Imported Upstream version 3.2.2
[debian/gnuradio] / gnuradio-examples / python / multi_usrp / README
1 #
2 # N.B., these files have not been converted to top_block/hier_block2 because
3 # those of doing the conversion don't have the setup to test this.
4 # As a result, these programs will no longer run until updated.
5 #
6
7 Quick start multi-usrp:
8
9 Unpack, build and install usrp, gnuradio-core and gr-usrp
10 Versions need to be more recent then 2.7cvs/svn 11 may 2006
11
12 Make sure usrp/fpga/rbf/rev2/multi*.rbf is installed in /usr/local/share/usrp/rev2/
13 Make sure usrp/fpga/rbf/rev4/multi*.rbf is installed in /usr/local/share/usrp/rev4/
14 (If in doubt, copy manually)
15  
16 build and install gr-wxgui gr-audio-xxx  and so on.
17
18 unpack gnuradio-examples.
19
20 There is a gnuradio-examples/python/multi_usrp directory which contains examples
21
22
23 Put at least a basic RX or dbsrx board in RXA of the master and RXA of the slave board.
24 Make sure that the usrps have a serial or unique identifier programmed in their eeprom.
25 (All new rev 4.1 boards have this)
26 You can do without a serial but then you never know which usrp is the master and which is the slave.
27
28
29 CONNECTING THE CABLES
30 Now connect the 64MHz clocks between the boards with a short sma coax cable.
31 (See the wiki on how to enable clock-out and clock-in 
32 http://gnuradio.org/trac/wiki/USRPClockingNotes )
33
34 You need one board with a clock out and one board with a clock in.
35
36 You can choose any of the two boards as master or slave, this is not dependant on which board has the clock-out or in.
37 In my experiments I had fewer problems when the board that has the clock-in will be the master board.
38
39 You can use a standard 16-pole flatcable to connect tvrx, basic-rx or dbsrx boards.
40 Of this 16pin flatcable only two pins are used (io15 and ground)
41 For all new daughterboards which use up a lot of io pins you have to use a cable with fewer connections.
42 The savest is using a 2pin headercable connected to io15,gnd (a cable like the ones used to connect frontpanel leds to the mainboard of a PC)
43
44 If using basic rx board:
45   Connect a 16-pole flatcable from J25 on basicrx/dbs_rx in rxa of the master usrp to J25 on basicrx/dbsrx in RXA of the slave usrp
46   Don't twist the cable (Make sure the pin1 marker (red line on the flatcable) is on the same side of the connector (at io-8 on the master and at io8 on the slave.))
47   For basic_rx this means the marker should be on the side of the dboard with the sma connectors. 
48   For dbs_rx this means the marker should be on the side of the dboard with the two little chips.
49   In other words, don't twist the cable, you will burn your board if you do.
50
51 You can also connect a flatcable with multiple connectors from master-J25 to slave1-J25 to slave2-J25 to ...
52 You will however have to think of something to create a common 64Mhz clock for more then two usrps.
53
54 For all other daughterboards, connect a 2wire cable from masterRXA J25 io15,gnd to slaveRXA J25 io15,gnd 
55
56
57 So now the hardware is setup, software is setup. Lets do some tests.
58
59 Connect power to both usrps.
60 unpack the gnuradio_examples somewhere (cvs version later then 11 may 2006) 
61 go to the gnuradio-examples/python/multi_usrp folder.
62
63 Now run 
64  ./multi_usrp_oscope.py -x 12345678
65
66 It should tell you that usrp 12345678 is not found and tell you which serials are available.
67
68 Now run  ./multi_usrp_oscope.py -x actualserialnum 
69 You should now get an oscope with two channels, one is from the master and one is from the slave
70 It will which show the I-signal from channel 0 of the master usrp and I-signal from channel 0 of the slave usrp.
71 (For testing connect the same signal source to the inputs of both boards)
72 The signals should be aligned.
73 If you click the sync button, it will resync the master and slave (should never be needed)
74
75 Now run
76 ./multi_usrp_oscope.py --help
77 To see all available options.
78
79
80 Now you are ready to do phase-locked aligned signal processing.
81
82 You can also capture to file with:
83 ./multi_usrp_rx_cfile.py 
84
85 run ./multi_usrp_rx_cfile.py --help to see all available options.
86
87
88
89 Here follows a description of the detail blocks used in usrp_multi.py
90
91 Multi usrp
92
93 With this code you can connect two or more usrps (with a locked clock) and get synchronised samples.
94 You must connect a (flat)cable between a dboard on the master in RXA and a dboard on the slave in RXA.
95 You then put one usrp in master mode, put the other in slave mode.
96
97 The easiest thing to see how this works is just looking at the code in
98  multi_usrp_oscope.py
99  multi_usrp_rx_cfile.py 
100
101 Use the usrp_multi block which is installed by gr-usrp.
102 instantiate in the following way:
103
104         self.multi=usrp_multi.multi_source_align( fg=self, master_serialno=options.master_serialno, decim=options.decim, nchan=options.nchan )
105
106 nchan should be 2 or 4.
107
108 You determine which is the master by master_serialno (this is a text string a hexadecimal number).
109 If you enter a serial number which is not found it will print the serial numbers which are available.
110 If you give no serial number  (master_serialno=None), the code will pick a Master for you.
111
112 You can get a reference to the master and the slave usrp in the following way:
113
114         self.um=self.multi.get_master_usrp()
115         self.us=self.multi.get_slave_usrp()
116
117 You only need these references for setting freqs/gains or getting info about daughterboards.
118 Don't use the output directly but use the aligned output from multi.get_master_source_c() and multi.get_slave_source_c()
119
120 You get references to the aligned output samples in the following way:
121 aligned_master_source_c=self.multi.get_master_source_c()
122 aligned_slave_source_c=self.multi.get_slave_source_c()
123
124 These blocks have multiple outputs.
125 output 0 is the sample counter (high bits in I, low bits in Q)
126 You normally don't need the samplecounters so you can ignore output 0
127
128 output 1 is the first aligend output channel (if you enable 2 or 4 channels)
129 output 2 is the second output channel (only if you enable 4 channels)
130
131 so the usefull 4 channels are:
132 self.aligned_master_chan1=(self.multi.get_master_source_c(),1)
133 self.aligned_master_chan2=(self.multi.get_master_source_c(),2)
134 self.aligned_slave_chan1=(self.multi.get_slave_source_c(),1)
135 self.aligned_slave_chan2=(self.multi.get_slave_source_c(),2)
136
137 The two samplecounters are:
138 self.aligned_master_samplecounter=(self.multi.get_master_source_c(),0)
139 self.aligned_slave_samplecounter=(self.multi.get_slave_source_c(),0)
140
141 You can set the gain or tune the frequency for all 4 receive daughetrboards at once:
142         self.multi.set_gain_all_rx(options.gain)
143         result,r1,r2,r3,r4 = self.multi.tune_all_rx(options.freq)
144
145 This will only work reliably when you have all the same daughterboards.
146 Otherwise set all freqs and gains individually.
147
148 You must call self.multi.sync() at least once AFTER the flowgraph has started running.
149 (This will synchronise the streams of the two usrps)
150
151 This work was funded by Toby Oliver at Sensus Analytics / Path Intelligence.
152 Many Thanks for making this possible.
153
154 It was written by Martin Dudok van Heel at Olifantasia.
155
156
157
158 Here follows a brief of the new blocks and (changes)functionality written for multi-usrp support.
159
160 You can also look at the generated documentation in  
161 /usr/local/share/doc/gnuradio-core-X.X
162 /usr/local/share/doc/usrp-X.X
163 (Make sure to build and install the documentation, go to the doc directory of the sourcetree and issue make doc; make install)
164  
165
166 gnuradio-examples:
167 new/changed files:
168 multi_usrp/multi_usrp_oscope.py
169 multi_usrp/multi_usrp_rx_cfile.py
170
171
172 gnuradio-core:
173 gr.align_on_samplenumbers_ss (int nchan,int align_interval) 
174
175 align several complex short (interleaved short) input channels with corresponding unsigned 32 bit sample_counters (provided as interleaved 16 bit values)
176
177 Parameters:
178         nchan   number of complex_short input channels (including the 32 bit counting channel)
179         align_interval  interval at which the samples are aligned, ignored for now.
180
181 Pay attention on how you connect this block It expects a minimum of 2 usrp_source_s with nchan number of channels and as mode  usrp_prims.bmFR_MODE_RX_COUNTING_32BIT enabled. This means that the first complex_short channel is an interleaved 32 bit counter. The samples are aligned by dropping samples untill the samplenumbers match.
182
183 files:
184 gnuradio-core/src/lib/general/gr_align_on_samplenumbers_ss.cc
185 gnuradio-core/src/lib/general/gr_align_on_samplenumbers_ss.h
186 gnuradio-core/src/lib/general/gr_align_on_samplenumbers_ss.i
187
188
189 gr-usrp
190    added _write_fpga_reg_masked
191    added usrp_multi.py
192   new usrp_multi block which can instantiate two linked usrps as master and slave and alignes their output.
193   It has a sync() function which should be called AFTER the flowgraph has started running.
194   bool sync();
195      \brief Call this on a master usrp to sync master and slave by outputing a sync pulse on rx_a_io[15].
196         The 32 bit samplecounter of master and slave will be reset to zero and all phase and buffer related things in the usrps are reset.
197         Call this only after the flowgraph has been started, otherwise there will be no effect since everything is kept in reset state as long as the flowgraph is not running.
198      \returns true if successfull.
199
200 files:
201 configure.ac
202 src/Makefile.am
203 src/usrp1.i
204 src/usrp1_source_base.cc
205 src/usrp1_source_base.h
206 src/usrp_multi.py
207
208 usrp-0.11cvsmulti:
209 usrp:
210    new constant bmFR_MODE_RX_COUNTING_32BIT    (could also be added as extra mode like FPGA_MODE_COUNTING_32BIT)
211    Use this for the mode parameter when creating a usrp when you want to use the master/slave setup or if you want to use the 32 bit counter for other things, like testing with gr.check_counting_s(True)
212
213   added register FR_RX_MASTER_SLAVE
214   added bitno and bitmaskes:
215    bmFR_MODE_RX_COUNTING_32BIT
216
217    bitnoFR_RX_SYNC 
218    bitnoFR_RX_SYNC_MASTER
219    bitnoFR_RX_SYNC_SLAVE
220
221    bitnoFR_RX_SYNC_INPUT_IOPIN 15
222    bmFR_RX_SYNC_INPUT_IOPIN  (1<<bitnoFR_RX_SYNC_INPUT_IOPIN)
223    bitnoFR_RX_SYNC_OUTPUT_IOPIN 15
224    bmFR_RX_SYNC_OUTPUT_IOPIN (1<<bitnoFR_RX_SYNC_OUTPUT_IOPIN)
225  
226    added _write_fpga_reg_masked()
227    added new toplevel folder usrp_multi
228    added usrp_multi.v and master_control_multi.v
229    added new MULTI_ON and COUNTER_32BIT_ON defines
230       If these are turned off usrp_multi.v will behave exactly as usrp_std.v
231
232    added setting_reg_masked.v
233    changed reset behaviour of phase_acc.v and rx_buffer.v
234
235    changed generate_regs.py to handle bm and bitno defines
236
237
238 files:
239 firmware/include/fpga_regs_standard.v
240 firmware/include/fpga_regs_common.h
241 firmware/include/generate_regs.py
242 firmware/include/fpga_regs_standard.h
243 host/lib/usrp_basic.h
244 host/lib/usrp_basic.cc
245 host/lib/usrp_standard.h
246 fpga/rbf/Makefile.am
247 fpga/toplevel/usrp_std/usrp_std.v
248 fpga/toplevel/usrp_multi/usrp_multi.esf
249 fpga/toplevel/usrp_multi/usrp_multi.vh
250 fpga/toplevel/usrp_multi/usrp_std.vh
251 fpga/toplevel/usrp_multi/usrp_multi_config_2rxhb_0tx.vh
252 fpga/toplevel/usrp_multi/usrp_multi_config_2rxhb_2tx.vh
253 fpga/toplevel/usrp_multi/usrp_multi.v
254 fpga/toplevel/usrp_multi/usrp_multi.qpf
255 fpga/toplevel/usrp_multi/usrp_multi.psf
256 fpga/toplevel/usrp_multi/usrp_multi_config_2rx_0tx.vh
257 fpga/toplevel/usrp_multi/usrp_multi.qsf
258 fpga/toplevel/usrp_multi/usrp_multi_config_4rx_0tx.vh
259 fpga/toplevel/usrp_multi/usrp_multi.csf
260 fpga/toplevel/usrp_multi/.cvsignore
261 fpga/sdr_lib/rx_buffer.v
262 fpga/sdr_lib/master_control_multi.v
263 fpga/sdr_lib/phase_acc.v
264 fpga/sdr_lib/setting_reg_masked.v
265
266