openocd: fix SPDX tag format for files .c
[fw/openocd] / src / flash / nor / stm32f2x.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /***************************************************************************
4  *   Copyright (C) 2005 by Dominic Rath                                    *
5  *   Dominic.Rath@gmx.de                                                   *
6  *                                                                         *
7  *   Copyright (C) 2008 by Spencer Oliver                                  *
8  *   spen@spen-soft.co.uk                                                  *
9  *                                                                         *
10  *   Copyright (C) 2011 Ã˜yvind Harboe                                      *
11  *   oyvind.harboe@zylin.com                                               *
12  ***************************************************************************/
13
14 #ifdef HAVE_CONFIG_H
15 #include "config.h"
16 #endif
17
18 #include "imp.h"
19 #include <helper/binarybuffer.h>
20 #include <target/algorithm.h>
21 #include <target/cortex_m.h>
22
23 /* Regarding performance:
24  *
25  * Short story - it might be best to leave the performance at
26  * current levels.
27  *
28  * You may see a jump in speed if you change to using
29  * 32bit words for the block programming.
30  *
31  * Its a shame you cannot use the double word as its
32  * even faster - but you require external VPP for that mode.
33  *
34  * Having said all that 16bit writes give us the widest vdd
35  * operating range, so may be worth adding a note to that effect.
36  *
37  */
38
39 /* Danger!!!! The STM32F1x and STM32F2x series actually have
40  * quite different flash controllers.
41  *
42  * What's more scary is that the names of the registers and their
43  * addresses are the same, but the actual bits and what they do are
44  * can be very different.
45  *
46  * To reduce testing complexity and dangers of regressions,
47  * a separate file is used for stm32fx2x.
48  *
49  * Sector sizes in kiBytes:
50  * 1 MiByte part with 4 x 16, 1 x 64, 7 x 128.
51  * 1.5 MiByte part with 4 x 16, 1 x 64, 11 x 128.
52  * 2 MiByte part with 4 x 16, 1 x 64, 7 x 128, 4 x 16, 1 x 64, 7 x 128.
53  * 1 MiByte STM32F42x/43x part with DB1M Option set:
54  *                    4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128.
55  *
56  * STM32F7[2|3]
57  * 512 kiByte part with 4 x 16, 1 x 64, 3 x 128.
58  *
59  * STM32F7[4|5]
60  * 1 MiByte part with 4 x 32, 1 x 128, 3 x 256.
61  *
62  * STM32F7[6|7]
63  * 1 MiByte part in single bank mode with 4 x 32, 1 x 128, 3 x 256.
64  * 1 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 3 x 128 each.
65  * 2 MiByte part in single-bank mode with 4 x 32, 1 x 128, 7 x 256.
66  * 2 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 7 x 128 each.
67  *
68  * Protection size is sector size.
69  *
70  * Tested with STM3220F-EVAL board.
71  *
72  * STM32F4xx series for reference.
73  *
74  * RM0090
75  * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf
76  *
77  * PM0059
78  * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
79  * PROGRAMMING_MANUAL/CD00233952.pdf
80  *
81  * STM32F7xx series for reference.
82  *
83  * RM0385
84  * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf
85  *
86  * RM0410
87  * http://www.st.com/resource/en/reference_manual/dm00224583.pdf
88  *
89  * RM0430
90  * http://www.st.com/resource/en/reference_manual/dm00305666.pdf
91  *
92  * RM0431
93  * http://www.st.com/resource/en/reference_manual/dm00305990.pdf
94  *
95  * STM32F1x series - notice that this code was copy, pasted and knocked
96  * into a stm32f2x driver, so in case something has been converted or
97  * bugs haven't been fixed, here are the original manuals:
98  *
99  * RM0008 - Reference manual
100  *
101  * RM0042, the Flash programming manual for low-, medium- high-density and
102  * connectivity line STM32F10x devices
103  *
104  * PM0068, the Flash programming manual for XL-density STM32F10x devices.
105  *
106  */
107
108 /* Erase time can be as high as 1000ms, 10x this and it's toast... */
109 #define FLASH_ERASE_TIMEOUT 10000
110 #define FLASH_WRITE_TIMEOUT 5
111
112 /* Mass erase time can be as high as 32 s in x8 mode. */
113 #define FLASH_MASS_ERASE_TIMEOUT 33000
114
115 #define FLASH_BANK_BASE     0x80000000
116
117 #define STM32F2_OTP_SIZE 512
118 #define STM32F2_OTP_SECTOR_SIZE 32
119 #define STM32F2_OTP_BANK_BASE       0x1fff7800
120 #define STM32F2_OTP_LOCK_BASE       ((STM32F2_OTP_BANK_BASE) + (STM32F2_OTP_SIZE))
121
122 /* see RM0410 section 3.6 "One-time programmable bytes" */
123 #define STM32F7_OTP_SECTOR_SIZE 64
124 #define STM32F7_OTP_SIZE 1024
125 #define STM32F7_OTP_BANK_BASE       0x1ff0f000
126 #define STM32F7_OTP_LOCK_BASE       ((STM32F7_OTP_BANK_BASE) + (STM32F7_OTP_SIZE))
127
128 #define STM32_FLASH_BASE    0x40023c00
129 #define STM32_FLASH_ACR     0x40023c00
130 #define STM32_FLASH_KEYR    0x40023c04
131 #define STM32_FLASH_OPTKEYR 0x40023c08
132 #define STM32_FLASH_SR      0x40023c0C
133 #define STM32_FLASH_CR      0x40023c10
134 #define STM32_FLASH_OPTCR   0x40023c14
135 #define STM32_FLASH_OPTCR1  0x40023c18
136 #define STM32_FLASH_OPTCR2  0x40023c1c
137
138 /* FLASH_CR register bits */
139 #define FLASH_PG       (1 << 0)
140 #define FLASH_SER      (1 << 1)
141 #define FLASH_MER      (1 << 2)         /* MER/MER1 for f76x/77x */
142 #define FLASH_MER1     (1 << 15)        /* MER2 for f76x/77x, confusing ... */
143 #define FLASH_STRT     (1 << 16)
144 #define FLASH_PSIZE_8  (0 << 8)
145 #define FLASH_PSIZE_16 (1 << 8)
146 #define FLASH_PSIZE_32 (2 << 8)
147 #define FLASH_PSIZE_64 (3 << 8)
148 /* The sector number encoding is not straight binary for dual bank flash. */
149 #define FLASH_SNB(a)   ((a) << 3)
150 #define FLASH_LOCK     (1 << 31)
151
152 /* FLASH_SR register bits */
153 #define FLASH_BSY      (1 << 16)
154 #define FLASH_PGSERR   (1 << 7) /* Programming sequence error */
155 #define FLASH_PGPERR   (1 << 6) /* Programming parallelism error */
156 #define FLASH_PGAERR   (1 << 5) /* Programming alignment error */
157 #define FLASH_WRPERR   (1 << 4) /* Write protection error */
158 #define FLASH_OPERR    (1 << 1) /* Operation error */
159
160 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
161
162 /* STM32_FLASH_OPTCR register bits */
163 #define OPTCR_LOCK     (1 << 0)
164 #define OPTCR_START    (1 << 1)
165 #define OPTCR_NDBANK   (1 << 29)        /* not dual bank mode */
166 #define OPTCR_DB1M     (1 << 30)        /* 1 MiB devices dual flash bank option */
167 #define OPTCR_SPRMOD   (1 << 31)        /* switches PCROPi/nWPRi interpretation */
168
169 /* STM32_FLASH_OPTCR2 register bits */
170 #define OPTCR2_PCROP_RDP        (1 << 31)       /* erase PCROP zone when decreasing RDP */
171
172 /* register unlock keys */
173 #define KEY1           0x45670123
174 #define KEY2           0xCDEF89AB
175
176 /* option register unlock key */
177 #define OPTKEY1        0x08192A3B
178 #define OPTKEY2        0x4C5D6E7F
179
180 struct stm32x_options {
181         uint8_t RDP;
182         uint16_t user_options;  /* bit 0-7 usual options, bit 8-11 extra options */
183         uint32_t protection;
184         uint32_t boot_addr;
185         uint32_t optcr2_pcrop;
186 };
187
188 struct stm32x_flash_bank {
189         struct stm32x_options option_bytes;
190         bool probed;
191         bool otp_unlocked;
192         bool has_large_mem;             /* F42x/43x/469/479/7xx in dual bank mode */
193         bool has_extra_options; /* F42x/43x/469/479/7xx */
194         bool has_boot_addr;     /* F7xx */
195         bool has_optcr2_pcrop;  /* F72x/73x */
196         unsigned int protection_bits; /* F413/423 */
197         uint32_t user_bank_size;
198 };
199
200 static bool stm32x_is_otp(struct flash_bank *bank)
201 {
202         return bank->base == STM32F2_OTP_BANK_BASE ||
203                 bank->base == STM32F7_OTP_BANK_BASE;
204 }
205
206 static bool stm32x_otp_is_f7(struct flash_bank *bank)
207 {
208         return bank->base == STM32F7_OTP_BANK_BASE;
209 }
210
211 static int stm32x_is_otp_unlocked(struct flash_bank *bank)
212 {
213         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
214
215         return stm32x_info->otp_unlocked;
216 }
217
218 static int stm32x_otp_disable(struct flash_bank *bank)
219 {
220         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
221
222         LOG_INFO("OTP memory bank #%u is disabled for write commands.",
223                  bank->bank_number);
224         stm32x_info->otp_unlocked = false;
225         return ERROR_OK;
226 }
227
228 static int stm32x_otp_enable(struct flash_bank *bank)
229 {
230         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
231
232         if (!stm32x_info->otp_unlocked) {
233                 LOG_INFO("OTP memory bank #%u is is enabled for write commands.",
234                          bank->bank_number);
235                 stm32x_info->otp_unlocked = true;
236         } else {
237                 LOG_WARNING("OTP memory bank #%u is is already enabled for write commands.",
238                             bank->bank_number);
239         }
240         return ERROR_OK;
241 }
242
243 /* flash bank stm32x <base> <size> 0 0 <target#>
244  */
245 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
246 {
247         struct stm32x_flash_bank *stm32x_info;
248
249         if (CMD_ARGC < 6)
250                 return ERROR_COMMAND_SYNTAX_ERROR;
251
252         stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
253         bank->driver_priv = stm32x_info;
254
255         stm32x_info->probed = false;
256         stm32x_info->otp_unlocked = false;
257         stm32x_info->user_bank_size = bank->size;
258
259         return ERROR_OK;
260 }
261
262 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
263 {
264         return reg;
265 }
266
267 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
268 {
269         struct target *target = bank->target;
270         return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
271 }
272
273 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
274 {
275         struct target *target = bank->target;
276         uint32_t status;
277         int retval = ERROR_OK;
278
279         /* wait for busy to clear */
280         for (;;) {
281                 retval = stm32x_get_flash_status(bank, &status);
282                 if (retval != ERROR_OK)
283                         return retval;
284                 LOG_DEBUG("status: 0x%" PRIx32, status);
285                 if ((status & FLASH_BSY) == 0)
286                         break;
287                 if (timeout-- <= 0) {
288                         LOG_ERROR("timed out waiting for flash");
289                         return ERROR_FAIL;
290                 }
291                 alive_sleep(1);
292         }
293
294
295         if (status & FLASH_WRPERR) {
296                 LOG_ERROR("stm32x device protected");
297                 retval = ERROR_FAIL;
298         }
299
300         /* Clear but report errors */
301         if (status & FLASH_ERROR) {
302                 if (retval == ERROR_OK)
303                         retval = ERROR_FAIL;
304                 /* If this operation fails, we ignore it and report the original
305                  * retval
306                  */
307                 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
308                                 status & FLASH_ERROR);
309         }
310         return retval;
311 }
312
313 static int stm32x_unlock_reg(struct target *target)
314 {
315         uint32_t ctrl;
316
317         /* first check if not already unlocked
318          * otherwise writing on STM32_FLASH_KEYR will fail
319          */
320         int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
321         if (retval != ERROR_OK)
322                 return retval;
323
324         if ((ctrl & FLASH_LOCK) == 0)
325                 return ERROR_OK;
326
327         /* unlock flash registers */
328         retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
329         if (retval != ERROR_OK)
330                 return retval;
331
332         retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
333         if (retval != ERROR_OK)
334                 return retval;
335
336         retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
337         if (retval != ERROR_OK)
338                 return retval;
339
340         if (ctrl & FLASH_LOCK) {
341                 LOG_ERROR("flash not unlocked STM32_FLASH_CR: 0x%" PRIx32, ctrl);
342                 return ERROR_TARGET_FAILURE;
343         }
344
345         return ERROR_OK;
346 }
347
348 static int stm32x_unlock_option_reg(struct target *target)
349 {
350         uint32_t ctrl;
351
352         int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
353         if (retval != ERROR_OK)
354                 return retval;
355
356         if ((ctrl & OPTCR_LOCK) == 0)
357                 return ERROR_OK;
358
359         /* unlock option registers */
360         retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
361         if (retval != ERROR_OK)
362                 return retval;
363
364         retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
365         if (retval != ERROR_OK)
366                 return retval;
367
368         retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
369         if (retval != ERROR_OK)
370                 return retval;
371
372         if (ctrl & OPTCR_LOCK) {
373                 LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: 0x%" PRIx32, ctrl);
374                 return ERROR_TARGET_FAILURE;
375         }
376
377         return ERROR_OK;
378 }
379
380 static int stm32x_read_options(struct flash_bank *bank)
381 {
382         uint32_t optiondata;
383         struct stm32x_flash_bank *stm32x_info = NULL;
384         struct target *target = bank->target;
385
386         stm32x_info = bank->driver_priv;
387
388         /* read current option bytes */
389         int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
390         if (retval != ERROR_OK)
391                 return retval;
392
393     /* caution: F2 implements 5 bits (WDG_SW only)
394      * whereas F7 6 bits (IWDG_SW and WWDG_SW) in user_options */
395         stm32x_info->option_bytes.user_options = optiondata & 0xfc;
396         stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
397         stm32x_info->option_bytes.protection =
398                 (optiondata >> 16) & (~(0xffff << stm32x_info->protection_bits) & 0xffff);
399
400         if (stm32x_info->has_extra_options) {
401                 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
402                 stm32x_info->option_bytes.user_options |= (optiondata >> 20) &
403                         ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00);
404         }
405
406         if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
407                 retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
408                 if (retval != ERROR_OK)
409                         return retval;
410
411                 /* FLASH_OPTCR1 has quite different meanings ... */
412                 if (stm32x_info->has_boot_addr) {
413                         /* for F7xx it contains boot0 and boot1 */
414                         stm32x_info->option_bytes.boot_addr = optiondata;
415                 } else {
416                         /* for F42x/43x/469/479 it contains 12 additional protection bits */
417                         stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
418                 }
419         }
420
421         if (stm32x_info->has_optcr2_pcrop) {
422                 retval = target_read_u32(target, STM32_FLASH_OPTCR2, &optiondata);
423                 if (retval != ERROR_OK)
424                         return retval;
425
426                 stm32x_info->option_bytes.optcr2_pcrop = optiondata;
427                 if (stm32x_info->has_optcr2_pcrop &&
428                         (stm32x_info->option_bytes.optcr2_pcrop & ~OPTCR2_PCROP_RDP)) {
429                         LOG_INFO("PCROP Engaged");
430                 }
431         } else {
432                 stm32x_info->option_bytes.optcr2_pcrop = 0x0;
433         }
434
435         if (stm32x_info->option_bytes.RDP != 0xAA)
436                 LOG_INFO("Device Security Bit Set");
437
438         return ERROR_OK;
439 }
440
441 static int stm32x_write_options(struct flash_bank *bank)
442 {
443         struct stm32x_flash_bank *stm32x_info = NULL;
444         struct target *target = bank->target;
445         uint32_t optiondata, optiondata2;
446
447         stm32x_info = bank->driver_priv;
448
449         int retval = stm32x_unlock_option_reg(target);
450         if (retval != ERROR_OK)
451                 return retval;
452
453         /* rebuild option data */
454         optiondata = stm32x_info->option_bytes.user_options & 0xfc;
455         optiondata |= stm32x_info->option_bytes.RDP << 8;
456         optiondata |= (stm32x_info->option_bytes.protection &
457                 (~(0xffff << stm32x_info->protection_bits))) << 16;
458
459         if (stm32x_info->has_extra_options) {
460                 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
461                 optiondata |= (stm32x_info->option_bytes.user_options &
462                         ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00)) << 20;
463         }
464
465         if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
466                 if (stm32x_info->has_boot_addr) {
467                         /* F7xx uses FLASH_OPTCR1 for boot0 and boot1 ... */
468                         optiondata2 = stm32x_info->option_bytes.boot_addr;
469                 } else {
470                         /* F42x/43x/469/479 uses FLASH_OPTCR1 for additional protection bits */
471                         optiondata2 = (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
472                 }
473
474                 retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
475                 if (retval != ERROR_OK)
476                         return retval;
477         }
478
479         /* program extra pcrop register */
480         if (stm32x_info->has_optcr2_pcrop) {
481                 retval = target_write_u32(target, STM32_FLASH_OPTCR2,
482                         stm32x_info->option_bytes.optcr2_pcrop);
483                 if (retval != ERROR_OK)
484                         return retval;
485         }
486
487         /* program options */
488         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
489         if (retval != ERROR_OK)
490                 return retval;
491
492         /* start programming cycle */
493         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_START);
494         if (retval != ERROR_OK)
495                 return retval;
496
497         /* wait for completion, this might trigger a security erase and take a while */
498         retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
499         if (retval != ERROR_OK)
500                 return retval;
501
502         /* relock registers */
503         retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_LOCK);
504         if (retval != ERROR_OK)
505                 return retval;
506
507         return ERROR_OK;
508 }
509
510 static int stm32x_otp_read_protect(struct flash_bank *bank)
511 {
512         struct target *target = bank->target;
513         uint32_t lock_base;
514         int retval;
515         uint8_t lock;
516
517         lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
518                   : STM32F2_OTP_LOCK_BASE;
519
520         for (unsigned int i = 0; i < bank->num_sectors; i++) {
521                 retval = target_read_u8(target, lock_base + i, &lock);
522                 if (retval != ERROR_OK)
523                         return retval;
524                 bank->sectors[i].is_protected = !lock;
525         }
526
527         return ERROR_OK;
528 }
529
530 static int stm32x_otp_protect(struct flash_bank *bank, unsigned int first,
531                 unsigned int last)
532 {
533         struct target *target = bank->target;
534         uint32_t lock_base;
535         int i, retval;
536         uint8_t lock;
537
538         assert((first <= last) && (last < bank->num_sectors));
539
540         lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
541                   : STM32F2_OTP_LOCK_BASE;
542
543         for (i = first; first <= last; i++) {
544                 retval = target_read_u8(target, lock_base + i, &lock);
545                 if (retval != ERROR_OK)
546                         return retval;
547                 if (lock)
548                         continue;
549
550                 lock = 0xff;
551                 retval = target_write_u8(target, lock_base + i, lock);
552                 if (retval != ERROR_OK)
553                         return retval;
554         }
555
556         return ERROR_OK;
557 }
558
559 static int stm32x_protect_check(struct flash_bank *bank)
560 {
561         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
562         struct flash_sector *prot_blocks;
563         unsigned int num_prot_blocks;
564         int retval;
565
566         /* if it's the OTP bank, look at the lock bits there */
567         if (stm32x_is_otp(bank))
568                 return stm32x_otp_read_protect(bank);
569
570         /* read write protection settings */
571         retval = stm32x_read_options(bank);
572         if (retval != ERROR_OK) {
573                 LOG_DEBUG("unable to read option bytes");
574                 return retval;
575         }
576
577         if (bank->prot_blocks) {
578                 num_prot_blocks = bank->num_prot_blocks;
579                 prot_blocks = bank->prot_blocks;
580         } else {
581                 num_prot_blocks = bank->num_sectors;
582                 prot_blocks = bank->sectors;
583         }
584
585         for (unsigned int i = 0; i < num_prot_blocks; i++)
586                 prot_blocks[i].is_protected =
587                         ~(stm32x_info->option_bytes.protection >> i) & 1;
588
589         return ERROR_OK;
590 }
591
592 static int stm32x_erase(struct flash_bank *bank, unsigned int first,
593                 unsigned int last)
594 {
595         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
596         struct target *target = bank->target;
597
598         if (stm32x_is_otp(bank)) {
599                 LOG_ERROR("Cannot erase OTP memory");
600                 return ERROR_FAIL;
601         }
602
603         assert((first <= last) && (last < bank->num_sectors));
604
605         if (bank->target->state != TARGET_HALTED) {
606                 LOG_ERROR("Target not halted");
607                 return ERROR_TARGET_NOT_HALTED;
608         }
609
610         int retval;
611         retval = stm32x_unlock_reg(target);
612         if (retval != ERROR_OK)
613                 return retval;
614
615         /*
616         Sector Erase
617         To erase a sector, follow the procedure below:
618         1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
619           FLASH_SR register
620         2. Set the SER bit and select the sector
621           you wish to erase (SNB) in the FLASH_CR register
622         3. Set the STRT bit in the FLASH_CR register
623         4. Wait for the BSY bit to be cleared
624          */
625
626         for (unsigned int i = first; i <= last; i++) {
627                 unsigned int snb;
628                 if (stm32x_info->has_large_mem && i >= (bank->num_sectors / 2))
629                         snb = (i - (bank->num_sectors / 2)) | 0x10;
630                 else
631                         snb = i;
632
633                 retval = target_write_u32(target,
634                                 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(snb) | FLASH_STRT);
635                 if (retval != ERROR_OK)
636                         return retval;
637
638                 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
639                 if (retval != ERROR_OK)
640                         return retval;
641         }
642
643         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
644         if (retval != ERROR_OK)
645                 return retval;
646
647         return ERROR_OK;
648 }
649
650 static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
651                 unsigned int last)
652 {
653         struct target *target = bank->target;
654         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
655
656         if (target->state != TARGET_HALTED) {
657                 LOG_ERROR("Target not halted");
658                 return ERROR_TARGET_NOT_HALTED;
659         }
660
661         if (stm32x_is_otp(bank)) {
662                 if (!set)
663                         return ERROR_COMMAND_ARGUMENT_INVALID;
664
665                 return stm32x_otp_protect(bank, first, last);
666         }
667
668         /* read protection settings */
669         int retval = stm32x_read_options(bank);
670         if (retval != ERROR_OK) {
671                 LOG_DEBUG("unable to read option bytes");
672                 return retval;
673         }
674
675         for (unsigned int i = first; i <= last; i++) {
676                 if (set)
677                         stm32x_info->option_bytes.protection &= ~(1 << i);
678                 else
679                         stm32x_info->option_bytes.protection |= (1 << i);
680         }
681
682         retval = stm32x_write_options(bank);
683         if (retval != ERROR_OK)
684                 return retval;
685
686         return ERROR_OK;
687 }
688
689 static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
690                 uint32_t offset, uint32_t count)
691 {
692         struct target *target = bank->target;
693         uint32_t buffer_size = 16384;
694         struct working_area *write_algorithm;
695         struct working_area *source;
696         uint32_t address = bank->base + offset;
697         struct reg_param reg_params[5];
698         struct armv7m_algorithm armv7m_info;
699         int retval = ERROR_OK;
700
701         static const uint8_t stm32x_flash_write_code[] = {
702 #include "../../../contrib/loaders/flash/stm32/stm32f2x.inc"
703         };
704
705         if (stm32x_is_otp(bank) && !stm32x_is_otp_unlocked(bank)) {
706                 LOG_ERROR("OTP memory bank is disabled for write commands.");
707                 return ERROR_FAIL;
708         }
709
710         if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
711                         &write_algorithm) != ERROR_OK) {
712                 LOG_WARNING("no working area available, can't do block memory writes");
713                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
714         }
715
716         retval = target_write_buffer(target, write_algorithm->address,
717                         sizeof(stm32x_flash_write_code),
718                         stm32x_flash_write_code);
719         if (retval != ERROR_OK) {
720                 target_free_working_area(target, write_algorithm);
721                 return retval;
722         }
723
724         /* memory buffer */
725         while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
726                 buffer_size /= 2;
727                 if (buffer_size <= 256) {
728                         /* we already allocated the writing code, but failed to get a
729                          * buffer, free the algorithm */
730                         target_free_working_area(target, write_algorithm);
731
732                         LOG_WARNING("no large enough working area available, can't do block memory writes");
733                         return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
734                 }
735         }
736
737         armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
738         armv7m_info.core_mode = ARM_MODE_THREAD;
739
740         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);         /* buffer start, status (out) */
741         init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);            /* buffer end */
742         init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);            /* target address */
743         init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);            /* count (halfword-16bit) */
744         init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);            /* flash base */
745
746         buf_set_u32(reg_params[0].value, 0, 32, source->address);
747         buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
748         buf_set_u32(reg_params[2].value, 0, 32, address);
749         buf_set_u32(reg_params[3].value, 0, 32, count);
750         buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
751
752         retval = target_run_flash_async_algorithm(target, buffer, count, 2,
753                         0, NULL,
754                         5, reg_params,
755                         source->address, source->size,
756                         write_algorithm->address, 0,
757                         &armv7m_info);
758
759         if (retval == ERROR_FLASH_OPERATION_FAILED) {
760                 LOG_ERROR("error executing stm32x flash write algorithm");
761
762                 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
763
764                 if (error & FLASH_WRPERR)
765                         LOG_ERROR("flash memory write protected");
766
767                 if (error != 0) {
768                         LOG_ERROR("flash write failed = 0x%08" PRIx32, error);
769                         /* Clear but report errors */
770                         target_write_u32(target, STM32_FLASH_SR, error);
771                         retval = ERROR_FAIL;
772                 }
773         }
774
775         target_free_working_area(target, source);
776         target_free_working_area(target, write_algorithm);
777
778         destroy_reg_param(&reg_params[0]);
779         destroy_reg_param(&reg_params[1]);
780         destroy_reg_param(&reg_params[2]);
781         destroy_reg_param(&reg_params[3]);
782         destroy_reg_param(&reg_params[4]);
783
784         return retval;
785 }
786
787 static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
788                 uint32_t offset, uint32_t count)
789 {
790         struct target *target = bank->target;
791         uint32_t words_remaining = (count / 2);
792         uint32_t bytes_remaining = (count & 0x00000001);
793         uint32_t address = bank->base + offset;
794         uint32_t bytes_written = 0;
795         int retval;
796
797         if (bank->target->state != TARGET_HALTED) {
798                 LOG_ERROR("Target not halted");
799                 return ERROR_TARGET_NOT_HALTED;
800         }
801
802         if (offset & 0x1) {
803                 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
804                 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
805         }
806
807         retval = stm32x_unlock_reg(target);
808         if (retval != ERROR_OK)
809                 return retval;
810
811         /* multiple half words (2-byte) to be programmed? */
812         if (words_remaining > 0) {
813                 /* try using a block write */
814                 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
815                 if (retval != ERROR_OK) {
816                         if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
817                                 /* if block write failed (no sufficient working area),
818                                  * we use normal (slow) single dword accesses */
819                                 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
820                         }
821                 } else {
822                         buffer += words_remaining * 2;
823                         address += words_remaining * 2;
824                         words_remaining = 0;
825                 }
826         }
827
828         if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
829                 return retval;
830
831         /*
832         Standard programming
833         The Flash memory programming sequence is as follows:
834         1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
835           FLASH_SR register.
836         2. Set the PG bit in the FLASH_CR register
837         3. Perform the data write operation(s) to the desired memory address (inside main
838           memory block or OTP area):
839         â€“ â€“ Half-word access in case of x16 parallelism
840         â€“ Word access in case of x32 parallelism
841         â€“
842         4.
843         Byte access in case of x8 parallelism
844         Double word access in case of x64 parallelism
845         Wait for the BSY bit to be cleared
846         */
847         while (words_remaining > 0) {
848                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
849                                 FLASH_PG | FLASH_PSIZE_16);
850                 if (retval != ERROR_OK)
851                         return retval;
852
853                 retval = target_write_memory(target, address, 2, 1, buffer + bytes_written);
854                 if (retval != ERROR_OK)
855                         return retval;
856
857                 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
858                 if (retval != ERROR_OK)
859                         return retval;
860
861                 bytes_written += 2;
862                 words_remaining--;
863                 address += 2;
864         }
865
866         if (bytes_remaining) {
867                 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
868                                 FLASH_PG | FLASH_PSIZE_8);
869                 if (retval != ERROR_OK)
870                         return retval;
871                 retval = target_write_u8(target, address, buffer[bytes_written]);
872                 if (retval != ERROR_OK)
873                         return retval;
874
875                 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
876                 if (retval != ERROR_OK)
877                         return retval;
878         }
879
880         return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
881 }
882
883 static void setup_sector(struct flash_bank *bank, unsigned int i,
884                 unsigned int size)
885 {
886         assert(i < bank->num_sectors);
887         bank->sectors[i].offset = bank->size;
888         bank->sectors[i].size = size;
889         bank->size += bank->sectors[i].size;
890         LOG_DEBUG("sector %u: %ukBytes", i, size >> 10);
891 }
892
893 static uint16_t sector_size_in_kb(unsigned int i, uint16_t max_sector_size_in_kb)
894 {
895         if (i < 4)
896                 return max_sector_size_in_kb / 8;
897         if (i == 4)
898                 return max_sector_size_in_kb / 2;
899         return max_sector_size_in_kb;
900 }
901
902 static unsigned int calculate_number_of_sectors(struct flash_bank *bank,
903                 uint16_t flash_size_in_kb,
904                 uint16_t max_sector_size_in_kb)
905 {
906         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
907         uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
908         unsigned int nr_sectors;
909
910         /* Dual Bank Flash has two identically-arranged banks of sectors. */
911         if (stm32x_info->has_large_mem)
912                 remaining_flash_size_in_kb /= 2;
913
914         for (nr_sectors = 0; remaining_flash_size_in_kb > 0; nr_sectors++) {
915                 uint16_t size_in_kb = sector_size_in_kb(nr_sectors, max_sector_size_in_kb);
916                 if (size_in_kb > remaining_flash_size_in_kb) {
917                         LOG_INFO("%s Bank %" PRIu16 " kiB final sector clipped to %" PRIu16 " kiB",
918                                  stm32x_info->has_large_mem ? "Dual" : "Single",
919                                  flash_size_in_kb, remaining_flash_size_in_kb);
920                         remaining_flash_size_in_kb = 0;
921                 } else {
922                         remaining_flash_size_in_kb -= size_in_kb;
923                 }
924         }
925
926         return stm32x_info->has_large_mem ? nr_sectors*2 : nr_sectors;
927 }
928
929 static void setup_bank(struct flash_bank *bank, unsigned int start,
930         uint16_t flash_size_in_kb, uint16_t max_sector_size_in_kb)
931 {
932         uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
933         unsigned int sector_index = 0;
934         while (remaining_flash_size_in_kb > 0) {
935                 uint16_t size_in_kb = sector_size_in_kb(sector_index, max_sector_size_in_kb);
936                 if (size_in_kb > remaining_flash_size_in_kb) {
937                         /* Clip last sector. Already warned in
938                          * calculate_number_of_sectors. */
939                         size_in_kb = remaining_flash_size_in_kb;
940                 }
941                 setup_sector(bank, start + sector_index, size_in_kb * 1024);
942                 remaining_flash_size_in_kb -= size_in_kb;
943                 sector_index++;
944         }
945 }
946
947 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
948 {
949         /* this checks for a stm32f4x errata issue where a
950          * stm32f2x DBGMCU_IDCODE is incorrectly returned.
951          * If the issue is detected target is forced to stm32f4x Rev A.
952          * Only effects Rev A silicon */
953
954         struct target *target = bank->target;
955
956         /* read stm32 device id register */
957         int retval = target_read_u32(target, 0xE0042000, device_id);
958         if (retval != ERROR_OK)
959                 return retval;
960
961         if ((*device_id & 0xfff) == 0x411
962                         && cortex_m_get_partno_safe(target) == CORTEX_M4_PARTNO) {
963                 *device_id &= ~((0xFFFF << 16) | 0xfff);
964                 *device_id |= (0x1000 << 16) | 0x413;
965                 LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
966         }
967         return retval;
968 }
969
970 static int stm32x_probe(struct flash_bank *bank)
971 {
972         struct target *target = bank->target;
973         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
974         unsigned int num_prot_blocks, num_sectors;
975         uint16_t flash_size_in_kb;
976         uint16_t otp_size_in_b;
977         uint16_t otp_sector_size;
978         uint32_t flash_size_reg = 0x1FFF7A22;
979         uint16_t max_sector_size_in_kb = 128;
980         uint16_t max_flash_size_in_kb;
981         uint32_t device_id;
982         uint32_t base_address = 0x08000000;
983
984         stm32x_info->probed = false;
985         stm32x_info->has_large_mem = false;
986         stm32x_info->has_boot_addr = false;
987         stm32x_info->has_extra_options = false;
988         stm32x_info->has_optcr2_pcrop = false;
989         stm32x_info->protection_bits = 12;              /* max. number of nWRPi bits (in FLASH_OPTCR !!!) */
990         num_prot_blocks = 0;
991
992         free(bank->sectors);
993         bank->num_sectors = 0;
994         bank->sectors = NULL;
995
996         free(bank->prot_blocks);
997         bank->num_prot_blocks = 0;
998         bank->prot_blocks = NULL;
999
1000         if (!target_was_examined(target)) {
1001                 LOG_ERROR("Target not examined yet");
1002                 return ERROR_TARGET_NOT_EXAMINED;
1003         }
1004
1005         /* if explicitly called out as OTP bank, short circuit probe */
1006         if (stm32x_is_otp(bank)) {
1007                 if (stm32x_otp_is_f7(bank)) {
1008                         otp_size_in_b = STM32F7_OTP_SIZE;
1009                         otp_sector_size = STM32F7_OTP_SECTOR_SIZE;
1010                 } else {
1011                         otp_size_in_b = STM32F2_OTP_SIZE;
1012                         otp_sector_size = STM32F2_OTP_SECTOR_SIZE;
1013                 }
1014
1015                 num_sectors = otp_size_in_b / otp_sector_size;
1016                 LOG_INFO("flash size = %" PRIu16 " bytes", otp_size_in_b);
1017
1018                 assert(num_sectors > 0);
1019
1020                 bank->num_sectors = num_sectors;
1021                 bank->sectors = calloc(sizeof(struct flash_sector), num_sectors);
1022
1023                 if (stm32x_otp_is_f7(bank))
1024                         bank->size = STM32F7_OTP_SIZE;
1025                 else
1026                         bank->size = STM32F2_OTP_SIZE;
1027
1028                 for (unsigned int i = 0; i < num_sectors; i++) {
1029                         bank->sectors[i].offset = i * otp_sector_size;
1030                         bank->sectors[i].size = otp_sector_size;
1031                         bank->sectors[i].is_erased = 1;
1032                         bank->sectors[i].is_protected = 0;
1033                 }
1034
1035                 stm32x_info->probed = true;
1036                 return ERROR_OK;
1037         }
1038
1039         /* read stm32 device id register */
1040         int retval = stm32x_get_device_id(bank, &device_id);
1041         if (retval != ERROR_OK)
1042                 return retval;
1043         LOG_INFO("device id = 0x%08" PRIx32, device_id);
1044         device_id &= 0xfff;             /* only bits 0-11 are used further on */
1045
1046         /* set max flash size depending on family, id taken from AN2606 */
1047         switch (device_id) {
1048         case 0x411: /* F20x/21x */
1049         case 0x413: /* F40x/41x */
1050                 max_flash_size_in_kb = 1024;
1051                 break;
1052
1053         case 0x419: /* F42x/43x */
1054         case 0x434: /* F469/479 */
1055                 stm32x_info->has_extra_options = true;
1056                 max_flash_size_in_kb = 2048;
1057                 break;
1058
1059         case 0x423:     /* F401xB/C */
1060                 max_flash_size_in_kb = 256;
1061                 break;
1062
1063         case 0x421:     /* F446 */
1064         case 0x431: /* F411 */
1065         case 0x433: /* F401xD/E */
1066         case 0x441: /* F412 */
1067                 max_flash_size_in_kb = 512;
1068                 break;
1069
1070         case 0x458: /* F410 */
1071                 max_flash_size_in_kb = 128;
1072                 break;
1073
1074         case 0x449:     /* F74x/75x */
1075                 max_flash_size_in_kb = 1024;
1076                 max_sector_size_in_kb = 256;
1077                 flash_size_reg = 0x1FF0F442;
1078                 stm32x_info->has_extra_options = true;
1079                 stm32x_info->has_boot_addr = true;
1080                 break;
1081
1082         case 0x451:     /* F76x/77x */
1083                 max_flash_size_in_kb = 2048;
1084                 max_sector_size_in_kb = 256;
1085                 flash_size_reg = 0x1FF0F442;
1086                 stm32x_info->has_extra_options = true;
1087                 stm32x_info->has_boot_addr = true;
1088                 break;
1089
1090         case 0x452:     /* F72x/73x */
1091                 max_flash_size_in_kb = 512;
1092                 flash_size_reg = 0x1FF07A22;    /* yes, 0x1FF*0*7A22, not 0x1FF*F*7A22 */
1093                 stm32x_info->has_extra_options = true;
1094                 stm32x_info->has_boot_addr = true;
1095                 stm32x_info->has_optcr2_pcrop = true;
1096                 break;
1097
1098         case 0x463:     /* F413x/423x */
1099                 max_flash_size_in_kb = 1536;
1100                 stm32x_info->has_extra_options = true;
1101                 stm32x_info->protection_bits = 15;
1102                 num_prot_blocks = 15;
1103                 break;
1104
1105         default:
1106                 LOG_WARNING("Cannot identify target as a STM32 family.");
1107                 return ERROR_FAIL;
1108         }
1109
1110         /* get flash size from target. */
1111         retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb);
1112
1113         /* failed reading flash size or flash size invalid (early silicon),
1114          * default to max target family */
1115         if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
1116                 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %" PRIu16 "k flash",
1117                         max_flash_size_in_kb);
1118                 flash_size_in_kb = max_flash_size_in_kb;
1119         }
1120
1121         /* if the user sets the size manually then ignore the probed value
1122          * this allows us to work around devices that have a invalid flash size register value */
1123         if (stm32x_info->user_bank_size) {
1124                 LOG_INFO("ignoring flash probed value, using configured bank size");
1125                 flash_size_in_kb = stm32x_info->user_bank_size / 1024;
1126         }
1127
1128         LOG_INFO("flash size = %" PRIu16 " KiB", flash_size_in_kb);
1129
1130         /* did we assign flash size? */
1131         assert(flash_size_in_kb != 0xffff);
1132
1133         /* F42x/43x/469/479 1024 kiByte devices have a dual bank option */
1134         if ((device_id == 0x419) || (device_id == 0x434)) {
1135                 uint32_t optiondata;
1136                 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1137                 if (retval != ERROR_OK) {
1138                         LOG_DEBUG("unable to read option bytes");
1139                         return retval;
1140                 }
1141                 if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) {
1142                         stm32x_info->has_large_mem = true;
1143                         LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1144                 } else {
1145                         stm32x_info->has_large_mem = false;
1146                         LOG_INFO("Single Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1147                 }
1148         }
1149
1150         /* F76x/77x devices have a dual bank option */
1151         if (device_id == 0x451) {
1152                 uint32_t optiondata;
1153                 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1154                 if (retval != ERROR_OK) {
1155                         LOG_DEBUG("unable to read option bytes");
1156                         return retval;
1157                 }
1158                 if (optiondata & OPTCR_NDBANK) {
1159                         stm32x_info->has_large_mem = false;
1160                         LOG_INFO("Single Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
1161                 } else {
1162                         stm32x_info->has_large_mem = true;
1163                         max_sector_size_in_kb >>= 1; /* sector size divided by 2 in dual-bank mode */
1164                         LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
1165                 }
1166         }
1167
1168         /* calculate numbers of pages */
1169         unsigned int num_pages = calculate_number_of_sectors(
1170                         bank, flash_size_in_kb, max_sector_size_in_kb);
1171
1172         bank->base = base_address;
1173         bank->num_sectors = num_pages;
1174         bank->sectors = calloc(num_pages, sizeof(struct flash_sector));
1175         for (unsigned int i = 0; i < num_pages; i++) {
1176                 bank->sectors[i].is_erased = -1;
1177                 bank->sectors[i].is_protected = 0;
1178         }
1179         bank->size = 0;
1180         LOG_DEBUG("allocated %u sectors", num_pages);
1181
1182         /* F76x/77x in dual bank mode */
1183         if ((device_id == 0x451) && stm32x_info->has_large_mem)
1184                 num_prot_blocks = num_pages >> 1;
1185
1186         if (num_prot_blocks) {
1187                 bank->prot_blocks = malloc(sizeof(struct flash_sector) * num_prot_blocks);
1188                 for (unsigned int i = 0; i < num_prot_blocks; i++)
1189                         bank->prot_blocks[i].is_protected = 0;
1190                 LOG_DEBUG("allocated %u prot blocks", num_prot_blocks);
1191         }
1192
1193         if (stm32x_info->has_large_mem) {
1194                 /* dual-bank */
1195                 setup_bank(bank, 0, flash_size_in_kb >> 1, max_sector_size_in_kb);
1196                 setup_bank(bank, num_pages >> 1, flash_size_in_kb >> 1,
1197                         max_sector_size_in_kb);
1198
1199                 /* F767x/F77x in dual mode, one protection bit refers to two adjacent sectors */
1200                 if (device_id == 0x451) {
1201                         for (unsigned int i = 0; i < num_prot_blocks; i++) {
1202                                 bank->prot_blocks[i].offset = bank->sectors[i << 1].offset;
1203                                 bank->prot_blocks[i].size = bank->sectors[i << 1].size
1204                                                 + bank->sectors[(i << 1) + 1].size;
1205                         }
1206                 }
1207         } else {
1208                 /* single-bank */
1209                 setup_bank(bank, 0, flash_size_in_kb, max_sector_size_in_kb);
1210
1211                 /* F413/F423, sectors 14 and 15 share one common protection bit */
1212                 if (device_id == 0x463) {
1213                         for (unsigned int i = 0; i < num_prot_blocks; i++) {
1214                                 bank->prot_blocks[i].offset = bank->sectors[i].offset;
1215                                 bank->prot_blocks[i].size = bank->sectors[i].size;
1216                         }
1217                         bank->prot_blocks[num_prot_blocks - 1].size <<= 1;
1218                 }
1219         }
1220         bank->num_prot_blocks = num_prot_blocks;
1221         assert((bank->size >> 10) == flash_size_in_kb);
1222
1223         stm32x_info->probed = true;
1224         return ERROR_OK;
1225 }
1226
1227 static int stm32x_auto_probe(struct flash_bank *bank)
1228 {
1229         struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1230         if (stm32x_info->probed)
1231                 return ERROR_OK;
1232         return stm32x_probe(bank);
1233 }
1234
1235 static int get_stm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
1236 {
1237         uint32_t dbgmcu_idcode;
1238
1239         /* read stm32 device id register */
1240         int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
1241         if (retval != ERROR_OK)
1242                 return retval;
1243
1244         uint16_t device_id = dbgmcu_idcode & 0xfff;
1245         uint16_t rev_id = dbgmcu_idcode >> 16;
1246         const char *device_str;
1247         const char *rev_str = NULL;
1248
1249         switch (device_id) {
1250         case 0x411:
1251                 device_str = "STM32F2xx";
1252
1253                 switch (rev_id) {
1254                 case 0x1000:
1255                         rev_str = "A";
1256                         break;
1257
1258                 case 0x2000:
1259                         rev_str = "B";
1260                         break;
1261
1262                 case 0x1001:
1263                         rev_str = "Z";
1264                         break;
1265
1266                 case 0x2001:
1267                         rev_str = "Y";
1268                         break;
1269
1270                 case 0x2003:
1271                         rev_str = "X";
1272                         break;
1273
1274                 case 0x2007:
1275                         rev_str = "1";
1276                         break;
1277
1278                 case 0x200F:
1279                         rev_str = "V";
1280                         break;
1281
1282                 case 0x201F:
1283                         rev_str = "2";
1284                         break;
1285                 }
1286                 break;
1287
1288         case 0x413:
1289         case 0x419:
1290         case 0x434:
1291                 device_str = "STM32F4xx";
1292
1293                 switch (rev_id) {
1294                 case 0x1000:
1295                         rev_str = "A";
1296                         break;
1297
1298                 case 0x1001:
1299                         rev_str = "Z";
1300                         break;
1301
1302                 case 0x1003:
1303                         rev_str = "Y";
1304                         break;
1305
1306                 case 0x1007:
1307                         rev_str = "1";
1308                         break;
1309
1310                 case 0x2001:
1311                         rev_str = "3";
1312                         break;
1313                 }
1314                 break;
1315
1316         case 0x421:
1317                 device_str = "STM32F446";
1318
1319                 switch (rev_id) {
1320                 case 0x1000:
1321                         rev_str = "A";
1322                         break;
1323                 }
1324                 break;
1325
1326         case 0x423:
1327         case 0x431:
1328         case 0x433:
1329         case 0x458:
1330         case 0x441:
1331                 device_str = "STM32F4xx (Low Power)";
1332
1333                 switch (rev_id) {
1334                 case 0x1000:
1335                         rev_str = "A";
1336                         break;
1337
1338                 case 0x1001:
1339                         rev_str = "Z";
1340                         break;
1341
1342                 case 0x2000:
1343                         rev_str = "B";
1344                         break;
1345
1346                 case 0x3000:
1347                         rev_str = "C";
1348                         break;
1349                 }
1350                 break;
1351
1352         case 0x449:
1353                 device_str = "STM32F7[4|5]x";
1354
1355                 switch (rev_id) {
1356                 case 0x1000:
1357                         rev_str = "A";
1358                         break;
1359
1360                 case 0x1001:
1361                         rev_str = "Z";
1362                         break;
1363                 }
1364                 break;
1365
1366         case 0x451:
1367                 device_str = "STM32F7[6|7]x";
1368
1369                 switch (rev_id) {
1370                 case 0x1000:
1371                         rev_str = "A";
1372                         break;
1373                 case 0x1001:
1374                         rev_str = "Z";
1375                         break;
1376                 }
1377                 break;
1378
1379         case 0x452:
1380                 device_str = "STM32F7[2|3]x";
1381
1382                 switch (rev_id) {
1383                 case 0x1000:
1384                         rev_str = "A";
1385                         break;
1386                 }
1387                 break;
1388
1389         case 0x463:
1390                 device_str = "STM32F4[1|2]3";
1391
1392                 switch (rev_id) {
1393                 case 0x1000:
1394                         rev_str = "A";
1395                         break;
1396                 }
1397                 break;
1398
1399         default:
1400                 command_print_sameline(cmd, "Cannot identify target as a STM32F2/4/7\n");
1401                 return ERROR_FAIL;
1402         }
1403
1404         if (rev_str)
1405                 command_print_sameline(cmd, "%s - Rev: %s", device_str, rev_str);
1406         else
1407                 command_print_sameline(cmd, "%s - Rev: unknown (0x%04" PRIx16 ")", device_str, rev_id);
1408
1409         return ERROR_OK;
1410 }
1411
1412 COMMAND_HANDLER(stm32x_handle_lock_command)
1413 {
1414         struct target *target = NULL;
1415         struct stm32x_flash_bank *stm32x_info = NULL;
1416
1417         if (CMD_ARGC < 1)
1418                 return ERROR_COMMAND_SYNTAX_ERROR;
1419
1420         struct flash_bank *bank;
1421         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1422         if (retval != ERROR_OK)
1423                 return retval;
1424
1425         stm32x_info = bank->driver_priv;
1426         target = bank->target;
1427
1428         if (target->state != TARGET_HALTED) {
1429                 LOG_INFO("Target not halted");
1430                 /* return ERROR_TARGET_NOT_HALTED; */
1431         }
1432
1433         if (stm32x_read_options(bank) != ERROR_OK) {
1434                 command_print(CMD, "%s failed to read options", bank->driver->name);
1435                 return ERROR_OK;
1436         }
1437
1438         /* set readout protection */
1439         stm32x_info->option_bytes.RDP = 0;
1440
1441         if (stm32x_write_options(bank) != ERROR_OK) {
1442                 command_print(CMD, "%s failed to lock device", bank->driver->name);
1443                 return ERROR_OK;
1444         }
1445
1446         command_print(CMD, "%s locked", bank->driver->name);
1447
1448         return ERROR_OK;
1449 }
1450
1451 COMMAND_HANDLER(stm32x_handle_unlock_command)
1452 {
1453         struct target *target = NULL;
1454         struct stm32x_flash_bank *stm32x_info = NULL;
1455
1456         if (CMD_ARGC < 1)
1457                 return ERROR_COMMAND_SYNTAX_ERROR;
1458
1459         struct flash_bank *bank;
1460         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1461         if (retval != ERROR_OK)
1462                 return retval;
1463
1464         stm32x_info = bank->driver_priv;
1465         target = bank->target;
1466
1467         if (target->state != TARGET_HALTED) {
1468                 LOG_INFO("Target not halted");
1469                 /* return ERROR_TARGET_NOT_HALTED; */
1470         }
1471
1472         if (stm32x_read_options(bank) != ERROR_OK) {
1473                 command_print(CMD, "%s failed to read options", bank->driver->name);
1474                 return ERROR_OK;
1475         }
1476
1477         /* clear readout protection and complementary option bytes
1478          * this will also force a device unlock if set */
1479         stm32x_info->option_bytes.RDP = 0xAA;
1480         if (stm32x_info->has_optcr2_pcrop) {
1481                 stm32x_info->option_bytes.optcr2_pcrop = OPTCR2_PCROP_RDP | (~1U << bank->num_sectors);
1482         }
1483
1484         if (stm32x_write_options(bank) != ERROR_OK) {
1485                 command_print(CMD, "%s failed to unlock device", bank->driver->name);
1486                 return ERROR_OK;
1487         }
1488
1489         command_print(CMD, "%s unlocked.\n"
1490                         "INFO: a reset or power cycle is required "
1491                         "for the new settings to take effect.", bank->driver->name);
1492
1493         return ERROR_OK;
1494 }
1495
1496 static int stm32x_mass_erase(struct flash_bank *bank)
1497 {
1498         int retval;
1499         uint32_t flash_mer;
1500         struct target *target = bank->target;
1501         struct stm32x_flash_bank *stm32x_info = NULL;
1502
1503         if (target->state != TARGET_HALTED) {
1504                 LOG_ERROR("Target not halted");
1505                 return ERROR_TARGET_NOT_HALTED;
1506         }
1507
1508         stm32x_info = bank->driver_priv;
1509
1510         retval = stm32x_unlock_reg(target);
1511         if (retval != ERROR_OK)
1512                 return retval;
1513
1514         /* mass erase flash memory */
1515         if (stm32x_info->has_large_mem)
1516                 flash_mer = FLASH_MER | FLASH_MER1;
1517         else
1518                 flash_mer = FLASH_MER;
1519
1520         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), flash_mer);
1521         if (retval != ERROR_OK)
1522                 return retval;
1523         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1524                 flash_mer | FLASH_STRT);
1525         if (retval != ERROR_OK)
1526                 return retval;
1527
1528         retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
1529         if (retval != ERROR_OK)
1530                 return retval;
1531
1532         retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1533         if (retval != ERROR_OK)
1534                 return retval;
1535
1536         return ERROR_OK;
1537 }
1538
1539 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1540 {
1541         if (CMD_ARGC < 1) {
1542                 command_print(CMD, "stm32x mass_erase <bank>");
1543                 return ERROR_COMMAND_SYNTAX_ERROR;
1544         }
1545
1546         struct flash_bank *bank;
1547         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1548         if (retval != ERROR_OK)
1549                 return retval;
1550
1551         retval = stm32x_mass_erase(bank);
1552         if (retval == ERROR_OK) {
1553                 command_print(CMD, "stm32x mass erase complete");
1554         } else {
1555                 command_print(CMD, "stm32x mass erase failed");
1556         }
1557
1558         return retval;
1559 }
1560
1561 COMMAND_HANDLER(stm32f2x_handle_options_read_command)
1562 {
1563         int retval;
1564         struct flash_bank *bank;
1565         struct stm32x_flash_bank *stm32x_info = NULL;
1566
1567         if (CMD_ARGC != 1) {
1568                 command_print(CMD, "stm32f2x options_read <bank>");
1569                 return ERROR_COMMAND_SYNTAX_ERROR;
1570         }
1571
1572         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1573         if (retval != ERROR_OK)
1574                 return retval;
1575
1576         retval = stm32x_read_options(bank);
1577         if (retval != ERROR_OK)
1578                 return retval;
1579
1580         stm32x_info = bank->driver_priv;
1581         if (stm32x_info->has_extra_options) {
1582                 if (stm32x_info->has_boot_addr) {
1583                         uint32_t boot_addr = stm32x_info->option_bytes.boot_addr;
1584
1585                         command_print(CMD, "stm32f2x user_options 0x%03" PRIX16 ","
1586                                 " boot_add0 0x%04" PRIX32 ", boot_add1 0x%04" PRIX32,
1587                                 stm32x_info->option_bytes.user_options,
1588                                 boot_addr & 0xffff, (boot_addr & 0xffff0000) >> 16);
1589                         if (stm32x_info->has_optcr2_pcrop) {
1590                                 command_print(CMD, "stm32f2x optcr2_pcrop 0x%08" PRIX32,
1591                                                 stm32x_info->option_bytes.optcr2_pcrop);
1592                         }
1593                 } else {
1594                         command_print(CMD, "stm32f2x user_options 0x%03" PRIX16,
1595                                 stm32x_info->option_bytes.user_options);
1596                 }
1597         } else {
1598                 command_print(CMD, "stm32f2x user_options 0x%02" PRIX16,
1599                         stm32x_info->option_bytes.user_options);
1600
1601         }
1602
1603         return retval;
1604 }
1605
1606 COMMAND_HANDLER(stm32f2x_handle_options_write_command)
1607 {
1608         int retval;
1609         struct flash_bank *bank;
1610         struct stm32x_flash_bank *stm32x_info = NULL;
1611         uint16_t user_options, boot_addr0, boot_addr1, options_mask;
1612
1613         if (CMD_ARGC < 1) {
1614                 command_print(CMD, "stm32f2x options_write <bank> ...");
1615                 return ERROR_COMMAND_SYNTAX_ERROR;
1616         }
1617
1618         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1619         if (retval != ERROR_OK)
1620                 return retval;
1621
1622         retval = stm32x_read_options(bank);
1623         if (retval != ERROR_OK)
1624                 return retval;
1625
1626         stm32x_info = bank->driver_priv;
1627         if (stm32x_info->has_boot_addr) {
1628                 if (CMD_ARGC != 4) {
1629                         command_print(CMD, "stm32f2x options_write <bank> <user_options>"
1630                                 " <boot_addr0> <boot_addr1>");
1631                         return ERROR_COMMAND_SYNTAX_ERROR;
1632                 }
1633                 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], boot_addr0);
1634                 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], boot_addr1);
1635                 stm32x_info->option_bytes.boot_addr = boot_addr0 | (((uint32_t) boot_addr1) << 16);
1636         } else {
1637                 if (CMD_ARGC != 2) {
1638                         command_print(CMD, "stm32f2x options_write <bank> <user_options>");
1639                         return ERROR_COMMAND_SYNTAX_ERROR;
1640                 }
1641         }
1642
1643         COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], user_options);
1644         options_mask = !stm32x_info->has_extra_options ? ~0xfc :
1645                 ~(((0xf00 << (stm32x_info->protection_bits - 12)) | 0xff) & 0xffc);
1646         if (user_options & options_mask) {
1647                 command_print(CMD, "stm32f2x invalid user_options");
1648                 return ERROR_COMMAND_ARGUMENT_INVALID;
1649         }
1650
1651         stm32x_info->option_bytes.user_options = user_options;
1652
1653         if (stm32x_write_options(bank) != ERROR_OK) {
1654                 command_print(CMD, "stm32f2x failed to write options");
1655                 return ERROR_OK;
1656         }
1657
1658         /* switching between single- and dual-bank modes requires re-probe */
1659         /* ... and reprogramming of whole flash */
1660         stm32x_info->probed = false;
1661
1662         command_print(CMD, "stm32f2x write options complete.\n"
1663                                 "INFO: a reset or power cycle is required "
1664                                 "for the new settings to take effect.");
1665         return retval;
1666 }
1667
1668 COMMAND_HANDLER(stm32f2x_handle_optcr2_write_command)
1669 {
1670         int retval;
1671         struct flash_bank *bank;
1672         struct stm32x_flash_bank *stm32x_info = NULL;
1673         uint32_t optcr2_pcrop;
1674
1675         if (CMD_ARGC != 2) {
1676                 command_print(CMD, "stm32f2x optcr2_write <bank> <optcr2_value>");
1677                 return ERROR_COMMAND_SYNTAX_ERROR;
1678         }
1679
1680         retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1681         if (retval != ERROR_OK)
1682                 return retval;
1683
1684         stm32x_info = bank->driver_priv;
1685         if (!stm32x_info->has_optcr2_pcrop) {
1686                 command_print(CMD, "no optcr2 register");
1687                 return ERROR_COMMAND_ARGUMENT_INVALID;
1688         }
1689
1690         command_print(CMD, "INFO: To disable PCROP, set PCROP_RDP"
1691                                 " with PCROPi bits STILL SET, then\nlock device and"
1692                                 " finally unlock it. Clears PCROP and mass erases flash.");
1693
1694         retval = stm32x_read_options(bank);
1695         if (retval != ERROR_OK)
1696                 return retval;
1697
1698         COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], optcr2_pcrop);
1699         stm32x_info->option_bytes.optcr2_pcrop = optcr2_pcrop;
1700
1701         if (stm32x_write_options(bank) != ERROR_OK) {
1702                 command_print(CMD, "stm32f2x failed to write options");
1703                 return ERROR_OK;
1704         }
1705
1706         command_print(CMD, "stm32f2x optcr2_write complete.");
1707         return retval;
1708 }
1709
1710 COMMAND_HANDLER(stm32x_handle_otp_command)
1711 {
1712         if (CMD_ARGC < 2) {
1713                 command_print(CMD, "stm32x otp <bank> (enable|disable|show)");
1714                 return ERROR_COMMAND_SYNTAX_ERROR;
1715         }
1716
1717         struct flash_bank *bank;
1718         int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1719         if (retval != ERROR_OK)
1720                 return retval;
1721         if (stm32x_is_otp(bank)) {
1722                 if (strcmp(CMD_ARGV[1], "enable") == 0) {
1723                         stm32x_otp_enable(bank);
1724                 } else if (strcmp(CMD_ARGV[1], "disable") == 0) {
1725                         stm32x_otp_disable(bank);
1726                 } else if (strcmp(CMD_ARGV[1], "show") == 0) {
1727                         command_print(CMD,
1728                                 "OTP memory bank #%u is %s for write commands.",
1729                                 bank->bank_number,
1730                                 stm32x_is_otp_unlocked(bank) ? "enabled" : "disabled");
1731                 } else {
1732                         return ERROR_COMMAND_SYNTAX_ERROR;
1733                 }
1734         } else {
1735                 command_print(CMD, "Failed: not an OTP bank.");
1736         }
1737
1738         return retval;
1739 }
1740
1741 static const struct command_registration stm32f2x_exec_command_handlers[] = {
1742         {
1743                 .name = "lock",
1744                 .handler = stm32x_handle_lock_command,
1745                 .mode = COMMAND_EXEC,
1746                 .usage = "bank_id",
1747                 .help = "Lock entire flash device.",
1748         },
1749         {
1750                 .name = "unlock",
1751                 .handler = stm32x_handle_unlock_command,
1752                 .mode = COMMAND_EXEC,
1753                 .usage = "bank_id",
1754                 .help = "Unlock entire protected flash device.",
1755         },
1756         {
1757                 .name = "mass_erase",
1758                 .handler = stm32x_handle_mass_erase_command,
1759                 .mode = COMMAND_EXEC,
1760                 .usage = "bank_id",
1761                 .help = "Erase entire flash device.",
1762         },
1763         {
1764                 .name = "options_read",
1765                 .handler = stm32f2x_handle_options_read_command,
1766                 .mode = COMMAND_EXEC,
1767                 .usage = "bank_id",
1768                 .help = "Read and display device option bytes.",
1769         },
1770         {
1771                 .name = "options_write",
1772                 .handler = stm32f2x_handle_options_write_command,
1773                 .mode = COMMAND_EXEC,
1774                 .usage = "bank_id user_options [ boot_add0 boot_add1 ]",
1775                 .help = "Write option bytes",
1776         },
1777         {
1778                 .name = "optcr2_write",
1779                 .handler = stm32f2x_handle_optcr2_write_command,
1780                 .mode = COMMAND_EXEC,
1781                 .usage = "bank_id optcr2",
1782                 .help = "Write optcr2 word",
1783         },
1784         {
1785                 .name = "otp",
1786                 .handler = stm32x_handle_otp_command,
1787                 .mode = COMMAND_EXEC,
1788                 .usage = "bank_id",
1789                 .help = "OTP (One Time Programmable) memory write enable/disable.",
1790         },
1791         COMMAND_REGISTRATION_DONE
1792 };
1793
1794 static const struct command_registration stm32f2x_command_handlers[] = {
1795         {
1796                 .name = "stm32f2x",
1797                 .mode = COMMAND_ANY,
1798                 .help = "stm32f2x flash command group",
1799                 .usage = "",
1800                 .chain = stm32f2x_exec_command_handlers,
1801         },
1802         COMMAND_REGISTRATION_DONE
1803 };
1804
1805 const struct flash_driver stm32f2x_flash = {
1806         .name = "stm32f2x",
1807         .commands = stm32f2x_command_handlers,
1808         .flash_bank_command = stm32x_flash_bank_command,
1809         .erase = stm32x_erase,
1810         .protect = stm32x_protect,
1811         .write = stm32x_write,
1812         .read = default_flash_read,
1813         .probe = stm32x_probe,
1814         .auto_probe = stm32x_auto_probe,
1815         .erase_check = default_flash_blank_check,
1816         .protect_check = stm32x_protect_check,
1817         .info = get_stm32x_info,
1818         .free_driver_priv = default_flash_free_driver_priv,
1819 };