                 LOG_ERROR("Out of memory");
3147                 return ERROR_FAIL;
3148         }
3149         cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3150         cortex_a->armv7a_common.is_armv7r = true;
3151
3152         return cortex_a_init_arch_info(target, cortex_a, pc->dap);
3153 }
3154
3155 static void cortex_a_deinit_target(struct target *target)
3156 {
3157         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3158         struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3159         struct arm_dpm *dpm = &armv7a->dpm;
3160         uint32_t dscr;
3161         int retval;
3162
3163         if (target_was_examined(target)) {
3164                 /* Disable halt for breakpoint, watchpoint and vector catch */
3165                 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3166                                 armv7a->debug_base + CPUDBG_DSCR, &dscr);
3167                 if (retval == ERROR_OK)
3168                         mem_ap_write_atomic_u32(armv7a->debug_ap,
3169                                         armv7a->debug_base + CPUDBG_DSCR,
3170                                         dscr & ~DSCR_HALT_DBG_MODE);
3171         }
3172
3173         if (armv7a->debug_ap)
3174                 dap_put_ap(armv7a->debug_ap);
3175
3176         free(cortex_a->wrp_list);
3177         free(cortex_a->brp_list);
3178         arm_free_reg_cache(dpm->arm);
3179         free(dpm->dbp);
3180         free(dpm->dwp);
3181         free(target->private_config);
3182         free(cortex_a);
3183 }
3184
3185 static int cortex_a_mmu(struct target *target, int *enabled)
3186 {
3187         struct armv7a_common *armv7a = target_to_armv7a(target);
3188
3189         if (target->state != TARGET_HALTED) {
3190                 LOG_ERROR("%s: target not halted", __func__);
3191                 return ERROR_TARGET_INVALID;
3192         }
3193
3194         if (armv7a->is_armv7r)
3195                 *enabled = 0;
3196         else
3197                 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3198
3199         return ERROR_OK;
3200 }
3201
3202 static int cortex_a_virt2phys(struct target *target,
3203         target_addr_t virt, target_addr_t *phys)
3204 {
3205         int retval;
3206         int mmu_enabled = 0;
3207
3208         /*
3209          * If the MMU was not enabled at debug entry, there is no
3210          * way of knowing if there was ever a valid configuration
3211          * for it and thus it's not safe to enable it. In this case,
3212          * just return the virtual address as physical.
3213          */
3214         cortex_a_mmu(target, &mmu_enabled);
3215         if (!mmu_enabled) {
3216                 *phys = virt;
3217                 return ERROR_OK;
3218         }
3219
3220         /* mmu must be enable in order to get a correct translation */
3221         retval = cortex_a_mmu_modify(target, 1);
3222         if (retval != ERROR_OK)
3223                 return retval;
3224         return armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3225                                                     phys, 1);
3226 }
3227
3228 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3229 {
3230         struct target *target = get_current_target(CMD_CTX);
3231         struct armv7a_common *armv7a = target_to_armv7a(target);
3232
3233         return armv7a_handle_cache_info_command(CMD,
3234                         &armv7a->armv7a_mmu.armv7a_cache);
3235 }
3236
3237
3238 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3239 {
3240         struct target *target = get_current_target(CMD_CTX);
3241         if (!target_was_examined(target)) {
3242                 LOG_ERROR("target not examined yet");
3243                 return ERROR_FAIL;
3244         }
3245
3246         return cortex_a_init_debug_access(target);
3247 }
3248
3249 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3250 {
3251         struct target *target = get_current_target(CMD_CTX);
3252         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3253
3254         static const struct jim_nvp nvp_maskisr_modes[] = {
3255                 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3256                 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3257                 { .name = NULL, .value = -1 },
3258         };
3259         const struct jim_nvp *n;
3260
3261         if (CMD_ARGC > 0) {
3262                 n = jim_nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3263                 if (!n->name) {
3264                         LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3265                         return ERROR_COMMAND_SYNTAX_ERROR;
3266                 }
3267
3268                 cortex_a->isrmasking_mode = n->value;
3269         }
3270
3271         n = jim_nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3272         command_print(CMD, "cortex_a interrupt mask %s", n->name);
3273
3274         return ERROR_OK;
3275 }
3276
3277 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3278 {
3279         struct target *target = get_current_target(CMD_CTX);
3280         struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3281
3282         static const struct jim_nvp nvp_dacrfixup_modes[] = {
3283                 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3284                 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3285                 { .name = NULL, .value = -1 },
3286         };
3287         const struct jim_nvp *n;
3288
3289         if (CMD_ARGC > 0) {
3290                 n = jim_nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3291                 if (!n->name)
3292                         return ERROR_COMMAND_SYNTAX_ERROR;
3293                 cortex_a->dacrfixup_mode = n->value;
3294
3295         }
3296
3297         n = jim_nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3298         command_print(CMD, "cortex_a domain access control fixup %s", n->name);
3299
3300         return ERROR_OK;
3301 }
3302
3303 static const struct command_registration cortex_a_exec_command_handlers[] = {
3304         {
3305                 .name = "cache_info",
3306                 .handler = cortex_a_handle_cache_info_command,
3307                 .mode = COMMAND_EXEC,
3308                 .help = "display information about target caches",
3309                 .usage = "",
3310         },
3311         {
3312                 .name = "dbginit",
3313                 .handler = cortex_a_handle_dbginit_command,
3314                 .mode = COMMAND_EXEC,
3315                 .help = "Initialize core debug",
3316                 .usage = "",
3317         },
3318         {
3319                 .name = "maskisr",
3320                 .handler = handle_cortex_a_mask_interrupts_command,
3321                 .mode = COMMAND_ANY,
3322                 .help = "mask cortex_a interrupts",
3323                 .usage = "['on'|'off']",
3324         },
3325         {
3326                 .name = "dacrfixup",
3327                 .handler = handle_cortex_a_dacrfixup_command,
3328                 .mode = COMMAND_ANY,
3329                 .help = "set domain access control (DACR) to all-manager "
3330                         "on memory access",
3331                 .usage = "['on'|'off']",
3332         },
3333         {
3334                 .chain = armv7a_mmu_command_handlers,
3335         },
3336         {
3337                 .chain = smp_command_handlers,
3338         },
3339
3340         COMMAND_REGISTRATION_DONE
3341 };
3342 static const struct command_registration cortex_a_command_handlers[] = {
3343         {
3344                 .chain = arm_command_handlers,
3345         },
3346         {
3347                 .chain = armv7a_command_handlers,
3348         },
3349         {
3350                 .name = "cortex_a",
3351                 .mode = COMMAND_ANY,
3352                 .help = "Cortex-A command group",
3353                 .usage = "",
3354                 .chain = cortex_a_exec_command_handlers,
3355         },
3356         COMMAND_REGISTRATION_DONE
3357 };
3358
3359 struct target_type cortexa_target = {
3360         .name = "cortex_a",
3361
3362         .poll = cortex_a_poll,
3363         .arch_state = armv7a_arch_state,
3364
3365         .halt = cortex_a_halt,
3366         .resume = cortex_a_resume,
3367         .step = cortex_a_step,
3368
3369         .assert_reset = cortex_a_assert_reset,
3370         .deassert_reset = cortex_a_deassert_reset,
3371
3372         /* REVISIT allow exporting VFP3 registers ... */
3373         .get_gdb_arch = arm_get_gdb_arch,
3374         .get_gdb_reg_list = arm_get_gdb_reg_list,
3375
3376         .read_memory = cortex_a_read_memory,
3377         .write_memory = cortex_a_write_memory,
3378
3379         .read_buffer = cortex_a_read_buffer,
3380         .write_buffer = cortex_a_write_buffer,
3381
3382         .checksum_memory = arm_checksum_memory,
3383         .blank_check_memory = arm_blank_check_memory,
3384
3385         .run_algorithm = armv4_5_run_algorithm,
3386
3387         .add_breakpoint = cortex_a_add_breakpoint,
3388         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3389         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3390         .remove_breakpoint = cortex_a_remove_breakpoint,
3391         .add_watchpoint = cortex_a_add_watchpoint,
3392         .remove_watchpoint = cortex_a_remove_watchpoint,
3393
3394         .commands = cortex_a_command_handlers,
3395         .target_create = cortex_a_target_create,
3396         .target_jim_configure = adiv5_jim_configure,
3397         .init_target = cortex_a_init_target,
3398         .examine = cortex_a_examine,
3399         .deinit_target = cortex_a_deinit_target,
3400
3401         .read_phys_memory = cortex_a_read_phys_memory,
3402         .write_phys_memory = cortex_a_write_phys_memory,
3403         .mmu = cortex_a_mmu,
3404         .virt2phys = cortex_a_virt2phys,
3405 };
3406
3407 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3408         {
3409                 .name = "dbginit",
3410                 .handler = cortex_a_handle_dbginit_command,
3411                 .mode = COMMAND_EXEC,
3412                 .help = "Initialize core debug",
3413                 .usage = "",
3414         },
3415         {
3416                 .name = "maskisr",
3417                 .handler = handle_cortex_a_mask_interrupts_command,
3418                 .mode = COMMAND_EXEC,
3419                 .help = "mask cortex_r4 interrupts",
3420                 .usage = "['on'|'off']",
3421         },
3422
3423         COMMAND_REGISTRATION_DONE
3424 };
3425 static const struct command_registration cortex_r4_command_handlers[] = {
3426         {
3427                 .chain = arm_command_handlers,
3428         },
3429         {
3430                 .name = "cortex_r4",
3431                 .mode = COMMAND_ANY,
3432                 .help = "Cortex-R4 command group",
3433                 .usage = "",
3434                 .chain = cortex_r4_exec_command_handlers,
3435         },
3436         COMMAND_REGISTRATION_DONE
3437 };
3438
3439 struct target_type cortexr4_target = {
3440         .name = "cortex_r4",
3441
3442         .poll = cortex_a_poll,
3443         .arch_state = armv7a_arch_state,
3444
3445         .halt = cortex_a_halt,
3446         .resume = cortex_a_resume,
3447         .step = cortex_a_step,
3448
3449         .assert_reset = cortex_a_assert_reset,
3450         .deassert_reset = cortex_a_deassert_reset,
3451
3452         /* REVISIT allow exporting VFP3 registers ... */
3453         .get_gdb_arch = arm_get_gdb_arch,
3454         .get_gdb_reg_list = arm_get_gdb_reg_list,
3455
3456         .read_memory = cortex_a_read_phys_memory,
3457         .write_memory = cortex_a_write_phys_memory,
3458
3459         .checksum_memory = arm_checksum_memory,
3460         .blank_check_memory = arm_blank_check_memory,
3461
3462         .run_algorithm = armv4_5_run_algorithm,
3463
3464         .add_breakpoint = cortex_a_add_breakpoint,
3465         .add_context_breakpoint = cortex_a_add_context_breakpoint,
3466         .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3467         .remove_breakpoint = cortex_a_remove_breakpoint,
3468         .add_watchpoint = cortex_a_add_watchpoint,
3469         .remove_watchpoint = cortex_a_remove_watchpoint,
3470
3471         .commands = cortex_r4_command_handlers,
3472         .target_create = cortex_r4_target_create,
3473         .target_jim_configure = adiv5_jim_configure,
3474         .init_target = cortex_a_init_target,
3475         .examine = cortex_a_examine,
3476         .deinit_target = cortex_a_deinit_target,
3477 };