923c8cd6c1c205a27cde791a74daf7ed9656415b
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "breakpoints.h"
34 #include "embeddedice.h"
35 #include "target_request.h"
36 #include "etm.h"
37 #include "time_support.h"
38 #include "arm_simulator.h"
39 #include "algorithm.h"
40 #include "register.h"
41
42
43 /**
44  * @file
45  * Hold common code supporting the ARM7 and ARM9 core generations.
46  *
47  * While the ARM core implementations evolved substantially during these
48  * two generations, they look quite similar from the JTAG perspective.
49  * Both have similar debug facilities, based on the same two scan chains
50  * providing access to the core and to an EmbeddedICE module.  Both can
51  * support similar ETM and ETB modules, for tracing.  And both expose
52  * what could be viewed as "ARM Classic", with multiple processor modes,
53  * shadowed registers, and support for the Thumb instruction set.
54  *
55  * Processor differences include things like presence or absence of MMU
56  * and cache, pipeline sizes, use of a modified Harvard Architecure
57  * (with separate instruction and data busses from the CPU), support
58  * for cpu clock gating during idle, and more.
59  */
60
61 static int arm7_9_debug_entry(struct target *target);
62
63 /**
64  * Clear watchpoints for an ARM7/9 target.
65  *
66  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
67  * @return JTAG error status after executing queue
68  */
69 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
70 {
71         LOG_DEBUG("-");
72         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
73         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
74         arm7_9->sw_breakpoint_count = 0;
75         arm7_9->sw_breakpoints_added = 0;
76         arm7_9->wp0_used = 0;
77         arm7_9->wp1_used = arm7_9->wp1_used_default;
78         arm7_9->wp_available = arm7_9->wp_available_max;
79
80         return jtag_execute_queue();
81 }
82
83 /**
84  * Assign a watchpoint to one of the two available hardware comparators in an
85  * ARM7 or ARM9 target.
86  *
87  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
88  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
89  */
90 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
91 {
92         if (!arm7_9->wp0_used)
93         {
94                 arm7_9->wp0_used = 1;
95                 breakpoint->set = 1;
96                 arm7_9->wp_available--;
97         }
98         else if (!arm7_9->wp1_used)
99         {
100                 arm7_9->wp1_used = 1;
101                 breakpoint->set = 2;
102                 arm7_9->wp_available--;
103         }
104         else
105         {
106                 LOG_ERROR("BUG: no hardware comparator available");
107         }
108         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
109                           breakpoint->unique_id,
110                           breakpoint->address,
111                           breakpoint->set );
112 }
113
114 /**
115  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
116  *
117  * @param arm7_9 Pointer to common struct for ARM7/9 targets
118  * @return Error codes if there is a problem finding a watchpoint or the result
119  *         of executing the JTAG queue
120  */
121 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
122 {
123         if (arm7_9->sw_breakpoints_added)
124         {
125                 return ERROR_OK;
126         }
127         if (arm7_9->wp_available < 1)
128         {
129                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
130                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
131         }
132         arm7_9->wp_available--;
133
134         /* pick a breakpoint unit */
135         if (!arm7_9->wp0_used)
136         {
137                 arm7_9->sw_breakpoints_added = 1;
138                 arm7_9->wp0_used = 3;
139         } else if (!arm7_9->wp1_used)
140         {
141                 arm7_9->sw_breakpoints_added = 2;
142                 arm7_9->wp1_used = 3;
143         }
144         else
145         {
146                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
147                 return ERROR_FAIL;
148         }
149
150         if (arm7_9->sw_breakpoints_added == 1)
151         {
152                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
153                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
154                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
155                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
156                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
157         }
158         else if (arm7_9->sw_breakpoints_added == 2)
159         {
160                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
161                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
162                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
163                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
164                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
165         }
166         else
167         {
168                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
169                 return ERROR_FAIL;
170         }
171         LOG_DEBUG("SW BP using hw wp: %d",
172                           arm7_9->sw_breakpoints_added );
173
174         return jtag_execute_queue();
175 }
176
177 /**
178  * Setup the common pieces for an ARM7/9 target after reset or on startup.
179  *
180  * @param target Pointer to an ARM7/9 target to setup
181  * @return Result of clearing the watchpoints on the target
182  */
183 int arm7_9_setup(struct target *target)
184 {
185         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
186
187         return arm7_9_clear_watchpoints(arm7_9);
188 }
189
190 /**
191  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
192  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
193  * might have erased the values in Embedded ICE.
194  *
195  * @param target Pointer to the target device to set the breakpoints on
196  * @param breakpoint Pointer to the breakpoint to be set
197  * @return For hardware breakpoints, this is the result of executing the JTAG
198  *         queue.  For software breakpoints, this will be the status of the
199  *         required memory reads and writes
200  */
201 int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
202 {
203         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
204         int retval = ERROR_OK;
205
206         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
207                           breakpoint->unique_id,
208                           breakpoint->address,
209                           breakpoint->type);
210
211         if (target->state != TARGET_HALTED)
212         {
213                 LOG_WARNING("target not halted");
214                 return ERROR_TARGET_NOT_HALTED;
215         }
216
217         if (breakpoint->type == BKPT_HARD)
218         {
219                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
220                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
221
222                 /* reassign a hw breakpoint */
223                 if (breakpoint->set == 0)
224                 {
225                         arm7_9_assign_wp(arm7_9, breakpoint);
226                 }
227
228                 if (breakpoint->set == 1)
229                 {
230                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
231                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
232                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
233                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
234                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
235                 }
236                 else if (breakpoint->set == 2)
237                 {
238                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
239                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
240                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
241                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
242                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
243                 }
244                 else
245                 {
246                         LOG_ERROR("BUG: no hardware comparator available");
247                         return ERROR_OK;
248                 }
249
250                 retval = jtag_execute_queue();
251         }
252         else if (breakpoint->type == BKPT_SOFT)
253         {
254                 /* did we already set this breakpoint? */
255                 if (breakpoint->set)
256                         return ERROR_OK;
257
258                 if (breakpoint->length == 4)
259                 {
260                         uint32_t verify = 0xffffffff;
261                         /* keep the original instruction in target endianness */
262                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
263                         {
264                                 return retval;
265                         }
266                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
267                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
268                         {
269                                 return retval;
270                         }
271
272                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
273                         {
274                                 return retval;
275                         }
276                         if (verify != arm7_9->arm_bkpt)
277                         {
278                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
279                                 return ERROR_OK;
280                         }
281                 }
282                 else
283                 {
284                         uint16_t verify = 0xffff;
285                         /* keep the original instruction in target endianness */
286                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
287                         {
288                                 return retval;
289                         }
290                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
291                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
292                         {
293                                 return retval;
294                         }
295
296                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
297                         {
298                                 return retval;
299                         }
300                         if (verify != arm7_9->thumb_bkpt)
301                         {
302                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
303                                 return ERROR_OK;
304                         }
305                 }
306
307                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
308                         return retval;
309
310                 arm7_9->sw_breakpoint_count++;
311
312                 breakpoint->set = 1;
313         }
314
315         return retval;
316 }
317
318 /**
319  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
320  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
321  * will be updated.  Otherwise, the software breakpoint will be restored to its
322  * original instruction if it hasn't already been modified.
323  *
324  * @param target Pointer to ARM7/9 target to unset the breakpoint from
325  * @param breakpoint Pointer to breakpoint to be unset
326  * @return For hardware breakpoints, this is the result of executing the JTAG
327  *         queue.  For software breakpoints, this will be the status of the
328  *         required memory reads and writes
329  */
330 int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
331 {
332         int retval = ERROR_OK;
333         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
334
335         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
336                           breakpoint->unique_id,
337                           breakpoint->address );
338
339         if (!breakpoint->set)
340         {
341                 LOG_WARNING("breakpoint not set");
342                 return ERROR_OK;
343         }
344
345         if (breakpoint->type == BKPT_HARD)
346         {
347                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
348                                   breakpoint->unique_id,
349                                   breakpoint->set );
350                 if (breakpoint->set == 1)
351                 {
352                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
353                         arm7_9->wp0_used = 0;
354                         arm7_9->wp_available++;
355                 }
356                 else if (breakpoint->set == 2)
357                 {
358                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
359                         arm7_9->wp1_used = 0;
360                         arm7_9->wp_available++;
361                 }
362                 retval = jtag_execute_queue();
363                 breakpoint->set = 0;
364         }
365         else
366         {
367                 /* restore original instruction (kept in target endianness) */
368                 if (breakpoint->length == 4)
369                 {
370                         uint32_t current_instr;
371                         /* check that user program as not modified breakpoint instruction */
372                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
373                         {
374                                 return retval;
375                         }
376                         if (current_instr == arm7_9->arm_bkpt)
377                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
378                                 {
379                                         return retval;
380                                 }
381                 }
382                 else
383                 {
384                         uint16_t current_instr;
385                         /* check that user program as not modified breakpoint instruction */
386                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
387                         {
388                                 return retval;
389                         }
390                         if (current_instr == arm7_9->thumb_bkpt)
391                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
392                                 {
393                                         return retval;
394                                 }
395                 }
396
397                 if (--arm7_9->sw_breakpoint_count==0)
398                 {
399                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
400                         if (arm7_9->sw_breakpoints_added == 1)
401                         {
402                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
403                         }
404                         else if (arm7_9->sw_breakpoints_added == 2)
405                         {
406                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
407                         }
408                 }
409
410                 breakpoint->set = 0;
411         }
412
413         return retval;
414 }
415
416 /**
417  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
418  * dangling breakpoints and that the desired breakpoint can be added.
419  *
420  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
421  * @param breakpoint Pointer to the breakpoint to be added
422  * @return An error status if there is a problem adding the breakpoint or the
423  *         result of setting the breakpoint
424  */
425 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
426 {
427         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
428
429         if (target->state != TARGET_HALTED)
430         {
431                 LOG_WARNING("target not halted");
432                 return ERROR_TARGET_NOT_HALTED;
433         }
434
435         if (arm7_9->breakpoint_count == 0)
436         {
437                 /* make sure we don't have any dangling breakpoints. This is vital upon
438                  * GDB connect/disconnect
439                  */
440                 arm7_9_clear_watchpoints(arm7_9);
441         }
442
443         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
444         {
445                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
446                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
447         }
448
449         if ((breakpoint->length != 2) && (breakpoint->length != 4))
450         {
451                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
452                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
453         }
454
455         if (breakpoint->type == BKPT_HARD)
456         {
457                 arm7_9_assign_wp(arm7_9, breakpoint);
458         }
459
460         arm7_9->breakpoint_count++;
461
462         return arm7_9_set_breakpoint(target, breakpoint);
463 }
464
465 /**
466  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
467  * dangling breakpoints and updates available watchpoints if it is a hardware
468  * breakpoint.
469  *
470  * @param target Pointer to the target to have a breakpoint removed
471  * @param breakpoint Pointer to the breakpoint to be removed
472  * @return Error status if there was a problem unsetting the breakpoint or the
473  *         watchpoints could not be cleared
474  */
475 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
476 {
477         int retval = ERROR_OK;
478         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
479
480         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
481         {
482                 return retval;
483         }
484
485         if (breakpoint->type == BKPT_HARD)
486                 arm7_9->wp_available++;
487
488         arm7_9->breakpoint_count--;
489         if (arm7_9->breakpoint_count == 0)
490         {
491                 /* make sure we don't have any dangling breakpoints */
492                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
493                 {
494                         return retval;
495                 }
496         }
497
498         return ERROR_OK;
499 }
500
501 /**
502  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
503  * considered a bug to call this function when there are no available watchpoint
504  * units.
505  *
506  * @param target Pointer to an ARM7/9 target to set a watchpoint on
507  * @param watchpoint Pointer to the watchpoint to be set
508  * @return Error status if watchpoint set fails or the result of executing the
509  *         JTAG queue
510  */
511 int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
512 {
513         int retval = ERROR_OK;
514         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
515         int rw_mask = 1;
516         uint32_t mask;
517
518         mask = watchpoint->length - 1;
519
520         if (target->state != TARGET_HALTED)
521         {
522                 LOG_WARNING("target not halted");
523                 return ERROR_TARGET_NOT_HALTED;
524         }
525
526         if (watchpoint->rw == WPT_ACCESS)
527                 rw_mask = 0;
528         else
529                 rw_mask = 1;
530
531         if (!arm7_9->wp0_used)
532         {
533                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
534                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
535                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
536                 if (watchpoint->mask != 0xffffffffu)
537                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
538                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
539                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
540
541                 if ((retval = jtag_execute_queue()) != ERROR_OK)
542                 {
543                         return retval;
544                 }
545                 watchpoint->set = 1;
546                 arm7_9->wp0_used = 2;
547         }
548         else if (!arm7_9->wp1_used)
549         {
550                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
551                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
552                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
553                 if (watchpoint->mask != 0xffffffffu)
554                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
555                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
556                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
557
558                 if ((retval = jtag_execute_queue()) != ERROR_OK)
559                 {
560                         return retval;
561                 }
562                 watchpoint->set = 2;
563                 arm7_9->wp1_used = 2;
564         }
565         else
566         {
567                 LOG_ERROR("BUG: no hardware comparator available");
568                 return ERROR_OK;
569         }
570
571         return ERROR_OK;
572 }
573
574 /**
575  * Unset an existing watchpoint and clear the used watchpoint unit.
576  *
577  * @param target Pointer to the target to have the watchpoint removed
578  * @param watchpoint Pointer to the watchpoint to be removed
579  * @return Error status while trying to unset the watchpoint or the result of
580  *         executing the JTAG queue
581  */
582 int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
583 {
584         int retval = ERROR_OK;
585         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
586
587         if (target->state != TARGET_HALTED)
588         {
589                 LOG_WARNING("target not halted");
590                 return ERROR_TARGET_NOT_HALTED;
591         }
592
593         if (!watchpoint->set)
594         {
595                 LOG_WARNING("breakpoint not set");
596                 return ERROR_OK;
597         }
598
599         if (watchpoint->set == 1)
600         {
601                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
602                 if ((retval = jtag_execute_queue()) != ERROR_OK)
603                 {
604                         return retval;
605                 }
606                 arm7_9->wp0_used = 0;
607         }
608         else if (watchpoint->set == 2)
609         {
610                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
611                 if ((retval = jtag_execute_queue()) != ERROR_OK)
612                 {
613                         return retval;
614                 }
615                 arm7_9->wp1_used = 0;
616         }
617         watchpoint->set = 0;
618
619         return ERROR_OK;
620 }
621
622 /**
623  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
624  * available, an error response is returned.
625  *
626  * @param target Pointer to the ARM7/9 target to add a watchpoint to
627  * @param watchpoint Pointer to the watchpoint to be added
628  * @return Error status while trying to add the watchpoint
629  */
630 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
631 {
632         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
633
634         if (target->state != TARGET_HALTED)
635         {
636                 LOG_WARNING("target not halted");
637                 return ERROR_TARGET_NOT_HALTED;
638         }
639
640         if (arm7_9->wp_available < 1)
641         {
642                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
643         }
644
645         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
646         {
647                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
648         }
649
650         arm7_9->wp_available--;
651
652         return ERROR_OK;
653 }
654
655 /**
656  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
657  * the used watchpoint unit will be reopened.
658  *
659  * @param target Pointer to the target to remove a watchpoint from
660  * @param watchpoint Pointer to the watchpoint to be removed
661  * @return Result of trying to unset the watchpoint
662  */
663 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
664 {
665         int retval = ERROR_OK;
666         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
667
668         if (watchpoint->set)
669         {
670                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
671                 {
672                         return retval;
673                 }
674         }
675
676         arm7_9->wp_available++;
677
678         return ERROR_OK;
679 }
680
681 /**
682  * Restarts the target by sending a RESTART instruction and moving the JTAG
683  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
684  * asserted by the processor.
685  *
686  * @param target Pointer to target to issue commands to
687  * @return Error status if there is a timeout or a problem while executing the
688  *         JTAG queue
689  */
690 int arm7_9_execute_sys_speed(struct target *target)
691 {
692         int retval;
693         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
694         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
695         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
696
697         /* set RESTART instruction */
698         jtag_set_end_state(TAP_IDLE);
699         if (arm7_9->need_bypass_before_restart) {
700                 arm7_9->need_bypass_before_restart = 0;
701                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
702         }
703         arm_jtag_set_instr(jtag_info, 0x4, NULL);
704
705         long long then = timeval_ms();
706         int timeout;
707         while (!(timeout = ((timeval_ms()-then) > 1000)))
708         {
709                 /* read debug status register */
710                 embeddedice_read_reg(dbg_stat);
711                 if ((retval = jtag_execute_queue()) != ERROR_OK)
712                         return retval;
713                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
714                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
715                         break;
716                 if (debug_level >= 3)
717                 {
718                         alive_sleep(100);
719                 } else
720                 {
721                         keep_alive();
722                 }
723         }
724         if (timeout)
725         {
726                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
727                 return ERROR_TARGET_TIMEOUT;
728         }
729
730         return ERROR_OK;
731 }
732
733 /**
734  * Restarts the target by sending a RESTART instruction and moving the JTAG
735  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
736  * waiting until they are.
737  *
738  * @param target Pointer to the target to issue commands to
739  * @return Always ERROR_OK
740  */
741 int arm7_9_execute_fast_sys_speed(struct target *target)
742 {
743         static int set = 0;
744         static uint8_t check_value[4], check_mask[4];
745
746         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
747         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
748         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
749
750         /* set RESTART instruction */
751         jtag_set_end_state(TAP_IDLE);
752         if (arm7_9->need_bypass_before_restart) {
753                 arm7_9->need_bypass_before_restart = 0;
754                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
755         }
756         arm_jtag_set_instr(jtag_info, 0x4, NULL);
757
758         if (!set)
759         {
760                 /* check for DBGACK and SYSCOMP set (others don't care) */
761
762                 /* NB! These are constants that must be available until after next jtag_execute() and
763                  * we evaluate the values upon first execution in lieu of setting up these constants
764                  * during early setup.
765                  * */
766                 buf_set_u32(check_value, 0, 32, 0x9);
767                 buf_set_u32(check_mask, 0, 32, 0x9);
768                 set = 1;
769         }
770
771         /* read debug status register */
772         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
773
774         return ERROR_OK;
775 }
776
777 /**
778  * Get some data from the ARM7/9 target.
779  *
780  * @param target Pointer to the ARM7/9 target to read data from
781  * @param size The number of 32bit words to be read
782  * @param buffer Pointer to the buffer that will hold the data
783  * @return The result of receiving data from the Embedded ICE unit
784  */
785 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
786 {
787         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
788         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
789         uint32_t *data;
790         int retval = ERROR_OK;
791         uint32_t i;
792
793         data = malloc(size * (sizeof(uint32_t)));
794
795         retval = embeddedice_receive(jtag_info, data, size);
796
797         /* return the 32-bit ints in the 8-bit array */
798         for (i = 0; i < size; i++)
799         {
800                 h_u32_to_le(buffer + (i * 4), data[i]);
801         }
802
803         free(data);
804
805         return retval;
806 }
807
808 /**
809  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
810  * target is running and the DCC control register has the W bit high, this will
811  * execute the request on the target.
812  *
813  * @param priv Void pointer expected to be a struct target pointer
814  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
815  *                  from the Embedded ICE unit
816  */
817 int arm7_9_handle_target_request(void *priv)
818 {
819         int retval = ERROR_OK;
820         struct target *target = priv;
821         if (!target_was_examined(target))
822                 return ERROR_OK;
823         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
824         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
825         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
826
827         if (!target->dbg_msg_enabled)
828                 return ERROR_OK;
829
830         if (target->state == TARGET_RUNNING)
831         {
832                 /* read DCC control register */
833                 embeddedice_read_reg(dcc_control);
834                 if ((retval = jtag_execute_queue()) != ERROR_OK)
835                 {
836                         return retval;
837                 }
838
839                 /* check W bit */
840                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
841                 {
842                         uint32_t request;
843
844                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
845                         {
846                                 return retval;
847                         }
848                         if ((retval = target_request(target, request)) != ERROR_OK)
849                         {
850                                 return retval;
851                         }
852                 }
853         }
854
855         return ERROR_OK;
856 }
857
858 /**
859  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
860  * is manipulated to the right halted state based on its current state.  This is
861  * what happens:
862  *
863  * <table>
864  *              <tr><th > State</th><th > Action</th></tr>
865  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
866  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
867  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
868  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
869  * </table>
870  *
871  * If the target does not end up in the halted state, a warning is produced.  If
872  * DBGACK is cleared, then the target is expected to either be running or
873  * running in debug.
874  *
875  * @param target Pointer to the ARM7/9 target to poll
876  * @return ERROR_OK or an error status if a command fails
877  */
878 int arm7_9_poll(struct target *target)
879 {
880         int retval;
881         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
882         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
883
884         /* read debug status register */
885         embeddedice_read_reg(dbg_stat);
886         if ((retval = jtag_execute_queue()) != ERROR_OK)
887         {
888                 return retval;
889         }
890
891         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
892         {
893 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
894                 if (target->state == TARGET_UNKNOWN)
895                 {
896                         /* Starting OpenOCD with target in debug-halt */
897                         target->state = TARGET_RUNNING;
898                         LOG_DEBUG("DBGACK already set during server startup.");
899                 }
900                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
901                 {
902                         int check_pc = 0;
903                         if (target->state == TARGET_RESET)
904                         {
905                                 if (target->reset_halt)
906                                 {
907                                         enum reset_types jtag_reset_config = jtag_get_reset_config();
908                                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
909                                         {
910                                                 check_pc = 1;
911                                         }
912                                 }
913                         }
914
915                         target->state = TARGET_HALTED;
916
917                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
918                                 return retval;
919
920                         if (check_pc)
921                         {
922                                 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
923                                 uint32_t t=*((uint32_t *)reg->value);
924                                 if (t != 0)
925                                 {
926                                         LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
927                                 }
928                         }
929
930                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
931                         {
932                                 return retval;
933                         }
934                 }
935                 if (target->state == TARGET_DEBUG_RUNNING)
936                 {
937                         target->state = TARGET_HALTED;
938                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
939                                 return retval;
940
941                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
942                         {
943                                 return retval;
944                         }
945                 }
946                 if (target->state != TARGET_HALTED)
947                 {
948                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
949                 }
950         }
951         else
952         {
953                 if (target->state != TARGET_DEBUG_RUNNING)
954                         target->state = TARGET_RUNNING;
955         }
956
957         return ERROR_OK;
958 }
959
960 /**
961  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
962  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
963  * affected) completely stop the JTAG clock while the core is held in reset
964  * (SRST).  It isn't possible to program the halt condition once reset is
965  * asserted, hence a hook that allows the target to set up its reset-halt
966  * condition is setup prior to asserting reset.
967  *
968  * @param target Pointer to an ARM7/9 target to assert reset on
969  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
970  */
971 int arm7_9_assert_reset(struct target *target)
972 {
973         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
974
975         LOG_DEBUG("target->state: %s",
976                   target_state_name(target));
977
978         enum reset_types jtag_reset_config = jtag_get_reset_config();
979         if (!(jtag_reset_config & RESET_HAS_SRST))
980         {
981                 LOG_ERROR("Can't assert SRST");
982                 return ERROR_FAIL;
983         }
984
985         /* At this point trst has been asserted/deasserted once. We would
986          * like to program EmbeddedICE while SRST is asserted, instead of
987          * depending on SRST to leave that module alone.  However, many CPUs
988          * gate the JTAG clock while SRST is asserted; or JTAG may need
989          * clock stability guarantees (adaptive clocking might help).
990          *
991          * So we assume JTAG access during SRST is off the menu unless it's
992          * been specifically enabled.
993          */
994         bool srst_asserted = false;
995
996         if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
997                         && (jtag_reset_config & RESET_SRST_NO_GATING))
998         {
999                 jtag_add_reset(0, 1);
1000                 srst_asserted = true;
1001         }
1002
1003         if (target->reset_halt)
1004         {
1005                 /*
1006                  * Some targets do not support communication while SRST is asserted. We need to
1007                  * set up the reset vector catch here.
1008                  *
1009                  * If TRST is asserted, then these settings will be reset anyway, so setting them
1010                  * here is harmless.
1011                  */
1012                 if (arm7_9->has_vector_catch)
1013                 {
1014                         /* program vector catch register to catch reset vector */
1015                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1016
1017                         /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1018                         jtag_add_runtest(1, jtag_get_end_state());
1019                 }
1020                 else
1021                 {
1022                         /* program watchpoint unit to match on reset vector address */
1023                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1024                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1025                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1026                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1027                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1028                 }
1029         }
1030
1031         /* here we should issue an SRST only, but we may have to assert TRST as well */
1032         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1033         {
1034                 jtag_add_reset(1, 1);
1035         } else if (!srst_asserted)
1036         {
1037                 jtag_add_reset(0, 1);
1038         }
1039
1040         target->state = TARGET_RESET;
1041         jtag_add_sleep(50000);
1042
1043         armv4_5_invalidate_core_regs(target);
1044
1045         if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1046         {
1047                 /* debug entry was already prepared in arm7_9_assert_reset() */
1048                 target->debug_reason = DBG_REASON_DBGRQ;
1049         }
1050
1051         return ERROR_OK;
1052 }
1053
1054 /**
1055  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1056  * and the target is being reset into a halt, a warning will be triggered
1057  * because it is not possible to reset into a halted mode in this case.  The
1058  * target is halted using the target's functions.
1059  *
1060  * @param target Pointer to the target to have the reset deasserted
1061  * @return ERROR_OK or an error from polling or halting the target
1062  */
1063 int arm7_9_deassert_reset(struct target *target)
1064 {
1065         int retval = ERROR_OK;
1066         LOG_DEBUG("target->state: %s",
1067                 target_state_name(target));
1068
1069         /* deassert reset lines */
1070         jtag_add_reset(0, 0);
1071
1072         enum reset_types jtag_reset_config = jtag_get_reset_config();
1073         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1074         {
1075                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1076                 /* set up embedded ice registers again */
1077                 if ((retval = target_examine_one(target)) != ERROR_OK)
1078                         return retval;
1079
1080                 if ((retval = target_poll(target)) != ERROR_OK)
1081                 {
1082                         return retval;
1083                 }
1084
1085                 if ((retval = target_halt(target)) != ERROR_OK)
1086                 {
1087                         return retval;
1088                 }
1089
1090         }
1091         return retval;
1092 }
1093
1094 /**
1095  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1096  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1097  * vector catch was used, it is restored.  Otherwise, the control value is
1098  * restored and the watchpoint unit is restored if it was in use.
1099  *
1100  * @param target Pointer to the ARM7/9 target to have halt cleared
1101  * @return Always ERROR_OK
1102  */
1103 int arm7_9_clear_halt(struct target *target)
1104 {
1105         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1106         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1107
1108         /* we used DBGRQ only if we didn't come out of reset */
1109         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1110         {
1111                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1112                  */
1113                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1114                 embeddedice_store_reg(dbg_ctrl);
1115         }
1116         else
1117         {
1118                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1119                 {
1120                         /* if we came out of reset, and vector catch is supported, we used
1121                          * vector catch to enter debug state
1122                          * restore the register in that case
1123                          */
1124                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1125                 }
1126                 else
1127                 {
1128                         /* restore registers if watchpoint unit 0 was in use
1129                          */
1130                         if (arm7_9->wp0_used)
1131                         {
1132                                 if (arm7_9->debug_entry_from_reset)
1133                                 {
1134                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1135                                 }
1136                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1137                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1138                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1139                         }
1140                         /* control value always has to be restored, as it was either disabled,
1141                          * or enabled with possibly different bits
1142                          */
1143                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1144                 }
1145         }
1146
1147         return ERROR_OK;
1148 }
1149
1150 /**
1151  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1152  * and then there is a wait until the processor shows the halt.  This wait can
1153  * timeout and results in an error being returned.  The software reset involves
1154  * clearing the halt, updating the debug control register, changing to ARM mode,
1155  * reset of the program counter, and reset of all of the registers.
1156  *
1157  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1158  * @return Error status if any of the commands fail, otherwise ERROR_OK
1159  */
1160 int arm7_9_soft_reset_halt(struct target *target)
1161 {
1162         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1163         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1164         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1165         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1166         int i;
1167         int retval;
1168
1169         /* FIX!!! replace some of this code with tcl commands
1170          *
1171          * halt # the halt command is synchronous
1172          * armv4_5 core_state arm
1173          *
1174          */
1175
1176         if ((retval = target_halt(target)) != ERROR_OK)
1177                 return retval;
1178
1179         long long then = timeval_ms();
1180         int timeout;
1181         while (!(timeout = ((timeval_ms()-then) > 1000)))
1182         {
1183                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1184                         break;
1185                 embeddedice_read_reg(dbg_stat);
1186                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1187                         return retval;
1188                 if (debug_level >= 3)
1189                 {
1190                         alive_sleep(100);
1191                 } else
1192                 {
1193                         keep_alive();
1194                 }
1195         }
1196         if (timeout)
1197         {
1198                 LOG_ERROR("Failed to halt CPU after 1 sec");
1199                 return ERROR_TARGET_TIMEOUT;
1200         }
1201         target->state = TARGET_HALTED;
1202
1203         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1204          * ensure that DBGRQ is cleared
1205          */
1206         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1207         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1208         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1209         embeddedice_store_reg(dbg_ctrl);
1210
1211         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1212         {
1213                 return retval;
1214         }
1215
1216         /* if the target is in Thumb state, change to ARM state */
1217         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1218         {
1219                 uint32_t r0_thumb, pc_thumb;
1220                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1221                 /* Entered debug from Thumb mode */
1222                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1223                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1224         }
1225
1226         /* all register content is now invalid */
1227         if ((retval = armv4_5_invalidate_core_regs(target)) != ERROR_OK)
1228         {
1229                 return retval;
1230         }
1231
1232         /* SVC, ARM state, IRQ and FIQ disabled */
1233         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3);
1234         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1;
1235         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1236
1237         /* start fetching from 0x0 */
1238         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1239         armv4_5->core_cache->reg_list[15].dirty = 1;
1240         armv4_5->core_cache->reg_list[15].valid = 1;
1241
1242         armv4_5->core_mode = ARMV4_5_MODE_SVC;
1243         armv4_5->core_state = ARMV4_5_STATE_ARM;
1244
1245         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1246                 return ERROR_FAIL;
1247
1248         /* reset registers */
1249         for (i = 0; i <= 14; i++)
1250         {
1251                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1252                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1253                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1254         }
1255
1256         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1257         {
1258                 return retval;
1259         }
1260
1261         return ERROR_OK;
1262 }
1263
1264 /**
1265  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1266  * line or by programming a watchpoint to trigger on any address.  It is
1267  * considered a bug to call this function while the target is in the
1268  * TARGET_RESET state.
1269  *
1270  * @param target Pointer to the ARM7/9 target to be halted
1271  * @return Always ERROR_OK
1272  */
1273 int arm7_9_halt(struct target *target)
1274 {
1275         if (target->state == TARGET_RESET)
1276         {
1277                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1278                 return ERROR_OK;
1279         }
1280
1281         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1282         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1283
1284         LOG_DEBUG("target->state: %s",
1285                   target_state_name(target));
1286
1287         if (target->state == TARGET_HALTED)
1288         {
1289                 LOG_DEBUG("target was already halted");
1290                 return ERROR_OK;
1291         }
1292
1293         if (target->state == TARGET_UNKNOWN)
1294         {
1295                 LOG_WARNING("target was in unknown state when halt was requested");
1296         }
1297
1298         if (arm7_9->use_dbgrq)
1299         {
1300                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1301                  */
1302                 if (arm7_9->set_special_dbgrq) {
1303                         arm7_9->set_special_dbgrq(target);
1304                 } else {
1305                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1306                         embeddedice_store_reg(dbg_ctrl);
1307                 }
1308         }
1309         else
1310         {
1311                 /* program watchpoint unit to match on any address
1312                  */
1313                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1314                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1315                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1316                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1317         }
1318
1319         target->debug_reason = DBG_REASON_DBGRQ;
1320
1321         return ERROR_OK;
1322 }
1323
1324 /**
1325  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1326  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1327  * examined.  Once done, the target is verified to be halted and the processor
1328  * is forced into ARM mode.  The core registers are saved for the current core
1329  * mode and the program counter (register 15) is updated as needed.  The core
1330  * registers and CPSR and SPSR are saved for restoration later.
1331  *
1332  * @param target Pointer to target that is entering debug mode
1333  * @return Error code if anything fails, otherwise ERROR_OK
1334  */
1335 static int arm7_9_debug_entry(struct target *target)
1336 {
1337         int i;
1338         uint32_t context[16];
1339         uint32_t* context_p[16];
1340         uint32_t r0_thumb, pc_thumb;
1341         uint32_t cpsr;
1342         int retval;
1343         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1344         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1345         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1346         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1347
1348 #ifdef _DEBUG_ARM7_9_
1349         LOG_DEBUG("-");
1350 #endif
1351
1352         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1353          * ensure that DBGRQ is cleared
1354          */
1355         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1356         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1357         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1358         embeddedice_store_reg(dbg_ctrl);
1359
1360         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1361         {
1362                 return retval;
1363         }
1364
1365         if ((retval = jtag_execute_queue()) != ERROR_OK)
1366         {
1367                 return retval;
1368         }
1369
1370         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1371                 return retval;
1372
1373
1374         if (target->state != TARGET_HALTED)
1375         {
1376                 LOG_WARNING("target not halted");
1377                 return ERROR_TARGET_NOT_HALTED;
1378         }
1379
1380         /* if the target is in Thumb state, change to ARM state */
1381         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1382         {
1383                 LOG_DEBUG("target entered debug from Thumb state");
1384                 /* Entered debug from Thumb mode */
1385                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1386                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1387                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32 ", pc_thumb: 0x%8.8" PRIx32 "", r0_thumb, pc_thumb);
1388         }
1389         else
1390         {
1391                 LOG_DEBUG("target entered debug from ARM state");
1392                 /* Entered debug from ARM mode */
1393                 armv4_5->core_state = ARMV4_5_STATE_ARM;
1394         }
1395
1396         for (i = 0; i < 16; i++)
1397                 context_p[i] = &context[i];
1398         /* save core registers (r0 - r15 of current core mode) */
1399         arm7_9->read_core_regs(target, 0xffff, context_p);
1400
1401         arm7_9->read_xpsr(target, &cpsr, 0);
1402
1403         if ((retval = jtag_execute_queue()) != ERROR_OK)
1404                 return retval;
1405
1406         /* if the core has been executing in Thumb state, set the T bit */
1407         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1408                 cpsr |= 0x20;
1409
1410         buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, cpsr);
1411         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1412         armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1413
1414         armv4_5->core_mode = cpsr & 0x1f;
1415
1416         if (armv4_5_mode_to_number(armv4_5->core_mode) == -1)
1417         {
1418                 target->state = TARGET_UNKNOWN;
1419                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1420                 return ERROR_TARGET_FAILURE;
1421         }
1422
1423         LOG_DEBUG("target entered debug state in %s mode", armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)]);
1424
1425         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1426         {
1427                 LOG_DEBUG("thumb state, applying fixups");
1428                 context[0] = r0_thumb;
1429                 context[15] = pc_thumb;
1430         } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1431         {
1432                 /* adjust value stored by STM */
1433                 context[15] -= 3 * 4;
1434         }
1435
1436         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1437                 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1438         else
1439                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1440
1441         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1442                 return ERROR_FAIL;
1443
1444         for (i = 0; i <= 15; i++)
1445         {
1446                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1447                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1448                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1449                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1450         }
1451
1452         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1453
1454         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1455                 return ERROR_FAIL;
1456
1457         /* exceptions other than USR & SYS have a saved program status register */
1458         if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1459         {
1460                 uint32_t spsr;
1461                 arm7_9->read_xpsr(target, &spsr, 1);
1462                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1463                 {
1464                         return retval;
1465                 }
1466                 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1467                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1468                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1469         }
1470
1471         /* r0 and r15 (pc) have to be restored later */
1472         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1473         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1474
1475         if ((retval = jtag_execute_queue()) != ERROR_OK)
1476                 return retval;
1477
1478         if (arm7_9->post_debug_entry)
1479                 arm7_9->post_debug_entry(target);
1480
1481         return ERROR_OK;
1482 }
1483
1484 /**
1485  * Validate the full context for an ARM7/9 target in all processor modes.  If
1486  * there are any invalid registers for the target, they will all be read.  This
1487  * includes the PSR.
1488  *
1489  * @param target Pointer to the ARM7/9 target to capture the full context from
1490  * @return Error if the target is not halted, has an invalid core mode, or if
1491  *         the JTAG queue fails to execute
1492  */
1493 int arm7_9_full_context(struct target *target)
1494 {
1495         int i;
1496         int retval;
1497         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1498         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1499
1500         LOG_DEBUG("-");
1501
1502         if (target->state != TARGET_HALTED)
1503         {
1504                 LOG_WARNING("target not halted");
1505                 return ERROR_TARGET_NOT_HALTED;
1506         }
1507
1508         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1509                 return ERROR_FAIL;
1510
1511         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1512          * SYS shares registers with User, so we don't touch SYS
1513          */
1514         for (i = 0; i < 6; i++)
1515         {
1516                 uint32_t mask = 0;
1517                 uint32_t* reg_p[16];
1518                 int j;
1519                 int valid = 1;
1520
1521                 /* check if there are invalid registers in the current mode
1522                  */
1523                 for (j = 0; j <= 16; j++)
1524                 {
1525                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1526                                 valid = 0;
1527                 }
1528
1529                 if (!valid)
1530                 {
1531                         uint32_t tmp_cpsr;
1532
1533                         /* change processor mode (and mask T bit) */
1534                         tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1535                         tmp_cpsr |= armv4_5_number_to_mode(i);
1536                         tmp_cpsr &= ~0x20;
1537                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1538
1539                         for (j = 0; j < 15; j++)
1540                         {
1541                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1542                                 {
1543                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1544                                         mask |= 1 << j;
1545                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1546                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1547                                 }
1548                         }
1549
1550                         /* if only the PSR is invalid, mask is all zeroes */
1551                         if (mask)
1552                                 arm7_9->read_core_regs(target, mask, reg_p);
1553
1554                         /* check if the PSR has to be read */
1555                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1556                         {
1557                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1558                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1559                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1560                         }
1561                 }
1562         }
1563
1564         /* restore processor mode (mask T bit) */
1565         arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
1566
1567         if ((retval = jtag_execute_queue()) != ERROR_OK)
1568         {
1569                 return retval;
1570         }
1571         return ERROR_OK;
1572 }
1573
1574 /**
1575  * Restore the processor context on an ARM7/9 target.  The full processor
1576  * context is analyzed to see if any of the registers are dirty on this end, but
1577  * have a valid new value.  If this is the case, the processor is changed to the
1578  * appropriate mode and the new register values are written out to the
1579  * processor.  If there happens to be a dirty register with an invalid value, an
1580  * error will be logged.
1581  *
1582  * @param target Pointer to the ARM7/9 target to have its context restored
1583  * @return Error status if the target is not halted or the core mode in the
1584  *         armv4_5 struct is invalid.
1585  */
1586 int arm7_9_restore_context(struct target *target)
1587 {
1588         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1589         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1590         struct reg *reg;
1591         struct armv4_5_core_reg *reg_arch_info;
1592         enum armv4_5_mode current_mode = armv4_5->core_mode;
1593         int i, j;
1594         int dirty;
1595         int mode_change;
1596
1597         LOG_DEBUG("-");
1598
1599         if (target->state != TARGET_HALTED)
1600         {
1601                 LOG_WARNING("target not halted");
1602                 return ERROR_TARGET_NOT_HALTED;
1603         }
1604
1605         if (arm7_9->pre_restore_context)
1606                 arm7_9->pre_restore_context(target);
1607
1608         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
1609                 return ERROR_FAIL;
1610
1611         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1612          * SYS shares registers with User, so we don't touch SYS
1613          */
1614         for (i = 0; i < 6; i++)
1615         {
1616                 LOG_DEBUG("examining %s mode", armv4_5_mode_strings[i]);
1617                 dirty = 0;
1618                 mode_change = 0;
1619                 /* check if there are dirty registers in the current mode
1620                 */
1621                 for (j = 0; j <= 16; j++)
1622                 {
1623                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1624                         reg_arch_info = reg->arch_info;
1625                         if (reg->dirty == 1)
1626                         {
1627                                 if (reg->valid == 1)
1628                                 {
1629                                         dirty = 1;
1630                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1631                                         if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1632                                                 && (reg_arch_info->mode != current_mode)
1633                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1634                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1635                                         {
1636                                                 mode_change = 1;
1637                                                 LOG_DEBUG("require mode change");
1638                                         }
1639                                 }
1640                                 else
1641                                 {
1642                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1643                                 }
1644                         }
1645                 }
1646
1647                 if (dirty)
1648                 {
1649                         uint32_t mask = 0x0;
1650                         int num_regs = 0;
1651                         uint32_t regs[16];
1652
1653                         if (mode_change)
1654                         {
1655                                 uint32_t tmp_cpsr;
1656
1657                                 /* change processor mode (mask T bit) */
1658                                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1659                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1660                                 tmp_cpsr &= ~0x20;
1661                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1662                                 current_mode = armv4_5_number_to_mode(i);
1663                         }
1664
1665                         for (j = 0; j <= 14; j++)
1666                         {
1667                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1668                                 reg_arch_info = reg->arch_info;
1669
1670
1671                                 if (reg->dirty == 1)
1672                                 {
1673                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1674                                         mask |= 1 << j;
1675                                         num_regs++;
1676                                         reg->dirty = 0;
1677                                         reg->valid = 1;
1678                                         LOG_DEBUG("writing register %i of mode %s with value 0x%8.8" PRIx32 "", j, armv4_5_mode_strings[i], regs[j]);
1679                                 }
1680                         }
1681
1682                         if (mask)
1683                         {
1684                                 arm7_9->write_core_regs(target, mask, regs);
1685                         }
1686
1687                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1688                         reg_arch_info = reg->arch_info;
1689                         if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1690                         {
1691                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1692                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1693                         }
1694                 }
1695         }
1696
1697         if ((armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 0) && (armv4_5->core_mode != current_mode))
1698         {
1699                 /* restore processor mode (mask T bit) */
1700                 uint32_t tmp_cpsr;
1701
1702                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
1703                 tmp_cpsr |= armv4_5_number_to_mode(i);
1704                 tmp_cpsr &= ~0x20;
1705                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1706                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1707         }
1708         else if (armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty == 1)
1709         {
1710                 /* CPSR has been changed, full restore necessary (mask T bit) */
1711                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32));
1712                 arm7_9->write_xpsr(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32) & ~0x20, 0);
1713                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 0;
1714                 armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1;
1715         }
1716
1717         /* restore PC */
1718         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1719         arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1720         armv4_5->core_cache->reg_list[15].dirty = 0;
1721
1722         if (arm7_9->post_restore_context)
1723                 arm7_9->post_restore_context(target);
1724
1725         return ERROR_OK;
1726 }
1727
1728 /**
1729  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1730  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1731  * restart.
1732  *
1733  * @param target Pointer to the ARM7/9 target to be restarted
1734  * @return Result of executing the JTAG queue
1735  */
1736 int arm7_9_restart_core(struct target *target)
1737 {
1738         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1739         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1740
1741         /* set RESTART instruction */
1742         jtag_set_end_state(TAP_IDLE);
1743         if (arm7_9->need_bypass_before_restart) {
1744                 arm7_9->need_bypass_before_restart = 0;
1745                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1746         }
1747         arm_jtag_set_instr(jtag_info, 0x4, NULL);
1748
1749         jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1750         return jtag_execute_queue();
1751 }
1752
1753 /**
1754  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1755  * iterated through and are set on the target if they aren't already set.
1756  *
1757  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1758  */
1759 void arm7_9_enable_watchpoints(struct target *target)
1760 {
1761         struct watchpoint *watchpoint = target->watchpoints;
1762
1763         while (watchpoint)
1764         {
1765                 if (watchpoint->set == 0)
1766                         arm7_9_set_watchpoint(target, watchpoint);
1767                 watchpoint = watchpoint->next;
1768         }
1769 }
1770
1771 /**
1772  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1773  * iterated through and are set on the target.
1774  *
1775  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1776  */
1777 void arm7_9_enable_breakpoints(struct target *target)
1778 {
1779         struct breakpoint *breakpoint = target->breakpoints;
1780
1781         /* set any pending breakpoints */
1782         while (breakpoint)
1783         {
1784                 arm7_9_set_breakpoint(target, breakpoint);
1785                 breakpoint = breakpoint->next;
1786         }
1787 }
1788
1789 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1790 {
1791         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1792         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1793         struct breakpoint *breakpoint = target->breakpoints;
1794         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1795         int err, retval = ERROR_OK;
1796
1797         LOG_DEBUG("-");
1798
1799         if (target->state != TARGET_HALTED)
1800         {
1801                 LOG_WARNING("target not halted");
1802                 return ERROR_TARGET_NOT_HALTED;
1803         }
1804
1805         if (!debug_execution)
1806         {
1807                 target_free_all_working_areas(target);
1808         }
1809
1810         /* current = 1: continue on current pc, otherwise continue at <address> */
1811         if (!current)
1812                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1813
1814         uint32_t current_pc;
1815         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1816
1817         /* the front-end may request us not to handle breakpoints */
1818         if (handle_breakpoints)
1819         {
1820                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1821                 {
1822                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1823                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1824                         {
1825                                 return retval;
1826                         }
1827
1828                         /* calculate PC of next instruction */
1829                         uint32_t next_pc;
1830                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1831                         {
1832                                 uint32_t current_opcode;
1833                                 target_read_u32(target, current_pc, &current_opcode);
1834                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1835                                 return retval;
1836                         }
1837
1838                         LOG_DEBUG("enable single-step");
1839                         arm7_9->enable_single_step(target, next_pc);
1840
1841                         target->debug_reason = DBG_REASON_SINGLESTEP;
1842
1843                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1844                         {
1845                                 return retval;
1846                         }
1847
1848                         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1849                                 arm7_9->branch_resume(target);
1850                         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1851                         {
1852                                 arm7_9->branch_resume_thumb(target);
1853                         }
1854                         else
1855                         {
1856                                 LOG_ERROR("unhandled core state");
1857                                 return ERROR_FAIL;
1858                         }
1859
1860                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1861                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1862                         err = arm7_9_execute_sys_speed(target);
1863
1864                         LOG_DEBUG("disable single-step");
1865                         arm7_9->disable_single_step(target);
1866
1867                         if (err != ERROR_OK)
1868                         {
1869                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1870                                 {
1871                                         return retval;
1872                                 }
1873                                 target->state = TARGET_UNKNOWN;
1874                                 return err;
1875                         }
1876
1877                         arm7_9_debug_entry(target);
1878                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1879
1880                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1881                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1882                         {
1883                                 return retval;
1884                         }
1885                 }
1886         }
1887
1888         /* enable any pending breakpoints and watchpoints */
1889         arm7_9_enable_breakpoints(target);
1890         arm7_9_enable_watchpoints(target);
1891
1892         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1893         {
1894                 return retval;
1895         }
1896
1897         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1898         {
1899                 arm7_9->branch_resume(target);
1900         }
1901         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1902         {
1903                 arm7_9->branch_resume_thumb(target);
1904         }
1905         else
1906         {
1907                 LOG_ERROR("unhandled core state");
1908                 return ERROR_FAIL;
1909         }
1910
1911         /* deassert DBGACK and INTDIS */
1912         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1913         /* INTDIS only when we really resume, not during debug execution */
1914         if (!debug_execution)
1915                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1916         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1917
1918         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1919         {
1920                 return retval;
1921         }
1922
1923         target->debug_reason = DBG_REASON_NOTHALTED;
1924
1925         if (!debug_execution)
1926         {
1927                 /* registers are now invalid */
1928                 armv4_5_invalidate_core_regs(target);
1929                 target->state = TARGET_RUNNING;
1930                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1931                 {
1932                         return retval;
1933                 }
1934         }
1935         else
1936         {
1937                 target->state = TARGET_DEBUG_RUNNING;
1938                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1939                 {
1940                         return retval;
1941                 }
1942         }
1943
1944         LOG_DEBUG("target resumed");
1945
1946         return ERROR_OK;
1947 }
1948
1949 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1950 {
1951         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1952         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
1953         uint32_t current_pc;
1954         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1955
1956         if (next_pc != current_pc)
1957         {
1958                 /* setup an inverse breakpoint on the current PC
1959                 * - comparator 1 matches the current address
1960                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1961                 * - comparator 0 matches any address, as long as rangein is low */
1962                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1963                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1964                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1965                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1966                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1967                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1968                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1969                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1970                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1971         }
1972         else
1973         {
1974                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1975                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1976                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1977                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1978                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1979                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1980                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1981                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1982                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1983         }
1984 }
1985
1986 void arm7_9_disable_eice_step(struct target *target)
1987 {
1988         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1989
1990         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1991         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1992         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1993         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1994         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1995         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
1996         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
1997         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
1998         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
1999 }
2000
2001 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2002 {
2003         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2004         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2005         struct breakpoint *breakpoint = NULL;
2006         int err, retval;
2007
2008         if (target->state != TARGET_HALTED)
2009         {
2010                 LOG_WARNING("target not halted");
2011                 return ERROR_TARGET_NOT_HALTED;
2012         }
2013
2014         /* current = 1: continue on current pc, otherwise continue at <address> */
2015         if (!current)
2016                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2017
2018         uint32_t current_pc;
2019         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2020
2021         /* the front-end may request us not to handle breakpoints */
2022         if (handle_breakpoints)
2023                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2024                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2025                         {
2026                                 return retval;
2027                         }
2028
2029         target->debug_reason = DBG_REASON_SINGLESTEP;
2030
2031         /* calculate PC of next instruction */
2032         uint32_t next_pc;
2033         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2034         {
2035                 uint32_t current_opcode;
2036                 target_read_u32(target, current_pc, &current_opcode);
2037                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2038                 return retval;
2039         }
2040
2041         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2042         {
2043                 return retval;
2044         }
2045
2046         arm7_9->enable_single_step(target, next_pc);
2047
2048         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2049         {
2050                 arm7_9->branch_resume(target);
2051         }
2052         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2053         {
2054                 arm7_9->branch_resume_thumb(target);
2055         }
2056         else
2057         {
2058                 LOG_ERROR("unhandled core state");
2059                 return ERROR_FAIL;
2060         }
2061
2062         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2063         {
2064                 return retval;
2065         }
2066
2067         err = arm7_9_execute_sys_speed(target);
2068         arm7_9->disable_single_step(target);
2069
2070         /* registers are now invalid */
2071         armv4_5_invalidate_core_regs(target);
2072
2073         if (err != ERROR_OK)
2074         {
2075                 target->state = TARGET_UNKNOWN;
2076         } else {
2077                 arm7_9_debug_entry(target);
2078                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2079                 {
2080                         return retval;
2081                 }
2082                 LOG_DEBUG("target stepped");
2083         }
2084
2085         if (breakpoint)
2086                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2087                 {
2088                         return retval;
2089                 }
2090
2091         return err;
2092 }
2093
2094 int arm7_9_read_core_reg(struct target *target, int num, enum armv4_5_mode mode)
2095 {
2096         uint32_t* reg_p[16];
2097         uint32_t value;
2098         int retval;
2099         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2100         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2101
2102         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2103                 return ERROR_FAIL;
2104
2105         enum armv4_5_mode reg_mode = ((struct armv4_5_core_reg*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2106
2107         if ((num < 0) || (num > 16))
2108                 return ERROR_INVALID_ARGUMENTS;
2109
2110         if ((mode != ARMV4_5_MODE_ANY)
2111                         && (mode != armv4_5->core_mode)
2112                         && (reg_mode != ARMV4_5_MODE_ANY))
2113         {
2114                 uint32_t tmp_cpsr;
2115
2116                 /* change processor mode (mask T bit) */
2117                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2118                 tmp_cpsr |= mode;
2119                 tmp_cpsr &= ~0x20;
2120                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2121         }
2122
2123         if ((num >= 0) && (num <= 15))
2124         {
2125                 /* read a normal core register */
2126                 reg_p[num] = &value;
2127
2128                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2129         }
2130         else
2131         {
2132                 /* read a program status register
2133                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2134                  */
2135                 struct armv4_5_core_reg *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2136                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2137
2138                 arm7_9->read_xpsr(target, &value, spsr);
2139         }
2140
2141         if ((retval = jtag_execute_queue()) != ERROR_OK)
2142         {
2143                 return retval;
2144         }
2145
2146         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2147         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2148         buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).value, 0, 32, value);
2149
2150         if ((mode != ARMV4_5_MODE_ANY)
2151                         && (mode != armv4_5->core_mode)
2152                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2153                 /* restore processor mode (mask T bit) */
2154                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2155         }
2156
2157         return ERROR_OK;
2158 }
2159
2160 int arm7_9_write_core_reg(struct target *target, int num, enum armv4_5_mode mode, uint32_t value)
2161 {
2162         uint32_t reg[16];
2163         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2164         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2165
2166         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2167                 return ERROR_FAIL;
2168
2169         enum armv4_5_mode reg_mode = ((struct armv4_5_core_reg*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info)->mode;
2170
2171         if ((num < 0) || (num > 16))
2172                 return ERROR_INVALID_ARGUMENTS;
2173
2174         if ((mode != ARMV4_5_MODE_ANY)
2175                         && (mode != armv4_5->core_mode)
2176                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2177                 uint32_t tmp_cpsr;
2178
2179                 /* change processor mode (mask T bit) */
2180                 tmp_cpsr = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & 0xE0;
2181                 tmp_cpsr |= mode;
2182                 tmp_cpsr &= ~0x20;
2183                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2184         }
2185
2186         if ((num >= 0) && (num <= 15))
2187         {
2188                 /* write a normal core register */
2189                 reg[num] = value;
2190
2191                 arm7_9->write_core_regs(target, 1 << num, reg);
2192         }
2193         else
2194         {
2195                 /* write a program status register
2196                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2197                 */
2198                 struct armv4_5_core_reg *arch_info = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).arch_info;
2199                 int spsr = (arch_info->mode == ARMV4_5_MODE_ANY) ? 0 : 1;
2200
2201                 /* if we're writing the CPSR, mask the T bit */
2202                 if (!spsr)
2203                         value &= ~0x20;
2204
2205                 arm7_9->write_xpsr(target, value, spsr);
2206         }
2207
2208         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).valid = 1;
2209         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, num).dirty = 0;
2210
2211         if ((mode != ARMV4_5_MODE_ANY)
2212                         && (mode != armv4_5->core_mode)
2213                         && (reg_mode != ARMV4_5_MODE_ANY))      {
2214                 /* restore processor mode (mask T bit) */
2215                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2216         }
2217
2218         return jtag_execute_queue();
2219 }
2220
2221 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2222 {
2223         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2224         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2225         uint32_t reg[16];
2226         uint32_t num_accesses = 0;
2227         int thisrun_accesses;
2228         int i;
2229         uint32_t cpsr;
2230         int retval;
2231         int last_reg = 0;
2232
2233         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2234
2235         if (target->state != TARGET_HALTED)
2236         {
2237                 LOG_WARNING("target not halted");
2238                 return ERROR_TARGET_NOT_HALTED;
2239         }
2240
2241         /* sanitize arguments */
2242         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2243                 return ERROR_INVALID_ARGUMENTS;
2244
2245         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2246                 return ERROR_TARGET_UNALIGNED_ACCESS;
2247
2248         /* load the base register with the address of the first word */
2249         reg[0] = address;
2250         arm7_9->write_core_regs(target, 0x1, reg);
2251
2252         int j = 0;
2253
2254         switch (size)
2255         {
2256                 case 4:
2257                         while (num_accesses < count)
2258                         {
2259                                 uint32_t reg_list;
2260                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2261                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2262
2263                                 if (last_reg <= thisrun_accesses)
2264                                         last_reg = thisrun_accesses;
2265
2266                                 arm7_9->load_word_regs(target, reg_list);
2267
2268                                 /* fast memory reads are only safe when the target is running
2269                                  * from a sufficiently high clock (32 kHz is usually too slow)
2270                                  */
2271                                 if (arm7_9->fast_memory_access)
2272                                         retval = arm7_9_execute_fast_sys_speed(target);
2273                                 else
2274                                         retval = arm7_9_execute_sys_speed(target);
2275                                 if (retval != ERROR_OK)
2276                                         return retval;
2277
2278                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2279
2280                                 /* advance buffer, count number of accesses */
2281                                 buffer += thisrun_accesses * 4;
2282                                 num_accesses += thisrun_accesses;
2283
2284                                 if ((j++%1024) == 0)
2285                                 {
2286                                         keep_alive();
2287                                 }
2288                         }
2289                         break;
2290                 case 2:
2291                         while (num_accesses < count)
2292                         {
2293                                 uint32_t reg_list;
2294                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2295                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2296
2297                                 for (i = 1; i <= thisrun_accesses; i++)
2298                                 {
2299                                         if (i > last_reg)
2300                                                 last_reg = i;
2301                                         arm7_9->load_hword_reg(target, i);
2302                                         /* fast memory reads are only safe when the target is running
2303                                          * from a sufficiently high clock (32 kHz is usually too slow)
2304                                          */
2305                                         if (arm7_9->fast_memory_access)
2306                                                 retval = arm7_9_execute_fast_sys_speed(target);
2307                                         else
2308                                                 retval = arm7_9_execute_sys_speed(target);
2309                                         if (retval != ERROR_OK)
2310                                         {
2311                                                 return retval;
2312                                         }
2313
2314                                 }
2315
2316                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2317
2318                                 /* advance buffer, count number of accesses */
2319                                 buffer += thisrun_accesses * 2;
2320                                 num_accesses += thisrun_accesses;
2321
2322                                 if ((j++%1024) == 0)
2323                                 {
2324                                         keep_alive();
2325                                 }
2326                         }
2327                         break;
2328                 case 1:
2329                         while (num_accesses < count)
2330                         {
2331                                 uint32_t reg_list;
2332                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2333                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2334
2335                                 for (i = 1; i <= thisrun_accesses; i++)
2336                                 {
2337                                         if (i > last_reg)
2338                                                 last_reg = i;
2339                                         arm7_9->load_byte_reg(target, i);
2340                                         /* fast memory reads are only safe when the target is running
2341                                          * from a sufficiently high clock (32 kHz is usually too slow)
2342                                          */
2343                                         if (arm7_9->fast_memory_access)
2344                                                 retval = arm7_9_execute_fast_sys_speed(target);
2345                                         else
2346                                                 retval = arm7_9_execute_sys_speed(target);
2347                                         if (retval != ERROR_OK)
2348                                         {
2349                                                 return retval;
2350                                         }
2351                                 }
2352
2353                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2354
2355                                 /* advance buffer, count number of accesses */
2356                                 buffer += thisrun_accesses * 1;
2357                                 num_accesses += thisrun_accesses;
2358
2359                                 if ((j++%1024) == 0)
2360                                 {
2361                                         keep_alive();
2362                                 }
2363                         }
2364                         break;
2365                 default:
2366                         LOG_ERROR("BUG: we shouldn't get here");
2367                         exit(-1);
2368                         break;
2369         }
2370
2371         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2372                 return ERROR_FAIL;
2373
2374         for (i = 0; i <= last_reg; i++)
2375                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2376
2377         arm7_9->read_xpsr(target, &cpsr, 0);
2378         if ((retval = jtag_execute_queue()) != ERROR_OK)
2379         {
2380                 LOG_ERROR("JTAG error while reading cpsr");
2381                 return ERROR_TARGET_DATA_ABORT;
2382         }
2383
2384         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2385         {
2386                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2387
2388                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2389
2390                 return ERROR_TARGET_DATA_ABORT;
2391         }
2392
2393         return ERROR_OK;
2394 }
2395
2396 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2397 {
2398         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2399         struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common;
2400         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2401
2402         uint32_t reg[16];
2403         uint32_t num_accesses = 0;
2404         int thisrun_accesses;
2405         int i;
2406         uint32_t cpsr;
2407         int retval;
2408         int last_reg = 0;
2409
2410 #ifdef _DEBUG_ARM7_9_
2411         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2412 #endif
2413
2414         if (target->state != TARGET_HALTED)
2415         {
2416                 LOG_WARNING("target not halted");
2417                 return ERROR_TARGET_NOT_HALTED;
2418         }
2419
2420         /* sanitize arguments */
2421         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2422                 return ERROR_INVALID_ARGUMENTS;
2423
2424         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2425                 return ERROR_TARGET_UNALIGNED_ACCESS;
2426
2427         /* load the base register with the address of the first word */
2428         reg[0] = address;
2429         arm7_9->write_core_regs(target, 0x1, reg);
2430
2431         /* Clear DBGACK, to make sure memory fetches work as expected */
2432         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2433         embeddedice_store_reg(dbg_ctrl);
2434
2435         switch (size)
2436         {
2437                 case 4:
2438                         while (num_accesses < count)
2439                         {
2440                                 uint32_t reg_list;
2441                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2442                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2443
2444                                 for (i = 1; i <= thisrun_accesses; i++)
2445                                 {
2446                                         if (i > last_reg)
2447                                                 last_reg = i;
2448                                         reg[i] = target_buffer_get_u32(target, buffer);
2449                                         buffer += 4;
2450                                 }
2451
2452                                 arm7_9->write_core_regs(target, reg_list, reg);
2453
2454                                 arm7_9->store_word_regs(target, reg_list);
2455
2456                                 /* fast memory writes are only safe when the target is running
2457                                  * from a sufficiently high clock (32 kHz is usually too slow)
2458                                  */
2459                                 if (arm7_9->fast_memory_access)
2460                                         retval = arm7_9_execute_fast_sys_speed(target);
2461                                 else
2462                                         retval = arm7_9_execute_sys_speed(target);
2463                                 if (retval != ERROR_OK)
2464                                 {
2465                                         return retval;
2466                                 }
2467
2468                                 num_accesses += thisrun_accesses;
2469                         }
2470                         break;
2471                 case 2:
2472                         while (num_accesses < count)
2473                         {
2474                                 uint32_t reg_list;
2475                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2476                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2477
2478                                 for (i = 1; i <= thisrun_accesses; i++)
2479                                 {
2480                                         if (i > last_reg)
2481                                                 last_reg = i;
2482                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2483                                         buffer += 2;
2484                                 }
2485
2486                                 arm7_9->write_core_regs(target, reg_list, reg);
2487
2488                                 for (i = 1; i <= thisrun_accesses; i++)
2489                                 {
2490                                         arm7_9->store_hword_reg(target, i);
2491
2492                                         /* fast memory writes are only safe when the target is running
2493                                          * from a sufficiently high clock (32 kHz is usually too slow)
2494                                          */
2495                                         if (arm7_9->fast_memory_access)
2496                                                 retval = arm7_9_execute_fast_sys_speed(target);
2497                                         else
2498                                                 retval = arm7_9_execute_sys_speed(target);
2499                                         if (retval != ERROR_OK)
2500                                         {
2501                                                 return retval;
2502                                         }
2503                                 }
2504
2505                                 num_accesses += thisrun_accesses;
2506                         }
2507                         break;
2508                 case 1:
2509                         while (num_accesses < count)
2510                         {
2511                                 uint32_t reg_list;
2512                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2513                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2514
2515                                 for (i = 1; i <= thisrun_accesses; i++)
2516                                 {
2517                                         if (i > last_reg)
2518                                                 last_reg = i;
2519                                         reg[i] = *buffer++ & 0xff;
2520                                 }
2521
2522                                 arm7_9->write_core_regs(target, reg_list, reg);
2523
2524                                 for (i = 1; i <= thisrun_accesses; i++)
2525                                 {
2526                                         arm7_9->store_byte_reg(target, i);
2527                                         /* fast memory writes are only safe when the target is running
2528                                          * from a sufficiently high clock (32 kHz is usually too slow)
2529                                          */
2530                                         if (arm7_9->fast_memory_access)
2531                                                 retval = arm7_9_execute_fast_sys_speed(target);
2532                                         else
2533                                                 retval = arm7_9_execute_sys_speed(target);
2534                                         if (retval != ERROR_OK)
2535                                         {
2536                                                 return retval;
2537                                         }
2538
2539                                 }
2540
2541                                 num_accesses += thisrun_accesses;
2542                         }
2543                         break;
2544                 default:
2545                         LOG_ERROR("BUG: we shouldn't get here");
2546                         exit(-1);
2547                         break;
2548         }
2549
2550         /* Re-Set DBGACK */
2551         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2552         embeddedice_store_reg(dbg_ctrl);
2553
2554         if (armv4_5_mode_to_number(armv4_5->core_mode)==-1)
2555                 return ERROR_FAIL;
2556
2557         for (i = 0; i <= last_reg; i++)
2558                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2559
2560         arm7_9->read_xpsr(target, &cpsr, 0);
2561         if ((retval = jtag_execute_queue()) != ERROR_OK)
2562         {
2563                 LOG_ERROR("JTAG error while reading cpsr");
2564                 return ERROR_TARGET_DATA_ABORT;
2565         }
2566
2567         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2568         {
2569                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2570
2571                 arm7_9->write_xpsr_im8(target, buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8) & ~0x20, 0, 0);
2572
2573                 return ERROR_TARGET_DATA_ABORT;
2574         }
2575
2576         return ERROR_OK;
2577 }
2578
2579 static int dcc_count;
2580 static uint8_t *dcc_buffer;
2581
2582 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2583 {
2584         int retval = ERROR_OK;
2585         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2586
2587         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2588                 return retval;
2589
2590         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2591         int count = dcc_count;
2592         uint8_t *buffer = dcc_buffer;
2593         if (count > 2)
2594         {
2595                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2596                  * core function repeated. */
2597                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2598                 buffer += 4;
2599
2600                 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2601                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2602                 struct jtag_tap *tap;
2603                 tap = ice_reg->jtag_info->tap;
2604
2605                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2606                 buffer += (count-2)*4;
2607
2608                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2609         } else
2610         {
2611                 int i;
2612                 for (i = 0; i < count; i++)
2613                 {
2614                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2615                         buffer += 4;
2616                 }
2617         }
2618
2619         if ((retval = target_halt(target))!= ERROR_OK)
2620         {
2621                 return retval;
2622         }
2623         return target_wait_state(target, TARGET_HALTED, 500);
2624 }
2625
2626 static const uint32_t dcc_code[] =
2627 {
2628         /* r0 == input, points to memory buffer
2629          * r1 == scratch
2630          */
2631
2632         /* spin until DCC control (c0) reports data arrived */
2633         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2634         0xe3110001,     /*    tst r1, #1              */
2635         0x0afffffc,     /*    bne w                   */
2636
2637         /* read word from DCC (c1), write to memory */
2638         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2639         0xe4801004,     /*    str r1, [r0], #4        */
2640
2641         /* repeat */
2642         0xeafffff9      /*    b   w                   */
2643 };
2644
2645 int armv4_5_run_algorithm_inner(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2646
2647 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2648 {
2649         int retval;
2650         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2651         int i;
2652
2653         if (!arm7_9->dcc_downloads)
2654                 return target_write_memory(target, address, 4, count, buffer);
2655
2656         /* regrab previously allocated working_area, or allocate a new one */
2657         if (!arm7_9->dcc_working_area)
2658         {
2659                 uint8_t dcc_code_buf[6 * 4];
2660
2661                 /* make sure we have a working area */
2662                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2663                 {
2664                         LOG_INFO("no working area available, falling back to memory writes");
2665                         return target_write_memory(target, address, 4, count, buffer);
2666                 }
2667
2668                 /* copy target instructions to target endianness */
2669                 for (i = 0; i < 6; i++)
2670                 {
2671                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2672                 }
2673
2674                 /* write DCC code to working area */
2675                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2676                 {
2677                         return retval;
2678                 }
2679         }
2680
2681         struct armv4_5_algorithm armv4_5_info;
2682         struct reg_param reg_params[1];
2683
2684         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2685         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2686         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2687
2688         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2689
2690         buf_set_u32(reg_params[0].value, 0, 32, address);
2691
2692         dcc_count = count;
2693         dcc_buffer = buffer;
2694         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2695                         arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2696
2697         if (retval == ERROR_OK)
2698         {
2699                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2700                 if (endaddress != (address + count*4))
2701                 {
2702                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2703                         retval = ERROR_FAIL;
2704                 }
2705         }
2706
2707         destroy_reg_param(&reg_params[0]);
2708
2709         return retval;
2710 }
2711
2712 /**
2713  * Perform per-target setup that requires JTAG access.
2714  */
2715 int arm7_9_examine(struct target *target)
2716 {
2717         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2718         int retval;
2719
2720         if (!target_was_examined(target)) {
2721                 struct reg_cache *t, **cache_p;
2722
2723                 t = embeddedice_build_reg_cache(target, arm7_9);
2724                 if (t == NULL)
2725                         return ERROR_FAIL;
2726
2727                 cache_p = register_get_last_cache_p(&target->reg_cache);
2728                 (*cache_p) = t;
2729                 arm7_9->eice_cache = (*cache_p);
2730
2731                 if (arm7_9->armv4_5_common.etm)
2732                         (*cache_p)->next = etm_build_reg_cache(target,
2733                                         &arm7_9->jtag_info,
2734                                         arm7_9->armv4_5_common.etm);
2735
2736                 target_set_examined(target);
2737         }
2738
2739         retval = embeddedice_setup(target);
2740         if (retval == ERROR_OK)
2741                 retval = arm7_9_setup(target);
2742         if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2743                 retval = etm_setup(target);
2744         return retval;
2745 }
2746
2747
2748 COMMAND_HANDLER(handle_arm7_9_write_xpsr_command)
2749 {
2750         uint32_t value;
2751         int spsr;
2752         int retval;
2753         struct target *target = get_current_target(cmd_ctx);
2754         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2755
2756         if (!is_arm7_9(arm7_9))
2757         {
2758                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2759                 return ERROR_TARGET_INVALID;
2760         }
2761
2762         if (target->state != TARGET_HALTED)
2763         {
2764                 command_print(cmd_ctx, "can't write registers while running");
2765                 return ERROR_FAIL;
2766         }
2767
2768         if (argc < 2)
2769         {
2770                 command_print(cmd_ctx, "usage: write_xpsr <value> <not cpsr | spsr>");
2771                 return ERROR_FAIL;
2772         }
2773
2774         COMMAND_PARSE_NUMBER(u32, args[0], value);
2775         COMMAND_PARSE_NUMBER(int, args[1], spsr);
2776
2777         /* if we're writing the CPSR, mask the T bit */
2778         if (!spsr)
2779                 value &= ~0x20;
2780
2781         arm7_9->write_xpsr(target, value, spsr);
2782         if ((retval = jtag_execute_queue()) != ERROR_OK)
2783         {
2784                 LOG_ERROR("JTAG error while writing to xpsr");
2785                 return retval;
2786         }
2787
2788         return ERROR_OK;
2789 }
2790
2791 COMMAND_HANDLER(handle_arm7_9_write_xpsr_im8_command)
2792 {
2793         uint32_t value;
2794         int rotate;
2795         int spsr;
2796         int retval;
2797         struct target *target = get_current_target(cmd_ctx);
2798         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2799
2800         if (!is_arm7_9(arm7_9))
2801         {
2802                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2803                 return ERROR_TARGET_INVALID;
2804         }
2805
2806         if (target->state != TARGET_HALTED)
2807         {
2808                 command_print(cmd_ctx, "can't write registers while running");
2809                 return ERROR_FAIL;
2810         }
2811
2812         if (argc < 3)
2813         {
2814                 command_print(cmd_ctx, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr | spsr>");
2815                 return ERROR_FAIL;
2816         }
2817
2818         COMMAND_PARSE_NUMBER(u32, args[0], value);
2819         COMMAND_PARSE_NUMBER(int, args[1], rotate);
2820         COMMAND_PARSE_NUMBER(int, args[2], spsr);
2821
2822         arm7_9->write_xpsr_im8(target, value, rotate, spsr);
2823         if ((retval = jtag_execute_queue()) != ERROR_OK)
2824         {
2825                 LOG_ERROR("JTAG error while writing 8-bit immediate to xpsr");
2826                 return retval;
2827         }
2828
2829         return ERROR_OK;
2830 }
2831
2832 COMMAND_HANDLER(handle_arm7_9_write_core_reg_command)
2833 {
2834         uint32_t value;
2835         uint32_t mode;
2836         int num;
2837         struct target *target = get_current_target(cmd_ctx);
2838         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2839
2840         if (!is_arm7_9(arm7_9))
2841         {
2842                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2843                 return ERROR_TARGET_INVALID;
2844         }
2845
2846         if (target->state != TARGET_HALTED)
2847         {
2848                 command_print(cmd_ctx, "can't write registers while running");
2849                 return ERROR_FAIL;
2850         }
2851
2852         if (argc < 3)
2853         {
2854                 command_print(cmd_ctx, "usage: write_core_reg <num> <mode> <value>");
2855                 return ERROR_FAIL;
2856         }
2857
2858         COMMAND_PARSE_NUMBER(int, args[0], num);
2859         COMMAND_PARSE_NUMBER(u32, args[1], mode);
2860         COMMAND_PARSE_NUMBER(u32, args[2], value);
2861
2862         return arm7_9_write_core_reg(target, num, mode, value);
2863 }
2864
2865 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2866 {
2867         struct target *target = get_current_target(cmd_ctx);
2868         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2869
2870         if (!is_arm7_9(arm7_9))
2871         {
2872                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2873                 return ERROR_TARGET_INVALID;
2874         }
2875
2876         if (argc > 0)
2877         {
2878                 if (strcmp("enable", args[0]) == 0)
2879                 {
2880                         arm7_9->use_dbgrq = 1;
2881                 }
2882                 else if (strcmp("disable", args[0]) == 0)
2883                 {
2884                         arm7_9->use_dbgrq = 0;
2885                 }
2886                 else
2887                 {
2888                         command_print(cmd_ctx, "usage: arm7_9 dbgrq <enable | disable>");
2889                 }
2890         }
2891
2892         command_print(cmd_ctx, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2893
2894         return ERROR_OK;
2895 }
2896
2897 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2898 {
2899         struct target *target = get_current_target(cmd_ctx);
2900         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2901
2902         if (!is_arm7_9(arm7_9))
2903         {
2904                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2905                 return ERROR_TARGET_INVALID;
2906         }
2907
2908         if (argc > 0)
2909         {
2910                 if (strcmp("enable", args[0]) == 0)
2911                 {
2912                         arm7_9->fast_memory_access = 1;
2913                 }
2914                 else if (strcmp("disable", args[0]) == 0)
2915                 {
2916                         arm7_9->fast_memory_access = 0;
2917                 }
2918                 else
2919                 {
2920                         command_print(cmd_ctx, "usage: arm7_9 fast_memory_access <enable | disable>");
2921                 }
2922         }
2923
2924         command_print(cmd_ctx, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2925
2926         return ERROR_OK;
2927 }
2928
2929 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2930 {
2931         struct target *target = get_current_target(cmd_ctx);
2932         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2933
2934         if (!is_arm7_9(arm7_9))
2935         {
2936                 command_print(cmd_ctx, "current target isn't an ARM7/ARM9 target");
2937                 return ERROR_TARGET_INVALID;
2938         }
2939
2940         if (argc > 0)
2941         {
2942                 if (strcmp("enable", args[0]) == 0)
2943                 {
2944                         arm7_9->dcc_downloads = 1;
2945                 }
2946                 else if (strcmp("disable", args[0]) == 0)
2947                 {
2948                         arm7_9->dcc_downloads = 0;
2949                 }
2950                 else
2951                 {
2952                         command_print(cmd_ctx, "usage: arm7_9 dcc_downloads <enable | disable>");
2953                 }
2954         }
2955
2956         command_print(cmd_ctx, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2957
2958         return ERROR_OK;
2959 }
2960
2961 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2962 {
2963         int retval = ERROR_OK;
2964         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2965
2966         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2967
2968         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2969                 return retval;
2970
2971         /* caller must have allocated via calloc(), so everything's zeroed */
2972
2973         arm7_9->wp_available_max = 2;
2974
2975         arm7_9->fast_memory_access = fast_and_dangerous;
2976         arm7_9->dcc_downloads = fast_and_dangerous;
2977
2978         armv4_5->arch_info = arm7_9;
2979         armv4_5->read_core_reg = arm7_9_read_core_reg;
2980         armv4_5->write_core_reg = arm7_9_write_core_reg;
2981         armv4_5->full_context = arm7_9_full_context;
2982
2983         if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
2984                 return retval;
2985
2986         return target_register_timer_callback(arm7_9_handle_target_request,
2987                         1, 1, target);
2988 }
2989
2990 int arm7_9_register_commands(struct command_context *cmd_ctx)
2991 {
2992         struct command *arm7_9_cmd;
2993
2994         arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9",
2995                         NULL, COMMAND_ANY, "arm7/9 specific commands");
2996
2997         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr",
2998                         handle_arm7_9_write_xpsr_command, COMMAND_EXEC,
2999                         "write program status register <value> <not cpsr | spsr>");
3000         register_command(cmd_ctx, arm7_9_cmd, "write_xpsr_im8",
3001                         handle_arm7_9_write_xpsr_im8_command, COMMAND_EXEC,
3002                         "write program status register "
3003                         "<8bit immediate> <rotate> <not cpsr | spsr>");
3004
3005         register_command(cmd_ctx, arm7_9_cmd, "write_core_reg",
3006                         handle_arm7_9_write_core_reg_command, COMMAND_EXEC,
3007                         "write core register <num> <mode> <value>");
3008
3009         register_command(cmd_ctx, arm7_9_cmd, "dbgrq",
3010                         handle_arm7_9_dbgrq_command, COMMAND_ANY,
3011                         "use EmbeddedICE dbgrq instead of breakpoint "
3012                         "for target halt requests <enable | disable>");
3013         register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access",
3014                         handle_arm7_9_fast_memory_access_command, COMMAND_ANY,
3015                         "use fast memory accesses instead of slower "
3016                         "but potentially safer accesses <enable | disable>");
3017         register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads",
3018                         handle_arm7_9_dcc_downloads_command, COMMAND_ANY,
3019                         "use DCC downloads for larger memory writes <enable | disable>");
3020
3021         armv4_5_register_commands(cmd_ctx);
3022
3023         etm_register_commands(cmd_ctx);
3024
3025         return ERROR_OK;
3026 }