build: cleanup src/target directory
[fw/openocd] / src / target / arm_adi_v5.c
1 /***************************************************************************
2  *   Copyright (C) 2006 by Magnus Lundin                                   *
3  *   lundin@mlu.mine.nu                                                    *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2009-2010 by Oyvind Harboe                              *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2009-2010 by David Brownell                             *
12  *                                                                         *
13  *   This program is free software; you can redistribute it and/or modify  *
14  *   it under the terms of the GNU General Public License as published by  *
15  *   the Free Software Foundation; either version 2 of the License, or     *
16  *   (at your option) any later version.                                   *
17  *                                                                         *
18  *   This program is distributed in the hope that it will be useful,       *
19  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
20  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
21  *   GNU General Public License for more details.                          *
22  *                                                                         *
23  *   You should have received a copy of the GNU General Public License     *
24  *   along with this program; if not, write to the                         *
25  *   Free Software Foundation, Inc.,                                       *
26  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
27  ***************************************************************************/
28
29 /**
30  * @file
31  * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32  * debugging architecture.  Compared with previous versions, this includes
33  * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34  * transport, and focusses on memory mapped resources as defined by the
35  * CoreSight architecture.
36  *
37  * A key concept in ADIv5 is the Debug Access Port, or DAP.  A DAP has two
38  * basic components:  a Debug Port (DP) transporting messages to and from a
39  * debugger, and an Access Port (AP) accessing resources.  Three types of DP
40  * are defined.  One uses only JTAG for communication, and is called JTAG-DP.
41  * One uses only SWD for communication, and is called SW-DP.  The third can
42  * use either SWD or JTAG, and is called SWJ-DP.  The most common type of AP
43  * is used to access memory mapped resources and is called a MEM-AP.  Also a
44  * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45  *
46  * This programming interface allows DAP pipelined operations through a
47  * transaction queue.  This primarily affects AP operations (such as using
48  * a MEM-AP to access memory or registers).  If the current transaction has
49  * not finished by the time the next one must begin, and the ORUNDETECT bit
50  * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51  * further AP operations will fail.  There are two basic methods to avoid
52  * such overrun errors.  One involves polling for status instead of using
53  * transaction piplining.  The other involves adding delays to ensure the
54  * AP has enough time to complete one operation before starting the next
55  * one.  (For JTAG these delays are controlled by memaccess_tck.)
56  */
57
58 /*
59  * Relevant specifications from ARM include:
60  *
61  * ARM(tm) Debug Interface v5 Architecture Specification    ARM IHI 0031A
62  * CoreSight(tm) v1.0 Architecture Specification            ARM IHI 0029B
63  *
64  * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65  * Cortex-M3(tm) TRM, ARM DDI 0337G
66  */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement  */
77
78 /*
79         uint32_t tar_block_size(uint32_t address)
80         Return the largest block starting at address that does not cross a tar block size alignment boundary
81 */
82 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
83 {
84         return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
85 }
86
87 /***************************************************************************
88  *                                                                         *
89  * DP and MEM-AP  register access  through APACC and DPACC                 *
90  *                                                                         *
91 ***************************************************************************/
92
93 /**
94  * Select one of the APs connected to the specified DAP.  The
95  * selection is implicitly used with future AP transactions.
96  * This is a NOP if the specified AP is already selected.
97  *
98  * @param dap The DAP
99  * @param apsel Number of the AP to (implicitly) use with further
100  *      transactions.  This normally identifies a MEM-AP.
101  */
102 void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
103 {
104         uint32_t new_ap = (ap << 24) & 0xFF000000;
105
106         if (new_ap != dap->ap_current) {
107                 dap->ap_current = new_ap;
108                 /* Switching AP invalidates cached values.
109                  * Values MUST BE UPDATED BEFORE AP ACCESS.
110                  */
111                 dap->ap_bank_value = -1;
112                 dap->ap_csw_value = -1;
113                 dap->ap_tar_value = -1;
114         }
115 }
116
117 /**
118  * Queue transactions setting up transfer parameters for the
119  * currently selected MEM-AP.
120  *
121  * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
122  * initiate data reads or writes using memory or peripheral addresses.
123  * If the CSW is configured for it, the TAR may be automatically
124  * incremented after each transfer.
125  *
126  * @todo Rename to reflect it being specifically a MEM-AP function.
127  *
128  * @param dap The DAP connected to the MEM-AP.
129  * @param csw MEM-AP Control/Status Word (CSW) register to assign.  If this
130  *      matches the cached value, the register is not changed.
131  * @param tar MEM-AP Transfer Address Register (TAR) to assign.  If this
132  *      matches the cached address, the register is not changed.
133  *
134  * @return ERROR_OK if the transaction was properly queued, else a fault code.
135  */
136 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
137 {
138         int retval;
139
140         csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
141         if (csw != dap->ap_csw_value) {
142                 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
143                 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
144                 if (retval != ERROR_OK)
145                         return retval;
146                 dap->ap_csw_value = csw;
147         }
148         if (tar != dap->ap_tar_value) {
149                 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
150                 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
151                 if (retval != ERROR_OK)
152                         return retval;
153                 dap->ap_tar_value = tar;
154         }
155         /* Disable TAR cache when autoincrementing */
156         if (csw & CSW_ADDRINC_MASK)
157                 dap->ap_tar_value = -1;
158         return ERROR_OK;
159 }
160
161 /**
162  * Asynchronous (queued) read of a word from memory or a system register.
163  *
164  * @param dap The DAP connected to the MEM-AP performing the read.
165  * @param address Address of the 32-bit word to read; it must be
166  *      readable by the currently selected MEM-AP.
167  * @param value points to where the word will be stored when the
168  *      transaction queue is flushed (assuming no errors).
169  *
170  * @return ERROR_OK for success.  Otherwise a fault code.
171  */
172 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
173                 uint32_t *value)
174 {
175         int retval;
176
177         /* Use banked addressing (REG_BDx) to avoid some link traffic
178          * (updating TAR) when reading several consecutive addresses.
179          */
180         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
181                         address & 0xFFFFFFF0);
182         if (retval != ERROR_OK)
183                 return retval;
184
185         return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
186 }
187
188 /**
189  * Synchronous read of a word from memory or a system register.
190  * As a side effect, this flushes any queued transactions.
191  *
192  * @param dap The DAP connected to the MEM-AP performing the read.
193  * @param address Address of the 32-bit word to read; it must be
194  *      readable by the currently selected MEM-AP.
195  * @param value points to where the result will be stored.
196  *
197  * @return ERROR_OK for success; *value holds the result.
198  * Otherwise a fault code.
199  */
200 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
201                 uint32_t *value)
202 {
203         int retval;
204
205         retval = mem_ap_read_u32(dap, address, value);
206         if (retval != ERROR_OK)
207                 return retval;
208
209         return dap_run(dap);
210 }
211
212 /**
213  * Asynchronous (queued) write of a word to memory or a system register.
214  *
215  * @param dap The DAP connected to the MEM-AP.
216  * @param address Address to be written; it must be writable by
217  *      the currently selected MEM-AP.
218  * @param value Word that will be written to the address when transaction
219  *      queue is flushed (assuming no errors).
220  *
221  * @return ERROR_OK for success.  Otherwise a fault code.
222  */
223 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
224                 uint32_t value)
225 {
226         int retval;
227
228         /* Use banked addressing (REG_BDx) to avoid some link traffic
229          * (updating TAR) when writing several consecutive addresses.
230          */
231         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
232                         address & 0xFFFFFFF0);
233         if (retval != ERROR_OK)
234                 return retval;
235
236         return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
237                         value);
238 }
239
240 /**
241  * Synchronous write of a word to memory or a system register.
242  * As a side effect, this flushes any queued transactions.
243  *
244  * @param dap The DAP connected to the MEM-AP.
245  * @param address Address to be written; it must be writable by
246  *      the currently selected MEM-AP.
247  * @param value Word that will be written.
248  *
249  * @return ERROR_OK for success; the data was written.  Otherwise a fault code.
250  */
251 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
252                 uint32_t value)
253 {
254         int retval = mem_ap_write_u32(dap, address, value);
255
256         if (retval != ERROR_OK)
257                 return retval;
258
259         return dap_run(dap);
260 }
261
262 /*****************************************************************************
263 *                                                                            *
264 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
265 *                                                                            *
266 * Write a buffer in target order (little endian)                             *
267 *                                                                            *
268 *****************************************************************************/
269 int mem_ap_write_buf_u32(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
270 {
271         int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
272         uint32_t adr = address;
273         const uint8_t *pBuffer = buffer;
274
275         count >>= 2;
276         wcount = count;
277
278         /* if we have an unaligned access - reorder data */
279         if (adr & 0x3u) {
280                 for (writecount = 0; writecount < count; writecount++) {
281                         int i;
282                         uint32_t outvalue;
283                         memcpy(&outvalue, pBuffer, sizeof(uint32_t));
284
285                         for (i = 0; i < 4; i++) {
286                                 *((uint8_t *)pBuffer + (adr & 0x3)) = outvalue;
287                                 outvalue >>= 8;
288                                 adr++;
289                         }
290                         pBuffer += sizeof(uint32_t);
291                 }
292         }
293
294         while (wcount > 0) {
295                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
296                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
297                 if (wcount < blocksize)
298                         blocksize = wcount;
299
300                 /* handle unaligned data at 4k boundary */
301                 if (blocksize == 0)
302                         blocksize = 1;
303
304                 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
305                 if (retval != ERROR_OK)
306                         return retval;
307
308                 for (writecount = 0; writecount < blocksize; writecount++) {
309                         retval = dap_queue_ap_write(dap, AP_REG_DRW,
310                                 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
311                         if (retval != ERROR_OK)
312                                 break;
313                 }
314
315                 retval = dap_run(dap);
316                 if (retval == ERROR_OK) {
317                         wcount = wcount - blocksize;
318                         address = address + 4 * blocksize;
319                         buffer = buffer + 4 * blocksize;
320                 } else
321                         errorcount++;
322
323                 if (errorcount > 1) {
324                         LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
325                         return retval;
326                 }
327         }
328
329         return retval;
330 }
331
332 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
333                 const uint8_t *buffer, int count, uint32_t address)
334 {
335         int retval = ERROR_OK;
336         int wcount, blocksize, writecount, i;
337
338         wcount = count >> 1;
339
340         while (wcount > 0) {
341                 int nbytes;
342
343                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
344                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
345
346                 if (wcount < blocksize)
347                         blocksize = wcount;
348
349                 /* handle unaligned data at 4k boundary */
350                 if (blocksize == 0)
351                         blocksize = 1;
352
353                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
354                 if (retval != ERROR_OK)
355                         return retval;
356                 writecount = blocksize;
357
358                 do {
359                         nbytes = MIN((writecount << 1), 4);
360
361                         if (nbytes < 4) {
362                                 retval = mem_ap_write_buf_u16(dap, buffer,
363                                                 nbytes, address);
364                                 if (retval != ERROR_OK) {
365                                         LOG_WARNING("Block write error address "
366                                                 "0x%" PRIx32 ", count 0x%x",
367                                                 address, count);
368                                         return retval;
369                                 }
370
371                                 address += nbytes >> 1;
372                         } else {
373                                 uint32_t outvalue;
374                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
375
376                                 for (i = 0; i < nbytes; i++) {
377                                         *((uint8_t *)buffer + (address & 0x3)) = outvalue;
378                                         outvalue >>= 8;
379                                         address++;
380                                 }
381
382                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
383                                 retval = dap_queue_ap_write(dap,
384                                                 AP_REG_DRW, outvalue);
385                                 if (retval != ERROR_OK)
386                                         break;
387
388                                 retval = dap_run(dap);
389                                 if (retval != ERROR_OK) {
390                                         LOG_WARNING("Block write error address "
391                                                 "0x%" PRIx32 ", count 0x%x",
392                                                 address, count);
393                                         return retval;
394                                 }
395                         }
396
397                         buffer += nbytes >> 1;
398                         writecount -= nbytes >> 1;
399
400                 } while (writecount);
401                 wcount -= blocksize;
402         }
403
404         return retval;
405 }
406
407 int mem_ap_write_buf_u16(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
408 {
409         int retval = ERROR_OK;
410
411         if (count >= 4)
412                 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
413
414         while (count > 0) {
415                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
416                 if (retval != ERROR_OK)
417                         return retval;
418                 uint16_t svalue;
419                 memcpy(&svalue, buffer, sizeof(uint16_t));
420                 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
421                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
422                 if (retval != ERROR_OK)
423                         break;
424
425                 retval = dap_run(dap);
426                 if (retval != ERROR_OK)
427                         break;
428
429                 count -= 2;
430                 address += 2;
431                 buffer += 2;
432         }
433
434         return retval;
435 }
436
437 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
438                 const uint8_t *buffer, int count, uint32_t address)
439 {
440         int retval = ERROR_OK;
441         int wcount, blocksize, writecount, i;
442
443         wcount = count;
444
445         while (wcount > 0) {
446                 int nbytes;
447
448                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
449                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
450
451                 if (wcount < blocksize)
452                         blocksize = wcount;
453
454                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
455                 if (retval != ERROR_OK)
456                         return retval;
457                 writecount = blocksize;
458
459                 do {
460                         nbytes = MIN(writecount, 4);
461
462                         if (nbytes < 4) {
463                                 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
464                                 if (retval != ERROR_OK) {
465                                         LOG_WARNING("Block write error address "
466                                                 "0x%" PRIx32 ", count 0x%x",
467                                                 address, count);
468                                         return retval;
469                                 }
470
471                                 address += nbytes;
472                         } else {
473                                 uint32_t outvalue;
474                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
475
476                                 for (i = 0; i < nbytes; i++) {
477                                         *((uint8_t *)buffer + (address & 0x3)) = outvalue;
478                                         outvalue >>= 8;
479                                         address++;
480                                 }
481
482                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
483                                 retval = dap_queue_ap_write(dap,
484                                                 AP_REG_DRW, outvalue);
485                                 if (retval != ERROR_OK)
486                                         break;
487
488                                 retval = dap_run(dap);
489                                 if (retval != ERROR_OK) {
490                                         LOG_WARNING("Block write error address "
491                                                 "0x%" PRIx32 ", count 0x%x",
492                                                 address, count);
493                                         return retval;
494                                 }
495                         }
496
497                         buffer += nbytes;
498                         writecount -= nbytes;
499
500                 } while (writecount);
501                 wcount -= blocksize;
502         }
503
504         return retval;
505 }
506
507 int mem_ap_write_buf_u8(struct adiv5_dap *dap, const uint8_t *buffer, int count, uint32_t address)
508 {
509         int retval = ERROR_OK;
510
511         if (count >= 4)
512                 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
513
514         while (count > 0) {
515                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
516                 if (retval != ERROR_OK)
517                         return retval;
518                 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
519                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
520                 if (retval != ERROR_OK)
521                         break;
522
523                 retval = dap_run(dap);
524                 if (retval != ERROR_OK)
525                         break;
526
527                 count--;
528                 address++;
529                 buffer++;
530         }
531
532         return retval;
533 }
534
535 /* FIXME don't import ... this is a temporary workaround for the
536  * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
537  */
538 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
539                 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
540                 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
541
542 /**
543  * Synchronously read a block of 32-bit words into a buffer
544  * @param dap The DAP connected to the MEM-AP.
545  * @param buffer where the words will be stored (in host byte order).
546  * @param count How many words to read.
547  * @param address Memory address from which to read words; all the
548  *      words must be readable by the currently selected MEM-AP.
549  */
550 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
551                 int count, uint32_t address)
552 {
553         int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
554         uint32_t adr = address;
555         uint8_t *pBuffer = buffer;
556
557         count >>= 2;
558         wcount = count;
559
560         while (wcount > 0) {
561                 /* Adjust to read blocks within boundaries aligned to the
562                  * TAR autoincrement size (at least 2^10).  Autoincrement
563                  * mode avoids an extra per-word roundtrip to update TAR.
564                  */
565                 blocksize = max_tar_block_size(dap->tar_autoincr_block,
566                                 address);
567                 if (wcount < blocksize)
568                         blocksize = wcount;
569
570                 /* handle unaligned data at 4k boundary */
571                 if (blocksize == 0)
572                         blocksize = 1;
573
574                 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
575                                 address);
576                 if (retval != ERROR_OK)
577                         return retval;
578
579                 /* FIXME remove these three calls to adi_jtag_dp_scan(),
580                  * so this routine becomes transport-neutral.  Be careful
581                  * not to cause performance problems with JTAG; would it
582                  * suffice to loop over dap_queue_ap_read(), or would that
583                  * be slower when JTAG is the chosen transport?
584                  */
585
586                 /* Scan out first read */
587                 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
588                                 DPAP_READ, 0, NULL, NULL);
589                 if (retval != ERROR_OK)
590                         return retval;
591                 for (readcount = 0; readcount < blocksize - 1; readcount++) {
592                         /* Scan out next read; scan in posted value for the
593                          * previous one.  Assumes read is acked "OK/FAULT",
594                          * and CTRL_STAT says that meant "OK".
595                          */
596                         retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
597                                         DPAP_READ, 0, buffer + 4 * readcount,
598                                         &dap->ack);
599                         if (retval != ERROR_OK)
600                                 return retval;
601                 }
602
603                 /* Scan in last posted value; RDBUFF has no other effect,
604                  * assuming ack is OK/FAULT and CTRL_STAT says "OK".
605                  */
606                 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
607                                 DPAP_READ, 0, buffer + 4 * readcount,
608                                 &dap->ack);
609                 if (retval != ERROR_OK)
610                         return retval;
611
612                 retval = dap_run(dap);
613                 if (retval != ERROR_OK) {
614                         errorcount++;
615                         if (errorcount <= 1) {
616                                 /* try again */
617                                 continue;
618                         }
619                         LOG_WARNING("Block read error address 0x%" PRIx32, address);
620                         return retval;
621                 }
622                 wcount = wcount - blocksize;
623                 address += 4 * blocksize;
624                 buffer += 4 * blocksize;
625         }
626
627         /* if we have an unaligned access - reorder data */
628         if (adr & 0x3u) {
629                 for (readcount = 0; readcount < count; readcount++) {
630                         int i;
631                         uint32_t data;
632                         memcpy(&data, pBuffer, sizeof(uint32_t));
633
634                         for (i = 0; i < 4; i++) {
635                                 *((uint8_t *)pBuffer) =
636                                                 (data >> 8 * (adr & 0x3));
637                                 pBuffer++;
638                                 adr++;
639                         }
640                 }
641         }
642
643         return retval;
644 }
645
646 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
647                 uint8_t *buffer, int count, uint32_t address)
648 {
649         uint32_t invalue;
650         int retval = ERROR_OK;
651         int wcount, blocksize, readcount, i;
652
653         wcount = count >> 1;
654
655         while (wcount > 0) {
656                 int nbytes;
657
658                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
659                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
660                 if (wcount < blocksize)
661                         blocksize = wcount;
662
663                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
664                 if (retval != ERROR_OK)
665                         return retval;
666
667                 /* handle unaligned data at 4k boundary */
668                 if (blocksize == 0)
669                         blocksize = 1;
670                 readcount = blocksize;
671
672                 do {
673                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
674                         if (retval != ERROR_OK)
675                                 return retval;
676                         retval = dap_run(dap);
677                         if (retval != ERROR_OK) {
678                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
679                                 return retval;
680                         }
681
682                         nbytes = MIN((readcount << 1), 4);
683
684                         for (i = 0; i < nbytes; i++) {
685                                 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
686                                 buffer++;
687                                 address++;
688                         }
689
690                         readcount -= (nbytes >> 1);
691                 } while (readcount);
692                 wcount -= blocksize;
693         }
694
695         return retval;
696 }
697
698 /**
699  * Synchronously read a block of 16-bit halfwords into a buffer
700  * @param dap The DAP connected to the MEM-AP.
701  * @param buffer where the halfwords will be stored (in host byte order).
702  * @param count How many halfwords to read.
703  * @param address Memory address from which to read words; all the
704  *      words must be readable by the currently selected MEM-AP.
705  */
706 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
707                 int count, uint32_t address)
708 {
709         uint32_t invalue, i;
710         int retval = ERROR_OK;
711
712         if (count >= 4)
713                 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
714
715         while (count > 0) {
716                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
717                 if (retval != ERROR_OK)
718                         return retval;
719                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
720                 if (retval != ERROR_OK)
721                         break;
722
723                 retval = dap_run(dap);
724                 if (retval != ERROR_OK)
725                         break;
726
727                 if (address & 0x1) {
728                         for (i = 0; i < 2; i++) {
729                                 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
730                                 buffer++;
731                                 address++;
732                         }
733                 } else {
734                         uint16_t svalue = (invalue >> 8 * (address & 0x3));
735                         memcpy(buffer, &svalue, sizeof(uint16_t));
736                         address += 2;
737                         buffer += 2;
738                 }
739                 count -= 2;
740         }
741
742         return retval;
743 }
744
745 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
746  * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
747  *
748  * The solution is to arrange for a large out/in scan in this loop and
749  * and convert data afterwards.
750  */
751 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
752                 uint8_t *buffer, int count, uint32_t address)
753 {
754         uint32_t invalue;
755         int retval = ERROR_OK;
756         int wcount, blocksize, readcount, i;
757
758         wcount = count;
759
760         while (wcount > 0) {
761                 int nbytes;
762
763                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
764                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
765
766                 if (wcount < blocksize)
767                         blocksize = wcount;
768
769                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
770                 if (retval != ERROR_OK)
771                         return retval;
772                 readcount = blocksize;
773
774                 do {
775                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
776                         if (retval != ERROR_OK)
777                                 return retval;
778                         retval = dap_run(dap);
779                         if (retval != ERROR_OK) {
780                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
781                                 return retval;
782                         }
783
784                         nbytes = MIN(readcount, 4);
785
786                         for (i = 0; i < nbytes; i++) {
787                                 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
788                                 buffer++;
789                                 address++;
790                         }
791
792                         readcount -= nbytes;
793                 } while (readcount);
794                 wcount -= blocksize;
795         }
796
797         return retval;
798 }
799
800 /**
801  * Synchronously read a block of bytes into a buffer
802  * @param dap The DAP connected to the MEM-AP.
803  * @param buffer where the bytes will be stored.
804  * @param count How many bytes to read.
805  * @param address Memory address from which to read data; all the
806  *      data must be readable by the currently selected MEM-AP.
807  */
808 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
809                 int count, uint32_t address)
810 {
811         uint32_t invalue;
812         int retval = ERROR_OK;
813
814         if (count >= 4)
815                 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
816
817         while (count > 0) {
818                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
819                 if (retval != ERROR_OK)
820                         return retval;
821                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822                 if (retval != ERROR_OK)
823                         return retval;
824                 retval = dap_run(dap);
825                 if (retval != ERROR_OK)
826                         break;
827
828                 *((uint8_t *)buffer) = (invalue >> 8 * (address & 0x3));
829                 count--;
830                 address++;
831                 buffer++;
832         }
833
834         return retval;
835 }
836
837 /*--------------------------------------------------------------------*/
838 /*          Wrapping function with selection of AP                    */
839 /*--------------------------------------------------------------------*/
840 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
841                 uint32_t address, uint32_t *value)
842 {
843         dap_ap_select(swjdp, ap);
844         return mem_ap_read_u32(swjdp, address, value);
845 }
846
847 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
848                 uint32_t address, uint32_t value)
849 {
850         dap_ap_select(swjdp, ap);
851         return mem_ap_write_u32(swjdp, address, value);
852 }
853
854 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
855                 uint32_t address, uint32_t *value)
856 {
857         dap_ap_select(swjdp, ap);
858         return mem_ap_read_atomic_u32(swjdp, address, value);
859 }
860
861 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
862                 uint32_t address, uint32_t value)
863 {
864         dap_ap_select(swjdp, ap);
865         return mem_ap_write_atomic_u32(swjdp, address, value);
866 }
867
868 int mem_ap_sel_read_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
869                 uint8_t *buffer, int count, uint32_t address)
870 {
871         dap_ap_select(swjdp, ap);
872         return mem_ap_read_buf_u8(swjdp, buffer, count, address);
873 }
874
875 int mem_ap_sel_read_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
876                 uint8_t *buffer, int count, uint32_t address)
877 {
878         dap_ap_select(swjdp, ap);
879         return mem_ap_read_buf_u16(swjdp, buffer, count, address);
880 }
881
882 int mem_ap_sel_read_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
883                 uint8_t *buffer, int count, uint32_t address)
884 {
885         dap_ap_select(swjdp, ap);
886         return mem_ap_read_buf_u32(swjdp, buffer, count, address);
887 }
888
889 int mem_ap_sel_write_buf_u8(struct adiv5_dap *swjdp, uint8_t ap,
890                 const uint8_t *buffer, int count, uint32_t address)
891 {
892         dap_ap_select(swjdp, ap);
893         return mem_ap_write_buf_u8(swjdp, buffer, count, address);
894 }
895
896 int mem_ap_sel_write_buf_u16(struct adiv5_dap *swjdp, uint8_t ap,
897                 const uint8_t *buffer, int count, uint32_t address)
898 {
899         dap_ap_select(swjdp, ap);
900         return mem_ap_write_buf_u16(swjdp, buffer, count, address);
901 }
902
903 int mem_ap_sel_write_buf_u32(struct adiv5_dap *swjdp, uint8_t ap,
904                 const uint8_t *buffer, int count, uint32_t address)
905 {
906         dap_ap_select(swjdp, ap);
907         return mem_ap_write_buf_u32(swjdp, buffer, count, address);
908 }
909
910 #define MDM_REG_STAT            0x00
911 #define MDM_REG_CTRL            0x04
912 #define MDM_REG_ID              0xfc
913
914 #define MDM_STAT_FMEACK         (1<<0)
915 #define MDM_STAT_FREADY         (1<<1)
916 #define MDM_STAT_SYSSEC         (1<<2)
917 #define MDM_STAT_SYSRES         (1<<3)
918 #define MDM_STAT_FMEEN          (1<<5)
919 #define MDM_STAT_BACKDOOREN     (1<<6)
920 #define MDM_STAT_LPEN           (1<<7)
921 #define MDM_STAT_VLPEN          (1<<8)
922 #define MDM_STAT_LLSMODEXIT     (1<<9)
923 #define MDM_STAT_VLLSXMODEXIT   (1<<10)
924 #define MDM_STAT_CORE_HALTED    (1<<16)
925 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
926 #define MDM_STAT_CORESLEEPING   (1<<18)
927
928 #define MEM_CTRL_FMEIP          (1<<0)
929 #define MEM_CTRL_DBG_DIS        (1<<1)
930 #define MEM_CTRL_DBG_REQ        (1<<2)
931 #define MEM_CTRL_SYS_RES_REQ    (1<<3)
932 #define MEM_CTRL_CORE_HOLD_RES  (1<<4)
933 #define MEM_CTRL_VLLSX_DBG_REQ  (1<<5)
934 #define MEM_CTRL_VLLSX_DBG_ACK  (1<<6)
935 #define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
936
937 /**
938  *
939  */
940 int dap_syssec_kinetis_mdmap(struct adiv5_dap *dap)
941 {
942         uint32_t val;
943         int retval;
944         enum reset_types jtag_reset_config = jtag_get_reset_config();
945
946         dap_ap_select(dap, 1);
947
948         /* first check mdm-ap id register */
949         retval = dap_queue_ap_read(dap, MDM_REG_ID, &val);
950         if (retval != ERROR_OK)
951                 return retval;
952         dap_run(dap);
953
954         if (val != 0x001C0000) {
955                 LOG_DEBUG("id doesn't match %08X != 0x001C0000", val);
956                 dap_ap_select(dap, 0);
957                 return ERROR_FAIL;
958         }
959
960         /* read and parse status register
961          * it's important that the device is out of
962          * reset here
963          */
964         retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
965         if (retval != ERROR_OK)
966                 return retval;
967         dap_run(dap);
968
969         LOG_DEBUG("MDM_REG_STAT %08X", val);
970
971         if ((val & (MDM_STAT_SYSSEC|MDM_STAT_FREADY)) != (MDM_STAT_FREADY)) {
972                 LOG_DEBUG("MDMAP: system is secured, masserase needed");
973
974                 if (!(val & MDM_STAT_FMEEN))
975                         LOG_DEBUG("MDMAP: masserase is disabled");
976                 else {
977                         /* we need to assert reset */
978                         if (jtag_reset_config & RESET_HAS_SRST) {
979                                 /* default to asserting srst */
980                                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
981                                         jtag_add_reset(1, 1);
982                                 else
983                                         jtag_add_reset(0, 1);
984                         } else {
985                                 LOG_DEBUG("SRST not configured");
986                                 dap_ap_select(dap, 0);
987                                 return ERROR_FAIL;
988                         }
989
990                         while (1) {
991                                 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, MEM_CTRL_FMEIP);
992                                 if (retval != ERROR_OK)
993                                         return retval;
994                                 dap_run(dap);
995                                 /* read status register and wait for ready */
996                                 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
997                                 if (retval != ERROR_OK)
998                                         return retval;
999                                 dap_run(dap);
1000                                 LOG_DEBUG("MDM_REG_STAT %08X", val);
1001
1002                                 if ((val & 1))
1003                                         break;
1004                         }
1005
1006                         while (1) {
1007                                 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, 0);
1008                                 if (retval != ERROR_OK)
1009                                         return retval;
1010                                 dap_run(dap);
1011                                 /* read status register */
1012                                 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
1013                                 if (retval != ERROR_OK)
1014                                         return retval;
1015                                 dap_run(dap);
1016                                 LOG_DEBUG("MDM_REG_STAT %08X", val);
1017                                 /* read control register and wait for ready */
1018                                 retval = dap_queue_ap_read(dap, MDM_REG_CTRL, &val);
1019                                 if (retval != ERROR_OK)
1020                                         return retval;
1021                                 dap_run(dap);
1022                                 LOG_DEBUG("MDM_REG_CTRL %08X", val);
1023
1024                                 if (val == 0x00)
1025                                         break;
1026                         }
1027                 }
1028         }
1029
1030         dap_ap_select(dap, 0);
1031
1032         return ERROR_OK;
1033 }
1034
1035 /** */
1036 struct dap_syssec_filter {
1037         /** */
1038         uint32_t idcode;
1039         /** */
1040         int (*dap_init)(struct adiv5_dap *dap);
1041 };
1042
1043 /** */
1044 static struct dap_syssec_filter dap_syssec_filter_data[] = {
1045         { 0x4BA00477, dap_syssec_kinetis_mdmap }
1046 };
1047
1048 /**
1049  *
1050  */
1051 int dap_syssec(struct adiv5_dap *dap)
1052 {
1053         unsigned int i;
1054         struct jtag_tap *tap;
1055
1056         for (i = 0; i < sizeof(dap_syssec_filter_data); i++) {
1057                 tap = dap->jtag_info->tap;
1058
1059                 while (tap != NULL) {
1060                         if (tap->hasidcode && (dap_syssec_filter_data[i].idcode == tap->idcode)) {
1061                                 LOG_DEBUG("DAP: mdmap_init for idcode: %08x", tap->idcode);
1062                                 dap_syssec_filter_data[i].dap_init(dap);
1063                         }
1064                         tap = tap->next_tap;
1065                 }
1066         }
1067
1068         return ERROR_OK;
1069 }
1070
1071 /*--------------------------------------------------------------------------*/
1072
1073
1074 /* FIXME don't import ... just initialize as
1075  * part of DAP transport setup
1076 */
1077 extern const struct dap_ops jtag_dp_ops;
1078
1079 /*--------------------------------------------------------------------------*/
1080
1081 /**
1082  * Initialize a DAP.  This sets up the power domains, prepares the DP
1083  * for further use, and arranges to use AP #0 for all AP operations
1084  * until dap_ap-select() changes that policy.
1085  *
1086  * @param dap The DAP being initialized.
1087  *
1088  * @todo Rename this.  We also need an initialization scheme which account
1089  * for SWD transports not just JTAG; that will need to address differences
1090  * in layering.  (JTAG is useful without any debug target; but not SWD.)
1091  * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
1092  */
1093 int ahbap_debugport_init(struct adiv5_dap *dap)
1094 {
1095         uint32_t ctrlstat;
1096         int cnt = 0;
1097         int retval;
1098
1099         LOG_DEBUG(" ");
1100
1101         /* JTAG-DP or SWJ-DP, in JTAG mode
1102          * ... for SWD mode this is patched as part
1103          * of link switchover
1104          */
1105         if (!dap->ops)
1106                 dap->ops = &jtag_dp_ops;
1107
1108         /* Default MEM-AP setup.
1109          *
1110          * REVISIT AP #0 may be an inappropriate default for this.
1111          * Should we probe, or take a hint from the caller?
1112          * Presumably we can ignore the possibility of multiple APs.
1113          */
1114         dap->ap_current = !0;
1115         dap_ap_select(dap, 0);
1116
1117         /* DP initialization */
1118
1119         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1120         if (retval != ERROR_OK)
1121                 return retval;
1122
1123         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
1124         if (retval != ERROR_OK)
1125                 return retval;
1126
1127         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1128         if (retval != ERROR_OK)
1129                 return retval;
1130
1131         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1132         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1133         if (retval != ERROR_OK)
1134                 return retval;
1135
1136         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1137         if (retval != ERROR_OK)
1138                 return retval;
1139         retval = dap_run(dap);
1140         if (retval != ERROR_OK)
1141                 return retval;
1142
1143         /* Check that we have debug power domains activated */
1144         while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10)) {
1145                 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1146                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1147                 if (retval != ERROR_OK)
1148                         return retval;
1149                 retval = dap_run(dap);
1150                 if (retval != ERROR_OK)
1151                         return retval;
1152                 alive_sleep(10);
1153         }
1154
1155         while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10)) {
1156                 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1157                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
1158                 if (retval != ERROR_OK)
1159                         return retval;
1160                 retval = dap_run(dap);
1161                 if (retval != ERROR_OK)
1162                         return retval;
1163                 alive_sleep(10);
1164         }
1165
1166         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1167         if (retval != ERROR_OK)
1168                 return retval;
1169         /* With debug power on we can activate OVERRUN checking */
1170         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1171         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
1172         if (retval != ERROR_OK)
1173                 return retval;
1174         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
1175         if (retval != ERROR_OK)
1176                 return retval;
1177
1178         dap_syssec(dap);
1179
1180         return ERROR_OK;
1181 }
1182
1183 /* CID interpretation -- see ARM IHI 0029B section 3
1184  * and ARM IHI 0031A table 13-3.
1185  */
1186 static const char *class_description[16] = {
1187         "Reserved", "ROM table", "Reserved", "Reserved",
1188         "Reserved", "Reserved", "Reserved", "Reserved",
1189         "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1190         "Reserved", "OptimoDE DESS",
1191         "Generic IP component", "PrimeCell or System component"
1192 };
1193
1194 static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1195 {
1196         return cid3 == 0xb1 && cid2 == 0x05
1197                         && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1198 }
1199
1200 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
1201                         uint32_t *out_dbgbase, uint32_t *out_apid)
1202 {
1203         uint32_t ap_old;
1204         int retval;
1205         uint32_t dbgbase, apid;
1206
1207         /* AP address is in bits 31:24 of DP_SELECT */
1208         if (ap >= 256)
1209                 return ERROR_COMMAND_SYNTAX_ERROR;
1210
1211         ap_old = dap->ap_current;
1212         dap_ap_select(dap, ap);
1213
1214         retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1215         if (retval != ERROR_OK)
1216                 return retval;
1217         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1218         if (retval != ERROR_OK)
1219                 return retval;
1220         retval = dap_run(dap);
1221         if (retval != ERROR_OK)
1222                 return retval;
1223
1224         /* Excavate the device ID code */
1225         struct jtag_tap *tap = dap->jtag_info->tap;
1226         while (tap != NULL) {
1227                 if (tap->hasidcode)
1228                         break;
1229                 tap = tap->next_tap;
1230         }
1231         if (tap == NULL || !tap->hasidcode)
1232                 return ERROR_OK;
1233
1234         dap_ap_select(dap, ap_old);
1235
1236         /* The asignment happens only here to prevent modification of these
1237          * values before they are certain. */
1238         *out_dbgbase = dbgbase;
1239         *out_apid = apid;
1240
1241         return ERROR_OK;
1242 }
1243
1244 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
1245                         uint32_t dbgbase, uint8_t type, uint32_t *addr)
1246 {
1247         uint32_t ap_old;
1248         uint32_t romentry, entry_offset = 0, component_base, devtype;
1249         int retval = ERROR_FAIL;
1250
1251         if (ap >= 256)
1252                 return ERROR_COMMAND_SYNTAX_ERROR;
1253
1254         ap_old = dap->ap_current;
1255         dap_ap_select(dap, ap);
1256
1257         do {
1258                 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1259                                                 entry_offset, &romentry);
1260                 if (retval != ERROR_OK)
1261                         return retval;
1262
1263                 component_base = (dbgbase & 0xFFFFF000)
1264                         + (romentry & 0xFFFFF000);
1265
1266                 if (romentry & 0x1) {
1267                         retval = mem_ap_read_atomic_u32(dap,
1268                                         (component_base & 0xfffff000) | 0xfcc,
1269                                         &devtype);
1270                         if ((devtype & 0xff) == type) {
1271                                 *addr = component_base;
1272                                 retval = ERROR_OK;
1273                                 break;
1274                         }
1275                 }
1276                 entry_offset += 4;
1277         } while (romentry > 0);
1278
1279         dap_ap_select(dap, ap_old);
1280
1281         return retval;
1282 }
1283
1284 static int dap_info_command(struct command_context *cmd_ctx,
1285                 struct adiv5_dap *dap, int ap)
1286 {
1287         int retval;
1288         uint32_t dbgbase = 0, apid = 0; /* Silence gcc by initializing */
1289         int romtable_present = 0;
1290         uint8_t mem_ap;
1291         uint32_t ap_old;
1292
1293         retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1294         if (retval != ERROR_OK)
1295                 return retval;
1296
1297         ap_old = dap->ap_current;
1298         dap_ap_select(dap, ap);
1299
1300         /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1301         mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1302         command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1303         if (apid) {
1304                 switch (apid&0x0F) {
1305                         case 0:
1306                                 command_print(cmd_ctx, "\tType is JTAG-AP");
1307                                 break;
1308                         case 1:
1309                                 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1310                                 break;
1311                         case 2:
1312                                 command_print(cmd_ctx, "\tType is MEM-AP APB");
1313                                 break;
1314                         default:
1315                                 command_print(cmd_ctx, "\tUnknown AP type");
1316                                 break;
1317                 }
1318
1319                 /* NOTE: a MEM-AP may have a single CoreSight component that's
1320                  * not a ROM table ... or have no such components at all.
1321                  */
1322                 if (mem_ap)
1323                         command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase);
1324         } else
1325                 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1326
1327         romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1328         if (romtable_present) {
1329                 uint32_t cid0, cid1, cid2, cid3, memtype, romentry;
1330                 uint16_t entry_offset;
1331
1332                 /* bit 16 of apid indicates a memory access port */
1333                 if (dbgbase & 0x02)
1334                         command_print(cmd_ctx, "\tValid ROM table present");
1335                 else
1336                         command_print(cmd_ctx, "\tROM table in legacy format");
1337
1338                 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1339                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1340                 if (retval != ERROR_OK)
1341                         return retval;
1342                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1343                 if (retval != ERROR_OK)
1344                         return retval;
1345                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1346                 if (retval != ERROR_OK)
1347                         return retval;
1348                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1349                 if (retval != ERROR_OK)
1350                         return retval;
1351                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1352                 if (retval != ERROR_OK)
1353                         return retval;
1354                 retval = dap_run(dap);
1355                 if (retval != ERROR_OK)
1356                         return retval;
1357
1358                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1359                         command_print(cmd_ctx, "\tCID3 0x%2.2x"
1360                                         ", CID2 0x%2.2x"
1361                                         ", CID1 0x%2.2x"
1362                                         ", CID0 0x%2.2x",
1363                                         (unsigned) cid3, (unsigned)cid2,
1364                                         (unsigned) cid1, (unsigned) cid0);
1365                 if (memtype & 0x01)
1366                         command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1367                 else
1368                         command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1369                                         "Dedicated debug bus.");
1370
1371                 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1372                 entry_offset = 0;
1373                 do {
1374                         retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1375                         if (retval != ERROR_OK)
1376                                 return retval;
1377                         command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "", entry_offset, romentry);
1378                         if (romentry & 0x01) {
1379                                 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1380                                 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1381                                 uint32_t component_base;
1382                                 unsigned part_num;
1383                                 char *type, *full;
1384
1385                                 component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000);
1386
1387                                 /* IDs are in last 4K section */
1388                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0);
1389                                 if (retval != ERROR_OK)
1390                                         return retval;
1391                                 c_pid0 &= 0xff;
1392                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1);
1393                                 if (retval != ERROR_OK)
1394                                         return retval;
1395                                 c_pid1 &= 0xff;
1396                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2);
1397                                 if (retval != ERROR_OK)
1398                                         return retval;
1399                                 c_pid2 &= 0xff;
1400                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3);
1401                                 if (retval != ERROR_OK)
1402                                         return retval;
1403                                 c_pid3 &= 0xff;
1404                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4);
1405                                 if (retval != ERROR_OK)
1406                                         return retval;
1407                                 c_pid4 &= 0xff;
1408
1409                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0);
1410                                 if (retval != ERROR_OK)
1411                                         return retval;
1412                                 c_cid0 &= 0xff;
1413                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1);
1414                                 if (retval != ERROR_OK)
1415                                         return retval;
1416                                 c_cid1 &= 0xff;
1417                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2);
1418                                 if (retval != ERROR_OK)
1419                                         return retval;
1420                                 c_cid2 &= 0xff;
1421                                 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3);
1422                                 if (retval != ERROR_OK)
1423                                         return retval;
1424                                 c_cid3 &= 0xff;
1425
1426                                 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ","
1427                                                 "start address 0x%" PRIx32, component_base,
1428                                 /* component may take multiple 4K pages */
1429                                 component_base - 0x1000*(c_pid4 >> 4));
1430                                 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1431                                                 (int) (c_cid1 >> 4) & 0xf,
1432                                                 /* See ARM IHI 0029B Table 3-3 */
1433                                                 class_description[(c_cid1 >> 4) & 0xf]);
1434
1435                                 /* CoreSight component? */
1436                                 if (((c_cid1 >> 4) & 0x0f) == 9) {
1437                                         uint32_t devtype;
1438                                         unsigned minor;
1439                                         char *major = "Reserved", *subtype = "Reserved";
1440
1441                                         retval = mem_ap_read_atomic_u32(dap,
1442                                                         (component_base & 0xfffff000) | 0xfcc,
1443                                                         &devtype);
1444                                         if (retval != ERROR_OK)
1445                                                 return retval;
1446                                         minor = (devtype >> 4) & 0x0f;
1447                                         switch (devtype & 0x0f) {
1448                                         case 0:
1449                                                 major = "Miscellaneous";
1450                                                 switch (minor) {
1451                                                 case 0:
1452                                                         subtype = "other";
1453                                                         break;
1454                                                 case 4:
1455                                                         subtype = "Validation component";
1456                                                         break;
1457                                                 }
1458                                                 break;
1459                                         case 1:
1460                                                 major = "Trace Sink";
1461                                                 switch (minor) {
1462                                                 case 0:
1463                                                         subtype = "other";
1464                                                         break;
1465                                                 case 1:
1466                                                         subtype = "Port";
1467                                                         break;
1468                                                 case 2:
1469                                                         subtype = "Buffer";
1470                                                         break;
1471                                                 }
1472                                                 break;
1473                                         case 2:
1474                                                 major = "Trace Link";
1475                                                 switch (minor) {
1476                                                 case 0:
1477                                                         subtype = "other";
1478                                                         break;
1479                                                 case 1:
1480                                                         subtype = "Funnel, router";
1481                                                         break;
1482                                                 case 2:
1483                                                         subtype = "Filter";
1484                                                         break;
1485                                                 case 3:
1486                                                         subtype = "FIFO, buffer";
1487                                                         break;
1488                                                 }
1489                                                 break;
1490                                         case 3:
1491                                                 major = "Trace Source";
1492                                                 switch (minor) {
1493                                                 case 0:
1494                                                         subtype = "other";
1495                                                         break;
1496                                                 case 1:
1497                                                         subtype = "Processor";
1498                                                         break;
1499                                                 case 2:
1500                                                         subtype = "DSP";
1501                                                         break;
1502                                                 case 3:
1503                                                         subtype = "Engine/Coprocessor";
1504                                                         break;
1505                                                 case 4:
1506                                                         subtype = "Bus";
1507                                                         break;
1508                                                 }
1509                                                 break;
1510                                         case 4:
1511                                                 major = "Debug Control";
1512                                                 switch (minor) {
1513                                                 case 0:
1514                                                         subtype = "other";
1515                                                         break;
1516                                                 case 1:
1517                                                         subtype = "Trigger Matrix";
1518                                                         break;
1519                                                 case 2:
1520                                                         subtype = "Debug Auth";
1521                                                         break;
1522                                                 }
1523                                                 break;
1524                                         case 5:
1525                                                 major = "Debug Logic";
1526                                                 switch (minor) {
1527                                                 case 0:
1528                                                         subtype = "other";
1529                                                         break;
1530                                                 case 1:
1531                                                         subtype = "Processor";
1532                                                         break;
1533                                                 case 2:
1534                                                         subtype = "DSP";
1535                                                         break;
1536                                                 case 3:
1537                                                         subtype = "Engine/Coprocessor";
1538                                                         break;
1539                                                 }
1540                                                 break;
1541                                         }
1542                                         command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1543                                                         (unsigned) (devtype & 0xff),
1544                                                         major, subtype);
1545                                         /* REVISIT also show 0xfc8 DevId */
1546                                 }
1547
1548                                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1549                                         command_print(cmd_ctx,
1550                                                         "\t\tCID3 0%2.2x"
1551                                                         ", CID2 0%2.2x"
1552                                                         ", CID1 0%2.2x"
1553                                                         ", CID0 0%2.2x",
1554                                                         (int) c_cid3,
1555                                                         (int) c_cid2,
1556                                                         (int)c_cid1,
1557                                                         (int)c_cid0);
1558                                 command_print(cmd_ctx,
1559                                 "\t\tPeripheral ID[4..0] = hex "
1560                                 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1561                                 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1562                                 (int) c_pid1, (int) c_pid0);
1563
1564                                 /* Part number interpretations are from Cortex
1565                                  * core specs, the CoreSight components TRM
1566                                  * (ARM DDI 0314H), CoreSight System Design
1567                                  * Guide (ARM DGI 0012D) and ETM specs; also
1568                                  * from chip observation (e.g. TI SDTI).
1569                                  */
1570                                 part_num = (c_pid0 & 0xff);
1571                                 part_num |= (c_pid1 & 0x0f) << 8;
1572                                 switch (part_num) {
1573                                 case 0x000:
1574                                         type = "Cortex-M3 NVIC";
1575                                         full = "(Interrupt Controller)";
1576                                         break;
1577                                 case 0x001:
1578                                         type = "Cortex-M3 ITM";
1579                                         full = "(Instrumentation Trace Module)";
1580                                         break;
1581                                 case 0x002:
1582                                         type = "Cortex-M3 DWT";
1583                                         full = "(Data Watchpoint and Trace)";
1584                                         break;
1585                                 case 0x003:
1586                                         type = "Cortex-M3 FBP";
1587                                         full = "(Flash Patch and Breakpoint)";
1588                                         break;
1589                                 case 0x00d:
1590                                         type = "CoreSight ETM11";
1591                                         full = "(Embedded Trace)";
1592                                         break;
1593                                 /* case 0x113: what? */
1594                                 case 0x120:             /* from OMAP3 memmap */
1595                                         type = "TI SDTI";
1596                                         full = "(System Debug Trace Interface)";
1597                                         break;
1598                                 case 0x343:             /* from OMAP3 memmap */
1599                                         type = "TI DAPCTL";
1600                                         full = "";
1601                                         break;
1602                                 case 0x906:
1603                                         type = "Coresight CTI";
1604                                         full = "(Cross Trigger)";
1605                                         break;
1606                                 case 0x907:
1607                                         type = "Coresight ETB";
1608                                         full = "(Trace Buffer)";
1609                                         break;
1610                                 case 0x908:
1611                                         type = "Coresight CSTF";
1612                                         full = "(Trace Funnel)";
1613                                         break;
1614                                 case 0x910:
1615                                         type = "CoreSight ETM9";
1616                                         full = "(Embedded Trace)";
1617                                         break;
1618                                 case 0x912:
1619                                         type = "Coresight TPIU";
1620                                         full = "(Trace Port Interface Unit)";
1621                                         break;
1622                                 case 0x921:
1623                                         type = "Cortex-A8 ETM";
1624                                         full = "(Embedded Trace)";
1625                                         break;
1626                                 case 0x922:
1627                                         type = "Cortex-A8 CTI";
1628                                         full = "(Cross Trigger)";
1629                                         break;
1630                                 case 0x923:
1631                                         type = "Cortex-M3 TPIU";
1632                                         full = "(Trace Port Interface Unit)";
1633                                         break;
1634                                 case 0x924:
1635                                         type = "Cortex-M3 ETM";
1636                                         full = "(Embedded Trace)";
1637                                         break;
1638                                 case 0x930:
1639                                         type = "Cortex-R4 ETM";
1640                                         full = "(Embedded Trace)";
1641                                         break;
1642                                 case 0xc08:
1643                                         type = "Cortex-A8 Debug";
1644                                         full = "(Debug Unit)";
1645                                         break;
1646                                 default:
1647                                         type = "-*- unrecognized -*-";
1648                                         full = "";
1649                                         break;
1650                                 }
1651                                 command_print(cmd_ctx, "\t\tPart is %s %s",
1652                                                 type, full);
1653                         } else {
1654                                 if (romentry)
1655                                         command_print(cmd_ctx, "\t\tComponent not present");
1656                                 else
1657                                         command_print(cmd_ctx, "\t\tEnd of ROM table");
1658                         }
1659                         entry_offset += 4;
1660                 } while (romentry > 0);
1661         } else
1662                 command_print(cmd_ctx, "\tNo ROM table present");
1663         dap_ap_select(dap, ap_old);
1664
1665         return ERROR_OK;
1666 }
1667
1668 COMMAND_HANDLER(handle_dap_info_command)
1669 {
1670         struct target *target = get_current_target(CMD_CTX);
1671         struct arm *arm = target_to_arm(target);
1672         struct adiv5_dap *dap = arm->dap;
1673         uint32_t apsel;
1674
1675         switch (CMD_ARGC) {
1676         case 0:
1677                 apsel = dap->apsel;
1678                 break;
1679         case 1:
1680                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1681                 break;
1682         default:
1683                 return ERROR_COMMAND_SYNTAX_ERROR;
1684         }
1685
1686         return dap_info_command(CMD_CTX, dap, apsel);
1687 }
1688
1689 COMMAND_HANDLER(dap_baseaddr_command)
1690 {
1691         struct target *target = get_current_target(CMD_CTX);
1692         struct arm *arm = target_to_arm(target);
1693         struct adiv5_dap *dap = arm->dap;
1694
1695         uint32_t apsel, baseaddr;
1696         int retval;
1697
1698         switch (CMD_ARGC) {
1699         case 0:
1700                 apsel = dap->apsel;
1701                 break;
1702         case 1:
1703                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1704                 /* AP address is in bits 31:24 of DP_SELECT */
1705                 if (apsel >= 256)
1706                         return ERROR_COMMAND_SYNTAX_ERROR;
1707                 break;
1708         default:
1709                 return ERROR_COMMAND_SYNTAX_ERROR;
1710         }
1711
1712         dap_ap_select(dap, apsel);
1713
1714         /* NOTE:  assumes we're talking to a MEM-AP, which
1715          * has a base address.  There are other kinds of AP,
1716          * though they're not common for now.  This should
1717          * use the ID register to verify it's a MEM-AP.
1718          */
1719         retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1720         if (retval != ERROR_OK)
1721                 return retval;
1722         retval = dap_run(dap);
1723         if (retval != ERROR_OK)
1724                 return retval;
1725
1726         command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1727
1728         return retval;
1729 }
1730
1731 COMMAND_HANDLER(dap_memaccess_command)
1732 {
1733         struct target *target = get_current_target(CMD_CTX);
1734         struct arm *arm = target_to_arm(target);
1735         struct adiv5_dap *dap = arm->dap;
1736
1737         uint32_t memaccess_tck;
1738
1739         switch (CMD_ARGC) {
1740         case 0:
1741                 memaccess_tck = dap->memaccess_tck;
1742                 break;
1743         case 1:
1744                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1745                 break;
1746         default:
1747                 return ERROR_COMMAND_SYNTAX_ERROR;
1748         }
1749         dap->memaccess_tck = memaccess_tck;
1750
1751         command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1752                         dap->memaccess_tck);
1753
1754         return ERROR_OK;
1755 }
1756
1757 COMMAND_HANDLER(dap_apsel_command)
1758 {
1759         struct target *target = get_current_target(CMD_CTX);
1760         struct arm *arm = target_to_arm(target);
1761         struct adiv5_dap *dap = arm->dap;
1762
1763         uint32_t apsel, apid;
1764         int retval;
1765
1766         switch (CMD_ARGC) {
1767         case 0:
1768                 apsel = 0;
1769                 break;
1770         case 1:
1771                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1772                 /* AP address is in bits 31:24 of DP_SELECT */
1773                 if (apsel >= 256)
1774                         return ERROR_COMMAND_SYNTAX_ERROR;
1775                 break;
1776         default:
1777                 return ERROR_COMMAND_SYNTAX_ERROR;
1778         }
1779
1780         dap->apsel = apsel;
1781         dap_ap_select(dap, apsel);
1782
1783         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1784         if (retval != ERROR_OK)
1785                 return retval;
1786         retval = dap_run(dap);
1787         if (retval != ERROR_OK)
1788                 return retval;
1789
1790         command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1791                         apsel, apid);
1792
1793         return retval;
1794 }
1795
1796 COMMAND_HANDLER(dap_apid_command)
1797 {
1798         struct target *target = get_current_target(CMD_CTX);
1799         struct arm *arm = target_to_arm(target);
1800         struct adiv5_dap *dap = arm->dap;
1801
1802         uint32_t apsel, apid;
1803         int retval;
1804
1805         switch (CMD_ARGC) {
1806         case 0:
1807                 apsel = dap->apsel;
1808                 break;
1809         case 1:
1810                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1811                 /* AP address is in bits 31:24 of DP_SELECT */
1812                 if (apsel >= 256)
1813                         return ERROR_COMMAND_SYNTAX_ERROR;
1814                 break;
1815         default:
1816                 return ERROR_COMMAND_SYNTAX_ERROR;
1817         }
1818
1819         dap_ap_select(dap, apsel);
1820
1821         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1822         if (retval != ERROR_OK)
1823                 return retval;
1824         retval = dap_run(dap);
1825         if (retval != ERROR_OK)
1826                 return retval;
1827
1828         command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1829
1830         return retval;
1831 }
1832
1833 static const struct command_registration dap_commands[] = {
1834         {
1835                 .name = "info",
1836                 .handler = handle_dap_info_command,
1837                 .mode = COMMAND_EXEC,
1838                 .help = "display ROM table for MEM-AP "
1839                         "(default currently selected AP)",
1840                 .usage = "[ap_num]",
1841         },
1842         {
1843                 .name = "apsel",
1844                 .handler = dap_apsel_command,
1845                 .mode = COMMAND_EXEC,
1846                 .help = "Set the currently selected AP (default 0) "
1847                         "and display the result",
1848                 .usage = "[ap_num]",
1849         },
1850         {
1851                 .name = "apid",
1852                 .handler = dap_apid_command,
1853                 .mode = COMMAND_EXEC,
1854                 .help = "return ID register from AP "
1855                         "(default currently selected AP)",
1856                 .usage = "[ap_num]",
1857         },
1858         {
1859                 .name = "baseaddr",
1860                 .handler = dap_baseaddr_command,
1861                 .mode = COMMAND_EXEC,
1862                 .help = "return debug base address from MEM-AP "
1863                         "(default currently selected AP)",
1864                 .usage = "[ap_num]",
1865         },
1866         {
1867                 .name = "memaccess",
1868                 .handler = dap_memaccess_command,
1869                 .mode = COMMAND_EXEC,
1870                 .help = "set/get number of extra tck for MEM-AP memory "
1871                         "bus access [0-255]",
1872                 .usage = "[cycles]",
1873         },
1874         COMMAND_REGISTRATION_DONE
1875 };
1876
1877 const struct command_registration dap_command_handlers[] = {
1878         {
1879                 .name = "dap",
1880                 .mode = COMMAND_EXEC,
1881                 .help = "DAP command group",
1882                 .usage = "",
1883                 .chain = dap_commands,
1884         },
1885         COMMAND_REGISTRATION_DONE
1886 };