cf77a81a7a50c0405f5ad33c3700afc9011f2466
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007-2010 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   Copyright (C) 2009 by David Brownell                                  *
15  *                                                                         *
16  *   This program is free software; you can redistribute it and/or modify  *
17  *   it under the terms of the GNU General Public License as published by  *
18  *   the Free Software Foundation; either version 2 of the License, or     *
19  *   (at your option) any later version.                                   *
20  *                                                                         *
21  *   This program is distributed in the hope that it will be useful,       *
22  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
23  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
24  *   GNU General Public License for more details.                          *
25  *                                                                         *
26  *   You should have received a copy of the GNU General Public License     *
27  *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
28  ***************************************************************************/
29
30 #ifdef HAVE_CONFIG_H
31 #include "config.h"
32 #endif
33
34 #include "breakpoints.h"
35 #include "embeddedice.h"
36 #include "target_request.h"
37 #include "etm.h"
38 #include <helper/time_support.h>
39 #include "arm_simulator.h"
40 #include "arm_semihosting.h"
41 #include "algorithm.h"
42 #include "register.h"
43 #include "armv4_5.h"
44
45 /**
46  * @file
47  * Hold common code supporting the ARM7 and ARM9 core generations.
48  *
49  * While the ARM core implementations evolved substantially during these
50  * two generations, they look quite similar from the JTAG perspective.
51  * Both have similar debug facilities, based on the same two scan chains
52  * providing access to the core and to an EmbeddedICE module.  Both can
53  * support similar ETM and ETB modules, for tracing.  And both expose
54  * what could be viewed as "ARM Classic", with multiple processor modes,
55  * shadowed registers, and support for the Thumb instruction set.
56  *
57  * Processor differences include things like presence or absence of MMU
58  * and cache, pipeline sizes, use of a modified Harvard Architecture
59  * (with separate instruction and data buses from the CPU), support
60  * for cpu clock gating during idle, and more.
61  */
62
63 static int arm7_9_debug_entry(struct target *target);
64
65 /**
66  * Clear watchpoints for an ARM7/9 target.
67  *
68  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
69  * @return JTAG error status after executing queue
70  */
71 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
72 {
73         LOG_DEBUG("-");
74         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
75         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
76         arm7_9->sw_breakpoint_count = 0;
77         arm7_9->sw_breakpoints_added = 0;
78         arm7_9->wp0_used = 0;
79         arm7_9->wp1_used = arm7_9->wp1_used_default;
80         arm7_9->wp_available = arm7_9->wp_available_max;
81
82         return jtag_execute_queue();
83 }
84
85 /**
86  * Assign a watchpoint to one of the two available hardware comparators in an
87  * ARM7 or ARM9 target.
88  *
89  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
90  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
91  */
92 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
93 {
94         if (!arm7_9->wp0_used) {
95                 arm7_9->wp0_used = 1;
96                 breakpoint->set = 1;
97                 arm7_9->wp_available--;
98         } else if (!arm7_9->wp1_used) {
99                 arm7_9->wp1_used = 1;
100                 breakpoint->set = 2;
101                 arm7_9->wp_available--;
102         } else
103                 LOG_ERROR("BUG: no hardware comparator available");
104
105         LOG_DEBUG("BPID: %" PRIu32 " (0x%08" TARGET_PRIxADDR ") using hw wp: %d",
106                         breakpoint->unique_id,
107                         breakpoint->address,
108                         breakpoint->set);
109 }
110
111 /**
112  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
113  *
114  * @param arm7_9 Pointer to common struct for ARM7/9 targets
115  * @return Error codes if there is a problem finding a watchpoint or the result
116  * of executing the JTAG queue
117  */
118 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
119 {
120         if (arm7_9->sw_breakpoints_added)
121                 return ERROR_OK;
122         if (arm7_9->wp_available < 1) {
123                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
124                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
125         }
126         arm7_9->wp_available--;
127
128         /* pick a breakpoint unit */
129         if (!arm7_9->wp0_used) {
130                 arm7_9->sw_breakpoints_added = 1;
131                 arm7_9->wp0_used = 3;
132         } else if (!arm7_9->wp1_used) {
133                 arm7_9->sw_breakpoints_added = 2;
134                 arm7_9->wp1_used = 3;
135         } else {
136                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
137                 return ERROR_FAIL;
138         }
139
140         if (arm7_9->sw_breakpoints_added == 1) {
141                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
142                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
143                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
144                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_NOPC & 0xff);
145                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
146         } else if (arm7_9->sw_breakpoints_added == 2) {
147                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
148                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
149                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
150                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_NOPC & 0xff);
151                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
152         } else {
153                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
154                 return ERROR_FAIL;
155         }
156         LOG_DEBUG("SW BP using hw wp: %d",
157                 arm7_9->sw_breakpoints_added);
158
159         return jtag_execute_queue();
160 }
161
162 /**
163  * Setup the common pieces for an ARM7/9 target after reset or on startup.
164  *
165  * @param target Pointer to an ARM7/9 target to setup
166  * @return Result of clearing the watchpoints on the target
167  */
168 static int arm7_9_setup(struct target *target)
169 {
170         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
171
172         return arm7_9_clear_watchpoints(arm7_9);
173 }
174
175 /**
176  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
177  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
178  * might have erased the values in Embedded ICE.
179  *
180  * @param target Pointer to the target device to set the breakpoints on
181  * @param breakpoint Pointer to the breakpoint to be set
182  * @return For hardware breakpoints, this is the result of executing the JTAG
183  * queue.  For software breakpoints, this will be the status of the
184  * required memory reads and writes
185  */
186 static int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
187 {
188         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
189         int retval = ERROR_OK;
190
191         LOG_DEBUG("BPID: %" PRIu32 ", Address: 0x%08" TARGET_PRIxADDR ", Type: %d",
192                 breakpoint->unique_id,
193                 breakpoint->address,
194                 breakpoint->type);
195
196         if (target->state != TARGET_HALTED) {
197                 LOG_WARNING("target not halted");
198                 return ERROR_TARGET_NOT_HALTED;
199         }
200
201         if (breakpoint->type == BKPT_HARD) {
202                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
203                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
204
205                 /* reassign a hw breakpoint */
206                 if (breakpoint->set == 0)
207                         arm7_9_assign_wp(arm7_9, breakpoint);
208
209                 if (breakpoint->set == 1) {
210                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
211                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
212                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
213                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_NOPC & 0xff);
214                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
215                 } else if (breakpoint->set == 2) {
216                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
217                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
218                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
219                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_NOPC & 0xff);
220                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
221                 } else {
222                         LOG_ERROR("BUG: no hardware comparator available");
223                         return ERROR_OK;
224                 }
225
226                 retval = jtag_execute_queue();
227         } else if (breakpoint->type == BKPT_SOFT) {
228                 /* did we already set this breakpoint? */
229                 if (breakpoint->set)
230                         return ERROR_OK;
231
232                 if (breakpoint->length == 4) {
233                         uint32_t verify = 0xffffffff;
234                         /* keep the original instruction in target endianness */
235                         retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr);
236                         if (retval != ERROR_OK)
237                                 return retval;
238                         /* write the breakpoint instruction in target
239                          * endianness (arm7_9->arm_bkpt is host endian) */
240                         retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt);
241                         if (retval != ERROR_OK)
242                                 return retval;
243
244                         retval = target_read_u32(target, breakpoint->address, &verify);
245                         if (retval != ERROR_OK)
246                                 return retval;
247                         if (verify != arm7_9->arm_bkpt) {
248                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" TARGET_PRIxADDR
249                                                 " - check that memory is read/writable", breakpoint->address);
250                                 return ERROR_OK;
251                         }
252                 } else {
253                         uint16_t verify = 0xffff;
254                         /* keep the original instruction in target endianness */
255                         retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr);
256                         if (retval != ERROR_OK)
257                                 return retval;
258                         /* write the breakpoint instruction in target
259                          * endianness (arm7_9->thumb_bkpt is host endian) */
260                         retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt);
261                         if (retval != ERROR_OK)
262                                 return retval;
263
264                         retval = target_read_u16(target, breakpoint->address, &verify);
265                         if (retval != ERROR_OK)
266                                 return retval;
267                         if (verify != arm7_9->thumb_bkpt) {
268                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" TARGET_PRIxADDR
269                                                 " - check that memory is read/writable", breakpoint->address);
270                                 return ERROR_OK;
271                         }
272                 }
273
274                 retval = arm7_9_set_software_breakpoints(arm7_9);
275                 if (retval != ERROR_OK)
276                         return retval;
277
278                 arm7_9->sw_breakpoint_count++;
279
280                 breakpoint->set = 1;
281         }
282
283         return retval;
284 }
285
286 /**
287  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
288  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
289  * will be updated.  Otherwise, the software breakpoint will be restored to its
290  * original instruction if it hasn't already been modified.
291  *
292  * @param target Pointer to ARM7/9 target to unset the breakpoint from
293  * @param breakpoint Pointer to breakpoint to be unset
294  * @return For hardware breakpoints, this is the result of executing the JTAG
295  * queue.  For software breakpoints, this will be the status of the
296  * required memory reads and writes
297  */
298 static int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
299 {
300         int retval = ERROR_OK;
301         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
302
303         LOG_DEBUG("BPID: %" PRIu32 ", Address: 0x%08" TARGET_PRIxADDR,
304                 breakpoint->unique_id,
305                 breakpoint->address);
306
307         if (!breakpoint->set) {
308                 LOG_WARNING("breakpoint not set");
309                 return ERROR_OK;
310         }
311
312         if (breakpoint->type == BKPT_HARD) {
313                 LOG_DEBUG("BPID: %" PRIu32 " Releasing hw wp: %d",
314                         breakpoint->unique_id,
315                         breakpoint->set);
316                 if (breakpoint->set == 1) {
317                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
318                         arm7_9->wp0_used = 0;
319                         arm7_9->wp_available++;
320                 } else if (breakpoint->set == 2) {
321                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
322                         arm7_9->wp1_used = 0;
323                         arm7_9->wp_available++;
324                 }
325                 retval = jtag_execute_queue();
326                 breakpoint->set = 0;
327         } else {
328                 /* restore original instruction (kept in target endianness) */
329                 if (breakpoint->length == 4) {
330                         uint32_t current_instr;
331                         /* check that user program as not modified breakpoint instruction */
332                         retval = target_read_memory(target,
333                                         breakpoint->address, 4, 1, (uint8_t *)&current_instr);
334                         if (retval != ERROR_OK)
335                                 return retval;
336                         current_instr = target_buffer_get_u32(target, (uint8_t *)&current_instr);
337                         if (current_instr == arm7_9->arm_bkpt) {
338                                 retval = target_write_memory(target,
339                                                 breakpoint->address, 4, 1, breakpoint->orig_instr);
340                                 if (retval != ERROR_OK)
341                                         return retval;
342                         }
343
344                 } else {
345                         uint16_t current_instr;
346                         /* check that user program as not modified breakpoint instruction */
347                         retval = target_read_memory(target,
348                                         breakpoint->address, 2, 1, (uint8_t *)&current_instr);
349                         if (retval != ERROR_OK)
350                                 return retval;
351                         current_instr = target_buffer_get_u16(target, (uint8_t *)&current_instr);
352                         if (current_instr == arm7_9->thumb_bkpt) {
353                                 retval = target_write_memory(target,
354                                                 breakpoint->address, 2, 1, breakpoint->orig_instr);
355                                 if (retval != ERROR_OK)
356                                         return retval;
357                         }
358                 }
359
360                 if (--arm7_9->sw_breakpoint_count == 0) {
361                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used
362                          *to implement it */
363                         if (arm7_9->sw_breakpoints_added == 1)
364                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
365                                                 EICE_W0_CONTROL_VALUE], 0);
366                         else if (arm7_9->sw_breakpoints_added == 2)
367                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[
368                                                 EICE_W1_CONTROL_VALUE], 0);
369                 }
370
371                 breakpoint->set = 0;
372         }
373
374         return retval;
375 }
376
377 /**
378  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
379  * dangling breakpoints and that the desired breakpoint can be added.
380  *
381  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
382  * @param breakpoint Pointer to the breakpoint to be added
383  * @return An error status if there is a problem adding the breakpoint or the
384  * result of setting the breakpoint
385  */
386 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
387 {
388         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
389
390         if (arm7_9->breakpoint_count == 0) {
391                 /* make sure we don't have any dangling breakpoints. This is vital upon
392                  * GDB connect/disconnect
393                  */
394                 arm7_9_clear_watchpoints(arm7_9);
395         }
396
397         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1)) {
398                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
399                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
400         }
401
402         if ((breakpoint->length != 2) && (breakpoint->length != 4)) {
403                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
404                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
405         }
406
407         if (breakpoint->type == BKPT_HARD)
408                 arm7_9_assign_wp(arm7_9, breakpoint);
409
410         arm7_9->breakpoint_count++;
411
412         return arm7_9_set_breakpoint(target, breakpoint);
413 }
414
415 /**
416  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
417  * dangling breakpoints and updates available watchpoints if it is a hardware
418  * breakpoint.
419  *
420  * @param target Pointer to the target to have a breakpoint removed
421  * @param breakpoint Pointer to the breakpoint to be removed
422  * @return Error status if there was a problem unsetting the breakpoint or the
423  * watchpoints could not be cleared
424  */
425 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
426 {
427         int retval = ERROR_OK;
428         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
429
430         retval = arm7_9_unset_breakpoint(target, breakpoint);
431         if (retval != ERROR_OK)
432                 return retval;
433
434         if (breakpoint->type == BKPT_HARD)
435                 arm7_9->wp_available++;
436
437         arm7_9->breakpoint_count--;
438         if (arm7_9->breakpoint_count == 0) {
439                 /* make sure we don't have any dangling breakpoints */
440                 retval = arm7_9_clear_watchpoints(arm7_9);
441                 if (retval != ERROR_OK)
442                         return retval;
443         }
444
445         return ERROR_OK;
446 }
447
448 /**
449  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
450  * considered a bug to call this function when there are no available watchpoint
451  * units.
452  *
453  * @param target Pointer to an ARM7/9 target to set a watchpoint on
454  * @param watchpoint Pointer to the watchpoint to be set
455  * @return Error status if watchpoint set fails or the result of executing the
456  * JTAG queue
457  */
458 static int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
459 {
460         int retval = ERROR_OK;
461         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
462         int rw_mask = 1;
463         uint32_t mask;
464
465         mask = watchpoint->length - 1;
466
467         if (target->state != TARGET_HALTED) {
468                 LOG_WARNING("target not halted");
469                 return ERROR_TARGET_NOT_HALTED;
470         }
471
472         if (watchpoint->rw == WPT_ACCESS)
473                 rw_mask = 0;
474         else
475                 rw_mask = 1;
476
477         if (!arm7_9->wp0_used) {
478                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE],
479                         watchpoint->address);
480                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
481                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK],
482                         watchpoint->mask);
483                 if (watchpoint->mask != 0xffffffffu)
484                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE],
485                                 watchpoint->value);
486                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
487                         0xff & ~EICE_W_CTRL_NOPC & ~rw_mask);
488                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
489                         EICE_W_CTRL_ENABLE | EICE_W_CTRL_NOPC | (watchpoint->rw & 1));
490
491                 retval = jtag_execute_queue();
492                 if (retval != ERROR_OK)
493                         return retval;
494                 watchpoint->set = 1;
495                 arm7_9->wp0_used = 2;
496         } else if (!arm7_9->wp1_used) {
497                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
498                         watchpoint->address);
499                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
500                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK],
501                         watchpoint->mask);
502                 if (watchpoint->mask != 0xffffffffu)
503                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE],
504                                 watchpoint->value);
505                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
506                         0xff & ~EICE_W_CTRL_NOPC & ~rw_mask);
507                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
508                         EICE_W_CTRL_ENABLE | EICE_W_CTRL_NOPC | (watchpoint->rw & 1));
509
510                 retval = jtag_execute_queue();
511                 if (retval != ERROR_OK)
512                         return retval;
513                 watchpoint->set = 2;
514                 arm7_9->wp1_used = 2;
515         } else {
516                 LOG_ERROR("BUG: no hardware comparator available");
517                 return ERROR_OK;
518         }
519
520         return ERROR_OK;
521 }
522
523 /**
524  * Unset an existing watchpoint and clear the used watchpoint unit.
525  *
526  * @param target Pointer to the target to have the watchpoint removed
527  * @param watchpoint Pointer to the watchpoint to be removed
528  * @return Error status while trying to unset the watchpoint or the result of
529  *         executing the JTAG queue
530  */
531 static int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
532 {
533         int retval = ERROR_OK;
534         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
535
536         if (target->state != TARGET_HALTED) {
537                 LOG_WARNING("target not halted");
538                 return ERROR_TARGET_NOT_HALTED;
539         }
540
541         if (!watchpoint->set) {
542                 LOG_WARNING("breakpoint not set");
543                 return ERROR_OK;
544         }
545
546         if (watchpoint->set == 1) {
547                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
548                 retval = jtag_execute_queue();
549                 if (retval != ERROR_OK)
550                         return retval;
551                 arm7_9->wp0_used = 0;
552         } else if (watchpoint->set == 2) {
553                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
554                 retval = jtag_execute_queue();
555                 if (retval != ERROR_OK)
556                         return retval;
557                 arm7_9->wp1_used = 0;
558         }
559         watchpoint->set = 0;
560
561         return ERROR_OK;
562 }
563
564 /**
565  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
566  * available, an error response is returned.
567  *
568  * @param target Pointer to the ARM7/9 target to add a watchpoint to
569  * @param watchpoint Pointer to the watchpoint to be added
570  * @return Error status while trying to add the watchpoint
571  */
572 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
573 {
574         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
575
576         if (arm7_9->wp_available < 1)
577                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
578
579         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
580                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
581
582         arm7_9->wp_available--;
583
584         return ERROR_OK;
585 }
586
587 /**
588  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
589  * the used watchpoint unit will be reopened.
590  *
591  * @param target Pointer to the target to remove a watchpoint from
592  * @param watchpoint Pointer to the watchpoint to be removed
593  * @return Result of trying to unset the watchpoint
594  */
595 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
596 {
597         int retval = ERROR_OK;
598         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
599
600         if (watchpoint->set) {
601                 retval = arm7_9_unset_watchpoint(target, watchpoint);
602                 if (retval != ERROR_OK)
603                         return retval;
604         }
605
606         arm7_9->wp_available++;
607
608         return ERROR_OK;
609 }
610
611 /**
612  * Restarts the target by sending a RESTART instruction and moving the JTAG
613  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
614  * asserted by the processor.
615  *
616  * @param target Pointer to target to issue commands to
617  * @return Error status if there is a timeout or a problem while executing the
618  * JTAG queue
619  */
620 int arm7_9_execute_sys_speed(struct target *target)
621 {
622         int retval;
623         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
624         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
625         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
626
627         /* set RESTART instruction */
628         if (arm7_9->need_bypass_before_restart) {
629                 arm7_9->need_bypass_before_restart = 0;
630                 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
631                 if (retval != ERROR_OK)
632                         return retval;
633         }
634         retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
635         if (retval != ERROR_OK)
636                 return retval;
637
638         int64_t then = timeval_ms();
639         bool timeout;
640         while (!(timeout = ((timeval_ms()-then) > 1000))) {
641                 /* read debug status register */
642                 embeddedice_read_reg(dbg_stat);
643                 retval = jtag_execute_queue();
644                 if (retval != ERROR_OK)
645                         return retval;
646                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
647                                 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
648                         break;
649                 if (debug_level >= 3)
650                         alive_sleep(100);
651                 else
652                         keep_alive();
653         }
654         if (timeout) {
655                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "",
656                         buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
657                 return ERROR_TARGET_TIMEOUT;
658         }
659
660         return ERROR_OK;
661 }
662
663 /**
664  * Restarts the target by sending a RESTART instruction and moving the JTAG
665  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
666  * waiting until they are.
667  *
668  * @param target Pointer to the target to issue commands to
669  * @return Always ERROR_OK
670  */
671 static int arm7_9_execute_fast_sys_speed(struct target *target)
672 {
673         static int set;
674         static uint8_t check_value[4], check_mask[4];
675
676         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
677         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
678         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
679         int retval;
680
681         /* set RESTART instruction */
682         if (arm7_9->need_bypass_before_restart) {
683                 arm7_9->need_bypass_before_restart = 0;
684                 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
685                 if (retval != ERROR_OK)
686                         return retval;
687         }
688         retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
689         if (retval != ERROR_OK)
690                 return retval;
691
692         if (!set) {
693                 /* check for DBGACK and SYSCOMP set (others don't care) */
694
695                 /* NB! These are constants that must be available until after next jtag_execute() and
696                  * we evaluate the values upon first execution in lieu of setting up these constants
697                  * during early setup.
698                  * */
699                 buf_set_u32(check_value, 0, 32, 0x9);
700                 buf_set_u32(check_mask, 0, 32, 0x9);
701                 set = 1;
702         }
703
704         /* read debug status register */
705         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
706
707         return ERROR_OK;
708 }
709
710 /**
711  * Get some data from the ARM7/9 target.
712  *
713  * @param target Pointer to the ARM7/9 target to read data from
714  * @param size The number of 32bit words to be read
715  * @param buffer Pointer to the buffer that will hold the data
716  * @return The result of receiving data from the Embedded ICE unit
717  */
718 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
719 {
720         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
721         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
722         uint32_t *data;
723         int retval = ERROR_OK;
724         uint32_t i;
725
726         data = malloc(size * (sizeof(uint32_t)));
727
728         retval = embeddedice_receive(jtag_info, data, size);
729
730         /* return the 32-bit ints in the 8-bit array */
731         for (i = 0; i < size; i++)
732                 h_u32_to_le(buffer + (i * 4), data[i]);
733
734         free(data);
735
736         return retval;
737 }
738
739 /**
740  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
741  * target is running and the DCC control register has the W bit high, this will
742  * execute the request on the target.
743  *
744  * @param priv Void pointer expected to be a struct target pointer
745  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
746  * from the Embedded ICE unit
747  */
748 static int arm7_9_handle_target_request(void *priv)
749 {
750         int retval = ERROR_OK;
751         struct target *target = priv;
752         if (!target_was_examined(target))
753                 return ERROR_OK;
754         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
755         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
756         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
757
758         if (!target->dbg_msg_enabled)
759                 return ERROR_OK;
760
761         if (target->state == TARGET_RUNNING) {
762                 /* read DCC control register */
763                 embeddedice_read_reg(dcc_control);
764                 retval = jtag_execute_queue();
765                 if (retval != ERROR_OK)
766                         return retval;
767
768                 /* check W bit */
769                 if (buf_get_u32(dcc_control->value, 1, 1) == 1) {
770                         uint32_t request;
771
772                         retval = embeddedice_receive(jtag_info, &request, 1);
773                         if (retval != ERROR_OK)
774                                 return retval;
775                         retval = target_request(target, request);
776                         if (retval != ERROR_OK)
777                                 return retval;
778                 }
779         }
780
781         return ERROR_OK;
782 }
783
784 /**
785  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
786  * is manipulated to the right halted state based on its current state.  This is
787  * what happens:
788  *
789  * <table>
790  *   <tr><th > State</th><th > Action</th></tr>
791  *   <tr><td > TARGET_RUNNING | TARGET_RESET</td>
792  *     <td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
793  *   <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
794  *   <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
795  *   <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
796  * </table>
797  *
798  * If the target does not end up in the halted state, a warning is produced.  If
799  * DBGACK is cleared, then the target is expected to either be running or
800  * running in debug.
801  *
802  * @param target Pointer to the ARM7/9 target to poll
803  * @return ERROR_OK or an error status if a command fails
804  */
805 int arm7_9_poll(struct target *target)
806 {
807         int retval;
808         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
809         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
810
811         /* read debug status register */
812         embeddedice_read_reg(dbg_stat);
813         retval = jtag_execute_queue();
814         if (retval != ERROR_OK)
815                 return retval;
816
817         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1)) {
818                 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, *32));*/
819                 if (target->state == TARGET_UNKNOWN) {
820                         /* Starting OpenOCD with target in debug-halt */
821                         target->state = TARGET_RUNNING;
822                         LOG_DEBUG("DBGACK already set during server startup.");
823                 }
824                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET)) {
825                         target->state = TARGET_HALTED;
826
827                         retval = arm7_9_debug_entry(target);
828                         if (retval != ERROR_OK)
829                                 return retval;
830
831                         if (arm_semihosting(target, &retval) != 0)
832                                 return retval;
833
834                         retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
835                         if (retval != ERROR_OK)
836                                 return retval;
837                 }
838                 if (target->state == TARGET_DEBUG_RUNNING) {
839                         target->state = TARGET_HALTED;
840                         retval = arm7_9_debug_entry(target);
841                         if (retval != ERROR_OK)
842                                 return retval;
843
844                         retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
845                         if (retval != ERROR_OK)
846                                 return retval;
847                 }
848                 if (target->state != TARGET_HALTED)
849                         LOG_WARNING(
850                                 "DBGACK set, but the target did not end up in the halted state %d",
851                                 target->state);
852         } else {
853                 if (target->state != TARGET_DEBUG_RUNNING)
854                         target->state = TARGET_RUNNING;
855         }
856
857         return ERROR_OK;
858 }
859
860 /**
861  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
862  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
863  * affected) completely stop the JTAG clock while the core is held in reset
864  * (SRST).  It isn't possible to program the halt condition once reset is
865  * asserted, hence a hook that allows the target to set up its reset-halt
866  * condition is setup prior to asserting reset.
867  *
868  * @param target Pointer to an ARM7/9 target to assert reset on
869  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
870  */
871 int arm7_9_assert_reset(struct target *target)
872 {
873         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
874         enum reset_types jtag_reset_config = jtag_get_reset_config();
875         bool use_event = false;
876
877         /* TODO: apply hw reset signal in not examined state */
878         if (!(target_was_examined(target))) {
879                 LOG_WARNING("Reset is not asserted because the target is not examined.");
880                 LOG_WARNING("Use a reset button or power cycle the target.");
881                 return ERROR_TARGET_NOT_EXAMINED;
882         }
883
884         LOG_DEBUG("target->state: %s", target_state_name(target));
885
886         if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
887                 use_event = true;
888         else if (!(jtag_reset_config & RESET_HAS_SRST)) {
889                 LOG_ERROR("%s: how to reset?", target_name(target));
890                 return ERROR_FAIL;
891         }
892
893         /* At this point trst has been asserted/deasserted once. We would
894          * like to program EmbeddedICE while SRST is asserted, instead of
895          * depending on SRST to leave that module alone.  However, many CPUs
896          * gate the JTAG clock while SRST is asserted; or JTAG may need
897          * clock stability guarantees (adaptive clocking might help).
898          *
899          * So we assume JTAG access during SRST is off the menu unless it's
900          * been specifically enabled.
901          */
902         bool srst_asserted = false;
903
904         if (!use_event && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
905                         && (jtag_reset_config & RESET_SRST_NO_GATING)) {
906                 jtag_add_reset(0, 1);
907                 srst_asserted = true;
908         }
909
910         if (target->reset_halt) {
911                 /*
912                  * For targets that don't support communication while SRST is
913                  * asserted, we need to set up the reset vector catch first.
914                  *
915                  * When we use TRST+SRST and that's equivalent to a power-up
916                  * reset, these settings may well be reset anyway; so setting
917                  * them here won't matter.
918                  */
919                 if (arm7_9->has_vector_catch) {
920                         /* program vector catch register to catch reset */
921                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
922
923                         /* extra runtest added as issues were found with
924                          * certain ARM9 cores (maybe more) - AT91SAM9260
925                          * and STR9
926                          */
927                         jtag_add_runtest(1, TAP_IDLE);
928                 } else {
929                         /* program watchpoint unit to match on reset vector
930                          * address
931                          */
932                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
933                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
934                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
935                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
936                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_NOPC & 0xff);
937                 }
938         }
939
940         if (use_event)
941                 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
942         else {
943                 /* If we use SRST ... we'd like to issue just SRST, but the
944                  * board or chip may be set up so we have to assert TRST as
945                  * well.  On some chips that combination is equivalent to a
946                  * power-up reset, and generally clobbers EICE state.
947                  */
948                 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
949                         jtag_add_reset(1, 1);
950                 else if (!srst_asserted)
951                         jtag_add_reset(0, 1);
952                 jtag_add_sleep(50000);
953         }
954
955         target->state = TARGET_RESET;
956         register_cache_invalidate(arm7_9->arm.core_cache);
957
958         /* REVISIT why isn't standard debug entry logic sufficient?? */
959         if (target->reset_halt && (!(jtag_reset_config & RESET_SRST_PULLS_TRST) || use_event)) {
960                 /* debug entry was prepared above */
961                 target->debug_reason = DBG_REASON_DBGRQ;
962         }
963
964         return ERROR_OK;
965 }
966
967 /**
968  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
969  * and the target is being reset into a halt, a warning will be triggered
970  * because it is not possible to reset into a halted mode in this case.  The
971  * target is halted using the target's functions.
972  *
973  * @param target Pointer to the target to have the reset deasserted
974  * @return ERROR_OK or an error from polling or halting the target
975  */
976 int arm7_9_deassert_reset(struct target *target)
977 {
978         int retval = ERROR_OK;
979         LOG_DEBUG("target->state: %s", target_state_name(target));
980
981         /* deassert reset lines */
982         jtag_add_reset(0, 0);
983
984         /* In case polling is disabled, we need to examine the
985          * target and poll here for this target to work correctly.
986          *
987          * Otherwise, e.g. halt will fail afterwards with bogus
988          * error messages as halt will believe that reset is
989          * still in effect.
990          */
991         retval = target_examine_one(target);
992         if (retval != ERROR_OK)
993                 return retval;
994
995         retval = target_poll(target);
996         if (retval != ERROR_OK)
997                 return retval;
998
999         enum reset_types jtag_reset_config = jtag_get_reset_config();
1000         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0) {
1001                 LOG_WARNING(
1002                         "srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1003                 retval = target_halt(target);
1004                 if (retval != ERROR_OK)
1005                         return retval;
1006         }
1007         return retval;
1008 }
1009
1010 /**
1011  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1012  * reset and if DBGRQ is used, it is programmed to be deasserted.  If the reset
1013  * vector catch was used, it is restored.  Otherwise, the control value is
1014  * restored and the watchpoint unit is restored if it was in use.
1015  *
1016  * @param target Pointer to the ARM7/9 target to have halt cleared
1017  * @return Always ERROR_OK
1018  */
1019 static int arm7_9_clear_halt(struct target *target)
1020 {
1021         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1022         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1023
1024         /* we used DBGRQ only if we didn't come out of reset */
1025         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq) {
1026                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1027                  */
1028                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1029                 embeddedice_store_reg(dbg_ctrl);
1030         } else {
1031                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch) {
1032                         /* if we came out of reset, and vector catch is supported, we used
1033                          * vector catch to enter debug state
1034                          * restore the register in that case
1035                          */
1036                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1037                 } else {
1038                         /* restore registers if watchpoint unit 0 was in use
1039                          */
1040                         if (arm7_9->wp0_used) {
1041                                 if (arm7_9->debug_entry_from_reset)
1042                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1043                                                         EICE_W0_ADDR_VALUE]);
1044                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1045                                                 EICE_W0_ADDR_MASK]);
1046                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1047                                                 EICE_W0_DATA_MASK]);
1048                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[
1049                                                 EICE_W0_CONTROL_MASK]);
1050                         }
1051                         /* control value always has to be restored, as it was either disabled,
1052                          * or enabled with possibly different bits
1053                          */
1054                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1055                 }
1056         }
1057
1058         return ERROR_OK;
1059 }
1060
1061 /**
1062  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1063  * and then there is a wait until the processor shows the halt.  This wait can
1064  * timeout and results in an error being returned.  The software reset involves
1065  * clearing the halt, updating the debug control register, changing to ARM mode,
1066  * reset of the program counter, and reset of all of the registers.
1067  *
1068  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1069  * @return Error status if any of the commands fail, otherwise ERROR_OK
1070  */
1071 int arm7_9_soft_reset_halt(struct target *target)
1072 {
1073         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1074         struct arm *arm = &arm7_9->arm;
1075         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1076         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1077         int i;
1078         int retval;
1079
1080         /* FIX!!! replace some of this code with tcl commands
1081          *
1082          * halt # the halt command is synchronous
1083          * armv4_5 core_state arm
1084          *
1085          */
1086
1087         retval = target_halt(target);
1088         if (retval != ERROR_OK)
1089                 return retval;
1090
1091         long long then = timeval_ms();
1092         int timeout;
1093         while (!(timeout = ((timeval_ms()-then) > 1000))) {
1094                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1095                         break;
1096                 embeddedice_read_reg(dbg_stat);
1097                 retval = jtag_execute_queue();
1098                 if (retval != ERROR_OK)
1099                         return retval;
1100                 if (debug_level >= 3)
1101                         alive_sleep(100);
1102                 else
1103                         keep_alive();
1104         }
1105         if (timeout) {
1106                 LOG_ERROR("Failed to halt CPU after 1 sec");
1107                 return ERROR_TARGET_TIMEOUT;
1108         }
1109         target->state = TARGET_HALTED;
1110
1111         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1112          * ensure that DBGRQ is cleared
1113          */
1114         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1115         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1116         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1117         embeddedice_store_reg(dbg_ctrl);
1118
1119         retval = arm7_9_clear_halt(target);
1120         if (retval != ERROR_OK)
1121                 return retval;
1122
1123         /* if the target is in Thumb state, change to ARM state */
1124         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
1125                 uint32_t r0_thumb, pc_thumb;
1126                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1127                 /* Entered debug from Thumb mode */
1128                 arm->core_state = ARM_STATE_THUMB;
1129                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1130         }
1131
1132         /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1133
1134         /* all register content is now invalid */
1135         register_cache_invalidate(arm->core_cache);
1136
1137         /* SVC, ARM state, IRQ and FIQ disabled */
1138         uint32_t cpsr;
1139
1140         cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1141         cpsr &= ~0xff;
1142         cpsr |= 0xd3;
1143         arm_set_cpsr(arm, cpsr);
1144         arm->cpsr->dirty = true;
1145
1146         /* start fetching from 0x0 */
1147         buf_set_u32(arm->pc->value, 0, 32, 0x0);
1148         arm->pc->dirty = true;
1149         arm->pc->valid = true;
1150
1151         /* reset registers */
1152         for (i = 0; i <= 14; i++) {
1153                 struct reg *r = arm_reg_current(arm, i);
1154
1155                 buf_set_u32(r->value, 0, 32, 0xffffffff);
1156                 r->dirty = true;
1157                 r->valid = true;
1158         }
1159
1160         retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1161         if (retval != ERROR_OK)
1162                 return retval;
1163
1164         return ERROR_OK;
1165 }
1166
1167 /**
1168  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1169  * line or by programming a watchpoint to trigger on any address.  It is
1170  * considered a bug to call this function while the target is in the
1171  * TARGET_RESET state.
1172  *
1173  * @param target Pointer to the ARM7/9 target to be halted
1174  * @return Always ERROR_OK
1175  */
1176 int arm7_9_halt(struct target *target)
1177 {
1178         if (target->state == TARGET_RESET) {
1179                 LOG_ERROR(
1180                         "BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1181                 return ERROR_OK;
1182         }
1183
1184         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1185         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1186
1187         LOG_DEBUG("target->state: %s",
1188                 target_state_name(target));
1189
1190         if (target->state == TARGET_HALTED) {
1191                 LOG_DEBUG("target was already halted");
1192                 return ERROR_OK;
1193         }
1194
1195         if (target->state == TARGET_UNKNOWN)
1196                 LOG_WARNING("target was in unknown state when halt was requested");
1197
1198         if (arm7_9->use_dbgrq) {
1199                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1200                  */
1201                 if (arm7_9->set_special_dbgrq)
1202                         arm7_9->set_special_dbgrq(target);
1203                 else {
1204                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1205                         embeddedice_store_reg(dbg_ctrl);
1206                 }
1207         } else {
1208                 /* program watchpoint unit to match on any address
1209                  */
1210                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1211                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1212                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
1213                         EICE_W_CTRL_ENABLE);
1214                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
1215                         ~EICE_W_CTRL_NOPC & 0xff);
1216         }
1217
1218         target->debug_reason = DBG_REASON_DBGRQ;
1219
1220         return ERROR_OK;
1221 }
1222
1223 /**
1224  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1225  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1226  * examined.  Once done, the target is verified to be halted and the processor
1227  * is forced into ARM mode.  The core registers are saved for the current core
1228  * mode and the program counter (register 15) is updated as needed.  The core
1229  * registers and CPSR and SPSR are saved for restoration later.
1230  *
1231  * @param target Pointer to target that is entering debug mode
1232  * @return Error code if anything fails, otherwise ERROR_OK
1233  */
1234 static int arm7_9_debug_entry(struct target *target)
1235 {
1236         int i;
1237         uint32_t context[16];
1238         uint32_t *context_p[16];
1239         uint32_t r0_thumb, pc_thumb;
1240         uint32_t cpsr, cpsr_mask = 0;
1241         int retval;
1242         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1243         struct arm *arm = &arm7_9->arm;
1244         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1245         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1246
1247 #ifdef _DEBUG_ARM7_9_
1248         LOG_DEBUG("-");
1249 #endif
1250
1251         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1252          * ensure that DBGRQ is cleared
1253          */
1254         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1255         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1256         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1257         embeddedice_store_reg(dbg_ctrl);
1258
1259         retval = arm7_9_clear_halt(target);
1260         if (retval != ERROR_OK)
1261                 return retval;
1262
1263         retval = jtag_execute_queue();
1264         if (retval != ERROR_OK)
1265                 return retval;
1266
1267         retval = arm7_9->examine_debug_reason(target);
1268         if (retval != ERROR_OK)
1269                 return retval;
1270
1271         if (target->state != TARGET_HALTED) {
1272                 LOG_WARNING("target not halted");
1273                 return ERROR_TARGET_NOT_HALTED;
1274         }
1275
1276         /* if the target is in Thumb state, change to ARM state */
1277         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1)) {
1278                 LOG_DEBUG("target entered debug from Thumb state");
1279                 /* Entered debug from Thumb mode */
1280                 arm->core_state = ARM_STATE_THUMB;
1281                 cpsr_mask = 1 << 5;
1282                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1283                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1284                         ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1285         } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1286                 /* \todo Get some vaguely correct handling of Jazelle, if
1287                  * anyone ever uses it and full info becomes available.
1288                  * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1289                  * B.7.3 for the reverse.  That'd be the bare minimum...
1290                  */
1291                 LOG_DEBUG("target entered debug from Jazelle state");
1292                 arm->core_state = ARM_STATE_JAZELLE;
1293                 cpsr_mask = 1 << 24;
1294                 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1295         } else {
1296                 LOG_DEBUG("target entered debug from ARM state");
1297                 /* Entered debug from ARM mode */
1298                 arm->core_state = ARM_STATE_ARM;
1299         }
1300
1301         for (i = 0; i < 16; i++)
1302                 context_p[i] = &context[i];
1303         /* save core registers (r0 - r15 of current core mode) */
1304         arm7_9->read_core_regs(target, 0xffff, context_p);
1305
1306         arm7_9->read_xpsr(target, &cpsr, 0);
1307
1308         retval = jtag_execute_queue();
1309         if (retval != ERROR_OK)
1310                 return retval;
1311
1312         /* Sync our CPSR copy with J or T bits EICE reported, but
1313          * which we then erased by putting the core into ARM mode.
1314          */
1315         arm_set_cpsr(arm, cpsr | cpsr_mask);
1316
1317         if (!is_arm_mode(arm->core_mode)) {
1318                 target->state = TARGET_UNKNOWN;
1319                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1320                 return ERROR_TARGET_FAILURE;
1321         }
1322
1323         LOG_DEBUG("target entered debug state in %s mode",
1324                 arm_mode_name(arm->core_mode));
1325
1326         if (arm->core_state == ARM_STATE_THUMB) {
1327                 LOG_DEBUG("thumb state, applying fixups");
1328                 context[0] = r0_thumb;
1329                 context[15] = pc_thumb;
1330         } else if (arm->core_state == ARM_STATE_ARM) {
1331                 /* adjust value stored by STM */
1332                 context[15] -= 3 * 4;
1333         }
1334
1335         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1336                 context[15] -= 3 * ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1337         else
1338                 context[15] -= arm7_9->dbgreq_adjust_pc *
1339                         ((arm->core_state == ARM_STATE_ARM) ? 4 : 2);
1340
1341         for (i = 0; i <= 15; i++) {
1342                 struct reg *r = arm_reg_current(arm, i);
1343
1344                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1345
1346                 buf_set_u32(r->value, 0, 32, context[i]);
1347                 /* r0 and r15 (pc) have to be restored later */
1348                 r->dirty = (i == 0) || (i == 15);
1349                 r->valid = true;
1350         }
1351
1352         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1353
1354         /* exceptions other than USR & SYS have a saved program status register */
1355         if (arm->spsr) {
1356                 uint32_t spsr;
1357                 arm7_9->read_xpsr(target, &spsr, 1);
1358                 retval = jtag_execute_queue();
1359                 if (retval != ERROR_OK)
1360                         return retval;
1361                 buf_set_u32(arm->spsr->value, 0, 32, spsr);
1362                 arm->spsr->dirty = false;
1363                 arm->spsr->valid = true;
1364         }
1365
1366         retval = jtag_execute_queue();
1367         if (retval != ERROR_OK)
1368                 return retval;
1369
1370         if (arm7_9->post_debug_entry) {
1371                 retval = arm7_9->post_debug_entry(target);
1372                 if (retval != ERROR_OK)
1373                         return retval;
1374         }
1375
1376         return ERROR_OK;
1377 }
1378
1379 /**
1380  * Validate the full context for an ARM7/9 target in all processor modes.  If
1381  * there are any invalid registers for the target, they will all be read.  This
1382  * includes the PSR.
1383  *
1384  * @param target Pointer to the ARM7/9 target to capture the full context from
1385  * @return Error if the target is not halted, has an invalid core mode, or if
1386  *         the JTAG queue fails to execute
1387  */
1388 static int arm7_9_full_context(struct target *target)
1389 {
1390         int i;
1391         int retval;
1392         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1393         struct arm *arm = &arm7_9->arm;
1394         struct {
1395                 uint32_t value;
1396                 uint8_t *reg_p;
1397         } read_cache[6 * (16 + 1)];
1398         int read_cache_idx = 0;
1399
1400         LOG_DEBUG("-");
1401
1402         if (target->state != TARGET_HALTED) {
1403                 LOG_WARNING("target not halted");
1404                 return ERROR_TARGET_NOT_HALTED;
1405         }
1406
1407         if (!is_arm_mode(arm->core_mode)) {
1408                 LOG_ERROR("not a valid arm core mode - communication failure?");
1409                 return ERROR_FAIL;
1410         }
1411
1412         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1413          * SYS shares registers with User, so we don't touch SYS
1414          */
1415         for (i = 0; i < 6; i++) {
1416                 uint32_t mask = 0;
1417                 uint32_t *reg_p[16];
1418                 int j;
1419                 bool valid = true;
1420
1421                 /* check if there are invalid registers in the current mode
1422                  */
1423                 for (j = 0; j <= 16; j++) {
1424                         if (!ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j).valid)
1425                                 valid = false;
1426                 }
1427
1428                 if (!valid) {
1429                         uint32_t tmp_cpsr;
1430
1431                         /* change processor mode (and mask T bit) */
1432                         tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8)
1433                                 & 0xe0;
1434                         tmp_cpsr |= armv4_5_number_to_mode(i);
1435                         tmp_cpsr &= ~0x20;
1436                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1437
1438                         for (j = 0; j < 15; j++) {
1439                                 if (!ARMV4_5_CORE_REG_MODE(arm->core_cache,
1440                                                 armv4_5_number_to_mode(i), j).valid) {
1441                                         read_cache[read_cache_idx].reg_p = ARMV4_5_CORE_REG_MODE(
1442                                                         arm->core_cache,
1443                                                         armv4_5_number_to_mode(i),
1444                                                         j).value;
1445                                         reg_p[j] = &read_cache[read_cache_idx].value;
1446                                         read_cache_idx++;
1447                                         mask |= 1 << j;
1448                                         ARMV4_5_CORE_REG_MODE(arm->core_cache,
1449                                                 armv4_5_number_to_mode(i),
1450                                                 j).valid = true;
1451                                         ARMV4_5_CORE_REG_MODE(arm->core_cache,
1452                                                 armv4_5_number_to_mode(i),
1453                                                 j).dirty = false;
1454                                 }
1455                         }
1456
1457                         /* if only the PSR is invalid, mask is all zeroes */
1458                         if (mask)
1459                                 arm7_9->read_core_regs(target, mask, reg_p);
1460
1461                         /* check if the PSR has to be read */
1462                         if (!ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1463                                         16).valid) {
1464                                 read_cache[read_cache_idx].reg_p = ARMV4_5_CORE_REG_MODE(arm->core_cache,
1465                                         armv4_5_number_to_mode(i), 16).value;
1466                                 arm7_9->read_xpsr(target, &read_cache[read_cache_idx].value, 1);
1467                                 read_cache_idx++;
1468                                 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1469                                         16).valid = true;
1470                                 ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i),
1471                                         16).dirty = false;
1472                         }
1473                 }
1474         }
1475
1476         /* restore processor mode (mask T bit) */
1477         arm7_9->write_xpsr_im8(target,
1478                 buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
1479
1480         retval = jtag_execute_queue();
1481         if (retval != ERROR_OK)
1482                 return retval;
1483         /*
1484          * FIXME: regs in cache should be tagged as 'valid' only now,
1485          * not before the jtag_execute_queue()
1486          */
1487         while (read_cache_idx) {
1488                 read_cache_idx--;
1489                 buf_set_u32(read_cache[read_cache_idx].reg_p, 0, 32, read_cache[read_cache_idx].value);
1490         }
1491         return ERROR_OK;
1492 }
1493
1494 /**
1495  * Restore the processor context on an ARM7/9 target.  The full processor
1496  * context is analyzed to see if any of the registers are dirty on this end, but
1497  * have a valid new value.  If this is the case, the processor is changed to the
1498  * appropriate mode and the new register values are written out to the
1499  * processor.  If there happens to be a dirty register with an invalid value, an
1500  * error will be logged.
1501  *
1502  * @param target Pointer to the ARM7/9 target to have its context restored
1503  * @return Error status if the target is not halted or the core mode in the
1504  * armv4_5 struct is invalid.
1505  */
1506 static int arm7_9_restore_context(struct target *target)
1507 {
1508         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1509         struct arm *arm = &arm7_9->arm;
1510         struct reg *reg;
1511         enum arm_mode current_mode = arm->core_mode;
1512         int i, j;
1513         bool dirty;
1514         int mode_change;
1515
1516         LOG_DEBUG("-");
1517
1518         if (target->state != TARGET_HALTED) {
1519                 LOG_WARNING("target not halted");
1520                 return ERROR_TARGET_NOT_HALTED;
1521         }
1522
1523         if (arm7_9->pre_restore_context)
1524                 arm7_9->pre_restore_context(target);
1525
1526         if (!is_arm_mode(arm->core_mode)) {
1527                 LOG_ERROR("not a valid arm core mode - communication failure?");
1528                 return ERROR_FAIL;
1529         }
1530
1531         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1532          * SYS shares registers with User, so we don't touch SYS
1533          */
1534         for (i = 0; i < 6; i++) {
1535                 LOG_DEBUG("examining %s mode",
1536                         arm_mode_name(arm->core_mode));
1537                 dirty = false;
1538                 mode_change = 0;
1539                 /* check if there are dirty registers in the current mode
1540                 */
1541                 for (j = 0; j <= 16; j++) {
1542                         reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(i), j);
1543                         if (reg->dirty) {
1544                                 if (reg->valid) {
1545                                         dirty = true;
1546                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1547                                         struct arm_reg *reg_arch_info;
1548                                         reg_arch_info = reg->arch_info;
1549                                         if ((reg_arch_info->mode != ARM_MODE_ANY)
1550                                                         && (reg_arch_info->mode != current_mode)
1551                                                         && !((reg_arch_info->mode == ARM_MODE_USR)
1552                                                         && (arm->core_mode == ARM_MODE_SYS))
1553                                                         && !((reg_arch_info->mode == ARM_MODE_SYS)
1554                                                         && (arm->core_mode == ARM_MODE_USR))) {
1555                                                 mode_change = 1;
1556                                                 LOG_DEBUG("require mode change");
1557                                         }
1558                                 } else
1559                                         LOG_ERROR("BUG: dirty register '%s', but no valid data",
1560                                                 reg->name);
1561                         }
1562                 }
1563
1564                 if (dirty) {
1565                         uint32_t mask = 0x0;
1566                         int num_regs = 0;
1567                         uint32_t regs[16];
1568
1569                         if (mode_change) {
1570                                 uint32_t tmp_cpsr;
1571
1572                                 /* change processor mode (mask T bit) */
1573                                 tmp_cpsr = buf_get_u32(arm->cpsr->value,
1574                                                 0, 8) & 0xe0;
1575                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1576                                 tmp_cpsr &= ~0x20;
1577                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1578                                 current_mode = armv4_5_number_to_mode(i);
1579                         }
1580
1581                         for (j = 0; j <= 14; j++) {
1582                                 reg = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1583                                                 armv4_5_number_to_mode(i),
1584                                                 j);
1585
1586                                 if (reg->dirty) {
1587                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1588                                         mask |= 1 << j;
1589                                         num_regs++;
1590                                         reg->dirty = false;
1591                                         reg->valid = true;
1592                                         LOG_DEBUG("writing register %i mode %s "
1593                                                 "with value 0x%8.8" PRIx32, j,
1594                                                 arm_mode_name(arm->core_mode),
1595                                                 regs[j]);
1596                                 }
1597                         }
1598
1599                         if (mask)
1600                                 arm7_9->write_core_regs(target, mask, regs);
1601
1602                         reg =
1603                                 &ARMV4_5_CORE_REG_MODE(arm->core_cache, armv4_5_number_to_mode(
1604                                                 i), 16);
1605                         struct arm_reg *reg_arch_info;
1606                         reg_arch_info = reg->arch_info;
1607                         if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY)) {
1608                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "",
1609                                         i,
1610                                         buf_get_u32(reg->value, 0, 32));
1611                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1612                         }
1613                 }
1614         }
1615
1616         if (!arm->cpsr->dirty && (arm->core_mode != current_mode)) {
1617                 /* restore processor mode (mask T bit) */
1618                 uint32_t tmp_cpsr;
1619
1620                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
1621                 tmp_cpsr |= armv4_5_number_to_mode(i);
1622                 tmp_cpsr &= ~0x20;
1623                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1624                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1625
1626         } else if (arm->cpsr->dirty) {
1627                 /* CPSR has been changed, full restore necessary (mask T bit) */
1628                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1629                         buf_get_u32(arm->cpsr->value, 0, 32));
1630                 arm7_9->write_xpsr(target,
1631                         buf_get_u32(arm->cpsr->value, 0, 32)
1632                         & ~0x20, 0);
1633                 arm->cpsr->dirty = false;
1634                 arm->cpsr->valid = true;
1635         }
1636
1637         /* restore PC */
1638         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1639                 buf_get_u32(arm->pc->value, 0, 32));
1640         arm7_9->write_pc(target, buf_get_u32(arm->pc->value, 0, 32));
1641         arm->pc->dirty = false;
1642
1643         return ERROR_OK;
1644 }
1645
1646 /**
1647  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1648  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1649  * restart.
1650  *
1651  * @param target Pointer to the ARM7/9 target to be restarted
1652  * @return Result of executing the JTAG queue
1653  */
1654 static int arm7_9_restart_core(struct target *target)
1655 {
1656         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1657         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1658         int retval;
1659
1660         /* set RESTART instruction */
1661         if (arm7_9->need_bypass_before_restart) {
1662                 arm7_9->need_bypass_before_restart = 0;
1663
1664                 retval = arm_jtag_set_instr(jtag_info->tap, 0xf, NULL, TAP_IDLE);
1665                 if (retval != ERROR_OK)
1666                         return retval;
1667         }
1668         retval = arm_jtag_set_instr(jtag_info->tap, 0x4, NULL, TAP_IDLE);
1669         if (retval != ERROR_OK)
1670                 return retval;
1671
1672         jtag_add_runtest(1, TAP_IDLE);
1673         return jtag_execute_queue();
1674 }
1675
1676 /**
1677  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1678  * iterated through and are set on the target if they aren't already set.
1679  *
1680  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1681  */
1682 static void arm7_9_enable_watchpoints(struct target *target)
1683 {
1684         struct watchpoint *watchpoint = target->watchpoints;
1685
1686         while (watchpoint) {
1687                 if (watchpoint->set == 0)
1688                         arm7_9_set_watchpoint(target, watchpoint);
1689                 watchpoint = watchpoint->next;
1690         }
1691 }
1692
1693 /**
1694  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1695  * iterated through and are set on the target.
1696  *
1697  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1698  */
1699 static void arm7_9_enable_breakpoints(struct target *target)
1700 {
1701         struct breakpoint *breakpoint = target->breakpoints;
1702
1703         /* set any pending breakpoints */
1704         while (breakpoint) {
1705                 arm7_9_set_breakpoint(target, breakpoint);
1706                 breakpoint = breakpoint->next;
1707         }
1708 }
1709
1710 int arm7_9_resume(struct target *target,
1711         int current,
1712         target_addr_t address,
1713         int handle_breakpoints,
1714         int debug_execution)
1715 {
1716         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1717         struct arm *arm = &arm7_9->arm;
1718         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1719         int err, retval = ERROR_OK;
1720
1721         LOG_DEBUG("-");
1722
1723         if (target->state != TARGET_HALTED) {
1724                 LOG_WARNING("target not halted");
1725                 return ERROR_TARGET_NOT_HALTED;
1726         }
1727
1728         if (!debug_execution)
1729                 target_free_all_working_areas(target);
1730
1731         /* current = 1: continue on current pc, otherwise continue at <address> */
1732         if (!current)
1733                 buf_set_u32(arm->pc->value, 0, 32, address);
1734
1735         uint32_t current_pc;
1736         current_pc = buf_get_u32(arm->pc->value, 0, 32);
1737
1738         /* the front-end may request us not to handle breakpoints */
1739         if (handle_breakpoints) {
1740                 struct breakpoint *breakpoint;
1741                 breakpoint = breakpoint_find(target,
1742                                 buf_get_u32(arm->pc->value, 0, 32));
1743                 if (breakpoint) {
1744                         LOG_DEBUG("unset breakpoint at 0x%8.8" TARGET_PRIxADDR " (id: %" PRIu32,
1745                                 breakpoint->address,
1746                                 breakpoint->unique_id);
1747                         retval = arm7_9_unset_breakpoint(target, breakpoint);
1748                         if (retval != ERROR_OK)
1749                                 return retval;
1750
1751                         /* calculate PC of next instruction */
1752                         uint32_t next_pc;
1753                         retval = arm_simulate_step(target, &next_pc);
1754                         if (retval != ERROR_OK) {
1755                                 uint32_t current_opcode;
1756                                 target_read_u32(target, current_pc, &current_opcode);
1757                                 LOG_ERROR(
1758                                         "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
1759                                         current_opcode);
1760                                 return retval;
1761                         }
1762
1763                         LOG_DEBUG("enable single-step");
1764                         arm7_9->enable_single_step(target, next_pc);
1765
1766                         target->debug_reason = DBG_REASON_SINGLESTEP;
1767
1768                         retval = arm7_9_restore_context(target);
1769                         if (retval != ERROR_OK)
1770                                 return retval;
1771
1772                         if (arm->core_state == ARM_STATE_ARM)
1773                                 arm7_9->branch_resume(target);
1774                         else if (arm->core_state == ARM_STATE_THUMB)
1775                                 arm7_9->branch_resume_thumb(target);
1776                         else {
1777                                 LOG_ERROR("unhandled core state");
1778                                 return ERROR_FAIL;
1779                         }
1780
1781                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1782                         embeddedice_write_reg(dbg_ctrl,
1783                                 buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1784                         err = arm7_9_execute_sys_speed(target);
1785
1786                         LOG_DEBUG("disable single-step");
1787                         arm7_9->disable_single_step(target);
1788
1789                         if (err != ERROR_OK) {
1790                                 retval = arm7_9_set_breakpoint(target, breakpoint);
1791                                 if (retval != ERROR_OK)
1792                                         return retval;
1793                                 target->state = TARGET_UNKNOWN;
1794                                 return err;
1795                         }
1796
1797                         retval = arm7_9_debug_entry(target);
1798                         if (retval != ERROR_OK)
1799                                 return retval;
1800                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1801                                 buf_get_u32(arm->pc->value, 0, 32));
1802
1803                         LOG_DEBUG("set breakpoint at 0x%8.8" TARGET_PRIxADDR "", breakpoint->address);
1804                         retval = arm7_9_set_breakpoint(target, breakpoint);
1805                         if (retval != ERROR_OK)
1806                                 return retval;
1807                 }
1808         }
1809
1810         /* enable any pending breakpoints and watchpoints */
1811         arm7_9_enable_breakpoints(target);
1812         arm7_9_enable_watchpoints(target);
1813
1814         retval = arm7_9_restore_context(target);
1815         if (retval != ERROR_OK)
1816                 return retval;
1817
1818         if (arm->core_state == ARM_STATE_ARM)
1819                 arm7_9->branch_resume(target);
1820         else if (arm->core_state == ARM_STATE_THUMB)
1821                 arm7_9->branch_resume_thumb(target);
1822         else {
1823                 LOG_ERROR("unhandled core state");
1824                 return ERROR_FAIL;
1825         }
1826
1827         /* deassert DBGACK and INTDIS */
1828         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1829         /* INTDIS only when we really resume, not during debug execution */
1830         if (!debug_execution)
1831                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1832         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1833
1834         retval = arm7_9_restart_core(target);
1835         if (retval != ERROR_OK)
1836                 return retval;
1837
1838         target->debug_reason = DBG_REASON_NOTHALTED;
1839
1840         if (!debug_execution) {
1841                 /* registers are now invalid */
1842                 register_cache_invalidate(arm->core_cache);
1843                 target->state = TARGET_RUNNING;
1844                 retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1845                 if (retval != ERROR_OK)
1846                         return retval;
1847         } else {
1848                 target->state = TARGET_DEBUG_RUNNING;
1849                 retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1850                 if (retval != ERROR_OK)
1851                         return retval;
1852         }
1853
1854         LOG_DEBUG("target resumed");
1855
1856         return ERROR_OK;
1857 }
1858
1859 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1860 {
1861         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1862         struct arm *arm = &arm7_9->arm;
1863         uint32_t current_pc;
1864         current_pc = buf_get_u32(arm->pc->value, 0, 32);
1865
1866         if (next_pc != current_pc) {
1867                 /* setup an inverse breakpoint on the current PC
1868                 * - comparator 1 matches the current address
1869                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1870                 * - comparator 0 matches any address, as long as rangein is low */
1871                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1872                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1873                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE],
1874                         EICE_W_CTRL_ENABLE);
1875                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK],
1876                         ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_NOPC) & 0xff);
1877                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE],
1878                         current_pc);
1879                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1880                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1881                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1882                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
1883                         ~EICE_W_CTRL_NOPC & 0xff);
1884         } else {
1885                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1886                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1887                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1888                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1889                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1890                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1891                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1892                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE],
1893                         EICE_W_CTRL_ENABLE);
1894                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK],
1895                         ~EICE_W_CTRL_NOPC & 0xff);
1896         }
1897 }
1898
1899 void arm7_9_disable_eice_step(struct target *target)
1900 {
1901         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1902
1903         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1904         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1905         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1906         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1907         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1908         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1909         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1910         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1911         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1912 }
1913
1914 int arm7_9_step(struct target *target, int current, target_addr_t address, int handle_breakpoints)
1915 {
1916         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1917         struct arm *arm = &arm7_9->arm;
1918         struct breakpoint *breakpoint = NULL;
1919         int err, retval;
1920
1921         if (target->state != TARGET_HALTED) {
1922                 LOG_WARNING("target not halted");
1923                 return ERROR_TARGET_NOT_HALTED;
1924         }
1925
1926         /* current = 1: continue on current pc, otherwise continue at <address> */
1927         if (!current)
1928                 buf_set_u32(arm->pc->value, 0, 32, address);
1929
1930         uint32_t current_pc = buf_get_u32(arm->pc->value, 0, 32);
1931
1932         /* the front-end may request us not to handle breakpoints */
1933         if (handle_breakpoints)
1934                 breakpoint = breakpoint_find(target, current_pc);
1935         if (breakpoint) {
1936                 retval = arm7_9_unset_breakpoint(target, breakpoint);
1937                 if (retval != ERROR_OK)
1938                         return retval;
1939         }
1940
1941         target->debug_reason = DBG_REASON_SINGLESTEP;
1942
1943         /* calculate PC of next instruction */
1944         uint32_t next_pc;
1945         retval = arm_simulate_step(target, &next_pc);
1946         if (retval != ERROR_OK) {
1947                 uint32_t current_opcode;
1948                 target_read_u32(target, current_pc, &current_opcode);
1949                 LOG_ERROR(
1950                         "Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "",
1951                         current_opcode);
1952                 return retval;
1953         }
1954
1955         retval = arm7_9_restore_context(target);
1956         if (retval != ERROR_OK)
1957                 return retval;
1958
1959         arm7_9->enable_single_step(target, next_pc);
1960
1961         if (arm->core_state == ARM_STATE_ARM)
1962                 arm7_9->branch_resume(target);
1963         else if (arm->core_state == ARM_STATE_THUMB)
1964                 arm7_9->branch_resume_thumb(target);
1965         else {
1966                 LOG_ERROR("unhandled core state");
1967                 return ERROR_FAIL;
1968         }
1969
1970         retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1971         if (retval != ERROR_OK)
1972                 return retval;
1973
1974         err = arm7_9_execute_sys_speed(target);
1975         arm7_9->disable_single_step(target);
1976
1977         /* registers are now invalid */
1978         register_cache_invalidate(arm->core_cache);
1979
1980         if (err != ERROR_OK)
1981                 target->state = TARGET_UNKNOWN;
1982         else {
1983                 retval = arm7_9_debug_entry(target);
1984                 if (retval != ERROR_OK)
1985                         return retval;
1986                 retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED);
1987                 if (retval != ERROR_OK)
1988                         return retval;
1989                 LOG_DEBUG("target stepped");
1990         }
1991
1992         if (breakpoint) {
1993                 retval = arm7_9_set_breakpoint(target, breakpoint);
1994                 if (retval != ERROR_OK)
1995                         return retval;
1996         }
1997
1998         return err;
1999 }
2000
2001 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2002         int num, enum arm_mode mode)
2003 {
2004         uint32_t *reg_p[16];
2005         int retval;
2006         struct arm_reg *areg = r->arch_info;
2007         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2008         struct arm *arm = &arm7_9->arm;
2009
2010         if (!is_arm_mode(arm->core_mode))
2011                 return ERROR_FAIL;
2012         if ((num < 0) || (num > 16))
2013                 return ERROR_COMMAND_SYNTAX_ERROR;
2014
2015         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2016                         && (areg->mode != ARM_MODE_ANY)) {
2017                 uint32_t tmp_cpsr;
2018
2019                 /* change processor mode (mask T bit) */
2020                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2021                 tmp_cpsr |= mode;
2022                 tmp_cpsr &= ~0x20;
2023                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2024         }
2025
2026         uint32_t value = 0;
2027         if ((num >= 0) && (num <= 15)) {
2028                 /* read a normal core register */
2029                 reg_p[num] = &value;
2030
2031                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2032         } else {
2033                 /* read a program status register
2034                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2035                  */
2036                 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2037         }
2038
2039         retval = jtag_execute_queue();
2040         if (retval != ERROR_OK)
2041                 return retval;
2042
2043         r->valid = true;
2044         r->dirty = false;
2045         buf_set_u32(r->value, 0, 32, value);
2046
2047         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2048                         && (areg->mode != ARM_MODE_ANY)) {
2049                 /* restore processor mode (mask T bit) */
2050                 arm7_9->write_xpsr_im8(target,
2051                         buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
2052         }
2053
2054         return ERROR_OK;
2055 }
2056
2057 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2058         int num, enum arm_mode mode, uint8_t *value)
2059 {
2060         uint32_t reg[16];
2061         struct arm_reg *areg = r->arch_info;
2062         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2063         struct arm *arm = &arm7_9->arm;
2064
2065         if (!is_arm_mode(arm->core_mode))
2066                 return ERROR_FAIL;
2067         if ((num < 0) || (num > 16))
2068                 return ERROR_COMMAND_SYNTAX_ERROR;
2069
2070         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2071                         && (areg->mode != ARM_MODE_ANY)) {
2072                 uint32_t tmp_cpsr;
2073
2074                 /* change processor mode (mask T bit) */
2075                 tmp_cpsr = buf_get_u32(arm->cpsr->value, 0, 8) & 0xE0;
2076                 tmp_cpsr |= mode;
2077                 tmp_cpsr &= ~0x20;
2078                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2079         }
2080
2081         if ((num >= 0) && (num <= 15)) {
2082                 /* write a normal core register */
2083                 reg[num] = buf_get_u32(value, 0, 32);
2084
2085                 arm7_9->write_core_regs(target, 1 << num, reg);
2086         } else {
2087                 /* write a program status register
2088                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2089                 */
2090                 int spsr = (areg->mode != ARM_MODE_ANY);
2091
2092                 uint32_t t = buf_get_u32(value, 0, 32);
2093                 /* if we're writing the CPSR, mask the T bit */
2094                 if (!spsr)
2095                         t &= ~0x20;
2096
2097                 arm7_9->write_xpsr(target, t, spsr);
2098         }
2099
2100         r->valid = true;
2101         r->dirty = false;
2102
2103         if ((mode != ARM_MODE_ANY) && (mode != arm->core_mode)
2104                         && (areg->mode != ARM_MODE_ANY)) {
2105                 /* restore processor mode (mask T bit) */
2106                 arm7_9->write_xpsr_im8(target,
2107                                 buf_get_u32(arm->cpsr->value, 0, 8) & ~0x20, 0, 0);
2108         }
2109
2110         return jtag_execute_queue();
2111 }
2112
2113 int arm7_9_read_memory(struct target *target,
2114         target_addr_t address,
2115         uint32_t size,
2116         uint32_t count,
2117         uint8_t *buffer)
2118 {
2119         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2120         struct arm *arm = &arm7_9->arm;
2121         uint32_t reg[16];
2122         uint32_t num_accesses = 0;
2123         int thisrun_accesses;
2124         int i;
2125         uint32_t cpsr;
2126         int retval;
2127         int last_reg = 0;
2128
2129         LOG_DEBUG("address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "",
2130                 address, size, count);
2131
2132         if (target->state != TARGET_HALTED) {
2133                 LOG_WARNING("target not halted");
2134                 return ERROR_TARGET_NOT_HALTED;
2135         }
2136
2137         /* sanitize arguments */
2138         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2139                 return ERROR_COMMAND_SYNTAX_ERROR;
2140
2141         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2142                 return ERROR_TARGET_UNALIGNED_ACCESS;
2143
2144         /* load the base register with the address of the first word */
2145         reg[0] = address;
2146         arm7_9->write_core_regs(target, 0x1, reg);
2147
2148         int j = 0;
2149
2150         switch (size) {
2151                 case 4:
2152                         while (num_accesses < count) {
2153                                 uint32_t reg_list;
2154                                 thisrun_accesses =
2155                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2156                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2157
2158                                 if (last_reg <= thisrun_accesses)
2159                                         last_reg = thisrun_accesses;
2160
2161                                 arm7_9->load_word_regs(target, reg_list);
2162
2163                                 /* fast memory reads are only safe when the target is running
2164                                  * from a sufficiently high clock (32 kHz is usually too slow)
2165                                  */
2166                                 if (arm7_9->fast_memory_access)
2167                                         retval = arm7_9_execute_fast_sys_speed(target);
2168                                 else
2169                                         retval = arm7_9_execute_sys_speed(target);
2170                                 if (retval != ERROR_OK)
2171                                         return retval;
2172
2173                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2174
2175                                 /* advance buffer, count number of accesses */
2176                                 buffer += thisrun_accesses * 4;
2177                                 num_accesses += thisrun_accesses;
2178
2179                                 if ((j++%1024) == 0)
2180                                         keep_alive();
2181                         }
2182                         break;
2183                 case 2:
2184                         while (num_accesses < count) {
2185                                 uint32_t reg_list;
2186                                 thisrun_accesses =
2187                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2188                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2189
2190                                 for (i = 1; i <= thisrun_accesses; i++) {
2191                                         if (i > last_reg)
2192                                             last_reg = i;
2193                                         arm7_9->load_hword_reg(target, i);
2194                                         /* fast memory reads are only safe when the target is running
2195                                          * from a sufficiently high clock (32 kHz is usually too slow)
2196                                          */
2197                                         if (arm7_9->fast_memory_access)
2198                                                 retval = arm7_9_execute_fast_sys_speed(target);
2199                                         else
2200                                                 retval = arm7_9_execute_sys_speed(target);
2201                                         if (retval != ERROR_OK)
2202                                                 return retval;
2203
2204                                 }
2205
2206                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2207
2208                                 /* advance buffer, count number of accesses */
2209                                 buffer += thisrun_accesses * 2;
2210                                 num_accesses += thisrun_accesses;
2211
2212                                 if ((j++%1024) == 0)
2213                                         keep_alive();
2214                         }
2215                         break;
2216                 case 1:
2217                         while (num_accesses < count) {
2218                                 uint32_t reg_list;
2219                                 thisrun_accesses =
2220                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2221                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2222
2223                                 for (i = 1; i <= thisrun_accesses; i++) {
2224                                         if (i > last_reg)
2225                                                 last_reg = i;
2226                                         arm7_9->load_byte_reg(target, i);
2227                                         /* fast memory reads are only safe when the target is running
2228                                          * from a sufficiently high clock (32 kHz is usually too slow)
2229                                          */
2230                                         if (arm7_9->fast_memory_access)
2231                                                 retval = arm7_9_execute_fast_sys_speed(target);
2232                                         else
2233                                                 retval = arm7_9_execute_sys_speed(target);
2234                                         if (retval != ERROR_OK)
2235                                                 return retval;
2236                                 }
2237
2238                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2239
2240                                 /* advance buffer, count number of accesses */
2241                                 buffer += thisrun_accesses * 1;
2242                                 num_accesses += thisrun_accesses;
2243
2244                                 if ((j++%1024) == 0)
2245                                         keep_alive();
2246                         }
2247                         break;
2248         }
2249
2250         if (!is_arm_mode(arm->core_mode))
2251                 return ERROR_FAIL;
2252
2253         for (i = 0; i <= last_reg; i++) {
2254                 struct reg *r = arm_reg_current(arm, i);
2255                 r->dirty = r->valid;
2256         }
2257
2258         arm7_9->read_xpsr(target, &cpsr, 0);
2259         retval = jtag_execute_queue();
2260         if (retval != ERROR_OK) {
2261                 LOG_ERROR("JTAG error while reading cpsr");
2262                 return ERROR_TARGET_DATA_ABORT;
2263         }
2264
2265         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
2266                 LOG_WARNING(
2267                         "memory read caused data abort "
2268                         "(address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
2269                         address,
2270                         size,
2271                         count);
2272
2273                 arm7_9->write_xpsr_im8(target,
2274                         buf_get_u32(arm->cpsr->value, 0, 8)
2275                         & ~0x20, 0, 0);
2276
2277                 return ERROR_TARGET_DATA_ABORT;
2278         }
2279
2280         return ERROR_OK;
2281 }
2282
2283 int arm7_9_write_memory(struct target *target,
2284         target_addr_t address,
2285         uint32_t size,
2286         uint32_t count,
2287         const uint8_t *buffer)
2288 {
2289         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2290         struct arm *arm = &arm7_9->arm;
2291         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2292
2293         uint32_t reg[16];
2294         uint32_t num_accesses = 0;
2295         int thisrun_accesses;
2296         int i;
2297         uint32_t cpsr;
2298         int retval;
2299         int last_reg = 0;
2300
2301 #ifdef _DEBUG_ARM7_9_
2302         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2303 #endif
2304
2305         if (target->state != TARGET_HALTED) {
2306                 LOG_WARNING("target not halted");
2307                 return ERROR_TARGET_NOT_HALTED;
2308         }
2309
2310         /* sanitize arguments */
2311         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2312                 return ERROR_COMMAND_SYNTAX_ERROR;
2313
2314         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2315                 return ERROR_TARGET_UNALIGNED_ACCESS;
2316
2317         /* load the base register with the address of the first word */
2318         reg[0] = address;
2319         arm7_9->write_core_regs(target, 0x1, reg);
2320
2321         /* Clear DBGACK, to make sure memory fetches work as expected */
2322         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2323         embeddedice_store_reg(dbg_ctrl);
2324
2325         switch (size) {
2326                 case 4:
2327                         while (num_accesses < count) {
2328                                 uint32_t reg_list;
2329                                 thisrun_accesses =
2330                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2331                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2332
2333                                 for (i = 1; i <= thisrun_accesses; i++) {
2334                                         if (i > last_reg)
2335                                                 last_reg = i;
2336                                         reg[i] = target_buffer_get_u32(target, buffer);
2337                                         buffer += 4;
2338                                 }
2339
2340                                 arm7_9->write_core_regs(target, reg_list, reg);
2341
2342                                 arm7_9->store_word_regs(target, reg_list);
2343
2344                                 /* fast memory writes are only safe when the target is running
2345                                  * from a sufficiently high clock (32 kHz is usually too slow)
2346                                  */
2347                                 if (arm7_9->fast_memory_access)
2348                                         retval = arm7_9_execute_fast_sys_speed(target);
2349                                 else {
2350                                         retval = arm7_9_execute_sys_speed(target);
2351
2352                                         /*
2353                                          * if memory writes are made when the clock is running slow
2354                                          * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2355                                          * processor operations after a "reset halt" or "reset init",
2356                                          * need to immediately stroke the keep alive or will end up with
2357                                          * gdb "keep alive not sent error message" problem.
2358                                          */
2359
2360                                         keep_alive();
2361                                 }
2362
2363                                 if (retval != ERROR_OK)
2364                                         return retval;
2365
2366                                 num_accesses += thisrun_accesses;
2367                         }
2368                         break;
2369                 case 2:
2370                         while (num_accesses < count) {
2371                                 uint32_t reg_list;
2372                                 thisrun_accesses =
2373                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2374                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2375
2376                                 for (i = 1; i <= thisrun_accesses; i++) {
2377                                         if (i > last_reg)
2378                                                 last_reg = i;
2379                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2380                                         buffer += 2;
2381                                 }
2382
2383                                 arm7_9->write_core_regs(target, reg_list, reg);
2384
2385                                 for (i = 1; i <= thisrun_accesses; i++) {
2386                                         arm7_9->store_hword_reg(target, i);
2387
2388                                         /* fast memory writes are only safe when the target is running
2389                                          * from a sufficiently high clock (32 kHz is usually too slow)
2390                                          */
2391                                         if (arm7_9->fast_memory_access)
2392                                                 retval = arm7_9_execute_fast_sys_speed(target);
2393                                         else {
2394                                                 retval = arm7_9_execute_sys_speed(target);
2395
2396                                                 /*
2397                                                  * if memory writes are made when the clock is running slow
2398                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2399                                                  * processor operations after a "reset halt" or "reset init",
2400                                                  * need to immediately stroke the keep alive or will end up with
2401                                                  * gdb "keep alive not sent error message" problem.
2402                                                  */
2403
2404                                                 keep_alive();
2405                                         }
2406
2407                                         if (retval != ERROR_OK)
2408                                                 return retval;
2409                                 }
2410
2411                                 num_accesses += thisrun_accesses;
2412                         }
2413                         break;
2414                 case 1:
2415                         while (num_accesses < count) {
2416                                 uint32_t reg_list;
2417                                 thisrun_accesses =
2418                                                 ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2419                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2420
2421                                 for (i = 1; i <= thisrun_accesses; i++) {
2422                                         if (i > last_reg)
2423                                                 last_reg = i;
2424                                         reg[i] = *buffer++ & 0xff;
2425                                 }
2426
2427                                 arm7_9->write_core_regs(target, reg_list, reg);
2428
2429                                 for (i = 1; i <= thisrun_accesses; i++) {
2430                                         arm7_9->store_byte_reg(target, i);
2431                                         /* fast memory writes are only safe when the target is running
2432                                          * from a sufficiently high clock (32 kHz is usually too slow)
2433                                          */
2434                                         if (arm7_9->fast_memory_access)
2435                                                 retval = arm7_9_execute_fast_sys_speed(target);
2436                                         else {
2437                                                 retval = arm7_9_execute_sys_speed(target);
2438
2439                                                 /*
2440                                                  * if memory writes are made when the clock is running slow
2441                                                  * (i.e. 32 kHz) which is necessary in some scripts to reconfigure
2442                                                  * processor operations after a "reset halt" or "reset init",
2443                                                  * need to immediately stroke the keep alive or will end up with
2444                                                  * gdb "keep alive not sent error message" problem.
2445                                                  */
2446
2447                                                 keep_alive();
2448                                         }
2449
2450                                         if (retval != ERROR_OK)
2451                                                 return retval;
2452
2453                                 }
2454
2455                                 num_accesses += thisrun_accesses;
2456                         }
2457                         break;
2458         }
2459
2460         /* Re-Set DBGACK */
2461         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2462         embeddedice_store_reg(dbg_ctrl);
2463
2464         if (!is_arm_mode(arm->core_mode))
2465                 return ERROR_FAIL;
2466
2467         for (i = 0; i <= last_reg; i++) {
2468                 struct reg *r = arm_reg_current(arm, i);
2469                 r->dirty = r->valid;
2470         }
2471
2472         arm7_9->read_xpsr(target, &cpsr, 0);
2473         retval = jtag_execute_queue();
2474         if (retval != ERROR_OK) {
2475                 LOG_ERROR("JTAG error while reading cpsr");
2476                 return ERROR_TARGET_DATA_ABORT;
2477         }
2478
2479         if (((cpsr & 0x1f) == ARM_MODE_ABT) && (arm->core_mode != ARM_MODE_ABT)) {
2480                 LOG_WARNING(
2481                         "memory write caused data abort "
2482                         "(address: 0x%8.8" TARGET_PRIxADDR ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")",
2483                         address,
2484                         size,
2485                         count);
2486
2487                 arm7_9->write_xpsr_im8(target,
2488                         buf_get_u32(arm->cpsr->value, 0, 8)
2489                         & ~0x20, 0, 0);
2490
2491                 return ERROR_TARGET_DATA_ABORT;
2492         }
2493
2494         return ERROR_OK;
2495 }
2496
2497 int arm7_9_write_memory_opt(struct target *target,
2498         target_addr_t address,
2499         uint32_t size,
2500         uint32_t count,
2501         const uint8_t *buffer)
2502 {
2503         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2504         int retval;
2505
2506         if (size == 4 && count > 32 && arm7_9->bulk_write_memory) {
2507                 /* Attempt to do a bulk write */
2508                 retval = arm7_9->bulk_write_memory(target, address, count, buffer);
2509
2510                 if (retval == ERROR_OK)
2511                         return ERROR_OK;
2512         }
2513
2514         return arm7_9->write_memory(target, address, size, count, buffer);
2515 }
2516
2517 int arm7_9_write_memory_no_opt(struct target *target,
2518         uint32_t address,
2519         uint32_t size,
2520         uint32_t count,
2521         const uint8_t *buffer)
2522 {
2523         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2524
2525         return arm7_9->write_memory(target, address, size, count, buffer);
2526 }
2527
2528 static int dcc_count;
2529 static const uint8_t *dcc_buffer;
2530
2531 static int arm7_9_dcc_completion(struct target *target,
2532         uint32_t exit_point,
2533         int timeout_ms,
2534         void *arch_info)
2535 {
2536         int retval = ERROR_OK;
2537         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2538
2539         retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500);
2540         if (retval != ERROR_OK)
2541                 return retval;
2542
2543         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2544         int count = dcc_count;
2545         const uint8_t *buffer = dcc_buffer;
2546         if (count > 2) {
2547                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2548                  * core function repeated. */
2549                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2550                         fast_target_buffer_get_u32(buffer, little));
2551                 buffer += 4;
2552
2553                 struct embeddedice_reg *ice_reg =
2554                         arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2555                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2556                 struct jtag_tap *tap;
2557                 tap = ice_reg->jtag_info->tap;
2558
2559                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2560                 buffer += (count-2)*4;
2561
2562                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2563                         fast_target_buffer_get_u32(buffer, little));
2564         } else {
2565                 int i;
2566                 for (i = 0; i < count; i++) {
2567                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA],
2568                                 fast_target_buffer_get_u32(buffer, little));
2569                         buffer += 4;
2570                 }
2571         }
2572
2573         retval = target_halt(target);
2574         if (retval != ERROR_OK)
2575                 return retval;
2576         return target_wait_state(target, TARGET_HALTED, 500);
2577 }
2578
2579 static const uint32_t dcc_code[] = {
2580         /* r0 == input, points to memory buffer
2581          * r1 == scratch
2582          */
2583
2584         /* spin until DCC control (c0) reports data arrived */
2585         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2586         0xe3110001,     /*    tst r1, #1              */
2587         0x0afffffc,     /*    bne w                   */
2588
2589         /* read word from DCC (c1), write to memory */
2590         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2591         0xe4801004,     /*    str r1, [r0], #4        */
2592
2593         /* repeat */
2594         0xeafffff9      /*    b   w                   */
2595 };
2596
2597 int arm7_9_bulk_write_memory(struct target *target,
2598         target_addr_t address,
2599         uint32_t count,
2600         const uint8_t *buffer)
2601 {
2602         int retval;
2603         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2604
2605         if (address % 4 != 0)
2606                 return ERROR_TARGET_UNALIGNED_ACCESS;
2607
2608         if (!arm7_9->dcc_downloads)
2609                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2610
2611         /* regrab previously allocated working_area, or allocate a new one */
2612         if (!arm7_9->dcc_working_area) {
2613                 uint8_t dcc_code_buf[6 * 4];
2614
2615                 /* make sure we have a working area */
2616                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK) {
2617                         LOG_INFO("no working area available, falling back to memory writes");
2618                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2619                 }
2620
2621                 /* copy target instructions to target endianness */
2622                 target_buffer_set_u32_array(target, dcc_code_buf, ARRAY_SIZE(dcc_code), dcc_code);
2623
2624                 /* write DCC code to working area, using the non-optimized
2625                  * memory write to avoid ending up here again */
2626                 retval = arm7_9_write_memory_no_opt(target,
2627                                 arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf);
2628                 if (retval != ERROR_OK)
2629                         return retval;
2630         }
2631
2632         struct arm_algorithm arm_algo;
2633         struct reg_param reg_params[1];
2634
2635         arm_algo.common_magic = ARM_COMMON_MAGIC;
2636         arm_algo.core_mode = ARM_MODE_SVC;
2637         arm_algo.core_state = ARM_STATE_ARM;
2638
2639         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2640
2641         buf_set_u32(reg_params[0].value, 0, 32, address);
2642
2643         dcc_count = count;
2644         dcc_buffer = buffer;
2645         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2646                         arm7_9->dcc_working_area->address,
2647                         arm7_9->dcc_working_area->address + 6*4,
2648                         20*1000, &arm_algo, arm7_9_dcc_completion);
2649
2650         if (retval == ERROR_OK) {
2651                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2652                 if (endaddress != (address + count*4)) {
2653                         LOG_ERROR(
2654                                 "DCC write failed, expected end address 0x%08" TARGET_PRIxADDR " got 0x%0" PRIx32 "",
2655                                 (address + count*4),
2656                                 endaddress);
2657                         retval = ERROR_FAIL;
2658                 }
2659         }
2660
2661         destroy_reg_param(&reg_params[0]);
2662
2663         return retval;
2664 }
2665
2666 /**
2667  * Perform per-target setup that requires JTAG access.
2668  */
2669 int arm7_9_examine(struct target *target)
2670 {
2671         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2672         int retval;
2673
2674         if (!target_was_examined(target)) {
2675                 struct reg_cache *t, **cache_p;
2676
2677                 t = embeddedice_build_reg_cache(target, arm7_9);
2678                 if (!t)
2679                         return ERROR_FAIL;
2680
2681                 cache_p = register_get_last_cache_p(&target->reg_cache);
2682                 (*cache_p) = t;
2683                 arm7_9->eice_cache = (*cache_p);
2684
2685                 if (arm7_9->arm.etm)
2686                         (*cache_p)->next = etm_build_reg_cache(target,
2687                                         &arm7_9->jtag_info,
2688                                         arm7_9->arm.etm);
2689
2690                 target_set_examined(target);
2691         }
2692
2693         retval = embeddedice_setup(target);
2694         if (retval == ERROR_OK)
2695                 retval = arm7_9_setup(target);
2696         if (retval == ERROR_OK && arm7_9->arm.etm)
2697                 retval = etm_setup(target);
2698         return retval;
2699 }
2700
2701 void arm7_9_deinit(struct target *target)
2702 {
2703         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2704
2705         if (target_was_examined(target))
2706                 embeddedice_free_reg_cache(arm7_9->eice_cache);
2707
2708         arm_jtag_close_connection(&arm7_9->jtag_info);
2709 }
2710
2711 int arm7_9_check_reset(struct target *target)
2712 {
2713         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2714
2715         if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2716                 LOG_WARNING(
2717                         "NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2718
2719         if (get_target_reset_nag() && (target->working_area_size == 0))
2720                 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2721
2722         if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2723                 LOG_WARNING(
2724                         "NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2725
2726         return ERROR_OK;
2727 }
2728
2729 int arm7_9_endianness_callback(jtag_callback_data_t pu8_in,
2730                 jtag_callback_data_t i_size, jtag_callback_data_t i_be,
2731                 jtag_callback_data_t i_flip)
2732 {
2733         uint8_t *in = (uint8_t *)pu8_in;
2734         int size = (int)i_size;
2735         int be = (int)i_be;
2736         int flip = (int)i_flip;
2737         uint32_t readback;
2738
2739         switch (size) {
2740         case 4:
2741                 readback = le_to_h_u32(in);
2742                 if (flip)
2743                         readback = flip_u32(readback, 32);
2744                 if (be)
2745                         h_u32_to_be(in, readback);
2746                 else
2747                         h_u32_to_le(in, readback);
2748                 break;
2749         case 2:
2750                 readback = le_to_h_u16(in);
2751                 if (flip)
2752                         readback = flip_u32(readback, 16);
2753                 if (be)
2754                         h_u16_to_be(in, readback & 0xffff);
2755                 else
2756                         h_u16_to_le(in, readback & 0xffff);
2757                 break;
2758         case 1:
2759                 readback = *in;
2760                 if (flip)
2761                         readback = flip_u32(readback, 8);
2762                 *in = readback & 0xff;
2763                 break;
2764         }
2765
2766         return ERROR_OK;
2767 }
2768
2769 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2770 {
2771         struct target *target = get_current_target(CMD_CTX);
2772         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2773
2774         if (!is_arm7_9(arm7_9)) {
2775                 command_print(CMD, "current target isn't an ARM7/ARM9 target");
2776                 return ERROR_TARGET_INVALID;
2777         }
2778
2779         if (CMD_ARGC > 0)
2780                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->use_dbgrq);
2781
2782         command_print(CMD,
2783                 "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s",
2784                 (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2785
2786         return ERROR_OK;
2787 }
2788
2789 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2790 {
2791         struct target *target = get_current_target(CMD_CTX);
2792         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2793
2794         if (!is_arm7_9(arm7_9)) {
2795                 command_print(CMD, "current target isn't an ARM7/ARM9 target");
2796                 return ERROR_TARGET_INVALID;
2797         }
2798
2799         if (CMD_ARGC > 0)
2800                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2801
2802         command_print(CMD,
2803                 "fast memory access is %s",
2804                 (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2805
2806         return ERROR_OK;
2807 }
2808
2809 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2810 {
2811         struct target *target = get_current_target(CMD_CTX);
2812         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2813
2814         if (!is_arm7_9(arm7_9)) {
2815                 command_print(CMD, "current target isn't an ARM7/ARM9 target");
2816                 return ERROR_TARGET_INVALID;
2817         }
2818
2819         if (CMD_ARGC > 0)
2820                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2821
2822         command_print(CMD,
2823                 "dcc downloads are %s",
2824                 (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2825
2826         return ERROR_OK;
2827 }
2828
2829 static int arm7_9_setup_semihosting(struct target *target, int enable)
2830 {
2831         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2832
2833         if (!is_arm7_9(arm7_9)) {
2834                 LOG_USER("current target isn't an ARM7/ARM9 target");
2835                 return ERROR_TARGET_INVALID;
2836         }
2837
2838         if (arm7_9->has_vector_catch) {
2839                 struct reg *vector_catch = &arm7_9->eice_cache
2840                         ->reg_list[EICE_VEC_CATCH];
2841
2842                 if (!vector_catch->valid)
2843                         embeddedice_read_reg(vector_catch);
2844                 buf_set_u32(vector_catch->value, 2, 1, enable);
2845                 embeddedice_store_reg(vector_catch);
2846         } else {
2847                 /* TODO: allow optional high vectors and/or BKPT_HARD */
2848                 if (enable)
2849                         breakpoint_add(target, 8, 4, BKPT_SOFT);
2850                 else
2851                         breakpoint_remove(target, 8);
2852         }
2853
2854         return ERROR_OK;
2855 }
2856
2857 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2858 {
2859         int retval = ERROR_OK;
2860         struct arm *arm = &arm7_9->arm;
2861
2862         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2863
2864         retval = arm_jtag_setup_connection(&arm7_9->jtag_info);
2865         if (retval != ERROR_OK)
2866                 return retval;
2867
2868         /* caller must have allocated via calloc(), so everything's zeroed */
2869
2870         arm7_9->wp_available_max = 2;
2871
2872         arm7_9->fast_memory_access = false;
2873         arm7_9->dcc_downloads = false;
2874
2875         arm->arch_info = arm7_9;
2876         arm->core_type = ARM_CORE_TYPE_STD;
2877         arm->read_core_reg = arm7_9_read_core_reg;
2878         arm->write_core_reg = arm7_9_write_core_reg;
2879         arm->full_context = arm7_9_full_context;
2880         arm->setup_semihosting = arm7_9_setup_semihosting;
2881
2882         retval = arm_init_arch_info(target, arm);
2883         if (retval != ERROR_OK)
2884                 return retval;
2885
2886         return target_register_timer_callback(arm7_9_handle_target_request,
2887                 1, TARGET_TIMER_TYPE_PERIODIC, target);
2888 }
2889
2890 static const struct command_registration arm7_9_any_command_handlers[] = {
2891         {
2892                 .name = "dbgrq",
2893                 .handler = handle_arm7_9_dbgrq_command,
2894                 .mode = COMMAND_ANY,
2895                 .usage = "['enable'|'disable']",
2896                 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2897                         "for target halt requests",
2898         },
2899         {
2900                 .name = "fast_memory_access",
2901                 .handler = handle_arm7_9_fast_memory_access_command,
2902                 .mode = COMMAND_ANY,
2903                 .usage = "['enable'|'disable']",
2904                 .help = "use fast memory accesses instead of slower "
2905                         "but potentially safer accesses",
2906         },
2907         {
2908                 .name = "dcc_downloads",
2909                 .handler = handle_arm7_9_dcc_downloads_command,
2910                 .mode = COMMAND_ANY,
2911                 .usage = "['enable'|'disable']",
2912                 .help = "use DCC downloads for larger memory writes",
2913         },
2914         COMMAND_REGISTRATION_DONE
2915 };
2916 const struct command_registration arm7_9_command_handlers[] = {
2917         {
2918                 .chain = arm_command_handlers,
2919         },
2920         {
2921                 .chain = etm_command_handlers,
2922         },
2923         {
2924                 .name = "arm7_9",
2925                 .mode = COMMAND_ANY,
2926                 .help = "arm7/9 specific commands",
2927                 .usage = "",
2928                 .chain = arm7_9_any_command_handlers,
2929         },
2930         COMMAND_REGISTRATION_DONE
2931 };