use COMMAND_REGISTER macro
[fw/openocd] / src / target / arm7_9_common.c
1 /***************************************************************************
2  *   Copyright (C) 2005 by Dominic Rath                                    *
3  *   Dominic.Rath@gmx.de                                                   *
4  *                                                                         *
5  *   Copyright (C) 2007,2008 Ã˜yvind Harboe                                 *
6  *   oyvind.harboe@zylin.com                                               *
7  *                                                                         *
8  *   Copyright (C) 2008 by Spencer Oliver                                  *
9  *   spen@spen-soft.co.uk                                                  *
10  *                                                                         *
11  *   Copyright (C) 2008 by Hongtao Zheng                                   *
12  *   hontor@126.com                                                        *
13  *                                                                         *
14  *   This program is free software; you can redistribute it and/or modify  *
15  *   it under the terms of the GNU General Public License as published by  *
16  *   the Free Software Foundation; either version 2 of the License, or     *
17  *   (at your option) any later version.                                   *
18  *                                                                         *
19  *   This program is distributed in the hope that it will be useful,       *
20  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
21  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
22  *   GNU General Public License for more details.                          *
23  *                                                                         *
24  *   You should have received a copy of the GNU General Public License     *
25  *   along with this program; if not, write to the                         *
26  *   Free Software Foundation, Inc.,                                       *
27  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
28  ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "breakpoints.h"
34 #include "embeddedice.h"
35 #include "target_request.h"
36 #include "etm.h"
37 #include "time_support.h"
38 #include "arm_simulator.h"
39 #include "algorithm.h"
40 #include "register.h"
41
42
43 /**
44  * @file
45  * Hold common code supporting the ARM7 and ARM9 core generations.
46  *
47  * While the ARM core implementations evolved substantially during these
48  * two generations, they look quite similar from the JTAG perspective.
49  * Both have similar debug facilities, based on the same two scan chains
50  * providing access to the core and to an EmbeddedICE module.  Both can
51  * support similar ETM and ETB modules, for tracing.  And both expose
52  * what could be viewed as "ARM Classic", with multiple processor modes,
53  * shadowed registers, and support for the Thumb instruction set.
54  *
55  * Processor differences include things like presence or absence of MMU
56  * and cache, pipeline sizes, use of a modified Harvard Architecure
57  * (with separate instruction and data busses from the CPU), support
58  * for cpu clock gating during idle, and more.
59  */
60
61 static int arm7_9_debug_entry(struct target *target);
62
63 /**
64  * Clear watchpoints for an ARM7/9 target.
65  *
66  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
67  * @return JTAG error status after executing queue
68  */
69 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
70 {
71         LOG_DEBUG("-");
72         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
73         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
74         arm7_9->sw_breakpoint_count = 0;
75         arm7_9->sw_breakpoints_added = 0;
76         arm7_9->wp0_used = 0;
77         arm7_9->wp1_used = arm7_9->wp1_used_default;
78         arm7_9->wp_available = arm7_9->wp_available_max;
79
80         return jtag_execute_queue();
81 }
82
83 /**
84  * Assign a watchpoint to one of the two available hardware comparators in an
85  * ARM7 or ARM9 target.
86  *
87  * @param arm7_9 Pointer to the common struct for an ARM7/9 target
88  * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
89  */
90 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
91 {
92         if (!arm7_9->wp0_used)
93         {
94                 arm7_9->wp0_used = 1;
95                 breakpoint->set = 1;
96                 arm7_9->wp_available--;
97         }
98         else if (!arm7_9->wp1_used)
99         {
100                 arm7_9->wp1_used = 1;
101                 breakpoint->set = 2;
102                 arm7_9->wp_available--;
103         }
104         else
105         {
106                 LOG_ERROR("BUG: no hardware comparator available");
107         }
108         LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
109                           breakpoint->unique_id,
110                           breakpoint->address,
111                           breakpoint->set );
112 }
113
114 /**
115  * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
116  *
117  * @param arm7_9 Pointer to common struct for ARM7/9 targets
118  * @return Error codes if there is a problem finding a watchpoint or the result
119  *         of executing the JTAG queue
120  */
121 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
122 {
123         if (arm7_9->sw_breakpoints_added)
124         {
125                 return ERROR_OK;
126         }
127         if (arm7_9->wp_available < 1)
128         {
129                 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
130                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
131         }
132         arm7_9->wp_available--;
133
134         /* pick a breakpoint unit */
135         if (!arm7_9->wp0_used)
136         {
137                 arm7_9->sw_breakpoints_added = 1;
138                 arm7_9->wp0_used = 3;
139         } else if (!arm7_9->wp1_used)
140         {
141                 arm7_9->sw_breakpoints_added = 2;
142                 arm7_9->wp1_used = 3;
143         }
144         else
145         {
146                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
147                 return ERROR_FAIL;
148         }
149
150         if (arm7_9->sw_breakpoints_added == 1)
151         {
152                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
153                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
154                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
155                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
156                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
157         }
158         else if (arm7_9->sw_breakpoints_added == 2)
159         {
160                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
161                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
162                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
163                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
164                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
165         }
166         else
167         {
168                 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
169                 return ERROR_FAIL;
170         }
171         LOG_DEBUG("SW BP using hw wp: %d",
172                           arm7_9->sw_breakpoints_added );
173
174         return jtag_execute_queue();
175 }
176
177 /**
178  * Setup the common pieces for an ARM7/9 target after reset or on startup.
179  *
180  * @param target Pointer to an ARM7/9 target to setup
181  * @return Result of clearing the watchpoints on the target
182  */
183 int arm7_9_setup(struct target *target)
184 {
185         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
186
187         return arm7_9_clear_watchpoints(arm7_9);
188 }
189
190 /**
191  * Set either a hardware or software breakpoint on an ARM7/9 target.  The
192  * breakpoint is set up even if it is already set.  Some actions, e.g. reset,
193  * might have erased the values in Embedded ICE.
194  *
195  * @param target Pointer to the target device to set the breakpoints on
196  * @param breakpoint Pointer to the breakpoint to be set
197  * @return For hardware breakpoints, this is the result of executing the JTAG
198  *         queue.  For software breakpoints, this will be the status of the
199  *         required memory reads and writes
200  */
201 int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
202 {
203         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
204         int retval = ERROR_OK;
205
206         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
207                           breakpoint->unique_id,
208                           breakpoint->address,
209                           breakpoint->type);
210
211         if (target->state != TARGET_HALTED)
212         {
213                 LOG_WARNING("target not halted");
214                 return ERROR_TARGET_NOT_HALTED;
215         }
216
217         if (breakpoint->type == BKPT_HARD)
218         {
219                 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
220                 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
221
222                 /* reassign a hw breakpoint */
223                 if (breakpoint->set == 0)
224                 {
225                         arm7_9_assign_wp(arm7_9, breakpoint);
226                 }
227
228                 if (breakpoint->set == 1)
229                 {
230                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
231                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
232                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
233                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
234                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
235                 }
236                 else if (breakpoint->set == 2)
237                 {
238                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
239                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
240                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
241                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
242                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
243                 }
244                 else
245                 {
246                         LOG_ERROR("BUG: no hardware comparator available");
247                         return ERROR_OK;
248                 }
249
250                 retval = jtag_execute_queue();
251         }
252         else if (breakpoint->type == BKPT_SOFT)
253         {
254                 /* did we already set this breakpoint? */
255                 if (breakpoint->set)
256                         return ERROR_OK;
257
258                 if (breakpoint->length == 4)
259                 {
260                         uint32_t verify = 0xffffffff;
261                         /* keep the original instruction in target endianness */
262                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
263                         {
264                                 return retval;
265                         }
266                         /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
267                         if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
268                         {
269                                 return retval;
270                         }
271
272                         if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
273                         {
274                                 return retval;
275                         }
276                         if (verify != arm7_9->arm_bkpt)
277                         {
278                                 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
279                                 return ERROR_OK;
280                         }
281                 }
282                 else
283                 {
284                         uint16_t verify = 0xffff;
285                         /* keep the original instruction in target endianness */
286                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
287                         {
288                                 return retval;
289                         }
290                         /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
291                         if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
292                         {
293                                 return retval;
294                         }
295
296                         if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
297                         {
298                                 return retval;
299                         }
300                         if (verify != arm7_9->thumb_bkpt)
301                         {
302                                 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
303                                 return ERROR_OK;
304                         }
305                 }
306
307                 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
308                         return retval;
309
310                 arm7_9->sw_breakpoint_count++;
311
312                 breakpoint->set = 1;
313         }
314
315         return retval;
316 }
317
318 /**
319  * Unsets an existing breakpoint on an ARM7/9 target.  If it is a hardware
320  * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
321  * will be updated.  Otherwise, the software breakpoint will be restored to its
322  * original instruction if it hasn't already been modified.
323  *
324  * @param target Pointer to ARM7/9 target to unset the breakpoint from
325  * @param breakpoint Pointer to breakpoint to be unset
326  * @return For hardware breakpoints, this is the result of executing the JTAG
327  *         queue.  For software breakpoints, this will be the status of the
328  *         required memory reads and writes
329  */
330 int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
331 {
332         int retval = ERROR_OK;
333         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
334
335         LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
336                           breakpoint->unique_id,
337                           breakpoint->address );
338
339         if (!breakpoint->set)
340         {
341                 LOG_WARNING("breakpoint not set");
342                 return ERROR_OK;
343         }
344
345         if (breakpoint->type == BKPT_HARD)
346         {
347                 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
348                                   breakpoint->unique_id,
349                                   breakpoint->set );
350                 if (breakpoint->set == 1)
351                 {
352                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
353                         arm7_9->wp0_used = 0;
354                         arm7_9->wp_available++;
355                 }
356                 else if (breakpoint->set == 2)
357                 {
358                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
359                         arm7_9->wp1_used = 0;
360                         arm7_9->wp_available++;
361                 }
362                 retval = jtag_execute_queue();
363                 breakpoint->set = 0;
364         }
365         else
366         {
367                 /* restore original instruction (kept in target endianness) */
368                 if (breakpoint->length == 4)
369                 {
370                         uint32_t current_instr;
371                         /* check that user program as not modified breakpoint instruction */
372                         if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
373                         {
374                                 return retval;
375                         }
376                         if (current_instr == arm7_9->arm_bkpt)
377                                 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
378                                 {
379                                         return retval;
380                                 }
381                 }
382                 else
383                 {
384                         uint16_t current_instr;
385                         /* check that user program as not modified breakpoint instruction */
386                         if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
387                         {
388                                 return retval;
389                         }
390                         if (current_instr == arm7_9->thumb_bkpt)
391                                 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
392                                 {
393                                         return retval;
394                                 }
395                 }
396
397                 if (--arm7_9->sw_breakpoint_count==0)
398                 {
399                         /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
400                         if (arm7_9->sw_breakpoints_added == 1)
401                         {
402                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
403                         }
404                         else if (arm7_9->sw_breakpoints_added == 2)
405                         {
406                                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
407                         }
408                 }
409
410                 breakpoint->set = 0;
411         }
412
413         return retval;
414 }
415
416 /**
417  * Add a breakpoint to an ARM7/9 target.  This makes sure that there are no
418  * dangling breakpoints and that the desired breakpoint can be added.
419  *
420  * @param target Pointer to the target ARM7/9 device to add a breakpoint to
421  * @param breakpoint Pointer to the breakpoint to be added
422  * @return An error status if there is a problem adding the breakpoint or the
423  *         result of setting the breakpoint
424  */
425 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
426 {
427         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
428
429         if (target->state != TARGET_HALTED)
430         {
431                 LOG_WARNING("target not halted");
432                 return ERROR_TARGET_NOT_HALTED;
433         }
434
435         if (arm7_9->breakpoint_count == 0)
436         {
437                 /* make sure we don't have any dangling breakpoints. This is vital upon
438                  * GDB connect/disconnect
439                  */
440                 arm7_9_clear_watchpoints(arm7_9);
441         }
442
443         if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
444         {
445                 LOG_INFO("no watchpoint unit available for hardware breakpoint");
446                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
447         }
448
449         if ((breakpoint->length != 2) && (breakpoint->length != 4))
450         {
451                 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
452                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
453         }
454
455         if (breakpoint->type == BKPT_HARD)
456         {
457                 arm7_9_assign_wp(arm7_9, breakpoint);
458         }
459
460         arm7_9->breakpoint_count++;
461
462         return arm7_9_set_breakpoint(target, breakpoint);
463 }
464
465 /**
466  * Removes a breakpoint from an ARM7/9 target.  This will make sure there are no
467  * dangling breakpoints and updates available watchpoints if it is a hardware
468  * breakpoint.
469  *
470  * @param target Pointer to the target to have a breakpoint removed
471  * @param breakpoint Pointer to the breakpoint to be removed
472  * @return Error status if there was a problem unsetting the breakpoint or the
473  *         watchpoints could not be cleared
474  */
475 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
476 {
477         int retval = ERROR_OK;
478         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
479
480         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
481         {
482                 return retval;
483         }
484
485         if (breakpoint->type == BKPT_HARD)
486                 arm7_9->wp_available++;
487
488         arm7_9->breakpoint_count--;
489         if (arm7_9->breakpoint_count == 0)
490         {
491                 /* make sure we don't have any dangling breakpoints */
492                 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
493                 {
494                         return retval;
495                 }
496         }
497
498         return ERROR_OK;
499 }
500
501 /**
502  * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units.  It is
503  * considered a bug to call this function when there are no available watchpoint
504  * units.
505  *
506  * @param target Pointer to an ARM7/9 target to set a watchpoint on
507  * @param watchpoint Pointer to the watchpoint to be set
508  * @return Error status if watchpoint set fails or the result of executing the
509  *         JTAG queue
510  */
511 int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
512 {
513         int retval = ERROR_OK;
514         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
515         int rw_mask = 1;
516         uint32_t mask;
517
518         mask = watchpoint->length - 1;
519
520         if (target->state != TARGET_HALTED)
521         {
522                 LOG_WARNING("target not halted");
523                 return ERROR_TARGET_NOT_HALTED;
524         }
525
526         if (watchpoint->rw == WPT_ACCESS)
527                 rw_mask = 0;
528         else
529                 rw_mask = 1;
530
531         if (!arm7_9->wp0_used)
532         {
533                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
534                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
535                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
536                 if (watchpoint->mask != 0xffffffffu)
537                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
538                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
539                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
540
541                 if ((retval = jtag_execute_queue()) != ERROR_OK)
542                 {
543                         return retval;
544                 }
545                 watchpoint->set = 1;
546                 arm7_9->wp0_used = 2;
547         }
548         else if (!arm7_9->wp1_used)
549         {
550                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
551                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
552                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
553                 if (watchpoint->mask != 0xffffffffu)
554                         embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
555                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
556                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
557
558                 if ((retval = jtag_execute_queue()) != ERROR_OK)
559                 {
560                         return retval;
561                 }
562                 watchpoint->set = 2;
563                 arm7_9->wp1_used = 2;
564         }
565         else
566         {
567                 LOG_ERROR("BUG: no hardware comparator available");
568                 return ERROR_OK;
569         }
570
571         return ERROR_OK;
572 }
573
574 /**
575  * Unset an existing watchpoint and clear the used watchpoint unit.
576  *
577  * @param target Pointer to the target to have the watchpoint removed
578  * @param watchpoint Pointer to the watchpoint to be removed
579  * @return Error status while trying to unset the watchpoint or the result of
580  *         executing the JTAG queue
581  */
582 int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
583 {
584         int retval = ERROR_OK;
585         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
586
587         if (target->state != TARGET_HALTED)
588         {
589                 LOG_WARNING("target not halted");
590                 return ERROR_TARGET_NOT_HALTED;
591         }
592
593         if (!watchpoint->set)
594         {
595                 LOG_WARNING("breakpoint not set");
596                 return ERROR_OK;
597         }
598
599         if (watchpoint->set == 1)
600         {
601                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
602                 if ((retval = jtag_execute_queue()) != ERROR_OK)
603                 {
604                         return retval;
605                 }
606                 arm7_9->wp0_used = 0;
607         }
608         else if (watchpoint->set == 2)
609         {
610                 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
611                 if ((retval = jtag_execute_queue()) != ERROR_OK)
612                 {
613                         return retval;
614                 }
615                 arm7_9->wp1_used = 0;
616         }
617         watchpoint->set = 0;
618
619         return ERROR_OK;
620 }
621
622 /**
623  * Add a watchpoint to an ARM7/9 target.  If there are no watchpoint units
624  * available, an error response is returned.
625  *
626  * @param target Pointer to the ARM7/9 target to add a watchpoint to
627  * @param watchpoint Pointer to the watchpoint to be added
628  * @return Error status while trying to add the watchpoint
629  */
630 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
631 {
632         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
633
634         if (target->state != TARGET_HALTED)
635         {
636                 LOG_WARNING("target not halted");
637                 return ERROR_TARGET_NOT_HALTED;
638         }
639
640         if (arm7_9->wp_available < 1)
641         {
642                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
643         }
644
645         if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
646         {
647                 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
648         }
649
650         arm7_9->wp_available--;
651
652         return ERROR_OK;
653 }
654
655 /**
656  * Remove a watchpoint from an ARM7/9 target.  The watchpoint will be unset and
657  * the used watchpoint unit will be reopened.
658  *
659  * @param target Pointer to the target to remove a watchpoint from
660  * @param watchpoint Pointer to the watchpoint to be removed
661  * @return Result of trying to unset the watchpoint
662  */
663 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
664 {
665         int retval = ERROR_OK;
666         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
667
668         if (watchpoint->set)
669         {
670                 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
671                 {
672                         return retval;
673                 }
674         }
675
676         arm7_9->wp_available++;
677
678         return ERROR_OK;
679 }
680
681 /**
682  * Restarts the target by sending a RESTART instruction and moving the JTAG
683  * state to IDLE.  This includes a timeout waiting for DBGACK and SYSCOMP to be
684  * asserted by the processor.
685  *
686  * @param target Pointer to target to issue commands to
687  * @return Error status if there is a timeout or a problem while executing the
688  *         JTAG queue
689  */
690 int arm7_9_execute_sys_speed(struct target *target)
691 {
692         int retval;
693         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
694         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
695         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
696
697         /* set RESTART instruction */
698         jtag_set_end_state(TAP_IDLE);
699         if (arm7_9->need_bypass_before_restart) {
700                 arm7_9->need_bypass_before_restart = 0;
701                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
702         }
703         arm_jtag_set_instr(jtag_info, 0x4, NULL);
704
705         long long then = timeval_ms();
706         int timeout;
707         while (!(timeout = ((timeval_ms()-then) > 1000)))
708         {
709                 /* read debug status register */
710                 embeddedice_read_reg(dbg_stat);
711                 if ((retval = jtag_execute_queue()) != ERROR_OK)
712                         return retval;
713                 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
714                                    && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
715                         break;
716                 if (debug_level >= 3)
717                 {
718                         alive_sleep(100);
719                 } else
720                 {
721                         keep_alive();
722                 }
723         }
724         if (timeout)
725         {
726                 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
727                 return ERROR_TARGET_TIMEOUT;
728         }
729
730         return ERROR_OK;
731 }
732
733 /**
734  * Restarts the target by sending a RESTART instruction and moving the JTAG
735  * state to IDLE.  This validates that DBGACK and SYSCOMP are set without
736  * waiting until they are.
737  *
738  * @param target Pointer to the target to issue commands to
739  * @return Always ERROR_OK
740  */
741 int arm7_9_execute_fast_sys_speed(struct target *target)
742 {
743         static int set = 0;
744         static uint8_t check_value[4], check_mask[4];
745
746         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
747         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
748         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
749
750         /* set RESTART instruction */
751         jtag_set_end_state(TAP_IDLE);
752         if (arm7_9->need_bypass_before_restart) {
753                 arm7_9->need_bypass_before_restart = 0;
754                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
755         }
756         arm_jtag_set_instr(jtag_info, 0x4, NULL);
757
758         if (!set)
759         {
760                 /* check for DBGACK and SYSCOMP set (others don't care) */
761
762                 /* NB! These are constants that must be available until after next jtag_execute() and
763                  * we evaluate the values upon first execution in lieu of setting up these constants
764                  * during early setup.
765                  * */
766                 buf_set_u32(check_value, 0, 32, 0x9);
767                 buf_set_u32(check_mask, 0, 32, 0x9);
768                 set = 1;
769         }
770
771         /* read debug status register */
772         embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
773
774         return ERROR_OK;
775 }
776
777 /**
778  * Get some data from the ARM7/9 target.
779  *
780  * @param target Pointer to the ARM7/9 target to read data from
781  * @param size The number of 32bit words to be read
782  * @param buffer Pointer to the buffer that will hold the data
783  * @return The result of receiving data from the Embedded ICE unit
784  */
785 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
786 {
787         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
788         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
789         uint32_t *data;
790         int retval = ERROR_OK;
791         uint32_t i;
792
793         data = malloc(size * (sizeof(uint32_t)));
794
795         retval = embeddedice_receive(jtag_info, data, size);
796
797         /* return the 32-bit ints in the 8-bit array */
798         for (i = 0; i < size; i++)
799         {
800                 h_u32_to_le(buffer + (i * 4), data[i]);
801         }
802
803         free(data);
804
805         return retval;
806 }
807
808 /**
809  * Handles requests to an ARM7/9 target.  If debug messaging is enabled, the
810  * target is running and the DCC control register has the W bit high, this will
811  * execute the request on the target.
812  *
813  * @param priv Void pointer expected to be a struct target pointer
814  * @return ERROR_OK unless there are issues with the JTAG queue or when reading
815  *                  from the Embedded ICE unit
816  */
817 int arm7_9_handle_target_request(void *priv)
818 {
819         int retval = ERROR_OK;
820         struct target *target = priv;
821         if (!target_was_examined(target))
822                 return ERROR_OK;
823         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
824         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
825         struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
826
827         if (!target->dbg_msg_enabled)
828                 return ERROR_OK;
829
830         if (target->state == TARGET_RUNNING)
831         {
832                 /* read DCC control register */
833                 embeddedice_read_reg(dcc_control);
834                 if ((retval = jtag_execute_queue()) != ERROR_OK)
835                 {
836                         return retval;
837                 }
838
839                 /* check W bit */
840                 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
841                 {
842                         uint32_t request;
843
844                         if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
845                         {
846                                 return retval;
847                         }
848                         if ((retval = target_request(target, request)) != ERROR_OK)
849                         {
850                                 return retval;
851                         }
852                 }
853         }
854
855         return ERROR_OK;
856 }
857
858 /**
859  * Polls an ARM7/9 target for its current status.  If DBGACK is set, the target
860  * is manipulated to the right halted state based on its current state.  This is
861  * what happens:
862  *
863  * <table>
864  *              <tr><th > State</th><th > Action</th></tr>
865  *              <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode.  If TARGET_RESET, pc may be checked</td></tr>
866  *              <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
867  *              <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
868  *              <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
869  * </table>
870  *
871  * If the target does not end up in the halted state, a warning is produced.  If
872  * DBGACK is cleared, then the target is expected to either be running or
873  * running in debug.
874  *
875  * @param target Pointer to the ARM7/9 target to poll
876  * @return ERROR_OK or an error status if a command fails
877  */
878 int arm7_9_poll(struct target *target)
879 {
880         int retval;
881         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
882         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
883
884         /* read debug status register */
885         embeddedice_read_reg(dbg_stat);
886         if ((retval = jtag_execute_queue()) != ERROR_OK)
887         {
888                 return retval;
889         }
890
891         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
892         {
893 /*              LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
894                 if (target->state == TARGET_UNKNOWN)
895                 {
896                         /* Starting OpenOCD with target in debug-halt */
897                         target->state = TARGET_RUNNING;
898                         LOG_DEBUG("DBGACK already set during server startup.");
899                 }
900                 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
901                 {
902                         int check_pc = 0;
903                         if (target->state == TARGET_RESET)
904                         {
905                                 if (target->reset_halt)
906                                 {
907                                         enum reset_types jtag_reset_config = jtag_get_reset_config();
908                                         if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
909                                         {
910                                                 check_pc = 1;
911                                         }
912                                 }
913                         }
914
915                         target->state = TARGET_HALTED;
916
917                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
918                                 return retval;
919
920                         if (check_pc)
921                         {
922                                 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
923                                 uint32_t t=*((uint32_t *)reg->value);
924                                 if (t != 0)
925                                 {
926                                         LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
927                                 }
928                         }
929
930                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
931                         {
932                                 return retval;
933                         }
934                 }
935                 if (target->state == TARGET_DEBUG_RUNNING)
936                 {
937                         target->state = TARGET_HALTED;
938                         if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
939                                 return retval;
940
941                         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
942                         {
943                                 return retval;
944                         }
945                 }
946                 if (target->state != TARGET_HALTED)
947                 {
948                         LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
949                 }
950         }
951         else
952         {
953                 if (target->state != TARGET_DEBUG_RUNNING)
954                         target->state = TARGET_RUNNING;
955         }
956
957         return ERROR_OK;
958 }
959
960 /**
961  * Asserts the reset (SRST) on an ARM7/9 target.  Some -S targets (ARM966E-S in
962  * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
963  * affected) completely stop the JTAG clock while the core is held in reset
964  * (SRST).  It isn't possible to program the halt condition once reset is
965  * asserted, hence a hook that allows the target to set up its reset-halt
966  * condition is setup prior to asserting reset.
967  *
968  * @param target Pointer to an ARM7/9 target to assert reset on
969  * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
970  */
971 int arm7_9_assert_reset(struct target *target)
972 {
973         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
974
975         LOG_DEBUG("target->state: %s",
976                   target_state_name(target));
977
978         enum reset_types jtag_reset_config = jtag_get_reset_config();
979         if (!(jtag_reset_config & RESET_HAS_SRST))
980         {
981                 LOG_ERROR("Can't assert SRST");
982                 return ERROR_FAIL;
983         }
984
985         /* At this point trst has been asserted/deasserted once. We would
986          * like to program EmbeddedICE while SRST is asserted, instead of
987          * depending on SRST to leave that module alone.  However, many CPUs
988          * gate the JTAG clock while SRST is asserted; or JTAG may need
989          * clock stability guarantees (adaptive clocking might help).
990          *
991          * So we assume JTAG access during SRST is off the menu unless it's
992          * been specifically enabled.
993          */
994         bool srst_asserted = false;
995
996         if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
997                         && (jtag_reset_config & RESET_SRST_NO_GATING))
998         {
999                 jtag_add_reset(0, 1);
1000                 srst_asserted = true;
1001         }
1002
1003         if (target->reset_halt)
1004         {
1005                 /*
1006                  * Some targets do not support communication while SRST is asserted. We need to
1007                  * set up the reset vector catch here.
1008                  *
1009                  * If TRST is asserted, then these settings will be reset anyway, so setting them
1010                  * here is harmless.
1011                  */
1012                 if (arm7_9->has_vector_catch)
1013                 {
1014                         /* program vector catch register to catch reset vector */
1015                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1016
1017                         /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1018                         jtag_add_runtest(1, jtag_get_end_state());
1019                 }
1020                 else
1021                 {
1022                         /* program watchpoint unit to match on reset vector address */
1023                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1024                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1025                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1026                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1027                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1028                 }
1029         }
1030
1031         /* here we should issue an SRST only, but we may have to assert TRST as well */
1032         if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1033         {
1034                 jtag_add_reset(1, 1);
1035         } else if (!srst_asserted)
1036         {
1037                 jtag_add_reset(0, 1);
1038         }
1039
1040         target->state = TARGET_RESET;
1041         jtag_add_sleep(50000);
1042
1043         register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1044
1045         if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1046         {
1047                 /* debug entry was already prepared in arm7_9_assert_reset() */
1048                 target->debug_reason = DBG_REASON_DBGRQ;
1049         }
1050
1051         return ERROR_OK;
1052 }
1053
1054 /**
1055  * Deassert the reset (SRST) signal on an ARM7/9 target.  If SRST pulls TRST
1056  * and the target is being reset into a halt, a warning will be triggered
1057  * because it is not possible to reset into a halted mode in this case.  The
1058  * target is halted using the target's functions.
1059  *
1060  * @param target Pointer to the target to have the reset deasserted
1061  * @return ERROR_OK or an error from polling or halting the target
1062  */
1063 int arm7_9_deassert_reset(struct target *target)
1064 {
1065         int retval = ERROR_OK;
1066         LOG_DEBUG("target->state: %s",
1067                 target_state_name(target));
1068
1069         /* deassert reset lines */
1070         jtag_add_reset(0, 0);
1071
1072         enum reset_types jtag_reset_config = jtag_get_reset_config();
1073         if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1074         {
1075                 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1076                 /* set up embedded ice registers again */
1077                 if ((retval = target_examine_one(target)) != ERROR_OK)
1078                         return retval;
1079
1080                 if ((retval = target_poll(target)) != ERROR_OK)
1081                 {
1082                         return retval;
1083                 }
1084
1085                 if ((retval = target_halt(target)) != ERROR_OK)
1086                 {
1087                         return retval;
1088                 }
1089
1090         }
1091         return retval;
1092 }
1093
1094 /**
1095  * Clears the halt condition for an ARM7/9 target.  If it isn't coming out of
1096  * reset and if DBGRQ is used, it is progammed to be deasserted.  If the reset
1097  * vector catch was used, it is restored.  Otherwise, the control value is
1098  * restored and the watchpoint unit is restored if it was in use.
1099  *
1100  * @param target Pointer to the ARM7/9 target to have halt cleared
1101  * @return Always ERROR_OK
1102  */
1103 int arm7_9_clear_halt(struct target *target)
1104 {
1105         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1106         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1107
1108         /* we used DBGRQ only if we didn't come out of reset */
1109         if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1110         {
1111                 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1112                  */
1113                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1114                 embeddedice_store_reg(dbg_ctrl);
1115         }
1116         else
1117         {
1118                 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1119                 {
1120                         /* if we came out of reset, and vector catch is supported, we used
1121                          * vector catch to enter debug state
1122                          * restore the register in that case
1123                          */
1124                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1125                 }
1126                 else
1127                 {
1128                         /* restore registers if watchpoint unit 0 was in use
1129                          */
1130                         if (arm7_9->wp0_used)
1131                         {
1132                                 if (arm7_9->debug_entry_from_reset)
1133                                 {
1134                                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1135                                 }
1136                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1137                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1138                                 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1139                         }
1140                         /* control value always has to be restored, as it was either disabled,
1141                          * or enabled with possibly different bits
1142                          */
1143                         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1144                 }
1145         }
1146
1147         return ERROR_OK;
1148 }
1149
1150 /**
1151  * Issue a software reset and halt to an ARM7/9 target.  The target is halted
1152  * and then there is a wait until the processor shows the halt.  This wait can
1153  * timeout and results in an error being returned.  The software reset involves
1154  * clearing the halt, updating the debug control register, changing to ARM mode,
1155  * reset of the program counter, and reset of all of the registers.
1156  *
1157  * @param target Pointer to the ARM7/9 target to be reset and halted by software
1158  * @return Error status if any of the commands fail, otherwise ERROR_OK
1159  */
1160 int arm7_9_soft_reset_halt(struct target *target)
1161 {
1162         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1163         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1164         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1165         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1166         int i;
1167         int retval;
1168
1169         /* FIX!!! replace some of this code with tcl commands
1170          *
1171          * halt # the halt command is synchronous
1172          * armv4_5 core_state arm
1173          *
1174          */
1175
1176         if ((retval = target_halt(target)) != ERROR_OK)
1177                 return retval;
1178
1179         long long then = timeval_ms();
1180         int timeout;
1181         while (!(timeout = ((timeval_ms()-then) > 1000)))
1182         {
1183                 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1184                         break;
1185                 embeddedice_read_reg(dbg_stat);
1186                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1187                         return retval;
1188                 if (debug_level >= 3)
1189                 {
1190                         alive_sleep(100);
1191                 } else
1192                 {
1193                         keep_alive();
1194                 }
1195         }
1196         if (timeout)
1197         {
1198                 LOG_ERROR("Failed to halt CPU after 1 sec");
1199                 return ERROR_TARGET_TIMEOUT;
1200         }
1201         target->state = TARGET_HALTED;
1202
1203         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1204          * ensure that DBGRQ is cleared
1205          */
1206         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1207         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1208         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1209         embeddedice_store_reg(dbg_ctrl);
1210
1211         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1212         {
1213                 return retval;
1214         }
1215
1216         /* if the target is in Thumb state, change to ARM state */
1217         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1218         {
1219                 uint32_t r0_thumb, pc_thumb;
1220                 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1221                 /* Entered debug from Thumb mode */
1222                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1223                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1224         }
1225
1226         /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1227
1228         /* all register content is now invalid */
1229         register_cache_invalidate(armv4_5->core_cache);
1230
1231         /* SVC, ARM state, IRQ and FIQ disabled */
1232         uint32_t cpsr;
1233
1234         cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1235         cpsr &= ~0xff;
1236         cpsr |= 0xd3;
1237         arm_set_cpsr(armv4_5, cpsr);
1238         armv4_5->cpsr->dirty = 1;
1239
1240         /* start fetching from 0x0 */
1241         buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1242         armv4_5->core_cache->reg_list[15].dirty = 1;
1243         armv4_5->core_cache->reg_list[15].valid = 1;
1244
1245         /* reset registers */
1246         for (i = 0; i <= 14; i++)
1247         {
1248                 struct reg *r = arm_reg_current(armv4_5, i);
1249
1250                 buf_set_u32(r->value, 0, 32, 0xffffffff);
1251                 r->dirty = 1;
1252                 r->valid = 1;
1253         }
1254
1255         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1256         {
1257                 return retval;
1258         }
1259
1260         return ERROR_OK;
1261 }
1262
1263 /**
1264  * Halt an ARM7/9 target.  This is accomplished by either asserting the DBGRQ
1265  * line or by programming a watchpoint to trigger on any address.  It is
1266  * considered a bug to call this function while the target is in the
1267  * TARGET_RESET state.
1268  *
1269  * @param target Pointer to the ARM7/9 target to be halted
1270  * @return Always ERROR_OK
1271  */
1272 int arm7_9_halt(struct target *target)
1273 {
1274         if (target->state == TARGET_RESET)
1275         {
1276                 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1277                 return ERROR_OK;
1278         }
1279
1280         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1281         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1282
1283         LOG_DEBUG("target->state: %s",
1284                   target_state_name(target));
1285
1286         if (target->state == TARGET_HALTED)
1287         {
1288                 LOG_DEBUG("target was already halted");
1289                 return ERROR_OK;
1290         }
1291
1292         if (target->state == TARGET_UNKNOWN)
1293         {
1294                 LOG_WARNING("target was in unknown state when halt was requested");
1295         }
1296
1297         if (arm7_9->use_dbgrq)
1298         {
1299                 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1300                  */
1301                 if (arm7_9->set_special_dbgrq) {
1302                         arm7_9->set_special_dbgrq(target);
1303                 } else {
1304                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1305                         embeddedice_store_reg(dbg_ctrl);
1306                 }
1307         }
1308         else
1309         {
1310                 /* program watchpoint unit to match on any address
1311                  */
1312                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1313                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1314                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1315                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1316         }
1317
1318         target->debug_reason = DBG_REASON_DBGRQ;
1319
1320         return ERROR_OK;
1321 }
1322
1323 /**
1324  * Handle an ARM7/9 target's entry into debug mode.  The halt is cleared on the
1325  * ARM.  The JTAG queue is then executed and the reason for debug entry is
1326  * examined.  Once done, the target is verified to be halted and the processor
1327  * is forced into ARM mode.  The core registers are saved for the current core
1328  * mode and the program counter (register 15) is updated as needed.  The core
1329  * registers and CPSR and SPSR are saved for restoration later.
1330  *
1331  * @param target Pointer to target that is entering debug mode
1332  * @return Error code if anything fails, otherwise ERROR_OK
1333  */
1334 static int arm7_9_debug_entry(struct target *target)
1335 {
1336         int i;
1337         uint32_t context[16];
1338         uint32_t* context_p[16];
1339         uint32_t r0_thumb, pc_thumb;
1340         uint32_t cpsr, cpsr_mask = 0;
1341         int retval;
1342         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1343         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1344         struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1345         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1346
1347 #ifdef _DEBUG_ARM7_9_
1348         LOG_DEBUG("-");
1349 #endif
1350
1351         /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1352          * ensure that DBGRQ is cleared
1353          */
1354         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1355         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1356         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1357         embeddedice_store_reg(dbg_ctrl);
1358
1359         if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1360         {
1361                 return retval;
1362         }
1363
1364         if ((retval = jtag_execute_queue()) != ERROR_OK)
1365         {
1366                 return retval;
1367         }
1368
1369         if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1370                 return retval;
1371
1372
1373         if (target->state != TARGET_HALTED)
1374         {
1375                 LOG_WARNING("target not halted");
1376                 return ERROR_TARGET_NOT_HALTED;
1377         }
1378
1379         /* if the target is in Thumb state, change to ARM state */
1380         if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1381         {
1382                 LOG_DEBUG("target entered debug from Thumb state");
1383                 /* Entered debug from Thumb mode */
1384                 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1385                 cpsr_mask = 1 << 5;
1386                 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1387                 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1388                         ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1389         } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1390                 /* \todo Get some vaguely correct handling of Jazelle, if
1391                  * anyone ever uses it and full info becomes available.
1392                  * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1393                  * B.7.3 for the reverse.  That'd be the bare minimum...
1394                  */
1395                 LOG_DEBUG("target entered debug from Jazelle state");
1396                 armv4_5->core_state = ARMV4_5_STATE_JAZELLE;
1397                 cpsr_mask = 1 << 24;
1398                 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1399         } else {
1400                 LOG_DEBUG("target entered debug from ARM state");
1401                 /* Entered debug from ARM mode */
1402                 armv4_5->core_state = ARMV4_5_STATE_ARM;
1403         }
1404
1405         for (i = 0; i < 16; i++)
1406                 context_p[i] = &context[i];
1407         /* save core registers (r0 - r15 of current core mode) */
1408         arm7_9->read_core_regs(target, 0xffff, context_p);
1409
1410         arm7_9->read_xpsr(target, &cpsr, 0);
1411
1412         if ((retval = jtag_execute_queue()) != ERROR_OK)
1413                 return retval;
1414
1415         /* Sync our CPSR copy with J or T bits EICE reported, but
1416          * which we then erased by putting the core into ARM mode.
1417          */
1418         arm_set_cpsr(armv4_5, cpsr | cpsr_mask);
1419
1420         if (!is_arm_mode(armv4_5->core_mode))
1421         {
1422                 target->state = TARGET_UNKNOWN;
1423                 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1424                 return ERROR_TARGET_FAILURE;
1425         }
1426
1427         LOG_DEBUG("target entered debug state in %s mode",
1428                          arm_mode_name(armv4_5->core_mode));
1429
1430         if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1431         {
1432                 LOG_DEBUG("thumb state, applying fixups");
1433                 context[0] = r0_thumb;
1434                 context[15] = pc_thumb;
1435         } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1436         {
1437                 /* adjust value stored by STM */
1438                 context[15] -= 3 * 4;
1439         }
1440
1441         if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1442                 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1443         else
1444                 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1445
1446         for (i = 0; i <= 15; i++)
1447         {
1448                 struct reg *r = arm_reg_current(armv4_5, i);
1449
1450                 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1451
1452                 buf_set_u32(r->value, 0, 32, context[i]);
1453                 /* r0 and r15 (pc) have to be restored later */
1454                 r->dirty = (i == 0) || (i == 15);
1455                 r->valid = 1;
1456         }
1457
1458         LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1459
1460         /* exceptions other than USR & SYS have a saved program status register */
1461         if (armv4_5->spsr) {
1462                 uint32_t spsr;
1463                 arm7_9->read_xpsr(target, &spsr, 1);
1464                 if ((retval = jtag_execute_queue()) != ERROR_OK)
1465                 {
1466                         return retval;
1467                 }
1468                 buf_set_u32(armv4_5->spsr->value, 0, 32, spsr);
1469                 armv4_5->spsr->dirty = 0;
1470                 armv4_5->spsr->valid = 1;
1471         }
1472
1473         if ((retval = jtag_execute_queue()) != ERROR_OK)
1474                 return retval;
1475
1476         if (arm7_9->post_debug_entry)
1477                 arm7_9->post_debug_entry(target);
1478
1479         return ERROR_OK;
1480 }
1481
1482 /**
1483  * Validate the full context for an ARM7/9 target in all processor modes.  If
1484  * there are any invalid registers for the target, they will all be read.  This
1485  * includes the PSR.
1486  *
1487  * @param target Pointer to the ARM7/9 target to capture the full context from
1488  * @return Error if the target is not halted, has an invalid core mode, or if
1489  *         the JTAG queue fails to execute
1490  */
1491 int arm7_9_full_context(struct target *target)
1492 {
1493         int i;
1494         int retval;
1495         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1496         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1497
1498         LOG_DEBUG("-");
1499
1500         if (target->state != TARGET_HALTED)
1501         {
1502                 LOG_WARNING("target not halted");
1503                 return ERROR_TARGET_NOT_HALTED;
1504         }
1505
1506         if (!is_arm_mode(armv4_5->core_mode))
1507                 return ERROR_FAIL;
1508
1509         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1510          * SYS shares registers with User, so we don't touch SYS
1511          */
1512         for (i = 0; i < 6; i++)
1513         {
1514                 uint32_t mask = 0;
1515                 uint32_t* reg_p[16];
1516                 int j;
1517                 int valid = 1;
1518
1519                 /* check if there are invalid registers in the current mode
1520                  */
1521                 for (j = 0; j <= 16; j++)
1522                 {
1523                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1524                                 valid = 0;
1525                 }
1526
1527                 if (!valid)
1528                 {
1529                         uint32_t tmp_cpsr;
1530
1531                         /* change processor mode (and mask T bit) */
1532                         tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
1533                                         & 0xe0;
1534                         tmp_cpsr |= armv4_5_number_to_mode(i);
1535                         tmp_cpsr &= ~0x20;
1536                         arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1537
1538                         for (j = 0; j < 15; j++)
1539                         {
1540                                 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1541                                 {
1542                                         reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1543                                         mask |= 1 << j;
1544                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1545                                         ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1546                                 }
1547                         }
1548
1549                         /* if only the PSR is invalid, mask is all zeroes */
1550                         if (mask)
1551                                 arm7_9->read_core_regs(target, mask, reg_p);
1552
1553                         /* check if the PSR has to be read */
1554                         if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1555                         {
1556                                 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1557                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1558                                 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1559                         }
1560                 }
1561         }
1562
1563         /* restore processor mode (mask T bit) */
1564         arm7_9->write_xpsr_im8(target,
1565                         buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
1566                         0, 0);
1567
1568         if ((retval = jtag_execute_queue()) != ERROR_OK)
1569         {
1570                 return retval;
1571         }
1572         return ERROR_OK;
1573 }
1574
1575 /**
1576  * Restore the processor context on an ARM7/9 target.  The full processor
1577  * context is analyzed to see if any of the registers are dirty on this end, but
1578  * have a valid new value.  If this is the case, the processor is changed to the
1579  * appropriate mode and the new register values are written out to the
1580  * processor.  If there happens to be a dirty register with an invalid value, an
1581  * error will be logged.
1582  *
1583  * @param target Pointer to the ARM7/9 target to have its context restored
1584  * @return Error status if the target is not halted or the core mode in the
1585  *         armv4_5 struct is invalid.
1586  */
1587 int arm7_9_restore_context(struct target *target)
1588 {
1589         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1590         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1591         struct reg *reg;
1592         struct arm_reg *reg_arch_info;
1593         enum armv4_5_mode current_mode = armv4_5->core_mode;
1594         int i, j;
1595         int dirty;
1596         int mode_change;
1597
1598         LOG_DEBUG("-");
1599
1600         if (target->state != TARGET_HALTED)
1601         {
1602                 LOG_WARNING("target not halted");
1603                 return ERROR_TARGET_NOT_HALTED;
1604         }
1605
1606         if (arm7_9->pre_restore_context)
1607                 arm7_9->pre_restore_context(target);
1608
1609         if (!is_arm_mode(armv4_5->core_mode))
1610                 return ERROR_FAIL;
1611
1612         /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1613          * SYS shares registers with User, so we don't touch SYS
1614          */
1615         for (i = 0; i < 6; i++)
1616         {
1617                 LOG_DEBUG("examining %s mode",
1618                                 arm_mode_name(armv4_5->core_mode));
1619                 dirty = 0;
1620                 mode_change = 0;
1621                 /* check if there are dirty registers in the current mode
1622                 */
1623                 for (j = 0; j <= 16; j++)
1624                 {
1625                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1626                         reg_arch_info = reg->arch_info;
1627                         if (reg->dirty == 1)
1628                         {
1629                                 if (reg->valid == 1)
1630                                 {
1631                                         dirty = 1;
1632                                         LOG_DEBUG("examining dirty reg: %s", reg->name);
1633                                         if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1634                                                 && (reg_arch_info->mode != current_mode)
1635                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1636                                                 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1637                                         {
1638                                                 mode_change = 1;
1639                                                 LOG_DEBUG("require mode change");
1640                                         }
1641                                 }
1642                                 else
1643                                 {
1644                                         LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1645                                 }
1646                         }
1647                 }
1648
1649                 if (dirty)
1650                 {
1651                         uint32_t mask = 0x0;
1652                         int num_regs = 0;
1653                         uint32_t regs[16];
1654
1655                         if (mode_change)
1656                         {
1657                                 uint32_t tmp_cpsr;
1658
1659                                 /* change processor mode (mask T bit) */
1660                                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
1661                                                 0, 8) & 0xe0;
1662                                 tmp_cpsr |= armv4_5_number_to_mode(i);
1663                                 tmp_cpsr &= ~0x20;
1664                                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1665                                 current_mode = armv4_5_number_to_mode(i);
1666                         }
1667
1668                         for (j = 0; j <= 14; j++)
1669                         {
1670                                 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1671                                 reg_arch_info = reg->arch_info;
1672
1673
1674                                 if (reg->dirty == 1)
1675                                 {
1676                                         regs[j] = buf_get_u32(reg->value, 0, 32);
1677                                         mask |= 1 << j;
1678                                         num_regs++;
1679                                         reg->dirty = 0;
1680                                         reg->valid = 1;
1681                                         LOG_DEBUG("writing register %i mode %s "
1682                                                 "with value 0x%8.8" PRIx32, j,
1683                                                 arm_mode_name(armv4_5->core_mode),
1684                                                 regs[j]);
1685                                 }
1686                         }
1687
1688                         if (mask)
1689                         {
1690                                 arm7_9->write_core_regs(target, mask, regs);
1691                         }
1692
1693                         reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1694                         reg_arch_info = reg->arch_info;
1695                         if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1696                         {
1697                                 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1698                                 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1699                         }
1700                 }
1701         }
1702
1703         if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
1704         {
1705                 /* restore processor mode (mask T bit) */
1706                 uint32_t tmp_cpsr;
1707
1708                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
1709                 tmp_cpsr |= armv4_5_number_to_mode(i);
1710                 tmp_cpsr &= ~0x20;
1711                 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1712                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1713         }
1714         else if (armv4_5->cpsr->dirty)
1715         {
1716                 /* CPSR has been changed, full restore necessary (mask T bit) */
1717                 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1718                                 buf_get_u32(armv4_5->cpsr->value, 0, 32));
1719                 arm7_9->write_xpsr(target,
1720                                 buf_get_u32(armv4_5->cpsr->value, 0, 32)
1721                                         & ~0x20, 0);
1722                 armv4_5->cpsr->dirty = 0;
1723                 armv4_5->cpsr->valid = 1;
1724         }
1725
1726         /* restore PC */
1727         LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1728         arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1729         armv4_5->core_cache->reg_list[15].dirty = 0;
1730
1731         if (arm7_9->post_restore_context)
1732                 arm7_9->post_restore_context(target);
1733
1734         return ERROR_OK;
1735 }
1736
1737 /**
1738  * Restart the core of an ARM7/9 target.  A RESTART command is sent to the
1739  * instruction register and the JTAG state is set to TAP_IDLE causing a core
1740  * restart.
1741  *
1742  * @param target Pointer to the ARM7/9 target to be restarted
1743  * @return Result of executing the JTAG queue
1744  */
1745 int arm7_9_restart_core(struct target *target)
1746 {
1747         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1748         struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1749
1750         /* set RESTART instruction */
1751         jtag_set_end_state(TAP_IDLE);
1752         if (arm7_9->need_bypass_before_restart) {
1753                 arm7_9->need_bypass_before_restart = 0;
1754                 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1755         }
1756         arm_jtag_set_instr(jtag_info, 0x4, NULL);
1757
1758         jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1759         return jtag_execute_queue();
1760 }
1761
1762 /**
1763  * Enable the watchpoints on an ARM7/9 target.  The target's watchpoints are
1764  * iterated through and are set on the target if they aren't already set.
1765  *
1766  * @param target Pointer to the ARM7/9 target to enable watchpoints on
1767  */
1768 void arm7_9_enable_watchpoints(struct target *target)
1769 {
1770         struct watchpoint *watchpoint = target->watchpoints;
1771
1772         while (watchpoint)
1773         {
1774                 if (watchpoint->set == 0)
1775                         arm7_9_set_watchpoint(target, watchpoint);
1776                 watchpoint = watchpoint->next;
1777         }
1778 }
1779
1780 /**
1781  * Enable the breakpoints on an ARM7/9 target.  The target's breakpoints are
1782  * iterated through and are set on the target.
1783  *
1784  * @param target Pointer to the ARM7/9 target to enable breakpoints on
1785  */
1786 void arm7_9_enable_breakpoints(struct target *target)
1787 {
1788         struct breakpoint *breakpoint = target->breakpoints;
1789
1790         /* set any pending breakpoints */
1791         while (breakpoint)
1792         {
1793                 arm7_9_set_breakpoint(target, breakpoint);
1794                 breakpoint = breakpoint->next;
1795         }
1796 }
1797
1798 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1799 {
1800         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1801         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1802         struct breakpoint *breakpoint = target->breakpoints;
1803         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1804         int err, retval = ERROR_OK;
1805
1806         LOG_DEBUG("-");
1807
1808         if (target->state != TARGET_HALTED)
1809         {
1810                 LOG_WARNING("target not halted");
1811                 return ERROR_TARGET_NOT_HALTED;
1812         }
1813
1814         if (!debug_execution)
1815         {
1816                 target_free_all_working_areas(target);
1817         }
1818
1819         /* current = 1: continue on current pc, otherwise continue at <address> */
1820         if (!current)
1821                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1822
1823         uint32_t current_pc;
1824         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1825
1826         /* the front-end may request us not to handle breakpoints */
1827         if (handle_breakpoints)
1828         {
1829                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1830                 {
1831                         LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1832                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1833                         {
1834                                 return retval;
1835                         }
1836
1837                         /* calculate PC of next instruction */
1838                         uint32_t next_pc;
1839                         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1840                         {
1841                                 uint32_t current_opcode;
1842                                 target_read_u32(target, current_pc, &current_opcode);
1843                                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1844                                 return retval;
1845                         }
1846
1847                         LOG_DEBUG("enable single-step");
1848                         arm7_9->enable_single_step(target, next_pc);
1849
1850                         target->debug_reason = DBG_REASON_SINGLESTEP;
1851
1852                         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1853                         {
1854                                 return retval;
1855                         }
1856
1857                         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1858                                 arm7_9->branch_resume(target);
1859                         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1860                         {
1861                                 arm7_9->branch_resume_thumb(target);
1862                         }
1863                         else
1864                         {
1865                                 LOG_ERROR("unhandled core state");
1866                                 return ERROR_FAIL;
1867                         }
1868
1869                         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1870                         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1871                         err = arm7_9_execute_sys_speed(target);
1872
1873                         LOG_DEBUG("disable single-step");
1874                         arm7_9->disable_single_step(target);
1875
1876                         if (err != ERROR_OK)
1877                         {
1878                                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1879                                 {
1880                                         return retval;
1881                                 }
1882                                 target->state = TARGET_UNKNOWN;
1883                                 return err;
1884                         }
1885
1886                         arm7_9_debug_entry(target);
1887                         LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1888
1889                         LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1890                         if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1891                         {
1892                                 return retval;
1893                         }
1894                 }
1895         }
1896
1897         /* enable any pending breakpoints and watchpoints */
1898         arm7_9_enable_breakpoints(target);
1899         arm7_9_enable_watchpoints(target);
1900
1901         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1902         {
1903                 return retval;
1904         }
1905
1906         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1907         {
1908                 arm7_9->branch_resume(target);
1909         }
1910         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1911         {
1912                 arm7_9->branch_resume_thumb(target);
1913         }
1914         else
1915         {
1916                 LOG_ERROR("unhandled core state");
1917                 return ERROR_FAIL;
1918         }
1919
1920         /* deassert DBGACK and INTDIS */
1921         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1922         /* INTDIS only when we really resume, not during debug execution */
1923         if (!debug_execution)
1924                 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1925         embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1926
1927         if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1928         {
1929                 return retval;
1930         }
1931
1932         target->debug_reason = DBG_REASON_NOTHALTED;
1933
1934         if (!debug_execution)
1935         {
1936                 /* registers are now invalid */
1937                 register_cache_invalidate(armv4_5->core_cache);
1938                 target->state = TARGET_RUNNING;
1939                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1940                 {
1941                         return retval;
1942                 }
1943         }
1944         else
1945         {
1946                 target->state = TARGET_DEBUG_RUNNING;
1947                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1948                 {
1949                         return retval;
1950                 }
1951         }
1952
1953         LOG_DEBUG("target resumed");
1954
1955         return ERROR_OK;
1956 }
1957
1958 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1959 {
1960         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1961         struct arm *armv4_5 = &arm7_9->armv4_5_common;
1962         uint32_t current_pc;
1963         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1964
1965         if (next_pc != current_pc)
1966         {
1967                 /* setup an inverse breakpoint on the current PC
1968                 * - comparator 1 matches the current address
1969                 * - rangeout from comparator 1 is connected to comparator 0 rangein
1970                 * - comparator 0 matches any address, as long as rangein is low */
1971                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1972                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1973                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1974                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1975                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1976                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1977                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1978                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1979                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1980         }
1981         else
1982         {
1983                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1984                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1985                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1986                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1987                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1988                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1989                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1990                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1991                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1992         }
1993 }
1994
1995 void arm7_9_disable_eice_step(struct target *target)
1996 {
1997         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1998
1999         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
2000         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
2001         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
2002         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
2003         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
2004         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2005         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2006         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2007         embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2008 }
2009
2010 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2011 {
2012         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2013         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2014         struct breakpoint *breakpoint = NULL;
2015         int err, retval;
2016
2017         if (target->state != TARGET_HALTED)
2018         {
2019                 LOG_WARNING("target not halted");
2020                 return ERROR_TARGET_NOT_HALTED;
2021         }
2022
2023         /* current = 1: continue on current pc, otherwise continue at <address> */
2024         if (!current)
2025                 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2026
2027         uint32_t current_pc;
2028         current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2029
2030         /* the front-end may request us not to handle breakpoints */
2031         if (handle_breakpoints)
2032                 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2033                         if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2034                         {
2035                                 return retval;
2036                         }
2037
2038         target->debug_reason = DBG_REASON_SINGLESTEP;
2039
2040         /* calculate PC of next instruction */
2041         uint32_t next_pc;
2042         if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2043         {
2044                 uint32_t current_opcode;
2045                 target_read_u32(target, current_pc, &current_opcode);
2046                 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2047                 return retval;
2048         }
2049
2050         if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2051         {
2052                 return retval;
2053         }
2054
2055         arm7_9->enable_single_step(target, next_pc);
2056
2057         if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2058         {
2059                 arm7_9->branch_resume(target);
2060         }
2061         else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2062         {
2063                 arm7_9->branch_resume_thumb(target);
2064         }
2065         else
2066         {
2067                 LOG_ERROR("unhandled core state");
2068                 return ERROR_FAIL;
2069         }
2070
2071         if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2072         {
2073                 return retval;
2074         }
2075
2076         err = arm7_9_execute_sys_speed(target);
2077         arm7_9->disable_single_step(target);
2078
2079         /* registers are now invalid */
2080         register_cache_invalidate(armv4_5->core_cache);
2081
2082         if (err != ERROR_OK)
2083         {
2084                 target->state = TARGET_UNKNOWN;
2085         } else {
2086                 arm7_9_debug_entry(target);
2087                 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2088                 {
2089                         return retval;
2090                 }
2091                 LOG_DEBUG("target stepped");
2092         }
2093
2094         if (breakpoint)
2095                 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2096                 {
2097                         return retval;
2098                 }
2099
2100         return err;
2101 }
2102
2103 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2104                 int num, enum armv4_5_mode mode)
2105 {
2106         uint32_t* reg_p[16];
2107         uint32_t value;
2108         int retval;
2109         struct arm_reg *areg = r->arch_info;
2110         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2111         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2112
2113         if (!is_arm_mode(armv4_5->core_mode))
2114                 return ERROR_FAIL;
2115         if ((num < 0) || (num > 16))
2116                 return ERROR_INVALID_ARGUMENTS;
2117
2118         if ((mode != ARMV4_5_MODE_ANY)
2119                         && (mode != armv4_5->core_mode)
2120                         && (areg->mode != ARMV4_5_MODE_ANY))
2121         {
2122                 uint32_t tmp_cpsr;
2123
2124                 /* change processor mode (mask T bit) */
2125                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2126                 tmp_cpsr |= mode;
2127                 tmp_cpsr &= ~0x20;
2128                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2129         }
2130
2131         if ((num >= 0) && (num <= 15))
2132         {
2133                 /* read a normal core register */
2134                 reg_p[num] = &value;
2135
2136                 arm7_9->read_core_regs(target, 1 << num, reg_p);
2137         }
2138         else
2139         {
2140                 /* read a program status register
2141                  * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2142                  */
2143                 arm7_9->read_xpsr(target, &value, areg->mode != ARMV4_5_MODE_ANY);
2144         }
2145
2146         if ((retval = jtag_execute_queue()) != ERROR_OK)
2147         {
2148                 return retval;
2149         }
2150
2151         r->valid = 1;
2152         r->dirty = 0;
2153         buf_set_u32(r->value, 0, 32, value);
2154
2155         if ((mode != ARMV4_5_MODE_ANY)
2156                         && (mode != armv4_5->core_mode)
2157                         && (areg->mode != ARMV4_5_MODE_ANY))    {
2158                 /* restore processor mode (mask T bit) */
2159                 arm7_9->write_xpsr_im8(target,
2160                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2161                                         & ~0x20, 0, 0);
2162         }
2163
2164         return ERROR_OK;
2165 }
2166
2167 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2168                 int num, enum armv4_5_mode mode, uint32_t value)
2169 {
2170         uint32_t reg[16];
2171         struct arm_reg *areg = r->arch_info;
2172         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2173         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2174
2175         if (!is_arm_mode(armv4_5->core_mode))
2176                 return ERROR_FAIL;
2177         if ((num < 0) || (num > 16))
2178                 return ERROR_INVALID_ARGUMENTS;
2179
2180         if ((mode != ARMV4_5_MODE_ANY)
2181                         && (mode != armv4_5->core_mode)
2182                         && (areg->mode != ARMV4_5_MODE_ANY))    {
2183                 uint32_t tmp_cpsr;
2184
2185                 /* change processor mode (mask T bit) */
2186                 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2187                 tmp_cpsr |= mode;
2188                 tmp_cpsr &= ~0x20;
2189                 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2190         }
2191
2192         if ((num >= 0) && (num <= 15))
2193         {
2194                 /* write a normal core register */
2195                 reg[num] = value;
2196
2197                 arm7_9->write_core_regs(target, 1 << num, reg);
2198         }
2199         else
2200         {
2201                 /* write a program status register
2202                 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2203                 */
2204                 int spsr = (areg->mode != ARMV4_5_MODE_ANY);
2205
2206                 /* if we're writing the CPSR, mask the T bit */
2207                 if (!spsr)
2208                         value &= ~0x20;
2209
2210                 arm7_9->write_xpsr(target, value, spsr);
2211         }
2212
2213         r->valid = 1;
2214         r->dirty = 0;
2215
2216         if ((mode != ARMV4_5_MODE_ANY)
2217                         && (mode != armv4_5->core_mode)
2218                         && (areg->mode != ARMV4_5_MODE_ANY))    {
2219                 /* restore processor mode (mask T bit) */
2220                 arm7_9->write_xpsr_im8(target,
2221                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2222                                         & ~0x20, 0, 0);
2223         }
2224
2225         return jtag_execute_queue();
2226 }
2227
2228 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2229 {
2230         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2231         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2232         uint32_t reg[16];
2233         uint32_t num_accesses = 0;
2234         int thisrun_accesses;
2235         int i;
2236         uint32_t cpsr;
2237         int retval;
2238         int last_reg = 0;
2239
2240         LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2241
2242         if (target->state != TARGET_HALTED)
2243         {
2244                 LOG_WARNING("target not halted");
2245                 return ERROR_TARGET_NOT_HALTED;
2246         }
2247
2248         /* sanitize arguments */
2249         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2250                 return ERROR_INVALID_ARGUMENTS;
2251
2252         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2253                 return ERROR_TARGET_UNALIGNED_ACCESS;
2254
2255         /* load the base register with the address of the first word */
2256         reg[0] = address;
2257         arm7_9->write_core_regs(target, 0x1, reg);
2258
2259         int j = 0;
2260
2261         switch (size)
2262         {
2263                 case 4:
2264                         while (num_accesses < count)
2265                         {
2266                                 uint32_t reg_list;
2267                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2268                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2269
2270                                 if (last_reg <= thisrun_accesses)
2271                                         last_reg = thisrun_accesses;
2272
2273                                 arm7_9->load_word_regs(target, reg_list);
2274
2275                                 /* fast memory reads are only safe when the target is running
2276                                  * from a sufficiently high clock (32 kHz is usually too slow)
2277                                  */
2278                                 if (arm7_9->fast_memory_access)
2279                                         retval = arm7_9_execute_fast_sys_speed(target);
2280                                 else
2281                                         retval = arm7_9_execute_sys_speed(target);
2282                                 if (retval != ERROR_OK)
2283                                         return retval;
2284
2285                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2286
2287                                 /* advance buffer, count number of accesses */
2288                                 buffer += thisrun_accesses * 4;
2289                                 num_accesses += thisrun_accesses;
2290
2291                                 if ((j++%1024) == 0)
2292                                 {
2293                                         keep_alive();
2294                                 }
2295                         }
2296                         break;
2297                 case 2:
2298                         while (num_accesses < count)
2299                         {
2300                                 uint32_t reg_list;
2301                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2302                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2303
2304                                 for (i = 1; i <= thisrun_accesses; i++)
2305                                 {
2306                                         if (i > last_reg)
2307                                                 last_reg = i;
2308                                         arm7_9->load_hword_reg(target, i);
2309                                         /* fast memory reads are only safe when the target is running
2310                                          * from a sufficiently high clock (32 kHz is usually too slow)
2311                                          */
2312                                         if (arm7_9->fast_memory_access)
2313                                                 retval = arm7_9_execute_fast_sys_speed(target);
2314                                         else
2315                                                 retval = arm7_9_execute_sys_speed(target);
2316                                         if (retval != ERROR_OK)
2317                                         {
2318                                                 return retval;
2319                                         }
2320
2321                                 }
2322
2323                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2324
2325                                 /* advance buffer, count number of accesses */
2326                                 buffer += thisrun_accesses * 2;
2327                                 num_accesses += thisrun_accesses;
2328
2329                                 if ((j++%1024) == 0)
2330                                 {
2331                                         keep_alive();
2332                                 }
2333                         }
2334                         break;
2335                 case 1:
2336                         while (num_accesses < count)
2337                         {
2338                                 uint32_t reg_list;
2339                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2340                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2341
2342                                 for (i = 1; i <= thisrun_accesses; i++)
2343                                 {
2344                                         if (i > last_reg)
2345                                                 last_reg = i;
2346                                         arm7_9->load_byte_reg(target, i);
2347                                         /* fast memory reads are only safe when the target is running
2348                                          * from a sufficiently high clock (32 kHz is usually too slow)
2349                                          */
2350                                         if (arm7_9->fast_memory_access)
2351                                                 retval = arm7_9_execute_fast_sys_speed(target);
2352                                         else
2353                                                 retval = arm7_9_execute_sys_speed(target);
2354                                         if (retval != ERROR_OK)
2355                                         {
2356                                                 return retval;
2357                                         }
2358                                 }
2359
2360                                 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2361
2362                                 /* advance buffer, count number of accesses */
2363                                 buffer += thisrun_accesses * 1;
2364                                 num_accesses += thisrun_accesses;
2365
2366                                 if ((j++%1024) == 0)
2367                                 {
2368                                         keep_alive();
2369                                 }
2370                         }
2371                         break;
2372                 default:
2373                         LOG_ERROR("BUG: we shouldn't get here");
2374                         exit(-1);
2375                         break;
2376         }
2377
2378         if (!is_arm_mode(armv4_5->core_mode))
2379                 return ERROR_FAIL;
2380
2381         for (i = 0; i <= last_reg; i++) {
2382                 struct reg *r = arm_reg_current(armv4_5, i);
2383
2384                 r->dirty = r->valid;
2385         }
2386
2387         arm7_9->read_xpsr(target, &cpsr, 0);
2388         if ((retval = jtag_execute_queue()) != ERROR_OK)
2389         {
2390                 LOG_ERROR("JTAG error while reading cpsr");
2391                 return ERROR_TARGET_DATA_ABORT;
2392         }
2393
2394         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2395         {
2396                 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2397
2398                 arm7_9->write_xpsr_im8(target,
2399                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2400                                         & ~0x20, 0, 0);
2401
2402                 return ERROR_TARGET_DATA_ABORT;
2403         }
2404
2405         return ERROR_OK;
2406 }
2407
2408 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2409 {
2410         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2411         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2412         struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2413
2414         uint32_t reg[16];
2415         uint32_t num_accesses = 0;
2416         int thisrun_accesses;
2417         int i;
2418         uint32_t cpsr;
2419         int retval;
2420         int last_reg = 0;
2421
2422 #ifdef _DEBUG_ARM7_9_
2423         LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2424 #endif
2425
2426         if (target->state != TARGET_HALTED)
2427         {
2428                 LOG_WARNING("target not halted");
2429                 return ERROR_TARGET_NOT_HALTED;
2430         }
2431
2432         /* sanitize arguments */
2433         if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2434                 return ERROR_INVALID_ARGUMENTS;
2435
2436         if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2437                 return ERROR_TARGET_UNALIGNED_ACCESS;
2438
2439         /* load the base register with the address of the first word */
2440         reg[0] = address;
2441         arm7_9->write_core_regs(target, 0x1, reg);
2442
2443         /* Clear DBGACK, to make sure memory fetches work as expected */
2444         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2445         embeddedice_store_reg(dbg_ctrl);
2446
2447         switch (size)
2448         {
2449                 case 4:
2450                         while (num_accesses < count)
2451                         {
2452                                 uint32_t reg_list;
2453                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2454                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2455
2456                                 for (i = 1; i <= thisrun_accesses; i++)
2457                                 {
2458                                         if (i > last_reg)
2459                                                 last_reg = i;
2460                                         reg[i] = target_buffer_get_u32(target, buffer);
2461                                         buffer += 4;
2462                                 }
2463
2464                                 arm7_9->write_core_regs(target, reg_list, reg);
2465
2466                                 arm7_9->store_word_regs(target, reg_list);
2467
2468                                 /* fast memory writes are only safe when the target is running
2469                                  * from a sufficiently high clock (32 kHz is usually too slow)
2470                                  */
2471                                 if (arm7_9->fast_memory_access)
2472                                         retval = arm7_9_execute_fast_sys_speed(target);
2473                                 else
2474                                         retval = arm7_9_execute_sys_speed(target);
2475                                 if (retval != ERROR_OK)
2476                                 {
2477                                         return retval;
2478                                 }
2479
2480                                 num_accesses += thisrun_accesses;
2481                         }
2482                         break;
2483                 case 2:
2484                         while (num_accesses < count)
2485                         {
2486                                 uint32_t reg_list;
2487                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2488                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2489
2490                                 for (i = 1; i <= thisrun_accesses; i++)
2491                                 {
2492                                         if (i > last_reg)
2493                                                 last_reg = i;
2494                                         reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2495                                         buffer += 2;
2496                                 }
2497
2498                                 arm7_9->write_core_regs(target, reg_list, reg);
2499
2500                                 for (i = 1; i <= thisrun_accesses; i++)
2501                                 {
2502                                         arm7_9->store_hword_reg(target, i);
2503
2504                                         /* fast memory writes are only safe when the target is running
2505                                          * from a sufficiently high clock (32 kHz is usually too slow)
2506                                          */
2507                                         if (arm7_9->fast_memory_access)
2508                                                 retval = arm7_9_execute_fast_sys_speed(target);
2509                                         else
2510                                                 retval = arm7_9_execute_sys_speed(target);
2511                                         if (retval != ERROR_OK)
2512                                         {
2513                                                 return retval;
2514                                         }
2515                                 }
2516
2517                                 num_accesses += thisrun_accesses;
2518                         }
2519                         break;
2520                 case 1:
2521                         while (num_accesses < count)
2522                         {
2523                                 uint32_t reg_list;
2524                                 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2525                                 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2526
2527                                 for (i = 1; i <= thisrun_accesses; i++)
2528                                 {
2529                                         if (i > last_reg)
2530                                                 last_reg = i;
2531                                         reg[i] = *buffer++ & 0xff;
2532                                 }
2533
2534                                 arm7_9->write_core_regs(target, reg_list, reg);
2535
2536                                 for (i = 1; i <= thisrun_accesses; i++)
2537                                 {
2538                                         arm7_9->store_byte_reg(target, i);
2539                                         /* fast memory writes are only safe when the target is running
2540                                          * from a sufficiently high clock (32 kHz is usually too slow)
2541                                          */
2542                                         if (arm7_9->fast_memory_access)
2543                                                 retval = arm7_9_execute_fast_sys_speed(target);
2544                                         else
2545                                                 retval = arm7_9_execute_sys_speed(target);
2546                                         if (retval != ERROR_OK)
2547                                         {
2548                                                 return retval;
2549                                         }
2550
2551                                 }
2552
2553                                 num_accesses += thisrun_accesses;
2554                         }
2555                         break;
2556                 default:
2557                         LOG_ERROR("BUG: we shouldn't get here");
2558                         exit(-1);
2559                         break;
2560         }
2561
2562         /* Re-Set DBGACK */
2563         buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2564         embeddedice_store_reg(dbg_ctrl);
2565
2566         if (!is_arm_mode(armv4_5->core_mode))
2567                 return ERROR_FAIL;
2568
2569         for (i = 0; i <= last_reg; i++) {
2570                 struct reg *r = arm_reg_current(armv4_5, i);
2571
2572                 r->dirty = r->valid;
2573         }
2574
2575         arm7_9->read_xpsr(target, &cpsr, 0);
2576         if ((retval = jtag_execute_queue()) != ERROR_OK)
2577         {
2578                 LOG_ERROR("JTAG error while reading cpsr");
2579                 return ERROR_TARGET_DATA_ABORT;
2580         }
2581
2582         if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2583         {
2584                 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2585
2586                 arm7_9->write_xpsr_im8(target,
2587                                 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2588                                         & ~0x20, 0, 0);
2589
2590                 return ERROR_TARGET_DATA_ABORT;
2591         }
2592
2593         return ERROR_OK;
2594 }
2595
2596 static int dcc_count;
2597 static uint8_t *dcc_buffer;
2598
2599 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2600 {
2601         int retval = ERROR_OK;
2602         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2603
2604         if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2605                 return retval;
2606
2607         int little = target->endianness == TARGET_LITTLE_ENDIAN;
2608         int count = dcc_count;
2609         uint8_t *buffer = dcc_buffer;
2610         if (count > 2)
2611         {
2612                 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2613                  * core function repeated. */
2614                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2615                 buffer += 4;
2616
2617                 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2618                 uint8_t reg_addr = ice_reg->addr & 0x1f;
2619                 struct jtag_tap *tap;
2620                 tap = ice_reg->jtag_info->tap;
2621
2622                 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2623                 buffer += (count-2)*4;
2624
2625                 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2626         } else
2627         {
2628                 int i;
2629                 for (i = 0; i < count; i++)
2630                 {
2631                         embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2632                         buffer += 4;
2633                 }
2634         }
2635
2636         if ((retval = target_halt(target))!= ERROR_OK)
2637         {
2638                 return retval;
2639         }
2640         return target_wait_state(target, TARGET_HALTED, 500);
2641 }
2642
2643 static const uint32_t dcc_code[] =
2644 {
2645         /* r0 == input, points to memory buffer
2646          * r1 == scratch
2647          */
2648
2649         /* spin until DCC control (c0) reports data arrived */
2650         0xee101e10,     /* w: mrc p14, #0, r1, c0, c0 */
2651         0xe3110001,     /*    tst r1, #1              */
2652         0x0afffffc,     /*    bne w                   */
2653
2654         /* read word from DCC (c1), write to memory */
2655         0xee111e10,     /*    mrc p14, #0, r1, c1, c0 */
2656         0xe4801004,     /*    str r1, [r0], #4        */
2657
2658         /* repeat */
2659         0xeafffff9      /*    b   w                   */
2660 };
2661
2662 int armv4_5_run_algorithm_inner(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2663
2664 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2665 {
2666         int retval;
2667         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2668         int i;
2669
2670         if (!arm7_9->dcc_downloads)
2671                 return target_write_memory(target, address, 4, count, buffer);
2672
2673         /* regrab previously allocated working_area, or allocate a new one */
2674         if (!arm7_9->dcc_working_area)
2675         {
2676                 uint8_t dcc_code_buf[6 * 4];
2677
2678                 /* make sure we have a working area */
2679                 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2680                 {
2681                         LOG_INFO("no working area available, falling back to memory writes");
2682                         return target_write_memory(target, address, 4, count, buffer);
2683                 }
2684
2685                 /* copy target instructions to target endianness */
2686                 for (i = 0; i < 6; i++)
2687                 {
2688                         target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2689                 }
2690
2691                 /* write DCC code to working area */
2692                 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2693                 {
2694                         return retval;
2695                 }
2696         }
2697
2698         struct armv4_5_algorithm armv4_5_info;
2699         struct reg_param reg_params[1];
2700
2701         armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2702         armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2703         armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2704
2705         init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2706
2707         buf_set_u32(reg_params[0].value, 0, 32, address);
2708
2709         dcc_count = count;
2710         dcc_buffer = buffer;
2711         retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2712                         arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2713
2714         if (retval == ERROR_OK)
2715         {
2716                 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2717                 if (endaddress != (address + count*4))
2718                 {
2719                         LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2720                         retval = ERROR_FAIL;
2721                 }
2722         }
2723
2724         destroy_reg_param(&reg_params[0]);
2725
2726         return retval;
2727 }
2728
2729 /**
2730  * Perform per-target setup that requires JTAG access.
2731  */
2732 int arm7_9_examine(struct target *target)
2733 {
2734         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2735         int retval;
2736
2737         if (!target_was_examined(target)) {
2738                 struct reg_cache *t, **cache_p;
2739
2740                 t = embeddedice_build_reg_cache(target, arm7_9);
2741                 if (t == NULL)
2742                         return ERROR_FAIL;
2743
2744                 cache_p = register_get_last_cache_p(&target->reg_cache);
2745                 (*cache_p) = t;
2746                 arm7_9->eice_cache = (*cache_p);
2747
2748                 if (arm7_9->armv4_5_common.etm)
2749                         (*cache_p)->next = etm_build_reg_cache(target,
2750                                         &arm7_9->jtag_info,
2751                                         arm7_9->armv4_5_common.etm);
2752
2753                 target_set_examined(target);
2754         }
2755
2756         retval = embeddedice_setup(target);
2757         if (retval == ERROR_OK)
2758                 retval = arm7_9_setup(target);
2759         if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2760                 retval = etm_setup(target);
2761         return retval;
2762 }
2763
2764 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2765 {
2766         struct target *target = get_current_target(CMD_CTX);
2767         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2768
2769         if (!is_arm7_9(arm7_9))
2770         {
2771                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2772                 return ERROR_TARGET_INVALID;
2773         }
2774
2775         if (CMD_ARGC > 0)
2776                 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2777
2778         command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2779
2780         return ERROR_OK;
2781 }
2782
2783 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2784 {
2785         struct target *target = get_current_target(CMD_CTX);
2786         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2787
2788         if (!is_arm7_9(arm7_9))
2789         {
2790                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2791                 return ERROR_TARGET_INVALID;
2792         }
2793
2794         if (CMD_ARGC > 0)
2795                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2796
2797         command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2798
2799         return ERROR_OK;
2800 }
2801
2802 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2803 {
2804         struct target *target = get_current_target(CMD_CTX);
2805         struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2806
2807         if (!is_arm7_9(arm7_9))
2808         {
2809                 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2810                 return ERROR_TARGET_INVALID;
2811         }
2812
2813         if (CMD_ARGC > 0)
2814                 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2815
2816         command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2817
2818         return ERROR_OK;
2819 }
2820
2821 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2822 {
2823         int retval = ERROR_OK;
2824         struct arm *armv4_5 = &arm7_9->armv4_5_common;
2825
2826         arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2827
2828         if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2829                 return retval;
2830
2831         /* caller must have allocated via calloc(), so everything's zeroed */
2832
2833         arm7_9->wp_available_max = 2;
2834
2835         arm7_9->fast_memory_access = false;
2836         arm7_9->dcc_downloads = false;
2837
2838         armv4_5->arch_info = arm7_9;
2839         armv4_5->read_core_reg = arm7_9_read_core_reg;
2840         armv4_5->write_core_reg = arm7_9_write_core_reg;
2841         armv4_5->full_context = arm7_9_full_context;
2842
2843         if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
2844                 return retval;
2845
2846         return target_register_timer_callback(arm7_9_handle_target_request,
2847                         1, 1, target);
2848 }
2849
2850 int arm7_9_register_commands(struct command_context *cmd_ctx)
2851 {
2852         struct command *arm7_9_cmd;
2853
2854         arm7_9_cmd = COMMAND_REGISTER(cmd_ctx, NULL, "arm7_9",
2855                         NULL, COMMAND_ANY, "arm7/9 specific commands");
2856
2857         COMMAND_REGISTER(cmd_ctx, arm7_9_cmd, "dbgrq",
2858                         handle_arm7_9_dbgrq_command, COMMAND_ANY,
2859                         "use EmbeddedICE dbgrq instead of breakpoint "
2860                         "for target halt requests <enable | disable>");
2861         COMMAND_REGISTER(cmd_ctx, arm7_9_cmd, "fast_memory_access",
2862                         handle_arm7_9_fast_memory_access_command, COMMAND_ANY,
2863                         "use fast memory accesses instead of slower "
2864                         "but potentially safer accesses <enable | disable>");
2865         COMMAND_REGISTER(cmd_ctx, arm7_9_cmd, "dcc_downloads",
2866                         handle_arm7_9_dcc_downloads_command, COMMAND_ANY,
2867                         "use DCC downloads for larger memory writes <enable | disable>");
2868
2869         armv4_5_register_commands(cmd_ctx);
2870
2871         etm_register_commands(cmd_ctx);
2872
2873         return ERROR_OK;
2874 }