arm_adi: -Wshadow warning fix
[fw/openocd] / src / target / arm_adi_v5.c
1 /***************************************************************************
2  *   Copyright (C) 2006 by Magnus Lundin                                   *
3  *   lundin@mlu.mine.nu                                                    *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2009 by Oyvind Harboe                                   *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2009-2010 by David Brownell                             *
12  *                                                                         *
13  *   This program is free software; you can redistribute it and/or modify  *
14  *   it under the terms of the GNU General Public License as published by  *
15  *   the Free Software Foundation; either version 2 of the License, or     *
16  *   (at your option) any later version.                                   *
17  *                                                                         *
18  *   This program is distributed in the hope that it will be useful,       *
19  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
20  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
21  *   GNU General Public License for more details.                          *
22  *                                                                         *
23  *   You should have received a copy of the GNU General Public License     *
24  *   along with this program; if not, write to the                         *
25  *   Free Software Foundation, Inc.,                                       *
26  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
27  ***************************************************************************/
28
29 /**
30  * @file
31  * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32  * debugging architecture.  Compared with previous versions, this includes
33  * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34  * transport, and focusses on memory mapped resources as defined by the
35  * CoreSight architecture.
36  *
37  * A key concept in ADIv5 is the Debug Access Port, or DAP.  A DAP has two
38  * basic components:  a Debug Port (DP) transporting messages to and from a
39  * debugger, and an Access Port (AP) accessing resources.  Three types of DP
40  * are defined.  One uses only JTAG for communication, and is called JTAG-DP.
41  * One uses only SWD for communication, and is called SW-DP.  The third can
42  * use either SWD or JTAG, and is called SWJ-DP.  The most common type of AP
43  * is used to access memory mapped resources and is called a MEM-AP.  Also a
44  * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45  *
46  * This programming interface allows DAP pipelined operations through a
47  * transaction queue.  This primarily affects AP operations (such as using
48  * a MEM-AP to access memory or registers).  If the current transaction has
49  * not finished by the time the next one must begin, and the ORUNDETECT bit
50  * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51  * further AP operations will fail.  There are two basic methods to avoid
52  * such overrun errors.  One involves polling for status instead of using
53  * transaction piplining.  The other involves adding delays to ensure the
54  * AP has enough time to complete one operation before starting the next
55  * one.  (For JTAG these delays are controlled by memaccess_tck.)
56  */
57
58 /*
59  * Relevant specifications from ARM include:
60  *
61  * ARM(tm) Debug Interface v5 Architecture Specification    ARM IHI 0031A
62  * CoreSight(tm) v1.0 Architecture Specification            ARM IHI 0029B
63  *
64  * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65  * Cortex-M3(tm) TRM, ARM DDI 0337G
66  */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement  */
78
79 /*
80         uint32_t tar_block_size(uint32_t address)
81         Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85         return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89  *                                                                         *
90  * DP and MEM-AP  register access  through APACC and DPACC                 *
91  *                                                                         *
92 ***************************************************************************/
93
94 /**
95  * Select one of the APs connected to the specified DAP.  The
96  * selection is implicitly used with future AP transactions.
97  * This is a NOP if the specified AP is already selected.
98  *
99  * @param dap The DAP
100  * @param apsel Number of the AP to (implicitly) use with further
101  *      transactions.  This normally identifies a MEM-AP.
102  */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t apsel)
104 {
105         uint32_t select_apsel = (apsel << 24) & 0xFF000000;
106
107         if (select_apsel != dap->apsel)
108         {
109                 dap->apsel = select_apsel;
110                 /* Switching AP invalidates cached values.
111                  * Values MUST BE UPDATED BEFORE AP ACCESS.
112                  */
113                 dap->ap_bank_value = -1;
114                 dap->ap_csw_value = -1;
115                 dap->ap_tar_value = -1;
116         }
117 }
118
119 /**
120  * Queue transactions setting up transfer parameters for the
121  * currently selected MEM-AP.
122  *
123  * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124  * initiate data reads or writes using memory or peripheral addresses.
125  * If the CSW is configured for it, the TAR may be automatically
126  * incremented after each transfer.
127  *
128  * @todo Rename to reflect it being specifically a MEM-AP function.
129  *
130  * @param dap The DAP connected to the MEM-AP.
131  * @param csw MEM-AP Control/Status Word (CSW) register to assign.  If this
132  *      matches the cached value, the register is not changed.
133  * @param tar MEM-AP Transfer Address Register (TAR) to assign.  If this
134  *      matches the cached address, the register is not changed.
135  *
136  * @return ERROR_OK if the transaction was properly queued, else a fault code.
137  */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140         int retval;
141
142         csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143         if (csw != dap->ap_csw_value)
144         {
145                 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146                 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147                 if (retval != ERROR_OK)
148                         return retval;
149                 dap->ap_csw_value = csw;
150         }
151         if (tar != dap->ap_tar_value)
152         {
153                 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154                 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155                 if (retval != ERROR_OK)
156                         return retval;
157                 dap->ap_tar_value = tar;
158         }
159         /* Disable TAR cache when autoincrementing */
160         if (csw & CSW_ADDRINC_MASK)
161                 dap->ap_tar_value = -1;
162         return ERROR_OK;
163 }
164
165 /**
166  * Asynchronous (queued) read of a word from memory or a system register.
167  *
168  * @param dap The DAP connected to the MEM-AP performing the read.
169  * @param address Address of the 32-bit word to read; it must be
170  *      readable by the currently selected MEM-AP.
171  * @param value points to where the word will be stored when the
172  *      transaction queue is flushed (assuming no errors).
173  *
174  * @return ERROR_OK for success.  Otherwise a fault code.
175  */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177                 uint32_t *value)
178 {
179         int retval;
180
181         /* Use banked addressing (REG_BDx) to avoid some link traffic
182          * (updating TAR) when reading several consecutive addresses.
183          */
184         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185                         address & 0xFFFFFFF0);
186         if (retval != ERROR_OK)
187                 return retval;
188
189         return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193  * Synchronous read of a word from memory or a system register.
194  * As a side effect, this flushes any queued transactions.
195  *
196  * @param dap The DAP connected to the MEM-AP performing the read.
197  * @param address Address of the 32-bit word to read; it must be
198  *      readable by the currently selected MEM-AP.
199  * @param value points to where the result will be stored.
200  *
201  * @return ERROR_OK for success; *value holds the result.
202  * Otherwise a fault code.
203  */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205                 uint32_t *value)
206 {
207         int retval;
208
209         retval = mem_ap_read_u32(dap, address, value);
210         if (retval != ERROR_OK)
211                 return retval;
212
213         return dap_run(dap);
214 }
215
216 /**
217  * Asynchronous (queued) write of a word to memory or a system register.
218  *
219  * @param dap The DAP connected to the MEM-AP.
220  * @param address Address to be written; it must be writable by
221  *      the currently selected MEM-AP.
222  * @param value Word that will be written to the address when transaction
223  *      queue is flushed (assuming no errors).
224  *
225  * @return ERROR_OK for success.  Otherwise a fault code.
226  */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228                 uint32_t value)
229 {
230         int retval;
231
232         /* Use banked addressing (REG_BDx) to avoid some link traffic
233          * (updating TAR) when writing several consecutive addresses.
234          */
235         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236                         address & 0xFFFFFFF0);
237         if (retval != ERROR_OK)
238                 return retval;
239
240         return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241                         value);
242 }
243
244 /**
245  * Synchronous write of a word to memory or a system register.
246  * As a side effect, this flushes any queued transactions.
247  *
248  * @param dap The DAP connected to the MEM-AP.
249  * @param address Address to be written; it must be writable by
250  *      the currently selected MEM-AP.
251  * @param value Word that will be written.
252  *
253  * @return ERROR_OK for success; the data was written.  Otherwise a fault code.
254  */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256                 uint32_t value)
257 {
258         int retval = mem_ap_write_u32(dap, address, value);
259
260         if (retval != ERROR_OK)
261                 return retval;
262
263         return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 *                                                                            *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 *                                                                            *
270 * Write a buffer in target order (little endian)                             *
271 *                                                                            *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
274 {
275         int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276         uint32_t adr = address;
277         uint8_t* pBuffer = buffer;
278
279         count >>= 2;
280         wcount = count;
281
282         /* if we have an unaligned access - reorder data */
283         if (adr & 0x3u)
284         {
285                 for (writecount = 0; writecount < count; writecount++)
286                 {
287                         int i;
288                         uint32_t outvalue;
289                         memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291                         for (i = 0; i < 4; i++)
292                         {
293                                 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294                                 outvalue >>= 8;
295                                 adr++;
296                         }
297                         pBuffer += sizeof(uint32_t);
298                 }
299         }
300
301         while (wcount > 0)
302         {
303                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305                 if (wcount < blocksize)
306                         blocksize = wcount;
307
308                 /* handle unaligned data at 4k boundary */
309                 if (blocksize == 0)
310                         blocksize = 1;
311
312                 dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313
314                 for (writecount = 0; writecount < blocksize; writecount++)
315                 {
316                         retval = dap_queue_ap_write(dap, AP_REG_DRW,
317                                 *(uint32_t *) (buffer + 4 * writecount));
318                         if (retval != ERROR_OK)
319                                 break;
320                 }
321
322                 if (dap_run(dap) == ERROR_OK)
323                 {
324                         wcount = wcount - blocksize;
325                         address = address + 4 * blocksize;
326                         buffer = buffer + 4 * blocksize;
327                 }
328                 else
329                 {
330                         errorcount++;
331                 }
332
333                 if (errorcount > 1)
334                 {
335                         LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
336                         /* REVISIT return the *actual* fault code */
337                         return ERROR_JTAG_DEVICE_ERROR;
338                 }
339         }
340
341         return retval;
342 }
343
344 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
345                 uint8_t *buffer, int count, uint32_t address)
346 {
347         int retval = ERROR_OK;
348         int wcount, blocksize, writecount, i;
349
350         wcount = count >> 1;
351
352         while (wcount > 0)
353         {
354                 int nbytes;
355
356                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
357                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
358
359                 if (wcount < blocksize)
360                         blocksize = wcount;
361
362                 /* handle unaligned data at 4k boundary */
363                 if (blocksize == 0)
364                         blocksize = 1;
365
366                 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
367                 writecount = blocksize;
368
369                 do
370                 {
371                         nbytes = MIN((writecount << 1), 4);
372
373                         if (nbytes < 4)
374                         {
375                                 if (mem_ap_write_buf_u16(dap, buffer,
376                                                 nbytes, address) != ERROR_OK)
377                                 {
378                                         LOG_WARNING("Block write error address "
379                                                 "0x%" PRIx32 ", count 0x%x",
380                                                 address, count);
381                                         return ERROR_JTAG_DEVICE_ERROR;
382                                 }
383
384                                 address += nbytes >> 1;
385                         }
386                         else
387                         {
388                                 uint32_t outvalue;
389                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
390
391                                 for (i = 0; i < nbytes; i++)
392                                 {
393                                         *((uint8_t*)buffer + (address & 0x3)) = outvalue;
394                                         outvalue >>= 8;
395                                         address++;
396                                 }
397
398                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
399                                 retval = dap_queue_ap_write(dap,
400                                                 AP_REG_DRW, outvalue);
401                                 if (retval != ERROR_OK)
402                                         break;
403
404                                 if (dap_run(dap) != ERROR_OK)
405                                 {
406                                         LOG_WARNING("Block write error address "
407                                                 "0x%" PRIx32 ", count 0x%x",
408                                                 address, count);
409                                         /* REVISIT return *actual* fault code */
410                                         return ERROR_JTAG_DEVICE_ERROR;
411                                 }
412                         }
413
414                         buffer += nbytes >> 1;
415                         writecount -= nbytes >> 1;
416
417                 } while (writecount);
418                 wcount -= blocksize;
419         }
420
421         return retval;
422 }
423
424 int mem_ap_write_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
425 {
426         int retval = ERROR_OK;
427
428         if (count >= 4)
429                 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
430
431         while (count > 0)
432         {
433                 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
434                 uint16_t svalue;
435                 memcpy(&svalue, buffer, sizeof(uint16_t));
436                 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
437                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
438                 if (retval != ERROR_OK)
439                         break;
440
441                 retval = dap_run(dap);
442                 if (retval != ERROR_OK)
443                         break;
444
445                 count -= 2;
446                 address += 2;
447                 buffer += 2;
448         }
449
450         return retval;
451 }
452
453 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
454                 uint8_t *buffer, int count, uint32_t address)
455 {
456         int retval = ERROR_OK;
457         int wcount, blocksize, writecount, i;
458
459         wcount = count;
460
461         while (wcount > 0)
462         {
463                 int nbytes;
464
465                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
466                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
467
468                 if (wcount < blocksize)
469                         blocksize = wcount;
470
471                 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
472                 writecount = blocksize;
473
474                 do
475                 {
476                         nbytes = MIN(writecount, 4);
477
478                         if (nbytes < 4)
479                         {
480                                 if (mem_ap_write_buf_u8(dap, buffer, nbytes, address) != ERROR_OK)
481                                 {
482                                         LOG_WARNING("Block write error address "
483                                                 "0x%" PRIx32 ", count 0x%x",
484                                                 address, count);
485                                         return ERROR_JTAG_DEVICE_ERROR;
486                                 }
487
488                                 address += nbytes;
489                         }
490                         else
491                         {
492                                 uint32_t outvalue;
493                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
494
495                                 for (i = 0; i < nbytes; i++)
496                                 {
497                                         *((uint8_t*)buffer + (address & 0x3)) = outvalue;
498                                         outvalue >>= 8;
499                                         address++;
500                                 }
501
502                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
503                                 retval = dap_queue_ap_write(dap,
504                                                 AP_REG_DRW, outvalue);
505                                 if (retval != ERROR_OK)
506                                         break;
507
508                                 if (dap_run(dap) != ERROR_OK)
509                                 {
510                                         LOG_WARNING("Block write error address "
511                                                 "0x%" PRIx32 ", count 0x%x",
512                                                 address, count);
513                                         /* REVISIT return *actual* fault code */
514                                         return ERROR_JTAG_DEVICE_ERROR;
515                                 }
516                         }
517
518                         buffer += nbytes;
519                         writecount -= nbytes;
520
521                 } while (writecount);
522                 wcount -= blocksize;
523         }
524
525         return retval;
526 }
527
528 int mem_ap_write_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
529 {
530         int retval = ERROR_OK;
531
532         if (count >= 4)
533                 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
534
535         while (count > 0)
536         {
537                 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
538                 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
539                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
540                 if (retval != ERROR_OK)
541                         break;
542
543                 retval = dap_run(dap);
544                 if (retval != ERROR_OK)
545                         break;
546
547                 count--;
548                 address++;
549                 buffer++;
550         }
551
552         return retval;
553 }
554
555 /* FIXME don't import ... this is a temporary workaround for the
556  * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
557  */
558 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
559                 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
560                 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
561
562 /**
563  * Synchronously read a block of 32-bit words into a buffer
564  * @param dap The DAP connected to the MEM-AP.
565  * @param buffer where the words will be stored (in host byte order).
566  * @param count How many words to read.
567  * @param address Memory address from which to read words; all the
568  *      words must be readable by the currently selected MEM-AP.
569  */
570 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
571                 int count, uint32_t address)
572 {
573         int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
574         uint32_t adr = address;
575         uint8_t* pBuffer = buffer;
576
577         count >>= 2;
578         wcount = count;
579
580         while (wcount > 0)
581         {
582                 /* Adjust to read blocks within boundaries aligned to the
583                  * TAR autoincrement size (at least 2^10).  Autoincrement
584                  * mode avoids an extra per-word roundtrip to update TAR.
585                  */
586                 blocksize = max_tar_block_size(dap->tar_autoincr_block,
587                                 address);
588                 if (wcount < blocksize)
589                         blocksize = wcount;
590
591                 /* handle unaligned data at 4k boundary */
592                 if (blocksize == 0)
593                         blocksize = 1;
594
595                 dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
596                                 address);
597
598                 /* FIXME remove these three calls to adi_jtag_dp_scan(),
599                  * so this routine becomes transport-neutral.  Be careful
600                  * not to cause performance problems with JTAG; would it
601                  * suffice to loop over dap_queue_ap_read(), or would that
602                  * be slower when JTAG is the chosen transport?
603                  */
604
605                 /* Scan out first read */
606                 adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
607                                 DPAP_READ, 0, NULL, NULL);
608                 for (readcount = 0; readcount < blocksize - 1; readcount++)
609                 {
610                         /* Scan out next read; scan in posted value for the
611                          * previous one.  Assumes read is acked "OK/FAULT",
612                          * and CTRL_STAT says that meant "OK".
613                          */
614                         adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
615                                         DPAP_READ, 0, buffer + 4 * readcount,
616                                         &dap->ack);
617                 }
618
619                 /* Scan in last posted value; RDBUFF has no other effect,
620                  * assuming ack is OK/FAULT and CTRL_STAT says "OK".
621                  */
622                 adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
623                                 DPAP_READ, 0, buffer + 4 * readcount,
624                                 &dap->ack);
625                 if (dap_run(dap) == ERROR_OK)
626                 {
627                         wcount = wcount - blocksize;
628                         address += 4 * blocksize;
629                         buffer += 4 * blocksize;
630                 }
631                 else
632                 {
633                         errorcount++;
634                 }
635
636                 if (errorcount > 1)
637                 {
638                         LOG_WARNING("Block read error address 0x%" PRIx32
639                                 ", count 0x%x", address, count);
640                         /* REVISIT return the *actual* fault code */
641                         return ERROR_JTAG_DEVICE_ERROR;
642                 }
643         }
644
645         /* if we have an unaligned access - reorder data */
646         if (adr & 0x3u)
647         {
648                 for (readcount = 0; readcount < count; readcount++)
649                 {
650                         int i;
651                         uint32_t data;
652                         memcpy(&data, pBuffer, sizeof(uint32_t));
653
654                         for (i = 0; i < 4; i++)
655                         {
656                                 *((uint8_t*)pBuffer) =
657                                                 (data >> 8 * (adr & 0x3));
658                                 pBuffer++;
659                                 adr++;
660                         }
661                 }
662         }
663
664         return retval;
665 }
666
667 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
668                 uint8_t *buffer, int count, uint32_t address)
669 {
670         uint32_t invalue;
671         int retval = ERROR_OK;
672         int wcount, blocksize, readcount, i;
673
674         wcount = count >> 1;
675
676         while (wcount > 0)
677         {
678                 int nbytes;
679
680                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
681                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
682                 if (wcount < blocksize)
683                         blocksize = wcount;
684
685                 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
686
687                 /* handle unaligned data at 4k boundary */
688                 if (blocksize == 0)
689                         blocksize = 1;
690                 readcount = blocksize;
691
692                 do
693                 {
694                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
695                         if (dap_run(dap) != ERROR_OK)
696                         {
697                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
698                                 /* REVISIT return the *actual* fault code */
699                                 return ERROR_JTAG_DEVICE_ERROR;
700                         }
701
702                         nbytes = MIN((readcount << 1), 4);
703
704                         for (i = 0; i < nbytes; i++)
705                         {
706                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
707                                 buffer++;
708                                 address++;
709                         }
710
711                         readcount -= (nbytes >> 1);
712                 } while (readcount);
713                 wcount -= blocksize;
714         }
715
716         return retval;
717 }
718
719 /**
720  * Synchronously read a block of 16-bit halfwords into a buffer
721  * @param dap The DAP connected to the MEM-AP.
722  * @param buffer where the halfwords will be stored (in host byte order).
723  * @param count How many halfwords to read.
724  * @param address Memory address from which to read words; all the
725  *      words must be readable by the currently selected MEM-AP.
726  */
727 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
728                 int count, uint32_t address)
729 {
730         uint32_t invalue, i;
731         int retval = ERROR_OK;
732
733         if (count >= 4)
734                 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
735
736         while (count > 0)
737         {
738                 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
739                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
740                 if (retval != ERROR_OK)
741                         break;
742
743                 retval = dap_run(dap);
744                 if (retval != ERROR_OK)
745                         break;
746
747                 if (address & 0x1)
748                 {
749                         for (i = 0; i < 2; i++)
750                         {
751                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
752                                 buffer++;
753                                 address++;
754                         }
755                 }
756                 else
757                 {
758                         uint16_t svalue = (invalue >> 8 * (address & 0x3));
759                         memcpy(buffer, &svalue, sizeof(uint16_t));
760                         address += 2;
761                         buffer += 2;
762                 }
763                 count -= 2;
764         }
765
766         return retval;
767 }
768
769 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
770  * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
771  *
772  * The solution is to arrange for a large out/in scan in this loop and
773  * and convert data afterwards.
774  */
775 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
776                 uint8_t *buffer, int count, uint32_t address)
777 {
778         uint32_t invalue;
779         int retval = ERROR_OK;
780         int wcount, blocksize, readcount, i;
781
782         wcount = count;
783
784         while (wcount > 0)
785         {
786                 int nbytes;
787
788                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
789                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
790
791                 if (wcount < blocksize)
792                         blocksize = wcount;
793
794                 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
795                 readcount = blocksize;
796
797                 do
798                 {
799                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
800                         if (dap_run(dap) != ERROR_OK)
801                         {
802                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
803                                 /* REVISIT return the *actual* fault code */
804                                 return ERROR_JTAG_DEVICE_ERROR;
805                         }
806
807                         nbytes = MIN(readcount, 4);
808
809                         for (i = 0; i < nbytes; i++)
810                         {
811                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
812                                 buffer++;
813                                 address++;
814                         }
815
816                         readcount -= nbytes;
817                 } while (readcount);
818                 wcount -= blocksize;
819         }
820
821         return retval;
822 }
823
824 /**
825  * Synchronously read a block of bytes into a buffer
826  * @param dap The DAP connected to the MEM-AP.
827  * @param buffer where the bytes will be stored.
828  * @param count How many bytes to read.
829  * @param address Memory address from which to read data; all the
830  *      data must be readable by the currently selected MEM-AP.
831  */
832 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
833                 int count, uint32_t address)
834 {
835         uint32_t invalue;
836         int retval = ERROR_OK;
837
838         if (count >= 4)
839                 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
840
841         while (count > 0)
842         {
843                 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
844                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
845                 retval = dap_run(dap);
846                 if (retval != ERROR_OK)
847                         break;
848
849                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
850                 count--;
851                 address++;
852                 buffer++;
853         }
854
855         return retval;
856 }
857
858 /*--------------------------------------------------------------------------*/
859
860
861 /* FIXME don't import ... just initialize as
862  * part of DAP transport setup
863 */
864 extern const struct dap_ops jtag_dp_ops;
865
866 /*--------------------------------------------------------------------------*/
867
868 /**
869  * Initialize a DAP.  This sets up the power domains, prepares the DP
870  * for further use, and arranges to use AP #0 for all AP operations
871  * until dap_ap-select() changes that policy.
872  *
873  * @param dap The DAP being initialized.
874  *
875  * @todo Rename this.  We also need an initialization scheme which account
876  * for SWD transports not just JTAG; that will need to address differences
877  * in layering.  (JTAG is useful without any debug target; but not SWD.)
878  * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
879  */
880 int ahbap_debugport_init(struct adiv5_dap *dap)
881 {
882         uint32_t idreg, romaddr, dummy;
883         uint32_t ctrlstat;
884         int cnt = 0;
885         int retval;
886
887         LOG_DEBUG(" ");
888
889         /* JTAG-DP or SWJ-DP, in JTAG mode */
890         dap->ops = &jtag_dp_ops;
891
892         /* Default MEM-AP setup.
893          *
894          * REVISIT AP #0 may be an inappropriate default for this.
895          * Should we probe, or take a hint from the caller?
896          * Presumably we can ignore the possibility of multiple APs.
897          */
898         dap->apsel = !0;
899         dap_ap_select(dap, 0);
900
901         /* DP initialization */
902
903         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
904         if (retval != ERROR_OK)
905                 return retval;
906
907         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
908         if (retval != ERROR_OK)
909                 return retval;
910
911         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
912         if (retval != ERROR_OK)
913                 return retval;
914
915         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
916         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
917         if (retval != ERROR_OK)
918                 return retval;
919
920         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
921         if (retval != ERROR_OK)
922                 return retval;
923         if ((retval = dap_run(dap)) != ERROR_OK)
924                 return retval;
925
926         /* Check that we have debug power domains activated */
927         while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
928         {
929                 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
930                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
931                 if (retval != ERROR_OK)
932                         return retval;
933                 if ((retval = dap_run(dap)) != ERROR_OK)
934                         return retval;
935                 alive_sleep(10);
936         }
937
938         while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
939         {
940                 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
941                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
942                 if (retval != ERROR_OK)
943                         return retval;
944                 if ((retval = dap_run(dap)) != ERROR_OK)
945                         return retval;
946                 alive_sleep(10);
947         }
948
949         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
950         if (retval != ERROR_OK)
951                 return retval;
952         /* With debug power on we can activate OVERRUN checking */
953         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
954         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
955         if (retval != ERROR_OK)
956                 return retval;
957         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
958         if (retval != ERROR_OK)
959                 return retval;
960
961         /*
962          * REVISIT this isn't actually *initializing* anything in an AP,
963          * and doesn't care if it's a MEM-AP at all (much less AHB-AP).
964          * Should it?  If the ROM address is valid, is this the right
965          * place to scan the table and do any topology detection?
966          */
967         retval = dap_queue_ap_read(dap, AP_REG_IDR, &idreg);
968         retval = dap_queue_ap_read(dap, AP_REG_BASE, &romaddr);
969
970         if ((retval = dap_run(dap)) != ERROR_OK)
971                 return retval;
972
973         LOG_DEBUG("MEM-AP #%" PRId32 " ID Register 0x%" PRIx32
974                 ", Debug ROM Address 0x%" PRIx32,
975                 dap->apsel, idreg, romaddr);
976
977         return ERROR_OK;
978 }
979
980 /* CID interpretation -- see ARM IHI 0029B section 3
981  * and ARM IHI 0031A table 13-3.
982  */
983 static const char *class_description[16] ={
984         "Reserved", "ROM table", "Reserved", "Reserved",
985         "Reserved", "Reserved", "Reserved", "Reserved",
986         "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
987         "Reserved", "OptimoDE DESS",
988                 "Generic IP component", "PrimeCell or System component"
989 };
990
991 static bool
992 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
993 {
994         return cid3 == 0xb1 && cid2 == 0x05
995                         && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
996 }
997
998 static int dap_info_command(struct command_context *cmd_ctx,
999                 struct adiv5_dap *dap, int apsel)
1000 {
1001         int retval;
1002         uint32_t dbgbase, apid;
1003         int romtable_present = 0;
1004         uint8_t mem_ap;
1005         uint32_t apselold;
1006
1007         /* AP address is in bits 31:24 of DP_SELECT */
1008         if (apsel >= 256)
1009                 return ERROR_INVALID_ARGUMENTS;
1010
1011         apselold = dap->apsel;
1012         dap_ap_select(dap, apsel);
1013         retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1014         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1015         retval = dap_run(dap);
1016         if (retval != ERROR_OK)
1017                 return retval;
1018
1019         /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1020         mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1021         command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1022         if (apid)
1023         {
1024                 switch (apid&0x0F)
1025                 {
1026                         case 0:
1027                                 command_print(cmd_ctx, "\tType is JTAG-AP");
1028                                 break;
1029                         case 1:
1030                                 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1031                                 break;
1032                         case 2:
1033                                 command_print(cmd_ctx, "\tType is MEM-AP APB");
1034                                 break;
1035                         default:
1036                                 command_print(cmd_ctx, "\tUnknown AP type");
1037                                 break;
1038                 }
1039
1040                 /* NOTE: a MEM-AP may have a single CoreSight component that's
1041                  * not a ROM table ... or have no such components at all.
1042                  */
1043                 if (mem_ap)
1044                         command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1045                                         dbgbase);
1046         }
1047         else
1048         {
1049                 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1050         }
1051
1052         romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1053         if (romtable_present)
1054         {
1055                 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1056                 uint16_t entry_offset;
1057
1058                 /* bit 16 of apid indicates a memory access port */
1059                 if (dbgbase & 0x02)
1060                         command_print(cmd_ctx, "\tValid ROM table present");
1061                 else
1062                         command_print(cmd_ctx, "\tROM table in legacy format");
1063
1064                 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1065                 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1066                 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1067                 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1068                 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1069                 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1070                 retval = dap_run(dap);
1071                 if (retval != ERROR_OK)
1072                         return retval;
1073
1074                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1075                         command_print(cmd_ctx, "\tCID3 0x%2.2" PRIx32
1076                                         ", CID2 0x%2.2" PRIx32
1077                                         ", CID1 0x%2.2" PRIx32
1078                                         ", CID0 0x%2.2" PRIx32,
1079                                         cid3, cid2, cid1, cid0);
1080                 if (memtype & 0x01)
1081                         command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1082                 else
1083                         command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1084                                         "Dedicated debug bus.");
1085
1086                 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1087                 entry_offset = 0;
1088                 do
1089                 {
1090                         mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1091                         command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1092                         if (romentry&0x01)
1093                         {
1094                                 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1095                                 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1096                                 uint32_t component_start, component_base;
1097                                 unsigned part_num;
1098                                 char *type, *full;
1099
1100                                 component_base = (uint32_t)((dbgbase & 0xFFFFF000)
1101                                                 + (int)(romentry & 0xFFFFF000));
1102                                 mem_ap_read_atomic_u32(dap,
1103                                                 (component_base & 0xFFFFF000) | 0xFE0, &c_pid0);
1104                                 mem_ap_read_atomic_u32(dap,
1105                                                 (component_base & 0xFFFFF000) | 0xFE4, &c_pid1);
1106                                 mem_ap_read_atomic_u32(dap,
1107                                                 (component_base & 0xFFFFF000) | 0xFE8, &c_pid2);
1108                                 mem_ap_read_atomic_u32(dap,
1109                                                 (component_base & 0xFFFFF000) | 0xFEC, &c_pid3);
1110                                 mem_ap_read_atomic_u32(dap,
1111                                                 (component_base & 0xFFFFF000) | 0xFD0, &c_pid4);
1112                                 mem_ap_read_atomic_u32(dap,
1113                                                 (component_base & 0xFFFFF000) | 0xFF0, &c_cid0);
1114                                 mem_ap_read_atomic_u32(dap,
1115                                                 (component_base & 0xFFFFF000) | 0xFF4, &c_cid1);
1116                                 mem_ap_read_atomic_u32(dap,
1117                                                 (component_base & 0xFFFFF000) | 0xFF8, &c_cid2);
1118                                 mem_ap_read_atomic_u32(dap,
1119                                                 (component_base & 0xFFFFF000) | 0xFFC, &c_cid3);
1120                                 component_start = component_base - 0x1000*(c_pid4 >> 4);
1121
1122                                 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32
1123                                                 ", start address 0x%" PRIx32,
1124                                                 component_base, component_start);
1125                                 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1126                                                 (int) (c_cid1 >> 4) & 0xf,
1127                                                 /* See ARM IHI 0029B Table 3-3 */
1128                                                 class_description[(c_cid1 >> 4) & 0xf]);
1129
1130                                 /* CoreSight component? */
1131                                 if (((c_cid1 >> 4) & 0x0f) == 9) {
1132                                         uint32_t devtype;
1133                                         unsigned minor;
1134                                         char *major = "Reserved", *subtype = "Reserved";
1135
1136                                         mem_ap_read_atomic_u32(dap,
1137                                                         (component_base & 0xfffff000) | 0xfcc,
1138                                                         &devtype);
1139                                         minor = (devtype >> 4) & 0x0f;
1140                                         switch (devtype & 0x0f) {
1141                                         case 0:
1142                                                 major = "Miscellaneous";
1143                                                 switch (minor) {
1144                                                 case 0:
1145                                                         subtype = "other";
1146                                                         break;
1147                                                 case 4:
1148                                                         subtype = "Validation component";
1149                                                         break;
1150                                                 }
1151                                                 break;
1152                                         case 1:
1153                                                 major = "Trace Sink";
1154                                                 switch (minor) {
1155                                                 case 0:
1156                                                         subtype = "other";
1157                                                         break;
1158                                                 case 1:
1159                                                         subtype = "Port";
1160                                                         break;
1161                                                 case 2:
1162                                                         subtype = "Buffer";
1163                                                         break;
1164                                                 }
1165                                                 break;
1166                                         case 2:
1167                                                 major = "Trace Link";
1168                                                 switch (minor) {
1169                                                 case 0:
1170                                                         subtype = "other";
1171                                                         break;
1172                                                 case 1:
1173                                                         subtype = "Funnel, router";
1174                                                         break;
1175                                                 case 2:
1176                                                         subtype = "Filter";
1177                                                         break;
1178                                                 case 3:
1179                                                         subtype = "FIFO, buffer";
1180                                                         break;
1181                                                 }
1182                                                 break;
1183                                         case 3:
1184                                                 major = "Trace Source";
1185                                                 switch (minor) {
1186                                                 case 0:
1187                                                         subtype = "other";
1188                                                         break;
1189                                                 case 1:
1190                                                         subtype = "Processor";
1191                                                         break;
1192                                                 case 2:
1193                                                         subtype = "DSP";
1194                                                         break;
1195                                                 case 3:
1196                                                         subtype = "Engine/Coprocessor";
1197                                                         break;
1198                                                 case 4:
1199                                                         subtype = "Bus";
1200                                                         break;
1201                                                 }
1202                                                 break;
1203                                         case 4:
1204                                                 major = "Debug Control";
1205                                                 switch (minor) {
1206                                                 case 0:
1207                                                         subtype = "other";
1208                                                         break;
1209                                                 case 1:
1210                                                         subtype = "Trigger Matrix";
1211                                                         break;
1212                                                 case 2:
1213                                                         subtype = "Debug Auth";
1214                                                         break;
1215                                                 }
1216                                                 break;
1217                                         case 5:
1218                                                 major = "Debug Logic";
1219                                                 switch (minor) {
1220                                                 case 0:
1221                                                         subtype = "other";
1222                                                         break;
1223                                                 case 1:
1224                                                         subtype = "Processor";
1225                                                         break;
1226                                                 case 2:
1227                                                         subtype = "DSP";
1228                                                         break;
1229                                                 case 3:
1230                                                         subtype = "Engine/Coprocessor";
1231                                                         break;
1232                                                 }
1233                                                 break;
1234                                         }
1235                                         command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1236                                                         (unsigned) (devtype & 0xff),
1237                                                         major, subtype);
1238                                         /* REVISIT also show 0xfc8 DevId */
1239                                 }
1240
1241                                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1242                                         command_print(cmd_ctx, "\t\tCID3 0x%2.2" PRIx32
1243                                                         ", CID2 0x%2.2" PRIx32
1244                                                         ", CID1 0x%2.2" PRIx32
1245                                                         ", CID0 0x%2.2" PRIx32,
1246                                                         c_cid3, c_cid2, c_cid1, c_cid0);
1247                                 command_print(cmd_ctx, "\t\tPeripheral ID[4..0] = hex "
1248                                                 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1249                                                 (int) c_pid4,
1250                                                 (int) c_pid3, (int) c_pid2,
1251                                                 (int) c_pid1, (int) c_pid0);
1252
1253                                 /* Part number interpretations are from Cortex
1254                                  * core specs, the CoreSight components TRM
1255                                  * (ARM DDI 0314H), and ETM specs; also from
1256                                  * chip observation (e.g. TI SDTI).
1257                                  */
1258                                 part_num = c_pid0 & 0xff;
1259                                 part_num |= (c_pid1 & 0x0f) << 8;
1260                                 switch (part_num) {
1261                                 case 0x000:
1262                                         type = "Cortex-M3 NVIC";
1263                                         full = "(Interrupt Controller)";
1264                                         break;
1265                                 case 0x001:
1266                                         type = "Cortex-M3 ITM";
1267                                         full = "(Instrumentation Trace Module)";
1268                                         break;
1269                                 case 0x002:
1270                                         type = "Cortex-M3 DWT";
1271                                         full = "(Data Watchpoint and Trace)";
1272                                         break;
1273                                 case 0x003:
1274                                         type = "Cortex-M3 FBP";
1275                                         full = "(Flash Patch and Breakpoint)";
1276                                         break;
1277                                 case 0x00d:
1278                                         type = "CoreSight ETM11";
1279                                         full = "(Embedded Trace)";
1280                                         break;
1281                                 // case 0x113: what?
1282                                 case 0x120:             /* from OMAP3 memmap */
1283                                         type = "TI SDTI";
1284                                         full = "(System Debug Trace Interface)";
1285                                         break;
1286                                 case 0x343:             /* from OMAP3 memmap */
1287                                         type = "TI DAPCTL";
1288                                         full = "";
1289                                         break;
1290                                 case 0x906:
1291                                         type = "Coresight CTI";
1292                                         full = "(Cross Trigger)";
1293                                         break;
1294                                 case 0x907:
1295                                         type = "Coresight ETB";
1296                                         full = "(Trace Buffer)";
1297                                         break;
1298                                 case 0x908:
1299                                         type = "Coresight CSTF";
1300                                         full = "(Trace Funnel)";
1301                                         break;
1302                                 case 0x910:
1303                                         type = "CoreSight ETM9";
1304                                         full = "(Embedded Trace)";
1305                                         break;
1306                                 case 0x912:
1307                                         type = "Coresight TPIU";
1308                                         full = "(Trace Port Interface Unit)";
1309                                         break;
1310                                 case 0x921:
1311                                         type = "Cortex-A8 ETM";
1312                                         full = "(Embedded Trace)";
1313                                         break;
1314                                 case 0x922:
1315                                         type = "Cortex-A8 CTI";
1316                                         full = "(Cross Trigger)";
1317                                         break;
1318                                 case 0x923:
1319                                         type = "Cortex-M3 TPIU";
1320                                         full = "(Trace Port Interface Unit)";
1321                                         break;
1322                                 case 0x924:
1323                                         type = "Cortex-M3 ETM";
1324                                         full = "(Embedded Trace)";
1325                                         break;
1326                                 case 0xc08:
1327                                         type = "Cortex-A8 Debug";
1328                                         full = "(Debug Unit)";
1329                                         break;
1330                                 default:
1331                                         type = "-*- unrecognized -*-";
1332                                         full = "";
1333                                         break;
1334                                 }
1335                                 command_print(cmd_ctx, "\t\tPart is %s %s",
1336                                                 type, full);
1337                         }
1338                         else
1339                         {
1340                                 if (romentry)
1341                                         command_print(cmd_ctx, "\t\tComponent not present");
1342                                 else
1343                                         command_print(cmd_ctx, "\t\tEnd of ROM table");
1344                         }
1345                         entry_offset += 4;
1346                 } while (romentry > 0);
1347         }
1348         else
1349         {
1350                 command_print(cmd_ctx, "\tNo ROM table present");
1351         }
1352         dap_ap_select(dap, apselold);
1353
1354         return ERROR_OK;
1355 }
1356
1357 COMMAND_HANDLER(handle_dap_info_command)
1358 {
1359         struct target *target = get_current_target(CMD_CTX);
1360         struct arm *arm = target_to_arm(target);
1361         struct adiv5_dap *dap = arm->dap;
1362         uint32_t apsel;
1363
1364         switch (CMD_ARGC) {
1365         case 0:
1366                 apsel = dap->apsel;
1367                 break;
1368         case 1:
1369                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1370                 break;
1371         default:
1372                 return ERROR_COMMAND_SYNTAX_ERROR;
1373         }
1374
1375         return dap_info_command(CMD_CTX, dap, apsel);
1376 }
1377
1378 COMMAND_HANDLER(dap_baseaddr_command)
1379 {
1380         struct target *target = get_current_target(CMD_CTX);
1381         struct arm *arm = target_to_arm(target);
1382         struct adiv5_dap *dap = arm->dap;
1383
1384         uint32_t apsel, apselsave, baseaddr;
1385         int retval;
1386
1387         apselsave = dap->apsel;
1388         switch (CMD_ARGC) {
1389         case 0:
1390                 apsel = dap->apsel;
1391                 break;
1392         case 1:
1393                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1394                 /* AP address is in bits 31:24 of DP_SELECT */
1395                 if (apsel >= 256)
1396                         return ERROR_INVALID_ARGUMENTS;
1397                 break;
1398         default:
1399                 return ERROR_COMMAND_SYNTAX_ERROR;
1400         }
1401
1402         if (apselsave != apsel)
1403                 dap_ap_select(dap, apsel);
1404
1405         /* NOTE:  assumes we're talking to a MEM-AP, which
1406          * has a base address.  There are other kinds of AP,
1407          * though they're not common for now.  This should
1408          * use the ID register to verify it's a MEM-AP.
1409          */
1410         retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1411         retval = dap_run(dap);
1412         if (retval != ERROR_OK)
1413                 return retval;
1414
1415         command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1416
1417         if (apselsave != apsel)
1418                 dap_ap_select(dap, apselsave);
1419
1420         return retval;
1421 }
1422
1423 COMMAND_HANDLER(dap_memaccess_command)
1424 {
1425         struct target *target = get_current_target(CMD_CTX);
1426         struct arm *arm = target_to_arm(target);
1427         struct adiv5_dap *dap = arm->dap;
1428
1429         uint32_t memaccess_tck;
1430
1431         switch (CMD_ARGC) {
1432         case 0:
1433                 memaccess_tck = dap->memaccess_tck;
1434                 break;
1435         case 1:
1436                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1437                 break;
1438         default:
1439                 return ERROR_COMMAND_SYNTAX_ERROR;
1440         }
1441         dap->memaccess_tck = memaccess_tck;
1442
1443         command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1444                         dap->memaccess_tck);
1445
1446         return ERROR_OK;
1447 }
1448
1449 COMMAND_HANDLER(dap_apsel_command)
1450 {
1451         struct target *target = get_current_target(CMD_CTX);
1452         struct arm *arm = target_to_arm(target);
1453         struct adiv5_dap *dap = arm->dap;
1454
1455         uint32_t apsel, apid;
1456         int retval;
1457
1458         switch (CMD_ARGC) {
1459         case 0:
1460                 apsel = 0;
1461                 break;
1462         case 1:
1463                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1464                 /* AP address is in bits 31:24 of DP_SELECT */
1465                 if (apsel >= 256)
1466                         return ERROR_INVALID_ARGUMENTS;
1467                 break;
1468         default:
1469                 return ERROR_COMMAND_SYNTAX_ERROR;
1470         }
1471
1472         dap_ap_select(dap, apsel);
1473         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1474         retval = dap_run(dap);
1475         if (retval != ERROR_OK)
1476                 return retval;
1477
1478         command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1479                         apsel, apid);
1480
1481         return retval;
1482 }
1483
1484 COMMAND_HANDLER(dap_apid_command)
1485 {
1486         struct target *target = get_current_target(CMD_CTX);
1487         struct arm *arm = target_to_arm(target);
1488         struct adiv5_dap *dap = arm->dap;
1489
1490         uint32_t apsel, apselsave, apid;
1491         int retval;
1492
1493         apselsave = dap->apsel;
1494         switch (CMD_ARGC) {
1495         case 0:
1496                 apsel = dap->apsel;
1497                 break;
1498         case 1:
1499                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1500                 /* AP address is in bits 31:24 of DP_SELECT */
1501                 if (apsel >= 256)
1502                         return ERROR_INVALID_ARGUMENTS;
1503                 break;
1504         default:
1505                 return ERROR_COMMAND_SYNTAX_ERROR;
1506         }
1507
1508         if (apselsave != apsel)
1509                 dap_ap_select(dap, apsel);
1510
1511         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1512         retval = dap_run(dap);
1513         if (retval != ERROR_OK)
1514                 return retval;
1515
1516         command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1517         if (apselsave != apsel)
1518                 dap_ap_select(dap, apselsave);
1519
1520         return retval;
1521 }
1522
1523 static const struct command_registration dap_commands[] = {
1524         {
1525                 .name = "info",
1526                 .handler = handle_dap_info_command,
1527                 .mode = COMMAND_EXEC,
1528                 .help = "display ROM table for MEM-AP "
1529                         "(default currently selected AP)",
1530                 .usage = "[ap_num]",
1531         },
1532         {
1533                 .name = "apsel",
1534                 .handler = dap_apsel_command,
1535                 .mode = COMMAND_EXEC,
1536                 .help = "Set the currently selected AP (default 0) "
1537                         "and display the result",
1538                 .usage = "[ap_num]",
1539         },
1540         {
1541                 .name = "apid",
1542                 .handler = dap_apid_command,
1543                 .mode = COMMAND_EXEC,
1544                 .help = "return ID register from AP "
1545                         "(default currently selected AP)",
1546                 .usage = "[ap_num]",
1547         },
1548         {
1549                 .name = "baseaddr",
1550                 .handler = dap_baseaddr_command,
1551                 .mode = COMMAND_EXEC,
1552                 .help = "return debug base address from MEM-AP "
1553                         "(default currently selected AP)",
1554                 .usage = "[ap_num]",
1555         },
1556         {
1557                 .name = "memaccess",
1558                 .handler = dap_memaccess_command,
1559                 .mode = COMMAND_EXEC,
1560                 .help = "set/get number of extra tck for MEM-AP memory "
1561                         "bus access [0-255]",
1562                 .usage = "[cycles]",
1563         },
1564         COMMAND_REGISTRATION_DONE
1565 };
1566
1567 const struct command_registration dap_command_handlers[] = {
1568         {
1569                 .name = "dap",
1570                 .mode = COMMAND_EXEC,
1571                 .help = "DAP command group",
1572                 .chain = dap_commands,
1573         },
1574         COMMAND_REGISTRATION_DONE
1575 };
1576
1577