027049d84bbaf926dbfafffcbd533f0f9700ba25
[fw/openocd] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2  *   Copyright (C) 2007-2010 by Ã˜yvind Harboe                              *
3  *                                                                         *
4  *   This program is free software; you can redistribute it and/or modify  *
5  *   it under the terms of the GNU General Public License as published by  *
6  *   the Free Software Foundation; either version 2 of the License, or     *
7  *   (at your option) any later version.                                   *
8  *                                                                         *
9  *   This program is distributed in the hope that it will be useful,       *
10  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
12  *   GNU General Public License for more details.                          *
13  *                                                                         *
14  *   You should have received a copy of the GNU General Public License     *
15  *   along with this program; if not, write to the                         *
16  *   Free Software Foundation, Inc.,                                       *
17  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
18  ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21  *
22  * The zy1000 is a standalone debugger that has a web interface and
23  * requires no drivers on the developer host as all communication
24  * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25  * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26  * accelerate the JTAG commands, while offering *very* low latency
27  * between OpenOCD and the FPGA registers.
28  *
29  * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30  * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31  * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32  *
33  * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34  * revb is using ARM7 + Xilinx.
35  *
36  * See Zylin web pages or contact Zylin for more information.
37  *
38  * The reason this code is in OpenOCD rather than OpenOCD linked with the
39  * ZY1000 code is that OpenOCD is the long road towards getting
40  * libopenocd into place. libopenocd will support both low performance,
41  * low latency systems(embedded) and high performance high latency
42  * systems(PCs).
43  */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <pthread.h>
49
50 #include <target/embeddedice.h>
51 #include <jtag/minidriver.h>
52 #include <jtag/interface.h>
53 #include <time.h>
54 #include <helper/time_support.h>
55
56 #include <netinet/tcp.h>
57
58 /* Assume we're connecting to a revc w/60MHz clock. */
59 #define ZYLIN_KHZ 60000
60
61 /* The software needs to check if it's in RCLK mode or not */
62 static bool zy1000_rclk;
63
64 static int zy1000_khz(int khz, int *jtag_speed)
65 {
66         if (khz == 0)
67                 *jtag_speed = 0;
68         else {
69                 int speed;
70                 /* Round speed up to nearest divisor.
71                  *
72                  * E.g. 16000kHz
73                  * (64000 + 15999) / 16000 = 4
74                  * (4 + 1) / 2 = 2
75                  * 2 * 2 = 4
76                  *
77                  * 64000 / 4 = 16000
78                  *
79                  * E.g. 15999
80                  * (64000 + 15998) / 15999 = 5
81                  * (5 + 1) / 2 = 3
82                  * 3 * 2 = 6
83                  *
84                  * 64000 / 6 = 10666
85                  *
86                  */
87                 speed = (ZYLIN_KHZ + (khz - 1)) / khz;
88                 speed = (speed + 1) / 2;
89                 speed *= 2;
90                 if (speed > 8190) {
91                         /* maximum dividend */
92                         speed = 8190;
93                 }
94                 *jtag_speed = speed;
95         }
96         return ERROR_OK;
97 }
98
99 static int zy1000_speed_div(int speed, int *khz)
100 {
101         if (speed == 0)
102                 *khz = 0;
103         else
104                 *khz = ZYLIN_KHZ / speed;
105
106         return ERROR_OK;
107 }
108
109 static bool readPowerDropout(void)
110 {
111         uint32_t state;
112         /* sample and clear power dropout */
113         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
114         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
115         bool powerDropout;
116         powerDropout = (state & 0x80) != 0;
117         return powerDropout;
118 }
119
120
121 static bool readSRST(void)
122 {
123         uint32_t state;
124         /* sample and clear SRST sensing */
125         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
126         ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
127         bool srstAsserted;
128         srstAsserted = (state & 0x40) != 0;
129         return srstAsserted;
130 }
131
132 static int zy1000_srst_asserted(int *srst_asserted)
133 {
134         *srst_asserted = readSRST();
135         return ERROR_OK;
136 }
137
138 static int zy1000_power_dropout(int *dropout)
139 {
140         *dropout = readPowerDropout();
141         return ERROR_OK;
142 }
143
144 /* Wait for SRST to assert or deassert */
145 static void waitSRST(bool asserted)
146 {
147         bool first = true;
148         long long start = 0;
149         long total = 0;
150         const char *mode = asserted ? "assert" : "deassert";
151
152         for (;; ) {
153                 bool srstAsserted = readSRST();
154                 if ((asserted && srstAsserted) || (!asserted && !srstAsserted)) {
155                         if (total > 1)
156                                 LOG_USER("SRST took %dms to %s", (int)total, mode);
157                         break;
158                 }
159
160                 if (first) {
161                         first = false;
162                         start = timeval_ms();
163                 }
164
165                 total = timeval_ms() - start;
166
167                 keep_alive();
168
169                 if (total > 5000) {
170                         LOG_ERROR("SRST took too long to %s: %dms", mode, (int)total);
171                         break;
172                 }
173         }
174 }
175
176 void zy1000_reset(int trst, int srst)
177 {
178         LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
179
180         /* flush the JTAG FIFO. Not flushing the queue before messing with
181          * reset has such interesting bugs as causing hard to reproduce
182          * RCLK bugs as RCLK will stop responding when TRST is asserted
183          */
184         waitIdle();
185
186         if (!srst)
187                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
188         else {
189                 /* Danger!!! if clk != 0 when in
190                  * idle in TAP_IDLE, reset halt on str912 will fail.
191                  */
192                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
193
194                 waitSRST(true);
195         }
196
197         if (!trst)
198                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
199         else {
200                 /* assert reset */
201                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
202         }
203
204         if (trst || (srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST))) {
205                 /* we're now in the RESET state until trst is deasserted */
206                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
207         } else {
208                 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
209                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
210         }
211
212         /* wait for srst to float back up */
213         if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0)) ||
214                         (!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
215                 waitSRST(false);
216 }
217
218 int zy1000_speed(int speed)
219 {
220         /* flush JTAG master FIFO before setting speed */
221         waitIdle();
222
223         zy1000_rclk = false;
224
225         if (speed == 0) {
226                 /*0 means RCLK*/
227                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
228                 zy1000_rclk = true;
229                 LOG_DEBUG("jtag_speed using RCLK");
230         } else {
231                 if (speed > 8190 || speed < 2) {
232                         LOG_USER(
233                                 "valid ZY1000 jtag_speed=[8190,2]. With divisor is %dkHz / even values between 8190-2, i.e. min %dHz, max %dMHz",
234                                 ZYLIN_KHZ,
235                                 (ZYLIN_KHZ * 1000) / 8190,
236                                 ZYLIN_KHZ / (2 * 1000));
237                         return ERROR_COMMAND_SYNTAX_ERROR;
238                 }
239
240                 int khz;
241                 speed &= ~1;
242                 zy1000_speed_div(speed, &khz);
243                 LOG_USER("jtag_speed %d => JTAG clk=%d kHz", speed, khz);
244                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
245                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed);
246         }
247         return ERROR_OK;
248 }
249
250 static bool savePower;
251
252 static void setPower(bool power)
253 {
254         savePower = power;
255         if (power)
256                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
257         else
258                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
259 }
260
261 COMMAND_HANDLER(handle_power_command)
262 {
263         switch (CMD_ARGC) {
264                 case 1: {
265                         bool enable;
266                         COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
267                         setPower(enable);
268                         /* fall through */
269                 }
270                 case 0:
271                         LOG_INFO("Target power %s", savePower ? "on" : "off");
272                         break;
273                 default:
274                         return ERROR_COMMAND_SYNTAX_ERROR;
275         }
276
277         return ERROR_OK;
278 }
279
280 #if !BUILD_ZY1000_MASTER
281 static char *tcp_server = "notspecified";
282 static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
283 {
284         if (argc != 2)
285                 return JIM_ERR;
286
287         tcp_server = strdup(Jim_GetString(argv[1], NULL));
288
289         return JIM_OK;
290 }
291 #endif
292
293 static int zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
294         int argc,
295         Jim_Obj * const *argv)
296 {
297         if (argc != 1) {
298                 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
299                 return JIM_ERR;
300         }
301
302         bool dropout = readPowerDropout();
303
304         Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
305
306         return JIM_OK;
307 }
308
309 int zy1000_quit(void)
310 {
311
312         return ERROR_OK;
313 }
314
315 int interface_jtag_execute_queue(void)
316 {
317         uint32_t empty;
318
319         waitIdle();
320
321         /* We must make sure to write data read back to memory location before we return
322          * from this fn
323          */
324         zy1000_flush_readqueue();
325
326         /* and handle any callbacks... */
327         zy1000_flush_callbackqueue();
328
329         if (zy1000_rclk) {
330                 /* Only check for errors when using RCLK to speed up
331                  * jtag over TCP/IP
332                  */
333                 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
334                 /* clear JTAG error register */
335                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
336
337                 if ((empty&0x400) != 0) {
338                         LOG_WARNING("RCLK timeout");
339                         /* the error is informative only as we don't want to break the firmware if there
340                          * is a false positive.
341                          */
342                         /*              return ERROR_FAIL; */
343                 }
344         }
345         return ERROR_OK;
346 }
347
348 static void writeShiftValue(uint8_t *data, int bits);
349
350 /* here we shuffle N bits out/in */
351 static inline void scanBits(const uint8_t *out_value,
352         uint8_t *in_value,
353         int num_bits,
354         bool pause_now,
355         tap_state_t shiftState,
356         tap_state_t end_state)
357 {
358         tap_state_t pause_state = shiftState;
359         for (int j = 0; j < num_bits; j += 32) {
360                 int k = num_bits - j;
361                 if (k > 32) {
362                         k = 32;
363                         /* we have more to shift out */
364                 } else if (pause_now) {
365                         /* this was the last to shift out this time */
366                         pause_state = end_state;
367                 }
368
369                 /* we have (num_bits + 7)/8 bytes of bits to toggle out. */
370                 /* bits are pushed out LSB to MSB */
371                 uint32_t value;
372                 value = 0;
373                 if (out_value != NULL) {
374                         for (int l = 0; l < k; l += 8)
375                                 value |= out_value[(j + l)/8]<<l;
376                 }
377                 /* mask away unused bits for easier debugging */
378                 if (k < 32)
379                         value &= ~(((uint32_t)0xffffffff) << k);
380                 else {
381                         /* Shifting by >= 32 is not defined by the C standard
382                          * and will in fact shift by &0x1f bits on nios */
383                 }
384
385                 shiftValueInner(shiftState, pause_state, k, value);
386
387                 if (in_value != NULL)
388                         writeShiftValue(in_value + (j/8), k);
389         }
390 }
391
392 static inline void scanFields(int num_fields,
393         const struct scan_field *fields,
394         tap_state_t shiftState,
395         tap_state_t end_state)
396 {
397         for (int i = 0; i < num_fields; i++) {
398                 scanBits(fields[i].out_value,
399                         fields[i].in_value,
400                         fields[i].num_bits,
401                         (i == num_fields-1),
402                         shiftState,
403                         end_state);
404         }
405 }
406
407 int interface_jtag_add_ir_scan(struct jtag_tap *active,
408         const struct scan_field *fields,
409         tap_state_t state)
410 {
411         int scan_size = 0;
412         struct jtag_tap *tap, *nextTap;
413         tap_state_t pause_state = TAP_IRSHIFT;
414
415         for (tap = jtag_tap_next_enabled(NULL); tap != NULL; tap = nextTap) {
416                 nextTap = jtag_tap_next_enabled(tap);
417                 if (nextTap == NULL)
418                         pause_state = state;
419                 scan_size = tap->ir_length;
420
421                 /* search the list */
422                 if (tap == active) {
423                         scanFields(1, fields, TAP_IRSHIFT, pause_state);
424                         /* update device information */
425                         buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
426
427                         tap->bypass = 0;
428                 } else {
429                         /* if a device isn't listed, set it to BYPASS */
430                         assert(scan_size <= 32);
431                         shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
432
433                         /* Optimization code will check what the cur_instr is set to, so
434                          * we must set it to bypass value.
435                          */
436                         buf_set_ones(tap->cur_instr, tap->ir_length);
437
438                         tap->bypass = 1;
439                 }
440         }
441
442         return ERROR_OK;
443 }
444
445 int interface_jtag_add_plain_ir_scan(int num_bits,
446         const uint8_t *out_bits,
447         uint8_t *in_bits,
448         tap_state_t state)
449 {
450         scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
451         return ERROR_OK;
452 }
453
454 int interface_jtag_add_dr_scan(struct jtag_tap *active,
455         int num_fields,
456         const struct scan_field *fields,
457         tap_state_t state)
458 {
459         struct jtag_tap *tap, *nextTap;
460         tap_state_t pause_state = TAP_DRSHIFT;
461         for (tap = jtag_tap_next_enabled(NULL); tap != NULL; tap = nextTap) {
462                 nextTap = jtag_tap_next_enabled(tap);
463                 if (nextTap == NULL)
464                         pause_state = state;
465
466                 /* Find a range of fields to write to this tap */
467                 if (tap == active) {
468                         assert(!tap->bypass);
469
470                         scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
471                 } else {
472                         /* Shift out a 0 for disabled tap's */
473                         assert(tap->bypass);
474                         shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
475                 }
476         }
477         return ERROR_OK;
478 }
479
480 int interface_jtag_add_plain_dr_scan(int num_bits,
481         const uint8_t *out_bits,
482         uint8_t *in_bits,
483         tap_state_t state)
484 {
485         scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
486         return ERROR_OK;
487 }
488
489 int interface_jtag_add_tlr()
490 {
491         setCurrentState(TAP_RESET);
492         return ERROR_OK;
493 }
494
495 int interface_jtag_add_reset(int req_trst, int req_srst)
496 {
497         zy1000_reset(req_trst, req_srst);
498         return ERROR_OK;
499 }
500
501 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
502 {
503         /* num_cycles can be 0 */
504         setCurrentState(clockstate);
505
506         /* execute num_cycles, 32 at the time. */
507         int i;
508         for (i = 0; i < num_cycles; i += 32) {
509                 int num;
510                 num = 32;
511                 if (num_cycles-i < num)
512                         num = num_cycles-i;
513                 shiftValueInner(clockstate, clockstate, num, 0);
514         }
515
516 #if !TEST_MANUAL()
517         /* finish in end_state */
518         setCurrentState(state);
519 #else
520         tap_state_t t = TAP_IDLE;
521         /* test manual drive code on any target */
522         int tms;
523         uint8_t tms_scan = tap_get_tms_path(t, state);
524         int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
525
526         for (i = 0; i < tms_count; i++) {
527                 tms = (tms_scan >> i) & 1;
528                 waitIdle();
529                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28,  tms);
530         }
531         waitIdle();
532         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
533 #endif
534
535         return ERROR_OK;
536 }
537
538 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
539 {
540         return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
541 }
542
543 int interface_jtag_add_clocks(int num_cycles)
544 {
545         return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
546 }
547
548 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
549 {
550         /*wait for the fifo to be empty*/
551         waitIdle();
552
553         for (unsigned i = 0; i < num_bits; i++) {
554                 int tms;
555
556                 if (((seq[i/8] >> (i % 8)) & 1) == 0)
557                         tms = 0;
558                 else
559                         tms = 1;
560
561                 waitIdle();
562                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
563         }
564
565         waitIdle();
566         if (state != TAP_INVALID)
567                 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
568         else {
569                 /* this would be normal if
570                  * we are switching to SWD mode */
571         }
572         return ERROR_OK;
573 }
574
575 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
576 {
577         int state_count;
578         int tms = 0;
579
580         state_count = 0;
581
582         tap_state_t cur_state = cmd_queue_cur_state;
583
584         uint8_t seq[16];
585         memset(seq, 0, sizeof(seq));
586         assert(num_states < (int)((sizeof(seq) * 8)));
587
588         while (num_states) {
589                 if (tap_state_transition(cur_state, false) == path[state_count])
590                         tms = 0;
591                 else if (tap_state_transition(cur_state, true) == path[state_count])
592                         tms = 1;
593                 else {
594                         LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition",
595                                 tap_state_name(cur_state), tap_state_name(path[state_count]));
596                         exit(-1);
597                 }
598
599                 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
600
601                 cur_state = path[state_count];
602                 state_count++;
603                 num_states--;
604         }
605
606         return interface_add_tms_seq(state_count, seq, cur_state);
607 }
608
609 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
610 {
611         /* bypass bits before and after */
612         int pre_bits = 0;
613         int post_bits = 0;
614
615         bool found = false;
616         struct jtag_tap *cur_tap, *nextTap;
617         for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap != NULL; cur_tap = nextTap) {
618                 nextTap = jtag_tap_next_enabled(cur_tap);
619                 if (cur_tap == tap)
620                         found = true;
621                 else {
622                         if (found)
623                                 post_bits++;
624                         else
625                                 pre_bits++;
626                 }
627         }
628         *pre = pre_bits;
629         *post = post_bits;
630 }
631
632 #if 0
633 static const int embeddedice_num_bits[] = {32, 6};
634         uint32_t values[2];
635
636         values[0] = value;
637         values[1] = (1 << 5) | reg_addr;
638
639         jtag_add_dr_out(tap, 2, embeddedice_num_bits, values, TAP_IDLE);
640 #endif
641
642 void embeddedice_write_dcc(struct jtag_tap *tap,
643         int reg_addr,
644         const uint8_t *buffer,
645         int little,
646         int count)
647 {
648 #if 0
649         int i;
650         for (i = 0; i < count; i++) {
651                 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer,
652                                 little));
653                 buffer += 4;
654         }
655 #else
656         int pre_bits;
657         int post_bits;
658         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
659
660         if ((pre_bits > 32) || (post_bits + 6 > 32)) {
661                 int i;
662                 for (i = 0; i < count; i++) {
663                         embeddedice_write_reg_inner(tap, reg_addr,
664                                 fast_target_buffer_get_u32(buffer, little));
665                         buffer += 4;
666                 }
667         } else {
668                 int i;
669                 for (i = 0; i < count; i++) {
670                         /* Fewer pokes means we get to use the FIFO more efficiently */
671                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
672                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32,
673                                 fast_target_buffer_get_u32(buffer, little));
674                         /* Danger! here we need to exit into the TAP_IDLE state to make
675                          * DCC pick up this value.
676                          */
677                         shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits,
678                                 (reg_addr | (1 << 5)));
679                         buffer += 4;
680                 }
681         }
682 #endif
683 }
684
685 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap *tap,
686         uint32_t opcode,
687         const uint32_t *data,
688         size_t count)
689 {
690         /* bypass bits before and after */
691         int pre_bits;
692         int post_bits;
693         jtag_pre_post_bits(tap, &pre_bits, &post_bits);
694         post_bits += 2;
695
696         if ((pre_bits > 32) || (post_bits > 32)) {
697                 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap *,
698                                 uint32_t, const uint32_t *, size_t);
699                 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
700         } else {
701                 static const int bits[] = {32, 2};
702                 uint32_t values[] = {0, 0};
703
704                 /* FIX!!!!!! the target_write_memory() API started this nasty problem
705                  * with unaligned uint32_t * pointers... */
706                 const uint8_t *t = (const uint8_t *)data;
707
708                 while (--count > 0) {
709 #if 1
710                         /* Danger! This code doesn't update cmd_queue_cur_state, so
711                          * invoking jtag_add_pathmove() before jtag_add_dr_out() after
712                          * this loop would fail!
713                          */
714                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
715
716                         uint32_t value;
717                         value = *t++;
718                         value |= (*t++<<8);
719                         value |= (*t++<<16);
720                         value |= (*t++<<24);
721
722                         shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
723                         /* minimum 2 bits */
724                         shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
725
726                         /* copy & paste from arm11_dbgtap.c */
727                         /* TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT,
728                          * TAP_DRCAPTURE, TAP_DRSHIFT */
729                         /* KLUDGE! we have to flush the fifo or the Nios CPU locks up.
730                          * This is probably a bug in the Avalon bus(cross clocking bridge?)
731                          * or in the jtag registers module.
732                          */
733                         waitIdle();
734                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
735                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
736                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
737                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
738                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
739                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
740                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
741                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
742                         /* we don't have to wait for the queue to empty here */
743                         ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
744                         waitIdle();
745 #else
746                         static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] = {
747                                 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE,
748                                 TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
749                         };
750
751                         values[0] = *t++;
752                         values[0] |= (*t++<<8);
753                         values[0] |= (*t++<<16);
754                         values[0] |= (*t++<<24);
755
756                         jtag_add_dr_out(tap,
757                                 2,
758                                 bits,
759                                 values,
760                                 TAP_IDLE);
761
762                         jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
763                                 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
764 #endif
765                 }
766
767                 values[0] = *t++;
768                 values[0] |= (*t++<<8);
769                 values[0] |= (*t++<<16);
770                 values[0] |= (*t++<<24);
771
772                 /* This will happen on the last iteration updating cmd_queue_cur_state
773                  * so we don't have to track it during the common code path
774                  */
775                 jtag_add_dr_out(tap,
776                         2,
777                         bits,
778                         values,
779                         TAP_IDLE);
780
781                 return jtag_execute_queue();
782         }
783 }
784
785 static const struct command_registration zy1000_commands[] = {
786         {
787                 .name = "power",
788                 .handler = handle_power_command,
789                 .mode = COMMAND_ANY,
790                 .help = "Turn power switch to target on/off. "
791                         "With no arguments, prints status.",
792                 .usage = "('on'|'off)",
793         },
794 #if !BUILD_ZY1000_MASTER
795         {
796                 .name = "zy1000_server",
797                 .mode = COMMAND_ANY,
798                 .jim_handler = jim_zy1000_server,
799                 .help = "Tcpip address for ZY1000 server.",
800                 .usage = "address",
801         },
802 #endif
803         {
804                 .name = "powerstatus",
805                 .mode = COMMAND_ANY,
806                 .jim_handler = zylinjtag_Jim_Command_powerstatus,
807                 .help = "Returns power status of target",
808         },
809         COMMAND_REGISTRATION_DONE
810 };
811
812 #if !BUILD_ZY1000_MASTER
813
814 static int tcp_ip = -1;
815
816 /* Write large packets if we can */
817 static size_t out_pos;
818 static uint8_t out_buffer[16384];
819 static size_t in_pos;
820 static size_t in_write;
821 static uint8_t in_buffer[16384];
822
823 static bool flush_writes(void)
824 {
825         bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
826         out_pos = 0;
827         return ok;
828 }
829
830 static bool writeLong(uint32_t l)
831 {
832         int i;
833         for (i = 0; i < 4; i++) {
834                 uint8_t c = (l >> (i*8))&0xff;
835                 out_buffer[out_pos++] = c;
836                 if (out_pos >= sizeof(out_buffer)) {
837                         if (!flush_writes())
838                                 return false;
839                 }
840         }
841         return true;
842 }
843
844 static bool readLong(uint32_t *out_data)
845 {
846         uint32_t data = 0;
847         int i;
848         for (i = 0; i < 4; i++) {
849                 uint8_t c;
850                 if (in_pos == in_write) {
851                         /* If we have some data that we can send, send them before
852                          * we wait for more data
853                          */
854                         if (out_pos > 0) {
855                                 if (!flush_writes())
856                                         return false;
857                         }
858
859                         /* read more */
860                         int t;
861                         t = read(tcp_ip, in_buffer, sizeof(in_buffer));
862                         if (t < 1)
863                                 return false;
864                         in_write = (size_t) t;
865                         in_pos = 0;
866                 }
867                 c = in_buffer[in_pos++];
868
869                 data |= (c << (i*8));
870         }
871         *out_data = data;
872         return true;
873 }
874
875 enum ZY1000_CMD {
876         ZY1000_CMD_POKE = 0x0,
877         ZY1000_CMD_PEEK = 0x8,
878         ZY1000_CMD_SLEEP = 0x1,
879         ZY1000_CMD_WAITIDLE = 2
880 };
881
882 #include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
883 #include <arpa/inet.h>  /* for sockaddr_in and inet_addr() */
884
885 /* We initialize this late since we need to know the server address
886  * first.
887  */
888 static void tcpip_open(void)
889 {
890         if (tcp_ip >= 0)
891                 return;
892
893         struct sockaddr_in echoServAddr;/* Echo server address */
894
895         /* Create a reliable, stream socket using TCP */
896         tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
897         if (tcp_ip < 0) {
898                 fprintf(stderr, "Failed to connect to zy1000 server\n");
899                 exit(-1);
900         }
901
902         /* Construct the server address structure */
903         memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
904         echoServAddr.sin_family = AF_INET;      /* Internet address family */
905         echoServAddr.sin_addr.s_addr = inet_addr(tcp_server);   /* Server IP address */
906         echoServAddr.sin_port = htons(7777);    /* Server port */
907
908         /* Establish the connection to the echo server */
909         if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0) {
910                 fprintf(stderr, "Failed to connect to zy1000 server\n");
911                 exit(-1);
912         }
913
914         int flag = 1;
915         setsockopt(tcp_ip,      /* socket affected */
916                 IPPROTO_TCP,                    /* set option at TCP level */
917                 TCP_NODELAY,                    /* name of option */
918                 (char *)&flag,                  /* the cast is historical cruft */
919                 sizeof(int));                   /* length of option value */
920
921 }
922
923 /* send a poke */
924 void zy1000_tcpout(uint32_t address, uint32_t data)
925 {
926         tcpip_open();
927         if (!writeLong((ZY1000_CMD_POKE << 24) | address) || !writeLong(data)) {
928                 fprintf(stderr, "Could not write to zy1000 server\n");
929                 exit(-1);
930         }
931 }
932
933 /* By sending the wait to the server, we avoid a readback
934  * of status. Radically improves performance for this operation
935  * with long ping times.
936  */
937 void waitIdle(void)
938 {
939         tcpip_open();
940         if (!writeLong((ZY1000_CMD_WAITIDLE << 24))) {
941                 fprintf(stderr, "Could not write to zy1000 server\n");
942                 exit(-1);
943         }
944 }
945
946 uint32_t zy1000_tcpin(uint32_t address)
947 {
948         tcpip_open();
949
950         zy1000_flush_readqueue();
951
952         uint32_t data;
953         if (!writeLong((ZY1000_CMD_PEEK << 24) | address) || !readLong(&data)) {
954                 fprintf(stderr, "Could not read from zy1000 server\n");
955                 exit(-1);
956         }
957         return data;
958 }
959
960 int interface_jtag_add_sleep(uint32_t us)
961 {
962         tcpip_open();
963         if (!writeLong((ZY1000_CMD_SLEEP << 24)) || !writeLong(us)) {
964                 fprintf(stderr, "Could not read from zy1000 server\n");
965                 exit(-1);
966         }
967         return ERROR_OK;
968 }
969
970 /* queue a readback */
971 #define readqueue_size 16384
972 static struct {
973         uint8_t *dest;
974         int bits;
975 } readqueue[readqueue_size];
976
977 static int readqueue_pos;
978
979 /* flush the readqueue, this means reading any data that
980  * we're expecting and store them into the final position
981  */
982 void zy1000_flush_readqueue(void)
983 {
984         if (readqueue_pos == 0) {
985                 /* simply debugging by allowing easy breakpoints when there
986                  * is something to do. */
987                 return;
988         }
989         int i;
990         tcpip_open();
991         for (i = 0; i < readqueue_pos; i++) {
992                 uint32_t value;
993                 if (!readLong(&value)) {
994                         fprintf(stderr, "Could not read from zy1000 server\n");
995                         exit(-1);
996                 }
997
998                 uint8_t *in_value = readqueue[i].dest;
999                 int k = readqueue[i].bits;
1000
1001                 /* we're shifting in data to MSB, shift data to be aligned for returning the value */
1002                 value >>= 32-k;
1003
1004                 for (int l = 0; l < k; l += 8)
1005                         in_value[l/8] = (value >> l)&0xff;
1006         }
1007         readqueue_pos = 0;
1008 }
1009
1010 /* By queuing the callback's we avoid flushing the
1011  * read queue until jtag_execute_queue(). This can
1012  * reduce latency dramatically for cases where
1013  * callbacks are used extensively.
1014 */
1015 #define callbackqueue_size 128
1016 static struct callbackentry {
1017         jtag_callback_t callback;
1018         jtag_callback_data_t data0;
1019         jtag_callback_data_t data1;
1020         jtag_callback_data_t data2;
1021         jtag_callback_data_t data3;
1022 } callbackqueue[callbackqueue_size];
1023
1024 static int callbackqueue_pos;
1025
1026 void zy1000_jtag_add_callback4(jtag_callback_t callback,
1027         jtag_callback_data_t data0,
1028         jtag_callback_data_t data1,
1029         jtag_callback_data_t data2,
1030         jtag_callback_data_t data3)
1031 {
1032         if (callbackqueue_pos >= callbackqueue_size)
1033                 zy1000_flush_callbackqueue();
1034
1035         callbackqueue[callbackqueue_pos].callback = callback;
1036         callbackqueue[callbackqueue_pos].data0 = data0;
1037         callbackqueue[callbackqueue_pos].data1 = data1;
1038         callbackqueue[callbackqueue_pos].data2 = data2;
1039         callbackqueue[callbackqueue_pos].data3 = data3;
1040         callbackqueue_pos++;
1041
1042         /* KLUDGE!
1043          * make callbacks synchronous for now as minidriver requires callback
1044          * to be synchronous.
1045          *
1046          * We can get away with making read and writes asynchronous so we
1047          * don't completely kill performance.
1048          */
1049         zy1000_flush_callbackqueue();
1050 }
1051
1052 static int zy1000_jtag_convert_to_callback4(jtag_callback_data_t data0,
1053         jtag_callback_data_t data1,
1054         jtag_callback_data_t data2,
1055         jtag_callback_data_t data3)
1056 {
1057         ((jtag_callback1_t)data1)(data0);
1058         return ERROR_OK;
1059 }
1060
1061 void zy1000_jtag_add_callback(jtag_callback1_t callback, jtag_callback_data_t data0)
1062 {
1063         zy1000_jtag_add_callback4(zy1000_jtag_convert_to_callback4,
1064                 data0,
1065                 (jtag_callback_data_t)callback,
1066                 0,
1067                 0);
1068 }
1069
1070 void zy1000_flush_callbackqueue(void)
1071 {
1072         /* we have to flush the read queue so we have access to
1073          the data the callbacks will use
1074         */
1075         zy1000_flush_readqueue();
1076         int i;
1077         for (i = 0; i < callbackqueue_pos; i++) {
1078                 struct callbackentry *entry = &callbackqueue[i];
1079                 jtag_set_error(entry->callback(entry->data0, entry->data1, entry->data2,
1080                                 entry->data3));
1081         }
1082         callbackqueue_pos = 0;
1083 }
1084
1085 static void writeShiftValue(uint8_t *data, int bits)
1086 {
1087         waitIdle();
1088
1089         if (!writeLong((ZY1000_CMD_PEEK << 24) | (ZY1000_JTAG_BASE + 0xc))) {
1090                 fprintf(stderr, "Could not read from zy1000 server\n");
1091                 exit(-1);
1092         }
1093
1094         if (readqueue_pos >= readqueue_size)
1095                 zy1000_flush_readqueue();
1096
1097         readqueue[readqueue_pos].dest = data;
1098         readqueue[readqueue_pos].bits = bits;
1099         readqueue_pos++;
1100
1101         /* KLUDGE!!! minidriver requires readqueue to be synchronous */
1102         zy1000_flush_readqueue();
1103 }
1104
1105 #else
1106
1107 static void writeShiftValue(uint8_t *data, int bits)
1108 {
1109         uint32_t value;
1110         waitIdle();
1111         ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
1112         VERBOSE(LOG_INFO("getShiftValue %08x", value));
1113
1114         /* data in, LSB to MSB */
1115         /* we're shifting in data to MSB, shift data to be aligned for returning the value */
1116         value >>= 32 - bits;
1117
1118         for (int l = 0; l < bits; l += 8)
1119                 data[l/8] = (value >> l)&0xff;
1120 }
1121
1122 #endif
1123
1124 #if BUILD_ZY1000_MASTER
1125
1126 #ifdef WATCHDOG_BASE
1127 /* If we connect to port 8888 we must send a char every 10s or the board resets itself */
1128 static void watchdog_server(cyg_addrword_t data)
1129 {
1130         int so_reuseaddr_option = 1;
1131
1132         int fd = socket(AF_INET, SOCK_STREAM, 0);
1133         if (fd == -1) {
1134                 LOG_ERROR("error creating socket: %s", strerror(errno));
1135                 exit(-1);
1136         }
1137
1138         setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void *) &so_reuseaddr_option,
1139                 sizeof(int));
1140
1141         struct sockaddr_in sin;
1142         unsigned int address_size;
1143         address_size = sizeof(sin);
1144         memset(&sin, 0, sizeof(sin));
1145         sin.sin_family = AF_INET;
1146         sin.sin_addr.s_addr = INADDR_ANY;
1147         sin.sin_port = htons(8888);
1148
1149         if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1) {
1150                 LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
1151                 exit(-1);
1152         }
1153
1154         if (listen(fd, 1) == -1) {
1155                 LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
1156                 exit(-1);
1157         }
1158
1159
1160         for (;; ) {
1161                 int watchdog_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
1162
1163                 /* Start watchdog, must be reset every 10 seconds. */
1164                 HAL_WRITE_UINT32(WATCHDOG_BASE + 4, 4);
1165
1166                 if (watchdog_ip < 0) {
1167                         LOG_ERROR("couldn't open watchdog socket: %s", strerror(errno));
1168                         exit(-1);
1169                 }
1170
1171                 int flag = 1;
1172                 setsockopt(watchdog_ip, /* socket affected */
1173                         IPPROTO_TCP,                    /* set option at TCP level */
1174                         TCP_NODELAY,                    /* name of option */
1175                         (char *)&flag,                  /* the cast is historical cruft */
1176                         sizeof(int));                   /* length of option value */
1177
1178
1179                 char buf;
1180                 for (;; ) {
1181                         if (read(watchdog_ip, &buf, 1) == 1) {
1182                                 /* Reset timer */
1183                                 HAL_WRITE_UINT32(WATCHDOG_BASE + 8, 0x1234);
1184                                 /* Echo so we can telnet in and see that resetting works */
1185                                 write(watchdog_ip, &buf, 1);
1186                         } else {
1187                                 /* Stop tickling the watchdog, the CPU will reset in < 10 seconds
1188                                  * now.
1189                                  */
1190                                 return;
1191                         }
1192
1193                 }
1194
1195                 /* Never reached */
1196         }
1197 }
1198 #endif
1199
1200 #endif
1201
1202 #if BUILD_ZY1000_MASTER
1203 int interface_jtag_add_sleep(uint32_t us)
1204 {
1205         jtag_sleep(us);
1206         return ERROR_OK;
1207 }
1208 #endif
1209
1210 #if BUILD_ZY1000_MASTER
1211 volatile void *zy1000_jtag_master;
1212 #include <sys/mman.h>
1213 #endif
1214
1215 int zy1000_init(void)
1216 {
1217 #if BUILD_ZY1000_MASTER
1218         int fd = open("/dev/mem", O_RDWR | O_SYNC);
1219         if (fd == -1) {
1220                 LOG_ERROR("No access to /dev/mem");
1221                 return ERROR_FAIL;
1222         }
1223 #ifndef REGISTERS_BASE
1224 #define REGISTERS_BASE 0x9002000
1225 #define REGISTERS_SPAN 128
1226 #endif
1227
1228         zy1000_jtag_master = mmap(0,
1229                         REGISTERS_SPAN,
1230                         PROT_READ | PROT_WRITE,
1231                         MAP_SHARED,
1232                         fd,
1233                         REGISTERS_BASE);
1234
1235         if (zy1000_jtag_master == (void *) -1) {
1236                 close(fd);
1237                 LOG_ERROR("No access to /dev/mem");
1238                 return ERROR_FAIL;
1239         }
1240 #endif
1241
1242         ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30);     /* Turn on LED1 & LED2 */
1243
1244         setPower(true); /* on by default */
1245
1246         /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
1247         zy1000_reset(0, 0);
1248
1249         return ERROR_OK;
1250 }
1251
1252 struct jtag_interface zy1000_interface = {
1253         .name = "ZY1000",
1254         .supported = DEBUG_CAP_TMS_SEQ,
1255         .execute_queue = NULL,
1256         .speed = zy1000_speed,
1257         .commands = zy1000_commands,
1258         .init = zy1000_init,
1259         .quit = zy1000_quit,
1260         .khz = zy1000_khz,
1261         .speed_div = zy1000_speed_div,
1262         .power_dropout = zy1000_power_dropout,
1263         .srst_asserted = zy1000_srst_asserted,
1264 };