arm_adi_v5: dap_run() error propagation
[fw/openocd] / src / target / arm_adi_v5.c
1 /***************************************************************************
2  *   Copyright (C) 2006 by Magnus Lundin                                   *
3  *   lundin@mlu.mine.nu                                                    *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2009-2010 by Oyvind Harboe                              *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2009-2010 by David Brownell                             *
12  *                                                                         *
13  *   This program is free software; you can redistribute it and/or modify  *
14  *   it under the terms of the GNU General Public License as published by  *
15  *   the Free Software Foundation; either version 2 of the License, or     *
16  *   (at your option) any later version.                                   *
17  *                                                                         *
18  *   This program is distributed in the hope that it will be useful,       *
19  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
20  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
21  *   GNU General Public License for more details.                          *
22  *                                                                         *
23  *   You should have received a copy of the GNU General Public License     *
24  *   along with this program; if not, write to the                         *
25  *   Free Software Foundation, Inc.,                                       *
26  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
27  ***************************************************************************/
28
29 /**
30  * @file
31  * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32  * debugging architecture.  Compared with previous versions, this includes
33  * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34  * transport, and focusses on memory mapped resources as defined by the
35  * CoreSight architecture.
36  *
37  * A key concept in ADIv5 is the Debug Access Port, or DAP.  A DAP has two
38  * basic components:  a Debug Port (DP) transporting messages to and from a
39  * debugger, and an Access Port (AP) accessing resources.  Three types of DP
40  * are defined.  One uses only JTAG for communication, and is called JTAG-DP.
41  * One uses only SWD for communication, and is called SW-DP.  The third can
42  * use either SWD or JTAG, and is called SWJ-DP.  The most common type of AP
43  * is used to access memory mapped resources and is called a MEM-AP.  Also a
44  * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45  *
46  * This programming interface allows DAP pipelined operations through a
47  * transaction queue.  This primarily affects AP operations (such as using
48  * a MEM-AP to access memory or registers).  If the current transaction has
49  * not finished by the time the next one must begin, and the ORUNDETECT bit
50  * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51  * further AP operations will fail.  There are two basic methods to avoid
52  * such overrun errors.  One involves polling for status instead of using
53  * transaction piplining.  The other involves adding delays to ensure the
54  * AP has enough time to complete one operation before starting the next
55  * one.  (For JTAG these delays are controlled by memaccess_tck.)
56  */
57
58 /*
59  * Relevant specifications from ARM include:
60  *
61  * ARM(tm) Debug Interface v5 Architecture Specification    ARM IHI 0031A
62  * CoreSight(tm) v1.0 Architecture Specification            ARM IHI 0029B
63  *
64  * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65  * Cortex-M3(tm) TRM, ARM DDI 0337G
66  */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement  */
78
79 /*
80         uint32_t tar_block_size(uint32_t address)
81         Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85         return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89  *                                                                         *
90  * DP and MEM-AP  register access  through APACC and DPACC                 *
91  *                                                                         *
92 ***************************************************************************/
93
94 /**
95  * Select one of the APs connected to the specified DAP.  The
96  * selection is implicitly used with future AP transactions.
97  * This is a NOP if the specified AP is already selected.
98  *
99  * @param dap The DAP
100  * @param apsel Number of the AP to (implicitly) use with further
101  *      transactions.  This normally identifies a MEM-AP.
102  */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t apsel)
104 {
105         uint32_t select_apsel = (apsel << 24) & 0xFF000000;
106
107         if (select_apsel != dap->apsel)
108         {
109                 dap->apsel = select_apsel;
110                 /* Switching AP invalidates cached values.
111                  * Values MUST BE UPDATED BEFORE AP ACCESS.
112                  */
113                 dap->ap_bank_value = -1;
114                 dap->ap_csw_value = -1;
115                 dap->ap_tar_value = -1;
116         }
117 }
118
119 /**
120  * Queue transactions setting up transfer parameters for the
121  * currently selected MEM-AP.
122  *
123  * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124  * initiate data reads or writes using memory or peripheral addresses.
125  * If the CSW is configured for it, the TAR may be automatically
126  * incremented after each transfer.
127  *
128  * @todo Rename to reflect it being specifically a MEM-AP function.
129  *
130  * @param dap The DAP connected to the MEM-AP.
131  * @param csw MEM-AP Control/Status Word (CSW) register to assign.  If this
132  *      matches the cached value, the register is not changed.
133  * @param tar MEM-AP Transfer Address Register (TAR) to assign.  If this
134  *      matches the cached address, the register is not changed.
135  *
136  * @return ERROR_OK if the transaction was properly queued, else a fault code.
137  */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140         int retval;
141
142         csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143         if (csw != dap->ap_csw_value)
144         {
145                 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146                 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147                 if (retval != ERROR_OK)
148                         return retval;
149                 dap->ap_csw_value = csw;
150         }
151         if (tar != dap->ap_tar_value)
152         {
153                 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154                 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155                 if (retval != ERROR_OK)
156                         return retval;
157                 dap->ap_tar_value = tar;
158         }
159         /* Disable TAR cache when autoincrementing */
160         if (csw & CSW_ADDRINC_MASK)
161                 dap->ap_tar_value = -1;
162         return ERROR_OK;
163 }
164
165 /**
166  * Asynchronous (queued) read of a word from memory or a system register.
167  *
168  * @param dap The DAP connected to the MEM-AP performing the read.
169  * @param address Address of the 32-bit word to read; it must be
170  *      readable by the currently selected MEM-AP.
171  * @param value points to where the word will be stored when the
172  *      transaction queue is flushed (assuming no errors).
173  *
174  * @return ERROR_OK for success.  Otherwise a fault code.
175  */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177                 uint32_t *value)
178 {
179         int retval;
180
181         /* Use banked addressing (REG_BDx) to avoid some link traffic
182          * (updating TAR) when reading several consecutive addresses.
183          */
184         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185                         address & 0xFFFFFFF0);
186         if (retval != ERROR_OK)
187                 return retval;
188
189         return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193  * Synchronous read of a word from memory or a system register.
194  * As a side effect, this flushes any queued transactions.
195  *
196  * @param dap The DAP connected to the MEM-AP performing the read.
197  * @param address Address of the 32-bit word to read; it must be
198  *      readable by the currently selected MEM-AP.
199  * @param value points to where the result will be stored.
200  *
201  * @return ERROR_OK for success; *value holds the result.
202  * Otherwise a fault code.
203  */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205                 uint32_t *value)
206 {
207         int retval;
208
209         retval = mem_ap_read_u32(dap, address, value);
210         if (retval != ERROR_OK)
211                 return retval;
212
213         return dap_run(dap);
214 }
215
216 /**
217  * Asynchronous (queued) write of a word to memory or a system register.
218  *
219  * @param dap The DAP connected to the MEM-AP.
220  * @param address Address to be written; it must be writable by
221  *      the currently selected MEM-AP.
222  * @param value Word that will be written to the address when transaction
223  *      queue is flushed (assuming no errors).
224  *
225  * @return ERROR_OK for success.  Otherwise a fault code.
226  */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228                 uint32_t value)
229 {
230         int retval;
231
232         /* Use banked addressing (REG_BDx) to avoid some link traffic
233          * (updating TAR) when writing several consecutive addresses.
234          */
235         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236                         address & 0xFFFFFFF0);
237         if (retval != ERROR_OK)
238                 return retval;
239
240         return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241                         value);
242 }
243
244 /**
245  * Synchronous write of a word to memory or a system register.
246  * As a side effect, this flushes any queued transactions.
247  *
248  * @param dap The DAP connected to the MEM-AP.
249  * @param address Address to be written; it must be writable by
250  *      the currently selected MEM-AP.
251  * @param value Word that will be written.
252  *
253  * @return ERROR_OK for success; the data was written.  Otherwise a fault code.
254  */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256                 uint32_t value)
257 {
258         int retval = mem_ap_write_u32(dap, address, value);
259
260         if (retval != ERROR_OK)
261                 return retval;
262
263         return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 *                                                                            *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 *                                                                            *
270 * Write a buffer in target order (little endian)                             *
271 *                                                                            *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
274 {
275         int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276         uint32_t adr = address;
277         uint8_t* pBuffer = buffer;
278
279         count >>= 2;
280         wcount = count;
281
282         /* if we have an unaligned access - reorder data */
283         if (adr & 0x3u)
284         {
285                 for (writecount = 0; writecount < count; writecount++)
286                 {
287                         int i;
288                         uint32_t outvalue;
289                         memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291                         for (i = 0; i < 4; i++)
292                         {
293                                 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294                                 outvalue >>= 8;
295                                 adr++;
296                         }
297                         pBuffer += sizeof(uint32_t);
298                 }
299         }
300
301         while (wcount > 0)
302         {
303                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305                 if (wcount < blocksize)
306                         blocksize = wcount;
307
308                 /* handle unaligned data at 4k boundary */
309                 if (blocksize == 0)
310                         blocksize = 1;
311
312                 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313                 if (retval != ERROR_OK)
314                         return retval;
315
316                 for (writecount = 0; writecount < blocksize; writecount++)
317                 {
318                         retval = dap_queue_ap_write(dap, AP_REG_DRW,
319                                 *(uint32_t *) (buffer + 4 * writecount));
320                         if (retval != ERROR_OK)
321                                 break;
322                 }
323
324                 if ((retval = dap_run(dap)) == ERROR_OK)
325                 {
326                         wcount = wcount - blocksize;
327                         address = address + 4 * blocksize;
328                         buffer = buffer + 4 * blocksize;
329                 }
330                 else
331                 {
332                         errorcount++;
333                 }
334
335                 if (errorcount > 1)
336                 {
337                         LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338                         return retval;
339                 }
340         }
341
342         return retval;
343 }
344
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346                 uint8_t *buffer, int count, uint32_t address)
347 {
348         int retval = ERROR_OK;
349         int wcount, blocksize, writecount, i;
350
351         wcount = count >> 1;
352
353         while (wcount > 0)
354         {
355                 int nbytes;
356
357                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
359
360                 if (wcount < blocksize)
361                         blocksize = wcount;
362
363                 /* handle unaligned data at 4k boundary */
364                 if (blocksize == 0)
365                         blocksize = 1;
366
367                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368                 if (retval != ERROR_OK)
369                         return retval;
370                 writecount = blocksize;
371
372                 do
373                 {
374                         nbytes = MIN((writecount << 1), 4);
375
376                         if (nbytes < 4)
377                         {
378                                 retval = mem_ap_write_buf_u16(dap, buffer,
379                                                 nbytes, address);
380                                 if (retval != ERROR_OK)
381                                 {
382                                         LOG_WARNING("Block write error address "
383                                                 "0x%" PRIx32 ", count 0x%x",
384                                                 address, count);
385                                         return retval;
386                                 }
387
388                                 address += nbytes >> 1;
389                         }
390                         else
391                         {
392                                 uint32_t outvalue;
393                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
394
395                                 for (i = 0; i < nbytes; i++)
396                                 {
397                                         *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398                                         outvalue >>= 8;
399                                         address++;
400                                 }
401
402                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
403                                 retval = dap_queue_ap_write(dap,
404                                                 AP_REG_DRW, outvalue);
405                                 if (retval != ERROR_OK)
406                                         break;
407
408                                 if ((retval = dap_run(dap)) != ERROR_OK)
409                                 {
410                                         LOG_WARNING("Block write error address "
411                                                 "0x%" PRIx32 ", count 0x%x",
412                                                 address, count);
413                                         return retval;
414                                 }
415                         }
416
417                         buffer += nbytes >> 1;
418                         writecount -= nbytes >> 1;
419
420                 } while (writecount);
421                 wcount -= blocksize;
422         }
423
424         return retval;
425 }
426
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
428 {
429         int retval = ERROR_OK;
430
431         if (count >= 4)
432                 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
433
434         while (count > 0)
435         {
436                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437                 if (retval != ERROR_OK)
438                         return retval;
439                 uint16_t svalue;
440                 memcpy(&svalue, buffer, sizeof(uint16_t));
441                 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443                 if (retval != ERROR_OK)
444                         break;
445
446                 retval = dap_run(dap);
447                 if (retval != ERROR_OK)
448                         break;
449
450                 count -= 2;
451                 address += 2;
452                 buffer += 2;
453         }
454
455         return retval;
456 }
457
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459                 uint8_t *buffer, int count, uint32_t address)
460 {
461         int retval = ERROR_OK;
462         int wcount, blocksize, writecount, i;
463
464         wcount = count;
465
466         while (wcount > 0)
467         {
468                 int nbytes;
469
470                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
472
473                 if (wcount < blocksize)
474                         blocksize = wcount;
475
476                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477                 if (retval != ERROR_OK)
478                         return retval;
479                 writecount = blocksize;
480
481                 do
482                 {
483                         nbytes = MIN(writecount, 4);
484
485                         if (nbytes < 4)
486                         {
487                                 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488                                 if (retval != ERROR_OK)
489                                 {
490                                         LOG_WARNING("Block write error address "
491                                                 "0x%" PRIx32 ", count 0x%x",
492                                                 address, count);
493                                         return retval;
494                                 }
495
496                                 address += nbytes;
497                         }
498                         else
499                         {
500                                 uint32_t outvalue;
501                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
502
503                                 for (i = 0; i < nbytes; i++)
504                                 {
505                                         *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506                                         outvalue >>= 8;
507                                         address++;
508                                 }
509
510                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
511                                 retval = dap_queue_ap_write(dap,
512                                                 AP_REG_DRW, outvalue);
513                                 if (retval != ERROR_OK)
514                                         break;
515
516                                 if ((retval = dap_run(dap)) != ERROR_OK)
517                                 {
518                                         LOG_WARNING("Block write error address "
519                                                 "0x%" PRIx32 ", count 0x%x",
520                                                 address, count);
521                                         return retval;
522                                 }
523                         }
524
525                         buffer += nbytes;
526                         writecount -= nbytes;
527
528                 } while (writecount);
529                 wcount -= blocksize;
530         }
531
532         return retval;
533 }
534
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
536 {
537         int retval = ERROR_OK;
538
539         if (count >= 4)
540                 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
541
542         while (count > 0)
543         {
544                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545                 if (retval != ERROR_OK)
546                         return retval;
547                 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549                 if (retval != ERROR_OK)
550                         break;
551
552                 retval = dap_run(dap);
553                 if (retval != ERROR_OK)
554                         break;
555
556                 count--;
557                 address++;
558                 buffer++;
559         }
560
561         return retval;
562 }
563
564 /* FIXME don't import ... this is a temporary workaround for the
565  * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
566  */
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568                 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569                 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
570
571 /**
572  * Synchronously read a block of 32-bit words into a buffer
573  * @param dap The DAP connected to the MEM-AP.
574  * @param buffer where the words will be stored (in host byte order).
575  * @param count How many words to read.
576  * @param address Memory address from which to read words; all the
577  *      words must be readable by the currently selected MEM-AP.
578  */
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580                 int count, uint32_t address)
581 {
582         int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583         uint32_t adr = address;
584         uint8_t* pBuffer = buffer;
585
586         count >>= 2;
587         wcount = count;
588
589         while (wcount > 0)
590         {
591                 /* Adjust to read blocks within boundaries aligned to the
592                  * TAR autoincrement size (at least 2^10).  Autoincrement
593                  * mode avoids an extra per-word roundtrip to update TAR.
594                  */
595                 blocksize = max_tar_block_size(dap->tar_autoincr_block,
596                                 address);
597                 if (wcount < blocksize)
598                         blocksize = wcount;
599
600                 /* handle unaligned data at 4k boundary */
601                 if (blocksize == 0)
602                         blocksize = 1;
603
604                 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
605                                 address);
606                 if (retval != ERROR_OK)
607                         return retval;
608
609                 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610                  * so this routine becomes transport-neutral.  Be careful
611                  * not to cause performance problems with JTAG; would it
612                  * suffice to loop over dap_queue_ap_read(), or would that
613                  * be slower when JTAG is the chosen transport?
614                  */
615
616                 /* Scan out first read */
617                 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618                                 DPAP_READ, 0, NULL, NULL);
619                 if (retval != ERROR_OK)
620                         return retval;
621                 for (readcount = 0; readcount < blocksize - 1; readcount++)
622                 {
623                         /* Scan out next read; scan in posted value for the
624                          * previous one.  Assumes read is acked "OK/FAULT",
625                          * and CTRL_STAT says that meant "OK".
626                          */
627                         retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628                                         DPAP_READ, 0, buffer + 4 * readcount,
629                                         &dap->ack);
630                         if (retval != ERROR_OK)
631                                 return retval;
632                 }
633
634                 /* Scan in last posted value; RDBUFF has no other effect,
635                  * assuming ack is OK/FAULT and CTRL_STAT says "OK".
636                  */
637                 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638                                 DPAP_READ, 0, buffer + 4 * readcount,
639                                 &dap->ack);
640                 if (retval != ERROR_OK)
641                         return retval;
642
643                 retval = dap_run(dap);
644                 if (retval != ERROR_OK)
645                 {
646                         errorcount++;
647                         if (errorcount <= 1)
648                         {
649                                 /* try again */
650                                 continue;
651                         }
652                         LOG_WARNING("Block read error address 0x%" PRIx32, address);
653                         return retval;
654                 }
655                 wcount = wcount - blocksize;
656                 address += 4 * blocksize;
657                 buffer += 4 * blocksize;
658         }
659
660         /* if we have an unaligned access - reorder data */
661         if (adr & 0x3u)
662         {
663                 for (readcount = 0; readcount < count; readcount++)
664                 {
665                         int i;
666                         uint32_t data;
667                         memcpy(&data, pBuffer, sizeof(uint32_t));
668
669                         for (i = 0; i < 4; i++)
670                         {
671                                 *((uint8_t*)pBuffer) =
672                                                 (data >> 8 * (adr & 0x3));
673                                 pBuffer++;
674                                 adr++;
675                         }
676                 }
677         }
678
679         return retval;
680 }
681
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683                 uint8_t *buffer, int count, uint32_t address)
684 {
685         uint32_t invalue;
686         int retval = ERROR_OK;
687         int wcount, blocksize, readcount, i;
688
689         wcount = count >> 1;
690
691         while (wcount > 0)
692         {
693                 int nbytes;
694
695                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697                 if (wcount < blocksize)
698                         blocksize = wcount;
699
700                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701                 if (retval != ERROR_OK)
702                         return retval;
703
704                 /* handle unaligned data at 4k boundary */
705                 if (blocksize == 0)
706                         blocksize = 1;
707                 readcount = blocksize;
708
709                 do
710                 {
711                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712                         if (retval != ERROR_OK)
713                                 return retval;
714                         if ((retval = dap_run(dap)) != ERROR_OK)
715                         {
716                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
717                                 return retval;
718                         }
719
720                         nbytes = MIN((readcount << 1), 4);
721
722                         for (i = 0; i < nbytes; i++)
723                         {
724                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725                                 buffer++;
726                                 address++;
727                         }
728
729                         readcount -= (nbytes >> 1);
730                 } while (readcount);
731                 wcount -= blocksize;
732         }
733
734         return retval;
735 }
736
737 /**
738  * Synchronously read a block of 16-bit halfwords into a buffer
739  * @param dap The DAP connected to the MEM-AP.
740  * @param buffer where the halfwords will be stored (in host byte order).
741  * @param count How many halfwords to read.
742  * @param address Memory address from which to read words; all the
743  *      words must be readable by the currently selected MEM-AP.
744  */
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746                 int count, uint32_t address)
747 {
748         uint32_t invalue, i;
749         int retval = ERROR_OK;
750
751         if (count >= 4)
752                 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
753
754         while (count > 0)
755         {
756                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757                 if (retval != ERROR_OK)
758                         return retval;
759                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760                 if (retval != ERROR_OK)
761                         break;
762
763                 retval = dap_run(dap);
764                 if (retval != ERROR_OK)
765                         break;
766
767                 if (address & 0x1)
768                 {
769                         for (i = 0; i < 2; i++)
770                         {
771                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772                                 buffer++;
773                                 address++;
774                         }
775                 }
776                 else
777                 {
778                         uint16_t svalue = (invalue >> 8 * (address & 0x3));
779                         memcpy(buffer, &svalue, sizeof(uint16_t));
780                         address += 2;
781                         buffer += 2;
782                 }
783                 count -= 2;
784         }
785
786         return retval;
787 }
788
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790  * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
791  *
792  * The solution is to arrange for a large out/in scan in this loop and
793  * and convert data afterwards.
794  */
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796                 uint8_t *buffer, int count, uint32_t address)
797 {
798         uint32_t invalue;
799         int retval = ERROR_OK;
800         int wcount, blocksize, readcount, i;
801
802         wcount = count;
803
804         while (wcount > 0)
805         {
806                 int nbytes;
807
808                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
810
811                 if (wcount < blocksize)
812                         blocksize = wcount;
813
814                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815                 if (retval != ERROR_OK)
816                         return retval;
817                 readcount = blocksize;
818
819                 do
820                 {
821                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822                         if (retval != ERROR_OK)
823                                 return retval;
824                         if ((retval = dap_run(dap)) != ERROR_OK)
825                         {
826                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
827                                 return retval;
828                         }
829
830                         nbytes = MIN(readcount, 4);
831
832                         for (i = 0; i < nbytes; i++)
833                         {
834                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
835                                 buffer++;
836                                 address++;
837                         }
838
839                         readcount -= nbytes;
840                 } while (readcount);
841                 wcount -= blocksize;
842         }
843
844         return retval;
845 }
846
847 /**
848  * Synchronously read a block of bytes into a buffer
849  * @param dap The DAP connected to the MEM-AP.
850  * @param buffer where the bytes will be stored.
851  * @param count How many bytes to read.
852  * @param address Memory address from which to read data; all the
853  *      data must be readable by the currently selected MEM-AP.
854  */
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856                 int count, uint32_t address)
857 {
858         uint32_t invalue;
859         int retval = ERROR_OK;
860
861         if (count >= 4)
862                 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
863
864         while (count > 0)
865         {
866                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867                 if (retval != ERROR_OK)
868                         return retval;
869                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870                 if (retval != ERROR_OK)
871                         return retval;
872                 retval = dap_run(dap);
873                 if (retval != ERROR_OK)
874                         break;
875
876                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
877                 count--;
878                 address++;
879                 buffer++;
880         }
881
882         return retval;
883 }
884
885 /*--------------------------------------------------------------------------*/
886
887
888 /* FIXME don't import ... just initialize as
889  * part of DAP transport setup
890 */
891 extern const struct dap_ops jtag_dp_ops;
892
893 /*--------------------------------------------------------------------------*/
894
895 /**
896  * Initialize a DAP.  This sets up the power domains, prepares the DP
897  * for further use, and arranges to use AP #0 for all AP operations
898  * until dap_ap-select() changes that policy.
899  *
900  * @param dap The DAP being initialized.
901  *
902  * @todo Rename this.  We also need an initialization scheme which account
903  * for SWD transports not just JTAG; that will need to address differences
904  * in layering.  (JTAG is useful without any debug target; but not SWD.)
905  * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
906  */
907 int ahbap_debugport_init(struct adiv5_dap *dap)
908 {
909         uint32_t idreg, romaddr, dummy;
910         uint32_t ctrlstat;
911         int cnt = 0;
912         int retval;
913
914         LOG_DEBUG(" ");
915
916         /* JTAG-DP or SWJ-DP, in JTAG mode */
917         dap->ops = &jtag_dp_ops;
918
919         /* Default MEM-AP setup.
920          *
921          * REVISIT AP #0 may be an inappropriate default for this.
922          * Should we probe, or take a hint from the caller?
923          * Presumably we can ignore the possibility of multiple APs.
924          */
925         dap->apsel = !0;
926         dap_ap_select(dap, 0);
927
928         /* DP initialization */
929
930         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
931         if (retval != ERROR_OK)
932                 return retval;
933
934         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
935         if (retval != ERROR_OK)
936                 return retval;
937
938         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
939         if (retval != ERROR_OK)
940                 return retval;
941
942         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
943         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
944         if (retval != ERROR_OK)
945                 return retval;
946
947         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
948         if (retval != ERROR_OK)
949                 return retval;
950         if ((retval = dap_run(dap)) != ERROR_OK)
951                 return retval;
952
953         /* Check that we have debug power domains activated */
954         while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
955         {
956                 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
957                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
958                 if (retval != ERROR_OK)
959                         return retval;
960                 if ((retval = dap_run(dap)) != ERROR_OK)
961                         return retval;
962                 alive_sleep(10);
963         }
964
965         while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
966         {
967                 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
968                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
969                 if (retval != ERROR_OK)
970                         return retval;
971                 if ((retval = dap_run(dap)) != ERROR_OK)
972                         return retval;
973                 alive_sleep(10);
974         }
975
976         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
977         if (retval != ERROR_OK)
978                 return retval;
979         /* With debug power on we can activate OVERRUN checking */
980         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
981         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
982         if (retval != ERROR_OK)
983                 return retval;
984         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
985         if (retval != ERROR_OK)
986                 return retval;
987
988         /*
989          * REVISIT this isn't actually *initializing* anything in an AP,
990          * and doesn't care if it's a MEM-AP at all (much less AHB-AP).
991          * Should it?  If the ROM address is valid, is this the right
992          * place to scan the table and do any topology detection?
993          */
994         retval = dap_queue_ap_read(dap, AP_REG_IDR, &idreg);
995         if (retval != ERROR_OK)
996                 return retval;
997         retval = dap_queue_ap_read(dap, AP_REG_BASE, &romaddr);
998         if (retval != ERROR_OK)
999                 return retval;
1000
1001         if ((retval = dap_run(dap)) != ERROR_OK)
1002                 return retval;
1003
1004         LOG_DEBUG("MEM-AP #%" PRId32 " ID Register 0x%" PRIx32
1005                 ", Debug ROM Address 0x%" PRIx32,
1006                 dap->apsel, idreg, romaddr);
1007
1008         return ERROR_OK;
1009 }
1010
1011 /* CID interpretation -- see ARM IHI 0029B section 3
1012  * and ARM IHI 0031A table 13-3.
1013  */
1014 static const char *class_description[16] ={
1015         "Reserved", "ROM table", "Reserved", "Reserved",
1016         "Reserved", "Reserved", "Reserved", "Reserved",
1017         "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1018         "Reserved", "OptimoDE DESS",
1019                 "Generic IP component", "PrimeCell or System component"
1020 };
1021
1022 static bool
1023 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1024 {
1025         return cid3 == 0xb1 && cid2 == 0x05
1026                         && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1027 }
1028
1029 static int dap_info_command(struct command_context *cmd_ctx,
1030                 struct adiv5_dap *dap, int apsel)
1031 {
1032         int retval;
1033         uint32_t dbgbase, apid;
1034         int romtable_present = 0;
1035         uint8_t mem_ap;
1036         uint32_t apselold;
1037
1038         /* AP address is in bits 31:24 of DP_SELECT */
1039         if (apsel >= 256)
1040                 return ERROR_INVALID_ARGUMENTS;
1041
1042         apselold = dap->apsel;
1043         dap_ap_select(dap, apsel);
1044         retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1045         if (retval != ERROR_OK)
1046                 return retval;
1047         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1048         if (retval != ERROR_OK)
1049                 return retval;
1050         retval = dap_run(dap);
1051         if (retval != ERROR_OK)
1052                 return retval;
1053
1054         /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1055         mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1056         command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1057         if (apid)
1058         {
1059                 switch (apid&0x0F)
1060                 {
1061                         case 0:
1062                                 command_print(cmd_ctx, "\tType is JTAG-AP");
1063                                 break;
1064                         case 1:
1065                                 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1066                                 break;
1067                         case 2:
1068                                 command_print(cmd_ctx, "\tType is MEM-AP APB");
1069                                 break;
1070                         default:
1071                                 command_print(cmd_ctx, "\tUnknown AP type");
1072                                 break;
1073                 }
1074
1075                 /* NOTE: a MEM-AP may have a single CoreSight component that's
1076                  * not a ROM table ... or have no such components at all.
1077                  */
1078                 if (mem_ap)
1079                         command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1080                                         dbgbase);
1081         }
1082         else
1083         {
1084                 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1085         }
1086
1087         romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1088         if (romtable_present)
1089         {
1090                 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1091                 uint16_t entry_offset;
1092
1093                 /* bit 16 of apid indicates a memory access port */
1094                 if (dbgbase & 0x02)
1095                         command_print(cmd_ctx, "\tValid ROM table present");
1096                 else
1097                         command_print(cmd_ctx, "\tROM table in legacy format");
1098
1099                 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1100                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1101                 if (retval != ERROR_OK)
1102                         return retval;
1103                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1104                 if (retval != ERROR_OK)
1105                         return retval;
1106                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1107                 if (retval != ERROR_OK)
1108                         return retval;
1109                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1110                 if (retval != ERROR_OK)
1111                         return retval;
1112                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1113                 if (retval != ERROR_OK)
1114                         return retval;
1115                 retval = dap_run(dap);
1116                 if (retval != ERROR_OK)
1117                         return retval;
1118
1119                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1120                         command_print(cmd_ctx, "\tCID3 0x%2.2x"
1121                                         ", CID2 0x%2.2x"
1122                                         ", CID1 0x%2.2x"
1123                                         ", CID0 0x%2.2x",
1124                                         (unsigned) cid3, (unsigned)cid2,
1125                                         (unsigned) cid1, (unsigned) cid0);
1126                 if (memtype & 0x01)
1127                         command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1128                 else
1129                         command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1130                                         "Dedicated debug bus.");
1131
1132                 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1133                 entry_offset = 0;
1134                 do
1135                 {
1136                         retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1137                         if (retval != ERROR_OK)
1138                                 return retval;
1139                         command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1140                         if (romentry&0x01)
1141                         {
1142                                 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1143                                 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1144                                 uint32_t component_base;
1145                                 unsigned part_num;
1146                                 char *type, *full;
1147
1148                                 component_base = (dbgbase & 0xFFFFF000)
1149                                                 + (romentry & 0xFFFFF000);
1150
1151                                 /* IDs are in last 4K section */
1152
1153
1154                                 retval = mem_ap_read_atomic_u32(dap,
1155                                         component_base + 0xFE0, &c_pid0);
1156                                 if (retval != ERROR_OK)
1157                                         return retval;
1158                                 c_pid0 &= 0xff;
1159                                 retval = mem_ap_read_atomic_u32(dap,
1160                                         component_base + 0xFE4, &c_pid1);
1161                                 if (retval != ERROR_OK)
1162                                         return retval;
1163                                 c_pid1 &= 0xff;
1164                                 retval = mem_ap_read_atomic_u32(dap,
1165                                         component_base + 0xFE8, &c_pid2);
1166                                 if (retval != ERROR_OK)
1167                                         return retval;
1168                                 c_pid2 &= 0xff;
1169                                 retval = mem_ap_read_atomic_u32(dap,
1170                                         component_base + 0xFEC, &c_pid3);
1171                                 if (retval != ERROR_OK)
1172                                         return retval;
1173                                 c_pid3 &= 0xff;
1174                                 retval = mem_ap_read_atomic_u32(dap,
1175                                         component_base + 0xFD0, &c_pid4);
1176                                 if (retval != ERROR_OK)
1177                                         return retval;
1178                                 c_pid4 &= 0xff;
1179
1180                                 retval = mem_ap_read_atomic_u32(dap,
1181                                         component_base + 0xFF0, &c_cid0);
1182                                 if (retval != ERROR_OK)
1183                                         return retval;
1184                                 c_cid0 &= 0xff;
1185                                 retval = mem_ap_read_atomic_u32(dap,
1186                                         component_base + 0xFF4, &c_cid1);
1187                                 if (retval != ERROR_OK)
1188                                         return retval;
1189                                 c_cid1 &= 0xff;
1190                                 retval = mem_ap_read_atomic_u32(dap,
1191                                         component_base + 0xFF8, &c_cid2);
1192                                 if (retval != ERROR_OK)
1193                                         return retval;
1194                                 c_cid2 &= 0xff;
1195                                 retval = mem_ap_read_atomic_u32(dap,
1196                                         component_base + 0xFFC, &c_cid3);
1197                                 if (retval != ERROR_OK)
1198                                         return retval;
1199                                 c_cid3 &= 0xff;
1200
1201
1202                                 command_print(cmd_ctx,
1203                                 "\t\tComponent base address 0x%" PRIx32
1204                                         ", start address 0x%" PRIx32,
1205                                                 component_base,
1206                                 /* component may take multiple 4K pages */
1207                                 component_base - 0x1000*(c_pid4 >> 4));
1208                                 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1209                                                 (int) (c_cid1 >> 4) & 0xf,
1210                                                 /* See ARM IHI 0029B Table 3-3 */
1211                                                 class_description[(c_cid1 >> 4) & 0xf]);
1212
1213                                 /* CoreSight component? */
1214                                 if (((c_cid1 >> 4) & 0x0f) == 9) {
1215                                         uint32_t devtype;
1216                                         unsigned minor;
1217                                         char *major = "Reserved", *subtype = "Reserved";
1218
1219                                         retval = mem_ap_read_atomic_u32(dap,
1220                                                         (component_base & 0xfffff000) | 0xfcc,
1221                                                         &devtype);
1222                                         if (retval != ERROR_OK)
1223                                                 return retval;
1224                                         minor = (devtype >> 4) & 0x0f;
1225                                         switch (devtype & 0x0f) {
1226                                         case 0:
1227                                                 major = "Miscellaneous";
1228                                                 switch (minor) {
1229                                                 case 0:
1230                                                         subtype = "other";
1231                                                         break;
1232                                                 case 4:
1233                                                         subtype = "Validation component";
1234                                                         break;
1235                                                 }
1236                                                 break;
1237                                         case 1:
1238                                                 major = "Trace Sink";
1239                                                 switch (minor) {
1240                                                 case 0:
1241                                                         subtype = "other";
1242                                                         break;
1243                                                 case 1:
1244                                                         subtype = "Port";
1245                                                         break;
1246                                                 case 2:
1247                                                         subtype = "Buffer";
1248                                                         break;
1249                                                 }
1250                                                 break;
1251                                         case 2:
1252                                                 major = "Trace Link";
1253                                                 switch (minor) {
1254                                                 case 0:
1255                                                         subtype = "other";
1256                                                         break;
1257                                                 case 1:
1258                                                         subtype = "Funnel, router";
1259                                                         break;
1260                                                 case 2:
1261                                                         subtype = "Filter";
1262                                                         break;
1263                                                 case 3:
1264                                                         subtype = "FIFO, buffer";
1265                                                         break;
1266                                                 }
1267                                                 break;
1268                                         case 3:
1269                                                 major = "Trace Source";
1270                                                 switch (minor) {
1271                                                 case 0:
1272                                                         subtype = "other";
1273                                                         break;
1274                                                 case 1:
1275                                                         subtype = "Processor";
1276                                                         break;
1277                                                 case 2:
1278                                                         subtype = "DSP";
1279                                                         break;
1280                                                 case 3:
1281                                                         subtype = "Engine/Coprocessor";
1282                                                         break;
1283                                                 case 4:
1284                                                         subtype = "Bus";
1285                                                         break;
1286                                                 }
1287                                                 break;
1288                                         case 4:
1289                                                 major = "Debug Control";
1290                                                 switch (minor) {
1291                                                 case 0:
1292                                                         subtype = "other";
1293                                                         break;
1294                                                 case 1:
1295                                                         subtype = "Trigger Matrix";
1296                                                         break;
1297                                                 case 2:
1298                                                         subtype = "Debug Auth";
1299                                                         break;
1300                                                 }
1301                                                 break;
1302                                         case 5:
1303                                                 major = "Debug Logic";
1304                                                 switch (minor) {
1305                                                 case 0:
1306                                                         subtype = "other";
1307                                                         break;
1308                                                 case 1:
1309                                                         subtype = "Processor";
1310                                                         break;
1311                                                 case 2:
1312                                                         subtype = "DSP";
1313                                                         break;
1314                                                 case 3:
1315                                                         subtype = "Engine/Coprocessor";
1316                                                         break;
1317                                                 }
1318                                                 break;
1319                                         }
1320                                         command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1321                                                         (unsigned) (devtype & 0xff),
1322                                                         major, subtype);
1323                                         /* REVISIT also show 0xfc8 DevId */
1324                                 }
1325
1326                                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1327                                         command_print(cmd_ctx,
1328                                                       "\t\tCID3 0%2.2x"
1329                                                         ", CID2 0%2.2x"
1330                                                         ", CID1 0%2.2x"
1331                                                         ", CID0 0%2.2x",
1332                                                         (int) c_cid3,
1333                                                         (int) c_cid2,
1334                                                         (int)c_cid1,
1335                                                         (int)c_cid0);
1336                                 command_print(cmd_ctx,
1337                                 "\t\tPeripheral ID[4..0] = hex "
1338                                 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1339                                 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1340                                 (int) c_pid1, (int) c_pid0);
1341
1342                                 /* Part number interpretations are from Cortex
1343                                  * core specs, the CoreSight components TRM
1344                                  * (ARM DDI 0314H), and ETM specs; also from
1345                                  * chip observation (e.g. TI SDTI).
1346                                  */
1347                                 part_num = (c_pid0 & 0xff);
1348                                 part_num |= (c_pid1 & 0x0f) << 8;
1349                                 switch (part_num) {
1350                                 case 0x000:
1351                                         type = "Cortex-M3 NVIC";
1352                                         full = "(Interrupt Controller)";
1353                                         break;
1354                                 case 0x001:
1355                                         type = "Cortex-M3 ITM";
1356                                         full = "(Instrumentation Trace Module)";
1357                                         break;
1358                                 case 0x002:
1359                                         type = "Cortex-M3 DWT";
1360                                         full = "(Data Watchpoint and Trace)";
1361                                         break;
1362                                 case 0x003:
1363                                         type = "Cortex-M3 FBP";
1364                                         full = "(Flash Patch and Breakpoint)";
1365                                         break;
1366                                 case 0x00d:
1367                                         type = "CoreSight ETM11";
1368                                         full = "(Embedded Trace)";
1369                                         break;
1370                                 // case 0x113: what?
1371                                 case 0x120:             /* from OMAP3 memmap */
1372                                         type = "TI SDTI";
1373                                         full = "(System Debug Trace Interface)";
1374                                         break;
1375                                 case 0x343:             /* from OMAP3 memmap */
1376                                         type = "TI DAPCTL";
1377                                         full = "";
1378                                         break;
1379                                 case 0x906:
1380                                         type = "Coresight CTI";
1381                                         full = "(Cross Trigger)";
1382                                         break;
1383                                 case 0x907:
1384                                         type = "Coresight ETB";
1385                                         full = "(Trace Buffer)";
1386                                         break;
1387                                 case 0x908:
1388                                         type = "Coresight CSTF";
1389                                         full = "(Trace Funnel)";
1390                                         break;
1391                                 case 0x910:
1392                                         type = "CoreSight ETM9";
1393                                         full = "(Embedded Trace)";
1394                                         break;
1395                                 case 0x912:
1396                                         type = "Coresight TPIU";
1397                                         full = "(Trace Port Interface Unit)";
1398                                         break;
1399                                 case 0x921:
1400                                         type = "Cortex-A8 ETM";
1401                                         full = "(Embedded Trace)";
1402                                         break;
1403                                 case 0x922:
1404                                         type = "Cortex-A8 CTI";
1405                                         full = "(Cross Trigger)";
1406                                         break;
1407                                 case 0x923:
1408                                         type = "Cortex-M3 TPIU";
1409                                         full = "(Trace Port Interface Unit)";
1410                                         break;
1411                                 case 0x924:
1412                                         type = "Cortex-M3 ETM";
1413                                         full = "(Embedded Trace)";
1414                                         break;
1415                                 case 0xc08:
1416                                         type = "Cortex-A8 Debug";
1417                                         full = "(Debug Unit)";
1418                                         break;
1419                                 default:
1420                                         type = "-*- unrecognized -*-";
1421                                         full = "";
1422                                         break;
1423                                 }
1424                                 command_print(cmd_ctx, "\t\tPart is %s %s",
1425                                                 type, full);
1426                         }
1427                         else
1428                         {
1429                                 if (romentry)
1430                                         command_print(cmd_ctx, "\t\tComponent not present");
1431                                 else
1432                                         command_print(cmd_ctx, "\t\tEnd of ROM table");
1433                         }
1434                         entry_offset += 4;
1435                 } while (romentry > 0);
1436         }
1437         else
1438         {
1439                 command_print(cmd_ctx, "\tNo ROM table present");
1440         }
1441         dap_ap_select(dap, apselold);
1442
1443         return ERROR_OK;
1444 }
1445
1446 COMMAND_HANDLER(handle_dap_info_command)
1447 {
1448         struct target *target = get_current_target(CMD_CTX);
1449         struct arm *arm = target_to_arm(target);
1450         struct adiv5_dap *dap = arm->dap;
1451         uint32_t apsel;
1452
1453         switch (CMD_ARGC) {
1454         case 0:
1455                 apsel = dap->apsel;
1456                 break;
1457         case 1:
1458                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1459                 break;
1460         default:
1461                 return ERROR_COMMAND_SYNTAX_ERROR;
1462         }
1463
1464         return dap_info_command(CMD_CTX, dap, apsel);
1465 }
1466
1467 COMMAND_HANDLER(dap_baseaddr_command)
1468 {
1469         struct target *target = get_current_target(CMD_CTX);
1470         struct arm *arm = target_to_arm(target);
1471         struct adiv5_dap *dap = arm->dap;
1472
1473         uint32_t apsel, apselsave, baseaddr;
1474         int retval;
1475
1476         apselsave = dap->apsel;
1477         switch (CMD_ARGC) {
1478         case 0:
1479                 apsel = dap->apsel;
1480                 break;
1481         case 1:
1482                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1483                 /* AP address is in bits 31:24 of DP_SELECT */
1484                 if (apsel >= 256)
1485                         return ERROR_INVALID_ARGUMENTS;
1486                 break;
1487         default:
1488                 return ERROR_COMMAND_SYNTAX_ERROR;
1489         }
1490
1491         if (apselsave != apsel)
1492                 dap_ap_select(dap, apsel);
1493
1494         /* NOTE:  assumes we're talking to a MEM-AP, which
1495          * has a base address.  There are other kinds of AP,
1496          * though they're not common for now.  This should
1497          * use the ID register to verify it's a MEM-AP.
1498          */
1499         retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1500         if (retval != ERROR_OK)
1501                 return retval;
1502         retval = dap_run(dap);
1503         if (retval != ERROR_OK)
1504                 return retval;
1505
1506         command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1507
1508         if (apselsave != apsel)
1509                 dap_ap_select(dap, apselsave);
1510
1511         return retval;
1512 }
1513
1514 COMMAND_HANDLER(dap_memaccess_command)
1515 {
1516         struct target *target = get_current_target(CMD_CTX);
1517         struct arm *arm = target_to_arm(target);
1518         struct adiv5_dap *dap = arm->dap;
1519
1520         uint32_t memaccess_tck;
1521
1522         switch (CMD_ARGC) {
1523         case 0:
1524                 memaccess_tck = dap->memaccess_tck;
1525                 break;
1526         case 1:
1527                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1528                 break;
1529         default:
1530                 return ERROR_COMMAND_SYNTAX_ERROR;
1531         }
1532         dap->memaccess_tck = memaccess_tck;
1533
1534         command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1535                         dap->memaccess_tck);
1536
1537         return ERROR_OK;
1538 }
1539
1540 COMMAND_HANDLER(dap_apsel_command)
1541 {
1542         struct target *target = get_current_target(CMD_CTX);
1543         struct arm *arm = target_to_arm(target);
1544         struct adiv5_dap *dap = arm->dap;
1545
1546         uint32_t apsel, apid;
1547         int retval;
1548
1549         switch (CMD_ARGC) {
1550         case 0:
1551                 apsel = 0;
1552                 break;
1553         case 1:
1554                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1555                 /* AP address is in bits 31:24 of DP_SELECT */
1556                 if (apsel >= 256)
1557                         return ERROR_INVALID_ARGUMENTS;
1558                 break;
1559         default:
1560                 return ERROR_COMMAND_SYNTAX_ERROR;
1561         }
1562
1563         dap_ap_select(dap, apsel);
1564         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1565         if (retval != ERROR_OK)
1566                 return retval;
1567         retval = dap_run(dap);
1568         if (retval != ERROR_OK)
1569                 return retval;
1570
1571         command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1572                         apsel, apid);
1573
1574         return retval;
1575 }
1576
1577 COMMAND_HANDLER(dap_apid_command)
1578 {
1579         struct target *target = get_current_target(CMD_CTX);
1580         struct arm *arm = target_to_arm(target);
1581         struct adiv5_dap *dap = arm->dap;
1582
1583         uint32_t apsel, apselsave, apid;
1584         int retval;
1585
1586         apselsave = dap->apsel;
1587         switch (CMD_ARGC) {
1588         case 0:
1589                 apsel = dap->apsel;
1590                 break;
1591         case 1:
1592                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1593                 /* AP address is in bits 31:24 of DP_SELECT */
1594                 if (apsel >= 256)
1595                         return ERROR_INVALID_ARGUMENTS;
1596                 break;
1597         default:
1598                 return ERROR_COMMAND_SYNTAX_ERROR;
1599         }
1600
1601         if (apselsave != apsel)
1602                 dap_ap_select(dap, apsel);
1603
1604         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1605         if (retval != ERROR_OK)
1606                 return retval;
1607         retval = dap_run(dap);
1608         if (retval != ERROR_OK)
1609                 return retval;
1610
1611         command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1612         if (apselsave != apsel)
1613                 dap_ap_select(dap, apselsave);
1614
1615         return retval;
1616 }
1617
1618 static const struct command_registration dap_commands[] = {
1619         {
1620                 .name = "info",
1621                 .handler = handle_dap_info_command,
1622                 .mode = COMMAND_EXEC,
1623                 .help = "display ROM table for MEM-AP "
1624                         "(default currently selected AP)",
1625                 .usage = "[ap_num]",
1626         },
1627         {
1628                 .name = "apsel",
1629                 .handler = dap_apsel_command,
1630                 .mode = COMMAND_EXEC,
1631                 .help = "Set the currently selected AP (default 0) "
1632                         "and display the result",
1633                 .usage = "[ap_num]",
1634         },
1635         {
1636                 .name = "apid",
1637                 .handler = dap_apid_command,
1638                 .mode = COMMAND_EXEC,
1639                 .help = "return ID register from AP "
1640                         "(default currently selected AP)",
1641                 .usage = "[ap_num]",
1642         },
1643         {
1644                 .name = "baseaddr",
1645                 .handler = dap_baseaddr_command,
1646                 .mode = COMMAND_EXEC,
1647                 .help = "return debug base address from MEM-AP "
1648                         "(default currently selected AP)",
1649                 .usage = "[ap_num]",
1650         },
1651         {
1652                 .name = "memaccess",
1653                 .handler = dap_memaccess_command,
1654                 .mode = COMMAND_EXEC,
1655                 .help = "set/get number of extra tck for MEM-AP memory "
1656                         "bus access [0-255]",
1657                 .usage = "[cycles]",
1658         },
1659         COMMAND_REGISTRATION_DONE
1660 };
1661
1662 const struct command_registration dap_command_handlers[] = {
1663         {
1664                 .name = "dap",
1665                 .mode = COMMAND_EXEC,
1666                 .help = "DAP command group",
1667                 .chain = dap_commands,
1668         },
1669         COMMAND_REGISTRATION_DONE
1670 };
1671
1672