0a51ad4d60c3c2b69d0700a5ac0e1c41aef46133
[fw/openocd] / src / target / armv7m.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2006 by Magnus Lundin                                   *
6  *   lundin@mlu.mine.nu                                                    *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
12  *   oyvind.harboe@zylin.com                                               *
13  *                                                                         *
14  *   Copyright (C) 2018 by Liviu Ionescu                                   *
15  *   <ilg@livius.net>                                                      *
16  *                                                                         *
17  *   Copyright (C) 2019 by Tomas Vanek                                     *
18  *   vanekt@fbl.cz                                                         *
19  *                                                                         *
20  *   This program is free software; you can redistribute it and/or modify  *
21  *   it under the terms of the GNU General Public License as published by  *
22  *   the Free Software Foundation; either version 2 of the License, or     *
23  *   (at your option) any later version.                                   *
24  *                                                                         *
25  *   This program is distributed in the hope that it will be useful,       *
26  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
27  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
28  *   GNU General Public License for more details.                          *
29  *                                                                         *
30  *   You should have received a copy of the GNU General Public License     *
31  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
32  *                                                                         *
33  *   ARMv7-M Architecture, Application Level Reference Manual              *
34  *              ARM DDI 0405C (September 2008)                             *
35  *                                                                         *
36  ***************************************************************************/
37
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41
42 #include "breakpoints.h"
43 #include "armv7m.h"
44 #include "algorithm.h"
45 #include "register.h"
46 #include "semihosting_common.h"
47 #include <helper/log.h>
48 #include <helper/binarybuffer.h>
49
50 #if 0
51 #define _DEBUG_INSTRUCTION_EXECUTION_
52 #endif
53
54 static const char * const armv7m_exception_strings[] = {
55         "", "Reset", "NMI", "HardFault",
56         "MemManage", "BusFault", "UsageFault", "SecureFault",
57         "RESERVED", "RESERVED", "RESERVED", "SVCall",
58         "DebugMonitor", "RESERVED", "PendSV", "SysTick"
59 };
60
61 /* PSP is used in some thread modes */
62 const int armv7m_psp_reg_map[ARMV7M_NUM_CORE_REGS] = {
63         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
64         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
65         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
66         ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
67         ARMV7M_xPSR,
68 };
69
70 /* MSP is used in handler and some thread modes */
71 const int armv7m_msp_reg_map[ARMV7M_NUM_CORE_REGS] = {
72         ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
73         ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
74         ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
75         ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
76         ARMV7M_xPSR,
77 };
78
79 /*
80  * These registers are not memory-mapped.  The ARMv7-M profile includes
81  * memory mapped registers too, such as for the NVIC (interrupt controller)
82  * and SysTick (timer) modules; those can mostly be treated as peripherals.
83  *
84  * The ARMv6-M profile is almost identical in this respect, except that it
85  * doesn't include basepri or faultmask registers.
86  */
87 static const struct {
88         unsigned id;
89         const char *name;
90         unsigned bits;
91         enum reg_type type;
92         const char *group;
93         const char *feature;
94 } armv7m_regs[] = {
95         { ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
96         { ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
97         { ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
98         { ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
99         { ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
100         { ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
101         { ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
102         { ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
103         { ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
104         { ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
105         { ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
106         { ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
107         { ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
108         { ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" },
109         { ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
110         { ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" },
111         { ARMV7M_xPSR, "xPSR", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
112
113         { ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
114         { ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
115
116         /* A working register for packing/unpacking special regs, hidden from gdb */
117         { ARMV7M_PMSK_BPRI_FLTMSK_CTRL, "pmsk_bpri_fltmsk_ctrl", 32, REG_TYPE_INT, NULL, NULL },
118
119         /* WARNING: If you use armv7m_write_core_reg() on one of 4 following
120          * special registers, the new data go to ARMV7M_PMSK_BPRI_FLTMSK_CTRL
121          * cache only and are not flushed to CPU HW register.
122          * To trigger write to CPU HW register, add
123          *              armv7m_write_core_reg(,,ARMV7M_PMSK_BPRI_FLTMSK_CTRL,);
124          */
125         { ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
126         { ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
127         { ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
128         { ARMV7M_CONTROL, "control", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
129
130         /* ARMv8-M specific registers */
131         { ARMV8M_MSP_NS, "msp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
132         { ARMV8M_PSP_NS, "psp_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
133         { ARMV8M_MSP_S, "msp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
134         { ARMV8M_PSP_S, "psp_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
135         { ARMV8M_MSPLIM_S, "msplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
136         { ARMV8M_PSPLIM_S, "psplim_s", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
137         { ARMV8M_MSPLIM_NS, "msplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
138         { ARMV8M_PSPLIM_NS, "psplim_ns", 32, REG_TYPE_DATA_PTR, "stack", "v8-m.sp" },
139
140         { ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S, "pmsk_bpri_fltmsk_ctrl_s", 32, REG_TYPE_INT, NULL, NULL },
141         { ARMV8M_PRIMASK_S, "primask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
142         { ARMV8M_BASEPRI_S, "basepri_s", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
143         { ARMV8M_FAULTMASK_S, "faultmask_s", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
144         { ARMV8M_CONTROL_S, "control_s", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
145
146         { ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS, "pmsk_bpri_fltmsk_ctrl_ns", 32, REG_TYPE_INT, NULL, NULL },
147         { ARMV8M_PRIMASK_NS, "primask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
148         { ARMV8M_BASEPRI_NS, "basepri_ns", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
149         { ARMV8M_FAULTMASK_NS, "faultmask_ns", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
150         { ARMV8M_CONTROL_NS, "control_ns", 3, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
151
152         /* FPU registers */
153         { ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
154         { ARMV7M_D1, "d1", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
155         { ARMV7M_D2, "d2", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
156         { ARMV7M_D3, "d3", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
157         { ARMV7M_D4, "d4", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
158         { ARMV7M_D5, "d5", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
159         { ARMV7M_D6, "d6", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
160         { ARMV7M_D7, "d7", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
161         { ARMV7M_D8, "d8", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
162         { ARMV7M_D9, "d9", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
163         { ARMV7M_D10, "d10", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
164         { ARMV7M_D11, "d11", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
165         { ARMV7M_D12, "d12", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
166         { ARMV7M_D13, "d13", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
167         { ARMV7M_D14, "d14", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
168         { ARMV7M_D15, "d15", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
169
170         { ARMV7M_FPSCR, "fpscr", 32, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp" },
171 };
172
173 #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
174
175 /**
176  * Restores target context using the cache of core registers set up
177  * by armv7m_build_reg_cache(), calling optional core-specific hooks.
178  */
179 int armv7m_restore_context(struct target *target)
180 {
181         int i;
182         struct armv7m_common *armv7m = target_to_armv7m(target);
183         struct reg_cache *cache = armv7m->arm.core_cache;
184
185         LOG_DEBUG(" ");
186
187         if (armv7m->pre_restore_context)
188                 armv7m->pre_restore_context(target);
189
190         /* The descending order of register writes is crucial for correct
191          * packing of ARMV7M_PMSK_BPRI_FLTMSK_CTRL!
192          * See also comments in the register table above */
193         for (i = cache->num_regs - 1; i >= 0; i--) {
194                 struct reg *r = &cache->reg_list[i];
195
196                 if (r->exist && r->dirty)
197                         armv7m->arm.write_core_reg(target, r, i, ARM_MODE_ANY, r->value);
198         }
199
200         return ERROR_OK;
201 }
202
203 /* Core state functions */
204
205 /**
206  * Maps ISR number (from xPSR) to name.
207  * Note that while names and meanings for the first sixteen are standardized
208  * (with zero not a true exception), external interrupts are only numbered.
209  * They are assigned by vendors, which generally assign different numbers to
210  * peripherals (such as UART0 or a USB peripheral controller).
211  */
212 const char *armv7m_exception_string(int number)
213 {
214         static char enamebuf[32];
215
216         if ((number < 0) | (number > 511))
217                 return "Invalid exception";
218         if (number < 16)
219                 return armv7m_exception_strings[number];
220         sprintf(enamebuf, "External Interrupt(%i)", number - 16);
221         return enamebuf;
222 }
223
224 static int armv7m_get_core_reg(struct reg *reg)
225 {
226         int retval;
227         struct arm_reg *armv7m_reg = reg->arch_info;
228         struct target *target = armv7m_reg->target;
229         struct arm *arm = target_to_arm(target);
230
231         if (target->state != TARGET_HALTED)
232                 return ERROR_TARGET_NOT_HALTED;
233
234         retval = arm->read_core_reg(target, reg, reg->number, arm->core_mode);
235
236         return retval;
237 }
238
239 static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
240 {
241         struct arm_reg *armv7m_reg = reg->arch_info;
242         struct target *target = armv7m_reg->target;
243
244         if (target->state != TARGET_HALTED)
245                 return ERROR_TARGET_NOT_HALTED;
246
247         buf_cpy(buf, reg->value, reg->size);
248         reg->dirty = true;
249         reg->valid = true;
250
251         return ERROR_OK;
252 }
253
254 uint32_t armv7m_map_id_to_regsel(unsigned int arm_reg_id)
255 {
256         switch (arm_reg_id) {
257         case ARMV7M_R0 ... ARMV7M_R14:
258         case ARMV7M_PC:
259         case ARMV7M_xPSR:
260         case ARMV7M_MSP:
261         case ARMV7M_PSP:
262                 /* NOTE:  we "know" here that the register identifiers
263                  * match the Cortex-M DCRSR.REGSEL selectors values
264                  * for R0..R14, PC, xPSR, MSP, and PSP.
265                  */
266                 return arm_reg_id;
267
268         case ARMV7M_PMSK_BPRI_FLTMSK_CTRL:
269                 return ARMV7M_REGSEL_PMSK_BPRI_FLTMSK_CTRL;
270
271         case ARMV8M_MSP_NS...ARMV8M_PSPLIM_NS:
272                 return arm_reg_id - ARMV8M_MSP_NS + ARMV8M_REGSEL_MSP_NS;
273
274         case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S:
275                 return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_S;
276
277         case ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS:
278                 return ARMV8M_REGSEL_PMSK_BPRI_FLTMSK_CTRL_NS;
279
280         case ARMV7M_FPSCR:
281                 return ARMV7M_REGSEL_FPSCR;
282
283         case ARMV7M_D0 ... ARMV7M_D15:
284                 return ARMV7M_REGSEL_S0 + 2 * (arm_reg_id - ARMV7M_D0);
285
286         default:
287                 LOG_ERROR("Bad register ID %u", arm_reg_id);
288                 return arm_reg_id;
289         }
290 }
291
292 bool armv7m_map_reg_packing(unsigned int arm_reg_id,
293                                         unsigned int *reg32_id, uint32_t *offset)
294 {
295
296         switch (arm_reg_id) {
297
298         case ARMV7M_PRIMASK...ARMV7M_CONTROL:
299                 *reg32_id = ARMV7M_PMSK_BPRI_FLTMSK_CTRL;
300                 *offset = arm_reg_id - ARMV7M_PRIMASK;
301                 return true;
302         case ARMV8M_PRIMASK_S...ARMV8M_CONTROL_S:
303                 *reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S;
304                 *offset = arm_reg_id - ARMV8M_PRIMASK_S;
305                 return true;
306         case ARMV8M_PRIMASK_NS...ARMV8M_CONTROL_NS:
307                 *reg32_id = ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS;
308                 *offset = arm_reg_id - ARMV8M_PRIMASK_NS;
309                 return true;
310
311         default:
312                 return false;
313         }
314
315 }
316
317 static int armv7m_read_core_reg(struct target *target, struct reg *r,
318         int num, enum arm_mode mode)
319 {
320         uint32_t reg_value;
321         int retval;
322         struct armv7m_common *armv7m = target_to_armv7m(target);
323
324         assert(num < (int)armv7m->arm.core_cache->num_regs);
325         assert(num == (int)r->number);
326
327         /* If a code calls read_reg, it expects the cache is no more dirty.
328          * Clear the dirty flag regardless of the later read succeeds or not
329          * to prevent unwanted cache flush after a read error */
330         r->dirty = false;
331
332         if (r->size <= 8) {
333                 /* any 8-bit or shorter register is packed */
334                 uint32_t offset;
335                 unsigned int reg32_id;
336
337                 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
338                 if (!is_packed) {
339                         /* We should not get here as all 8-bit or shorter registers
340                          * are packed */
341                         assert(false);
342                         /* assert() does nothing if NDEBUG is defined */
343                         return ERROR_FAIL;
344                 }
345                 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
346
347                 /* Read 32-bit container register if not cached */
348                 if (!r32->valid) {
349                         retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
350                         if (retval != ERROR_OK)
351                                 return retval;
352                 }
353
354                 /* Copy required bits of 32-bit container register */
355                 buf_cpy(r32->value + offset, r->value, r->size);
356
357         } else {
358                 assert(r->size == 32 || r->size == 64);
359
360                 struct arm_reg *armv7m_core_reg = r->arch_info;
361                 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
362
363                 retval = armv7m->load_core_reg_u32(target, regsel, &reg_value);
364                 if (retval != ERROR_OK)
365                         return retval;
366                 buf_set_u32(r->value, 0, 32, reg_value);
367
368                 if (r->size == 64) {
369                         retval = armv7m->load_core_reg_u32(target, regsel + 1, &reg_value);
370                         if (retval != ERROR_OK) {
371                                 r->valid = false;
372                                 return retval;
373                         }
374                         buf_set_u32(r->value + 4, 0, 32, reg_value);
375
376                         uint64_t q = buf_get_u64(r->value, 0, 64);
377                         LOG_DEBUG("read %s value 0x%016" PRIx64, r->name, q);
378                 } else {
379                         LOG_DEBUG("read %s value 0x%08" PRIx32, r->name, reg_value);
380                 }
381         }
382
383         r->valid = true;
384
385         return ERROR_OK;
386 }
387
388 static int armv7m_write_core_reg(struct target *target, struct reg *r,
389         int num, enum arm_mode mode, uint8_t *value)
390 {
391         int retval;
392         uint32_t t;
393         struct armv7m_common *armv7m = target_to_armv7m(target);
394
395         assert(num < (int)armv7m->arm.core_cache->num_regs);
396         assert(num == (int)r->number);
397
398         if (value != r->value) {
399                 /* If we are not flushing the cache, store the new value to the cache */
400                 buf_cpy(value, r->value, r->size);
401         }
402
403         if (r->size <= 8) {
404                 /* any 8-bit or shorter register is packed */
405                 uint32_t offset;
406                 unsigned int reg32_id;
407
408                 bool is_packed = armv7m_map_reg_packing(num, &reg32_id, &offset);
409                 if (!is_packed) {
410                         /* We should not get here as all 8-bit or shorter registers
411                          * are packed */
412                         assert(false);
413                         /* assert() does nothing if NDEBUG is defined */
414                         return ERROR_FAIL;
415                 }
416                 struct reg *r32 = &armv7m->arm.core_cache->reg_list[reg32_id];
417
418                 if (!r32->valid) {
419                         /* Before merging with other parts ensure the 32-bit register is valid */
420                         retval = armv7m_read_core_reg(target, r32, reg32_id, mode);
421                         if (retval != ERROR_OK)
422                                 return retval;
423                 }
424
425                 /* Write a part to the 32-bit container register */
426                 buf_cpy(value, r32->value + offset, r->size);
427                 r32->dirty = true;
428
429         } else {
430                 assert(r->size == 32 || r->size == 64);
431
432                 struct arm_reg *armv7m_core_reg = r->arch_info;
433                 uint32_t regsel = armv7m_map_id_to_regsel(armv7m_core_reg->num);
434
435                 t = buf_get_u32(value, 0, 32);
436                 retval = armv7m->store_core_reg_u32(target, regsel, t);
437                 if (retval != ERROR_OK)
438                         goto out_error;
439
440                 if (r->size == 64) {
441                         t = buf_get_u32(value + 4, 0, 32);
442                         retval = armv7m->store_core_reg_u32(target, regsel + 1, t);
443                         if (retval != ERROR_OK)
444                                 goto out_error;
445
446                         uint64_t q = buf_get_u64(value, 0, 64);
447                         LOG_DEBUG("write %s value 0x%016" PRIx64, r->name, q);
448                 } else {
449                         LOG_DEBUG("write %s value 0x%08" PRIx32, r->name, t);
450                 }
451         }
452
453         r->valid = true;
454         r->dirty = false;
455
456         return ERROR_OK;
457
458 out_error:
459         r->dirty = true;
460         LOG_ERROR("Error setting register %s", r->name);
461         return retval;
462 }
463
464 /**
465  * Returns generic ARM userspace registers to GDB.
466  */
467 int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
468                 int *reg_list_size, enum target_register_class reg_class)
469 {
470         struct armv7m_common *armv7m = target_to_armv7m(target);
471         int i, size;
472
473         if (reg_class == REG_CLASS_ALL)
474                 size = armv7m->arm.core_cache->num_regs;
475         else
476                 size = ARMV7M_NUM_CORE_REGS;
477
478         *reg_list = malloc(sizeof(struct reg *) * size);
479         if (!*reg_list)
480                 return ERROR_FAIL;
481
482         for (i = 0; i < size; i++)
483                 (*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
484
485         *reg_list_size = size;
486
487         return ERROR_OK;
488 }
489
490 /** Runs a Thumb algorithm in the target. */
491 int armv7m_run_algorithm(struct target *target,
492         int num_mem_params, struct mem_param *mem_params,
493         int num_reg_params, struct reg_param *reg_params,
494         target_addr_t entry_point, target_addr_t exit_point,
495         int timeout_ms, void *arch_info)
496 {
497         int retval;
498
499         retval = armv7m_start_algorithm(target,
500                         num_mem_params, mem_params,
501                         num_reg_params, reg_params,
502                         entry_point, exit_point,
503                         arch_info);
504
505         if (retval == ERROR_OK)
506                 retval = armv7m_wait_algorithm(target,
507                                 num_mem_params, mem_params,
508                                 num_reg_params, reg_params,
509                                 exit_point, timeout_ms,
510                                 arch_info);
511
512         return retval;
513 }
514
515 /** Starts a Thumb algorithm in the target. */
516 int armv7m_start_algorithm(struct target *target,
517         int num_mem_params, struct mem_param *mem_params,
518         int num_reg_params, struct reg_param *reg_params,
519         target_addr_t entry_point, target_addr_t exit_point,
520         void *arch_info)
521 {
522         struct armv7m_common *armv7m = target_to_armv7m(target);
523         struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
524         enum arm_mode core_mode = armv7m->arm.core_mode;
525         int retval = ERROR_OK;
526
527         /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
528          * at the exit point */
529
530         if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
531                 LOG_ERROR("current target isn't an ARMV7M target");
532                 return ERROR_TARGET_INVALID;
533         }
534
535         if (target->state != TARGET_HALTED) {
536                 LOG_WARNING("target not halted");
537                 return ERROR_TARGET_NOT_HALTED;
538         }
539
540         /* Store all non-debug execution registers to armv7m_algorithm_info context */
541         for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) {
542
543                 armv7m_algorithm_info->context[i] = buf_get_u32(
544                                 armv7m->arm.core_cache->reg_list[i].value,
545                                 0,
546                                 32);
547         }
548
549         for (int i = 0; i < num_mem_params; i++) {
550                 if (mem_params[i].direction == PARAM_IN)
551                         continue;
552                 retval = target_write_buffer(target, mem_params[i].address,
553                                 mem_params[i].size,
554                                 mem_params[i].value);
555                 if (retval != ERROR_OK)
556                         return retval;
557         }
558
559         for (int i = 0; i < num_reg_params; i++) {
560                 if (reg_params[i].direction == PARAM_IN)
561                         continue;
562
563                 struct reg *reg =
564                         register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, false);
565 /*              uint32_t regvalue; */
566
567                 if (!reg) {
568                         LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
569                         return ERROR_COMMAND_SYNTAX_ERROR;
570                 }
571
572                 if (reg->size != reg_params[i].size) {
573                         LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
574                                 reg_params[i].reg_name);
575                         return ERROR_COMMAND_SYNTAX_ERROR;
576                 }
577
578 /*              regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
579                 armv7m_set_core_reg(reg, reg_params[i].value);
580         }
581
582         {
583                 /*
584                  * Ensure xPSR.T is set to avoid trying to run things in arm
585                  * (non-thumb) mode, which armv7m does not support.
586                  *
587                  * We do this by setting the entirety of xPSR, which should
588                  * remove all the unknowns about xPSR state.
589                  *
590                  * Because xPSR.T is populated on reset from the vector table,
591                  * it might be 0 if the vector table has "bad" data in it.
592                  */
593                 struct reg *reg = &armv7m->arm.core_cache->reg_list[ARMV7M_xPSR];
594                 buf_set_u32(reg->value, 0, 32, 0x01000000);
595                 reg->valid = true;
596                 reg->dirty = true;
597         }
598
599         if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
600                         armv7m_algorithm_info->core_mode != core_mode) {
601
602                 /* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
603                 if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
604                         armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
605                         LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
606                 }
607
608                 LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
609                 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
610                         0, 1, armv7m_algorithm_info->core_mode);
611                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
612                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
613         }
614
615         /* save previous core mode */
616         armv7m_algorithm_info->core_mode = core_mode;
617
618         retval = target_resume(target, 0, entry_point, 1, 1);
619
620         return retval;
621 }
622
623 /** Waits for an algorithm in the target. */
624 int armv7m_wait_algorithm(struct target *target,
625         int num_mem_params, struct mem_param *mem_params,
626         int num_reg_params, struct reg_param *reg_params,
627         target_addr_t exit_point, int timeout_ms,
628         void *arch_info)
629 {
630         struct armv7m_common *armv7m = target_to_armv7m(target);
631         struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
632         int retval = ERROR_OK;
633
634         /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
635          * at the exit point */
636
637         if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
638                 LOG_ERROR("current target isn't an ARMV7M target");
639                 return ERROR_TARGET_INVALID;
640         }
641
642         retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
643         /* If the target fails to halt due to the breakpoint, force a halt */
644         if (retval != ERROR_OK || target->state != TARGET_HALTED) {
645                 retval = target_halt(target);
646                 if (retval != ERROR_OK)
647                         return retval;
648                 retval = target_wait_state(target, TARGET_HALTED, 500);
649                 if (retval != ERROR_OK)
650                         return retval;
651                 return ERROR_TARGET_TIMEOUT;
652         }
653
654         if (exit_point) {
655                 /* PC value has been cached in cortex_m_debug_entry() */
656                 uint32_t pc = buf_get_u32(armv7m->arm.pc->value, 0, 32);
657                 if (pc != exit_point) {
658                         LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" TARGET_PRIxADDR,
659                                           pc, exit_point);
660                         return ERROR_TARGET_ALGO_EXIT;
661                 }
662         }
663
664         /* Read memory values to mem_params[] */
665         for (int i = 0; i < num_mem_params; i++) {
666                 if (mem_params[i].direction != PARAM_OUT) {
667                         retval = target_read_buffer(target, mem_params[i].address,
668                                         mem_params[i].size,
669                                         mem_params[i].value);
670                         if (retval != ERROR_OK)
671                                 return retval;
672                 }
673         }
674
675         /* Copy core register values to reg_params[] */
676         for (int i = 0; i < num_reg_params; i++) {
677                 if (reg_params[i].direction != PARAM_OUT) {
678                         struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
679                                         reg_params[i].reg_name,
680                                         false);
681
682                         if (!reg) {
683                                 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
684                                 return ERROR_COMMAND_SYNTAX_ERROR;
685                         }
686
687                         if (reg->size != reg_params[i].size) {
688                                 LOG_ERROR(
689                                         "BUG: register '%s' size doesn't match reg_params[i].size",
690                                         reg_params[i].reg_name);
691                                 return ERROR_COMMAND_SYNTAX_ERROR;
692                         }
693
694                         buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
695                 }
696         }
697
698         for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) {
699                 uint32_t regvalue;
700                 regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
701                 if (regvalue != armv7m_algorithm_info->context[i]) {
702                         LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
703                                         armv7m->arm.core_cache->reg_list[i].name,
704                                 armv7m_algorithm_info->context[i]);
705                         buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
706                                 0, 32, armv7m_algorithm_info->context[i]);
707                         armv7m->arm.core_cache->reg_list[i].valid = true;
708                         armv7m->arm.core_cache->reg_list[i].dirty = true;
709                 }
710         }
711
712         /* restore previous core mode */
713         if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
714                 LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
715                 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
716                         0, 1, armv7m_algorithm_info->core_mode);
717                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
718                 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
719         }
720
721         armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
722
723         return retval;
724 }
725
726 /** Logs summary of ARMv7-M state for a halted target. */
727 int armv7m_arch_state(struct target *target)
728 {
729         struct armv7m_common *armv7m = target_to_armv7m(target);
730         struct arm *arm = &armv7m->arm;
731         uint32_t ctrl, sp;
732
733         /* avoid filling log waiting for fileio reply */
734         if (target->semihosting && target->semihosting->hit_fileio)
735                 return ERROR_OK;
736
737         ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
738         sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
739
740         LOG_USER("target halted due to %s, current mode: %s %s\n"
741                 "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s",
742                 debug_reason_name(target),
743                 arm_mode_name(arm->core_mode),
744                 armv7m_exception_string(armv7m->exception_number),
745                 buf_get_u32(arm->cpsr->value, 0, 32),
746                 buf_get_u32(arm->pc->value, 0, 32),
747                 (ctrl & 0x02) ? 'p' : 'm',
748                 sp,
749                 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
750                 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
751
752         return ERROR_OK;
753 }
754
755 static const struct reg_arch_type armv7m_reg_type = {
756         .get = armv7m_get_core_reg,
757         .set = armv7m_set_core_reg,
758 };
759
760 /** Builds cache of architecturally defined registers.  */
761 struct reg_cache *armv7m_build_reg_cache(struct target *target)
762 {
763         struct armv7m_common *armv7m = target_to_armv7m(target);
764         struct arm *arm = &armv7m->arm;
765         int num_regs = ARMV7M_NUM_REGS;
766         struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
767         struct reg_cache *cache = malloc(sizeof(struct reg_cache));
768         struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
769         struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
770         struct reg_feature *feature;
771         int i;
772
773         /* Build the process context cache */
774         cache->name = "arm v7m registers";
775         cache->next = NULL;
776         cache->reg_list = reg_list;
777         cache->num_regs = num_regs;
778         (*cache_p) = cache;
779
780         for (i = 0; i < num_regs; i++) {
781                 arch_info[i].num = armv7m_regs[i].id;
782                 arch_info[i].target = target;
783                 arch_info[i].arm = arm;
784
785                 reg_list[i].name = armv7m_regs[i].name;
786                 reg_list[i].size = armv7m_regs[i].bits;
787                 reg_list[i].value = arch_info[i].value;
788                 reg_list[i].dirty = false;
789                 reg_list[i].valid = false;
790                 reg_list[i].hidden = (i == ARMV7M_PMSK_BPRI_FLTMSK_CTRL ||
791                                 i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_NS || i == ARMV8M_PMSK_BPRI_FLTMSK_CTRL_S);
792                 reg_list[i].type = &armv7m_reg_type;
793                 reg_list[i].arch_info = &arch_info[i];
794
795                 reg_list[i].group = armv7m_regs[i].group;
796                 reg_list[i].number = i;
797                 reg_list[i].exist = true;
798                 reg_list[i].caller_save = true; /* gdb defaults to true */
799
800                 if (reg_list[i].hidden)
801                         continue;
802
803                 feature = calloc(1, sizeof(struct reg_feature));
804                 if (feature) {
805                         feature->name = armv7m_regs[i].feature;
806                         reg_list[i].feature = feature;
807                 } else
808                         LOG_ERROR("unable to allocate feature list");
809
810                 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
811                 if (reg_list[i].reg_data_type)
812                         reg_list[i].reg_data_type->type = armv7m_regs[i].type;
813                 else
814                         LOG_ERROR("unable to allocate reg type list");
815         }
816
817         arm->cpsr = reg_list + ARMV7M_xPSR;
818         arm->pc = reg_list + ARMV7M_PC;
819         arm->core_cache = cache;
820
821         return cache;
822 }
823
824 void armv7m_free_reg_cache(struct target *target)
825 {
826         struct armv7m_common *armv7m = target_to_armv7m(target);
827         struct arm *arm = &armv7m->arm;
828         struct reg_cache *cache;
829         struct reg *reg;
830         unsigned int i;
831
832         cache = arm->core_cache;
833
834         if (!cache)
835                 return;
836
837         for (i = 0; i < cache->num_regs; i++) {
838                 reg = &cache->reg_list[i];
839
840                 free(reg->feature);
841                 free(reg->reg_data_type);
842         }
843
844         free(cache->reg_list[0].arch_info);
845         free(cache->reg_list);
846         free(cache);
847
848         arm->core_cache = NULL;
849 }
850
851 static int armv7m_setup_semihosting(struct target *target, int enable)
852 {
853         /* nothing todo for armv7m */
854         return ERROR_OK;
855 }
856
857 /** Sets up target as a generic ARMv7-M core */
858 int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
859 {
860         struct arm *arm = &armv7m->arm;
861
862         armv7m->common_magic = ARMV7M_COMMON_MAGIC;
863         armv7m->fp_feature = FP_NONE;
864         armv7m->trace_config.trace_bus_id = 1;
865         /* Enable stimulus port #0 by default */
866         armv7m->trace_config.itm_ter[0] = 1;
867
868         arm->core_type = ARM_CORE_TYPE_M_PROFILE;
869         arm->arch_info = armv7m;
870         arm->setup_semihosting = armv7m_setup_semihosting;
871
872         arm->read_core_reg = armv7m_read_core_reg;
873         arm->write_core_reg = armv7m_write_core_reg;
874
875         return arm_init_arch_info(target, arm);
876 }
877
878 /** Generates a CRC32 checksum of a memory region. */
879 int armv7m_checksum_memory(struct target *target,
880         target_addr_t address, uint32_t count, uint32_t *checksum)
881 {
882         struct working_area *crc_algorithm;
883         struct armv7m_algorithm armv7m_info;
884         struct reg_param reg_params[2];
885         int retval;
886
887         static const uint8_t cortex_m_crc_code[] = {
888 #include "../../contrib/loaders/checksum/armv7m_crc.inc"
889         };
890
891         retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm);
892         if (retval != ERROR_OK)
893                 return retval;
894
895         retval = target_write_buffer(target, crc_algorithm->address,
896                         sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code);
897         if (retval != ERROR_OK)
898                 goto cleanup;
899
900         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
901         armv7m_info.core_mode = ARM_MODE_THREAD;
902
903         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
904         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
905
906         buf_set_u32(reg_params[0].value, 0, 32, address);
907         buf_set_u32(reg_params[1].value, 0, 32, count);
908
909         int timeout = 20000 * (1 + (count / (1024 * 1024)));
910
911         retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
912                         crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6),
913                         timeout, &armv7m_info);
914
915         if (retval == ERROR_OK)
916                 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
917         else
918                 LOG_ERROR("error executing cortex_m crc algorithm");
919
920         destroy_reg_param(&reg_params[0]);
921         destroy_reg_param(&reg_params[1]);
922
923 cleanup:
924         target_free_working_area(target, crc_algorithm);
925
926         return retval;
927 }
928
929 /** Checks an array of memory regions whether they are erased. */
930 int armv7m_blank_check_memory(struct target *target,
931         struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
932 {
933         struct working_area *erase_check_algorithm;
934         struct working_area *erase_check_params;
935         struct reg_param reg_params[2];
936         struct armv7m_algorithm armv7m_info;
937         int retval;
938
939         static bool timed_out;
940
941         static const uint8_t erase_check_code[] = {
942 #include "../../contrib/loaders/erase_check/armv7m_erase_check.inc"
943         };
944
945         const uint32_t code_size = sizeof(erase_check_code);
946
947         /* make sure we have a working area */
948         if (target_alloc_working_area(target, code_size,
949                 &erase_check_algorithm) != ERROR_OK)
950                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
951
952         retval = target_write_buffer(target, erase_check_algorithm->address,
953                         code_size, erase_check_code);
954         if (retval != ERROR_OK)
955                 goto cleanup1;
956
957         /* prepare blocks array for algo */
958         struct algo_block {
959                 union {
960                         uint32_t size;
961                         uint32_t result;
962                 };
963                 uint32_t address;
964         };
965
966         uint32_t avail = target_get_working_area_avail(target);
967         int blocks_to_check = avail / sizeof(struct algo_block) - 1;
968         if (num_blocks < blocks_to_check)
969                 blocks_to_check = num_blocks;
970
971         struct algo_block *params = malloc((blocks_to_check+1)*sizeof(struct algo_block));
972         if (!params) {
973                 retval = ERROR_FAIL;
974                 goto cleanup1;
975         }
976
977         int i;
978         uint32_t total_size = 0;
979         for (i = 0; i < blocks_to_check; i++) {
980                 total_size += blocks[i].size;
981                 target_buffer_set_u32(target, (uint8_t *)&(params[i].size),
982                                                 blocks[i].size / sizeof(uint32_t));
983                 target_buffer_set_u32(target, (uint8_t *)&(params[i].address),
984                                                 blocks[i].address);
985         }
986         target_buffer_set_u32(target, (uint8_t *)&(params[blocks_to_check].size), 0);
987
988         uint32_t param_size = (blocks_to_check + 1) * sizeof(struct algo_block);
989         if (target_alloc_working_area(target, param_size,
990                         &erase_check_params) != ERROR_OK) {
991                 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
992                 goto cleanup2;
993         }
994
995         retval = target_write_buffer(target, erase_check_params->address,
996                                 param_size, (uint8_t *)params);
997         if (retval != ERROR_OK)
998                 goto cleanup3;
999
1000         uint32_t erased_word = erased_value | (erased_value << 8)
1001                                | (erased_value << 16) | (erased_value << 24);
1002
1003         LOG_DEBUG("Starting erase check of %d blocks, parameters@"
1004                  TARGET_ADDR_FMT, blocks_to_check, erase_check_params->address);
1005
1006         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1007         armv7m_info.core_mode = ARM_MODE_THREAD;
1008
1009         init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1010         buf_set_u32(reg_params[0].value, 0, 32, erase_check_params->address);
1011
1012         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1013         buf_set_u32(reg_params[1].value, 0, 32, erased_word);
1014
1015         /* assume CPU clk at least 1 MHz */
1016         int timeout = (timed_out ? 30000 : 2000) + total_size * 3 / 1000;
1017
1018         retval = target_run_algorithm(target,
1019                                 0, NULL,
1020                                 ARRAY_SIZE(reg_params), reg_params,
1021                                 erase_check_algorithm->address,
1022                                 erase_check_algorithm->address + (code_size - 2),
1023                                 timeout,
1024                                 &armv7m_info);
1025
1026         timed_out = retval == ERROR_TARGET_TIMEOUT;
1027         if (retval != ERROR_OK && !timed_out)
1028                 goto cleanup4;
1029
1030         retval = target_read_buffer(target, erase_check_params->address,
1031                                 param_size, (uint8_t *)params);
1032         if (retval != ERROR_OK)
1033                 goto cleanup4;
1034
1035         for (i = 0; i < blocks_to_check; i++) {
1036                 uint32_t result = target_buffer_get_u32(target,
1037                                         (uint8_t *)&(params[i].result));
1038                 if (result != 0 && result != 1)
1039                         break;
1040
1041                 blocks[i].result = result;
1042         }
1043         if (i && timed_out)
1044                 LOG_INFO("Slow CPU clock: %d blocks checked, %d remain. Continuing...", i, num_blocks-i);
1045
1046         retval = i;             /* return number of blocks really checked */
1047
1048 cleanup4:
1049         destroy_reg_param(&reg_params[0]);
1050         destroy_reg_param(&reg_params[1]);
1051
1052 cleanup3:
1053         target_free_working_area(target, erase_check_params);
1054 cleanup2:
1055         free(params);
1056 cleanup1:
1057         target_free_working_area(target, erase_check_algorithm);
1058
1059         return retval;
1060 }
1061
1062 int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
1063 {
1064         struct armv7m_common *armv7m = target_to_armv7m(target);
1065         struct reg *r = armv7m->arm.pc;
1066         bool result = false;
1067
1068
1069         /* if we halted last time due to a bkpt instruction
1070          * then we have to manually step over it, otherwise
1071          * the core will break again */
1072
1073         if (target->debug_reason == DBG_REASON_BREAKPOINT) {
1074                 uint16_t op;
1075                 uint32_t pc = buf_get_u32(r->value, 0, 32);
1076
1077                 pc &= ~1;
1078                 if (target_read_u16(target, pc, &op) == ERROR_OK) {
1079                         if ((op & 0xFF00) == 0xBE00) {
1080                                 pc = buf_get_u32(r->value, 0, 32) + 2;
1081                                 buf_set_u32(r->value, 0, 32, pc);
1082                                 r->dirty = true;
1083                                 r->valid = true;
1084                                 result = true;
1085                                 LOG_DEBUG("Skipping over BKPT instruction");
1086                         }
1087                 }
1088         }
1089
1090         if (inst_found)
1091                 *inst_found = result;
1092
1093         return ERROR_OK;
1094 }
1095
1096 const struct command_registration armv7m_command_handlers[] = {
1097         {
1098                 .chain = arm_command_handlers,
1099         },
1100         COMMAND_REGISTRATION_DONE
1101 };