fix segfault from stack corruption in ahbap_debugport_init
[fw/openocd] / src / target / arm_adi_v5.c
1 /***************************************************************************
2  *   Copyright (C) 2006 by Magnus Lundin                                   *
3  *   lundin@mlu.mine.nu                                                    *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2009-2010 by Oyvind Harboe                              *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2009-2010 by David Brownell                             *
12  *                                                                         *
13  *   This program is free software; you can redistribute it and/or modify  *
14  *   it under the terms of the GNU General Public License as published by  *
15  *   the Free Software Foundation; either version 2 of the License, or     *
16  *   (at your option) any later version.                                   *
17  *                                                                         *
18  *   This program is distributed in the hope that it will be useful,       *
19  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
20  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
21  *   GNU General Public License for more details.                          *
22  *                                                                         *
23  *   You should have received a copy of the GNU General Public License     *
24  *   along with this program; if not, write to the                         *
25  *   Free Software Foundation, Inc.,                                       *
26  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
27  ***************************************************************************/
28
29 /**
30  * @file
31  * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32  * debugging architecture.  Compared with previous versions, this includes
33  * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34  * transport, and focusses on memory mapped resources as defined by the
35  * CoreSight architecture.
36  *
37  * A key concept in ADIv5 is the Debug Access Port, or DAP.  A DAP has two
38  * basic components:  a Debug Port (DP) transporting messages to and from a
39  * debugger, and an Access Port (AP) accessing resources.  Three types of DP
40  * are defined.  One uses only JTAG for communication, and is called JTAG-DP.
41  * One uses only SWD for communication, and is called SW-DP.  The third can
42  * use either SWD or JTAG, and is called SWJ-DP.  The most common type of AP
43  * is used to access memory mapped resources and is called a MEM-AP.  Also a
44  * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45  *
46  * This programming interface allows DAP pipelined operations through a
47  * transaction queue.  This primarily affects AP operations (such as using
48  * a MEM-AP to access memory or registers).  If the current transaction has
49  * not finished by the time the next one must begin, and the ORUNDETECT bit
50  * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51  * further AP operations will fail.  There are two basic methods to avoid
52  * such overrun errors.  One involves polling for status instead of using
53  * transaction piplining.  The other involves adding delays to ensure the
54  * AP has enough time to complete one operation before starting the next
55  * one.  (For JTAG these delays are controlled by memaccess_tck.)
56  */
57
58 /*
59  * Relevant specifications from ARM include:
60  *
61  * ARM(tm) Debug Interface v5 Architecture Specification    ARM IHI 0031A
62  * CoreSight(tm) v1.0 Architecture Specification            ARM IHI 0029B
63  *
64  * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65  * Cortex-M3(tm) TRM, ARM DDI 0337G
66  */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement  */
78
79 /*
80         uint32_t tar_block_size(uint32_t address)
81         Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85         return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89  *                                                                         *
90  * DP and MEM-AP  register access  through APACC and DPACC                 *
91  *                                                                         *
92 ***************************************************************************/
93
94 /**
95  * Select one of the APs connected to the specified DAP.  The
96  * selection is implicitly used with future AP transactions.
97  * This is a NOP if the specified AP is already selected.
98  *
99  * @param dap The DAP
100  * @param apsel Number of the AP to (implicitly) use with further
101  *      transactions.  This normally identifies a MEM-AP.
102  */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t apsel)
104 {
105         uint32_t select_apsel = (apsel << 24) & 0xFF000000;
106
107         if (select_apsel != dap->apsel)
108         {
109                 dap->apsel = select_apsel;
110                 /* Switching AP invalidates cached values.
111                  * Values MUST BE UPDATED BEFORE AP ACCESS.
112                  */
113                 dap->ap_bank_value = -1;
114                 dap->ap_csw_value = -1;
115                 dap->ap_tar_value = -1;
116         }
117 }
118
119 /**
120  * Queue transactions setting up transfer parameters for the
121  * currently selected MEM-AP.
122  *
123  * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124  * initiate data reads or writes using memory or peripheral addresses.
125  * If the CSW is configured for it, the TAR may be automatically
126  * incremented after each transfer.
127  *
128  * @todo Rename to reflect it being specifically a MEM-AP function.
129  *
130  * @param dap The DAP connected to the MEM-AP.
131  * @param csw MEM-AP Control/Status Word (CSW) register to assign.  If this
132  *      matches the cached value, the register is not changed.
133  * @param tar MEM-AP Transfer Address Register (TAR) to assign.  If this
134  *      matches the cached address, the register is not changed.
135  *
136  * @return ERROR_OK if the transaction was properly queued, else a fault code.
137  */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140         int retval;
141
142         csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143         if (csw != dap->ap_csw_value)
144         {
145                 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146                 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147                 if (retval != ERROR_OK)
148                         return retval;
149                 dap->ap_csw_value = csw;
150         }
151         if (tar != dap->ap_tar_value)
152         {
153                 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154                 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155                 if (retval != ERROR_OK)
156                         return retval;
157                 dap->ap_tar_value = tar;
158         }
159         /* Disable TAR cache when autoincrementing */
160         if (csw & CSW_ADDRINC_MASK)
161                 dap->ap_tar_value = -1;
162         return ERROR_OK;
163 }
164
165 /**
166  * Asynchronous (queued) read of a word from memory or a system register.
167  *
168  * @param dap The DAP connected to the MEM-AP performing the read.
169  * @param address Address of the 32-bit word to read; it must be
170  *      readable by the currently selected MEM-AP.
171  * @param value points to where the word will be stored when the
172  *      transaction queue is flushed (assuming no errors).
173  *
174  * @return ERROR_OK for success.  Otherwise a fault code.
175  */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177                 uint32_t *value)
178 {
179         int retval;
180
181         /* Use banked addressing (REG_BDx) to avoid some link traffic
182          * (updating TAR) when reading several consecutive addresses.
183          */
184         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185                         address & 0xFFFFFFF0);
186         if (retval != ERROR_OK)
187                 return retval;
188
189         return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193  * Synchronous read of a word from memory or a system register.
194  * As a side effect, this flushes any queued transactions.
195  *
196  * @param dap The DAP connected to the MEM-AP performing the read.
197  * @param address Address of the 32-bit word to read; it must be
198  *      readable by the currently selected MEM-AP.
199  * @param value points to where the result will be stored.
200  *
201  * @return ERROR_OK for success; *value holds the result.
202  * Otherwise a fault code.
203  */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205                 uint32_t *value)
206 {
207         int retval;
208
209         retval = mem_ap_read_u32(dap, address, value);
210         if (retval != ERROR_OK)
211                 return retval;
212
213         return dap_run(dap);
214 }
215
216 /**
217  * Asynchronous (queued) write of a word to memory or a system register.
218  *
219  * @param dap The DAP connected to the MEM-AP.
220  * @param address Address to be written; it must be writable by
221  *      the currently selected MEM-AP.
222  * @param value Word that will be written to the address when transaction
223  *      queue is flushed (assuming no errors).
224  *
225  * @return ERROR_OK for success.  Otherwise a fault code.
226  */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228                 uint32_t value)
229 {
230         int retval;
231
232         /* Use banked addressing (REG_BDx) to avoid some link traffic
233          * (updating TAR) when writing several consecutive addresses.
234          */
235         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236                         address & 0xFFFFFFF0);
237         if (retval != ERROR_OK)
238                 return retval;
239
240         return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241                         value);
242 }
243
244 /**
245  * Synchronous write of a word to memory or a system register.
246  * As a side effect, this flushes any queued transactions.
247  *
248  * @param dap The DAP connected to the MEM-AP.
249  * @param address Address to be written; it must be writable by
250  *      the currently selected MEM-AP.
251  * @param value Word that will be written.
252  *
253  * @return ERROR_OK for success; the data was written.  Otherwise a fault code.
254  */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256                 uint32_t value)
257 {
258         int retval = mem_ap_write_u32(dap, address, value);
259
260         if (retval != ERROR_OK)
261                 return retval;
262
263         return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 *                                                                            *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 *                                                                            *
270 * Write a buffer in target order (little endian)                             *
271 *                                                                            *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
274 {
275         int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276         uint32_t adr = address;
277         uint8_t* pBuffer = buffer;
278
279         count >>= 2;
280         wcount = count;
281
282         /* if we have an unaligned access - reorder data */
283         if (adr & 0x3u)
284         {
285                 for (writecount = 0; writecount < count; writecount++)
286                 {
287                         int i;
288                         uint32_t outvalue;
289                         memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291                         for (i = 0; i < 4; i++)
292                         {
293                                 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294                                 outvalue >>= 8;
295                                 adr++;
296                         }
297                         pBuffer += sizeof(uint32_t);
298                 }
299         }
300
301         while (wcount > 0)
302         {
303                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305                 if (wcount < blocksize)
306                         blocksize = wcount;
307
308                 /* handle unaligned data at 4k boundary */
309                 if (blocksize == 0)
310                         blocksize = 1;
311
312                 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313                 if (retval != ERROR_OK)
314                         return retval;
315
316                 for (writecount = 0; writecount < blocksize; writecount++)
317                 {
318                         retval = dap_queue_ap_write(dap, AP_REG_DRW,
319                                 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
320                         if (retval != ERROR_OK)
321                                 break;
322                 }
323
324                 if ((retval = dap_run(dap)) == ERROR_OK)
325                 {
326                         wcount = wcount - blocksize;
327                         address = address + 4 * blocksize;
328                         buffer = buffer + 4 * blocksize;
329                 }
330                 else
331                 {
332                         errorcount++;
333                 }
334
335                 if (errorcount > 1)
336                 {
337                         LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338                         return retval;
339                 }
340         }
341
342         return retval;
343 }
344
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346                 uint8_t *buffer, int count, uint32_t address)
347 {
348         int retval = ERROR_OK;
349         int wcount, blocksize, writecount, i;
350
351         wcount = count >> 1;
352
353         while (wcount > 0)
354         {
355                 int nbytes;
356
357                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
359
360                 if (wcount < blocksize)
361                         blocksize = wcount;
362
363                 /* handle unaligned data at 4k boundary */
364                 if (blocksize == 0)
365                         blocksize = 1;
366
367                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368                 if (retval != ERROR_OK)
369                         return retval;
370                 writecount = blocksize;
371
372                 do
373                 {
374                         nbytes = MIN((writecount << 1), 4);
375
376                         if (nbytes < 4)
377                         {
378                                 retval = mem_ap_write_buf_u16(dap, buffer,
379                                                 nbytes, address);
380                                 if (retval != ERROR_OK)
381                                 {
382                                         LOG_WARNING("Block write error address "
383                                                 "0x%" PRIx32 ", count 0x%x",
384                                                 address, count);
385                                         return retval;
386                                 }
387
388                                 address += nbytes >> 1;
389                         }
390                         else
391                         {
392                                 uint32_t outvalue;
393                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
394
395                                 for (i = 0; i < nbytes; i++)
396                                 {
397                                         *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398                                         outvalue >>= 8;
399                                         address++;
400                                 }
401
402                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
403                                 retval = dap_queue_ap_write(dap,
404                                                 AP_REG_DRW, outvalue);
405                                 if (retval != ERROR_OK)
406                                         break;
407
408                                 if ((retval = dap_run(dap)) != ERROR_OK)
409                                 {
410                                         LOG_WARNING("Block write error address "
411                                                 "0x%" PRIx32 ", count 0x%x",
412                                                 address, count);
413                                         return retval;
414                                 }
415                         }
416
417                         buffer += nbytes >> 1;
418                         writecount -= nbytes >> 1;
419
420                 } while (writecount);
421                 wcount -= blocksize;
422         }
423
424         return retval;
425 }
426
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
428 {
429         int retval = ERROR_OK;
430
431         if (count >= 4)
432                 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
433
434         while (count > 0)
435         {
436                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437                 if (retval != ERROR_OK)
438                         return retval;
439                 uint16_t svalue;
440                 memcpy(&svalue, buffer, sizeof(uint16_t));
441                 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443                 if (retval != ERROR_OK)
444                         break;
445
446                 retval = dap_run(dap);
447                 if (retval != ERROR_OK)
448                         break;
449
450                 count -= 2;
451                 address += 2;
452                 buffer += 2;
453         }
454
455         return retval;
456 }
457
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459                 uint8_t *buffer, int count, uint32_t address)
460 {
461         int retval = ERROR_OK;
462         int wcount, blocksize, writecount, i;
463
464         wcount = count;
465
466         while (wcount > 0)
467         {
468                 int nbytes;
469
470                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
472
473                 if (wcount < blocksize)
474                         blocksize = wcount;
475
476                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477                 if (retval != ERROR_OK)
478                         return retval;
479                 writecount = blocksize;
480
481                 do
482                 {
483                         nbytes = MIN(writecount, 4);
484
485                         if (nbytes < 4)
486                         {
487                                 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488                                 if (retval != ERROR_OK)
489                                 {
490                                         LOG_WARNING("Block write error address "
491                                                 "0x%" PRIx32 ", count 0x%x",
492                                                 address, count);
493                                         return retval;
494                                 }
495
496                                 address += nbytes;
497                         }
498                         else
499                         {
500                                 uint32_t outvalue;
501                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
502
503                                 for (i = 0; i < nbytes; i++)
504                                 {
505                                         *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506                                         outvalue >>= 8;
507                                         address++;
508                                 }
509
510                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
511                                 retval = dap_queue_ap_write(dap,
512                                                 AP_REG_DRW, outvalue);
513                                 if (retval != ERROR_OK)
514                                         break;
515
516                                 if ((retval = dap_run(dap)) != ERROR_OK)
517                                 {
518                                         LOG_WARNING("Block write error address "
519                                                 "0x%" PRIx32 ", count 0x%x",
520                                                 address, count);
521                                         return retval;
522                                 }
523                         }
524
525                         buffer += nbytes;
526                         writecount -= nbytes;
527
528                 } while (writecount);
529                 wcount -= blocksize;
530         }
531
532         return retval;
533 }
534
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
536 {
537         int retval = ERROR_OK;
538
539         if (count >= 4)
540                 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
541
542         while (count > 0)
543         {
544                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545                 if (retval != ERROR_OK)
546                         return retval;
547                 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549                 if (retval != ERROR_OK)
550                         break;
551
552                 retval = dap_run(dap);
553                 if (retval != ERROR_OK)
554                         break;
555
556                 count--;
557                 address++;
558                 buffer++;
559         }
560
561         return retval;
562 }
563
564 /* FIXME don't import ... this is a temporary workaround for the
565  * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
566  */
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568                 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569                 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
570
571 /**
572  * Synchronously read a block of 32-bit words into a buffer
573  * @param dap The DAP connected to the MEM-AP.
574  * @param buffer where the words will be stored (in host byte order).
575  * @param count How many words to read.
576  * @param address Memory address from which to read words; all the
577  *      words must be readable by the currently selected MEM-AP.
578  */
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580                 int count, uint32_t address)
581 {
582         int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583         uint32_t adr = address;
584         uint8_t* pBuffer = buffer;
585
586         count >>= 2;
587         wcount = count;
588
589         while (wcount > 0)
590         {
591                 /* Adjust to read blocks within boundaries aligned to the
592                  * TAR autoincrement size (at least 2^10).  Autoincrement
593                  * mode avoids an extra per-word roundtrip to update TAR.
594                  */
595                 blocksize = max_tar_block_size(dap->tar_autoincr_block,
596                                 address);
597                 if (wcount < blocksize)
598                         blocksize = wcount;
599
600                 /* handle unaligned data at 4k boundary */
601                 if (blocksize == 0)
602                         blocksize = 1;
603
604                 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
605                                 address);
606                 if (retval != ERROR_OK)
607                         return retval;
608
609                 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610                  * so this routine becomes transport-neutral.  Be careful
611                  * not to cause performance problems with JTAG; would it
612                  * suffice to loop over dap_queue_ap_read(), or would that
613                  * be slower when JTAG is the chosen transport?
614                  */
615
616                 /* Scan out first read */
617                 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618                                 DPAP_READ, 0, NULL, NULL);
619                 if (retval != ERROR_OK)
620                         return retval;
621                 for (readcount = 0; readcount < blocksize - 1; readcount++)
622                 {
623                         /* Scan out next read; scan in posted value for the
624                          * previous one.  Assumes read is acked "OK/FAULT",
625                          * and CTRL_STAT says that meant "OK".
626                          */
627                         retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628                                         DPAP_READ, 0, buffer + 4 * readcount,
629                                         &dap->ack);
630                         if (retval != ERROR_OK)
631                                 return retval;
632                 }
633
634                 /* Scan in last posted value; RDBUFF has no other effect,
635                  * assuming ack is OK/FAULT and CTRL_STAT says "OK".
636                  */
637                 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638                                 DPAP_READ, 0, buffer + 4 * readcount,
639                                 &dap->ack);
640                 if (retval != ERROR_OK)
641                         return retval;
642
643                 retval = dap_run(dap);
644                 if (retval != ERROR_OK)
645                 {
646                         errorcount++;
647                         if (errorcount <= 1)
648                         {
649                                 /* try again */
650                                 continue;
651                         }
652                         LOG_WARNING("Block read error address 0x%" PRIx32, address);
653                         return retval;
654                 }
655                 wcount = wcount - blocksize;
656                 address += 4 * blocksize;
657                 buffer += 4 * blocksize;
658         }
659
660         /* if we have an unaligned access - reorder data */
661         if (adr & 0x3u)
662         {
663                 for (readcount = 0; readcount < count; readcount++)
664                 {
665                         int i;
666                         uint32_t data;
667                         memcpy(&data, pBuffer, sizeof(uint32_t));
668
669                         for (i = 0; i < 4; i++)
670                         {
671                                 *((uint8_t*)pBuffer) =
672                                                 (data >> 8 * (adr & 0x3));
673                                 pBuffer++;
674                                 adr++;
675                         }
676                 }
677         }
678
679         return retval;
680 }
681
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683                 uint8_t *buffer, int count, uint32_t address)
684 {
685         uint32_t invalue;
686         int retval = ERROR_OK;
687         int wcount, blocksize, readcount, i;
688
689         wcount = count >> 1;
690
691         while (wcount > 0)
692         {
693                 int nbytes;
694
695                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697                 if (wcount < blocksize)
698                         blocksize = wcount;
699
700                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701                 if (retval != ERROR_OK)
702                         return retval;
703
704                 /* handle unaligned data at 4k boundary */
705                 if (blocksize == 0)
706                         blocksize = 1;
707                 readcount = blocksize;
708
709                 do
710                 {
711                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712                         if (retval != ERROR_OK)
713                                 return retval;
714                         if ((retval = dap_run(dap)) != ERROR_OK)
715                         {
716                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
717                                 return retval;
718                         }
719
720                         nbytes = MIN((readcount << 1), 4);
721
722                         for (i = 0; i < nbytes; i++)
723                         {
724                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725                                 buffer++;
726                                 address++;
727                         }
728
729                         readcount -= (nbytes >> 1);
730                 } while (readcount);
731                 wcount -= blocksize;
732         }
733
734         return retval;
735 }
736
737 /**
738  * Synchronously read a block of 16-bit halfwords into a buffer
739  * @param dap The DAP connected to the MEM-AP.
740  * @param buffer where the halfwords will be stored (in host byte order).
741  * @param count How many halfwords to read.
742  * @param address Memory address from which to read words; all the
743  *      words must be readable by the currently selected MEM-AP.
744  */
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746                 int count, uint32_t address)
747 {
748         uint32_t invalue, i;
749         int retval = ERROR_OK;
750
751         if (count >= 4)
752                 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
753
754         while (count > 0)
755         {
756                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757                 if (retval != ERROR_OK)
758                         return retval;
759                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760                 if (retval != ERROR_OK)
761                         break;
762
763                 retval = dap_run(dap);
764                 if (retval != ERROR_OK)
765                         break;
766
767                 if (address & 0x1)
768                 {
769                         for (i = 0; i < 2; i++)
770                         {
771                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772                                 buffer++;
773                                 address++;
774                         }
775                 }
776                 else
777                 {
778                         uint16_t svalue = (invalue >> 8 * (address & 0x3));
779                         memcpy(buffer, &svalue, sizeof(uint16_t));
780                         address += 2;
781                         buffer += 2;
782                 }
783                 count -= 2;
784         }
785
786         return retval;
787 }
788
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790  * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
791  *
792  * The solution is to arrange for a large out/in scan in this loop and
793  * and convert data afterwards.
794  */
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796                 uint8_t *buffer, int count, uint32_t address)
797 {
798         uint32_t invalue;
799         int retval = ERROR_OK;
800         int wcount, blocksize, readcount, i;
801
802         wcount = count;
803
804         while (wcount > 0)
805         {
806                 int nbytes;
807
808                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
810
811                 if (wcount < blocksize)
812                         blocksize = wcount;
813
814                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815                 if (retval != ERROR_OK)
816                         return retval;
817                 readcount = blocksize;
818
819                 do
820                 {
821                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822                         if (retval != ERROR_OK)
823                                 return retval;
824                         if ((retval = dap_run(dap)) != ERROR_OK)
825                         {
826                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
827                                 return retval;
828                         }
829
830                         nbytes = MIN(readcount, 4);
831
832                         for (i = 0; i < nbytes; i++)
833                         {
834                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
835                                 buffer++;
836                                 address++;
837                         }
838
839                         readcount -= nbytes;
840                 } while (readcount);
841                 wcount -= blocksize;
842         }
843
844         return retval;
845 }
846
847 /**
848  * Synchronously read a block of bytes into a buffer
849  * @param dap The DAP connected to the MEM-AP.
850  * @param buffer where the bytes will be stored.
851  * @param count How many bytes to read.
852  * @param address Memory address from which to read data; all the
853  *      data must be readable by the currently selected MEM-AP.
854  */
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856                 int count, uint32_t address)
857 {
858         uint32_t invalue;
859         int retval = ERROR_OK;
860
861         if (count >= 4)
862                 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
863
864         while (count > 0)
865         {
866                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867                 if (retval != ERROR_OK)
868                         return retval;
869                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870                 if (retval != ERROR_OK)
871                         return retval;
872                 retval = dap_run(dap);
873                 if (retval != ERROR_OK)
874                         break;
875
876                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
877                 count--;
878                 address++;
879                 buffer++;
880         }
881
882         return retval;
883 }
884
885 /*--------------------------------------------------------------------------*/
886
887
888 /* FIXME don't import ... just initialize as
889  * part of DAP transport setup
890 */
891 extern const struct dap_ops jtag_dp_ops;
892
893 /*--------------------------------------------------------------------------*/
894
895 /**
896  * Initialize a DAP.  This sets up the power domains, prepares the DP
897  * for further use, and arranges to use AP #0 for all AP operations
898  * until dap_ap-select() changes that policy.
899  *
900  * @param dap The DAP being initialized.
901  *
902  * @todo Rename this.  We also need an initialization scheme which account
903  * for SWD transports not just JTAG; that will need to address differences
904  * in layering.  (JTAG is useful without any debug target; but not SWD.)
905  * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
906  */
907 int ahbap_debugport_init(struct adiv5_dap *dap)
908 {
909         uint32_t ctrlstat;
910         int cnt = 0;
911         int retval;
912
913         LOG_DEBUG(" ");
914
915         /* JTAG-DP or SWJ-DP, in JTAG mode
916          * ... for SWD mode this is patched as part
917          * of link switchover
918          */
919         if (!dap->ops)
920                 dap->ops = &jtag_dp_ops;
921
922         /* Default MEM-AP setup.
923          *
924          * REVISIT AP #0 may be an inappropriate default for this.
925          * Should we probe, or take a hint from the caller?
926          * Presumably we can ignore the possibility of multiple APs.
927          */
928         dap->apsel = !0;
929         dap_ap_select(dap, 0);
930
931         /* DP initialization */
932
933         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
934         if (retval != ERROR_OK)
935                 return retval;
936
937         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
938         if (retval != ERROR_OK)
939                 return retval;
940
941         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
942         if (retval != ERROR_OK)
943                 return retval;
944
945         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
946         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
947         if (retval != ERROR_OK)
948                 return retval;
949
950         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
951         if (retval != ERROR_OK)
952                 return retval;
953         if ((retval = dap_run(dap)) != ERROR_OK)
954                 return retval;
955
956         /* Check that we have debug power domains activated */
957         while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
958         {
959                 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
960                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
961                 if (retval != ERROR_OK)
962                         return retval;
963                 if ((retval = dap_run(dap)) != ERROR_OK)
964                         return retval;
965                 alive_sleep(10);
966         }
967
968         while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
969         {
970                 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
971                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
972                 if (retval != ERROR_OK)
973                         return retval;
974                 if ((retval = dap_run(dap)) != ERROR_OK)
975                         return retval;
976                 alive_sleep(10);
977         }
978
979         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
980         if (retval != ERROR_OK)
981                 return retval;
982         /* With debug power on we can activate OVERRUN checking */
983         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
984         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
985         if (retval != ERROR_OK)
986                 return retval;
987         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
988         if (retval != ERROR_OK)
989                 return retval;
990
991         return ERROR_OK;
992 }
993
994 /* CID interpretation -- see ARM IHI 0029B section 3
995  * and ARM IHI 0031A table 13-3.
996  */
997 static const char *class_description[16] ={
998         "Reserved", "ROM table", "Reserved", "Reserved",
999         "Reserved", "Reserved", "Reserved", "Reserved",
1000         "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1001         "Reserved", "OptimoDE DESS",
1002                 "Generic IP component", "PrimeCell or System component"
1003 };
1004
1005 static bool
1006 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1007 {
1008         return cid3 == 0xb1 && cid2 == 0x05
1009                         && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1010 }
1011
1012 struct broken_cpu {
1013         uint32_t        dbgbase;
1014         uint32_t        apid;
1015         uint32_t        idcode;
1016         uint32_t        correct_dbgbase;
1017         char            *model;
1018 } broken_cpus[] = {
1019         { 0x80000000, 0x04770002, 0x1ba00477, 0x60000000, "imx51" },
1020 };
1021
1022 int dap_get_debugbase(struct adiv5_dap *dap, int apsel,
1023                         uint32_t *out_dbgbase, uint32_t *out_apid)
1024 {
1025         uint32_t apselold;
1026         int retval;
1027         unsigned int i;
1028         uint32_t dbgbase, apid, idcode;
1029
1030         /* AP address is in bits 31:24 of DP_SELECT */
1031         if (apsel >= 256)
1032                 return ERROR_INVALID_ARGUMENTS;
1033
1034         apselold = dap->apsel;
1035         dap_ap_select(dap, apsel);
1036
1037         retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1038         if (retval != ERROR_OK)
1039                 return retval;
1040         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1041         if (retval != ERROR_OK)
1042                 return retval;
1043         retval = dap_run(dap);
1044         if (retval != ERROR_OK)
1045                 return retval;
1046
1047         /* Excavate the device ID code */
1048         struct jtag_tap *tap = dap->jtag_info->tap;
1049         while (tap != NULL) {
1050                 if (tap->hasidcode) {
1051                         idcode = tap->idcode;
1052                         break;
1053                 }
1054                 tap = tap->next_tap;
1055         }
1056         if (tap == NULL || !tap->hasidcode)
1057                 return ERROR_OK;
1058
1059         /* Some CPUs are messed up, so fixup if needed. */
1060         for (i = 0; i < sizeof(broken_cpus)/sizeof(struct broken_cpu); i++)
1061                 if (broken_cpus[i].dbgbase == dbgbase &&
1062                         broken_cpus[i].apid == apid &&
1063                         broken_cpus[i].idcode == idcode) {
1064                         LOG_WARNING("Found broken CPU (%s), trying to fixup "
1065                                 "ROM Table location from 0x%08x to 0x%08x",
1066                                 broken_cpus[i].model, dbgbase,
1067                                 broken_cpus[i].correct_dbgbase);
1068                         dbgbase = broken_cpus[i].correct_dbgbase;
1069                         break;
1070                 }
1071
1072         dap_ap_select(dap, apselold);
1073
1074         /* The asignment happens only here to prevent modification of these
1075          * values before they are certain. */
1076         *out_dbgbase = dbgbase;
1077         *out_apid = apid;
1078
1079         return ERROR_OK;
1080 }
1081
1082 int dap_lookup_cs_component(struct adiv5_dap *dap, int apsel,
1083                         uint32_t dbgbase, uint8_t type, uint32_t *addr)
1084 {
1085         uint32_t apselold;
1086         uint32_t romentry, entry_offset = 0, component_base, devtype;
1087         int retval = ERROR_FAIL;
1088
1089         if (apsel >= 256)
1090                 return ERROR_INVALID_ARGUMENTS;
1091
1092         apselold = dap->apsel;
1093         dap_ap_select(dap, apsel);
1094
1095         do
1096         {
1097                 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1098                                                 entry_offset, &romentry);
1099                 if (retval != ERROR_OK)
1100                         return retval;
1101
1102                 component_base = (dbgbase & 0xFFFFF000)
1103                         + (romentry & 0xFFFFF000);
1104
1105                 if (romentry & 0x1) {
1106                         retval = mem_ap_read_atomic_u32(dap,
1107                                         (component_base & 0xfffff000) | 0xfcc,
1108                                         &devtype);
1109                         if ((devtype & 0xff) == type) {
1110                                 *addr = component_base;
1111                                 retval = ERROR_OK;
1112                                 break;
1113                         }
1114                 }
1115                 entry_offset += 4;
1116         } while (romentry > 0);
1117
1118         dap_ap_select(dap, apselold);
1119
1120         return retval;
1121 }
1122
1123 static int dap_info_command(struct command_context *cmd_ctx,
1124                 struct adiv5_dap *dap, int apsel)
1125 {
1126         int retval;
1127         uint32_t dbgbase, apid;
1128         int romtable_present = 0;
1129         uint8_t mem_ap;
1130         uint32_t apselold;
1131
1132         retval = dap_get_debugbase(dap, apsel, &dbgbase, &apid);
1133         if (retval != ERROR_OK)
1134                 return retval;
1135
1136         apselold = dap->apsel;
1137         dap_ap_select(dap, apsel);
1138
1139         /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1140         mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1141         command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1142         if (apid)
1143         {
1144                 switch (apid&0x0F)
1145                 {
1146                         case 0:
1147                                 command_print(cmd_ctx, "\tType is JTAG-AP");
1148                                 break;
1149                         case 1:
1150                                 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1151                                 break;
1152                         case 2:
1153                                 command_print(cmd_ctx, "\tType is MEM-AP APB");
1154                                 break;
1155                         default:
1156                                 command_print(cmd_ctx, "\tUnknown AP type");
1157                                 break;
1158                 }
1159
1160                 /* NOTE: a MEM-AP may have a single CoreSight component that's
1161                  * not a ROM table ... or have no such components at all.
1162                  */
1163                 if (mem_ap)
1164                         command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1165                                         dbgbase);
1166         }
1167         else
1168         {
1169                 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1170         }
1171
1172         romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1173         if (romtable_present)
1174         {
1175                 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1176                 uint16_t entry_offset;
1177
1178                 /* bit 16 of apid indicates a memory access port */
1179                 if (dbgbase & 0x02)
1180                         command_print(cmd_ctx, "\tValid ROM table present");
1181                 else
1182                         command_print(cmd_ctx, "\tROM table in legacy format");
1183
1184                 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1185                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1186                 if (retval != ERROR_OK)
1187                         return retval;
1188                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1189                 if (retval != ERROR_OK)
1190                         return retval;
1191                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1192                 if (retval != ERROR_OK)
1193                         return retval;
1194                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1195                 if (retval != ERROR_OK)
1196                         return retval;
1197                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1198                 if (retval != ERROR_OK)
1199                         return retval;
1200                 retval = dap_run(dap);
1201                 if (retval != ERROR_OK)
1202                         return retval;
1203
1204                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1205                         command_print(cmd_ctx, "\tCID3 0x%2.2x"
1206                                         ", CID2 0x%2.2x"
1207                                         ", CID1 0x%2.2x"
1208                                         ", CID0 0x%2.2x",
1209                                         (unsigned) cid3, (unsigned)cid2,
1210                                         (unsigned) cid1, (unsigned) cid0);
1211                 if (memtype & 0x01)
1212                         command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1213                 else
1214                         command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1215                                         "Dedicated debug bus.");
1216
1217                 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1218                 entry_offset = 0;
1219                 do
1220                 {
1221                         retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1222                         if (retval != ERROR_OK)
1223                                 return retval;
1224                         command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1225                         if (romentry&0x01)
1226                         {
1227                                 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1228                                 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1229                                 uint32_t component_base;
1230                                 unsigned part_num;
1231                                 char *type, *full;
1232
1233                                 component_base = (dbgbase & 0xFFFFF000)
1234                                                 + (romentry & 0xFFFFF000);
1235
1236                                 /* IDs are in last 4K section */
1237
1238
1239                                 retval = mem_ap_read_atomic_u32(dap,
1240                                         component_base + 0xFE0, &c_pid0);
1241                                 if (retval != ERROR_OK)
1242                                         return retval;
1243                                 c_pid0 &= 0xff;
1244                                 retval = mem_ap_read_atomic_u32(dap,
1245                                         component_base + 0xFE4, &c_pid1);
1246                                 if (retval != ERROR_OK)
1247                                         return retval;
1248                                 c_pid1 &= 0xff;
1249                                 retval = mem_ap_read_atomic_u32(dap,
1250                                         component_base + 0xFE8, &c_pid2);
1251                                 if (retval != ERROR_OK)
1252                                         return retval;
1253                                 c_pid2 &= 0xff;
1254                                 retval = mem_ap_read_atomic_u32(dap,
1255                                         component_base + 0xFEC, &c_pid3);
1256                                 if (retval != ERROR_OK)
1257                                         return retval;
1258                                 c_pid3 &= 0xff;
1259                                 retval = mem_ap_read_atomic_u32(dap,
1260                                         component_base + 0xFD0, &c_pid4);
1261                                 if (retval != ERROR_OK)
1262                                         return retval;
1263                                 c_pid4 &= 0xff;
1264
1265                                 retval = mem_ap_read_atomic_u32(dap,
1266                                         component_base + 0xFF0, &c_cid0);
1267                                 if (retval != ERROR_OK)
1268                                         return retval;
1269                                 c_cid0 &= 0xff;
1270                                 retval = mem_ap_read_atomic_u32(dap,
1271                                         component_base + 0xFF4, &c_cid1);
1272                                 if (retval != ERROR_OK)
1273                                         return retval;
1274                                 c_cid1 &= 0xff;
1275                                 retval = mem_ap_read_atomic_u32(dap,
1276                                         component_base + 0xFF8, &c_cid2);
1277                                 if (retval != ERROR_OK)
1278                                         return retval;
1279                                 c_cid2 &= 0xff;
1280                                 retval = mem_ap_read_atomic_u32(dap,
1281                                         component_base + 0xFFC, &c_cid3);
1282                                 if (retval != ERROR_OK)
1283                                         return retval;
1284                                 c_cid3 &= 0xff;
1285
1286
1287                                 command_print(cmd_ctx,
1288                                 "\t\tComponent base address 0x%" PRIx32
1289                                         ", start address 0x%" PRIx32,
1290                                                 component_base,
1291                                 /* component may take multiple 4K pages */
1292                                 component_base - 0x1000*(c_pid4 >> 4));
1293                                 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1294                                                 (int) (c_cid1 >> 4) & 0xf,
1295                                                 /* See ARM IHI 0029B Table 3-3 */
1296                                                 class_description[(c_cid1 >> 4) & 0xf]);
1297
1298                                 /* CoreSight component? */
1299                                 if (((c_cid1 >> 4) & 0x0f) == 9) {
1300                                         uint32_t devtype;
1301                                         unsigned minor;
1302                                         char *major = "Reserved", *subtype = "Reserved";
1303
1304                                         retval = mem_ap_read_atomic_u32(dap,
1305                                                         (component_base & 0xfffff000) | 0xfcc,
1306                                                         &devtype);
1307                                         if (retval != ERROR_OK)
1308                                                 return retval;
1309                                         minor = (devtype >> 4) & 0x0f;
1310                                         switch (devtype & 0x0f) {
1311                                         case 0:
1312                                                 major = "Miscellaneous";
1313                                                 switch (minor) {
1314                                                 case 0:
1315                                                         subtype = "other";
1316                                                         break;
1317                                                 case 4:
1318                                                         subtype = "Validation component";
1319                                                         break;
1320                                                 }
1321                                                 break;
1322                                         case 1:
1323                                                 major = "Trace Sink";
1324                                                 switch (minor) {
1325                                                 case 0:
1326                                                         subtype = "other";
1327                                                         break;
1328                                                 case 1:
1329                                                         subtype = "Port";
1330                                                         break;
1331                                                 case 2:
1332                                                         subtype = "Buffer";
1333                                                         break;
1334                                                 }
1335                                                 break;
1336                                         case 2:
1337                                                 major = "Trace Link";
1338                                                 switch (minor) {
1339                                                 case 0:
1340                                                         subtype = "other";
1341                                                         break;
1342                                                 case 1:
1343                                                         subtype = "Funnel, router";
1344                                                         break;
1345                                                 case 2:
1346                                                         subtype = "Filter";
1347                                                         break;
1348                                                 case 3:
1349                                                         subtype = "FIFO, buffer";
1350                                                         break;
1351                                                 }
1352                                                 break;
1353                                         case 3:
1354                                                 major = "Trace Source";
1355                                                 switch (minor) {
1356                                                 case 0:
1357                                                         subtype = "other";
1358                                                         break;
1359                                                 case 1:
1360                                                         subtype = "Processor";
1361                                                         break;
1362                                                 case 2:
1363                                                         subtype = "DSP";
1364                                                         break;
1365                                                 case 3:
1366                                                         subtype = "Engine/Coprocessor";
1367                                                         break;
1368                                                 case 4:
1369                                                         subtype = "Bus";
1370                                                         break;
1371                                                 }
1372                                                 break;
1373                                         case 4:
1374                                                 major = "Debug Control";
1375                                                 switch (minor) {
1376                                                 case 0:
1377                                                         subtype = "other";
1378                                                         break;
1379                                                 case 1:
1380                                                         subtype = "Trigger Matrix";
1381                                                         break;
1382                                                 case 2:
1383                                                         subtype = "Debug Auth";
1384                                                         break;
1385                                                 }
1386                                                 break;
1387                                         case 5:
1388                                                 major = "Debug Logic";
1389                                                 switch (minor) {
1390                                                 case 0:
1391                                                         subtype = "other";
1392                                                         break;
1393                                                 case 1:
1394                                                         subtype = "Processor";
1395                                                         break;
1396                                                 case 2:
1397                                                         subtype = "DSP";
1398                                                         break;
1399                                                 case 3:
1400                                                         subtype = "Engine/Coprocessor";
1401                                                         break;
1402                                                 }
1403                                                 break;
1404                                         }
1405                                         command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1406                                                         (unsigned) (devtype & 0xff),
1407                                                         major, subtype);
1408                                         /* REVISIT also show 0xfc8 DevId */
1409                                 }
1410
1411                                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1412                                         command_print(cmd_ctx,
1413                                                       "\t\tCID3 0%2.2x"
1414                                                         ", CID2 0%2.2x"
1415                                                         ", CID1 0%2.2x"
1416                                                         ", CID0 0%2.2x",
1417                                                         (int) c_cid3,
1418                                                         (int) c_cid2,
1419                                                         (int)c_cid1,
1420                                                         (int)c_cid0);
1421                                 command_print(cmd_ctx,
1422                                 "\t\tPeripheral ID[4..0] = hex "
1423                                 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1424                                 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1425                                 (int) c_pid1, (int) c_pid0);
1426
1427                                 /* Part number interpretations are from Cortex
1428                                  * core specs, the CoreSight components TRM
1429                                  * (ARM DDI 0314H), and ETM specs; also from
1430                                  * chip observation (e.g. TI SDTI).
1431                                  */
1432                                 part_num = (c_pid0 & 0xff);
1433                                 part_num |= (c_pid1 & 0x0f) << 8;
1434                                 switch (part_num) {
1435                                 case 0x000:
1436                                         type = "Cortex-M3 NVIC";
1437                                         full = "(Interrupt Controller)";
1438                                         break;
1439                                 case 0x001:
1440                                         type = "Cortex-M3 ITM";
1441                                         full = "(Instrumentation Trace Module)";
1442                                         break;
1443                                 case 0x002:
1444                                         type = "Cortex-M3 DWT";
1445                                         full = "(Data Watchpoint and Trace)";
1446                                         break;
1447                                 case 0x003:
1448                                         type = "Cortex-M3 FBP";
1449                                         full = "(Flash Patch and Breakpoint)";
1450                                         break;
1451                                 case 0x00d:
1452                                         type = "CoreSight ETM11";
1453                                         full = "(Embedded Trace)";
1454                                         break;
1455                                 // case 0x113: what?
1456                                 case 0x120:             /* from OMAP3 memmap */
1457                                         type = "TI SDTI";
1458                                         full = "(System Debug Trace Interface)";
1459                                         break;
1460                                 case 0x343:             /* from OMAP3 memmap */
1461                                         type = "TI DAPCTL";
1462                                         full = "";
1463                                         break;
1464                                 case 0x906:
1465                                         type = "Coresight CTI";
1466                                         full = "(Cross Trigger)";
1467                                         break;
1468                                 case 0x907:
1469                                         type = "Coresight ETB";
1470                                         full = "(Trace Buffer)";
1471                                         break;
1472                                 case 0x908:
1473                                         type = "Coresight CSTF";
1474                                         full = "(Trace Funnel)";
1475                                         break;
1476                                 case 0x910:
1477                                         type = "CoreSight ETM9";
1478                                         full = "(Embedded Trace)";
1479                                         break;
1480                                 case 0x912:
1481                                         type = "Coresight TPIU";
1482                                         full = "(Trace Port Interface Unit)";
1483                                         break;
1484                                 case 0x921:
1485                                         type = "Cortex-A8 ETM";
1486                                         full = "(Embedded Trace)";
1487                                         break;
1488                                 case 0x922:
1489                                         type = "Cortex-A8 CTI";
1490                                         full = "(Cross Trigger)";
1491                                         break;
1492                                 case 0x923:
1493                                         type = "Cortex-M3 TPIU";
1494                                         full = "(Trace Port Interface Unit)";
1495                                         break;
1496                                 case 0x924:
1497                                         type = "Cortex-M3 ETM";
1498                                         full = "(Embedded Trace)";
1499                                         break;
1500                                 case 0xc08:
1501                                         type = "Cortex-A8 Debug";
1502                                         full = "(Debug Unit)";
1503                                         break;
1504                                 default:
1505                                         type = "-*- unrecognized -*-";
1506                                         full = "";
1507                                         break;
1508                                 }
1509                                 command_print(cmd_ctx, "\t\tPart is %s %s",
1510                                                 type, full);
1511                         }
1512                         else
1513                         {
1514                                 if (romentry)
1515                                         command_print(cmd_ctx, "\t\tComponent not present");
1516                                 else
1517                                         command_print(cmd_ctx, "\t\tEnd of ROM table");
1518                         }
1519                         entry_offset += 4;
1520                 } while (romentry > 0);
1521         }
1522         else
1523         {
1524                 command_print(cmd_ctx, "\tNo ROM table present");
1525         }
1526         dap_ap_select(dap, apselold);
1527
1528         return ERROR_OK;
1529 }
1530
1531 COMMAND_HANDLER(handle_dap_info_command)
1532 {
1533         struct target *target = get_current_target(CMD_CTX);
1534         struct arm *arm = target_to_arm(target);
1535         struct adiv5_dap *dap = arm->dap;
1536         uint32_t apsel;
1537
1538         switch (CMD_ARGC) {
1539         case 0:
1540                 apsel = dap->apsel;
1541                 break;
1542         case 1:
1543                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1544                 break;
1545         default:
1546                 return ERROR_COMMAND_SYNTAX_ERROR;
1547         }
1548
1549         return dap_info_command(CMD_CTX, dap, apsel);
1550 }
1551
1552 COMMAND_HANDLER(dap_baseaddr_command)
1553 {
1554         struct target *target = get_current_target(CMD_CTX);
1555         struct arm *arm = target_to_arm(target);
1556         struct adiv5_dap *dap = arm->dap;
1557
1558         uint32_t apsel, apselsave, baseaddr;
1559         int retval;
1560
1561         apselsave = dap->apsel;
1562         switch (CMD_ARGC) {
1563         case 0:
1564                 apsel = dap->apsel;
1565                 break;
1566         case 1:
1567                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1568                 /* AP address is in bits 31:24 of DP_SELECT */
1569                 if (apsel >= 256)
1570                         return ERROR_INVALID_ARGUMENTS;
1571                 break;
1572         default:
1573                 return ERROR_COMMAND_SYNTAX_ERROR;
1574         }
1575
1576         if (apselsave != apsel)
1577                 dap_ap_select(dap, apsel);
1578
1579         /* NOTE:  assumes we're talking to a MEM-AP, which
1580          * has a base address.  There are other kinds of AP,
1581          * though they're not common for now.  This should
1582          * use the ID register to verify it's a MEM-AP.
1583          */
1584         retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1585         if (retval != ERROR_OK)
1586                 return retval;
1587         retval = dap_run(dap);
1588         if (retval != ERROR_OK)
1589                 return retval;
1590
1591         command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1592
1593         if (apselsave != apsel)
1594                 dap_ap_select(dap, apselsave);
1595
1596         return retval;
1597 }
1598
1599 COMMAND_HANDLER(dap_memaccess_command)
1600 {
1601         struct target *target = get_current_target(CMD_CTX);
1602         struct arm *arm = target_to_arm(target);
1603         struct adiv5_dap *dap = arm->dap;
1604
1605         uint32_t memaccess_tck;
1606
1607         switch (CMD_ARGC) {
1608         case 0:
1609                 memaccess_tck = dap->memaccess_tck;
1610                 break;
1611         case 1:
1612                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1613                 break;
1614         default:
1615                 return ERROR_COMMAND_SYNTAX_ERROR;
1616         }
1617         dap->memaccess_tck = memaccess_tck;
1618
1619         command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1620                         dap->memaccess_tck);
1621
1622         return ERROR_OK;
1623 }
1624
1625 COMMAND_HANDLER(dap_apsel_command)
1626 {
1627         struct target *target = get_current_target(CMD_CTX);
1628         struct arm *arm = target_to_arm(target);
1629         struct adiv5_dap *dap = arm->dap;
1630
1631         uint32_t apsel, apid;
1632         int retval;
1633
1634         switch (CMD_ARGC) {
1635         case 0:
1636                 apsel = 0;
1637                 break;
1638         case 1:
1639                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1640                 /* AP address is in bits 31:24 of DP_SELECT */
1641                 if (apsel >= 256)
1642                         return ERROR_INVALID_ARGUMENTS;
1643                 break;
1644         default:
1645                 return ERROR_COMMAND_SYNTAX_ERROR;
1646         }
1647
1648         dap_ap_select(dap, apsel);
1649         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1650         if (retval != ERROR_OK)
1651                 return retval;
1652         retval = dap_run(dap);
1653         if (retval != ERROR_OK)
1654                 return retval;
1655
1656         command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1657                         apsel, apid);
1658
1659         return retval;
1660 }
1661
1662 COMMAND_HANDLER(dap_apid_command)
1663 {
1664         struct target *target = get_current_target(CMD_CTX);
1665         struct arm *arm = target_to_arm(target);
1666         struct adiv5_dap *dap = arm->dap;
1667
1668         uint32_t apsel, apselsave, apid;
1669         int retval;
1670
1671         apselsave = dap->apsel;
1672         switch (CMD_ARGC) {
1673         case 0:
1674                 apsel = dap->apsel;
1675                 break;
1676         case 1:
1677                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1678                 /* AP address is in bits 31:24 of DP_SELECT */
1679                 if (apsel >= 256)
1680                         return ERROR_INVALID_ARGUMENTS;
1681                 break;
1682         default:
1683                 return ERROR_COMMAND_SYNTAX_ERROR;
1684         }
1685
1686         if (apselsave != apsel)
1687                 dap_ap_select(dap, apsel);
1688
1689         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1690         if (retval != ERROR_OK)
1691                 return retval;
1692         retval = dap_run(dap);
1693         if (retval != ERROR_OK)
1694                 return retval;
1695
1696         command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1697         if (apselsave != apsel)
1698                 dap_ap_select(dap, apselsave);
1699
1700         return retval;
1701 }
1702
1703 static const struct command_registration dap_commands[] = {
1704         {
1705                 .name = "info",
1706                 .handler = handle_dap_info_command,
1707                 .mode = COMMAND_EXEC,
1708                 .help = "display ROM table for MEM-AP "
1709                         "(default currently selected AP)",
1710                 .usage = "[ap_num]",
1711         },
1712         {
1713                 .name = "apsel",
1714                 .handler = dap_apsel_command,
1715                 .mode = COMMAND_EXEC,
1716                 .help = "Set the currently selected AP (default 0) "
1717                         "and display the result",
1718                 .usage = "[ap_num]",
1719         },
1720         {
1721                 .name = "apid",
1722                 .handler = dap_apid_command,
1723                 .mode = COMMAND_EXEC,
1724                 .help = "return ID register from AP "
1725                         "(default currently selected AP)",
1726                 .usage = "[ap_num]",
1727         },
1728         {
1729                 .name = "baseaddr",
1730                 .handler = dap_baseaddr_command,
1731                 .mode = COMMAND_EXEC,
1732                 .help = "return debug base address from MEM-AP "
1733                         "(default currently selected AP)",
1734                 .usage = "[ap_num]",
1735         },
1736         {
1737                 .name = "memaccess",
1738                 .handler = dap_memaccess_command,
1739                 .mode = COMMAND_EXEC,
1740                 .help = "set/get number of extra tck for MEM-AP memory "
1741                         "bus access [0-255]",
1742                 .usage = "[cycles]",
1743         },
1744         COMMAND_REGISTRATION_DONE
1745 };
1746
1747 const struct command_registration dap_command_handlers[] = {
1748         {
1749                 .name = "dap",
1750                 .mode = COMMAND_EXEC,
1751                 .help = "DAP command group",
1752                 .chain = dap_commands,
1753         },
1754         COMMAND_REGISTRATION_DONE
1755 };
1756
1757