ADIv5: Introduce function to detect ROM Table location
[fw/openocd] / src / target / arm_adi_v5.c
1 /***************************************************************************
2  *   Copyright (C) 2006 by Magnus Lundin                                   *
3  *   lundin@mlu.mine.nu                                                    *
4  *                                                                         *
5  *   Copyright (C) 2008 by Spencer Oliver                                  *
6  *   spen@spen-soft.co.uk                                                  *
7  *                                                                         *
8  *   Copyright (C) 2009-2010 by Oyvind Harboe                              *
9  *   oyvind.harboe@zylin.com                                               *
10  *                                                                         *
11  *   Copyright (C) 2009-2010 by David Brownell                             *
12  *                                                                         *
13  *   This program is free software; you can redistribute it and/or modify  *
14  *   it under the terms of the GNU General Public License as published by  *
15  *   the Free Software Foundation; either version 2 of the License, or     *
16  *   (at your option) any later version.                                   *
17  *                                                                         *
18  *   This program is distributed in the hope that it will be useful,       *
19  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
20  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
21  *   GNU General Public License for more details.                          *
22  *                                                                         *
23  *   You should have received a copy of the GNU General Public License     *
24  *   along with this program; if not, write to the                         *
25  *   Free Software Foundation, Inc.,                                       *
26  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
27  ***************************************************************************/
28
29 /**
30  * @file
31  * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32  * debugging architecture.  Compared with previous versions, this includes
33  * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34  * transport, and focusses on memory mapped resources as defined by the
35  * CoreSight architecture.
36  *
37  * A key concept in ADIv5 is the Debug Access Port, or DAP.  A DAP has two
38  * basic components:  a Debug Port (DP) transporting messages to and from a
39  * debugger, and an Access Port (AP) accessing resources.  Three types of DP
40  * are defined.  One uses only JTAG for communication, and is called JTAG-DP.
41  * One uses only SWD for communication, and is called SW-DP.  The third can
42  * use either SWD or JTAG, and is called SWJ-DP.  The most common type of AP
43  * is used to access memory mapped resources and is called a MEM-AP.  Also a
44  * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45  *
46  * This programming interface allows DAP pipelined operations through a
47  * transaction queue.  This primarily affects AP operations (such as using
48  * a MEM-AP to access memory or registers).  If the current transaction has
49  * not finished by the time the next one must begin, and the ORUNDETECT bit
50  * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51  * further AP operations will fail.  There are two basic methods to avoid
52  * such overrun errors.  One involves polling for status instead of using
53  * transaction piplining.  The other involves adding delays to ensure the
54  * AP has enough time to complete one operation before starting the next
55  * one.  (For JTAG these delays are controlled by memaccess_tck.)
56  */
57
58 /*
59  * Relevant specifications from ARM include:
60  *
61  * ARM(tm) Debug Interface v5 Architecture Specification    ARM IHI 0031A
62  * CoreSight(tm) v1.0 Architecture Specification            ARM IHI 0029B
63  *
64  * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65  * Cortex-M3(tm) TRM, ARM DDI 0337G
66  */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement  */
78
79 /*
80         uint32_t tar_block_size(uint32_t address)
81         Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85         return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89  *                                                                         *
90  * DP and MEM-AP  register access  through APACC and DPACC                 *
91  *                                                                         *
92 ***************************************************************************/
93
94 /**
95  * Select one of the APs connected to the specified DAP.  The
96  * selection is implicitly used with future AP transactions.
97  * This is a NOP if the specified AP is already selected.
98  *
99  * @param dap The DAP
100  * @param apsel Number of the AP to (implicitly) use with further
101  *      transactions.  This normally identifies a MEM-AP.
102  */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t apsel)
104 {
105         uint32_t select_apsel = (apsel << 24) & 0xFF000000;
106
107         if (select_apsel != dap->apsel)
108         {
109                 dap->apsel = select_apsel;
110                 /* Switching AP invalidates cached values.
111                  * Values MUST BE UPDATED BEFORE AP ACCESS.
112                  */
113                 dap->ap_bank_value = -1;
114                 dap->ap_csw_value = -1;
115                 dap->ap_tar_value = -1;
116         }
117 }
118
119 /**
120  * Queue transactions setting up transfer parameters for the
121  * currently selected MEM-AP.
122  *
123  * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124  * initiate data reads or writes using memory or peripheral addresses.
125  * If the CSW is configured for it, the TAR may be automatically
126  * incremented after each transfer.
127  *
128  * @todo Rename to reflect it being specifically a MEM-AP function.
129  *
130  * @param dap The DAP connected to the MEM-AP.
131  * @param csw MEM-AP Control/Status Word (CSW) register to assign.  If this
132  *      matches the cached value, the register is not changed.
133  * @param tar MEM-AP Transfer Address Register (TAR) to assign.  If this
134  *      matches the cached address, the register is not changed.
135  *
136  * @return ERROR_OK if the transaction was properly queued, else a fault code.
137  */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140         int retval;
141
142         csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143         if (csw != dap->ap_csw_value)
144         {
145                 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146                 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147                 if (retval != ERROR_OK)
148                         return retval;
149                 dap->ap_csw_value = csw;
150         }
151         if (tar != dap->ap_tar_value)
152         {
153                 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154                 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155                 if (retval != ERROR_OK)
156                         return retval;
157                 dap->ap_tar_value = tar;
158         }
159         /* Disable TAR cache when autoincrementing */
160         if (csw & CSW_ADDRINC_MASK)
161                 dap->ap_tar_value = -1;
162         return ERROR_OK;
163 }
164
165 /**
166  * Asynchronous (queued) read of a word from memory or a system register.
167  *
168  * @param dap The DAP connected to the MEM-AP performing the read.
169  * @param address Address of the 32-bit word to read; it must be
170  *      readable by the currently selected MEM-AP.
171  * @param value points to where the word will be stored when the
172  *      transaction queue is flushed (assuming no errors).
173  *
174  * @return ERROR_OK for success.  Otherwise a fault code.
175  */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177                 uint32_t *value)
178 {
179         int retval;
180
181         /* Use banked addressing (REG_BDx) to avoid some link traffic
182          * (updating TAR) when reading several consecutive addresses.
183          */
184         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185                         address & 0xFFFFFFF0);
186         if (retval != ERROR_OK)
187                 return retval;
188
189         return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193  * Synchronous read of a word from memory or a system register.
194  * As a side effect, this flushes any queued transactions.
195  *
196  * @param dap The DAP connected to the MEM-AP performing the read.
197  * @param address Address of the 32-bit word to read; it must be
198  *      readable by the currently selected MEM-AP.
199  * @param value points to where the result will be stored.
200  *
201  * @return ERROR_OK for success; *value holds the result.
202  * Otherwise a fault code.
203  */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205                 uint32_t *value)
206 {
207         int retval;
208
209         retval = mem_ap_read_u32(dap, address, value);
210         if (retval != ERROR_OK)
211                 return retval;
212
213         return dap_run(dap);
214 }
215
216 /**
217  * Asynchronous (queued) write of a word to memory or a system register.
218  *
219  * @param dap The DAP connected to the MEM-AP.
220  * @param address Address to be written; it must be writable by
221  *      the currently selected MEM-AP.
222  * @param value Word that will be written to the address when transaction
223  *      queue is flushed (assuming no errors).
224  *
225  * @return ERROR_OK for success.  Otherwise a fault code.
226  */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228                 uint32_t value)
229 {
230         int retval;
231
232         /* Use banked addressing (REG_BDx) to avoid some link traffic
233          * (updating TAR) when writing several consecutive addresses.
234          */
235         retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236                         address & 0xFFFFFFF0);
237         if (retval != ERROR_OK)
238                 return retval;
239
240         return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241                         value);
242 }
243
244 /**
245  * Synchronous write of a word to memory or a system register.
246  * As a side effect, this flushes any queued transactions.
247  *
248  * @param dap The DAP connected to the MEM-AP.
249  * @param address Address to be written; it must be writable by
250  *      the currently selected MEM-AP.
251  * @param value Word that will be written.
252  *
253  * @return ERROR_OK for success; the data was written.  Otherwise a fault code.
254  */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256                 uint32_t value)
257 {
258         int retval = mem_ap_write_u32(dap, address, value);
259
260         if (retval != ERROR_OK)
261                 return retval;
262
263         return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 *                                                                            *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 *                                                                            *
270 * Write a buffer in target order (little endian)                             *
271 *                                                                            *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
274 {
275         int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276         uint32_t adr = address;
277         uint8_t* pBuffer = buffer;
278
279         count >>= 2;
280         wcount = count;
281
282         /* if we have an unaligned access - reorder data */
283         if (adr & 0x3u)
284         {
285                 for (writecount = 0; writecount < count; writecount++)
286                 {
287                         int i;
288                         uint32_t outvalue;
289                         memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291                         for (i = 0; i < 4; i++)
292                         {
293                                 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294                                 outvalue >>= 8;
295                                 adr++;
296                         }
297                         pBuffer += sizeof(uint32_t);
298                 }
299         }
300
301         while (wcount > 0)
302         {
303                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305                 if (wcount < blocksize)
306                         blocksize = wcount;
307
308                 /* handle unaligned data at 4k boundary */
309                 if (blocksize == 0)
310                         blocksize = 1;
311
312                 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313                 if (retval != ERROR_OK)
314                         return retval;
315
316                 for (writecount = 0; writecount < blocksize; writecount++)
317                 {
318                         retval = dap_queue_ap_write(dap, AP_REG_DRW,
319                                 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
320                         if (retval != ERROR_OK)
321                                 break;
322                 }
323
324                 if ((retval = dap_run(dap)) == ERROR_OK)
325                 {
326                         wcount = wcount - blocksize;
327                         address = address + 4 * blocksize;
328                         buffer = buffer + 4 * blocksize;
329                 }
330                 else
331                 {
332                         errorcount++;
333                 }
334
335                 if (errorcount > 1)
336                 {
337                         LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338                         return retval;
339                 }
340         }
341
342         return retval;
343 }
344
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346                 uint8_t *buffer, int count, uint32_t address)
347 {
348         int retval = ERROR_OK;
349         int wcount, blocksize, writecount, i;
350
351         wcount = count >> 1;
352
353         while (wcount > 0)
354         {
355                 int nbytes;
356
357                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
359
360                 if (wcount < blocksize)
361                         blocksize = wcount;
362
363                 /* handle unaligned data at 4k boundary */
364                 if (blocksize == 0)
365                         blocksize = 1;
366
367                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368                 if (retval != ERROR_OK)
369                         return retval;
370                 writecount = blocksize;
371
372                 do
373                 {
374                         nbytes = MIN((writecount << 1), 4);
375
376                         if (nbytes < 4)
377                         {
378                                 retval = mem_ap_write_buf_u16(dap, buffer,
379                                                 nbytes, address);
380                                 if (retval != ERROR_OK)
381                                 {
382                                         LOG_WARNING("Block write error address "
383                                                 "0x%" PRIx32 ", count 0x%x",
384                                                 address, count);
385                                         return retval;
386                                 }
387
388                                 address += nbytes >> 1;
389                         }
390                         else
391                         {
392                                 uint32_t outvalue;
393                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
394
395                                 for (i = 0; i < nbytes; i++)
396                                 {
397                                         *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398                                         outvalue >>= 8;
399                                         address++;
400                                 }
401
402                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
403                                 retval = dap_queue_ap_write(dap,
404                                                 AP_REG_DRW, outvalue);
405                                 if (retval != ERROR_OK)
406                                         break;
407
408                                 if ((retval = dap_run(dap)) != ERROR_OK)
409                                 {
410                                         LOG_WARNING("Block write error address "
411                                                 "0x%" PRIx32 ", count 0x%x",
412                                                 address, count);
413                                         return retval;
414                                 }
415                         }
416
417                         buffer += nbytes >> 1;
418                         writecount -= nbytes >> 1;
419
420                 } while (writecount);
421                 wcount -= blocksize;
422         }
423
424         return retval;
425 }
426
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
428 {
429         int retval = ERROR_OK;
430
431         if (count >= 4)
432                 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
433
434         while (count > 0)
435         {
436                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437                 if (retval != ERROR_OK)
438                         return retval;
439                 uint16_t svalue;
440                 memcpy(&svalue, buffer, sizeof(uint16_t));
441                 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443                 if (retval != ERROR_OK)
444                         break;
445
446                 retval = dap_run(dap);
447                 if (retval != ERROR_OK)
448                         break;
449
450                 count -= 2;
451                 address += 2;
452                 buffer += 2;
453         }
454
455         return retval;
456 }
457
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459                 uint8_t *buffer, int count, uint32_t address)
460 {
461         int retval = ERROR_OK;
462         int wcount, blocksize, writecount, i;
463
464         wcount = count;
465
466         while (wcount > 0)
467         {
468                 int nbytes;
469
470                 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
472
473                 if (wcount < blocksize)
474                         blocksize = wcount;
475
476                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477                 if (retval != ERROR_OK)
478                         return retval;
479                 writecount = blocksize;
480
481                 do
482                 {
483                         nbytes = MIN(writecount, 4);
484
485                         if (nbytes < 4)
486                         {
487                                 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488                                 if (retval != ERROR_OK)
489                                 {
490                                         LOG_WARNING("Block write error address "
491                                                 "0x%" PRIx32 ", count 0x%x",
492                                                 address, count);
493                                         return retval;
494                                 }
495
496                                 address += nbytes;
497                         }
498                         else
499                         {
500                                 uint32_t outvalue;
501                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
502
503                                 for (i = 0; i < nbytes; i++)
504                                 {
505                                         *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506                                         outvalue >>= 8;
507                                         address++;
508                                 }
509
510                                 memcpy(&outvalue, buffer, sizeof(uint32_t));
511                                 retval = dap_queue_ap_write(dap,
512                                                 AP_REG_DRW, outvalue);
513                                 if (retval != ERROR_OK)
514                                         break;
515
516                                 if ((retval = dap_run(dap)) != ERROR_OK)
517                                 {
518                                         LOG_WARNING("Block write error address "
519                                                 "0x%" PRIx32 ", count 0x%x",
520                                                 address, count);
521                                         return retval;
522                                 }
523                         }
524
525                         buffer += nbytes;
526                         writecount -= nbytes;
527
528                 } while (writecount);
529                 wcount -= blocksize;
530         }
531
532         return retval;
533 }
534
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
536 {
537         int retval = ERROR_OK;
538
539         if (count >= 4)
540                 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
541
542         while (count > 0)
543         {
544                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545                 if (retval != ERROR_OK)
546                         return retval;
547                 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548                 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549                 if (retval != ERROR_OK)
550                         break;
551
552                 retval = dap_run(dap);
553                 if (retval != ERROR_OK)
554                         break;
555
556                 count--;
557                 address++;
558                 buffer++;
559         }
560
561         return retval;
562 }
563
564 /* FIXME don't import ... this is a temporary workaround for the
565  * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
566  */
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568                 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569                 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
570
571 /**
572  * Synchronously read a block of 32-bit words into a buffer
573  * @param dap The DAP connected to the MEM-AP.
574  * @param buffer where the words will be stored (in host byte order).
575  * @param count How many words to read.
576  * @param address Memory address from which to read words; all the
577  *      words must be readable by the currently selected MEM-AP.
578  */
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580                 int count, uint32_t address)
581 {
582         int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583         uint32_t adr = address;
584         uint8_t* pBuffer = buffer;
585
586         count >>= 2;
587         wcount = count;
588
589         while (wcount > 0)
590         {
591                 /* Adjust to read blocks within boundaries aligned to the
592                  * TAR autoincrement size (at least 2^10).  Autoincrement
593                  * mode avoids an extra per-word roundtrip to update TAR.
594                  */
595                 blocksize = max_tar_block_size(dap->tar_autoincr_block,
596                                 address);
597                 if (wcount < blocksize)
598                         blocksize = wcount;
599
600                 /* handle unaligned data at 4k boundary */
601                 if (blocksize == 0)
602                         blocksize = 1;
603
604                 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
605                                 address);
606                 if (retval != ERROR_OK)
607                         return retval;
608
609                 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610                  * so this routine becomes transport-neutral.  Be careful
611                  * not to cause performance problems with JTAG; would it
612                  * suffice to loop over dap_queue_ap_read(), or would that
613                  * be slower when JTAG is the chosen transport?
614                  */
615
616                 /* Scan out first read */
617                 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618                                 DPAP_READ, 0, NULL, NULL);
619                 if (retval != ERROR_OK)
620                         return retval;
621                 for (readcount = 0; readcount < blocksize - 1; readcount++)
622                 {
623                         /* Scan out next read; scan in posted value for the
624                          * previous one.  Assumes read is acked "OK/FAULT",
625                          * and CTRL_STAT says that meant "OK".
626                          */
627                         retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628                                         DPAP_READ, 0, buffer + 4 * readcount,
629                                         &dap->ack);
630                         if (retval != ERROR_OK)
631                                 return retval;
632                 }
633
634                 /* Scan in last posted value; RDBUFF has no other effect,
635                  * assuming ack is OK/FAULT and CTRL_STAT says "OK".
636                  */
637                 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638                                 DPAP_READ, 0, buffer + 4 * readcount,
639                                 &dap->ack);
640                 if (retval != ERROR_OK)
641                         return retval;
642
643                 retval = dap_run(dap);
644                 if (retval != ERROR_OK)
645                 {
646                         errorcount++;
647                         if (errorcount <= 1)
648                         {
649                                 /* try again */
650                                 continue;
651                         }
652                         LOG_WARNING("Block read error address 0x%" PRIx32, address);
653                         return retval;
654                 }
655                 wcount = wcount - blocksize;
656                 address += 4 * blocksize;
657                 buffer += 4 * blocksize;
658         }
659
660         /* if we have an unaligned access - reorder data */
661         if (adr & 0x3u)
662         {
663                 for (readcount = 0; readcount < count; readcount++)
664                 {
665                         int i;
666                         uint32_t data;
667                         memcpy(&data, pBuffer, sizeof(uint32_t));
668
669                         for (i = 0; i < 4; i++)
670                         {
671                                 *((uint8_t*)pBuffer) =
672                                                 (data >> 8 * (adr & 0x3));
673                                 pBuffer++;
674                                 adr++;
675                         }
676                 }
677         }
678
679         return retval;
680 }
681
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683                 uint8_t *buffer, int count, uint32_t address)
684 {
685         uint32_t invalue;
686         int retval = ERROR_OK;
687         int wcount, blocksize, readcount, i;
688
689         wcount = count >> 1;
690
691         while (wcount > 0)
692         {
693                 int nbytes;
694
695                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697                 if (wcount < blocksize)
698                         blocksize = wcount;
699
700                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701                 if (retval != ERROR_OK)
702                         return retval;
703
704                 /* handle unaligned data at 4k boundary */
705                 if (blocksize == 0)
706                         blocksize = 1;
707                 readcount = blocksize;
708
709                 do
710                 {
711                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712                         if (retval != ERROR_OK)
713                                 return retval;
714                         if ((retval = dap_run(dap)) != ERROR_OK)
715                         {
716                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
717                                 return retval;
718                         }
719
720                         nbytes = MIN((readcount << 1), 4);
721
722                         for (i = 0; i < nbytes; i++)
723                         {
724                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725                                 buffer++;
726                                 address++;
727                         }
728
729                         readcount -= (nbytes >> 1);
730                 } while (readcount);
731                 wcount -= blocksize;
732         }
733
734         return retval;
735 }
736
737 /**
738  * Synchronously read a block of 16-bit halfwords into a buffer
739  * @param dap The DAP connected to the MEM-AP.
740  * @param buffer where the halfwords will be stored (in host byte order).
741  * @param count How many halfwords to read.
742  * @param address Memory address from which to read words; all the
743  *      words must be readable by the currently selected MEM-AP.
744  */
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746                 int count, uint32_t address)
747 {
748         uint32_t invalue, i;
749         int retval = ERROR_OK;
750
751         if (count >= 4)
752                 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
753
754         while (count > 0)
755         {
756                 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757                 if (retval != ERROR_OK)
758                         return retval;
759                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760                 if (retval != ERROR_OK)
761                         break;
762
763                 retval = dap_run(dap);
764                 if (retval != ERROR_OK)
765                         break;
766
767                 if (address & 0x1)
768                 {
769                         for (i = 0; i < 2; i++)
770                         {
771                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772                                 buffer++;
773                                 address++;
774                         }
775                 }
776                 else
777                 {
778                         uint16_t svalue = (invalue >> 8 * (address & 0x3));
779                         memcpy(buffer, &svalue, sizeof(uint16_t));
780                         address += 2;
781                         buffer += 2;
782                 }
783                 count -= 2;
784         }
785
786         return retval;
787 }
788
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790  * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
791  *
792  * The solution is to arrange for a large out/in scan in this loop and
793  * and convert data afterwards.
794  */
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796                 uint8_t *buffer, int count, uint32_t address)
797 {
798         uint32_t invalue;
799         int retval = ERROR_OK;
800         int wcount, blocksize, readcount, i;
801
802         wcount = count;
803
804         while (wcount > 0)
805         {
806                 int nbytes;
807
808                 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809                 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
810
811                 if (wcount < blocksize)
812                         blocksize = wcount;
813
814                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815                 if (retval != ERROR_OK)
816                         return retval;
817                 readcount = blocksize;
818
819                 do
820                 {
821                         retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822                         if (retval != ERROR_OK)
823                                 return retval;
824                         if ((retval = dap_run(dap)) != ERROR_OK)
825                         {
826                                 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
827                                 return retval;
828                         }
829
830                         nbytes = MIN(readcount, 4);
831
832                         for (i = 0; i < nbytes; i++)
833                         {
834                                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
835                                 buffer++;
836                                 address++;
837                         }
838
839                         readcount -= nbytes;
840                 } while (readcount);
841                 wcount -= blocksize;
842         }
843
844         return retval;
845 }
846
847 /**
848  * Synchronously read a block of bytes into a buffer
849  * @param dap The DAP connected to the MEM-AP.
850  * @param buffer where the bytes will be stored.
851  * @param count How many bytes to read.
852  * @param address Memory address from which to read data; all the
853  *      data must be readable by the currently selected MEM-AP.
854  */
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856                 int count, uint32_t address)
857 {
858         uint32_t invalue;
859         int retval = ERROR_OK;
860
861         if (count >= 4)
862                 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
863
864         while (count > 0)
865         {
866                 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867                 if (retval != ERROR_OK)
868                         return retval;
869                 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870                 if (retval != ERROR_OK)
871                         return retval;
872                 retval = dap_run(dap);
873                 if (retval != ERROR_OK)
874                         break;
875
876                 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
877                 count--;
878                 address++;
879                 buffer++;
880         }
881
882         return retval;
883 }
884
885 /*--------------------------------------------------------------------------*/
886
887
888 /* FIXME don't import ... just initialize as
889  * part of DAP transport setup
890 */
891 extern const struct dap_ops jtag_dp_ops;
892
893 /*--------------------------------------------------------------------------*/
894
895 /**
896  * Initialize a DAP.  This sets up the power domains, prepares the DP
897  * for further use, and arranges to use AP #0 for all AP operations
898  * until dap_ap-select() changes that policy.
899  *
900  * @param dap The DAP being initialized.
901  *
902  * @todo Rename this.  We also need an initialization scheme which account
903  * for SWD transports not just JTAG; that will need to address differences
904  * in layering.  (JTAG is useful without any debug target; but not SWD.)
905  * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
906  */
907 int ahbap_debugport_init(struct adiv5_dap *dap)
908 {
909         uint32_t dummy;
910         uint32_t ctrlstat;
911         int cnt = 0;
912         int retval;
913
914         LOG_DEBUG(" ");
915
916         /* JTAG-DP or SWJ-DP, in JTAG mode */
917         dap->ops = &jtag_dp_ops;
918
919         /* Default MEM-AP setup.
920          *
921          * REVISIT AP #0 may be an inappropriate default for this.
922          * Should we probe, or take a hint from the caller?
923          * Presumably we can ignore the possibility of multiple APs.
924          */
925         dap->apsel = !0;
926         dap_ap_select(dap, 0);
927
928         /* DP initialization */
929
930         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
931         if (retval != ERROR_OK)
932                 return retval;
933
934         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
935         if (retval != ERROR_OK)
936                 return retval;
937
938         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
939         if (retval != ERROR_OK)
940                 return retval;
941
942         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
943         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
944         if (retval != ERROR_OK)
945                 return retval;
946
947         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
948         if (retval != ERROR_OK)
949                 return retval;
950         if ((retval = dap_run(dap)) != ERROR_OK)
951                 return retval;
952
953         /* Check that we have debug power domains activated */
954         while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
955         {
956                 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
957                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
958                 if (retval != ERROR_OK)
959                         return retval;
960                 if ((retval = dap_run(dap)) != ERROR_OK)
961                         return retval;
962                 alive_sleep(10);
963         }
964
965         while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
966         {
967                 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
968                 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
969                 if (retval != ERROR_OK)
970                         return retval;
971                 if ((retval = dap_run(dap)) != ERROR_OK)
972                         return retval;
973                 alive_sleep(10);
974         }
975
976         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
977         if (retval != ERROR_OK)
978                 return retval;
979         /* With debug power on we can activate OVERRUN checking */
980         dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
981         retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
982         if (retval != ERROR_OK)
983                 return retval;
984         retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
985         if (retval != ERROR_OK)
986                 return retval;
987
988         return ERROR_OK;
989 }
990
991 /* CID interpretation -- see ARM IHI 0029B section 3
992  * and ARM IHI 0031A table 13-3.
993  */
994 static const char *class_description[16] ={
995         "Reserved", "ROM table", "Reserved", "Reserved",
996         "Reserved", "Reserved", "Reserved", "Reserved",
997         "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
998         "Reserved", "OptimoDE DESS",
999                 "Generic IP component", "PrimeCell or System component"
1000 };
1001
1002 static bool
1003 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1004 {
1005         return cid3 == 0xb1 && cid2 == 0x05
1006                         && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1007 }
1008
1009 struct broken_cpu {
1010         uint32_t        dbgbase;
1011         uint32_t        apid;
1012         uint32_t        correct_dbgbase;
1013         char            *model;
1014 } broken_cpus[] = {
1015         { 0x80000000, 0x04770002, 0x60000000, "imx51" },
1016 };
1017
1018 int dap_get_debugbase(struct adiv5_dap *dap, int apsel,
1019                         uint32_t *out_dbgbase, uint32_t *out_apid)
1020 {
1021         uint32_t apselold;
1022         int retval;
1023         unsigned int i;
1024         uint32_t dbgbase, apid;
1025
1026         /* AP address is in bits 31:24 of DP_SELECT */
1027         if (apsel >= 256)
1028                 return ERROR_INVALID_ARGUMENTS;
1029
1030         apselold = dap->apsel;
1031         dap_ap_select(dap, apsel);
1032
1033         retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1034         if (retval != ERROR_OK)
1035                 return retval;
1036         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1037         if (retval != ERROR_OK)
1038                 return retval;
1039         retval = dap_run(dap);
1040         if (retval != ERROR_OK)
1041                 return retval;
1042
1043         /* Some CPUs are messed up, so fixup if needed. */
1044         for (i = 0; i < sizeof(broken_cpus)/sizeof(struct broken_cpu); i++)
1045                 if (broken_cpus[i].dbgbase == dbgbase &&
1046                         broken_cpus[i].apid == apid) {
1047                         LOG_WARNING("Found broken CPU (%s), trying to fixup "
1048                                 "ROM Table location from 0x%08x to 0x%08x",
1049                                 broken_cpus[i].model, dbgbase,
1050                                 broken_cpus[i].correct_dbgbase);
1051                         dbgbase = broken_cpus[i].correct_dbgbase;
1052                         break;
1053                 }
1054
1055         dap_ap_select(dap, apselold);
1056
1057         /* The asignment happens only here to prevent modification of these
1058          * values before they are certain. */
1059         *out_dbgbase = dbgbase;
1060         *out_apid = apid;
1061
1062         return ERROR_OK;
1063 }
1064
1065 static int dap_info_command(struct command_context *cmd_ctx,
1066                 struct adiv5_dap *dap, int apsel)
1067 {
1068         int retval;
1069         uint32_t dbgbase, apid;
1070         int romtable_present = 0;
1071         uint8_t mem_ap;
1072         uint32_t apselold;
1073
1074         retval = dap_get_debugbase(dap, apsel, &dbgbase, &apid);
1075         if (retval != ERROR_OK)
1076                 return retval;
1077
1078         apselold = dap->apsel;
1079         dap_ap_select(dap, apsel);
1080
1081         /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1082         mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1083         command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1084         if (apid)
1085         {
1086                 switch (apid&0x0F)
1087                 {
1088                         case 0:
1089                                 command_print(cmd_ctx, "\tType is JTAG-AP");
1090                                 break;
1091                         case 1:
1092                                 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1093                                 break;
1094                         case 2:
1095                                 command_print(cmd_ctx, "\tType is MEM-AP APB");
1096                                 break;
1097                         default:
1098                                 command_print(cmd_ctx, "\tUnknown AP type");
1099                                 break;
1100                 }
1101
1102                 /* NOTE: a MEM-AP may have a single CoreSight component that's
1103                  * not a ROM table ... or have no such components at all.
1104                  */
1105                 if (mem_ap)
1106                         command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1107                                         dbgbase);
1108         }
1109         else
1110         {
1111                 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1112         }
1113
1114         romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1115         if (romtable_present)
1116         {
1117                 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1118                 uint16_t entry_offset;
1119
1120                 /* bit 16 of apid indicates a memory access port */
1121                 if (dbgbase & 0x02)
1122                         command_print(cmd_ctx, "\tValid ROM table present");
1123                 else
1124                         command_print(cmd_ctx, "\tROM table in legacy format");
1125
1126                 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec  */
1127                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1128                 if (retval != ERROR_OK)
1129                         return retval;
1130                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1131                 if (retval != ERROR_OK)
1132                         return retval;
1133                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1134                 if (retval != ERROR_OK)
1135                         return retval;
1136                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1137                 if (retval != ERROR_OK)
1138                         return retval;
1139                 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1140                 if (retval != ERROR_OK)
1141                         return retval;
1142                 retval = dap_run(dap);
1143                 if (retval != ERROR_OK)
1144                         return retval;
1145
1146                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1147                         command_print(cmd_ctx, "\tCID3 0x%2.2x"
1148                                         ", CID2 0x%2.2x"
1149                                         ", CID1 0x%2.2x"
1150                                         ", CID0 0x%2.2x",
1151                                         (unsigned) cid3, (unsigned)cid2,
1152                                         (unsigned) cid1, (unsigned) cid0);
1153                 if (memtype & 0x01)
1154                         command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1155                 else
1156                         command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1157                                         "Dedicated debug bus.");
1158
1159                 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1160                 entry_offset = 0;
1161                 do
1162                 {
1163                         retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1164                         if (retval != ERROR_OK)
1165                                 return retval;
1166                         command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1167                         if (romentry&0x01)
1168                         {
1169                                 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1170                                 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1171                                 uint32_t component_base;
1172                                 unsigned part_num;
1173                                 char *type, *full;
1174
1175                                 component_base = (dbgbase & 0xFFFFF000)
1176                                                 + (romentry & 0xFFFFF000);
1177
1178                                 /* IDs are in last 4K section */
1179
1180
1181                                 retval = mem_ap_read_atomic_u32(dap,
1182                                         component_base + 0xFE0, &c_pid0);
1183                                 if (retval != ERROR_OK)
1184                                         return retval;
1185                                 c_pid0 &= 0xff;
1186                                 retval = mem_ap_read_atomic_u32(dap,
1187                                         component_base + 0xFE4, &c_pid1);
1188                                 if (retval != ERROR_OK)
1189                                         return retval;
1190                                 c_pid1 &= 0xff;
1191                                 retval = mem_ap_read_atomic_u32(dap,
1192                                         component_base + 0xFE8, &c_pid2);
1193                                 if (retval != ERROR_OK)
1194                                         return retval;
1195                                 c_pid2 &= 0xff;
1196                                 retval = mem_ap_read_atomic_u32(dap,
1197                                         component_base + 0xFEC, &c_pid3);
1198                                 if (retval != ERROR_OK)
1199                                         return retval;
1200                                 c_pid3 &= 0xff;
1201                                 retval = mem_ap_read_atomic_u32(dap,
1202                                         component_base + 0xFD0, &c_pid4);
1203                                 if (retval != ERROR_OK)
1204                                         return retval;
1205                                 c_pid4 &= 0xff;
1206
1207                                 retval = mem_ap_read_atomic_u32(dap,
1208                                         component_base + 0xFF0, &c_cid0);
1209                                 if (retval != ERROR_OK)
1210                                         return retval;
1211                                 c_cid0 &= 0xff;
1212                                 retval = mem_ap_read_atomic_u32(dap,
1213                                         component_base + 0xFF4, &c_cid1);
1214                                 if (retval != ERROR_OK)
1215                                         return retval;
1216                                 c_cid1 &= 0xff;
1217                                 retval = mem_ap_read_atomic_u32(dap,
1218                                         component_base + 0xFF8, &c_cid2);
1219                                 if (retval != ERROR_OK)
1220                                         return retval;
1221                                 c_cid2 &= 0xff;
1222                                 retval = mem_ap_read_atomic_u32(dap,
1223                                         component_base + 0xFFC, &c_cid3);
1224                                 if (retval != ERROR_OK)
1225                                         return retval;
1226                                 c_cid3 &= 0xff;
1227
1228
1229                                 command_print(cmd_ctx,
1230                                 "\t\tComponent base address 0x%" PRIx32
1231                                         ", start address 0x%" PRIx32,
1232                                                 component_base,
1233                                 /* component may take multiple 4K pages */
1234                                 component_base - 0x1000*(c_pid4 >> 4));
1235                                 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1236                                                 (int) (c_cid1 >> 4) & 0xf,
1237                                                 /* See ARM IHI 0029B Table 3-3 */
1238                                                 class_description[(c_cid1 >> 4) & 0xf]);
1239
1240                                 /* CoreSight component? */
1241                                 if (((c_cid1 >> 4) & 0x0f) == 9) {
1242                                         uint32_t devtype;
1243                                         unsigned minor;
1244                                         char *major = "Reserved", *subtype = "Reserved";
1245
1246                                         retval = mem_ap_read_atomic_u32(dap,
1247                                                         (component_base & 0xfffff000) | 0xfcc,
1248                                                         &devtype);
1249                                         if (retval != ERROR_OK)
1250                                                 return retval;
1251                                         minor = (devtype >> 4) & 0x0f;
1252                                         switch (devtype & 0x0f) {
1253                                         case 0:
1254                                                 major = "Miscellaneous";
1255                                                 switch (minor) {
1256                                                 case 0:
1257                                                         subtype = "other";
1258                                                         break;
1259                                                 case 4:
1260                                                         subtype = "Validation component";
1261                                                         break;
1262                                                 }
1263                                                 break;
1264                                         case 1:
1265                                                 major = "Trace Sink";
1266                                                 switch (minor) {
1267                                                 case 0:
1268                                                         subtype = "other";
1269                                                         break;
1270                                                 case 1:
1271                                                         subtype = "Port";
1272                                                         break;
1273                                                 case 2:
1274                                                         subtype = "Buffer";
1275                                                         break;
1276                                                 }
1277                                                 break;
1278                                         case 2:
1279                                                 major = "Trace Link";
1280                                                 switch (minor) {
1281                                                 case 0:
1282                                                         subtype = "other";
1283                                                         break;
1284                                                 case 1:
1285                                                         subtype = "Funnel, router";
1286                                                         break;
1287                                                 case 2:
1288                                                         subtype = "Filter";
1289                                                         break;
1290                                                 case 3:
1291                                                         subtype = "FIFO, buffer";
1292                                                         break;
1293                                                 }
1294                                                 break;
1295                                         case 3:
1296                                                 major = "Trace Source";
1297                                                 switch (minor) {
1298                                                 case 0:
1299                                                         subtype = "other";
1300                                                         break;
1301                                                 case 1:
1302                                                         subtype = "Processor";
1303                                                         break;
1304                                                 case 2:
1305                                                         subtype = "DSP";
1306                                                         break;
1307                                                 case 3:
1308                                                         subtype = "Engine/Coprocessor";
1309                                                         break;
1310                                                 case 4:
1311                                                         subtype = "Bus";
1312                                                         break;
1313                                                 }
1314                                                 break;
1315                                         case 4:
1316                                                 major = "Debug Control";
1317                                                 switch (minor) {
1318                                                 case 0:
1319                                                         subtype = "other";
1320                                                         break;
1321                                                 case 1:
1322                                                         subtype = "Trigger Matrix";
1323                                                         break;
1324                                                 case 2:
1325                                                         subtype = "Debug Auth";
1326                                                         break;
1327                                                 }
1328                                                 break;
1329                                         case 5:
1330                                                 major = "Debug Logic";
1331                                                 switch (minor) {
1332                                                 case 0:
1333                                                         subtype = "other";
1334                                                         break;
1335                                                 case 1:
1336                                                         subtype = "Processor";
1337                                                         break;
1338                                                 case 2:
1339                                                         subtype = "DSP";
1340                                                         break;
1341                                                 case 3:
1342                                                         subtype = "Engine/Coprocessor";
1343                                                         break;
1344                                                 }
1345                                                 break;
1346                                         }
1347                                         command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1348                                                         (unsigned) (devtype & 0xff),
1349                                                         major, subtype);
1350                                         /* REVISIT also show 0xfc8 DevId */
1351                                 }
1352
1353                                 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1354                                         command_print(cmd_ctx,
1355                                                       "\t\tCID3 0%2.2x"
1356                                                         ", CID2 0%2.2x"
1357                                                         ", CID1 0%2.2x"
1358                                                         ", CID0 0%2.2x",
1359                                                         (int) c_cid3,
1360                                                         (int) c_cid2,
1361                                                         (int)c_cid1,
1362                                                         (int)c_cid0);
1363                                 command_print(cmd_ctx,
1364                                 "\t\tPeripheral ID[4..0] = hex "
1365                                 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1366                                 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1367                                 (int) c_pid1, (int) c_pid0);
1368
1369                                 /* Part number interpretations are from Cortex
1370                                  * core specs, the CoreSight components TRM
1371                                  * (ARM DDI 0314H), and ETM specs; also from
1372                                  * chip observation (e.g. TI SDTI).
1373                                  */
1374                                 part_num = (c_pid0 & 0xff);
1375                                 part_num |= (c_pid1 & 0x0f) << 8;
1376                                 switch (part_num) {
1377                                 case 0x000:
1378                                         type = "Cortex-M3 NVIC";
1379                                         full = "(Interrupt Controller)";
1380                                         break;
1381                                 case 0x001:
1382                                         type = "Cortex-M3 ITM";
1383                                         full = "(Instrumentation Trace Module)";
1384                                         break;
1385                                 case 0x002:
1386                                         type = "Cortex-M3 DWT";
1387                                         full = "(Data Watchpoint and Trace)";
1388                                         break;
1389                                 case 0x003:
1390                                         type = "Cortex-M3 FBP";
1391                                         full = "(Flash Patch and Breakpoint)";
1392                                         break;
1393                                 case 0x00d:
1394                                         type = "CoreSight ETM11";
1395                                         full = "(Embedded Trace)";
1396                                         break;
1397                                 // case 0x113: what?
1398                                 case 0x120:             /* from OMAP3 memmap */
1399                                         type = "TI SDTI";
1400                                         full = "(System Debug Trace Interface)";
1401                                         break;
1402                                 case 0x343:             /* from OMAP3 memmap */
1403                                         type = "TI DAPCTL";
1404                                         full = "";
1405                                         break;
1406                                 case 0x906:
1407                                         type = "Coresight CTI";
1408                                         full = "(Cross Trigger)";
1409                                         break;
1410                                 case 0x907:
1411                                         type = "Coresight ETB";
1412                                         full = "(Trace Buffer)";
1413                                         break;
1414                                 case 0x908:
1415                                         type = "Coresight CSTF";
1416                                         full = "(Trace Funnel)";
1417                                         break;
1418                                 case 0x910:
1419                                         type = "CoreSight ETM9";
1420                                         full = "(Embedded Trace)";
1421                                         break;
1422                                 case 0x912:
1423                                         type = "Coresight TPIU";
1424                                         full = "(Trace Port Interface Unit)";
1425                                         break;
1426                                 case 0x921:
1427                                         type = "Cortex-A8 ETM";
1428                                         full = "(Embedded Trace)";
1429                                         break;
1430                                 case 0x922:
1431                                         type = "Cortex-A8 CTI";
1432                                         full = "(Cross Trigger)";
1433                                         break;
1434                                 case 0x923:
1435                                         type = "Cortex-M3 TPIU";
1436                                         full = "(Trace Port Interface Unit)";
1437                                         break;
1438                                 case 0x924:
1439                                         type = "Cortex-M3 ETM";
1440                                         full = "(Embedded Trace)";
1441                                         break;
1442                                 case 0xc08:
1443                                         type = "Cortex-A8 Debug";
1444                                         full = "(Debug Unit)";
1445                                         break;
1446                                 default:
1447                                         type = "-*- unrecognized -*-";
1448                                         full = "";
1449                                         break;
1450                                 }
1451                                 command_print(cmd_ctx, "\t\tPart is %s %s",
1452                                                 type, full);
1453                         }
1454                         else
1455                         {
1456                                 if (romentry)
1457                                         command_print(cmd_ctx, "\t\tComponent not present");
1458                                 else
1459                                         command_print(cmd_ctx, "\t\tEnd of ROM table");
1460                         }
1461                         entry_offset += 4;
1462                 } while (romentry > 0);
1463         }
1464         else
1465         {
1466                 command_print(cmd_ctx, "\tNo ROM table present");
1467         }
1468         dap_ap_select(dap, apselold);
1469
1470         return ERROR_OK;
1471 }
1472
1473 COMMAND_HANDLER(handle_dap_info_command)
1474 {
1475         struct target *target = get_current_target(CMD_CTX);
1476         struct arm *arm = target_to_arm(target);
1477         struct adiv5_dap *dap = arm->dap;
1478         uint32_t apsel;
1479
1480         switch (CMD_ARGC) {
1481         case 0:
1482                 apsel = dap->apsel;
1483                 break;
1484         case 1:
1485                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1486                 break;
1487         default:
1488                 return ERROR_COMMAND_SYNTAX_ERROR;
1489         }
1490
1491         return dap_info_command(CMD_CTX, dap, apsel);
1492 }
1493
1494 COMMAND_HANDLER(dap_baseaddr_command)
1495 {
1496         struct target *target = get_current_target(CMD_CTX);
1497         struct arm *arm = target_to_arm(target);
1498         struct adiv5_dap *dap = arm->dap;
1499
1500         uint32_t apsel, apselsave, baseaddr;
1501         int retval;
1502
1503         apselsave = dap->apsel;
1504         switch (CMD_ARGC) {
1505         case 0:
1506                 apsel = dap->apsel;
1507                 break;
1508         case 1:
1509                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1510                 /* AP address is in bits 31:24 of DP_SELECT */
1511                 if (apsel >= 256)
1512                         return ERROR_INVALID_ARGUMENTS;
1513                 break;
1514         default:
1515                 return ERROR_COMMAND_SYNTAX_ERROR;
1516         }
1517
1518         if (apselsave != apsel)
1519                 dap_ap_select(dap, apsel);
1520
1521         /* NOTE:  assumes we're talking to a MEM-AP, which
1522          * has a base address.  There are other kinds of AP,
1523          * though they're not common for now.  This should
1524          * use the ID register to verify it's a MEM-AP.
1525          */
1526         retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1527         if (retval != ERROR_OK)
1528                 return retval;
1529         retval = dap_run(dap);
1530         if (retval != ERROR_OK)
1531                 return retval;
1532
1533         command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1534
1535         if (apselsave != apsel)
1536                 dap_ap_select(dap, apselsave);
1537
1538         return retval;
1539 }
1540
1541 COMMAND_HANDLER(dap_memaccess_command)
1542 {
1543         struct target *target = get_current_target(CMD_CTX);
1544         struct arm *arm = target_to_arm(target);
1545         struct adiv5_dap *dap = arm->dap;
1546
1547         uint32_t memaccess_tck;
1548
1549         switch (CMD_ARGC) {
1550         case 0:
1551                 memaccess_tck = dap->memaccess_tck;
1552                 break;
1553         case 1:
1554                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1555                 break;
1556         default:
1557                 return ERROR_COMMAND_SYNTAX_ERROR;
1558         }
1559         dap->memaccess_tck = memaccess_tck;
1560
1561         command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1562                         dap->memaccess_tck);
1563
1564         return ERROR_OK;
1565 }
1566
1567 COMMAND_HANDLER(dap_apsel_command)
1568 {
1569         struct target *target = get_current_target(CMD_CTX);
1570         struct arm *arm = target_to_arm(target);
1571         struct adiv5_dap *dap = arm->dap;
1572
1573         uint32_t apsel, apid;
1574         int retval;
1575
1576         switch (CMD_ARGC) {
1577         case 0:
1578                 apsel = 0;
1579                 break;
1580         case 1:
1581                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1582                 /* AP address is in bits 31:24 of DP_SELECT */
1583                 if (apsel >= 256)
1584                         return ERROR_INVALID_ARGUMENTS;
1585                 break;
1586         default:
1587                 return ERROR_COMMAND_SYNTAX_ERROR;
1588         }
1589
1590         dap_ap_select(dap, apsel);
1591         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1592         if (retval != ERROR_OK)
1593                 return retval;
1594         retval = dap_run(dap);
1595         if (retval != ERROR_OK)
1596                 return retval;
1597
1598         command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1599                         apsel, apid);
1600
1601         return retval;
1602 }
1603
1604 COMMAND_HANDLER(dap_apid_command)
1605 {
1606         struct target *target = get_current_target(CMD_CTX);
1607         struct arm *arm = target_to_arm(target);
1608         struct adiv5_dap *dap = arm->dap;
1609
1610         uint32_t apsel, apselsave, apid;
1611         int retval;
1612
1613         apselsave = dap->apsel;
1614         switch (CMD_ARGC) {
1615         case 0:
1616                 apsel = dap->apsel;
1617                 break;
1618         case 1:
1619                 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1620                 /* AP address is in bits 31:24 of DP_SELECT */
1621                 if (apsel >= 256)
1622                         return ERROR_INVALID_ARGUMENTS;
1623                 break;
1624         default:
1625                 return ERROR_COMMAND_SYNTAX_ERROR;
1626         }
1627
1628         if (apselsave != apsel)
1629                 dap_ap_select(dap, apsel);
1630
1631         retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1632         if (retval != ERROR_OK)
1633                 return retval;
1634         retval = dap_run(dap);
1635         if (retval != ERROR_OK)
1636                 return retval;
1637
1638         command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1639         if (apselsave != apsel)
1640                 dap_ap_select(dap, apselsave);
1641
1642         return retval;
1643 }
1644
1645 static const struct command_registration dap_commands[] = {
1646         {
1647                 .name = "info",
1648                 .handler = handle_dap_info_command,
1649                 .mode = COMMAND_EXEC,
1650                 .help = "display ROM table for MEM-AP "
1651                         "(default currently selected AP)",
1652                 .usage = "[ap_num]",
1653         },
1654         {
1655                 .name = "apsel",
1656                 .handler = dap_apsel_command,
1657                 .mode = COMMAND_EXEC,
1658                 .help = "Set the currently selected AP (default 0) "
1659                         "and display the result",
1660                 .usage = "[ap_num]",
1661         },
1662         {
1663                 .name = "apid",
1664                 .handler = dap_apid_command,
1665                 .mode = COMMAND_EXEC,
1666                 .help = "return ID register from AP "
1667                         "(default currently selected AP)",
1668                 .usage = "[ap_num]",
1669         },
1670         {
1671                 .name = "baseaddr",
1672                 .handler = dap_baseaddr_command,
1673                 .mode = COMMAND_EXEC,
1674                 .help = "return debug base address from MEM-AP "
1675                         "(default currently selected AP)",
1676                 .usage = "[ap_num]",
1677         },
1678         {
1679                 .name = "memaccess",
1680                 .handler = dap_memaccess_command,
1681                 .mode = COMMAND_EXEC,
1682                 .help = "set/get number of extra tck for MEM-AP memory "
1683                         "bus access [0-255]",
1684                 .usage = "[cycles]",
1685         },
1686         COMMAND_REGISTRATION_DONE
1687 };
1688
1689 const struct command_registration dap_command_handlers[] = {
1690         {
1691                 .name = "dap",
1692                 .mode = COMMAND_EXEC,
1693                 .help = "DAP command group",
1694                 .chain = dap_commands,
1695         },
1696         COMMAND_REGISTRATION_DONE
1697 };
1698
1699