Imported Upstream version 3.2.2
[debian/gnuradio] / gnuradio-core / src / python / gnuradio / blks2impl / wfm_rcv_fmdet.py
1 #
2 # Copyright 2005,2006 Free Software Foundation, Inc.
3
4 # This file is part of GNU Radio
5
6 # GNU Radio is free software; you can redistribute it and/or modify
7 # it under the terms of the GNU General Public License as published by
8 # the Free Software Foundation; either version 3, or (at your option)
9 # any later version.
10
11 # GNU Radio is distributed in the hope that it will be useful,
12 # but WITHOUT ANY WARRANTY; without even the implied warranty of
13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 # GNU General Public License for more details.
15
16 # You should have received a copy of the GNU General Public License
17 # along with GNU Radio; see the file COPYING.  If not, write to
18 # the Free Software Foundation, Inc., 51 Franklin Street,
19 # Boston, MA 02110-1301, USA.
20
21
22 from gnuradio import gr
23 from gnuradio.blks2impl.fm_emph import fm_deemph
24 import math
25
26 class wfm_rcv_fmdet(gr.hier_block2):
27     def __init__ (self, demod_rate, audio_decimation):
28         """
29         Hierarchical block for demodulating a broadcast FM signal.
30         
31         The input is the downconverted complex baseband signal (gr_complex).
32         The output is two streams of the demodulated audio (float) 0=Left, 1=Right.
33         
34         @param demod_rate: input sample rate of complex baseband input.
35         @type demod_rate: float
36         @param audio_decimation: how much to decimate demod_rate to get to audio.
37         @type audio_decimation: integer
38         """
39         gr.hier_block2.__init__(self, "wfm_rcv_fmdet",
40                                 gr.io_signature(1, 1, gr.sizeof_gr_complex), # Input signature
41                                 gr.io_signature(2, 2, gr.sizeof_float))      # Output signature
42         lowfreq = -125e3
43         highfreq = 125e3
44         audio_rate = demod_rate / audio_decimation
45
46
47         # We assign to self so that outsiders can grab the demodulator 
48         # if they need to.  E.g., to plot its output.
49         #
50         # input: complex; output: float
51             
52         self.fm_demod = gr.fmdet_cf (demod_rate, lowfreq, highfreq, 0.05)
53
54         # input: float; output: float
55         self.deemph_Left  = fm_deemph (audio_rate)
56         self.deemph_Right = fm_deemph (audio_rate)
57         
58         # compute FIR filter taps for audio filter
59         width_of_transition_band = audio_rate / 32
60         audio_coeffs = gr.firdes.low_pass (1.0 ,         # gain
61                                            demod_rate,      # sampling rate
62                                            15000 ,
63                                            width_of_transition_band,
64                                            gr.firdes.WIN_HAMMING)
65         # input: float; output: float
66         self.audio_filter = gr.fir_filter_fff (audio_decimation, audio_coeffs)
67         if 1:
68             # Pick off the stereo carrier/2 with this filter. It attenuated 10 dB so apply 10 dB gain
69             # We pick off the negative frequency half because we want to base band by it!
70             ##  NOTE  THIS WAS HACKED TO OFFSET INSERTION LOSS DUE TO DEEMPHASIS
71
72             stereo_carrier_filter_coeffs = gr.firdes.complex_band_pass(10.0,
73                                                                    demod_rate,
74                                                                    -19020,
75                                                                    -18980,
76                                                                    width_of_transition_band,
77                                                                    gr.firdes.WIN_HAMMING)
78             
79             #print "len stereo carrier filter = ",len(stereo_carrier_filter_coeffs)
80             #print "stereo carrier filter ", stereo_carrier_filter_coeffs
81             #print "width of transition band = ",width_of_transition_band, " audio rate = ", audio_rate
82
83             # Pick off the double side band suppressed carrier Left-Right audio. It is attenuated 10 dB so apply 10 dB gain
84
85             stereo_dsbsc_filter_coeffs = gr.firdes.complex_band_pass(20.0,
86                                                                      demod_rate,
87                                                                      38000-15000/2,
88                                                                      38000+15000/2,
89                                                                      width_of_transition_band,
90                                                                      gr.firdes.WIN_HAMMING)
91             #print "len stereo dsbsc filter = ",len(stereo_dsbsc_filter_coeffs)
92             #print "stereo dsbsc filter ", stereo_dsbsc_filter_coeffs
93             # construct overlap add filter system from coefficients for stereo carrier
94
95             self.stereo_carrier_filter = gr.fir_filter_fcc(audio_decimation, stereo_carrier_filter_coeffs)
96
97             # carrier is twice the picked off carrier so arrange to do a commplex multiply
98
99             self.stereo_carrier_generator = gr.multiply_cc();
100
101             # Pick off the rds signal
102
103             stereo_rds_filter_coeffs = gr.firdes.complex_band_pass(30.0,
104                                                                      demod_rate,
105                                                                      57000 - 1500,
106                                                                      57000 + 1500,
107                                                                      width_of_transition_band,
108                                                                      gr.firdes.WIN_HAMMING)
109             #print "len stereo dsbsc filter = ",len(stereo_dsbsc_filter_coeffs)
110             #print "stereo dsbsc filter ", stereo_dsbsc_filter_coeffs
111             # construct overlap add filter system from coefficients for stereo carrier
112
113             self.rds_signal_filter = gr.fir_filter_fcc(audio_decimation, stereo_rds_filter_coeffs)
114
115
116
117
118
119
120             self.rds_carrier_generator = gr.multiply_cc();
121             self.rds_signal_generator = gr.multiply_cc();
122             self_rds_signal_processor = gr.null_sink(gr.sizeof_gr_complex);
123
124
125
126             alpha = 5 * 0.25 * math.pi / (audio_rate)
127             beta = alpha * alpha / 4.0
128             max_freq = -2.0*math.pi*18990/audio_rate;
129             min_freq = -2.0*math.pi*19010/audio_rate;
130             
131             self.stereo_carrier_pll_recovery = gr.pll_refout_cc(alpha,beta,max_freq,min_freq);
132             #self.stereo_carrier_pll_recovery.squelch_enable(False) #pll_refout does not have squelch yet, so disabled for now 
133             
134
135             # set up mixer (multiplier) to get the L-R signal at baseband
136
137             self.stereo_basebander = gr.multiply_cc();
138
139             # pick off the real component of the basebanded L-R signal.  The imaginary SHOULD be zero
140
141             self.LmR_real = gr.complex_to_real();
142             self.Make_Left = gr.add_ff();
143             self.Make_Right = gr.sub_ff();
144             
145             self.stereo_dsbsc_filter = gr.fir_filter_fcc(audio_decimation, stereo_dsbsc_filter_coeffs)
146
147
148         if 1:
149
150             # send the real signal to complex filter to pick off the carrier and then to one side of a multiplier
151             self.connect (self, self.fm_demod,self.stereo_carrier_filter,self.stereo_carrier_pll_recovery, (self.stereo_carrier_generator,0))
152             # send the already filtered carrier to the otherside of the carrier
153             self.connect (self.stereo_carrier_pll_recovery, (self.stereo_carrier_generator,1))
154             # the resulting signal from this multiplier is the carrier with correct phase but at -38000 Hz.
155
156             # send the new carrier to one side of the mixer (multiplier)
157             self.connect (self.stereo_carrier_generator, (self.stereo_basebander,0))
158             # send the demphasized audio to the DSBSC pick off filter,  the complex
159             # DSBSC signal at +38000 Hz is sent to the other side of the mixer/multiplier
160             self.connect (self.fm_demod,self.stereo_dsbsc_filter, (self.stereo_basebander,1))
161             # the result is BASEBANDED DSBSC with phase zero!
162
163             # Pick off the real part since the imaginary is theoretically zero and then to one side of a summer
164             self.connect (self.stereo_basebander, self.LmR_real, (self.Make_Left,0))
165             #take the same real part of the DSBSC baseband signal and send it to negative side of a subtracter
166             self.connect (self.LmR_real,(self.Make_Right,1))
167
168             # Make rds carrier by taking the squared pilot tone and multiplying by pilot tone
169             self.connect (self.stereo_basebander,(self.rds_carrier_generator,0))
170             self.connect (self.stereo_carrier_pll_recovery,(self.rds_carrier_generator,1)) 
171             # take signal, filter off rds,  send into mixer 0 channel
172             self.connect (self.fm_demod,self.rds_signal_filter,(self.rds_signal_generator,0))
173             # take rds_carrier_generator output and send into mixer 1 channel
174             self.connect (self.rds_carrier_generator,(self.rds_signal_generator,1))
175             # send basebanded rds signal and send into "processor" which for now is a null sink
176             self.connect (self.rds_signal_generator,self_rds_signal_processor)
177             
178
179         if 1:
180             # pick off the audio, L+R that is what we used to have and send it to the summer
181             self.connect(self.fm_demod, self.audio_filter, (self.Make_Left, 1))
182             # take the picked off L+R audio and send it to the PLUS side of the subtractor
183             self.connect(self.audio_filter,(self.Make_Right, 0))
184             # The result of  Make_Left  gets    (L+R) +  (L-R) and results in 2*L
185             # The result of Make_Right gets  (L+R) - (L-R) and results in 2*R
186             self.connect(self.Make_Left , self.deemph_Left, (self, 0))
187             self.connect(self.Make_Right, self.deemph_Right, (self, 1))
188         # NOTE: mono support will require variable number of outputs in hier_block2s
189         # See ticket:174 in Trac database
190         #else:
191         #    self.connect (self.fm_demod, self.audio_filter, self)