openocd: remove CamelCase symbols *xPSR*
[fw/openocd] / src / target / armv7m.c
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2
3 /***************************************************************************
4  *   Copyright (C) 2005 by Dominic Rath                                    *
5  *   Dominic.Rath@gmx.de                                                   *
6  *                                                                         *
7  *   Copyright (C) 2006 by Magnus Lundin                                   *
8  *   lundin@mlu.mine.nu                                                    *
9  *                                                                         *
10  *   Copyright (C) 2008 by Spencer Oliver                                  *
11  *   spen@spen-soft.co.uk                                                  *
12  *                                                                         *
13  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
14  *   oyvind.harboe@zylin.com                                               *
15  *                                                                         *
16  *   Copyright (C) 2018 by Liviu Ionescu                                   *
17  *   <ilg@livius.net>                                                      *
18  *                                                                         *
19  *   Copyright (C) 2019 by Tomas Vanek                                     *
20  *   vanekt@fbl.cz                                                         *
21  *                                                                         *
22  *   ARMv7-M Architecture, Application Level Reference Manual              *
23  *              ARM DDI 0405C (September 2008)                             *
24  *                                                                         *
25  ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "breakpoints.h"
32 #include "armv7m.h"
33 #include "algorithm.h"
34 #include "register.h"
35 #include "semihosting_common.h"
36 #include <helper/log.h>
37 #include <helper/binarybuffer.h>
38
39 #if 0
40 #define _DEBUG_INSTRUCTION_EXECUTION_
41 #endif
42
43 static const char * const armv7m_exception_strings[] = {
44         "", "Reset", "NMI", "HardFault",
45         "MemManage", "BusFault", "UsageFault", "SecureFault",
46         "RESERVED", "RESERVED", "RESERVED", "SVCall",
47         "DebugMonitor", "RESERVED", "PendSV", "SysTick"
48 };
49
50 /* PSP is used in some thread modes */
51 const int armv7m_psp_reg_map[ARMV7M_NUM_CORE_REGS] = {
52         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
53         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
54         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
55         ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
56         ARMV7M_XPSR,
57 };
58
59 /* MSP is used in handler and some thread modes */
60 const int armv7m_msp_reg_map[ARMV7M_NUM_CORE_REGS] = {
61         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
62         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
63         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
64         ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
65         ARMV7M_XPSR,
66 };
67
68 /*
69  * These registers are not memory-mapped.  The ARMv7-M profile includes
70  * memory mapped registers too, such as for the NVIC (interrupt controller)
71  * and SysTick (timer) modules; those can mostly be treated as peripherals.
72  *
73  * The ARMv6-M profile is almost identical in this respect, except that it
74  * doesn't include basepri or faultmask registers.
75  */
76 static const struct {
77         unsigned id;
78         const char *name;
79         unsigned bits;
80         enum reg_type type;
81         const char *group;
82         const char *feature;
83 } armv7m_regs[] = {
84         { ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
85         { ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
86         { ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
87         { ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
88         { ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
89         { ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
90         { ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
91         { ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
92         { ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
93         { ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
94         { ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
95         { ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
96         { ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
97         { ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" },
98         { ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
99         { ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" },
100         { ARMV7M_XPSR, "xPSR", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
101
102         { ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
103         { ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
104
105         /* A working register for packing/unpacking special regs, hidden from gdb */
106         { ARMV7M_PMSK_BPRI_FLTMSK_CTRL, "pmsk_bpri_fltmsk_ctrl", 32, REG_TYPE_INT, NULL, NULL },
107
108         /* WARNING: If you use armv7m_write_core_reg() on one of 4 following
109          * special registers, the new data go to ARMV7M_PMSK_BPRI_FLTMSK_CTRL
110          * cache only and are not flushed to CPU HW register.
111          * To trigger write to CPU HW register, add
112          *              armv7m_write_core_reg(,,ARMV7M_PMSK_BPRI_FLTMSK_CTRL,);
113          */
114         { ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
115         { ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
116         { ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
117         { ARMV7M_CONTROL, "control", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
118
119         /* ARMv8-M specific registers */
120         { ARMV8M_MSP_NS, "msp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
121         { ARMV8M_PSP_NS, "psp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
122         { ARMV8M_MSP_S, "msp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
123         { ARMV8M_PSP_S, "psp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
124         { ARMV8M_MSPLIM_S, "msplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
125         { ARMV8M_PSPLIM_S, "psplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
126         { ARMV8M_MSPLIM_NS, "msplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
127         { ARMV8M_PSPLIM_NS, "psplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
128
129         { ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S, "pmsk_bpri_fltmsk_ctrl_s", 32, REG_TYPE_INT, NULL, NULL },
130         { ARMV8M_PRIMASK_S, "primask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
131         { ARMV8M_BASEPRI_S, "basepri_s", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
132         { ARMV8M_FAULTMASK_S, "faultmask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
133         { ARMV8M_CONTROL_S, "control_s", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
134
135         { ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS, "pmsk_bpri_fltmsk_ctrl_ns", 32, REG_TYPE_INT, NULL, NULL },
136         { ARMV8M_PRIMASK_NS, "primask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
137         { ARMV8M_BASEPRI_NS, "basepri_ns", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
138         { ARMV8M_FAULTMASK_NS, "faultmask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
139         { ARMV8M_CONTROL_NS, "control_ns", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
140
141         /* FPU registers */
142         { ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
143         { ARMV7M_D1, "d1", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
144         { ARMV7M_D2, "d2", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
145         { ARMV7M_D3, "d3", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
146         { ARMV7M_D4, "d4", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
147         { ARMV7M_D5, "d5", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
148         { ARMV7M_D6, "d6", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
149         { ARMV7M_D7, "d7", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
150         { ARMV7M_D8, "d8", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
151         { ARMV7M_D9, "d9", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
152         { ARMV7M_D10, "d10", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
153         { ARMV7M_D11, "d11", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
154         { ARMV7M_D12, "d12", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
155         { ARMV7M_D13, "d13", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
156         { ARMV7M_D14, "d14", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
157         { ARMV7M_D15, "d15", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
158
159         { ARMV7M_FPSCR, "fpscr", 32, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp" },
160 };
161
162 #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
163
164 /**
165  * Restores target context using the cache of core registers set up
166  * by armv7m_build_reg_cache(), calling optional core-specific hooks.
167  */
168 int armv7m_restore_context(struct target *target)
169 {
170         int i;
171         struct armv7m_common *armv7m = target_to_armv7m(target);
172         struct reg_cache *cache = armv7m->arm.core_cache;
173
174         LOG_DEBUG(" ");
175
176         if (armv7m->pre_restore_context)
177                 armv7m->pre_restore_context(target);
178
179         /* The descending order of register writes is crucial for correct
180          * packing of ARMV7M_PMSK_BPRI_FLTMSK_CTRL!
181          * See also comments in the register table above */
182         for (i = cache->num_regs - 1; i >= 0; i--) {
183                 struct reg *r = &cache->reg_list[i];
184
185                 if (r->exist && r->dirty)
186                         armv7m->arm.write_core_reg(target, r, i, ARM_MODE_ANY, r->value);
187         }
188
189         return ERROR_OK;
190 }
191
192 /* Core state functions */
193
194 /**
195  * Maps ISR number (from xPSR) to name.
196  * Note that while names and meanings for the first sixteen are standardized
197  * (with zero not a true exception), external interrupts are only numbered.
198  * They are assigned by vendors, which generally assign different numbers to
199  * peripherals (such as UART0 or a USB peripheral controller).
200  */
201 const char *armv7m_exception_string(int number)
202 {
203         static char enamebuf[32];
204
205         if ((number < 0) | (number > 511))
206                 return "Invalid exception";
207         if (number < 16)
208                 return armv7m_exception_strings[number];
209         sprintf(enamebuf, "External Interrupt(%i)", number - 16);
210         return enamebuf;
211 }
212
213 static int armv7m_get_core_reg(struct reg *reg)
214 {
215         int retval;
216         struct arm_reg *armv7m_reg = reg->arch_info;
217         struct target *target = armv7m_reg->target;
218         struct arm *arm = target_to_arm(target);
219
220         if (target->state != TARGET_HALTED)
221                 return ERROR_TARGET_NOT_HALTED;
222
223         retval = arm->read_core_reg(target, reg, reg->number, arm->core_mode);
224
225         return retval;
226 }
227
228 static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
229 {
230         struct arm_reg *armv7m_reg = reg->arch_info;
231         struct target *target = armv7m_reg->target;
232
233         if (target->state != TARGET_HALTED)
234                 return ERROR_TARGET_NOT_HALTED;
235
236         buf_cpy(buf, reg->value, reg->size);
237         reg->dirty = true;
238         reg->valid = true;
239
240         return ERROR_OK;
241 }
242
243 uint32_t armv7m_map_id_to_regsel(unsigned int arm_reg_id)
244 {
245         switch (arm_reg_id) {
246         case ARMV7M_R0 ... ARMV7M_R14:
247         case ARMV7M_PC:
248         case ARMV7M_XPSR:
249         case ARMV7M_MSP:
250         case ARMV7M_PSP:
251                 /* NOTE:  we "know" here that the register identifiers
252                  * match the Cortex-M DCRSR.REGSEL selectors values
253                  * for R0..R14, PC, xPSR, MSP, and PSP.
254                  */
255                 return arm_reg_id;
256
257         case ARMV7M_PMSK_BPRI_FLTMSK_CTRL:
258                 return ARMV7M_REGSEL_PMSK_BPRI_FLTMSK_CTRL;
259
260         case ARMV8M_MSP_NS...ARMV8M_PSPLIM_NS:
261                 return arm_reg_id - ARMV8M_MSP_NS + ARMV8M_REGSEL_MSP_NS;
262
263         case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S:
264                 return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_S;
265
266         case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS:
267                 return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_NS;
268
269         case ARMV7M_FPSCR:
270                 return ARMV7M_REGSEL_FPSCR;
271
272         case ARMV7M_D0 ... ARMV7M_D15:
273                 return ARMV7M_REGSEL_S0 + 2 * (arm_reg_id - ARMV7M_D0);
274
275         default:
276                 LOG_ERROR("Bad register ID %u", arm_reg_id);
277                 return arm_reg_id;
278         }
279 }
280
281 bool armv7m_map_reg_packing(unsigned int arm_reg_id,
282                                         unsigned int *reg32_id, uint32_t *offset)
283 {
284
285         switch (arm_reg_id) {
286
287         case ARMV7M_PRIMASK...ARMV7M_CONTROL:
288                 *reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
289                 *offset = arm_reg_id - ARMV7M_PRIMASK;
290                 return true;
291         case ARMV8M_PRIMASK_S...ARMV8M_CONTROL_S:
292                 *reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S;
293                 *offset = arm_reg_id - ARMV8M_PRIMASK_S;
294                 return true;
295         case ARMV8M_PRIMASK_NS...ARMV8M_CONTROL_NS:
296                 *reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS;
297                 *offset = arm_reg_id - ARMV8M_PRIMASK_NS;
298                 return true;
299
300         default:
301                 return false;
302         }
303
304 }
305
306 static int armv7m_read_core_reg(struct target *target, struct reg *r,
307         int num, enum arm_mode mode)
308 {
309         uint32_t reg_value;
310         int retval;
311         struct armv7m_common *armv7m = target_to_armv7m(target);
312
313         assert(num < (int)armv7m->arm.core_cache->num_regs);
314         assert(num == (int)r->number);
315
316         /* If a code calls read_reg, it expects the cache is no more dirty.
317          * Clear the dirty flag regardless of the later read succeeds or not
318          * to prevent unwanted cache flush after a read error */
319         r->dirty = false;
320
321         if (r->size <= 8) {
322                 /* any 8-bit or shorter register is packed */
323                 uint32_t offset;
324                 unsigned int reg32_id;
325
326                 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
327                 if (!is_packed) {
328                         /* We should not get here as all 8-bit or shorter registers
329                          * are packed */
330                         assert(false);
331                         /* assert() does nothing if NDEBUG is defined */
332                         return ERROR_FAIL;
333                 }
334                 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
335
336                 /* Read 32-bit container register if not cached */
337                 if (!r32->valid) {
338                         retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
339                         if (retval != ERROR_OK)
340                                 return retval;
341                 }
342
343                 /* Copy required bits of 32-bit container register */
344                 buf_cpy(r32->value + offset, r->value, r->size);
345
346         } else {
347                 assert(r->size == 32 || r->size == 64);
348
349                 struct arm_reg *armv7m_core_reg = r->arch_info;
350                 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
351
352                 retval = armv7m->load_core_reg_u32(target, regsel, &reg_value);
353                 if (retval != ERROR_OK)
354                         return retval;
355                 buf_set_u32(r->value, 0, 32, reg_value);
356
357                 if (r->size == 64) {
358                         retval = armv7m->load_core_reg_u32(target, regsel + 1, &reg_value);
359                         if (retval != ERROR_OK) {
360                                 r->valid = false;
361                                 return retval;
362                         }
363                         buf_set_u32(r->value + 4, 0, 32, reg_value);
364
365                         uint64_t q = buf_get_u64(r->value, 0, 64);
366                         LOG_DEBUG("read %s value 0x%016" PRIx64, r->name, q);
367                 } else {
368                         LOG_DEBUG("read %s value 0x%08" PRIx32, r->name, reg_value);
369                 }
370         }
371
372         r->valid = true;
373
374         return ERROR_OK;
375 }
376
377 static int armv7m_write_core_reg(struct target *target, struct reg *r,
378         int num, enum arm_mode mode, uint8_t *value)
379 {
380         int retval;
381         uint32_t t;
382         struct armv7m_common *armv7m = target_to_armv7m(target);
383
384         assert(num < (int)armv7m->arm.core_cache->num_regs);
385         assert(num == (int)r->number);
386
387         if (value != r->value) {
388                 /* If we are not flushing the cache, store the new value to the cache */
389                 buf_cpy(value, r->value, r->size);
390         }
391
392         if (r->size <= 8) {
393                 /* any 8-bit or shorter register is packed */
394                 uint32_t offset;
395                 unsigned int reg32_id;
396
397                 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
398                 if (!is_packed) {
399                         /* We should not get here as all 8-bit or shorter registers
400                          * are packed */
401                         assert(false);
402                         /* assert() does nothing if NDEBUG is defined */
403                         return ERROR_FAIL;
404                 }
405                 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
406
407                 if (!r32->valid) {
408                         /* Before merging with other parts ensure the 32-bit register is valid */
409                         retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
410                         if (retval != ERROR_OK)
411                                 return retval;
412                 }
413
414                 /* Write a part to the 32-bit container register */
415                 buf_cpy(value, r32->value + offset, r->size);
416                 r32->dirty = true;
417
418         } else {
419                 assert(r->size == 32 || r->size == 64);
420
421                 struct arm_reg *armv7m_core_reg = r->arch_info;
422                 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
423
424                 t = buf_get_u32(value, 0, 32);
425                 retval = armv7m->store_core_reg_u32(target, regsel, t);
426                 if (retval != ERROR_OK)
427                         goto out_error;
428
429                 if (r->size == 64) {
430                         t = buf_get_u32(value + 4, 0, 32);
431                         retval = armv7m->store_core_reg_u32(target, regsel + 1, t);
432                         if (retval != ERROR_OK)
433                                 goto out_error;
434
435                         uint64_t q = buf_get_u64(value, 0, 64);
436                         LOG_DEBUG("write %s value 0x%016" PRIx64, r->name, q);
437                 } else {
438                         LOG_DEBUG("write %s value 0x%08" PRIx32, r->name, t);
439                 }
440         }
441
442         r->valid = true;
443         r->dirty = false;
444
445         return ERROR_OK;
446
447 out_error:
448         r->dirty = true;
449         LOG_ERROR("Error setting register %s", r->name);
450         return retval;
451 }
452
453 /**
454  * Returns generic ARM userspace registers to GDB.
455  */
456 int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
457                 int *reg_list_size, enum target_register_class reg_class)
458 {
459         struct armv7m_common *armv7m = target_to_armv7m(target);
460         int i, size;
461
462         if (reg_class == REG_CLASS_ALL)
463                 size = armv7m->arm.core_cache->num_regs;
464         else
465                 size = ARMV7M_NUM_CORE_REGS;
466
467         *reg_list = malloc(sizeof(struct reg *) * size);
468         if (!*reg_list)
469                 return ERROR_FAIL;
470
471         for (i = 0; i < size; i++)
472                 (*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
473
474         *reg_list_size = size;
475
476         return ERROR_OK;
477 }
478
479 /** Runs a Thumb algorithm in the target. */
480 int armv7m_run_algorithm(struct target *target,
481         int num_mem_params, struct mem_param *mem_params,
482         int num_reg_params, struct reg_param *reg_params,
483         target_addr_t entry_point, target_addr_t exit_point,
484         int timeout_ms, void *arch_info)
485 {
486         int retval;
487
488         retval = armv7m_start_algorithm(target,
489                         num_mem_params, mem_params,
490                         num_reg_params, reg_params,
491                         entry_point, exit_point,
492                         arch_info);
493
494         if (retval == ERROR_OK)
495                 retval = armv7m_wait_algorithm(target,
496                                 num_mem_params, mem_params,
497                                 num_reg_params, reg_params,
498                                 exit_point, timeout_ms,
499                                 arch_info);
500
501         return retval;
502 }
503
504 /** Starts a Thumb algorithm in the target. */
505 int armv7m_start_algorithm(struct target *target,
506         int num_mem_params, struct mem_param *mem_params,
507         int num_reg_params, struct reg_param *reg_params,
508         target_addr_t entry_point, target_addr_t exit_point,
509         void *arch_info)
510 {
511         struct armv7m_common *armv7m = target_to_armv7m(target);
512         struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
513         enum arm_mode core_mode = armv7m->arm.core_mode;
514         int retval = ERROR_OK;
515
516         /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
517          * at the exit point */
518
519         if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
520                 LOG_ERROR("current target isn't an ARMV7M target");
521                 return ERROR_TARGET_INVALID;
522         }
523
524         if (target->state != TARGET_HALTED) {
525                 LOG_WARNING("target not halted");
526                 return ERROR_TARGET_NOT_HALTED;
527         }
528
529         /* Store all non-debug execution registers to armv7m_algorithm_info context */
530         for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) {
531
532                 armv7m_algorithm_info->context[i] = buf_get_u32(
533                                 armv7m->arm.core_cache->reg_list[i].value,
534                                 0,
535                                 32);
536         }
537
538         for (int i = 0; i < num_mem_params; i++) {
539                 if (mem_params[i].direction == PARAM_IN)
540                         continue;
541                 retval = target_write_buffer(target, mem_params[i].address,
542                                 mem_params[i].size,
543                                 mem_params[i].value);
544                 if (retval != ERROR_OK)
545                         return retval;
546         }
547
548         for (int i = 0; i < num_reg_params; i++) {
549                 if (reg_params[i].direction == PARAM_IN)
550                         continue;
551
552                 struct reg *reg =
553                         register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, false);
554 /*              uint32_t regvalue; */
555
556                 if (!reg) {
557                         LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
558                         return ERROR_COMMAND_SYNTAX_ERROR;
559                 }
560
561                 if (reg->size != reg_params[i].size) {
562                         LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
563                                 reg_params[i].reg_name);
564                         return ERROR_COMMAND_SYNTAX_ERROR;
565                 }
566
567 /*              regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
568                 armv7m_set_core_reg(reg, reg_params[i].value);
569         }
570
571         {
572                 /*
573                  * Ensure xPSR.T is set to avoid trying to run things in arm
574                  * (non-thumb) mode, which armv7m does not support.
575                  *
576                  * We do this by setting the entirety of xPSR, which should
577                  * remove all the unknowns about xPSR state.
578                  *
579                  * Because xPSR.T is populated on reset from the vector table,
580                  * it might be 0 if the vector table has "bad" data in it.
581                  */
582                 struct reg *reg = &armv7m->arm.core_cache->reg_list[ARMV7M_XPSR];
583                 buf_set_u32(reg->value, 0, 32, 0x01000000);
584                 reg->valid = true;
585                 reg->dirty = true;
586         }
587
588         if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
589                         armv7m_algorithm_info->core_mode != core_mode) {
590
591                 /* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
592                 if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
593                         armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
594                         LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
595                 }
596
597                 LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
598                 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
599                         0, 1, armv7m_algorithm_info->core_mode);
600                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
601                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
602         }
603
604         /* save previous core mode */
605         armv7m_algorithm_info->core_mode = core_mode;
606
607         retval = target_resume(target, 0, entry_point, 1, 1);
608
609         return retval;
610 }
611
612 /** Waits for an algorithm in the target. */
613 int armv7m_wait_algorithm(struct target *target,
614         int num_mem_params, struct mem_param *mem_params,
615         int num_reg_params, struct reg_param *reg_params,
616         target_addr_t exit_point, int timeout_ms,
617         void *arch_info)
618 {
619         struct armv7m_common *armv7m = target_to_armv7m(target);
620         struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
621         int retval = ERROR_OK;
622
623         /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
624          * at the exit point */
625
626         if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
627                 LOG_ERROR("current target isn't an ARMV7M target");
628                 return ERROR_TARGET_INVALID;
629         }
630
631         retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
632         /* If the target fails to halt due to the breakpoint, force a halt */
633         if (retval != ERROR_OK || target->state != TARGET_HALTED) {
634                 retval = target_halt(target);
635                 if (retval != ERROR_OK)
636                         return retval;
637                 retval = target_wait_state(target, TARGET_HALTED, 500);
638                 if (retval != ERROR_OK)
639                         return retval;
640                 return ERROR_TARGET_TIMEOUT;
641         }
642
643         if (exit_point) {
644                 /* PC value has been cached in cortex_m_debug_entry() */
645                 uint32_t pc = buf_get_u32(armv7m->arm.pc->value, 0, 32);
646                 if (pc != exit_point) {
647                         LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" TARGET_PRIxADDR,
648                                           pc, exit_point);
649                         return ERROR_TARGET_ALGO_EXIT;
650                 }
651         }
652
653         /* Read memory values to mem_params[] */
654         for (int i = 0; i < num_mem_params; i++) {
655                 if (mem_params[i].direction != PARAM_OUT) {
656                         retval = target_read_buffer(target, mem_params[i].address,
657                                         mem_params[i].size,
658                                         mem_params[i].value);
659                         if (retval != ERROR_OK)
660                                 return retval;
661                 }
662         }
663
664         /* Copy core register values to reg_params[] */
665         for (int i = 0; i < num_reg_params; i++) {
666                 if (reg_params[i].direction != PARAM_OUT) {
667                         struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
668                                         reg_params[i].reg_name,
669                                         false);
670
671                         if (!reg) {
672                                 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
673                                 return ERROR_COMMAND_SYNTAX_ERROR;
674                         }
675
676                         if (reg->size != reg_params[i].size) {
677                                 LOG_ERROR(
678                                         "BUG: register '%s' size doesn't match reg_params[i].size",
679                                         reg_params[i].reg_name);
680                                 return ERROR_COMMAND_SYNTAX_ERROR;
681                         }
682
683                         buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
684                 }
685         }
686
687         for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) {
688                 uint32_t regvalue;
689                 regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
690                 if (regvalue != armv7m_algorithm_info->context[i]) {
691                         LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
692                                         armv7m->arm.core_cache->reg_list[i].name,
693                                 armv7m_algorithm_info->context[i]);
694                         buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
695                                 0, 32, armv7m_algorithm_info->context[i]);
696                         armv7m->arm.core_cache->reg_list[i].valid = true;
697                         armv7m->arm.core_cache->reg_list[i].dirty = true;
698                 }
699         }
700
701         /* restore previous core mode */
702         if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
703                 LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
704                 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
705                         0, 1, armv7m_algorithm_info->core_mode);
706                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
707                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
708         }
709
710         armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
711
712         return retval;
713 }
714
715 /** Logs summary of ARMv7-M state for a halted target. */
716 int armv7m_arch_state(struct target *target)
717 {
718         struct armv7m_common *armv7m = target_to_armv7m(target);
719         struct arm *arm = &armv7m->arm;
720         uint32_t ctrl, sp;
721
722         /* avoid filling log waiting for fileio reply */
723         if (target->semihosting && target->semihosting->hit_fileio)
724                 return ERROR_OK;
725
726         ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
727         sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
728
729         LOG_USER("target halted due to %s, current mode: %s %s\n"
730                 "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s",
731                 debug_reason_name(target),
732                 arm_mode_name(arm->core_mode),
733                 armv7m_exception_string(armv7m->exception_number),
734                 buf_get_u32(arm->cpsr->value, 0, 32),
735                 buf_get_u32(arm->pc->value, 0, 32),
736                 (ctrl & 0x02) ? 'p' : 'm',
737                 sp,
738                 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
739                 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
740
741         return ERROR_OK;
742 }
743
744 static const struct reg_arch_type armv7m_reg_type = {
745         .get = armv7m_get_core_reg,
746         .set = armv7m_set_core_reg,
747 };
748
749 /** Builds cache of architecturally defined registers.  */
750 struct reg_cache *armv7m_build_reg_cache(struct target *target)
751 {
752         struct armv7m_common *armv7m = target_to_armv7m(target);
753         struct arm *arm = &armv7m->arm;
754         int num_regs = ARMV7M_NUM_REGS;
755         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
756         struct reg_cache *cache = malloc(sizeof(struct reg_cache));
757         struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
758         struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
759         struct reg_feature *feature;
760         int i;
761
762         /* Build the process context cache */
763         cache->name = "arm v7m registers";
764         cache->next = NULL;
765         cache->reg_list = reg_list;
766         cache->num_regs = num_regs;
767         (*cache_p) = cache;
768
769         for (i = 0; i < num_regs; i++) {
770                 arch_info[i].num = armv7m_regs[i].id;
771                 arch_info[i].target = target;
772                 arch_info[i].arm = arm;
773
774                 reg_list[i].name = armv7m_regs[i].name;
775                 reg_list[i].size = armv7m_regs[i].bits;
776                 reg_list[i].value = arch_info[i].value;
777                 reg_list[i].dirty = false;
778                 reg_list[i].valid = false;
779                 reg_list[i].hidden = (i == ARMV7M_PMSK_BPRI_FLTMSK_CTRL ||
780                                 i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS || i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S);
781                 reg_list[i].type = &armv7m_reg_type;
782                 reg_list[i].arch_info = &arch_info[i];
783
784                 reg_list[i].group = armv7m_regs[i].group;
785                 reg_list[i].number = i;
786                 reg_list[i].exist = true;
787                 reg_list[i].caller_save = true; /* gdb defaults to true */
788
789                 if (reg_list[i].hidden)
790                         continue;
791
792                 feature = calloc(1, sizeof(struct reg_feature));
793                 if (feature) {
794                         feature->name = armv7m_regs[i].feature;
795                         reg_list[i].feature = feature;
796                 } else
797                         LOG_ERROR("unable to allocate feature list");
798
799                 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
800                 if (reg_list[i].reg_data_type)
801                         reg_list[i].reg_data_type->type = armv7m_regs[i].type;
802                 else
803                         LOG_ERROR("unable to allocate reg type list");
804         }
805
806         arm->cpsr = reg_list + ARMV7M_XPSR;
807         arm->pc = reg_list + ARMV7M_PC;
808         arm->core_cache = cache;
809
810         return cache;
811 }
812
813 void armv7m_free_reg_cache(struct target *target)
814 {
815         struct armv7m_common *armv7m = target_to_armv7m(target);
816         struct arm *arm = &armv7m->arm;
817         struct reg_cache *cache;
818         struct reg *reg;
819         unsigned int i;
820
821         cache = arm->core_cache;
822
823         if (!cache)
824                 return;
825
826         for (i = 0; i < cache->num_regs; i++) {
827                 reg = &cache->reg_list[i];
828
829                 free(reg->feature);
830                 free(reg->reg_data_type);
831         }
832
833         free(cache->reg_list[0].arch_info);
834         free(cache->reg_list);
835         free(cache);
836
837         arm->core_cache = NULL;
838 }
839
840 static int armv7m_setup_semihosting(struct target *target, int enable)
841 {
842         /* nothing todo for armv7m */
843         return ERROR_OK;
844 }
845
846 /** Sets up target as a generic ARMv7-M core */
847 int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
848 {
849         struct arm *arm = &armv7m->arm;
850
851         armv7m->common_magic = ARMV7M_COMMON_MAGIC;
852         armv7m->fp_feature = FP_NONE;
853         armv7m->trace_config.trace_bus_id = 1;
854         /* Enable stimulus port #0 by default */
855         armv7m->trace_config.itm_ter[0] = 1;
856
857         arm->core_state = ARM_STATE_THUMB;
858         arm->core_type = ARM_CORE_TYPE_M_PROFILE;
859         arm->arch_info = armv7m;
860         arm->setup_semihosting = armv7m_setup_semihosting;
861
862         arm->read_core_reg = armv7m_read_core_reg;
863         arm->write_core_reg = armv7m_write_core_reg;
864
865         return arm_init_arch_info(target, arm);
866 }
867
868 /** Generates a CRC32 checksum of a memory region. */
869 int armv7m_checksum_memory(struct target *target,
870         target_addr_t address, uint32_t count, uint32_t *checksum)
871 {
872         struct working_area *crc_algorithm;
873         struct armv7m_algorithm armv7m_info;
874         struct reg_param reg_params[2];
875         int retval;
876
877         static const uint8_t cortex_m_crc_code[] = {
878 #include "../../contrib/loaders/checksum/armv7m_crc.inc"
879         };
880
881         retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm);
882         if (retval != ERROR_OK)
883                 return retval;
884
885         retval = target_write_buffer(target, crc_algorithm->address,
886                         sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code);
887         if (retval != ERROR_OK)
888                 goto cleanup;
889
890         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
891         armv7m_info.core_mode = ARM_MODE_THREAD;
892
893         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
894         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
895
896         buf_set_u32(reg_params[0].value, 0, 32, address);
897         buf_set_u32(reg_params[1].value, 0, 32, count);
898
899         int timeout = 20000 * (1 + (count / (1024 * 1024)));
900
901         retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
902                         crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6),
903                         timeout, &armv7m_info);
904
905         if (retval == ERROR_OK)
906                 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
907         else
908                 LOG_ERROR("error executing cortex_m crc algorithm");
909
910         destroy_reg_param(&reg_params[0]);
911         destroy_reg_param(&reg_params[1]);
912
913 cleanup:
914         target_free_working_area(target, crc_algorithm);
915
916         return retval;
917 }
918
919 /** Checks an array of memory regions whether they are erased. */
920 int armv7m_blank_check_memory(struct target *target,
921         struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
922 {
923         struct working_area *erase_check_algorithm;
924         struct working_area *erase_check_params;
925         struct reg_param reg_params[2];
926         struct armv7m_algorithm armv7m_info;
927         int retval;
928
929         static bool timed_out;
930
931         static const uint8_t erase_check_code[] = {
932 #include "../../contrib/loaders/erase_check/armv7m_erase_check.inc"
933         };
934
935         const uint32_t code_size = sizeof(erase_check_code);
936
937         /* make sure we have a working area */
938         if (target_alloc_working_area(target, code_size,
939                 &erase_check_algorithm) != ERROR_OK)
940                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
941
942         retval = target_write_buffer(target, erase_check_algorithm->address,
943                         code_size, erase_check_code);
944         if (retval != ERROR_OK)
945                 goto cleanup1;
946
947         /* prepare blocks array for algo */
948         struct algo_block {
949                 union {
950                         uint32_t size;
951                         uint32_t result;
952                 };
953                 uint32_t address;
954         };
955
956         uint32_t avail = target_get_working_area_avail(target);
957         int blocks_to_check = avail / sizeof(struct algo_block) - 1;
958         if (num_blocks < blocks_to_check)
959                 blocks_to_check = num_blocks;
960
961         struct algo_block *params = malloc((blocks_to_check+1)*sizeof(struct algo_block));
962         if (!params) {
963                 retval = ERROR_FAIL;
964                 goto cleanup1;
965         }
966
967         int i;
968         uint32_t total_size = 0;
969         for (i = 0; i < blocks_to_check; i++) {
970                 total_size += blocks[i].size;
971                 target_buffer_set_u32(target, (uint8_t *)&(params[i].size),
972                                                 blocks[i].size / sizeof(uint32_t));
973                 target_buffer_set_u32(target, (uint8_t *)&(params[i].address),
974                                                 blocks[i].address);
975         }
976         target_buffer_set_u32(target, (uint8_t *)&(params[blocks_to_check].size), 0);
977
978         uint32_t param_size = (blocks_to_check + 1) * sizeof(struct algo_block);
979         if (target_alloc_working_area(target, param_size,
980                         &erase_check_params) != ERROR_OK) {
981                 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
982                 goto cleanup2;
983         }
984
985         retval = target_write_buffer(target, erase_check_params->address,
986                                 param_size, (uint8_t *)params);
987         if (retval != ERROR_OK)
988                 goto cleanup3;
989
990         uint32_t erased_word = erased_value | (erased_value << 8)
991                                | (erased_value << 16) | (erased_value << 24);
992
993         LOG_DEBUG("Starting erase check of %d blocks, parameters@"
994                  TARGET_ADDR_FMT, blocks_to_check, erase_check_params->address);
995
996         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
997         armv7m_info.core_mode = ARM_MODE_THREAD;
998
999         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1000         buf_set_u32(reg_params[0].value, 0, 32, erase_check_params->address);
1001
1002         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1003         buf_set_u32(reg_params[1].value, 0, 32, erased_word);
1004
1005         /* assume CPU clk at least 1 MHz */
1006         int timeout = (timed_out ? 30000 : 2000) + total_size * 3 / 1000;
1007
1008         retval = target_run_algorithm(target,
1009                                 0, NULL,
1010                                 ARRAY_SIZE(reg_params), reg_params,
1011                                 erase_check_algorithm->address,
1012                                 erase_check_algorithm->address + (code_size - 2),
1013                                 timeout,
1014                                 &armv7m_info);
1015
1016         timed_out = retval == ERROR_TARGET_TIMEOUT;
1017         if (retval != ERROR_OK && !timed_out)
1018                 goto cleanup4;
1019
1020         retval = target_read_buffer(target, erase_check_params->address,
1021                                 param_size, (uint8_t *)params);
1022         if (retval != ERROR_OK)
1023                 goto cleanup4;
1024
1025         for (i = 0; i < blocks_to_check; i++) {
1026                 uint32_t result = target_buffer_get_u32(target,
1027                                         (uint8_t *)&(params[i].result));
1028                 if (result != 0 && result != 1)
1029                         break;
1030
1031                 blocks[i].result = result;
1032         }
1033         if (i && timed_out)
1034                 LOG_INFO("Slow CPU clock: %d blocks checked, %d remain. Continuing...", i, num_blocks-i);
1035
1036         retval = i;             /* return number of blocks really checked */
1037
1038 cleanup4:
1039         destroy_reg_param(&reg_params[0]);
1040         destroy_reg_param(&reg_params[1]);
1041
1042 cleanup3:
1043         target_free_working_area(target, erase_check_params);
1044 cleanup2:
1045         free(params);
1046 cleanup1:
1047         target_free_working_area(target, erase_check_algorithm);
1048
1049         return retval;
1050 }
1051
1052 int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
1053 {
1054         struct armv7m_common *armv7m = target_to_armv7m(target);
1055         struct reg *r = armv7m->arm.pc;
1056         bool result = false;
1057
1058
1059         /* if we halted last time due to a bkpt instruction
1060          * then we have to manually step over it, otherwise
1061          * the core will break again */
1062
1063         if (target->debug_reason == DBG_REASON_BREAKPOINT) {
1064                 uint16_t op;
1065                 uint32_t pc = buf_get_u32(r->value, 0, 32);
1066
1067                 pc &= ~1;
1068                 if (target_read_u16(target, pc, &op) == ERROR_OK) {
1069                         if ((op & 0xFF00) == 0xBE00) {
1070                                 pc = buf_get_u32(r->value, 0, 32) + 2;
1071                                 buf_set_u32(r->value, 0, 32, pc);
1072                                 r->dirty = true;
1073                                 r->valid = true;
1074                                 result = true;
1075                                 LOG_DEBUG("Skipping over BKPT instruction");
1076                         }
1077                 }
1078         }
1079
1080         if (inst_found)
1081                 *inst_found = result;
1082
1083         return ERROR_OK;
1084 }
1085
1086 const struct command_registration armv7m_command_handlers[] = {
1087         {
1088                 .name = "arm",
1089                 .mode = COMMAND_ANY,
1090                 .help = "ARM command group",
1091                 .usage = "",
1092                 .chain = arm_all_profiles_command_handlers,
1093         },
1094         COMMAND_REGISTRATION_DONE
1095 };