Steal C code from ao-view
[fw/altos] / ao-tools / altosui / AltosConvert.java
diff --git a/ao-tools/altosui/AltosConvert.java b/ao-tools/altosui/AltosConvert.java
new file mode 100644 (file)
index 0000000..3be0716
--- /dev/null
@@ -0,0 +1,245 @@
+/*
+ * Copyright © 2010 Keith Packard <keithp@keithp.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; version 2 of the License.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
+ */
+
+/*
+ * Sensor data conversion functions
+ */
+package altosui;
+
+public class AltosConvert {
+       /*
+        * Pressure Sensor Model, version 1.1
+        *
+        * written by Holly Grimes
+        *
+        * Uses the International Standard Atmosphere as described in
+        *   "A Quick Derivation relating altitude to air pressure" (version 1.03)
+        *    from the Portland State Aerospace Society, except that the atmosphere
+        *    is divided into layers with each layer having a different lapse rate.
+        *
+        * Lapse rate data for each layer was obtained from Wikipedia on Sept. 1, 2007
+        *    at site <http://en.wikipedia.org/wiki/International_Standard_Atmosphere
+        *
+        * Height measurements use the local tangent plane.  The postive z-direction is up.
+        *
+        * All measurements are given in SI units (Kelvin, Pascal, meter, meters/second^2).
+        *   The lapse rate is given in Kelvin/meter, the gas constant for air is given
+        *   in Joules/(kilogram-Kelvin).
+        */
+
+       static final double GRAVITATIONAL_ACCELERATION = -9.80665;
+       static final double AIR_GAS_CONSTANT            = 287.053;
+       static final double NUMBER_OF_LAYERS            = 7;
+       static final double MAXIMUM_ALTITUDE            = 84852.0;
+       static final double MINIMUM_PRESSURE            = 0.3734;
+       static final double LAYER0_BASE_TEMPERATURE     = 288.15;
+       static final double LAYER0_BASE_PRESSURE        = 101325;
+
+       /* lapse rate and base altitude for each layer in the atmosphere */
+       static final double[] lapse_rate = {
+               -0.0065, 0.0, 0.001, 0.0028, 0.0, -0.0028, -0.002
+       };
+
+       static final int[] base_altitude = {
+               0, 11000, 20000, 32000, 47000, 51000, 71000
+       };
+
+       /* outputs atmospheric pressure associated with the given altitude.
+        * altitudes are measured with respect to the mean sea level
+        */
+       static double
+       cc_altitude_to_pressure(double altitude)
+       {
+               double base_temperature = LAYER0_BASE_TEMPERATURE;
+               double base_pressure = LAYER0_BASE_PRESSURE;
+
+               double pressure;
+               double base; /* base for function to determine pressure */
+               double exponent; /* exponent for function to determine pressure */
+               int layer_number; /* identifies layer in the atmosphere */
+               double delta_z; /* difference between two altitudes */
+
+               if (altitude > MAXIMUM_ALTITUDE) /* FIX ME: use sensor data to improve model */
+                       return 0;
+
+               /* calculate the base temperature and pressure for the atmospheric layer
+                  associated with the inputted altitude */
+               for(layer_number = 0; layer_number < NUMBER_OF_LAYERS - 1 && altitude > base_altitude[layer_number + 1]; layer_number++) {
+                       delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number];
+                       if (lapse_rate[layer_number] == 0.0) {
+                               exponent = GRAVITATIONAL_ACCELERATION * delta_z
+                                       / AIR_GAS_CONSTANT / base_temperature;
+                               base_pressure *= Math.exp(exponent);
+                       }
+                       else {
+                               base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
+                               exponent = GRAVITATIONAL_ACCELERATION /
+                                       (AIR_GAS_CONSTANT * lapse_rate[layer_number]);
+                               base_pressure *= Math.pow(base, exponent);
+                       }
+                       base_temperature += delta_z * lapse_rate[layer_number];
+               }
+
+               /* calculate the pressure at the inputted altitude */
+               delta_z = altitude - base_altitude[layer_number];
+               if (lapse_rate[layer_number] == 0.0) {
+                       exponent = GRAVITATIONAL_ACCELERATION * delta_z
+                               / AIR_GAS_CONSTANT / base_temperature;
+                       pressure = base_pressure * Math.exp(exponent);
+               }
+               else {
+                       base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
+                       exponent = GRAVITATIONAL_ACCELERATION /
+                               (AIR_GAS_CONSTANT * lapse_rate[layer_number]);
+                       pressure = base_pressure * Math.pow(base, exponent);
+               }
+
+               return pressure;
+       }
+
+
+/* outputs the altitude associated with the given pressure. the altitude
+   returned is measured with respect to the mean sea level */
+       static double
+       cc_pressure_to_altitude(double pressure)
+       {
+
+               double next_base_temperature = LAYER0_BASE_TEMPERATURE;
+               double next_base_pressure = LAYER0_BASE_PRESSURE;
+
+               double altitude;
+               double base_pressure;
+               double base_temperature;
+               double base; /* base for function to determine base pressure of next layer */
+               double exponent; /* exponent for function to determine base pressure
+                                   of next layer */
+               double coefficient;
+               int layer_number; /* identifies layer in the atmosphere */
+               int delta_z; /* difference between two altitudes */
+
+               if (pressure < 0)  /* illegal pressure */
+                       return -1;
+               if (pressure < MINIMUM_PRESSURE) /* FIX ME: use sensor data to improve model */
+                       return MAXIMUM_ALTITUDE;
+
+               /* calculate the base temperature and pressure for the atmospheric layer
+                  associated with the inputted pressure. */
+               layer_number = -1;
+               do {
+                       layer_number++;
+                       base_pressure = next_base_pressure;
+                       base_temperature = next_base_temperature;
+                       delta_z = base_altitude[layer_number + 1] - base_altitude[layer_number];
+                       if (lapse_rate[layer_number] == 0.0) {
+                               exponent = GRAVITATIONAL_ACCELERATION * delta_z
+                                       / AIR_GAS_CONSTANT / base_temperature;
+                               next_base_pressure *= Math.exp(exponent);
+                       }
+                       else {
+                               base = (lapse_rate[layer_number] * delta_z / base_temperature) + 1.0;
+                               exponent = GRAVITATIONAL_ACCELERATION /
+                                       (AIR_GAS_CONSTANT * lapse_rate[layer_number]);
+                               next_base_pressure *= Math.pow(base, exponent);
+                       }
+                       next_base_temperature += delta_z * lapse_rate[layer_number];
+               }
+               while(layer_number < NUMBER_OF_LAYERS - 1 && pressure < next_base_pressure);
+
+               /* calculate the altitude associated with the inputted pressure */
+               if (lapse_rate[layer_number] == 0.0) {
+                       coefficient = (AIR_GAS_CONSTANT / GRAVITATIONAL_ACCELERATION)
+                               * base_temperature;
+                       altitude = base_altitude[layer_number]
+                               + coefficient * Math.log(pressure / base_pressure);
+               }
+               else {
+                       base = pressure / base_pressure;
+                       exponent = AIR_GAS_CONSTANT * lapse_rate[layer_number]
+                               / GRAVITATIONAL_ACCELERATION;
+                       coefficient = base_temperature / lapse_rate[layer_number];
+                       altitude = base_altitude[layer_number]
+                               + coefficient * (Math.pow(base, exponent) - 1);
+               }
+
+               return altitude;
+       }
+
+       /*
+        * Values for our MP3H6115A pressure sensor
+        *
+        * From the data sheet:
+        *
+        * Pressure range: 15-115 kPa
+        * Voltage at 115kPa: 2.82
+        * Output scale: 27mV/kPa
+        *
+        *
+        * 27 mV/kPa * 2047 / 3300 counts/mV = 16.75 counts/kPa
+        * 2.82V * 2047 / 3.3 counts/V = 1749 counts/115 kPa
+        */
+
+       static final double counts_per_kPa = 27 * 2047 / 3300;
+       static final double counts_at_101_3kPa = 1674.0;
+
+       static double
+       cc_barometer_to_pressure(double count)
+       {
+               return ((count / 16.0) / 2047.0 + 0.095) / 0.009 * 1000.0;
+       }
+
+       static double
+       cc_barometer_to_altitude(double baro)
+       {
+               double Pa = cc_barometer_to_pressure(baro);
+               return cc_pressure_to_altitude(Pa);
+       }
+
+       static final double count_per_mss = 27.0;
+
+       static double
+       cc_accelerometer_to_acceleration(double accel, double ground_accel)
+       {
+               return (ground_accel - accel) / count_per_mss;
+       }
+
+       /* Value for the CC1111 built-in temperature sensor
+        * Output voltage at 0°C = 0.755V
+        * Coefficient = 0.00247V/°C
+        * Reference voltage = 1.25V
+        *
+        * temp = ((value / 32767) * 1.25 - 0.755) / 0.00247
+        *      = (value - 19791.268) / 32768 * 1.25 / 0.00247
+        */
+
+       static double
+       cc_thermometer_to_temperature(double thermo)
+       {
+               return (thermo - 19791.268) / 32728.0 * 1.25 / 0.00247;
+       }
+
+       static double
+       cc_battery_to_voltage(double battery)
+       {
+               return battery / 32767.0 * 5.0;
+       }
+
+       static double
+       cc_ignitor_to_voltage(double ignite)
+       {
+               return ignite / 32767 * 15.0;
+       }
+}