topic: add reset functions for SWD
[fw/openocd] / src / target / arm_adi_v5.c
1 /***************************************************************************
2  *   Copyright (C) 2006 by Magnus Lundin                                   *
3  *   lundin@mlu.mine.nu                                                    *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2009-2010 by Oyvind Harboe                              *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2009-2010 by David Brownell                             *
12  *                                                                         *
13  *   This program is free software; you can redistribute it and/or modify  *
14  *   it under the terms of the GNU General Public License as published by  *
15  *   the Free Software Foundation; either version 2 of the License, or     *
16  *   (at your option) any later version.                                   *
17  *                                                                         *
18  *   This program is distributed in the hope that it will be useful,       *
19  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
20  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
21  *   GNU General Public License for more details.                          *
22  *                                                                         *
23  *   You should have received a copy of the GNU General Public License     *
24  *   along with this program; if not, write to the                         *
25  *   Free Software Foundation, Inc.,                                       *
26  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
27  ***************************************************************************/
28
29 /**
30  * @file
31  * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32  * debugging architecture.  Compared with previous versions, this includes
33  * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34  * transport, and focusses on memory mapped resources as defined by the
35  * CoreSight architecture.
36  *
37  * A key concept in ADIv5 is the Debug Access Port, or DAP.  A DAP has two
38  * basic components:  a Debug Port (DP) transporting messages to and from a
39  * debugger, and an Access Port (AP) accessing resources.  Three types of DP
40  * are defined.  One uses only JTAG for communication, and is called JTAG-DP.
41  * One uses only SWD for communication, and is called SW-DP.  The third can
42  * use either SWD or JTAG, and is called SWJ-DP.  The most common type of AP
43  * is used to access memory mapped resources and is called a MEM-AP.  Also a
44  * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45  *
46  * This programming interface allows DAP pipelined operations through a
47  * transaction queue.  This primarily affects AP operations (such as using
48  * a MEM-AP to access memory or registers).  If the current transaction has
49  * not finished by the time the next one must begin, and the ORUNDETECT bit
50  * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51  * further AP operations will fail.  There are two basic methods to avoid
52  * such overrun errors.  One involves polling for status instead of using
53  * transaction piplining.  The other involves adding delays to ensure the
54  * AP has enough time to complete one operation before starting the next
55  * one.  (For JTAG these delays are controlled by memaccess_tck.)
56  */
57
58 /*
59  * Relevant specifications from ARM include:
60  *
61  * ARM(tm) Debug Interface v5 Architecture Specification    ARM IHI 0031A
62  * CoreSight(tm) v1.0 Architecture Specification            ARM IHI 0029B
63  *
64  * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65  * Cortex-M3(tm) TRM, ARM DDI 0337G
66  */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "jtag/interface.h"
73 #include "arm.h"
74 #include "arm_adi_v5.h"
75 #include <helper/time_support.h>
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement  */
78
79 /*
80         uint32_t tar_block_size(uint32_t address)
81         Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85         return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89  *                                                                         *
90  * DP and MEM-AP  register access  through APACC and DPACC                 *
91  *                                                                         *
92 ***************************************************************************/
93
94 /**
95  * Select one of the APs connected to the specified DAP.  The
96  * selection is implicitly used with future AP transactions.
97  * This is a NOP if the specified AP is already selected.
98  *
99  * @param dap The DAP
100  * @param apsel Number of the AP to (implicitly) use with further
101  *      transactions.  This normally identifies a MEM-AP.
102  */
103 void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
104 {
105         uint32_t new_ap = (ap << 24) & 0xFF000000;
106
107         if (new_ap != dap->ap_current) {
108                 dap->ap_current = new_ap;
109                 /* Switching AP invalidates cached values.
110                  * Values MUST BE UPDATED BEFORE AP ACCESS.
111                  */
112                 dap->ap_bank_value = -1;
113                 dap->ap_csw_value = -1;
114                 dap->ap_tar_value = -1;
115         }
116 }
117
118 /**
119  * Queue transactions setting up transfer parameters for the
120  * currently selected MEM-AP.
121  *
122  * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
123  * initiate data reads or writes using memory or peripheral addresses.
124  * If the CSW is configured for it, the TAR may be automatically
125  * incremented after each transfer.
126  *
127  * @todo Rename to reflect it being specifically a MEM-AP function.
128  *
129  * @param dap The DAP connected to the MEM-AP.
130  * @param csw MEM-AP Control/Status Word (CSW) register to assign.  If this
131  *      matches the cached value, the register is not changed.
132  * @param tar MEM-AP Transfer Address Register (TAR) to assign.  If this
133  *      matches the cached address, the register is not changed.
134  *
135  * @return ERROR_OK if the transaction was properly queued, else a fault code.
136  */
137 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
138 {
139         int retval;
140
141         csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
142         if (csw != dap->ap_csw_value) {
143                 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
144                 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
145                 if (retval != ERROR_OK)
146                         return retval;
147                 dap->ap_csw_value = csw;
148         }
149         if (tar != dap->ap_tar_value) {
150                 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
151                 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
152                 if (retval != ERROR_OK)
153                         return retval;
154                 dap->ap_tar_value = tar;
155         }
156         /* Disable TAR cache when autoincrementing */
157         if (csw & CSW_ADDRINC_MASK)
158                 dap->ap_tar_value = -1;
159         return ERROR_OK;
160 }
161
162 /**
163  * Asynchronous (queued) read of a word from memory or a system register.
164  *
165  * @param dap The DAP connected to the MEM-AP performing the read.
166  * @param address Address of the 32-bit word to read; it must be
167  *      readable by the currently selected MEM-AP.
168  * @param value points to where the word will be stored when the
169  *      transaction queue is flushed (assuming no errors).
170  *
171  * @return ERROR_OK for success.  Otherwise a fault code.
172  */
173 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
174                 uint32_t *value)
175 {
176         int retval;
177
178         /* Use banked addressing (REG_BDx) to avoid some link traffic
179          * (updating TAR) when reading several consecutive addresses.
180          */
181         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
182                         address & 0xFFFFFFF0);
183         if (retval != ERROR_OK)
184                 return retval;
185
186         return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
187 }
188
189 /**
190  * Synchronous read of a word from memory or a system register.
191  * As a side effect, this flushes any queued transactions.
192  *
193  * @param dap The DAP connected to the MEM-AP performing the read.
194  * @param address Address of the 32-bit word to read; it must be
195  *      readable by the currently selected MEM-AP.
196  * @param value points to where the result will be stored.
197  *
198  * @return ERROR_OK for success; *value holds the result.
199  * Otherwise a fault code.
200  */
201 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
202                 uint32_t *value)
203 {
204         int retval;
205
206         retval = mem_ap_read_u32(dap, address, value);
207         if (retval != ERROR_OK)
208                 return retval;
209
210         return dap_run(dap);
211 }
212
213 /**
214  * Asynchronous (queued) write of a word to memory or a system register.
215  *
216  * @param dap The DAP connected to the MEM-AP.
217  * @param address Address to be written; it must be writable by
218  *      the currently selected MEM-AP.
219  * @param value Word that will be written to the address when transaction
220  *      queue is flushed (assuming no errors).
221  *
222  * @return ERROR_OK for success.  Otherwise a fault code.
223  */
224 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
225                 uint32_t value)
226 {
227         int retval;
228
229         /* Use banked addressing (REG_BDx) to avoid some link traffic
230          * (updating TAR) when writing several consecutive addresses.
231          */
232         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
233                         address & 0xFFFFFFF0);
234         if (retval != ERROR_OK)
235                 return retval;
236
237         return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
238                         value);
239 }
240
241 /**
242  * Synchronous write of a word to memory or a system register.
243  * As a side effect, this flushes any queued transactions.
244  *
245  * @param dap The DAP connected to the MEM-AP.
246  * @param address Address to be written; it must be writable by
247  *      the currently selected MEM-AP.
248  * @param value Word that will be written.
249  *
250  * @return ERROR_OK for success; the data was written.  Otherwise a fault code.
251  */
252 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
253                 uint32_t value)
254 {
255         int retval = mem_ap_write_u32(dap, address, value);
256
257         if (retval != ERROR_OK)
258                 return retval;
259
260         return dap_run(dap);
261 }
262
263 /*****************************************************************************
264 *                                                                            *
265 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
266 *                                                                            *
267 * Write a buffer in target order (little endian)                             *
268 *                                                                            *
269 *****************************************************************************/
270 int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
271 {
272         int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
273         uint32_t adr = address;
274         const uint8_t *pBuffer = buffer;
275
276         count >>= 2;
277         wcount = count;
278
279         /* if we have an unaligned access - reorder data */
280         if (adr & 0x3u) {
281                 for (writecount = 0; writecount < count; writecount++) {
282                         int i;
283                         uint32_t outvalue;
284                         memcpy(&outvalue, pBuffer, sizeof(uint32_t));
285
286                         for (i = 0; i < 4; i++) {
287                                 *((uint8_t *)pBuffer + (adr & 0x3)) = outvalue;
288                                 outvalue >>= 8;
289                                 adr++;
290                         }
291                         pBuffer += sizeof(uint32_t);
292                 }
293         }
294
295         while (wcount > 0) {
296                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
297                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
298                 if (wcount < blocksize)
299                         blocksize = wcount;
300
301                 /* handle unaligned data at 4k boundary */
302                 if (blocksize == 0)
303                         blocksize = 1;
304
305                 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
306                 if (retval != ERROR_OK)
307                         return retval;
308
309                 for (writecount = 0; writecount < blocksize; writecount++) {
310                         retval = dap_queue_ap_write(dap, AP_REG_DRW,
311                                 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
312                         if (retval != ERROR_OK)
313                                 break;
314                 }
315
316                 retval = dap_run(dap);
317                 if (retval == ERROR_OK) {
318                         wcount = wcount - blocksize;
319                         address = address + 4 * blocksize;
320                         buffer = buffer + 4 * blocksize;
321                 } else
322                         errorcount++;
323
324                 if (errorcount > 1) {
325                         LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
326                         return retval;
327                 }
328         }
329
330         return retval;
331 }
332
333 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
334                 const uint8_t *buffer, int count, uint32_t address)
335 {
336         int retval = ERROR_OK;
337         int wcount, blocksize, writecount, i;
338
339         wcount = count >> 1;
340
341         while (wcount > 0) {
342                 int nbytes;
343
344                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
345                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
346
347                 if (wcount < blocksize)
348                         blocksize = wcount;
349
350                 /* handle unaligned data at 4k boundary */
351                 if (blocksize == 0)
352                         blocksize = 1;
353
354                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
355                 if (retval != ERROR_OK)
356                         return retval;
357                 writecount = blocksize;
358
359                 do {
360                         nbytes = MIN((writecount << 1), 4);
361
362                         if (nbytes < 4) {
363                                 retval = mem_ap_write_buf_u16(dap, buffer,
364                                                 nbytes, address);
365                                 if (retval != ERROR_OK) {
366                                         LOG_WARNING("Block write error address "
367                                                 "0x%" PRIx32 ", count 0x%x",
368                                                 address, count);
369                                         return retval;
370                                 }
371
372                                 address += nbytes >> 1;
373                         } else {
374                                 uint32_t outvalue;
375                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
376
377                                 for (i = 0; i < nbytes; i++) {
378                                         *((uint8_t *)buffer + (address & 0x3)) = outvalue;
379                                         outvalue >>= 8;
380                                         address++;
381                                 }
382
383                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
384                                 retval = dap_queue_ap_write(dap,
385                                                 AP_REG_DRW, outvalue);
386                                 if (retval != ERROR_OK)
387                                         break;
388
389                                 retval = dap_run(dap);
390                                 if (retval != ERROR_OK) {
391                                         LOG_WARNING("Block write error address "
392                                                 "0x%" PRIx32 ", count 0x%x",
393                                                 address, count);
394                                         return retval;
395                                 }
396                         }
397
398                         buffer += nbytes >> 1;
399                         writecount -= nbytes >> 1;
400
401                 } while (writecount);
402                 wcount -= blocksize;
403         }
404
405         return retval;
406 }
407
408 int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
409 {
410         int retval = ERROR_OK;
411
412         if (count >= 4)
413                 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
414
415         while (count > 0) {
416                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
417                 if (retval != ERROR_OK)
418                         return retval;
419                 uint16_t svalue;
420                 memcpy(&svalue, buffer, sizeof(uint16_t));
421                 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
422                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
423                 if (retval != ERROR_OK)
424                         break;
425
426                 retval = dap_run(dap);
427                 if (retval != ERROR_OK)
428                         break;
429
430                 count -= 2;
431                 address += 2;
432                 buffer += 2;
433         }
434
435         return retval;
436 }
437
438 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
439                 const uint8_t *buffer, int count, uint32_t address)
440 {
441         int retval = ERROR_OK;
442         int wcount, blocksize, writecount, i;
443
444         wcount = count;
445
446         while (wcount > 0) {
447                 int nbytes;
448
449                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
450                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
451
452                 if (wcount < blocksize)
453                         blocksize = wcount;
454
455                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
456                 if (retval != ERROR_OK)
457                         return retval;
458                 writecount = blocksize;
459
460                 do {
461                         nbytes = MIN(writecount, 4);
462
463                         if (nbytes < 4) {
464                                 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
465                                 if (retval != ERROR_OK) {
466                                         LOG_WARNING("Block write error address "
467                                                 "0x%" PRIx32 ", count 0x%x",
468                                                 address, count);
469                                         return retval;
470                                 }
471
472                                 address += nbytes;
473                         } else {
474                                 uint32_t outvalue;
475                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
476
477                                 for (i = 0; i < nbytes; i++) {
478                                         *((uint8_t *)buffer + (address & 0x3)) = outvalue;
479                                         outvalue >>= 8;
480                                         address++;
481                                 }
482
483                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
484                                 retval = dap_queue_ap_write(dap,
485                                                 AP_REG_DRW, outvalue);
486                                 if (retval != ERROR_OK)
487                                         break;
488
489                                 retval = dap_run(dap);
490                                 if (retval != ERROR_OK) {
491                                         LOG_WARNING("Block write error address "
492                                                 "0x%" PRIx32 ", count 0x%x",
493                                                 address, count);
494                                         return retval;
495                                 }
496                         }
497
498                         buffer += nbytes;
499                         writecount -= nbytes;
500
501                 } while (writecount);
502                 wcount -= blocksize;
503         }
504
505         return retval;
506 }
507
508 int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
509 {
510         int retval = ERROR_OK;
511
512         if (count >= 4)
513                 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
514
515         while (count > 0) {
516                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
517                 if (retval != ERROR_OK)
518                         return retval;
519                 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
520                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
521                 if (retval != ERROR_OK)
522                         break;
523
524                 retval = dap_run(dap);
525                 if (retval != ERROR_OK)
526                         break;
527
528                 count--;
529                 address++;
530                 buffer++;
531         }
532
533         return retval;
534 }
535
536 /* FIXME don't import ... this is a temporary workaround for the
537  * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
538  */
539 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
540                 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
541                 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
542
543 /**
544  * Synchronously read a block of 32-bit words into a buffer
545  * @param dap The DAP connected to the MEM-AP.
546  * @param buffer where the words will be stored (in host byte order).
547  * @param count How many words to read.
548  * @param address Memory address from which to read words; all the
549  *      words must be readable by the currently selected MEM-AP.
550  */
551 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
552                 int count, uint32_t address)
553 {
554         int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
555         uint32_t adr = address;
556         uint8_t *pBuffer = buffer;
557
558         count >>= 2;
559         wcount = count;
560
561         while (wcount > 0) {
562                 /* Adjust to read blocks within boundaries aligned to the
563                  * TAR autoincrement size (at least 2^10).  Autoincrement
564                  * mode avoids an extra per-word roundtrip to update TAR.
565                  */
566                 blocksize = max_tar_block_size(dap->tar_autoincr_block,
567                                 address);
568                 if (wcount < blocksize)
569                         blocksize = wcount;
570
571                 /* handle unaligned data at 4k boundary */
572                 if (blocksize == 0)
573                         blocksize = 1;
574
575                 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
576                                 address);
577                 if (retval != ERROR_OK)
578                         return retval;
579
580                 /* FIXME remove these three calls to adi_jtag_dp_scan(),
581                  * so this routine becomes transport-neutral.  Be careful
582                  * not to cause performance problems with JTAG; would it
583                  * suffice to loop over dap_queue_ap_read(), or would that
584                  * be slower when JTAG is the chosen transport?
585                  */
586
587                 /* Scan out first read */
588                 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
589                                 DPAP_READ, 0, NULL, NULL);
590                 if (retval != ERROR_OK)
591                         return retval;
592                 for (readcount = 0; readcount < blocksize - 1; readcount++) {
593                         /* Scan out next read; scan in posted value for the
594                          * previous one.  Assumes read is acked "OK/FAULT",
595                          * and CTRL_STAT says that meant "OK".
596                          */
597                         retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
598                                         DPAP_READ, 0, buffer + 4 * readcount,
599                                         &dap->ack);
600                         if (retval != ERROR_OK)
601                                 return retval;
602                 }
603
604                 /* Scan in last posted value; RDBUFF has no other effect,
605                  * assuming ack is OK/FAULT and CTRL_STAT says "OK".
606                  */
607                 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
608                                 DPAP_READ, 0, buffer + 4 * readcount,
609                                 &dap->ack);
610                 if (retval != ERROR_OK)
611                         return retval;
612
613                 retval = dap_run(dap);
614                 if (retval != ERROR_OK) {
615                         errorcount++;
616                         if (errorcount <= 1) {
617                                 /* try again */
618                                 continue;
619                         }
620                         LOG_WARNING("Block read error address 0x%" PRIx32, address);
621                         return retval;
622                 }
623                 wcount = wcount - blocksize;
624                 address += 4 * blocksize;
625                 buffer += 4 * blocksize;
626         }
627
628         /* if we have an unaligned access - reorder data */
629         if (adr & 0x3u) {
630                 for (readcount = 0; readcount < count; readcount++) {
631                         int i;
632                         uint32_t data;
633                         memcpy(&data, pBuffer, sizeof(uint32_t));
634
635                         for (i = 0; i < 4; i++) {
636                                 *((uint8_t *)pBuffer) =
637                                                 (data >> 8 * (adr & 0x3));
638                                 pBuffer++;
639                                 adr++;
640                         }
641                 }
642         }
643
644         return retval;
645 }
646
647 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
648                 uint8_t *buffer, int count, uint32_t address)
649 {
650         uint32_t invalue;
651         int retval = ERROR_OK;
652         int wcount, blocksize, readcount, i;
653
654         wcount = count >> 1;
655
656         while (wcount > 0) {
657                 int nbytes;
658
659                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
660                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
661                 if (wcount < blocksize)
662                         blocksize = wcount;
663
664                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
665                 if (retval != ERROR_OK)
666                         return retval;
667
668                 /* handle unaligned data at 4k boundary */
669                 if (blocksize == 0)
670                         blocksize = 1;
671                 readcount = blocksize;
672
673                 do {
674                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
675                         if (retval != ERROR_OK)
676                                 return retval;
677                         retval = dap_run(dap);
678                         if (retval != ERROR_OK) {
679                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
680                                 return retval;
681                         }
682
683                         nbytes = MIN((readcount << 1), 4);
684
685                         for (i = 0; i < nbytes; i++) {
686                                 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
687                                 buffer++;
688                                 address++;
689                         }
690
691                         readcount -= (nbytes >> 1);
692                 } while (readcount);
693                 wcount -= blocksize;
694         }
695
696         return retval;
697 }
698
699 /**
700  * Synchronously read a block of 16-bit halfwords into a buffer
701  * @param dap The DAP connected to the MEM-AP.
702  * @param buffer where the halfwords will be stored (in host byte order).
703  * @param count How many halfwords to read.
704  * @param address Memory address from which to read words; all the
705  *      words must be readable by the currently selected MEM-AP.
706  */
707 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
708                 int count, uint32_t address)
709 {
710         uint32_t invalue, i;
711         int retval = ERROR_OK;
712
713         if (count >= 4)
714                 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
715
716         while (count > 0) {
717                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
718                 if (retval != ERROR_OK)
719                         return retval;
720                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
721                 if (retval != ERROR_OK)
722                         break;
723
724                 retval = dap_run(dap);
725                 if (retval != ERROR_OK)
726                         break;
727
728                 if (address & 0x1) {
729                         for (i = 0; i < 2; i++) {
730                                 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
731                                 buffer++;
732                                 address++;
733                         }
734                 } else {
735                         uint16_t svalue = (invalue >> 8 * (address & 0x3));
736                         memcpy(buffer, &svalue, sizeof(uint16_t));
737                         address += 2;
738                         buffer += 2;
739                 }
740                 count -= 2;
741         }
742
743         return retval;
744 }
745
746 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
747  * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
748  *
749  * The solution is to arrange for a large out/in scan in this loop and
750  * and convert data afterwards.
751  */
752 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
753                 uint8_t *buffer, int count, uint32_t address)
754 {
755         uint32_t invalue;
756         int retval = ERROR_OK;
757         int wcount, blocksize, readcount, i;
758
759         wcount = count;
760
761         while (wcount > 0) {
762                 int nbytes;
763
764                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
765                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
766
767                 if (wcount < blocksize)
768                         blocksize = wcount;
769
770                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
771                 if (retval != ERROR_OK)
772                         return retval;
773                 readcount = blocksize;
774
775                 do {
776                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
777                         if (retval != ERROR_OK)
778                                 return retval;
779                         retval = dap_run(dap);
780                         if (retval != ERROR_OK) {
781                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
782                                 return retval;
783                         }
784
785                         nbytes = MIN(readcount, 4);
786
787                         for (i = 0; i < nbytes; i++) {
788                                 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
789                                 buffer++;
790                                 address++;
791                         }
792
793                         readcount -= nbytes;
794                 } while (readcount);
795                 wcount -= blocksize;
796         }
797
798         return retval;
799 }
800
801 /**
802  * Synchronously read a block of bytes into a buffer
803  * @param dap The DAP connected to the MEM-AP.
804  * @param buffer where the bytes will be stored.
805  * @param count How many bytes to read.
806  * @param address Memory address from which to read data; all the
807  *      data must be readable by the currently selected MEM-AP.
808  */
809 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
810                 int count, uint32_t address)
811 {
812         uint32_t invalue;
813         int retval = ERROR_OK;
814
815         if (count >= 4)
816                 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
817
818         while (count > 0) {
819                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
820                 if (retval != ERROR_OK)
821                         return retval;
822                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
823                 if (retval != ERROR_OK)
824                         return retval;
825                 retval = dap_run(dap);
826                 if (retval != ERROR_OK)
827                         break;
828
829                 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
830                 count--;
831                 address++;
832                 buffer++;
833         }
834
835         return retval;
836 }
837
838 /*--------------------------------------------------------------------*/
839 /*          Wrapping function with selection of AP                    */
840 /*--------------------------------------------------------------------*/
841 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
842                 uint32_t address, uint32_t *value)
843 {
844         dap_ap_select(swjdp, ap);
845         return mem_ap_read_u32(swjdp, address, value);
846 }
847
848 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
849                 uint32_t address, uint32_t value)
850 {
851         dap_ap_select(swjdp, ap);
852         return mem_ap_write_u32(swjdp, address, value);
853 }
854
855 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
856                 uint32_t address, uint32_t *value)
857 {
858         dap_ap_select(swjdp, ap);
859         return mem_ap_read_atomic_u32(swjdp, address, value);
860 }
861
862 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
863                 uint32_t address, uint32_t value)
864 {
865         dap_ap_select(swjdp, ap);
866         return mem_ap_write_atomic_u32(swjdp, address, value);
867 }
868
869 int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
870                 uint8_t *buffer, int count, uint32_t address)
871 {
872         dap_ap_select(swjdp, ap);
873         return mem_ap_read_buf_u8(swjdp, buffer, count, address);
874 }
875
876 int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
877                 uint8_t *buffer, int count, uint32_t address)
878 {
879         dap_ap_select(swjdp, ap);
880         return mem_ap_read_buf_u16(swjdp, buffer, count, address);
881 }
882
883 int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
884                 uint8_t *buffer, int count, uint32_t address)
885 {
886         dap_ap_select(swjdp, ap);
887         return mem_ap_read_buf_u32(swjdp, buffer, count, address);
888 }
889
890 int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
891                 const uint8_t *buffer, int count, uint32_t address)
892 {
893         dap_ap_select(swjdp, ap);
894         return mem_ap_write_buf_u8(swjdp, buffer, count, address);
895 }
896
897 int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
898                 const uint8_t *buffer, int count, uint32_t address)
899 {
900         dap_ap_select(swjdp, ap);
901         return mem_ap_write_buf_u16(swjdp, buffer, count, address);
902 }
903
904 int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
905                 const uint8_t *buffer, int count, uint32_t address)
906 {
907         dap_ap_select(swjdp, ap);
908         return mem_ap_write_buf_u32(swjdp, buffer, count, address);
909 }
910
911 #define MDM_REG_STAT            0x00
912 #define MDM_REG_CTRL            0x04
913 #define MDM_REG_ID              0xfc
914
915 #define MDM_STAT_FMEACK         (1<<0)
916 #define MDM_STAT_FREADY         (1<<1)
917 #define MDM_STAT_SYSSEC         (1<<2)
918 #define MDM_STAT_SYSRES         (1<<3)
919 #define MDM_STAT_FMEEN          (1<<5)
920 #define MDM_STAT_BACKDOOREN     (1<<6)
921 #define MDM_STAT_LPEN           (1<<7)
922 #define MDM_STAT_VLPEN          (1<<8)
923 #define MDM_STAT_LLSMODEXIT     (1<<9)
924 #define MDM_STAT_VLLSXMODEXIT   (1<<10)
925 #define MDM_STAT_CORE_HALTED    (1<<16)
926 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
927 #define MDM_STAT_CORESLEEPING   (1<<18)
928
929 #define MEM_CTRL_FMEIP          (1<<0)
930 #define MEM_CTRL_DBG_DIS        (1<<1)
931 #define MEM_CTRL_DBG_REQ        (1<<2)
932 #define MEM_CTRL_SYS_RES_REQ    (1<<3)
933 #define MEM_CTRL_CORE_HOLD_RES  (1<<4)
934 #define MEM_CTRL_VLLSX_DBG_REQ  (1<<5)
935 #define MEM_CTRL_VLLSX_DBG_ACK  (1<<6)
936 #define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
937
938 /**
939  *
940  */
941 int dap_syssec_kinetis_mdmap(struct adiv5_dap *dap)
942 {
943         uint32_t val;
944         int retval;
945         enum reset_types jtag_reset_config = jtag_get_reset_config();
946
947         dap_ap_select(dap, 1);
948
949         /* first check mdm-ap id register */
950         retval = dap_queue_ap_read(dap, MDM_REG_ID, &val);
951         if (retval != ERROR_OK)
952                 return retval;
953         dap_run(dap);
954
955         if (val != 0x001C0000) {
956                 LOG_DEBUG("id doesn't match %08X != 0x001C0000", val);
957                 dap_ap_select(dap, 0);
958                 return ERROR_FAIL;
959         }
960
961         /* read and parse status register
962          * it's important that the device is out of
963          * reset here
964          */
965         retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
966         if (retval != ERROR_OK)
967                 return retval;
968         dap_run(dap);
969
970         LOG_DEBUG("MDM_REG_STAT %08X", val);
971
972         if ((val & (MDM_STAT_SYSSEC|MDM_STAT_FREADY)) != (MDM_STAT_FREADY)) {
973                 LOG_DEBUG("MDMAP: system is secured, masserase needed");
974
975                 if (!(val & MDM_STAT_FMEEN))
976                         LOG_DEBUG("MDMAP: masserase is disabled");
977                 else {
978                         /* we need to assert reset */
979                         if (jtag_reset_config & RESET_HAS_SRST) {
980                                 /* default to asserting srst */
981                                 adapter_assert_reset();
982                         } else {
983                                 LOG_DEBUG("SRST not configured");
984                                 dap_ap_select(dap, 0);
985                                 return ERROR_FAIL;
986                         }
987
988                         while (1) {
989                                 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, MEM_CTRL_FMEIP);
990                                 if (retval != ERROR_OK)
991                                         return retval;
992                                 dap_run(dap);
993                                 /* read status register and wait for ready */
994                                 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
995                                 if (retval != ERROR_OK)
996                                         return retval;
997                                 dap_run(dap);
998                                 LOG_DEBUG("MDM_REG_STAT %08X", val);
999
1000                                 if ((val & 1))
1001                                         break;
1002                         }
1003
1004                         while (1) {
1005                                 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, 0);
1006                                 if (retval != ERROR_OK)
1007                                         return retval;
1008                                 dap_run(dap);
1009                                 /* read status register */
1010                                 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
1011                                 if (retval != ERROR_OK)
1012                                         return retval;
1013                                 dap_run(dap);
1014                                 LOG_DEBUG("MDM_REG_STAT %08X", val);
1015                                 /* read control register and wait for ready */
1016                                 retval = dap_queue_ap_read(dap, MDM_REG_CTRL, &val);
1017                                 if (retval != ERROR_OK)
1018                                         return retval;
1019                                 dap_run(dap);
1020                                 LOG_DEBUG("MDM_REG_CTRL %08X", val);
1021
1022                                 if (val == 0x00)
1023                                         break;
1024                         }
1025                 }
1026         }
1027
1028         dap_ap_select(dap, 0);
1029
1030         return ERROR_OK;
1031 }
1032
1033 /** */
1034 struct dap_syssec_filter {
1035         /** */
1036         uint32_t idcode;
1037         /** */
1038         int (*dap_init)(struct adiv5_dap *dap);
1039 };
1040
1041 /** */
1042 static struct dap_syssec_filter dap_syssec_filter_data[] = {
1043         { 0x4BA00477, dap_syssec_kinetis_mdmap }
1044 };
1045
1046 /**
1047  *
1048  */
1049 int dap_syssec(struct adiv5_dap *dap)
1050 {
1051         unsigned int i;
1052         struct jtag_tap *tap;
1053
1054         for (i = 0; i < sizeof(dap_syssec_filter_data); i++) {
1055                 tap = dap->jtag_info->tap;
1056
1057                 while (tap != NULL) {
1058                         if (tap->hasidcode && (dap_syssec_filter_data[i].idcode == tap->idcode)) {
1059                                 LOG_DEBUG("DAP: mdmap_init for idcode: %08x", tap->idcode);
1060                                 dap_syssec_filter_data[i].dap_init(dap);
1061                         }
1062                         tap = tap->next_tap;
1063                 }
1064         }
1065
1066         return ERROR_OK;
1067 }
1068
1069 /*--------------------------------------------------------------------------*/
1070
1071
1072 /* FIXME don't import ... just initialize as
1073  * part of DAP transport setup
1074 */
1075 extern const struct dap_ops jtag_dp_ops;
1076
1077 /*--------------------------------------------------------------------------*/
1078
1079 /**
1080  * Initialize a DAP.  This sets up the power domains, prepares the DP
1081  * for further use, and arranges to use AP #0 for all AP operations
1082  * until dap_ap-select() changes that policy.
1083  *
1084  * @param dap The DAP being initialized.
1085  *
1086  * @todo Rename this.  We also need an initialization scheme which account
1087  * for SWD transports not just JTAG; that will need to address differences
1088  * in layering.  (JTAG is useful without any debug target; but not SWD.)
1089  * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
1090  */
1091 int ahbap_debugport_init(struct adiv5_dap *dap)
1092 {
1093         uint32_t ctrlstat;
1094         int cnt = 0;
1095         int retval;
1096
1097         LOG_DEBUG(" ");
1098
1099         /* test for initialized low level jtag hardware
1100          * this always fails for stlink hardware
1101          */
1102         if (!dap->jtag_info) {
1103                 LOG_DEBUG("No low level jtag hardware found");
1104                 return ERROR_OK;
1105         }
1106
1107         /* JTAG-DP or SWJ-DP, in JTAG mode
1108          * ... for SWD mode this is patched as part
1109          * of link switchover
1110          */
1111         if (!dap->ops)
1112                 dap->ops = &jtag_dp_ops;
1113
1114         /* Default MEM-AP setup.
1115          *
1116          * REVISIT AP #0 may be an inappropriate default for this.
1117          * Should we probe, or take a hint from the caller?
1118          * Presumably we can ignore the possibility of multiple APs.
1119          */
1120         dap->ap_current = !0;
1121         dap_ap_select(dap, 0);
1122
1123         /* DP initialization */
1124
1125         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1126         if (retval != ERROR_OK)
1127                 return retval;
1128
1129         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
1130         if (retval != ERROR_OK)
1131                 return retval;
1132
1133         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1134         if (retval != ERROR_OK)
1135                 return retval;
1136
1137         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1138         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1139         if (retval != ERROR_OK)
1140                 return retval;
1141
1142         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1143         if (retval != ERROR_OK)
1144                 return retval;
1145         retval = dap_run(dap);
1146         if (retval != ERROR_OK)
1147                 return retval;
1148
1149         /* Check that we have debug power domains activated */
1150         while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10)) {
1151                 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1152                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1153                 if (retval != ERROR_OK)
1154                         return retval;
1155                 retval = dap_run(dap);
1156                 if (retval != ERROR_OK)
1157                         return retval;
1158                 alive_sleep(10);
1159         }
1160
1161         while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10)) {
1162                 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1163                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1164                 if (retval != ERROR_OK)
1165                         return retval;
1166                 retval = dap_run(dap);
1167                 if (retval != ERROR_OK)
1168                         return retval;
1169                 alive_sleep(10);
1170         }
1171
1172         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1173         if (retval != ERROR_OK)
1174                 return retval;
1175         /* With debug power on we can activate OVERRUN checking */
1176         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1177         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1178         if (retval != ERROR_OK)
1179                 return retval;
1180         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1181         if (retval != ERROR_OK)
1182                 return retval;
1183
1184         dap_syssec(dap);
1185
1186         return ERROR_OK;
1187 }
1188
1189 /* CID interpretation -- see ARM IHI 0029B section 3
1190  * and ARM IHI 0031A table 13-3.
1191  */
1192 static const char *class_description[16] = {
1193         "Reserved", "ROM table", "Reserved", "Reserved",
1194         "Reserved", "Reserved", "Reserved", "Reserved",
1195         "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1196         "Reserved", "OptimoDE DESS",
1197         "Generic IP component", "PrimeCell or System component"
1198 };
1199
1200 static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1201 {
1202         return cid3 == 0xb1 && cid2 == 0x05
1203                         && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1204 }
1205
1206 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1207                         uint32_t *out_dbgbase, uint32_t *out_apid)
1208 {
1209         uint32_t ap_old;
1210         int retval;
1211         uint32_t dbgbase, apid;
1212
1213         /* AP address is in bits 31:24 of DP_SELECT */
1214         if (ap >= 256)
1215                 return ERROR_COMMAND_SYNTAX_ERROR;
1216
1217         ap_old = dap->ap_current;
1218         dap_ap_select(dap, ap);
1219
1220         retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1221         if (retval != ERROR_OK)
1222                 return retval;
1223         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1224         if (retval != ERROR_OK)
1225                 return retval;
1226         retval = dap_run(dap);
1227         if (retval != ERROR_OK)
1228                 return retval;
1229
1230         /* Excavate the device ID code */
1231         struct jtag_tap *tap = dap->jtag_info->tap;
1232         while (tap != NULL) {
1233                 if (tap->hasidcode)
1234                         break;
1235                 tap = tap->next_tap;
1236         }
1237         if (tap == NULL || !tap->hasidcode)
1238                 return ERROR_OK;
1239
1240         dap_ap_select(dap, ap_old);
1241
1242         /* The asignment happens only here to prevent modification of these
1243          * values before they are certain. */
1244         *out_dbgbase = dbgbase;
1245         *out_apid = apid;
1246
1247         return ERROR_OK;
1248 }
1249
1250 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1251                         uint32_t dbgbase, uint8_t type, uint32_t *addr)
1252 {
1253         uint32_t ap_old;
1254         uint32_t romentry, entry_offset = 0, component_base, devtype;
1255         int retval = ERROR_FAIL;
1256
1257         if (ap >= 256)
1258                 return ERROR_COMMAND_SYNTAX_ERROR;
1259
1260         ap_old = dap->ap_current;
1261         dap_ap_select(dap, ap);
1262
1263         do {
1264                 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1265                                                 entry_offset, &romentry);
1266                 if (retval != ERROR_OK)
1267                         return retval;
1268
1269                 component_base = (dbgbase & 0xFFFFF000)
1270                         + (romentry & 0xFFFFF000);
1271
1272                 if (romentry & 0x1) {
1273                         retval = mem_ap_read_atomic_u32(dap,
1274                                         (component_base & 0xfffff000) | 0xfcc,
1275                                         &devtype);
1276                         if ((devtype & 0xff) == type) {
1277                                 *addr = component_base;
1278                                 retval = ERROR_OK;
1279                                 break;
1280                         }
1281                 }
1282                 entry_offset += 4;
1283         } while (romentry > 0);
1284
1285         dap_ap_select(dap, ap_old);
1286
1287         return retval;
1288 }
1289
1290 static int dap_info_command(struct command_context *cmd_ctx,
1291                 struct adiv5_dap *dap, int ap)
1292 {
1293         int retval;
1294         uint32_t dbgbase = 0, apid = 0; /* Silence gcc by initializing */
1295         int romtable_present = 0;
1296         uint8_t mem_ap;
1297         uint32_t ap_old;
1298
1299         retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1300         if (retval != ERROR_OK)
1301                 return retval;
1302
1303         ap_old = dap->ap_current;
1304         dap_ap_select(dap, ap);
1305
1306         /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1307         mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1308         command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1309         if (apid) {
1310                 switch (apid&0x0F) {
1311                         case 0:
1312                                 command_print(cmd_ctx, "\tType is JTAG-AP");
1313                                 break;
1314                         case 1:
1315                                 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1316                                 break;
1317                         case 2:
1318                                 command_print(cmd_ctx, "\tType is MEM-AP APB");
1319                                 break;
1320                         default:
1321                                 command_print(cmd_ctx, "\tUnknown AP type");
1322                                 break;
1323                 }
1324
1325                 /* NOTE: a MEM-AP may have a single CoreSight component that's
1326                  * not a ROM table ... or have no such components at all.
1327                  */
1328                 if (mem_ap)
1329                         command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase);
1330         } else
1331                 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1332
1333         romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1334         if (romtable_present) {
1335                 uint32_t cid0, cid1, cid2, cid3, memtype, romentry;
1336                 uint16_t entry_offset;
1337
1338                 /* bit 16 of apid indicates a memory access port */
1339                 if (dbgbase & 0x02)
1340                         command_print(cmd_ctx, "\tValid ROM table present");
1341                 else
1342                         command_print(cmd_ctx, "\tROM table in legacy format");
1343
1344                 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1345                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1346                 if (retval != ERROR_OK)
1347                         return retval;
1348                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1349                 if (retval != ERROR_OK)
1350                         return retval;
1351                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1352                 if (retval != ERROR_OK)
1353                         return retval;
1354                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1355                 if (retval != ERROR_OK)
1356                         return retval;
1357                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1358                 if (retval != ERROR_OK)
1359                         return retval;
1360                 retval = dap_run(dap);
1361                 if (retval != ERROR_OK)
1362                         return retval;
1363
1364                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1365                         command_print(cmd_ctx, "\tCID3 0x%2.2x"
1366                                         ", CID2 0x%2.2x"
1367                                         ", CID1 0x%2.2x"
1368                                         ", CID0 0x%2.2x",
1369                                         (unsigned) cid3, (unsigned)cid2,
1370                                         (unsigned) cid1, (unsigned) cid0);
1371                 if (memtype & 0x01)
1372                         command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1373                 else
1374                         command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1375                                         "Dedicated debug bus.");
1376
1377                 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1378                 entry_offset = 0;
1379                 do {
1380                         retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1381                         if (retval != ERROR_OK)
1382                                 return retval;
1383                         command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "", entry_offset, romentry);
1384                         if (romentry & 0x01) {
1385                                 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1386                                 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1387                                 uint32_t component_base;
1388                                 unsigned part_num;
1389                                 char *type, *full;
1390
1391                                 component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000);
1392
1393                                 /* IDs are in last 4K section */
1394                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0);
1395                                 if (retval != ERROR_OK)
1396                                         return retval;
1397                                 c_pid0 &= 0xff;
1398                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1);
1399                                 if (retval != ERROR_OK)
1400                                         return retval;
1401                                 c_pid1 &= 0xff;
1402                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2);
1403                                 if (retval != ERROR_OK)
1404                                         return retval;
1405                                 c_pid2 &= 0xff;
1406                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3);
1407                                 if (retval != ERROR_OK)
1408                                         return retval;
1409                                 c_pid3 &= 0xff;
1410                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4);
1411                                 if (retval != ERROR_OK)
1412                                         return retval;
1413                                 c_pid4 &= 0xff;
1414
1415                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0);
1416                                 if (retval != ERROR_OK)
1417                                         return retval;
1418                                 c_cid0 &= 0xff;
1419                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1);
1420                                 if (retval != ERROR_OK)
1421                                         return retval;
1422                                 c_cid1 &= 0xff;
1423                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2);
1424                                 if (retval != ERROR_OK)
1425                                         return retval;
1426                                 c_cid2 &= 0xff;
1427                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3);
1428                                 if (retval != ERROR_OK)
1429                                         return retval;
1430                                 c_cid3 &= 0xff;
1431
1432                                 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ","
1433                                                 "start address 0x%" PRIx32, component_base,
1434                                 /* component may take multiple 4K pages */
1435                                 component_base - 0x1000*(c_pid4 >> 4));
1436                                 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1437                                                 (int) (c_cid1 >> 4) & 0xf,
1438                                                 /* See ARM IHI 0029B Table 3-3 */
1439                                                 class_description[(c_cid1 >> 4) & 0xf]);
1440
1441                                 /* CoreSight component? */
1442                                 if (((c_cid1 >> 4) & 0x0f) == 9) {
1443                                         uint32_t devtype;
1444                                         unsigned minor;
1445                                         char *major = "Reserved", *subtype = "Reserved";
1446
1447                                         retval = mem_ap_read_atomic_u32(dap,
1448                                                         (component_base & 0xfffff000) | 0xfcc,
1449                                                         &devtype);
1450                                         if (retval != ERROR_OK)
1451                                                 return retval;
1452                                         minor = (devtype >> 4) & 0x0f;
1453                                         switch (devtype & 0x0f) {
1454                                         case 0:
1455                                                 major = "Miscellaneous";
1456                                                 switch (minor) {
1457                                                 case 0:
1458                                                         subtype = "other";
1459                                                         break;
1460                                                 case 4:
1461                                                         subtype = "Validation component";
1462                                                         break;
1463                                                 }
1464                                                 break;
1465                                         case 1:
1466                                                 major = "Trace Sink";
1467                                                 switch (minor) {
1468                                                 case 0:
1469                                                         subtype = "other";
1470                                                         break;
1471                                                 case 1:
1472                                                         subtype = "Port";
1473                                                         break;
1474                                                 case 2:
1475                                                         subtype = "Buffer";
1476                                                         break;
1477                                                 }
1478                                                 break;
1479                                         case 2:
1480                                                 major = "Trace Link";
1481                                                 switch (minor) {
1482                                                 case 0:
1483                                                         subtype = "other";
1484                                                         break;
1485                                                 case 1:
1486                                                         subtype = "Funnel, router";
1487                                                         break;
1488                                                 case 2:
1489                                                         subtype = "Filter";
1490                                                         break;
1491                                                 case 3:
1492                                                         subtype = "FIFO, buffer";
1493                                                         break;
1494                                                 }
1495                                                 break;
1496                                         case 3:
1497                                                 major = "Trace Source";
1498                                                 switch (minor) {
1499                                                 case 0:
1500                                                         subtype = "other";
1501                                                         break;
1502                                                 case 1:
1503                                                         subtype = "Processor";
1504                                                         break;
1505                                                 case 2:
1506                                                         subtype = "DSP";
1507                                                         break;
1508                                                 case 3:
1509                                                         subtype = "Engine/Coprocessor";
1510                                                         break;
1511                                                 case 4:
1512                                                         subtype = "Bus";
1513                                                         break;
1514                                                 }
1515                                                 break;
1516                                         case 4:
1517                                                 major = "Debug Control";
1518                                                 switch (minor) {
1519                                                 case 0:
1520                                                         subtype = "other";
1521                                                         break;
1522                                                 case 1:
1523                                                         subtype = "Trigger Matrix";
1524                                                         break;
1525                                                 case 2:
1526                                                         subtype = "Debug Auth";
1527                                                         break;
1528                                                 }
1529                                                 break;
1530                                         case 5:
1531                                                 major = "Debug Logic";
1532                                                 switch (minor) {
1533                                                 case 0:
1534                                                         subtype = "other";
1535                                                         break;
1536                                                 case 1:
1537                                                         subtype = "Processor";
1538                                                         break;
1539                                                 case 2:
1540                                                         subtype = "DSP";
1541                                                         break;
1542                                                 case 3:
1543                                                         subtype = "Engine/Coprocessor";
1544                                                         break;
1545                                                 }
1546                                                 break;
1547                                         }
1548                                         command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1549                                                         (unsigned) (devtype & 0xff),
1550                                                         major, subtype);
1551                                         /* REVISIT also show 0xfc8 DevId */
1552                                 }
1553
1554                                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1555                                         command_print(cmd_ctx,
1556                                                         "\t\tCID3 0%2.2x"
1557                                                         ", CID2 0%2.2x"
1558                                                         ", CID1 0%2.2x"
1559                                                         ", CID0 0%2.2x",
1560                                                         (int) c_cid3,
1561                                                         (int) c_cid2,
1562                                                         (int)c_cid1,
1563                                                         (int)c_cid0);
1564                                 command_print(cmd_ctx,
1565                                 "\t\tPeripheral ID[4..0] = hex "
1566                                 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1567                                 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1568                                 (int) c_pid1, (int) c_pid0);
1569
1570                                 /* Part number interpretations are from Cortex
1571                                  * core specs, the CoreSight components TRM
1572                                  * (ARM DDI 0314H), CoreSight System Design
1573                                  * Guide (ARM DGI 0012D) and ETM specs; also
1574                                  * from chip observation (e.g. TI SDTI).
1575                                  */
1576                                 part_num = (c_pid0 & 0xff);
1577                                 part_num |= (c_pid1 & 0x0f) << 8;
1578                                 switch (part_num) {
1579                                 case 0x000:
1580                                         type = "Cortex-M3 NVIC";
1581                                         full = "(Interrupt Controller)";
1582                                         break;
1583                                 case 0x001:
1584                                         type = "Cortex-M3 ITM";
1585                                         full = "(Instrumentation Trace Module)";
1586                                         break;
1587                                 case 0x002:
1588                                         type = "Cortex-M3 DWT";
1589                                         full = "(Data Watchpoint and Trace)";
1590                                         break;
1591                                 case 0x003:
1592                                         type = "Cortex-M3 FBP";
1593                                         full = "(Flash Patch and Breakpoint)";
1594                                         break;
1595                                 case 0x00d:
1596                                         type = "CoreSight ETM11";
1597                                         full = "(Embedded Trace)";
1598                                         break;
1599                                 /* case 0x113: what? */
1600                                 case 0x120:             /* from OMAP3 memmap */
1601                                         type = "TI SDTI";
1602                                         full = "(System Debug Trace Interface)";
1603                                         break;
1604                                 case 0x343:             /* from OMAP3 memmap */
1605                                         type = "TI DAPCTL";
1606                                         full = "";
1607                                         break;
1608                                 case 0x906:
1609                                         type = "Coresight CTI";
1610                                         full = "(Cross Trigger)";
1611                                         break;
1612                                 case 0x907:
1613                                         type = "Coresight ETB";
1614                                         full = "(Trace Buffer)";
1615                                         break;
1616                                 case 0x908:
1617                                         type = "Coresight CSTF";
1618                                         full = "(Trace Funnel)";
1619                                         break;
1620                                 case 0x910:
1621                                         type = "CoreSight ETM9";
1622                                         full = "(Embedded Trace)";
1623                                         break;
1624                                 case 0x912:
1625                                         type = "Coresight TPIU";
1626                                         full = "(Trace Port Interface Unit)";
1627                                         break;
1628                                 case 0x921:
1629                                         type = "Cortex-A8 ETM";
1630                                         full = "(Embedded Trace)";
1631                                         break;
1632                                 case 0x922:
1633                                         type = "Cortex-A8 CTI";
1634                                         full = "(Cross Trigger)";
1635                                         break;
1636                                 case 0x923:
1637                                         type = "Cortex-M3 TPIU";
1638                                         full = "(Trace Port Interface Unit)";
1639                                         break;
1640                                 case 0x924:
1641                                         type = "Cortex-M3 ETM";
1642                                         full = "(Embedded Trace)";
1643                                         break;
1644                                 case 0x930:
1645                                         type = "Cortex-R4 ETM";
1646                                         full = "(Embedded Trace)";
1647                                         break;
1648                                 case 0xc08:
1649                                         type = "Cortex-A8 Debug";
1650                                         full = "(Debug Unit)";
1651                                         break;
1652                                 default:
1653                                         type = "-*- unrecognized -*-";
1654                                         full = "";
1655                                         break;
1656                                 }
1657                                 command_print(cmd_ctx, "\t\tPart is %s %s",
1658                                                 type, full);
1659                         } else {
1660                                 if (romentry)
1661                                         command_print(cmd_ctx, "\t\tComponent not present");
1662                                 else
1663                                         command_print(cmd_ctx, "\t\tEnd of ROM table");
1664                         }
1665                         entry_offset += 4;
1666                 } while (romentry > 0);
1667         } else
1668                 command_print(cmd_ctx, "\tNo ROM table present");
1669         dap_ap_select(dap, ap_old);
1670
1671         return ERROR_OK;
1672 }
1673
1674 COMMAND_HANDLER(handle_dap_info_command)
1675 {
1676         struct target *target = get_current_target(CMD_CTX);
1677         struct arm *arm = target_to_arm(target);
1678         struct adiv5_dap *dap = arm->dap;
1679         uint32_t apsel;
1680
1681         switch (CMD_ARGC) {
1682         case 0:
1683                 apsel = dap->apsel;
1684                 break;
1685         case 1:
1686                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1687                 break;
1688         default:
1689                 return ERROR_COMMAND_SYNTAX_ERROR;
1690         }
1691
1692         return dap_info_command(CMD_CTX, dap, apsel);
1693 }
1694
1695 COMMAND_HANDLER(dap_baseaddr_command)
1696 {
1697         struct target *target = get_current_target(CMD_CTX);
1698         struct arm *arm = target_to_arm(target);
1699         struct adiv5_dap *dap = arm->dap;
1700
1701         uint32_t apsel, baseaddr;
1702         int retval;
1703
1704         switch (CMD_ARGC) {
1705         case 0:
1706                 apsel = dap->apsel;
1707                 break;
1708         case 1:
1709                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1710                 /* AP address is in bits 31:24 of DP_SELECT */
1711                 if (apsel >= 256)
1712                         return ERROR_COMMAND_SYNTAX_ERROR;
1713                 break;
1714         default:
1715                 return ERROR_COMMAND_SYNTAX_ERROR;
1716         }
1717
1718         dap_ap_select(dap, apsel);
1719
1720         /* NOTE:  assumes we're talking to a MEM-AP, which
1721          * has a base address.  There are other kinds of AP,
1722          * though they're not common for now.  This should
1723          * use the ID register to verify it's a MEM-AP.
1724          */
1725         retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1726         if (retval != ERROR_OK)
1727                 return retval;
1728         retval = dap_run(dap);
1729         if (retval != ERROR_OK)
1730                 return retval;
1731
1732         command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1733
1734         return retval;
1735 }
1736
1737 COMMAND_HANDLER(dap_memaccess_command)
1738 {
1739         struct target *target = get_current_target(CMD_CTX);
1740         struct arm *arm = target_to_arm(target);
1741         struct adiv5_dap *dap = arm->dap;
1742
1743         uint32_t memaccess_tck;
1744
1745         switch (CMD_ARGC) {
1746         case 0:
1747                 memaccess_tck = dap->memaccess_tck;
1748                 break;
1749         case 1:
1750                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1751                 break;
1752         default:
1753                 return ERROR_COMMAND_SYNTAX_ERROR;
1754         }
1755         dap->memaccess_tck = memaccess_tck;
1756
1757         command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1758                         dap->memaccess_tck);
1759
1760         return ERROR_OK;
1761 }
1762
1763 COMMAND_HANDLER(dap_apsel_command)
1764 {
1765         struct target *target = get_current_target(CMD_CTX);
1766         struct arm *arm = target_to_arm(target);
1767         struct adiv5_dap *dap = arm->dap;
1768
1769         uint32_t apsel, apid;
1770         int retval;
1771
1772         switch (CMD_ARGC) {
1773         case 0:
1774                 apsel = 0;
1775                 break;
1776         case 1:
1777                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1778                 /* AP address is in bits 31:24 of DP_SELECT */
1779                 if (apsel >= 256)
1780                         return ERROR_COMMAND_SYNTAX_ERROR;
1781                 break;
1782         default:
1783                 return ERROR_COMMAND_SYNTAX_ERROR;
1784         }
1785
1786         dap->apsel = apsel;
1787         dap_ap_select(dap, apsel);
1788
1789         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1790         if (retval != ERROR_OK)
1791                 return retval;
1792         retval = dap_run(dap);
1793         if (retval != ERROR_OK)
1794                 return retval;
1795
1796         command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1797                         apsel, apid);
1798
1799         return retval;
1800 }
1801
1802 COMMAND_HANDLER(dap_apid_command)
1803 {
1804         struct target *target = get_current_target(CMD_CTX);
1805         struct arm *arm = target_to_arm(target);
1806         struct adiv5_dap *dap = arm->dap;
1807
1808         uint32_t apsel, apid;
1809         int retval;
1810
1811         switch (CMD_ARGC) {
1812         case 0:
1813                 apsel = dap->apsel;
1814                 break;
1815         case 1:
1816                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1817                 /* AP address is in bits 31:24 of DP_SELECT */
1818                 if (apsel >= 256)
1819                         return ERROR_COMMAND_SYNTAX_ERROR;
1820                 break;
1821         default:
1822                 return ERROR_COMMAND_SYNTAX_ERROR;
1823         }
1824
1825         dap_ap_select(dap, apsel);
1826
1827         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1828         if (retval != ERROR_OK)
1829                 return retval;
1830         retval = dap_run(dap);
1831         if (retval != ERROR_OK)
1832                 return retval;
1833
1834         command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1835
1836         return retval;
1837 }
1838
1839 static const struct command_registration dap_commands[] = {
1840         {
1841                 .name = "info",
1842                 .handler = handle_dap_info_command,
1843                 .mode = COMMAND_EXEC,
1844                 .help = "display ROM table for MEM-AP "
1845                         "(default currently selected AP)",
1846                 .usage = "[ap_num]",
1847         },
1848         {
1849                 .name = "apsel",
1850                 .handler = dap_apsel_command,
1851                 .mode = COMMAND_EXEC,
1852                 .help = "Set the currently selected AP (default 0) "
1853                         "and display the result",
1854                 .usage = "[ap_num]",
1855         },
1856         {
1857                 .name = "apid",
1858                 .handler = dap_apid_command,
1859                 .mode = COMMAND_EXEC,
1860                 .help = "return ID register from AP "
1861                         "(default currently selected AP)",
1862                 .usage = "[ap_num]",
1863         },
1864         {
1865                 .name = "baseaddr",
1866                 .handler = dap_baseaddr_command,
1867                 .mode = COMMAND_EXEC,
1868                 .help = "return debug base address from MEM-AP "
1869                         "(default currently selected AP)",
1870                 .usage = "[ap_num]",
1871         },
1872         {
1873                 .name = "memaccess",
1874                 .handler = dap_memaccess_command,
1875                 .mode = COMMAND_EXEC,
1876                 .help = "set/get number of extra tck for MEM-AP memory "
1877                         "bus access [0-255]",
1878                 .usage = "[cycles]",
1879         },
1880         COMMAND_REGISTRATION_DONE
1881 };
1882
1883 const struct command_registration dap_command_handlers[] = {
1884         {
1885                 .name = "dap",
1886                 .mode = COMMAND_EXEC,
1887                 .help = "DAP command group",
1888                 .usage = "",
1889                 .chain = dap_commands,
1890         },
1891         COMMAND_REGISTRATION_DONE
1892 };